LV2862XLVDDCR [TI]

采用超小型 SOT23 封装的 4.5V 至 60V 600mA 降压转换器 | DDC | 6 | -40 to 125;
LV2862XLVDDCR
型号: LV2862XLVDDCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用超小型 SOT23 封装的 4.5V 至 60V 600mA 降压转换器 | DDC | 6 | -40 to 125

转换器
文件: 总25页 (文件大小:1597K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LV2862  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
LV2862 60V600mA、高效、宽输入电压范围降压转换器  
电源调节的各种工业和汽车应用。1µA 的超低关断电  
流可进一步延长电池使用寿命。工作频率固定在  
770kHzX 版本2.1MHzY 版本可在保证  
低输出纹波电压的同时支持使用小型外部元件。软启  
动和补偿电路在内部实现从而最大限度地减少了器件  
所用的外部元件。  
1 特性  
• 输入范围4V 60V可承65V 瞬态  
770kHzX 版本2.1MHzY 版本开关频率  
• 凭Eco-mode可以在轻负载下实现超高的效率  
• 低压降运行  
• 高600mA 的输出电流  
• 高电压精密使能输入  
• 过流保护  
LV2862 针对高达 600mA 的负载电流进行了优化。该  
器件具0.765V 的标称反馈电压。  
• 过热保护  
• 内部补偿  
• 内部软启动  
• 小型总体解决方案尺寸SOT-6L 封装)  
该器件内置多种保护特性例如逐脉冲电流限制、热感  
应和应对功耗过大的热关断。LV2862 用扁平  
SOT-6L 封装。  
封装信息  
封装(1)  
封装尺寸(2)  
2 应用  
器件型号  
LV2862  
DDCSOT62.90 mm × 2.8 mm  
电网基础设施  
电器  
电机驱动器  
通用宽输入电压电源  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 封装尺寸x 为标称值并包括引脚如适用。  
3 说明  
LV2862 是一PWM 直流/直流降压稳压器。该器件具  
4V 60V 的宽输入范围适用于从非稳压源进行  
100  
90  
80  
70  
60  
50  
40  
30  
VIN  
Up to 60 V  
VIN  
CB  
Cboot  
L1  
Cin  
SW  
SHDN  
GND  
Cout  
LV2862  
D1  
R1  
R2  
FB  
简化原理图  
Vin = 12 V  
1000  
20  
1
10  
100  
Output Current (mA)  
D001  
效率与输出电流间的关系  
(fsw = 0.7MHz, VOUT = 3.3V)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSA49  
 
 
 
 
 
 
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
Table of Contents  
7.4 Device Functional Modes............................................9  
8 Application and Implementation..................................10  
8.1 Application Information............................................. 10  
8.2 Typical Application.................................................... 10  
8.3 Power Supply Recommendations.............................15  
8.4 Layout....................................................................... 15  
9 Device and Documentation Support............................17  
9.1 Documentation Support............................................ 17  
9.2 接收文档更新通知..................................................... 17  
9.3 支持资源....................................................................17  
9.4 Trademarks...............................................................17  
9.5 静电放电警告............................................................ 17  
9.6 术语表....................................................................... 17  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................6  
7 Detailed Description........................................................7  
7.1 Overview.....................................................................7  
7.2 Functional Block Diagram...........................................7  
7.3 Feature Description.....................................................7  
Information.................................................................... 17  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (June 2020) to Revision B (June 2023)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 更新了封装信息 表格式...................................................................................................................................... 1  
Moved storage temperature row from the Handling Ratings table to the Absolute Maximum Ratings table......4  
Updated the Handling Ratings table to ESD Ratings table.................................................................................4  
Corrected part number typo in the Power Supply Recommendations section ................................................ 15  
Changes from Revision * (December 2014) to Revision A (June 2020)  
Page  
• 首次公开发布......................................................................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSA49  
2
Submit Document Feedback  
Product Folder Links: LV2862  
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
5 Pin Configuration and Functions  
LV2862  
CB  
GND  
FB  
SW  
1
2
3
6
5
4
VIN  
PIN 1 ID  
SHDN  
TSOT-6L (Top View)  
5-1. SOT (DDC) 6 Pins Top View  
5-1. Pin Functions  
PIN  
DESCRIPTION  
NAME  
CB  
NO.  
1
Switch FET gate bias voltage. Connect Cboot cap between CB and SW.  
Ground connection  
GND  
FB  
2
3
Set feedback voltage divider ratio with VOUT = VFB (1 + (R1 / R2))  
Enable and disable input (high voltage tolerant). Internal pullup current source. Pull below 1.25 V to  
disable. Float to enable. Establish the input undervoltage lockout with a two-resistor divider.  
SHDN  
4
VIN  
5
6
Power input voltage pin. Input for internal supply and drain node input for internal high-side MOSFET.  
Switch node. Connect to inductor, diode, and Cboot cap.  
SW  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LV2862  
English Data Sheet: SNVSA49  
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.3  
0.3  
1  
MAX  
65  
UNIT  
VIN to GND  
SHDN to GND  
Input voltages  
FB to GND  
65  
7
V
CB to SW  
7
SW to GND  
Output voltages  
65  
SW to GND less than 30-ns transients  
65  
2  
TJ operating junction temperature  
Tstg storage temperature range  
150  
165  
°C  
°C  
40  
55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
MIN  
MAX  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4
MAX  
60  
UNIT  
VIN  
CB  
4
66  
6
CB to SW  
Buck Regulator  
0.3  
1  
0
V
SW  
60  
5
FB  
Control  
SHDN  
0
60  
125  
V
Temperature  
Operating junction temperature, TJ  
°C  
40  
6.4 Thermal Information  
LV2862  
TSOT  
6 PINS  
102  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
36.9  
°C/W  
Junction-to-board characterization parameter  
28.4  
(1) All numbers apply for packages soldered directly onto a 3" x 3" PC board with 2 oz. copper on 4 layers in still air in accordance to  
JEDEC standards. Thermal resistance varies greatly with layout, copper thickness, number of layers in PCB, power distribution,  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSA49  
4
Submit Document Feedback  
Product Folder Links: LV2862  
 
 
 
 
 
 
 
 
 
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
number of thermal vias, board size, ambient temperature, and air flow. For more information about traditional and new thermal metrics,  
see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics  
VIN = 12 V, SHDN = VIN. TJ = 25°C unless otherwise noted.  
PARAMETER  
VIN (Input Power Supply)  
Operating input voltage  
Shutdown supply current  
CONDITION  
MIN  
TYP  
1
MAX  
UNIT  
4
60  
3
V
µA  
V
EN = 0 V  
Rising  
4
Undervoltage lockout thresholds  
Falling  
3
V
IQ  
Eco-mode, no load, VIN = 12 V, not switching  
28  
µA  
SHDN and UVLO  
Rising SHDN Threshold Voltage  
1.05  
1.25  
4.2  
1  
1.38  
V
SHDN = 2.3 V  
SHDN = 0.9 V  
µA  
µA  
µA  
SHDN PIN current  
Hysteresis current  
HIGH-SIDE MOSFET  
On-resistance  
-3  
VIN = 12 V, CB to SW = 5.8 V  
fSW = 2.1 MHz  
900  
80  
mΩ  
tON-min  
ns  
DMAX : Maximum duty cycle  
VFB : Feedback voltage  
CURRENT LIMIT  
96%  
0.765  
0.74  
0.79  
V
Peak Current limit threshold  
1200  
770  
mA  
LV2862X  
LV2862Y  
560  
980  
fSW Switching frequency  
kHz  
1785  
2100  
2415  
THERMAL PERFORMANCE  
TSHUTDOWN Thermal shutdown trip  
point  
170  
10  
ºC  
ºC  
Thys  
Hysteresis  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LV2862  
English Data Sheet: SNVSA49  
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
6.6 Typical Characteristics  
Unless otherwise specified the following conditions apply: VIN = 12 V, SHDN = VIN, TA = 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Vin = 15 V  
Vin = 18 V  
Vin = 12 V  
Vin = 15 V  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
D002  
D003  
VOUT = 12 V  
L1 = 22 µH  
fSW = 770 kHz  
COUT = 10 µF  
VOUT = 5 V  
L1 = 22 µH  
fSW = 770 kHz  
COUT = 10 µF  
6-1. Efficiency versus Load Current  
6-2. Efficiency versus Load Current  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
Vin = 15 V  
Vin = 18 V  
Vin = 12 V  
Vin = 15 V  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
D004  
D005  
VOUT = 12 V  
L1 = 10 µH  
fSW = 2.1 MHz  
COUT = 10 µF  
VOUT = 5 V  
L1 = 10 µH  
fSW = 2.1 MHz  
COUT = 10 µF  
6-3. Efficiency versus Load Current  
6-4. Efficiency versus Load Current  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSA49  
6
Submit Document Feedback  
Product Folder Links: LV2862  
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
7 Detailed Description  
7.1 Overview  
The LV2862 device is a 60-V, 600-mA, step-down (buck) regulator. The buck regulator has a very low quiescent  
current during light load to prolong the battery life.  
The LV2862 improves performance during line and load transients by implementing a constant frequency,  
current mode control which reduces output capacitance and simplifies frequency compensation design. The  
LV2862 reduces the external component count by integrating the boot recharge diode. The bias voltage for the  
integrated high-side MOSFET is supplied by a capacitor on the CB to SW pin. The boot capacitor voltage is  
monitored by a UVLO circuit and turns the high-side MOSFET off when the boot voltage falls below a preset  
threshold. The LV2862 can operate at high duty cycles because of the boot UVLO and refresh the wimp FET.  
The output voltage can be stepped down to as low as the 0.8 V. Internal soft start is featured to minimize inrush  
currents.  
7.2 Functional Block Diagram  
VIN  
Current Sense  
Leading Edge  
Blanking  
Bootstrap  
Regulator  
CB  
Logic and  
HS  
PWM Latch  
Driver  
SW  
Wimp FET  
CB Refresh  
+
Frequency  
Shift  
+
+
0.765 V  
SS  
COMP  
EA  
FB  
Main OSC  
Bandgap  
Reference  
Slope  
Compensation  
SHDN  
GND  
7.3 Feature Description  
7.3.1 Continuous Conduction Mode  
The LV2862 steps the input voltage down to a lower output voltage. In continuous conduction mode (when the  
inductor current never reaches zero at CCM), the buck regulator operates in two cycles. The power switch is  
connected between VIN and SW. In the first cycle of operation, the transistor is closed and the diode is reverse  
biased. Energy is collected in the inductor and the load current is supplied by Cout and the rising current through  
the inductor. During the second cycle, the transistor is open and the diode is forward biased due to the fact that  
the inductor current cannot instantaneously change direction. The energy stored in the inductor is transferred to  
the load and output capacitor. The ratio of these two cycles determines the output voltage. The output voltage is  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LV2862  
English Data Sheet: SNVSA49  
 
 
 
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
defined approximately as: D = VOUT / VIN and D' = (1 - D) where D is the duty cycle of the switch. D and D' are  
required for design calculations.  
7.3.2 Fixed Frequency PWM Control  
The LV2862 has two fixed frequency options and implements peak current mode control. The output voltage is  
compared through external resistors on the FB pin to an internal voltage reference by an error amplifier that  
drives the internal COMP node. An internal oscillator initiates the turnon of the high-side power switch. The error  
amplifier output is compared to the high-side power switch current. When the power switch current reaches the  
level set by the internal COMP voltage, the power switch is turned off. The internal COMP node voltage  
increases and decreases as the output current increases and decreases. The device implements a current limit  
by clamping the COMP node voltage to a maximum level.  
7.3.3 Eco-mode  
The LV2862 operates in Eco-mode at light load currents to improve efficiency by reducing switching and gate  
drive losses. For Eco-mode operation, the LV2862 senses peak current, not average or load current, so the load  
current where the device enters Eco-mode is dependent on VIN, VOUT, and the output inductor value. When the  
load current is low and the output voltage is within regulation, the device enters ECO mode (see 8-10) and  
draws only 28-µA input quiescent current.  
7.3.4 Bootstrap Voltage (CB)  
The LV2862 has an integrated boot regulator, and requires a small ceramic capacitor between the CB and SW  
pins to provide the gate drive voltage for the high-side MOSFET. The CB capacitor is refreshed when the high-  
side MOSFET is off and the low-side diode conducts.  
To improve dropout, the LV2862 is designed to operate at 96% duty cycle as long as the CB to SW pin voltage is  
greater than 3 V. When the voltage from CB to SW drops below 3 V, the high-side MOSFET is turned off using  
an UVLO circuit which allows the low-side diode to conduct and refresh the charge on the CB capacitor.  
Because the supply current sourced from the CB capacitor is low, the high-side MOSFET can remain on for  
more switching cycles than is required to refresh the capacitor, thus the effective duty cycle of the switching  
regulator is high.  
Attention must be taken in maximum duty cycle applications with light load. To ensure SW can be pulled to  
ground to refresh the CB capacitor, an internal circuit charges the CB capacitor when the load is light or the  
device is working in dropout condition.  
7.3.5 Enable (SHDN) and VIN Undervoltage Lockout (UVLO)  
The LV2862 SHDN pin is a high-voltage tolerant input with an internal pullup circuit. The device can be enabled  
even if the SHDN pin is floating. The regulator can also be turned on using 1.25 V or higher logic signals. It can  
be used if the use of a higher voltage is desired due to system or other constraints. A 100-kor larger resistor is  
recommended between the applied voltage and the SHDN pin to protect the device. When SHDN is pulled down  
to 0 V, the chip is turned off and enters the lowest shutdown current mode. In shutdown mode, the supply current  
is decreased to approximately 1 µA. If the shutdown function is not to be used, the SHDN pin can be tied to VIN  
through a 100-kΩ resistor. The maximum voltage to the SHDN pin must not exceed 60 V. The LV2862 has an  
internal UVLO circuit to shut down the output if the input voltage falls below an internally fixed UVLO threshold  
level. This ensures that the regulator is not latched into an unknown state during low input voltage conditions.  
The regulator powers up when the input voltage exceeds the voltage level. If there is a requirement for a higher  
UVLO voltage, the SHDN pin can be used to adjust the input voltage UVLO by using external resistors.  
7.3.6 Setting the Output Voltage  
The output voltage is set using the feedback pin and a resistor divider connected to the output as shown on the  
front page schematic. The feedback pin voltage is 0.765 V, so the ratio of the feedback resistors sets the output  
voltage according to 方程1:  
VOUT = 0.765 V (1 + (R1 / R2))  
(1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSA49  
8
Submit Document Feedback  
Product Folder Links: LV2862  
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
Typically, R2 is given as 1 k100 kfor a starting value. To solve for R1 given R2 and VOUT, use R1 = R2  
((VOUT / 0.765 V) 1).  
7.3.7 Current Limit  
The LV2862 implements current mode control which uses the internal COMP voltage to turn off the high-side  
MOSFET on a cycle-by-cycle basis. Each cycle, the switch current and internal COMP voltage are compared.  
When the peak switch current intersects the COMP voltage, the high-side switch is turned off. During overcurrent  
conditions that pull the output voltage low, the error amplifier responds by driving the COMP node high,  
increasing the switch current. The error amplifier output is clamped internally, which functions as a switch current  
limit.  
7.3.8 Thermal Shutdown  
The device implements an internal thermal shutdown to protect itself if the junction temperature exceeds 170°C  
(typ). The thermal shutdown forces the device to stop switching when the junction temperature exceeds the  
thermal trip threshold. After the junction temperature decreases below 160°C (typ), the device reinitiates the  
power-up sequence.  
7.4 Device Functional Modes  
This device does not have any device functional modes.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LV2862  
English Data Sheet: SNVSA49  
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LV2862 is a PWM DC/DC buck (step-down) regulator. With a wide input range from 4 V to 60 V, it is suitable  
for a wide range of applications from, industrial to automotive, for power conditioning from unregulated source.  
Soft start and compensation circuits are implemented internally, which allow the device to be used with  
minimized external components.  
8.2 Typical Application  
CB  
VIN  
Cin  
2.2 µF  
VIN  
100 k  
L1  
Cboot  
100 nF  
SW  
22 µH  
5 V, 0.6 A  
SHDN  
LV2862  
Cout  
10 µF  
R1  
54.9 k  
D1  
FB  
GND  
R2  
10 k  
8-1. Application Circuit, 5-V Output  
8.2.1 Design Requirements  
8.2.1.1 Design Guide Step By Step Design Procedure  
8-1 details the design of a high frequency switching regulator using ceramic output capacitors. A few  
parameters must be known to start the design process. These parameters are typically determined at the system  
level:  
8-1. Design Parameters  
Input Voltage, VIN  
9 V to 16 V, Typical 12 V  
Output Voltage, VOUT  
5.0 V ± 3%  
Maximum Output Current Example IO_max  
Minimum Output Current Example IO_min  
Transient Response 0.03 A to 0.6 A  
Output Voltage Ripple  
0.6 A  
0.03 A  
5%  
1%  
Switching Frequency fSW  
770 kHz  
Overvoltage Peak Value  
Undervoltage Value  
106% of Output Voltage  
91% of Output Voltage  
Target during Load Transient  
8.2.2 Detailed Design Procedure  
8.2.2.1 Selecting the Switching Frequency  
The first step is to decide on a switching frequency for the regulator. Typically, choose the highest switching  
frequency possible because this switching frequency produces the smallest solution size. The high switching  
frequency allows for lower valued inductors and smaller output capacitors compared to a power supply that  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSA49  
10  
Submit Document Feedback  
Product Folder Links: LV2862  
 
 
 
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
switches at a lower frequency. The switching frequency that can be selected is limited by the minimum on-time of  
the internal power switch, the input voltage and the output voltage, and the frequency shift limitation. For this  
example, the output voltage is 5 V, the maximum input voltage is 16 V, and a switching frequency of 770 kHz is  
used.  
8.2.2.2 Output Inductor Selection  
The most critical parameters for the inductor are the inductance, peak current, and the DC resistance. The  
inductance is related to the peak-to-peak inductor ripple current, the input, and the output voltages. Because the  
ripple current increases with the input voltage, the maximum input voltage is always used to determine the  
inductance. To calculate the minimum value of the output inductor, use 方程式 1. A reasonable value for the  
ripple current is 40% (KIND) of the DC output current. For this design example, the minimum inductor value is  
calculated to be 20.4 µH, and a nearest standard value was chosen: 22 µH. For the output filter inductor, it is  
important that the RMS current and saturation current ratings not be exceeded. The RMS and peak inductor  
current can be found in 方程式 3 and 方程式 4. The inductor ripple current is 0.22 A, and the RMS current is 0.6  
A. As the equation set demonstrates, lower ripple currents reduce the output voltage ripple of the regulator but  
require a larger value of inductance. A good starting point for most applications is 22 μH with a 1.6-A current  
rating. Using a rating near 1.6 A enables the LV2862 to current limit without saturating the inductor. This is  
preferable to the LV2862 going into thermal shutdown mode and the possibility of damaging the inductor if the  
output is shorted to ground or other long-term overload.  
Vin max -Vout  
Io ì KIND  
Vout  
Lo min  
Iripple  
IL-RMS  
=
ì
Vin max ì fsw  
(2)  
(3)  
Vout ì(Vin max -Vout  
Vin max ì Lo ì fsw  
)
=
1
2
2
=
Io  
+
Iripple  
12  
(4)  
(5)  
Iripple  
IL- peak = Io +  
2
8.2.2.3 Output Capacitor Selection  
The selection of COUT is mainly driven by three primary considerations. The output capacitor determines the  
modulator pole, the output voltage ripple, and how the regulator responds to a large change in load current. The  
output capacitance needs to be selected based on the most stringent of these three criteria.  
The first criterion is the desired response to a large change in the load current. The regulator usually needs two  
or more clock cycles for the control loop to see the change in load current and output voltage and adjust the duty  
cycle to react to the change. The output capacitance must be large enough to supply the difference in current for  
two clock cycles while only allowing a tolerable amount of droop in the output voltage. 方程式 5 shows the  
minimum output capacitance necessary to accomplish this. The transient load response is specified as a 3%  
change in VOUT for a load step from 0.03 A to 0.6 A (full load), ΔIOUT = 0.6 - 0.03 = 0.57 A and ΔVOUT = 0.03 ×  
5 = 0.15 V. Using these numbers gives a minimum capacitance of 10.8 µF. For ceramic capacitors, the ESR is  
usually small enough to ignore in this calculation. Aluminum electrolytic and tantalum capacitors have higher  
ESR that must be taken into account.  
The stored energy in the inductor produces an output voltage overshoot when the load current rapidly  
decreases. The output capacitor must also be sized to absorb energy stored in the inductor when transitioning  
from a high load current to a lower load current. 方程式 6 is used to calculate the minimum capacitance to keep  
the output voltage overshoot to a desired value. Where L is the value of the inductor, IOH, is the output current  
under heavy load, IOL is the output under light load, Vf is the final peak output voltage, and Vi is the initial  
capacitor voltage. For this example, the worst case load step is from 0.6 A to 0.03 A. The output voltage  
increases during this load transition and the stated maximum in our specification is 3% of the output voltage.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LV2862  
English Data Sheet: SNVSA49  
 
 
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
This makes Vo_overshoot = 1.03 × 5 = 5.15 V. Vi is the initial capacitor voltage which is the nominal output voltage  
of 5 V. Using these numbers in 方程6 yields a minimum capacitance of 5.2 µF.  
方程式 7 calculates the minimum output capacitance needed to meet the output voltage ripple specification  
where fSW is the switching frequency, Vo_ripple is the maximum allowable output voltage ripple, and IL_ripple is the  
inductor ripple current. 方程式 7 yields 0.26 µF. 方程式 8 calculates the maximum ESR an output capacitor can  
have to meet the output voltage ripple specification. indicates the ESR must be less than 680 mΩ.  
Additional capacitance de-ratings for aging, temperature, and dc bias must be factored in which increases this  
minimum value. For this example, 10-µF ceramic capacitors are used. Capacitors in the range of 10 µF100 µF  
are a good starting point with an ESR of 0.7 or less.  
2ì DIout  
fswì DVout  
Cout  
>
(6)  
(7)  
(Ioh2 - Iol2 )  
(Vf 2 -Vi2 )  
Cout > Lo ì  
1
1
ì
Cout  
>
Vo _ ripple  
8ì fsw  
IL _ ripple  
(8)  
(9)  
Vo _ ripple  
RESR  
<
IL _ ripple  
8.2.2.4 Schottky Diode Selection  
The breakdown voltage rating of the diode is preferred to be 25% higher than the maximum input voltage. In the  
target application, the current rating for the diode must be equal to the maximum output current for best reliability  
in most applications. In cases where the input voltage is not much greater than the output voltage, the average  
diode current is lower. In this case, it is possible to use a diode with a lower average current rating,  
approximately (1 - D) × IOUT. However, the peak current rating must be higher than the maximum load current. A  
0.5-A to 1-A rated diode is a good starting point.  
8.2.2.5 Input Capacitor Selection  
A low ESR ceramic capacitor is needed between the VIN pin and ground pin. This capacitor prevents large  
voltage transients from appearing at the input. Use a 2.2 µF10 µF value with X5R or X7R dielectric.  
Depending on construction, the value of a ceramic capacitor can decrease up to 50% of its nominal value when  
rated voltage is applied. Consult with the capacitor manufacturer's data sheet for information on capacitor  
derating over voltage and temperature. The capacitor must also have a ripple current rating greater than the  
maximum input current ripple of the LV2862. The input ripple current can be calculated using 方程10 and 方程  
11.  
For this example design, one 4.7-µF, 50-V capacitor is selected. The input capacitance value determines the  
input ripple voltage of the regulator. The input voltage ripple can be calculated using 方程10. Using the design  
example values, Ioutmax = 0.6 A, Cin = 2.2 µF, and fsw = 770 kHz yields an input voltage ripple of 97 mV and an  
RMS input ripple current of 0.3 A.  
(Vin min -Vout  
)
Vout  
Icirms = Iout  
ì
ì
Vin min  
V
in min  
(10)  
Iout max ì 0.25  
Cin ì fsw  
DVin  
=
(11)  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LV2862  
English Data Sheet: SNVSA49  
 
 
 
 
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
8.2.2.5.1 Bootstrap Capacitor Selection  
A 0.1-μF ceramic capacitor or larger is recommended for the bootstrap capacitor (CBOOT). For applications  
where the input voltage is close to output voltage, a larger capacitor is recommended, generally 0.1 µF to 1 µF to  
ensure plenty of gate drive for the internal switches and a consistently low RDSON. A ceramic capacitor with an  
X7R or X5R grade dielectric with a voltage rating of 10 V or higher is recommended because of the stable  
characteristics over temperature and voltage.  
8-2. Output Voltage Inductor and Capacitor Combinations  
P/N  
VOUT (V)  
L (µH)  
COUT (µF)  
R1 (k)  
54.9 (1%)  
64.9 (1%)  
147 (1%)  
R2 (k)  
10 (1%)  
10 (1%)  
10 (1%)  
LV2862X  
LV2862X  
LV2862X  
5
22  
10  
10  
10  
5.7  
12  
22  
22  
8.2.2.5.1.1 Typical Application Circuits  
VIN  
Cin  
2.2 µF  
VIN  
100 k  
CB  
L1  
22 µH  
Cboot  
100 nF  
SW  
5.7 V, 0.6 A  
SHDN  
LV2862  
Cout  
R1  
64.9 k  
10 µF  
D1  
GND  
FB  
R2  
10 k  
8-2. Application Circuit, 5.7-V Output  
VIN  
VIN  
CB  
Cin  
2.2 µF  
L1  
22 µH  
Cboot  
100 nF  
100 k  
12 V, 0.6 A  
SHDN  
SW  
LV2862  
Cout  
10 µF  
R1  
147 k  
D1  
GND  
FB  
R2  
10 k  
8-3. Application Circuit, 12-V Output  
8-2 lists the recommended typical output voltage inductor/capacitor combinations for optimized total solution  
size.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LV2862  
English Data Sheet: SNVSA49  
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
8.2.3 Application Curves  
Unless otherwise specified the following conditions apply: VIN = 12 V, fSW = 770 kHz, L = 22 µH, COUT = 10 µF,  
TA = 25°C  
VOUT (50 mV/DIV, AC coupled)  
VOUT (10 mV/DIV, AC coupled)  
VSW (5 V/DIV)  
IINDUCTOR (0.5 A/DIV)  
IINDUCTOR (0.5 A/DIV)  
Time (1 µs/DIV)  
Time (800 µs/DIV)  
VOUT = 5 V  
IOUT = 600 mA  
VOUT = 5 V  
8-4. Switching Node and Output Voltage  
8-5. Load Transient Between 0.1 A and 0.6 A  
Waveform  
VSHDN (5 V/DIV)  
VOUT (5 V/DIV)  
VSHDN (5 V/DIV)  
VOUT (5 V/DIV)  
IInductor (1 A/DIV)  
IInductor (1 A/DIV)  
Time (800 µs/DIV)  
Time (200 µs/DIV)  
VIN = 15 V  
VOUT = 12 V / 600 mA  
VIN = 15 V  
VOUT = 12 V / 600 mA  
8-6. Start-up Waveform  
8-7. Shutdown Waveform  
VSHDN (5 V/DIV)  
VOUT (5 V/DIV)  
VSHDN (5 V/DIV)  
VOUT (5 V/DIV)  
IInductor (0.5 A/DIV)  
IInductor (0.5 A/DIV)  
Time (2 ms/DIV)  
Time (200 µs/DIV)  
VIN = 12 V  
VOUT = 5 V / 600 mA  
VIN = 12 V  
VOUT = 5 V / 600 mA  
8-8. Start-up Waveform  
8-9. Shutdown Waveform  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LV2862  
English Data Sheet: SNVSA49  
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
VOUT (20 mV/DIV, AC coupled)  
IINDUCTOR (100 mA/DIV)  
VSW (5 V/DIV)  
Time (200 µs/DIV)  
VIN = 12 V  
VOUT = 5 V / No Load  
8-10. Eco-mode Operation  
8.3 Power Supply Recommendations  
The LV2862 is designed to operate from an input voltage supply range between 4 V and 60 V. This input supply  
must be able to withstand the maximum input current and maintain a voltage above 4 V. The resistance of the  
input supply rail must be low enough that an input current transient does not cause a high enough drop at the  
LV2862 supply voltage that can cause a false UVLO fault triggering and system reset. If the input supply is  
located more than a few inches from the LV2862, additional bulk capacitance can be required in addition to the  
ceramic input capacitors.  
8.4 Layout  
8.4.1 Layout Guidelines  
Layout is a critical portion of good power supply design. The following guidelines helps users design a PCB with  
the best power conversion performance, thermal performance, and minimized generation of unwanted EMI.  
1. The feedback network, resistors R1 and R2, must be kept close to the FB pin and away from the inductor to  
minimize coupling noise into the feedback pin.  
2. The input capacitor CIN must be placed close to the VIN pin. This reduces copper trace inductance which  
affects input voltage ripple of the IC.  
3. The inductor L1 must be placed close to the SW pin to reduce magnetic and electrostatic noise.  
4. The output capacitor COUT must be placed close to the junction of L1 and the diode D1. The L1, D1, and  
COUT trace must be as short as possible to reduce conducted and radiated noise.  
5. The ground connection for the diode, CIN and COUT must be tied to the system ground plane in only one spot  
(preferably at the COUT ground point) to minimize conducted noise in the system ground plane.  
6. For more detail on switching power supply layout considerations, see Application Note AN-1149, Layout  
Guidelines for Switching Power Supplies.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LV2862  
English Data Sheet: SNVSA49  
 
 
 
 
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
8.4.2 Layout Example  
8-11. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSA49  
16  
Submit Document Feedback  
Product Folder Links: LV2862  
LV2862  
www.ti.com.cn  
ZHCSS74B JANUARY 2015 REVISED JUNE 2023  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
Texas Instruments, Layout Guidelines for Switching Power Supplies application report  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LV2862  
English Data Sheet: SNVSA49  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LV2862XLVDDCR  
LV2862XLVDDCT  
LV2862YDDCR  
LV2862YDDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
C02X  
C02X  
C02Y  
C02Y  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-May-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LV2862XLVDDCR  
LV2862XLVDDCT  
LV2862XLVDDCT  
LV2862YDDCR  
LV2862YDDCT  
SOT-23-  
THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
3000  
250  
178.0  
178.0  
180.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.1  
3.2  
3.2  
3.2  
1.4  
1.4  
1.1  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
SOT-23-  
THIN  
3.2  
SOT-23-  
THIN  
250  
3.05  
3.2  
SOT-23-  
THIN  
3000  
250  
SOT-23-  
THIN  
3.2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LV2862XLVDDCR  
LV2862XLVDDCT  
LV2862XLVDDCT  
LV2862YDDCR  
LV2862YDDCT  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
3000  
250  
208.0  
208.0  
183.0  
208.0  
208.0  
191.0  
191.0  
183.0  
191.0  
191.0  
35.0  
35.0  
20.0  
35.0  
35.0  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LV2862XLVDDCT

采用超小型 SOT23 封装的 4.5V 至 60V 600mA 降压转换器 | DDC | 6 | -40 to 125
TI

LV2862YDDCR

采用超小型 SOT23 封装的 4.5V 至 60V 600mA 降压转换器 | DDC | 6 | -40 to 125
TI

LV2862YDDCT

采用超小型 SOT23 封装的 4.5V 至 60V 600mA 降压转换器 | DDC | 6 | -40 to 125
TI

LV2931E50R

TRANSISTOR S BAND, Si, NPN, RF POWER TRANSISTOR, BIP RF Power
NXP

LV2931E50S

TRANSISTOR | BJT | NPN | 1.6A I(C) | FO-83B
ETC

LV3100M

Parametric Equalizer
SANYO

LV315M150BP442525

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 315V, 20% +Tol, 20% -Tol, 150uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

LV315M180BP342040

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 315V, 20% +Tol, 20% -Tol, 180uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

LV315M220BP3-2240

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 315V, 20% +Tol, 20% -Tol, 220uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

LV315M270BPF-2245

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 315V, 20% +Tol, 20% -Tol, 270uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

LV315M270BPF-2535

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 315V, 20% +Tol, 20% -Tol, 270uF, Through Hole Mount, ROHS COMPLIANT
YAGEO