M4FR5969SRGZT-MLS [TI]

耐辐射加固保障混合信号微控制器 | RGZ | 48 | -55 to 105;
M4FR5969SRGZT-MLS
型号: M4FR5969SRGZT-MLS
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射加固保障混合信号微控制器 | RGZ | 48 | -55 to 105

时钟 控制器 微控制器 外围集成电路 装置
文件: 总132页 (文件大小:2692K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
MSP430FR5969-SP 抗辐射加固混合信号微控制器  
1 器件概述  
1.1 特性  
1
– 16 位循环冗余校验器 (CRC)  
高性能模拟  
抗辐射加固  
(1)  
扩展工作温度(-55°C 105°C)  
– 16 通道模拟比较器  
单粒子闩锁 (SEL) 125°C 下的抗扰度可达 72  
MeV.cm2/mg  
– 12 位模数转换器 (ADC)  
具有内部基准和采样保持  
和高达 16 个外部输入通道  
辐射批次验收测试结果为 50krad  
– 48 引脚 VQFN 塑料封装  
单受控基线  
多功能输入/输出端口  
可每位、每字节和每字访问(成对访问)  
所有端口上,从 LPM 中的边沿可选唤醒  
所有端口上可编程上拉和下拉  
代码安全性和加密  
– 128 位或 256 AES 安全加密和解密协处理器  
(只适用于 MSP430FR59xx)  
针对随机数生成算法的随机数种子  
增强型串行通信  
延长了产品变更通知周期  
产品可追溯性  
延长了产品生命周期  
嵌入式微控制器  
时钟频率高达 16MHz 16 位精简指令集计算机  
(RISC) 架构  
宽电源电压范围  
(2)  
1.8V 3.6V)  
– eUSCI_A0 eUSCI_A1 支持  
优化的超低功率模式  
支持自动波特率侦测的通用异步收发器  
工作模式:大约 100µA/MHz  
待机(具有低功率低频内部时钟源 (VLO) 的  
LPM3):0.4µA(典型值)  
(UART)  
– IrDA 编码和解码  
– SPI  
(3)  
实时时钟 (LPM3.5)0.25µA(典型值)  
– eUSCI_B0 支持  
支持多个从器件寻址的 I2C  
– SPI  
关断 (LPM4.5)0.02µA(典型值)  
超低功耗铁电 RAM (FRAM)  
高达 64KB 的非易失性存储器  
超低功耗写入  
硬件 UART  
灵活时钟系统  
– 125ns 每个字的快速写入(4ms 内写入 64KB)  
具有 10 个可选厂家调整频率的定频数控振荡器  
统一标准存储器 = 单个空间内的程序 + 数据 + 存  
(DCO)  
– 1015 写入周期持久性  
抗辐射和非磁性  
低功率低频内部时钟源 (VLO)  
– 32kHz 晶振 (LFXT)  
高频晶振 (HFXT)  
智能数字外设  
开发工具和软件  
– 32 位硬件乘法器 (MPY)  
– 3 通道内部 DMA  
具有日历和报警功能的实时时钟 (RTC)  
自由的专业开发环境 具有 EnergyTrace++™技术  
开发套件 (MSP-TS430RGZ48C)  
要获得完整的模块说明,请参见  
– 5 16 位定时器,每个定时器具有多达 7 个捕  
/比较寄存器  
(1) 请参阅规格 部分中的 MSP430FR5969-SP EM 寿命降额表。  
(2) 最小电源电压受 SVS 电平限制。  
MSP430FR58xxMSP430FR59xxMSP430FR6  
8xx MSP430FR69xx 系列用户指南》  
(3) 实时时钟 (RTC) 3.7pF 晶振计时。  
1.2 应用  
航天器分布式遥测和维护  
传感器管理  
数据日志  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASEK0  
 
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
1.3 说明  
MSP430™超低功耗 (ULP) FRAM 平台将独特的嵌入式 FRAM 和整体超低功耗系统架构组合在一起,从而  
使得创新人员能够以较少的能源预算增加性能。FRAM 技术以低很多的功耗将 SRAM 的速度、灵活性和耐  
久性与闪存的稳定性和可靠性组合在一起。  
MSP430FR5969-SP 的超低功耗架构可提供七种低功耗模式,这七种模式均经过优化,能够在低功耗的情况  
下对系统进行分布式遥测和维护。  
MSP430FR5969-SP 的集成式混合信号 特性 使其非常适合用于下一代航天器的分布式遥测 应用 。对单粒  
子闩锁的强大抗干扰性和电离辐射总剂量使得该器件得以应用于多种空间和辐射环境中。  
器件信息(1)  
等级  
器件型号  
封装(2)  
48 引脚 VQFN  
7.00mm × 7.00mm  
M4FR5969SRGZT-MLS  
MLS  
HTQFP (48)  
7.00mm × 7.00mm  
M4FR5969SPHPT-MLS  
MLS  
(1) 要获得所有可用器件的最新部件、封装和订购信息,请参见封装选项附录8)或浏览 TI 网站  
www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据8)。  
1.4 功能框图  
1-1 显示了器件的功能方框图。  
PJ.x  
P1.x, P2.x P3.x, P4.x  
2x8 2x8  
1x8  
LFXIN,  
HFXIN  
LFXOUT,  
HFXOUT  
ADC12_B  
I/O Ports  
P1, P2  
2x8 I/Os  
I/O Ports  
P3, P4  
2x8 I/Os  
I/O Port  
PJ  
1x8 I/Os  
REF_A  
MCLK  
ACLK  
Comp_E  
(up to 16  
standard  
inputs,  
up to 8  
differential  
inputs)  
Clock  
System  
(up to 16  
inputs)  
Voltage  
Reference  
SMCLK  
PA  
1x16 I/Os  
PB  
1x16 I/Os  
DMA  
Controller  
Channel  
3
MAB  
MDB  
Bus  
Control  
Logic  
CPUXV2  
incl. 16  
Registers  
MPU  
IP Encap  
TA2  
TA3  
AES256  
Power  
Mgmt  
FRAM  
RAM  
Security  
Encryption,  
Decryption  
(128, 256)  
Watchdog  
Timer_A  
2 CC  
Registers  
(int. only)  
CRC16  
MPY32  
LDO  
SVS  
Brownout  
64KB  
48KB  
32KB  
2KB  
1KB  
EEM  
(S: 3 + 1)  
EnergyTrace++  
MDB  
MAB  
JTAG  
Interface  
Spy-Bi-Wire  
TB0  
TA0  
TA1  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
Timer_B  
7 CC  
Timer_A  
3 CC  
Timer_A  
3 CC  
(I2C,  
SPI)  
RTC_B  
(UART,  
IrDA,  
SPI)  
Registers  
(int, ext)  
Registers  
(int, ext)  
Registers  
(int, ext)  
LPM3.5 Domain  
Copyright © 2017, Texas Instruments Incorporated  
1-1. 功能方框图  
2
器件概述  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
内容  
1
器件概.................................................... 1  
5.2 CPU ................................................. 46  
5.3 Operating Modes .................................... 47  
5.4 Interrupt Vector Table and Signatures .............. 50  
5.5 Memory Organization ............................... 53  
5.6 Bootloader (BSL).................................... 53  
5.7 JTAG Operation ..................................... 54  
5.8 FRAM................................................ 55  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 1  
1.3 说明 ................................................... 2  
1.4 功能框图 .............................................. 2  
修订历史记录............................................... 4  
Terminal Configuration and Functions.............. 5  
3.1 Pin Diagrams ......................................... 5  
3.2 Signal Descriptions ................................... 6  
3.3 Pin Multiplexing ..................................... 10  
3.4 Connection of Unused Pins ......................... 10  
Specifications ........................................... 11  
4.1 Absolute Maximum Ratings......................... 11  
4.2 ESD Ratings ........................................ 11  
4.3 Recommended Operating Conditions............... 11  
2
3
5.9  
Memory Protection Unit Including IP Encapsulation 55  
5.10 Peripherals .......................................... 56  
5.11 Input and Output Diagrams ......................... 77  
5.12 Device Descriptor (TLV) ........................... 104  
5.13 Identification........................................ 106  
Applications, Implementation, and Layout ...... 107  
4
6
7
6.1  
Software Best Practices for Radiation Effects  
Mitigation........................................... 107  
6.2  
6.3  
Device Connection and Layout Fundamentals .... 107  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Active Mode Supply Current Into VCC Excluding  
External Current .................................... 12  
Typical Characteristics – Active Mode Supply  
Currents ............................................. 13  
Low-Power Mode (LPM0, LPM1) Supply Currents  
Into VCC Excluding External Current ................ 13  
Low-Power Mode (LPM2, LPM3, LPM4) Supply  
Currents (Into VCC) Excluding External Current .... 14  
Low-Power Mode (LPM3.5, LPM4.5) Supply  
Peripheral- and Interface-Specific Design  
Information ......................................... 111  
器件和文档支......................................... 113  
7.1 入门和后续步骤 .................................... 113  
7.2 工具和软件 ......................................... 114  
7.3 文档支持 ........................................... 116  
7.4 辐射信息 ........................................... 117  
7.5 相关链接 ........................................... 117  
7.6 社区资源 ........................................... 118  
7.7 商标 ................................................ 118  
7.8 静电放电警告....................................... 118  
7.9 出口管制提示....................................... 118  
7.10 术语.............................................. 118  
机械、封装和可订购信息 .............................. 119  
Currents (Into VCC) Excluding External Current .... 15  
Typical Characteristics, Current Consumption per  
Module .............................................. 16  
4.10 Thermal Resistance Characteristics ................ 16  
4.11 Timing and Switching Characteristics............... 17  
4.12 Emulation and Debug ............................... 45  
Detailed Description ................................... 46  
5.1 Overview ............................................ 46  
5
8
版权 © 2017–2018, Texas Instruments Incorporated  
内容  
3
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (December 2017) to Revision A  
Page  
已添加 添加了 PHP 封装选项 ....................................................................................................... 2  
4
修订历史记录  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
3 Terminal Configuration and Functions  
3.1 Pin Diagrams  
Figure 3-1 shows the 48-pin RGZ package for the MSP430FR5969-SP MCU.  
48 47 46 45 44 43 42 41 40 39 38 37  
P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF-  
P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+  
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
P3.0/A12/C12  
1
2
36 DVSS  
35 P4.6  
3
34 P4.5  
4
33 P4.4/TB0.5  
P3.1/A13/C13  
5
32 P1.7/TB0.4/UCB0SOMI/UCB0SCL/TA1.0  
31 P1.6/TB0.3/UCB0SIMO/UCB0SDA/TA0.0  
30 P3.7/TB0.6  
P3.2/A14/C14  
6
P3.3/A15/C15  
7
P4.7  
8
29 P3.6/TB0.5  
P1.3/TA1.2/UCB0STE/A3/C3  
P1.4/TB0.1/UCA0STE/A4/C4  
P1.5/TB0.2/UCA0CLK/A5/C5  
PJ.0/TDO/TB0OUTH/SMCLK/SRSCG1/C6  
9
28 P3.5/TB0.4/COUT  
27 P3.4/TB0.3/SMCLK  
26 P2.2/TB0.2/UCB0CLK  
25 P2.1/TB0.0/UCA0RXD/UCA0SOMI/TB0.0  
10  
11  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
NOTE: TI recommends connecting the QFN package pad to VSS  
.
NOTE: On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX.  
NOTE: On devices with I2C BSL: P1.6: BSLSDA; P1.7: BSLSCL.  
Figure 3-1. 48-Pin RGZ/PHP Package (Top View) – MSP430FR5969-SP  
Copyright © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
5
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
3.2 Signal Descriptions  
describes the signals for all device variants and package options.  
Signal Descriptions  
TERMINAL  
NO.(2)  
I/O(1)  
DESCRIPTION  
NAME  
RGZ and PHP  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TA0 CCR1 capture: CCI1A input, compare: Out1  
External DMA trigger  
P1.0/TA0.1/DMAE0/  
RTCCLK/A0/C0/VREF-/  
VeREF-  
RTC clock calibration output (not available on MSP430FR5x5x devices)  
Analog input A0 for ADC  
1
I/O  
Comparator input C0  
Output of negative reference voltage  
Input for an external negative reference voltage to the ADC  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TA0 CCR2 capture: CCI2A input, compare: Out2  
TA1 input clock  
P1.1/TA0.2/TA1CLK/  
COUT/A1/C1/VREF+/  
VeREF+  
Comparator output  
2
I/O  
Analog input A1 for ADC  
Comparator input C1  
Output of positive reference voltage  
Input for an external positive reference voltage to the ADC  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TA1 CCR1 capture: CCI1A input, compare: Out1  
TA0 input clock  
P1.2/TA1.1/TA0CLK/  
COUT/A2/C2  
3
I/O  
Comparator output  
Analog input A2 for ADC  
Comparator input C2  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
P3.0/A12/C12  
P3.1/A13/C13  
P3.2/A14/C14  
4
5
6
I/O Analog input A12 for ADC  
Comparator input C12  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
I/O Analog input A13 for ADC  
Comparator input C13  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
I/O Analog input A14 for ADC  
Comparator input C14  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
I/O Analog input A15 for ADC  
P3.3/A15/C15  
P4.7  
7
8
Comparator input C15  
I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TA1 CCR2 capture: CCI2A input, compare: Out2  
I/O Slave transmit enable – eUSCI_B0 SPI mode  
Analog input A3 for ADC  
P1.3/TA1.2/UCB0STE/  
A3/C3  
9
Comparator input C3  
(1) I = input, O = output  
(2) N/A = not available  
6
Terminal Configuration and Functions  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
Signal Descriptions (continued)  
TERMINAL  
NO.(2)  
I/O(1)  
DESCRIPTION  
NAME  
RGZ and PHP  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TB0 CCR1 capture: CCI1A input, compare: Out1  
I/O Slave transmit enable – eUSCI_A0 SPI mode  
Analog input A4 for ADC  
P1.4/TB0.1/UCA0STE/  
A4/C4  
10  
11  
Comparator input C4  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TB0 CCR2 capture: CCI2A input, compare: Out2  
P1.5/TB0.2/UCA0CLK/  
A5/C5  
Clock signal input – eUSCI_A0 SPI slave mode,  
I/O  
Clock signal output – eUSCI_A0 SPI master mode  
Analog input A5 for ADC  
Comparator input C5  
General-purpose digital I/O  
Test data output port  
Switch all PWM outputs high impedance input – TB0  
PJ.0/TDO/TB0OUTH/  
SMCLK/SRSCG1/C6  
12  
13  
I/O  
SMCLK output  
Low-Power Debug: CPU Status Register Bit SCG1  
Comparator input C6  
General-purpose digital I/O  
Test data input or test clock input  
I/O MCLK output  
PJ.1/TDI/TCLK/MCLK/  
SRSCG0/C7  
Low-Power Debug: CPU Status Register Bit SCG0  
Comparator input C7  
General-purpose digital I/O  
Test mode select  
PJ.2/TMS/ACLK/  
SROSCOFF/C8  
14  
15  
I/O ACLK output  
Low-Power Debug: CPU Status Register Bit OSCOFF  
Comparator input C8  
General-purpose digital I/O  
Test clock  
PJ.3/TCK/  
SRCPUOFF/C9  
I/O  
Low-Power Debug: CPU Status Register Bit CPUOFF  
Comparator input C9  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
P4.0/A8  
P4.1/A9  
P4.2/A10  
P4.3/A11  
16  
17  
18  
19  
I/O  
Analog input A8 for ADC  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
I/O  
Analog input A9 for ADC  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
I/O  
Analog input A10 for ADC  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
I/O  
Analog input A11 for ADC  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TB0 CCR0 capture: CCI0B input, compare: Out0  
P2.5/TB0.0/UCA1TXD/  
UCA1SIMO  
20  
I/O  
Transmit data – eUSCI_A1 UART mode  
Slave in, master out – eUSCI_A1 SPI mode  
Copyright © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
Submit Documentation Feedback  
7
Product Folder Links: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Signal Descriptions (continued)  
TERMINAL  
NO.(2)  
I/O(1)  
DESCRIPTION  
NAME  
RGZ and PHP  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TB0 CCR1 compare: Out1  
P2.6/TB0.1/UCA1RXD/  
UCA1SOMI  
21  
I/O  
I
Receive data – eUSCI_A1 UART mode  
Slave out, master in – eUSCI_A1 SPI mode  
Test mode pin – select digital I/O on JTAG pins  
Spy-Bi-Wire input clock  
TEST/SBWTCK  
22  
23  
Reset input active low  
RST/NMI/SBWTDIO  
I/O Nonmaskable interrupt input  
Spy-Bi-Wire data input/output  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TB0 CCR6 capture: CCI6B input, compare: Out6  
Transmit data – eUSCI_A0 UART mode  
I/O BSL Transmit (UART BSL)  
P2.0/TB0.6/UCA0TXD/  
UCA0SIMO/TB0CLK/  
ACLK  
24  
Slave in, master out – eUSCI_A0 SPI mode  
TB0 clock input  
ACLK output  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TB0 CCR0 capture: CCI0A input, compare: Out0  
Receive data – eUSCI_A0 UART mode  
P2.1/TB0.0/UCA0RXD/  
UCA0SOMI/TB0.0  
25  
26  
I/O  
BSL receive (UART BSL)  
Slave out, master in – eUSCI_A0 SPI mode  
TB0 CCR0 capture: CCI0A input, compare: Out0  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TB0 CCR2 compare: Out2  
P2.2/TB0.2/UCB0CLK  
I/O  
Clock signal input – eUSCI_B0 SPI slave mode  
Clock signal output – eUSCI_B0 SPI master mode  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
I/O TB0 CCR3 capture: CCI3A input, compare: Out3  
SMCLK output  
P3.4/TB0.3/SMCLK  
P3.5/TB0.4/COUT  
27  
28  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
I/O TB0 CCR4 capture: CCI4A input, compare: Out4  
Comparator output  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
P3.6/TB0.5  
P3.7/TB0.6  
29  
30  
I/O  
TB0 CCR5 capture: CCI5A input, compare: Out5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
I/O  
TB0 CCR6 capture: CCI6A input, compare: Out6  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TB0 CCR3 capture: CCI3B input, compare: Out3  
Slave in, master out – eUSCI_B0 SPI mode  
I2C data – eUSCI_B0 I2C mode  
P1.6/TB0.3/UCB0SIMO/  
UCB0SDA/TA0.0  
31  
I/O  
BSL Data (I2C BSL)  
TA0 CCR0 capture: CCI0A input, compare: Out0  
8
Terminal Configuration and Functions  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
Signal Descriptions (continued)  
TERMINAL  
NO.(2)  
I/O(1)  
DESCRIPTION  
NAME  
RGZ and PHP  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TB0 CCR4 capture: CCI4B input, compare: Out4  
Slave out, master in – eUSCI_B0 SPI mode  
I2C clock – eUSCI_B0 I2C mode  
P1.7/TB0.4/UCB0SOMI/  
UCB0SCL/TA1.0  
32  
I/O  
I/O  
BSL clock (I2C BSL)  
TA1 CCR0 capture: CCI0A input, compare: Out0  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TB0CCR5 capture: CCI5B input, compare: Out5  
P4.4/TB0.5  
33  
P4.5  
34  
35  
36  
37  
38  
I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
Digital ground supply  
P4.6  
DVSS  
DVCC  
P2.7  
Digital power supply  
I/O General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TA0 CCR0 capture: CCI0B input, compare: Out0  
I/O Slave transmit enable – eUSCI_A1 SPI mode  
Analog input A6 for ADC  
P2.3/TA0.0/UCA1STE/  
A6/C10  
39  
Comparator input C10  
General-purpose digital I/O with port interrupt and wakeup from LPMx.5  
TA1 CCR0 capture: CCI0B input, compare: Out0  
Clock signal input – eUSCI_A1 SPI slave mode  
I/O  
P2.4/TA1.0/UCA1CLK/  
A7/C11  
40  
Clock signal output – eUSCI_A1 SPI master mode  
Analog input A7 for ADC  
Comparator input C11  
Analog ground supply  
General-purpose digital I/O  
AVSS  
41  
42  
PJ.6/HFXIN  
I/O  
I/O  
Input for high-frequency crystal oscillator HFXT (in RHA and DA packages:  
MSP430FR595x devices only)  
General-purpose digital I/O  
PJ.7/HFXOUT  
AVSS  
43  
44  
45  
Output for high-frequency crystal oscillator HFXT (in RHA and DA packages:  
MSP430FR595x devices only)  
Analog ground supply  
General-purpose digital I/O  
PJ.4/LFXIN  
I/O  
I/O  
Input for low-frequency crystal oscillator LFXT (in RHA and DA packages:  
MSP430FR594x devices only)  
General-purpose digital I/O  
PJ.5/LFXOUT  
46  
Output of low-frequency crystal oscillator LFXT (in RHA and DA packages:  
MSP430FR594x devices only)  
AVSS  
47  
48  
Analog ground supply  
Analog power supply  
AVCC  
QFN Pad  
Pad  
QFN package exposed thermal pad. TI recommends connection to VSS.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
3.3 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for  
example, if the device is in test mode). For details of the settings for each pin and diagrams of the  
multiplexed ports, see 5.11.  
3.4 Connection of Unused Pins  
Table 3-1 lists the correct termination of all unused pins.  
Table 3-1. Connection of Unused Pins(1)  
PIN  
AVCC  
POTENTIAL  
DVCC  
COMMENT  
AVSS  
DVSS  
Px.0 to Px.7  
RST/NMI  
Open  
Set to port function, output direction (PxDIR.n = 1)  
DVCC or VCC 47-kpullup or internal pullup selected with 2.2-nF (10-nF(2)) pulldown  
PJ.0/TDO  
PJ.1/TDI  
PJ.2/TMS  
PJ.3/TCK  
The JTAG pins are shared with general-purpose I/O function (PJ.x). If not  
used as JTAG pins, these pins should be switched to port function, output  
direction. When used as JTAG pins, these pins should remain open.  
Open  
Open  
TEST  
This pin always has an internal pulldown enabled.  
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the  
Px.0 to Px.7 unused pin connection guidelines.  
(2) The pulldown capacitor should not exceed 2.2 nF when using devices in Spy-Bi-Wire mode or in 4-  
wire JTAG mode with TI tools like FET interfaces or GANG programmers. If JTAG or Spy-Bi-Wire  
access is not needed, up to a 10-nF pulldown capacitor may be used.  
10  
Terminal Configuration and Functions  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
4 Specifications  
4.1 Absolute Maximum Ratings(1)  
over operating temperature range (unless otherwise noted)  
MIN  
MAX  
4.1  
UNIT  
V
Voltage applied at DVCC and AVCC pins to VSS  
Voltage difference between DVCC and AVCC pins(2)  
–0.3  
±0.3  
V
VCC + 0.3 V  
(4.1 Max)  
(3)  
Voltage applied to any pin  
–0.3  
–55  
V
Diode current at any device pin  
±2  
mA  
°C  
(4)  
Storage temperature, Tstg  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltage differences between DVCC and AVCC exceeding the specified limits may cause malfunction of the device including erroneous  
writes to RAM and FRAM.  
(3) All voltages referenced to VSS  
.
(4) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
4.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V  
may actually have higher performance.  
4.3 Recommended Operating Conditions  
Typical data are based on VCC = 3.0 V, TA = 25°C (unless otherwise noted)  
MIN NOM  
MAX UNIT  
Supply voltage range applied at all DVCC and AVCC  
pins(1) (2) (3)  
VCC  
1.8(4)  
3.6  
V
VSS  
TJ  
Supply voltage applied at all DVSS and AVSS pins  
Operating junction temperature  
Capacitor value at DVCC(5)  
0
V
–55  
105  
°C  
µF  
CDVCC  
1–20%  
No FRAM wait states  
(NWAITSx = 0)  
0
0
8(7)  
fSYSTEM  
Processor frequency (maximum MCLK frequency)(6)  
MHz  
With FRAM wait states  
(NWAITSx = 1)(8)  
16(9)  
fACLK  
Maximum ACLK frequency  
Maximum SMCLK frequency  
50 kHz  
16(9) MHz  
fSMCLK  
(1) TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device  
operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Absolute Maximum Ratings.  
Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.  
(2) See Table 4-1 for additional important information.  
(3) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(4) The minimum supply voltage is defined by the supervisor SVS levels. See Table 4-2 for the exact values.  
(5) Connect a low-ESR capacitor with at least the value specified and a maximum tolerance of 20% as close as possible to the DVCC pin.  
(6) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(7) DCO settings and HF crystals with a typical value less or equal the specified MAX value are permitted.  
(8) Wait states only occur on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always executed  
without wait states.  
(9) DCO settings and HF crystals with a typical value less or equal the specified MAX value are permitted. If a clock sources with a larger  
typical value is used, the clock must be divided in the clock system.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
100  
10  
1
Electromigration Fail Mode  
0.1  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
Continuous Junction Temperature (èC)  
D012  
(1) See data sheet for absolute maximum and minimum recommended operating conditions.  
(2) The predicted operating lifetime vs junction temperature is based on reliability modeling using electromigration as the dominant  
failure mechanism affecting device wear-out for the specific device process and design characteristics.  
Figure 4-1. MSP430FR5969-SP EM Lifetime Derating Chart  
4.4 Active Mode Supply Current Into VCC Excluding External Current  
(2)  
over recommended operating temperature (unless otherwise noted)(1)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
0 wait states  
(NWAITSx = 0)  
4 MHz  
0 wait states  
(NWAITSx = 0)  
8 MHz  
0 wait states  
(NWAITSx = 0)  
12 MHz  
1 wait states  
(NWAITSx = 1)  
16 MHz  
1 wait states  
(NWAITSx = 1)  
EXECUTION  
MEMORY  
PARAMETER  
VCC  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
IAM, FRAM_UNI  
FRAM  
3.0 V  
3.0 V  
210  
640  
1220  
1475  
1845  
µA  
µA  
(Unified memory)(3)  
FRAM  
0% cache hit  
ratio  
(4) (5)  
IAM, FRAM (0%)  
370  
240  
200  
170  
1280  
745  
560  
480  
2510  
1440  
1070  
890  
2080  
1575  
1300  
1155  
2650  
1990  
1620  
1420  
FRAM  
50% cache hit  
ratio  
(4) (5)  
IAM, FRAM (50%)  
3.0 V  
3.0 V  
3.0 V  
µA  
µA  
µA  
FRAM  
66% cache hit  
ratio  
(4) (5)  
IAM, FRAM (66%)  
FRAM  
75% cache hit  
ratio  
(4) (5)  
IAM, FRAM (75%)  
255  
1085  
1310  
1620  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Characterized with program executing typical data processing.  
fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO= 24 MHz and  
fMCLK = fSMCLK = fDCO/2.  
At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency  
(fMCLK,eff) decreases. The effective MCLK frequency also depends on the cache hit ratio. SMCLK is not affected by the number of wait  
states or the cache hit ratio.  
The following equation can be used to compute fMCLK,eff  
:
fMCLK,eff = fMCLK / [wait states × (1 – cache hit ratio) + 1]  
For example, with 1 wait state and 75% cache hit ratio, fMCKL,eff = fMCLK / [1 × (1 – 0.75) + 1] = fMCLK / 1.25.  
(3) Represents typical program execution. Program and data reside entirely in FRAM. All execution is from FRAM.  
(4) Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit  
ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 75% ratio implies three of  
every four accesses is from cache, and the remaining are FRAM accesses.  
(5) See Figure 4-2 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best  
linear fit using the typical data from Section 4.4.  
12  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
Active Mode Supply Current Into VCC Excluding External Current (continued)  
over recommended operating temperature (unless otherwise noted)(1) (2)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
0 wait states  
(NWAITSx = 0)  
4 MHz  
0 wait states  
(NWAITSx = 0)  
8 MHz  
0 wait states  
(NWAITSx = 0)  
12 MHz  
1 wait states  
(NWAITSx = 1)  
16 MHz  
1 wait states  
(NWAITSx = 1)  
EXECUTION  
MEMORY  
PARAMETER  
VCC  
UNIT  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
TYP  
MAX  
FRAM  
100% cache hit  
ratio  
(4) (5)  
IAM, FRAM (100%)  
3.0 V  
110  
235  
420  
640  
730  
µA  
(6)  
IAM, RAM  
IAM, RAM only  
RAM  
RAM  
3.0 V  
3.0 V  
130  
100  
320  
290  
585  
555  
890  
860  
1070  
1040  
µA  
µA  
(7) (5)  
180  
1300  
(6) Program and data reside entirely in RAM. All execution is from RAM.  
(7) Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
4.5 Typical Characteristics – Active Mode Supply Currents  
3000  
I(AM,0%)  
I(AM,50%)  
2500  
I(AM,66%)  
I(AM,75%)  
2000  
1500  
1000  
500  
0
I(AM,100%)  
I(AM,75%) [µA] = 103 × f [MHz] + 68  
I(AM,RAMonly)  
0
1
2
3
4
5
6
7
8
9
MCLK Frequency (MHz)  
C001  
NOTE: I(AM, cache hit ratio): Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with  
cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of  
FRAM accesses. For example, a 75% ratio implies three of every four accesses is from cache, and the remaining are  
FRAM accesses.  
NOTE: I(AM, RAMonly): Program and data reside entirely in RAM. All execution is from RAM. FRAM is off.  
Figure 4-2. Typical Active Mode Supply Currents vs MCLK Frequency, No Wait States  
4.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current  
(2)  
over recommended operating temperature (unless otherwise noted)(1)  
FREQUENCY (fSMCLK  
8 MHz  
)
PARAMETER  
VCC  
1 MHz  
TYP  
4 MHz  
TYP  
12 MHz  
TYP  
16 MHz  
TYP  
UNIT  
MAX  
115  
60  
MAX  
TYP  
150  
160  
115  
115  
MAX  
MAX  
MAX  
260  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
70  
80  
35  
35  
95  
105  
60  
250  
260  
215  
215  
215  
225  
180  
180  
ILPM0  
µA  
µA  
ILPM1  
60  
205  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO = 24 MHz and fSMCLK  
fDCO / 2.  
=
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
4.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External  
Current  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)  
PARAMETER  
VCC  
2.2 V  
3 V  
MIN  
TYP  
0.9  
0.9  
0.9  
0.9  
0.7  
0.7  
0.6  
0.6  
0.5  
MAX  
UNIT  
ILPM2,XT12  
ILPM2,XT3.7  
ILPM2,VLO  
ILPM3,XT12  
Low-power mode 2, 12-pF crystal(2) (3) (4)  
μA  
17  
2.2 V  
3 V  
Low-power mode 2, 3.7-pF crystal(2) (5) (4)  
Low-power mode 2, VLO, includes SVS(6)  
μA  
μA  
μA  
2.2 V  
3 V  
16.7  
4.9  
2.2 V  
3 V  
Low-power mode 3, 12-pF crystal, excludes  
SVS(2) (3) (7)  
Low-power mode 3, 3.7-pF crystal, excludes  
2.2 V  
ILPM3,XT3.7  
SVS(2) (5) (8)  
(also see )  
μA  
3 V  
0.5  
2.2 V  
3 V  
0.4  
0.4  
0.5  
0.5  
0.3  
0.3  
ILPM3,VLO  
ILPM4,SVS  
ILPM4  
Low-power mode 3, VLO, excludes SVS(9)  
μA  
μA  
μA  
4.7  
4.8  
Low-power mode 4, includes SVS(10)  
(also see )  
2.2 V  
3 V  
2.2 V  
3 V  
Low-power mode 4, excludes SVS(11)  
4.6  
1.3  
Additional idle current if one or more modules  
from Group A (see 5-3) are activated in  
LPM3 or LPM4.  
IIDLE,GroupA  
3 V  
0.02  
μA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are  
chosen to closely match the required 12.5-pF load.  
(4) Low-power mode 2, crystal oscillator test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 are included. Current for brownout and SVS are included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Characterized with a SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are chosen  
to closely match the required 3.7-pF load.  
(6) Low-power mode 2, VLO test conditions:  
Current for watchdog timer clocked by ACLK is included. RTC disabled (RTCHOLD = 1). Current for brownout and SVS are included.  
CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2),  
fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
(7) Low-power mode 3, 12-pF crystal, excludes SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 are included. Current for brownout is included. SVS disabled  
(SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(8) Low-power mode 3, 3.7-pF crystal, excludes SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 are included. Current for brownout is included. SVS disabled  
(SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(9) Low-power mode 3, VLO, excludes SVS test conditions:  
Current for watchdog timer clocked by ACLK is included. RTC disabled (RTCHOLD = 1). Current for brownout is included. SVS is  
disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz  
(10) Low-power mode 4, includes SVS test conditions:  
Current for brownout and SVS are included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(11) Low-power mode 4, excludes SVS test conditions:  
Current for brownout is included. SVS is disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
14  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External  
Current (continued)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)  
PARAMETER  
VCC  
MIN  
TYP  
MAX  
UNIT  
Additional idle current if one or more modules  
from Group B (see 5-3) are activated in  
LPM3 or LPM4  
IIDLE,GroupB  
3 V  
0.015  
1
μA  
4.8 Low-Power Mode (LPM3.5, LPM4.5) Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)  
PARAMETER  
VCC  
MIN  
TYP  
0.45  
0.45  
0.25  
MAX  
UNIT  
2.2 V  
3.0 V  
2.2 V  
Low-power mode 3.5, 12-pF crystal, includes  
SVS(2)(3)(4)  
ILPM3.5,XT12  
μA  
2
Low-power mode 3.5, 3.7-pF cyrstal,  
excludes SVS(2)(5)(6)  
(also see )  
ILPM3.5,XT3.7  
μA  
3.0 V  
0.25  
Low-power mode 4.5, includes SVS(7)  
(also see )  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0.2  
0.2  
0.2  
0.2  
ILPM4.5,SVS  
μA  
μA  
1.5  
1
Low-power mode 4.5, excludes SVS(8)  
(also see )  
ILPM4.5  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are  
chosen to closely match the required 12.5-pF load.  
(4) Low-power mode 3.5, 12-pF crystal, includes SVS test conditions:  
Current for RTC clocked by XT1 is included. Current for brownout and SVS are included (SVSHE = 1). Core regulator is disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Characterized with a SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are chosen  
to closely match the required 3.7-pF load.  
(6) Low-power mode 3.5, 3.7-pF crystal, excludes SVS test conditions:  
Current for RTC clocked by XT1 is included. Current for brownout is included. SVS is disabled (SVSHE = 0). Core regulator isdisabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(7) Low-power mode 4.5, includes SVS test conditions:  
Current for brownout and SVS are included (SVSHE = 1). Core regulator is disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
(8) Low-power mode 4.5, excludes SVS test conditions:  
Current for brownout is included. SVS is disabled (SVSHE = 0). Core regulator is disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
4.9 Typical Characteristics, Current Consumption per Module(1)  
MODULE  
Timer_A  
TEST CONDITIONS  
REFERENCE CLOCK  
Module input clock  
MIN  
TYP  
3
MAX  
UNIT  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
μA/MHz  
nA  
Timer_B  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC_B  
MPY  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
5
UART mode  
5.5  
3.5  
3.5  
3.5  
100  
25  
SPI mode  
SPI mode  
I2C mode, 100 kbaud  
Only from start to end of operation  
Only from start to end of operation  
Only from start to end of operation  
MCLK  
μA/MHz  
μA/MHz  
μA/MHz  
AES  
MCLK  
21  
CRC  
MCLK  
2.5  
(1) For other module currents not listed here, see the module specific parameter sections.  
4.10 Thermal Resistance Characteristics  
THERMAL METRIC  
Junction-to-ambient thermal resistance(1)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
PACKAGE  
VALUE  
30.6  
17.2  
7.2  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
θJC(TOP)  
θJB  
QFN-48 (RGZ)  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance(4)  
Junction-to-ambient thermal resistance, still air(1)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
7.2  
ΨJT  
0.2  
θJC(BOTTOM)  
θJA  
θJC(TOP)  
θJB  
1.2  
26.9  
16.4  
7.6  
\
QFP-48 (PHP)  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-case (bottom) thermal resistance(4)  
7.6  
ΨJT  
0.2  
θJC(BOTTOM)  
1.5  
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(4) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
16  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
4.11 Timing and Switching Characteristics  
4.11.1 Power Supply Sequencing  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up,  
power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the  
limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the  
device including erroneous writes to RAM and FRAM.  
At power up, the device does not start executing code before the supply voltage reaches VSVSH+ if the  
supply rises monotonically to this level.  
Table 4-1 lists the reset power ramp requirements.  
Table 4-1. Brownout and Device Reset Power Ramp Requirements  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s(3)  
| dDVCC/dt | > 300 V/s(3)  
| dDVCC/dt | < 3 V/s(4)  
MIN  
0.7  
0
TYP  
MAX UNIT  
1.68  
V
V
V
VVCC_BOR–  
VVCC_BOR+  
Brownout power-down level(1)(2)  
Brownout power-up level(2)  
0.79  
1.74  
(1) In case of a supply voltage brownout, the device supply voltages need to ramp down to the specified brownout power-down level  
VVCC_BOR- before the voltage is ramped up again to ensure a reliable device start-up and performance according to the data sheet  
including the correct operation of the on-chip SVS module.  
(2) Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR  
resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the data sheet recommendation for  
capacitor CDVCC should limit the slopes accordingly.  
(3) The brownout levels are measured with a slowly changing supply. With faster slopes the MIN level required to reset the device properly  
can decrease to 0 V. Use the graph in Figure 4-3 to estimate the VVCC_BOR- level based on the down slope of the supply voltage. After  
removing VCC the down slope can be estimated based on the current consumption and the capacitance on DVCC: dV/dt = I/C with  
dV/dt: slope, I: current, C: capacitance.  
(4) The brownout levels are measured with a slowly changing supply.  
2
1.5  
1
0.5  
0
1
10  
100  
1000  
10000  
100000  
Supply Voltage Power-Down Slope (V/s)  
Figure 4-3. Brownout Power-Down Level vs Supply Voltage Down Slope  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Table 4-2 lists the characteristics of the SVS.  
Table 4-2. SVS  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
170  
MAX UNIT  
ISVSH,LPM  
VSVSH-  
SVSH current consumption, low power modes  
SVSH power-down level  
300  
1.85  
1.99  
120  
10  
nA  
V
1.73  
1.75  
40  
1.80  
1.88  
VSVSH+  
SVSH power-up level  
V
VSVSH_hys  
tPD,SVSH, AM  
SVSH hysteresis  
mV  
µs  
SVSH propagation delay, active mode  
dVVcc/dt = –10 mV/µs  
4.11.2 Reset Timing  
Table 4-3 lists the required reset input timing.  
Table 4-3. Reset Input  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
VCC  
MIN  
MAX UNIT  
t(RST)  
(1) Not applicable if RST/NMI pin configured as NMI.  
External reset pulse duration on RST(1)  
2.2 V, 3.0 V  
2
µs  
18  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
4.11.3 Clock Specifications  
Table 4-4 lists the characteristics of the LFXT.  
Table 4-4. Low-Frequency Crystal Oscillator, LFXT(1)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
3.0 V  
180  
TA = 25°C, CL,eff = 3.7 pF, ESR 44 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
TA = 25°C, CL,eff = 6 pF, ESR 40 kΩ  
3.0 V  
3.0 V  
3.0 V  
185  
225  
IVCC.LFXT  
Current consumption  
nA  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {2},  
TA = 25°C, CL,eff = 9 pF, ESR 40 kΩ  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF, ESR 40 kΩ  
330  
fLFXT  
LFXT oscillator crystal frequency LFXTBYPASS = 0  
32768  
Hz  
Measured at ACLK,  
LFXT oscillator duty cycle  
DCLFXT  
30%  
70%  
fLFXT = 32768 Hz  
LFXT oscillator logic-level  
LFXTBYPASS = 1(2) (3)  
fLFXT,SW  
10.5 32.768  
50 kHz  
70%  
square-wave input frequency  
LFXT oscillator logic-level  
LFXTBYPASS = 1  
DCLFXT, SW  
30%  
210  
300  
2
square-wave input duty cycle  
LFXTBYPASS = 0, LFXTDRIVE = {1},  
fLFXT = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(4)  
OALFXT  
kΩ  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
Integrated load capacitance at  
LFXIN terminal(5) (6)  
CLFXIN  
pF  
pF  
Integrated load capacitance at  
LFXOUT terminal(5) (6)  
CLFXOUT  
2
(1) To improve EMI on the LFXT oscillator, observe the following guidelines.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins LFXIN and LFXOUT.  
Avoid running PCB traces underneath or adjacent to the LFXIN and LFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
.
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF.  
For LFXTDRIVE = {1}, CL,eff = 6 pF  
For LFXTDRIVE = {2}, 6 pF CL,eff 9 pF  
For LFXTDRIVE = {3}, 9 pF CL,eff 12.5 pF  
(5) This represents all the parasitic capacitance present at the LFXIN and LFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT are the  
total capacitance at the LFXIN and LFXOUT terminals, respectively.  
(6) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Table 4-4. Low-Frequency Crystal Oscillator, LFXT(1) (continued)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {0},  
TA = 25°C, CL,eff = 3.7 pF  
3.0 V  
800  
tSTART,LFXT  
Start-up time(7)  
ms  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
3.0 V  
1000  
fFault,LFXT  
Oscillator fault frequency(8) (9)  
0
3500  
Hz  
(7) Includes start-up counter of 1024 clock cycles.  
(8) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specification may set the  
flag. A static condition or stuck at fault condition sets the flag.  
(9) Measured with logic-level input frequency but also applies to operation with crystals.  
Table 4-5 lists the characteristics of the HFXT.  
Table 4-5. High-Frequency Crystal Oscillator, HFXT(1)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1(2)  
TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt  
75  
fOSC = 8 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 1,  
TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt  
120  
190  
250  
HFXT oscillator  
crystal current HF  
mode at typical  
ESR  
IDVCC.HFXT  
3.0 V  
μA  
fOSC = 16 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 2, HFFREQ = 2,  
TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt  
fOSC = 24 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3,  
TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt  
HFXTBYPASS = 0, HFFREQ = 1(2)(3)  
crystal frequency, HFXTBYPASS = 0, HFFREQ = 2(3)  
4
8.01  
8
HFXT oscillator  
fHFXT  
16  
24  
MHz  
MHz  
crystal mode  
HFXTBYPASS = 0, HFFREQ = 3(3)  
16.01  
HFXT oscillator  
DCHFXT  
Measured at SMCLK, fHFXT = 16 MHz  
duty cycle  
40%  
50%  
60%  
HFXTBYPASS = 1, HFFREQ = 0(4)(3)  
0.9  
4.01  
4
8
HFXT oscillator  
HFXTBYPASS = 1, HFFREQ = 1(4)(3)  
logic-level square-  
fHFXT,SW  
wave input  
HFXTBYPASS = 1, HFFREQ = 2(4)(3)  
8.01  
16  
24  
frequency, bypass  
HFXTBYPASS = 1, HFFREQ = 3(4)(3)  
mode  
16.01  
HFXT oscillator  
logic-level square-  
HFXTBYPASS = 1  
wave input duty  
DCHFXT, SW  
40%  
60%  
cycle  
(1) To improve EMI on the HFXT oscillator, observe the following guidelines.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins HFXIN and HFXOUT.  
Avoid running PCB traces underneath or adjacent to the HFXIN and HFXOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator HFXIN and HFXOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) HFFREQ = {0} is not supported for HFXT crystal mode of operation.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) When HFXTBYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DCHFXT, SW  
.
20  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
Table 4-5. High-Frequency Crystal Oscillator, HFXT(1) (continued)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz,  
HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1,  
TA = 25°C, CL,eff = 16 pF  
3.0 V  
1.6  
tSTART,HFXT  
Start-up time(5)  
ms  
fOSC = 24 MHz ,  
HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3,  
TA = 25°C, CL,eff = 16 pF  
3.0 V  
0.6  
2
Integrated load  
capacitance at  
CHFXIN  
pF  
pF  
HFXIN terminaI(6)  
(7)  
Integrated load  
capacitance at  
HFXOUT  
CHFXOUT  
2
terminaI(6) (7)  
Oscillator fault  
frequency(8) (9)  
fFault,HFXT  
0
800  
kHz  
(5) Includes start-up counter of 1024 clock cycles.  
(6) This represents all the parasitic capacitance present at the HFXIN and HFXOUT terminals, respectively, including parasitic bond and  
package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT are the  
total capacitance at the HFXIN and HFXOUT terminals, respectively.  
(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
(8) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX might set the flag. A static  
condition or stuck at fault condition set the flag.  
(9) Measured with logic-level input frequency but also applies to operation with crystals.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Table 4-6 lists the characteristics of the DCO.  
Table 4-6. DCO  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 0,  
DCORSEL = 1, DCOFSEL = 0  
DCO frequency range  
1 MHz, trimmed  
fDCO1  
1
±3.8%  
MHz  
DCO frequency range  
2.7 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 1  
fDCO2.7  
fDCO3.5  
fDCO4  
2.667  
3.5  
4
±3.8%  
±3.8%  
±3.8%  
MHz  
MHz  
MHz  
DCO frequency range  
3.5 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 2  
DCO frequency range  
4 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 3  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 4,  
DCORSEL = 1, DCOFSEL = 1  
DCO frequency range  
5.3 MHz, trimmed  
fDCO5.3  
fDCO7  
fDCO8  
5.333  
±3.8%  
±3.8%  
±3.8%  
MHz  
MHz  
MHz  
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 5,  
DCORSEL = 1, DCOFSEL = 2  
DCO frequency range  
7 MHz, trimmed  
7
8
Measured at SMCLK, divide by 1,  
DCORSEL = 0, DCOFSEL = 6,  
DCORSEL = 1, DCOFSEL = 3  
DCO frequency range  
8 MHz, trimmed  
DCO frequency range  
16 MHz, trimmed  
Measured at SMCLK, divide by 1,  
DCORSEL = 1, DCOFSEL = 4  
fDCO16  
fDCO21  
fDCO24  
16  
21  
24  
±3.8%(1)  
±3.8%(1)  
±3.8%(1)  
MHz  
MHz  
MHz  
DCO frequency range  
21 MHz, trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 5  
DCO frequency range  
24 MHz, trimmed  
Measured at SMCLK, divide by 2,  
DCORSEL = 1, DCOFSEL = 6  
Measured at SMCLK, divide by 1,  
no external divide, all  
fDCO,DC  
Duty cycle  
DCORSEL/DCOFSEL settings except  
DCORSEL = 1, DCOFSEL = 5 and  
DCORSEL = 1, DCOFSEL = 6  
48%  
50%  
52%  
Based on fsignal = 10 kHz and DCO used  
for 12-bit SAR ADC sampling source.  
This achieves >74 dB SNR due to jitter  
(that is, it is limited by ADC  
tDCO, JITTER DCO jitter  
2
3
ns  
performance).  
dfDCO/dT  
DCO temperature drift(2)  
3.0 V  
0.01  
%/°C  
(1) After a wakeup from LPM1, LPM2, LPM3, or LPM4, the DCO frequency fDCO might exceed the specified frequency range for a few clock  
cycles by up to 5% before settling into the specified steady-state frequency range.  
(2) Calculated using the box method: (MAX(–55°C to 105°C) – MIN(–55°C to 105°C)) / MIN(–55°C to 105°C) / (105°C – (–55°C))  
22  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
Table 4-7 lists the characteristics of the VLO.  
Table 4-7. Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
Current consumption  
VLO frequency  
TEST CONDITIONS  
MIN  
TYP  
100  
9.9  
MAX UNIT  
IVLO  
nA  
fVLO  
Measured at ACLK  
3.3  
16  
kHz  
%/°C  
%/V  
dfVLO/dT  
dfVLO/dVCC  
fVLO,DC  
VLO frequency temperature drift  
VLO frequency supply voltage drift  
Duty cycle  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
0.2  
0.7  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–55°C to 105°C) – MIN(–55°C to 105°C)) / MIN(–55°C to 105°C) / (105°C – (–55°C))  
(2) Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V)  
Table 4-8 lists the characteristics of the MODOSC.  
Table 4-8. Module Oscillator (MODOSC)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
25  
MAX UNIT  
IMODOSC  
Current consumption  
Enabled  
μA  
fMODOSC  
MODOSC frequency  
3.75  
4.8  
5.5  
MHz  
fMODOSC/dT  
MODOSC frequency temperature drift(1)  
0.08  
%/℃  
MODOSC frequency supply voltage  
drift(2)  
fMODOSC/dVCC  
DCMODOSC  
1.4  
%/V  
Duty cycle  
Measured at SMCLK, divide by 1  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–55°C to 105°C) – MIN(–55°C to 105°C)) / MIN(–55°C to 105°C) / (105°C – (–55°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
4.11.4 Wake-up Characteristics  
Table 4-9 list the device wake-up times.  
Table 4-9. Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
(Additional) wake-up time to activate the FRAM  
in AM if previously disabled by the FRAM  
controller or from an LPM if immediate  
activation is selected for wakeup  
tWAKE-UP FRAM  
6
10  
μs  
400 +  
1.5 / fDCO  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode(1)  
2.2 V, 3.0 V  
ns  
tWAKE-UP LPM1  
tWAKE-UP LPM2  
tWAKE-UP LPM3  
tWAKE-UP LPM4  
Wake-up time from LPM1 to active mode(1)  
Wake-up time from LPM2 to active mode(1)  
Wake-up time from LPM3 to active mode(1)  
Wake-up time from LPM4 to active mode(1)  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
6
6
μs  
μs  
μs  
μs  
μs  
μs  
ms  
7
10  
10  
7
tWAKE-UP LPM3.5 Wake-up time from LPM3.5 to active mode(2)  
250  
250  
1
350  
350  
1.5  
SVSHE = 1  
SVSHE = 0  
tWAKE-UP LPM4.5 Wake-up time from LPM4.5 to active mode(2)  
Wake-up time from a RST pin triggered reset to  
tWAKE-UP-RST  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
250  
1
350  
1.5  
μs  
active mode(2)  
(2)  
tWAKE-UP-BOR  
Wake-up time from power-up to active mode  
ms  
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge. MCLK is sourced by the DCO and the MCLK divider is set to divide-by-1 (DIVMx = 000b,  
fMCLK = fDCO). This time includes the activation of the FRAM during wakeup.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
Table 4-10 list the typical wake-up charges.  
Table 4-10. Typical Wake-up Charge(1)  
also see Figure 4-4 and  
PARAMETER  
TEST CONDITIONS MIN  
TYP  
MAX UNIT  
Charge used for activating the FRAM in AM or during wakeup  
from LPM0 if previously disabled by the FRAM controller.  
QWAKE-UP FRAM  
QWAKE-UP LPM0  
QWAKE-UP LPM1  
QWAKE-UP LPM2  
QWAKE-UP LPM3  
QWAKE-UP LPM4  
15.1  
nAs  
Charge used for wakeup from LPM0 to active mode (with FRAM  
active)  
4.4  
nAs  
nAs  
nAs  
nAs  
nAs  
Charge used for wakeup from LPM1 to active mode (with FRAM  
active)  
15.1  
15.3  
16.5  
16.5  
Charge used for wakeup from LPM2 to active mode (with FRAM  
active)  
Charge used for wakeup from LPM3 to active mode (with FRAM  
active)  
Charge used for wakeup from LPM4 to active mode (with FRAM  
active)  
QWAKE-UP LPM3.5 Charge used for wakeup from LPM3.5 to active mode(2)  
QWAKE-UP LPM4.5 Charge used for wakeup from LPM4.5 to active mode(2)  
QWAKE-UP-RESET Charge used for reset from RST or BOR event to active mode(2)  
76  
77  
nAs  
nAs  
nAs  
nAs  
SVSHE = 1  
SVSHE = 0  
77.5  
75  
(1) Charge used during the wake-up time from a given low-power mode to active mode. This does not include the energy required in active  
mode (for example, for an interrupt service routine).  
(2) Charge required until start of user code. This does not include the energy required to reconfigure the device.  
24  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
4.11.4.1 Typical Characteristics, Average LPM Currents vs Wake-up Frequency  
10000.00  
LPM0  
LPM1  
LPM2,XT12  
1000.00  
LPM3,XT12  
LPM3.5,XT12  
100.00  
10.00  
1.00  
0.10  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
Wake-up Frequency (Hz)  
NOTE: The average wakeup current does not include the energy required in active mode; for example, for an interrupt  
service routine or to reconfigure the device.  
Figure 4-4. Average LPM Currents vs Wake-up Frequency at 25°C  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
4.11.5 Digital I/Os  
Table 4-11 lists the characteristics of the digital inputs.  
Table 4-11. Digital Inputs  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.2  
TYP  
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
1.65  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.65  
0.55  
0.75  
0.44  
0.60  
2.25  
1.00  
V
Negative-going input threshold voltage  
1.35  
0.98  
V
Input voltage hysteresis (VIT+ – VIT–  
Pullup or pulldown resistor  
)
1.30  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI,dig  
CI,ana  
20  
35  
3
50  
kΩ  
pF  
pF  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
Input capacitance, port pins with shared analog  
functions(1)  
VIN = VSS or VCC  
5
2.2 V,  
3.0 V  
(2)(3)  
Ilkg(Px.y)  
t(int)  
High-impedance input leakage current  
See  
–20  
22  
+20  
nA  
ns  
µs  
External interrupt timing (external trigger pulse Ports with interrupt capability  
2.2 V,  
3.0 V  
duration to set interrupt flag)(4)  
(see 1.4 and Section 3.2)  
2.2 V,  
3.0 V  
t(RST)  
External reset pulse duration on RST(5)  
2.2  
(1) If the port pins PJ.4/LFXIN and PJ.5/LFXOUT are used as digital I/Os, they are connected by a 4-pF capacitor and a 35-Mresistor in  
series. At frequencies of approximately 1 kHz and lower, the 4-pF capacitor can add to the pin capacitance of PJ.4/LFXIN and/or  
PJ.5/LFXOUT.  
(2) The input leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(3) The input leakage of the digital port pins is measured individually. The port pin is selected for input, and the pullup or pulldown resistor is  
disabled.  
(4) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
(5) Not applicable if RST/NMI pin configured as NMI.  
26  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
Table 4-12 lists the characteristics of the digital outputs.  
Table 4-12. Digital Outputs  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted) (also see Figure 4-5,  
Figure 4-6, Figure 4-7, and Figure 4-8)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(1)  
I(OHmax) = –3 mA(2)  
I(OHmax) = –2 mA(1)  
I(OHmax) = –6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
VSS  
TYP  
MAX UNIT  
VCC  
2.2 V  
VCC  
VOH  
High-level output voltage  
V
VCC  
3.0 V  
2.2 V  
3.0 V  
VCC  
VSS + 0.25  
VSS  
VSS + 0.60  
VSS + 0.25  
VSS + 0.60  
VOL  
Low-level output voltage  
V
VSS  
VSS  
2.2 V  
3.0 V  
2.2 V  
16  
(4) (5)  
fPx.y  
Port output frequency (with load)(3)  
Clock output frequency(3)  
CL = 20 pF, RL  
MHz  
MHz  
16  
ACLK, MCLK, or SMCLK at  
configured output port,  
CL = 20 pF(5)  
16  
fPort_CLK  
3.0 V  
16  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
4
3
4
3
6
4
6
4
15  
15  
15  
15  
15  
15  
15  
15  
Port output rise time, digital only port  
pins  
trise,dig  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
CL = 20 pF  
ns  
ns  
ns  
ns  
Port output fall time, digital only port  
pins  
tfall,dig  
Port output rise time, port pins with  
shared analog functions  
trise,ana  
Port output fall time, port pins with  
shared analog functions  
tfall,ana  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) The port can output frequencies at least up to the specified limit, and the port might support higher frequencies.  
(4) A resistive divider with 2 × R1 and R1 = 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the  
divider. CL = 20 pF is connected from the output to VSS  
.
(5) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
27  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
4.11.5.1 Typical Characteristics, Digital Outputs at 3.0 V and 2.2 V  
0.016  
0.014  
0.012  
0.01  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
25èC  
105èC  
25èC  
105èC  
0.008  
0.006  
0.004  
0.002  
0
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
3
Low-Level Output Voltage (V)  
Low-Level Output Voltage (V)  
D005  
D006  
VCC = 2.2 V  
VCC = 3.0 V  
Figure 4-5. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 4-6. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0
0
25èC  
105èC  
25èC  
105èC  
-0.005  
-0.01  
-0.01  
-0.02  
-0.03  
-0.015  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
3
High-Level Output Voltage (V)  
High-Level Output Voltage (V)  
D007  
D008  
VCC = 2.2 V  
VCC = 3.0 V  
Figure 4-8. Typical High-Level Output Current vs  
Figure 4-7. Typical High-Level Output Current vs  
High-Level Output Voltage  
High-Level Output Voltage  
28  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
Table 4-13 lists the frequencies of the pin oscillator.  
Table 4-13. Pin-Oscillator Frequency, Ports Px  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted) (see Figure 4-9 and  
Figure 4-10)  
PARAMETER  
TEST CONDITIONS  
Px.y, CL = 10 pF(1)  
Px.y, CL = 20 pF(1)  
VCC  
MIN  
TYP  
1640  
870  
MAX UNIT  
foPx.y  
Pin-oscillator frequency  
3.0 V  
kHz  
(1) CL is the external load capacitance connected from the output to VSS and includes all parasitic effects such as PCB traces.  
4.11.5.2 Typical Characteristics, Pin-Oscillator Frequency  
1000  
1000  
25èC  
105èC  
25èC  
105èC  
100  
10  
100  
10  
100  
100  
External Load Capacitance (pF)  
External Load Capacitance (pF)  
D009  
D010  
VCC = 2.2 V  
One output active at a time.  
VCC = 3.0 V  
One output active at a time.  
Figure 4-9. Typical Oscillation Frequency vs Load Capacitance Figure 4-10. Typical Oscillation Frequency vs Load Capacitance  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
4.11.6 Timer_A and Timer_B  
Table 4-14 lists the characteristics of the Timer_A.  
Table 4-14. Timer_A  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TACLK,  
Duty cycle = 50% ±10%  
2.2 V,  
3.0 V  
fTA  
Timer_A input clock frequency  
16 MHz  
All capture inputs, minimum pulse  
duration required for capture  
2.2 V,  
3.0 V  
tTA,cap  
Timer_A capture timing  
20  
ns  
Table 4-15 lists the characteristics of the Timer_B.  
Table 4-15. Timer_B  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
Duty cycle = 50% ±10%  
2.2 V,  
3.0 V  
fTB  
Timer_B input clock frequency  
16 MHz  
All capture inputs, minimum pulse  
duration required for capture  
2.2 V,  
3.0 V  
tTB,cap  
Timer_B capture timing  
20  
ns  
30  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
4.11.7 eUSCI  
Table 4-16 lists the supported clock frequencies of the eUSCI in UART mode.  
Table 4-16. eUSCI (UART Mode) Clock Frequency  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
feUSCI  
eUSCI input clock frequency  
External: UCLK,  
Duty cycle = 50% ±10%  
16  
4
MHz  
MHz  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
Table 4-17 lists the deglitch times of the eUSCI in UART mode.  
Table 4-17. eUSCI (UART Mode)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
UCGLITx = 0  
VCC  
MIN  
5
TYP  
MAX UNIT  
30  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
20  
35  
50  
90  
ns  
tt  
UART receive deglitch time(1)  
2.2 V, 3.0 V  
160  
220  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. Thus the selected deglitch  
time can limit the maximum usable baud rate. To ensure that pulses are correctly recognized, their duration should exceed the  
maximum specification of the deglitch time.  
Table 4-18 lists the supported clock frequencies of the eUSCI in SPI master mode.  
Table 4-18. eUSCI (SPI Master Mode) Clock Frequency  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
16 MHz  
Internal: SMCLK or ACLK,  
Duty cycle = 50% ±10%  
feUSCI  
eUSCI input clock frequency  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Table 4-19 lists the characteristics of the eUSCI in SPI master mode.  
Table 4-19. eUSCI (SPI Master Mode)  
(1)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted) (see note  
)
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1
MAX  
UNIT  
tSTE,LEAD  
tSTE,LAG  
STE lead time, STE active to clock  
UCSTEM = 1, UCMODEx = 01 or 10  
UCxCLK  
cycles  
STE lag time, last clock to STE inactive UCSTEM = 1, UCMODEx = 01 or 10  
1
STE access time, STE active to SIMO  
UCSTEM = 0, UCMODEx = 01 or 10  
data out  
tSTE,ACC  
tSTE,DIS  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
60  
60  
ns  
ns  
STE disable time, STE inactive to  
UCSTEM = 0, UCMODEx = 01 or 10  
SOMI high impedance  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
35  
35  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
ns  
ns  
ns  
ns  
tHD,MI  
0
10  
10  
tVALID,MO  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
UCLK edge to SIMO valid, CL = 20 pF  
CL = 20 pF  
0
0
tHD,MO  
(1) fUCxCLK = 1 / 2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 4-11 and Figure 4-12.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 4-  
11 and Figure 4-12.  
32  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,ACC  
tSTE,DIS  
Figure 4-11. SPI Master Mode, CKPH = 0  
UCMODEx = 01  
STE  
tSTE,LEAD  
tSTE,LAG  
UCMODEx = 10  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
tSTE,DIS  
tSTE,ACC  
Figure 4-12. SPI Master Mode, CKPH = 1  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Table 4-20 lists the characteristics of the eUSCI in SPI slave mode.  
Table 4-20. eUSCI (SPI Slave Mode)  
(1)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted) (see Note  
)
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
45  
40  
0
MAX UNIT  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
STE lag time, last clock to STE inactive  
ns  
0
45  
ns  
40  
STE access time, STE active to SOMI data out  
40  
ns  
35  
STE disable time, STE inactive to SOMI high  
impedance  
4
4
7
7
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
ns  
tHD,SI  
35  
ns  
35  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
0
0
tHD,SO  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 4-13 and Figure 4-14.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 4-13  
and Figure 4-14.  
34  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 4-13. SPI Slave Mode, CKPH = 0  
UCMODEx = 01  
UCMODEx = 10  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 4-14. SPI Slave Mode, CKPH = 1  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Table 4-21 lists the characteristics of the eUSCI in I2C mode.  
Table 4-21. eUSCI (I2C Mode)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted) (see Figure 4-15)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3.0 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
ns  
ns  
100  
4.0  
0.6  
4.7  
1.3  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2.2 V, 3.0 V  
µs  
Bus free time between a STOP and  
START condition  
tBUF  
µs  
250  
25  
125  
ns  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2.2 V, 3.0 V  
12.5  
6.3  
62.5  
31.5  
27  
30  
33  
tTIMEOUT  
Clock low time-out  
2.2 V, 3.0 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 4-15. I2C Mode Timing  
36  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
4.11.8 ADC  
Table 4-22 lists the input requirements of the ADC.  
Table 4-22. 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN NOM  
MAX UNIT  
V(Ax)  
Analog input voltage range(1)  
All ADC12 analog input pins Ax  
0
AVCC  
190  
V
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 0,  
REFON = 0, ADC12SHTx = 0,  
ADC12DIV = 0  
3.0 V  
2.2 V  
3.0 V  
2.2 V  
145  
I(ADC12_B)  
single-  
ended mode  
Operating supply current into  
µA  
AVCC plus DVCC terminals(2) (3)  
140  
175  
170  
185  
235  
230  
fADC12CLK = MODCLK, ADC12ON = 1,  
ADC12PWRMD = 0, ADC12DIF = 1,  
REFON = 0, ADC12SHTx= 0,  
ADC12DIV = 0  
I(ADC12_B)  
differential  
mode  
Operating supply current into  
µA  
pF  
AVCC plus DVCC terminals(2) (3)  
Only one terminal Ax can be selected  
at one time  
CI  
RI  
Input capacitance  
2.2 V  
10  
15  
>2 V  
<2 V  
0.5  
1
4
kΩ  
kΩ  
Input MUX ON resistance  
0 V V(Ax) AVCC  
10  
(1) The analog input voltage range must be within the selected reference voltage range VR+ to VR- for valid conversion results.  
(2) The internal reference supply current is not included in current consumption parameter I(ADC12_B)  
.
(3) Approximately 60% (typical) of the total current into the AVCC and DVCC terminals is from AVCC.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
37  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Table 4-23 lists the timing parameters of the ADC.  
Table 4-23. 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
For specified performance of ADC12 linearity parameters  
Frequency for specified with ADC12PWRMD = 0.  
fADC12CLK  
0.45  
5.4  
MHz  
performance  
If ADC12PWRMD = 1, the maximum is 1/4 of the value  
shown here.  
Frequency for reduced  
performance  
Internal oscillator(1)  
fADC12CLK  
fADC12OSC  
Linearity parameters have reduced performance  
ADC12DIV = 0, fADC12CLK = fADC12OSC from MODCLK  
32.768  
4.8  
kHz  
4
5.4  
3.5  
MHz  
REFON = 0, Internal oscillator,  
fADC12CLK = fADC12OSC from MODCLK, ADC12WINC = 0  
2.6  
tCONVERT  
Conversion time  
µs  
External fADC12CLK from ACLK, MCLK, or SMCLK,  
ADC12SSEL 0  
(2)  
See  
Turnon settling time of  
the ADC  
(3)  
tADC12ON  
See  
100  
ns  
ns  
Time ADC must be off  
before it can be turned  
on again  
tADC12OFF must be met to make sure that tADC12ON time  
holds.  
tADC12OFF  
100  
All pulse sample mode  
(ADC12SHP = 1) and  
extended sample mode  
(ADC12SHP = 0) with  
buffered reference  
1
µs  
µs  
(ADC12VRSEL = 0x1, 0x3,  
0x5, 0x7, 0x9, 0xB, 0xD,  
RS = 400 Ω, RI = 4 kΩ,  
tSample  
Sampling time  
CI = 15 pF, Cpext= 8 pF(4)  
0xF)  
Extended sample mode  
(ADC12SHP = 0) with  
unbuffered reference  
(ADC12VRSEL= 0x0, 0x2,  
0x4, 0x6, 0xC, 0xE)  
(5)  
See  
(1) The ADC12OSC is sourced directly from MODOSC inside the UCS.  
(2) 14 × 1 / fADC12CLK. If ADC12WINC = 1, then 15 × 1 / fADC12CLK  
(3) The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
(4) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB: tsample = ln(2n+2) × (RS + RI) × (CI + Cpext), RS < 10 kΩ,  
where n = ADC resolution = 12, RS= external source resistance, Cpext = external parasitic capacitance.  
(5) 6 × 1 / fADC12CLK  
38  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
Table 4-24 lists the linearity parameters of the ADC when using an external reference.  
Table 4-24. 12-Bit ADC, Linearity Parameters With External Reference(1)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Number of no missing code  
output-code bits  
Resolution  
EI  
12  
bits  
Integral linearity error (INL) for  
differential input  
1.2 V VR+ – VR– AVCC  
±1.8  
LSB  
Integral linearity error (INL) for  
single ended inputs  
EI  
1.2 V VR+ – VR– AVCC  
±2.2  
+1.0  
LSB  
LSB  
ED  
Differential linearity error (DNL)  
–0.99  
ADC12VRSEL = 0x2 or 0x4 without TLV calibration,  
TLV calibration data can be used to improve the  
parameter(4)  
EO  
Offset error(2) (3)  
±0.5  
±0.8  
±1  
±1.5  
±2.5  
±20  
mV  
With external voltage reference without internal  
buffer (ADC12VRSEL = 0x2 or 0x4) without TLV  
calibration,  
TLV calibration data can be used to improve the  
parameter(4)  
,
EG,ext  
Gain error  
LSB  
VR+ = 2.5 V, VR– = AVSS  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3),  
VR+ = 2.5 V, VR– = AVSS  
With external voltage reference without internal  
buffer (ADC12VRSEL = 0x2 or 0x4) without TLV  
calibration,  
±1.4  
±3.5  
TLV calibration data can be used to improve the  
parameter(4)  
,
ET,ext  
Total unadjusted error  
LSB  
VR+ = 2.5 V, VR– = AVSS  
With external voltage reference with internal buffer  
(ADC12VRSEL = 0x3),  
±1.4  
±21.0  
VR+ = 2.5 V, VR– = AVSS  
(1) See Table 4-26 and Table 4-32 for more information on internal reference performance, and see Designing With the MSP430FR59xx  
and MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external  
reference.  
(2) Offset is measured as the input voltage (at which ADC output transitions from 0 to 1) minus 0.5 LSB.  
(3) Offset increases as IR drop increases when VR– is AVSS.  
(4) For details, see the device descriptor in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's  
Guide.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Table 4-25 lists the dynamic performance characteristics of the ADC with differential inputs and an  
external reference.  
Table 4-25. 12-Bit ADC, Dynamic Performance for Differential Inputs With External Reference(1)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
Signal-to-noise  
Effective number of bits(2)  
TEST CONDITIONS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
MIN  
TYP  
71  
MAX UNIT  
SNR  
dB  
ENOB  
11.2  
bits  
(1) See Table 4-26 and Table 4-32 for more information on internal reference performance, and see Designing With the MSP430FR59xx  
and MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external  
reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 4-26 lists the dynamic performance characteristics of the ADC with differential inputs and an internal  
reference.  
Table 4-26. 12-Bit ADC, Dynamic Performance for Differential Inputs With Internal Reference(1)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
Effective number of bits(2)  
TEST CONDITIONS  
VR+ = 2.5 V, VR– = AVSS  
MIN  
TYP  
MAX  
UNIT  
ENOB  
10.7  
Bits  
(1) See Table 4-32 for more information on internal reference performance, and see Designing With the MSP430FR59xx and  
MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 4-27 lists the dynamic performance characteristics of the ADC with single-ended inputs and an  
external reference.  
Table 4-27. 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With External Reference(1)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
Signal-to-noise  
Effective number of bits(2)  
TEST CONDITIONS  
VR+ = 2.5 V, VR– = AVSS  
VR+ = 2.5 V, VR– = AVSS  
MIN  
TYP  
68  
MAX  
UNIT  
dB  
SNR  
ENOB  
10.7  
bits  
(1) See Table 4-28 and Table 4-32 for more information on internal reference performance, and see Designing With the MSP430FR59xx  
and MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external  
reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 4-28 lists the dynamic performance characteristics of the ADC with single-ended inputs and an  
internal reference.  
Table 4-28. 12-Bit ADC, Dynamic Performance for Single-Ended Inputs With Internal Reference(1)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
Effective number of bits(2)  
TEST CONDITIONS  
VR+ = 2.5 V, VR– = AVSS  
MIN  
TYP  
MAX  
UNIT  
ENOB  
10.4  
bits  
(1) See Table 4-32 for more information on internal reference performance, and see Designing With the MSP430FR59xx and  
MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal or external reference.  
(2) ENOB = (SINAD – 1.76) / 6.02  
Table 4-29 lists the dynamic performance characteristics of the ADC using a 32.678-kHz clock.  
Table 4-29. 12-Bit ADC, Dynamic Performance With 32.768-kHz Clock  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TYP UNIT  
10 bits  
Reduced performance with fADC12CLK from ACLK LFXT 32.768 kHz,  
VR+ = 2.5 V, VR– = AVSS  
ENOB  
Effective number of bits(1)  
(1) ENOB = (SINAD – 1.76) / 6.02  
40  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
 
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
Table 4-30 lists the characteristics of the temperature sensor and built-in V1/2 of the ADC.  
Table 4-30. 12-Bit ADC, Temperature Sensor and Built-In V1/2  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
700  
2.5  
MAX UNIT  
mV  
ADC12ON = 1, ADC12TCMAP = 1,  
TA = 0°C  
VSENSOR  
See (1) (2) (also see Figure 4-16)  
(2)  
TCSENSOR  
tSENSOR(sample)  
See  
ADC12ON = 1, ADC12TCMAP = 1  
mV/°C  
µs  
Sample time required if ADCTCMAP = 1 and  
channel (MAX – 1) is selected(3)  
ADC12ON = 1, ADC12TCMAP = 1,  
Error of conversion result 1 LSB  
30  
AVCC voltage divider for ADC12BATMAP = 1  
on MAX input channel  
V1/2  
ADC12ON = 1, ADC12BATMAP = 1  
47.5%  
50% 52.5%  
38 63  
IV 1/2  
Current for battery monitor during sample time ADC12ON = 1, ADC12BATMAP = 1  
µA  
µs  
Sample time required if ADC12BATMAP = 1  
ADC12ON = 1, ADC12BATMAP = 1  
and channel MAX is selected(4)  
tV 1/2 (sample)  
1.7  
(1) The temperature sensor offset can be as much as ±30°C. TI recommends a single-point calibration to minimize the offset error of the  
built-in temperature sensor.  
(2) The device descriptor structure contains calibration values for 30°C ±3°C and 105°C ±3°C for each available reference voltage level.  
The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR can be  
computed from the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 250 kΩ. The sample time required includes the sensor-on time tSENSOR(on)  
.
(4) The on-time tV1/2(on) is included in the sampling time tV1/2(sample); no additional on time is needed.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-55  
-30  
-5  
20  
45  
70  
95  
Temperature (°C)  
D011  
Figure 4-16. Typical Temperature Sensor Voltage  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
41  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Table 4-31 lists the external reference requirements for the ADC.  
Table 4-31. 12-Bit ADC, External Reference(1)  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Positive external reference voltage input  
VeREF+ or VeREF- based on ADC12VRSEL bit  
VR+  
VR+ > VR–  
1.2  
AVCC  
V
Negative external reference voltage input  
VeREF+ or VeREF- based on ADC12VRSEL bit  
VR–  
VR+ > VR–  
VR+ > VR–  
0
1.2  
V
V
VR+ – VR–  
Differential external reference voltage input  
Static input current, singled-ended input mode  
1.2  
AVCC  
1.2 V VeREF+ VAVCC, VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 0, ADC12PWRMD = 0  
±10  
±2.5  
±20  
±5  
IVeREF+  
IVeREF-  
,
µA  
µA  
1.2 V VeREF+ VAVCC , VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 0, ADC12PWRMD = 01  
1.2 V VeREF+ VAVCC, VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
ADC12DIF = 1, ADC12PWRMD = 0  
IVeREF+  
IVeREF-  
,
Static input current, differential input mode  
1.2 V VeREF+ VAVCC , VeREF– = 0 V  
fADC12CLK = 5 MHz, ADC12SHTx = 8h,  
ADC12DIF = 1, ADC12PWRMD = 1  
IVeREF+  
IVeREF+  
CVeREF+/-  
Peak input current with single-ended input  
Peak input current with differential input  
Capacitance at VeREF+ or VeREF- terminal  
0 V VeREF+ VAVCC, ADC12DIF = 0  
0 V VeREF+ VAVCC, ADC12DIF = 1  
1.5  
3
mA  
mA  
µF  
(2)  
See  
10  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) Connect two decoupling capacitors, 10 µF and 470 nF, to VeREF to decouple the dynamic current required for an external reference  
source if it is used for the ADC12_B. Also see the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family  
User's Guide.  
42  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
4.11.9 Reference  
Table 4-32 lists the characteristics of the built-in voltage reference.  
Table 4-32. REF, Built-In Reference  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
2.5 ±1.5%  
2.0 ±1.5%  
MAX UNIT  
REFVSEL = {2} for 2.5 V, REFON = 1  
REFVSEL = {1} for 2.0 V, REFON = 1  
REFVSEL = {0} for 1.2 V, REFON = 1  
From 0.1 Hz to 10 Hz, REFVSEL = {0}  
2.7 V  
2.2 V  
1.8 V  
Positive built-in reference  
voltage output  
VREF+  
V
1.2 ±1.8%  
110  
Noise  
RMS noise at VREF(1)  
µV  
VREF ADC BUF_INT buffer TA = 25°C , ADC ON, REFVSEL = {0},  
VOS_BUF_INT  
–12  
–12  
12  
12  
mV  
offset(2)  
REFON = 1, REFOUT = 0  
VREF ADC BUF_EXT  
buffer offset(2)  
TA = 25°C, REFVSEL = {0} , REFOUT = 1,  
REFON = 1 or ADC ON  
VOS_BUF_EXT  
AVCC(min)  
IREF+  
mV  
V
REFVSEL = {0} for 1.2 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
1.8  
2.2  
2.7  
AVCC minimum voltage,  
Positive built-in reference  
active  
Operating supply current  
into AVCC terminal(3)  
REFON = 1  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
8
225  
15  
355  
µA  
ADC ON, REFOUT = 0, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 0,  
ADC ON, REFOUT = 1, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 0  
1030  
120  
1680  
240  
Operating supply current  
into AVCC terminal(3)  
ADC ON, REFOUT = 0, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 1  
IREF+_ADC_BUF  
µA  
µA  
ADC ON, REFOUT = 1, REFVSEL = {0, 1, 2},  
ADC12PWRMD = 1  
545  
895  
ADC OFF, REFON = 1, REFOUT = 1,  
REFVSEL = {0, 1, 2}  
1085  
1780  
REFVSEL = {0, 1, 2}, AVCC = AVCC(min) for  
each reference level,  
REFON = REFOUT = 1  
VREF maximum load  
current, VREF+ terminal  
IO(VREF+)  
–1000  
10  
REFVSEL = {0, 1, 2},  
ΔVout/ΔIo  
(VREF+)  
Load-current regulation,  
VREF+ terminal  
IO(VREF+) = +10 µA or –1000 µA,  
AVCC = AVCC(min) for each reference level,  
REFON = REFOUT = 1  
2500 µV/mA  
Capacitance at VREF+ and  
VREF- terminals  
CVREF+/-  
TCREF+  
REFON = REFOUT = 1  
0
100  
pF  
Temperature coefficient of  
built-in reference  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1,  
TA = –55°C to 105°C(4)  
18  
120  
3.0  
75  
50 ppm/K  
400 µV/V  
mV/V  
Power supply rejection ratio AVCC = AVCC(min) to AVCC(max), TA = 25°C,  
(DC)  
PSRR_DC  
PSRR_AC  
tSETTLE  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1  
Power supply rejection ratio  
(AC)  
dAVCC= 0.1 V at 1 kHz  
Settling time of reference  
voltage(5)  
AVCC = AVCC (min) to AVCC(max)  
REFVSEL = {0, 1, 2}, REFON = 0 1  
,
80  
µs  
(1) Internal reference noise affects ADC performance when ADC uses internal reference. See Designing With the MSP430FR59xx and  
MSP430FR58xx ADC for details on optimizing ADC performance for your application with the choice of internal versus external  
reference.  
(2) Buffer offset affects ADC gain error and thus total unadjusted error.  
(3) The internal reference current is supplied through terminal AVCC.  
(4) Calculated using the box method: (MAX(–55°C to 105°C) – MIN(–55°C to 105°C)) / MIN(–55°C to 105°C)/(105°C – (–55°C)).  
(5) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
Copyright © 2017–2018, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
4.11.10 Comparator  
Table 4-33 lists the characteristics of the comparator.  
Table 4-33. Comparator_E  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
CEPWRMD = 00, CEON = 1,  
CERSx = 00 (fast)  
11  
20  
CEPWRMD = 01, CEON = 1,  
CERSx = 00 (medium)  
9
17  
µA  
0.5  
Comparator operating supply  
current into AVCC, excludes  
reference resistor ladder  
2.2 V,  
3.0 V  
IAVCC_COMP  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 30°C  
CEPWRMD = 10, CEON = 1,  
CERSx = 00 (slow), TA = 85°C  
1.3  
CEREFLx = 01, CERSx = 10, REFON = 0,  
CEON = 0, CEREFACC = 0  
12  
5
15  
µA  
7
Quiescent current of resistor  
ladder into AVCC, including  
REF module current  
2.2 V,  
3.0 V  
IAVCC_REF  
CEREFLx = 01, CERSx = 10, REFON = 0,  
CEON = 0, CEREFACC = 1  
CERSx = 11, CEREFLx = 01, CEREFACC = 0  
CERSx = 11, CEREFLx = 10, CEREFACC = 0  
CERSx = 11, CEREFLx = 11, CEREFACC = 0  
CERSx = 11, CEREFLx = 01, CEREFACC = 1  
CERSx = 11, CEREFLx = 10, CEREFACC = 1  
CERSx = 11, CEREFLx = 11, CEREFACC = 1  
1.8 V  
2.2 V  
2.7 V  
1.8 V  
2.2 V  
2.7 V  
1.17  
1.92  
2.40  
1.10  
1.90  
2.35  
0
1.2  
2.0  
2.5  
1.2  
2.0  
2.5  
1.23  
2.08  
2.60  
V
1.245  
VREF  
Reference voltage level  
2.08  
2.60  
VIC  
Common-mode input range  
Input offset voltage  
VCC-1  
32  
V
CEPWRMD = 00  
–32  
–32  
–30  
VOFFSET  
CEPWRMD = 01  
32  
mV  
CEPWRMD = 10  
30  
CEPWRMD = 00 or CEPWRMD = 01  
CEPWRMD = 10  
9
9
1
CIN  
Input capacitance  
pF  
On (switch closed)  
3
k  
RSIN  
Series input resistance  
Off (switch open)  
50  
MΩ  
CEPWRMD = 00, CEF = 0, Overdrive 20 mV  
CEPWRMD = 01, CEF = 0, Overdrive 20 mV  
CEPWRMD = 10, CEF = 0, Overdrive 20 mV  
260  
350  
400  
530  
16  
ns  
Propagation delay, response  
time  
tPD  
µs  
ns  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 00  
700  
1.0  
2.0  
4.0  
0.9  
0.9  
15  
1200  
2.0  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 01  
Propagation delay with filter  
active  
tPD,filter  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 10  
3.7  
µs  
µs  
CEPWRMD = 00 or 01, CEF = 1,  
Overdrive 20 mV, CEFDLY = 11  
7.2  
CEON = 0 1, VIN+, VIN- from pins,  
Overdrive 20 mV, CEPWRMD = 00  
2.0  
CEON = 0 1, VIN+, VIN- from pins,  
Overdrive 20 mV, CEPWRMD = 01  
tEN_CMP  
Comparator enable time  
Comparator and reference  
2.0  
CEON = 0 1, VIN+, VIN- from pins,  
Overdrive 20 mV, CEPWRMD = 10  
100  
CEON = 0 1, CEREFLX = 10, CERSx = 10 or 11,  
tEN_CMP_VREF  
ladder and reference voltage CEREF0 = CEREF1 = 0x0F,  
350  
1500  
µs  
V
enable time  
Overdrive 20 mV  
VIN ×  
VIN ×  
(n + 0.5) (n + 1)  
/ 32 / 32  
VIN ×  
(n + 1.5)  
/ 32  
Reference voltage for a  
given tap  
VIN = reference into resistor ladder,  
n = 0 to 31  
VCE_REF  
44  
Specifications  
Copyright © 2017–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
4.11.11 FRAM  
Table 4-34 lists the characteristics of the FRAM.  
Table 4-34. FRAM  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1014  
100  
40  
TYP  
MAX UNIT  
Read and write endurance  
cycles  
TJ = 25°C  
tRetention  
Data retention duration  
TJ = 70°C  
years  
TJ = 105°C  
2.5  
(1)  
IWRITE  
IERASE  
tWRITE  
Current to write into FRAM  
Erase current  
IREAD  
nA  
nA  
ns  
n/a(2)  
(3)  
Write time  
tREAD  
(4)  
(4)  
NWAITSx = 0  
NWAITSx = 1  
1 / fSYSTEM  
2 / fSYSTEM  
tREAD  
Read time  
ns  
(1) Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read  
current IREAD is included in the active mode current consumption numbers IAM,FRAM  
.
(2) FRAM does not require a special erase sequence.  
(3) Writing into FRAM is as fast as reading.  
(4) The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx).  
4.12 Emulation and Debug  
Table 4-35 lists the characteristics of the JTAG and Spy-Bi-Wire interface.  
Table 4-35. JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)  
TEST  
PARAMETER  
MIN  
TYP  
MAX UNIT  
CONDITIONS  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
2.2 V, 3.0 V  
IJTAG  
Supply current adder when JTAG active (but not clocked)  
Spy-Bi-Wire input frequency  
40  
100  
μA  
fSBW  
0
10 MHz  
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
0.04  
15  
110  
100  
μs  
μs  
μs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
edge)(1)  
tSBW, En  
tSBW,Rst  
2.2 V, 3.0 V  
Spy-Bi-Wire return to normal operation time  
TCK input frequency, 4-wire JTAG(2)  
15  
0
2.2 V  
3.0 V  
16 MHz  
16 MHz  
fTCK  
0
Rinternal  
Internal pulldown resistance on TEST  
2.2 V, 3.0 V  
20  
35  
50  
kΩ  
TCLK/MCLK frequency during JTAG access, no FRAM access  
fTCLK  
16 MHz  
(limited by fSYSTEM  
)
tTCLK,Low/High  
fTCLK,FRAM  
TCLK low or high clock pulse duration, no FRAM access  
25  
4
ns  
MHz  
ns  
TCLK/MCLK frequency during JTAG access, including FRAM access  
(limited by fSYSTEM with no FRAM wait states)  
tTCLK,FRAM,Low/High TCLK low or high clock pulse duration, including FRAM accesses  
100  
(1) Tools that access the Spy-Bi-Wire and BSL interfaces must wait for the tSBW,En time after the first transition of the TEST/SBWTCK pin  
(low to high), before the second transition of the pin (high to low) during the entry sequence.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
版权 © 2017–2018, Texas Instruments Incorporated  
Specifications  
45  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5 Detailed Description  
5.1 Overview  
The Texas Instruments MSP430FR5969-SP ultra-low-power microcontroller includes several different sets  
of peripherals. The architecture, combined with seven low-power modes is optimized for distributed  
telemetry applications. The devices features a powerful 16-bit RISC CPU, 16-bit registers, and constant  
generators that contribute to maximum code efficiency.  
The MSP430FR5969-SP microcontroller comprises up to five 16-bit timers, Comparator, universal serial  
communication interfaces (eUSCI) supporting UART, SPI, and I2C, hardware multiplier, AES accelerator,  
DMA, real-time clock module with alarm capabilities, up to 40 I/O pins, and an high-performance 12-bit  
analog-to-digital converter (ADC).  
5.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and  
constant generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all  
instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes  
and additional instructions for the expanded address range. Each instruction can operate on word and  
byte data.  
46  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.3 Operating Modes  
The MSP430FR5969-SP MCU has one active mode and seven software-selectable low-power modes of operation (see 5-1). An interrupt event  
can wake up the device from a low-power mode (LPM0 to LPM4), service the request, and restore back to the low-power mode on return from the  
interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption.  
5-1. Operating Modes  
MODE  
AM  
LPM0  
LPM1  
LPM2  
LPM3  
LPM4  
OFF  
LPM3.5  
LPM4.5  
ACTIVE,  
FRAM  
SHUTDOWN  
SHUTDOWN  
ACTIVE  
16 MHz  
103 µA/MHz 65 µA/MHz  
N/A  
CPU Off(2)  
CPU OFF  
STANDBY  
STANDBY  
RTC ONLY  
WITH SVS  
WITHOUT SVS  
OFF(1)  
Maximum system clock  
16 MHz  
70 µA at 1 MHz  
instant  
16 MHz  
35 µA at 1 MHz  
6 µs  
50 kHz  
0.7 µA  
6 µs  
50 kHz  
0.4 µA  
7 µs  
0(3)  
0.3 µA  
7 µs  
50 kHz  
0.25 µA  
250 µs  
0(3)  
Typical current consumption,  
TA = 25°C  
0.2 µA  
250 µs  
0.02 µA  
1000 µs  
Typical wake-up time  
LF  
I/O  
Comp  
LF  
I/O  
Comp  
I/O  
Comp  
RTC  
I/O  
Wake-up events  
N/A  
all  
all  
I/O  
CPU  
on  
off  
off  
off  
off  
off  
off  
off  
off  
off  
reset  
off  
reset  
off  
standby  
FRAM  
on  
off(1)  
(or off(1)  
)
Peripherals in high-frequency  
state(4)  
yes  
yes  
yes  
yes  
yes  
yes  
no  
yes  
yes  
off  
no  
no  
no  
reset  
RTC  
reset  
off  
reset  
reset  
reset  
off  
Peripherals in low-frequency  
state(4)  
yes  
yes  
off  
yes(5)  
yes(5)  
off  
Peripherals in unclocked  
state(4)  
yes  
on  
(16 MHzMAX  
optional(6)  
yes(5)  
off  
MCLK  
SMCLK  
ACLK  
off  
)
optional(6)  
(16 MHzMAX  
optional(6)  
(16 MHzMAX  
off  
off  
off  
off  
off  
(16 MHzMAX  
)
)
)
)
)
on  
on  
on  
on  
on  
off  
off  
off  
(50 kHzMAX  
)
(50 kHzMAX  
)
(50 kHzMAX  
)
(50 kHzMAX  
)
(50 kHzMAX)  
optional  
(16 MHzMAX  
optional  
(16 MHzMAX  
optional  
(16 MHzMAX  
optional  
(50 kHzMAX  
optional  
(50 kHzMAX  
optional  
(50 kHzMAX)  
External clock  
Full retention  
off  
no  
off  
no  
)
)
)
yes  
yes  
yes  
yes  
yes  
yes  
(1) FRAM disabled in FRAM controller  
(2) Disabling the FRAM through the FRAM controller allows the application to lower the LPM current consumption but the wake-up time increases as soon as FRAM is accessed (for example,  
to fetch an interrupt vector). For a wakeup that does not involve the FRAM (for example, DMA transfer to RAM), the wakeup is not delayed.  
(3) All clocks disabled  
(4) See 5-2 for a detailed description of peripherals in high-frequency, low-frequency, or unclocked state.  
(5) See 5.3.1, which describes the use of peripherals in LPM3 and LPM4.  
(6) Controlled by SMCLKOFF.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
47  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-1. Operating Modes (continued)  
MODE  
AM  
LPM0  
LPM1  
LPM2  
LPM3  
LPM4  
OFF  
LPM3.5  
LPM4.5  
ACTIVE,  
FRAM  
SHUTDOWN  
WITH SVS  
SHUTDOWN  
WITHOUT SVS  
ACTIVE  
CPU Off(2)  
CPU OFF  
STANDBY  
STANDBY  
RTC ONLY  
OFF(1)  
SVS  
always  
always  
always  
optional(7)  
optional(7)  
optional(7)  
optional(7)  
on(8)  
off(9)  
Brownout  
always  
always  
always  
always  
always  
always  
always  
always  
(7) Activated SVS (SVSHE = 1) results in higher current consumption. SVS is not included in typical current consumption.  
(8) SVSHE = 1  
(9) SVSHE = 0  
48  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.3.1 Peripherals in Low-Power Modes  
Peripherals can be in different states that impact the achievable power modes of the device. The states  
depend on the operational modes of the peripherals. The states are:  
A peripheral is in a "high frequency state" if it requires or uses a clock with a "high" frequency of more  
than 50 kHz.  
A peripheral is in a "low frequency state" if it requires or uses a clock with a "low" frequency of 50 kHz  
or less.  
A peripheral is in an "unclocked state" if it does not require nor use an internal clock.  
If the CPU requests a power mode that does not support the current state of all active peripherals, the  
device cannot enter the requested power mode but does enter a power mode that still supports the current  
state of the peripherals, unless an external clock is used. If an external clock is used, the application must  
ensure the correct frequency range for the requested power mode.  
5-2. Peripheral States  
PERIPHERAL  
WDT  
DMA(4)  
IN HIGH-FREQUENCY STATE(1)  
Clocked by SMCLK  
Not applicable  
IN LOW-FREQUENCY STATE(2)  
Clocked by ACLK  
IN UNCLOCKED STATE(3)  
Not applicable  
Not applicable  
Waiting for a trigger  
Not applicable  
RTC_B  
Not applicable  
Clocked by LFXT  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
Timer_A, TAx  
Timer_B, TBx  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
Waiting for first edge of START bit  
Not applicable  
Clocked by SMCLK or  
clocked by external clock >50 kHz  
Clocked by ACLK or  
clocked by external clock 50 kHz  
eUSCI_Ax in  
UART mode  
Clocked by SMCLK  
Clocked by ACLK  
eUSCI_Ax in SPI  
master mode  
Clocked by SMCLK  
Clocked by ACLK  
eUSCI_Ax in SPI  
slave mode  
eUSCI_Bx in I2C Clocked by SMCLK or  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
Not applicable  
Clocked by ACLK or  
clocked by external clock 50 kHz  
master mode  
clocked by external clock >50 kHz  
eUSCI_Bx in I2C  
slave mode  
Waiting for START condition or  
clocked by external clock 50 kHz  
Clocked by external clock >50 kHz  
Clocked by SMCLK  
Clocked by external clock 50 kHz  
Clocked by ACLK  
eUSCI_Bx in SPI  
master mode  
Not applicable  
eUSCI_Bx in SPI  
slave mode  
Clocked by external clock >50 kHz  
Clocked by external clock 50 kHz  
Clocked by external clock 50 kHz  
ADC12_B  
REF_A  
COMP_E  
CRC(5)  
MPY(5)  
AES(5)  
Clocked by SMCLK or by MODOSC  
Not applicable  
Clocked by ACLK  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Waiting for a trigger  
Always  
Not applicable  
Always  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
(1) Peripherals are in a state that requires or uses a clock with a "high" frequency of more than 50 kHz.  
(2) Peripherals are in a state that requires or uses a clock with a "low" frequency of 50 kHz or less.  
(3) Peripherals are in a state that does not require or does not use an internal clock.  
(4) The DMA always transfers data in active mode but can wait for a trigger in any low power mode. A DMA trigger during a low power  
mode will cause a temporary transition into active mode for the time of the transfer.  
(5) Operates only during active mode and will eventually delay the transition into a low power mode until its operation is completed.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
49  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.3.1.1 Idle Currents of Peripherals in LPM3 and LPM4  
Most peripherals can be activated to be operational in LPM3 if clocked by ACLK. Some modules are  
operational in LPM4, because they do not require a clock to operate (for example, the comparator).  
Activating a peripheral in LPM3 or LPM4 increases the current consumption due to its active supply  
current contribution but also due to an additional idle current. To limit the idle current adder, certain  
peripherals are grouped together. To achieve optimal current consumption, use modules within one group  
and limit the number of groups with active modules. 5-3 lists the grouping of the peripherals. Modules  
not listed in this table are either already included in the standard LPM3 current consumption or cannot be  
used in LPM3 or LPM4.  
The idle current adder is very small at room temperature (25°C) but increases at high temperatures  
(85°C), See the IIDLE current parameters in Section 4.7 for details.  
5-3. Peripheral Groups  
Group A  
Timer TA1  
Timer TA2  
Timer TB0  
eUSCI_A0  
eUSCI_A1  
eUSCI_B0  
Group B  
Timer TA0  
Timer TA3  
Comparator  
ADC12_B  
REF_A  
5.4 Interrupt Vector Table and Signatures  
The interrupt vectors, the power-up start address and signatures are in the address range 0FFFFh to  
0FF80h. 5-1 summarizes the content of this address range.  
0FFFFh  
Reset Vector  
BSL Password  
Interrupt  
Vectors  
0FFE0h  
JTAG Password  
Reserved  
0FF88h  
0FF80h  
Signatures  
5-1. Interrupt Vectors, Signatures and Passwords  
The power-up start address or reset vector is at 0FFFFh to 0FFFEh. It contains a 16-bit address that  
points to the start address of the application program.  
The interrupt vectors start at 0FFFDh and extend to lower addresses. Each vector contains the 16-bit  
address of the appropriate interrupt-handler instruction sequence. 5-4 lists the device specific interrupt  
vector locations.  
50  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
The vectors programmed into the address range from 0FFFFh to 0FFE0h are used as BSL password (if  
enabled by the corresponding signature).  
The signatures are located at 0FF80h extending to higher addresses. Signatures are evaluated during  
device start-up. 5-5 lists the device specific signature locations.  
A JTAG password can be programmed starting from address 0FF88h and extending to higher addresses.  
The password can extend into the interrupt vector locations using the interrupt vector addresses as  
additional bits for the password. The length of the JTAG password depends on the JTAG signature.  
See the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the  
MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide for details.  
5-4. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up, Brownout, Supply Supervisor  
External Reset RST  
Watchdog Time-out (Watchdog mode)  
WDT, FRCTL MPU, CS, PMM Password  
Violation  
SVSHIFG  
PMMRSTIFG  
WDTIFG  
WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW  
UBDIFG  
MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
Reset  
0FFFEh  
highest  
FRAM uncorrectable bit error detection  
MPU segment violation  
ACCTEIFG  
FRAM access time error  
Software POR, BOR  
PMMPORIFG, PMMBORIFG  
(SYSRSTIV)(1)  
(2)  
System NMI  
Vacant Memory Access  
JTAG Mailbox  
VMAIFG  
JMBNIFG, JMBOUTIFG  
CBDIFG, UBDIFG  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
FRAM bit error detection  
MPU segment violation  
MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,  
MPUSEG3IFG  
(3)  
(SYSSNIV)(1)  
User NMI  
External NMI  
Oscillator Fault  
NMIIFG, OFIFG  
(3)  
(SYSUNIV)(1)  
CEIFG, CEIIFG  
(CEIV)(1)  
Comparator_E  
TB0  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
TB0CCR0.CCIFG  
TB0CCR1.CCIFG ... TB0CCR6.CCIFG,  
TB0CTL.TBIFG  
TB0  
Maskable  
Maskable  
0FFF4h  
0FFF2h  
(TB0IV)(1)  
Watchdog Timer (Interval Timer Mode)  
WDTIFG  
UCA0IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA0IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A0 Receive or Transmit  
eUSCI_B0 Receive or Transmit  
ADC12_B  
Maskable  
Maskable  
Maskable  
0FFF0h  
0FFEEh  
0FFECh  
(UCA0IV)(1)  
UCB0IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCB0IFG: UCALIFG, UCNACKIFG, UCSTTIFG,  
UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,  
UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,  
UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB0IV)(1)  
ADC12IFG0 to ADC12IFG31  
ADC12LOIFG, ADC12INIFG, ADC12HIIFG,  
ADC12RDYIFG, ADC21OVIFG, ADC12TOVIFG  
(ADC12IV)(1)  
TA0  
TA0  
TA0CCR0.CCIFG  
Maskable  
Maskable  
0FFEAh  
0FFE8h  
TA0CCR1.CCIFG, TA0CCR2.CCIFG,  
TA0CTL.TAIFG  
(TA0IV)(1)  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space  
(3) (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot disable it.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
51  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
PRIORITY  
5-4. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
UCA1IFG: UCRXIFG, UCTXIFG (SPI mode)  
UCA1IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,  
UCTXIFG (UART mode)  
eUSCI_A1 Receive or Transmit  
Maskable  
0FFE6h  
(UCA1IV)(1)  
DMA0CTL.DMAIFG, DMA1CTL.DMAIFG,  
DMA2CTL.DMAIFG  
DMA  
TA1  
TA1  
Maskable  
Maskable  
Maskable  
0FFE4h  
0FFE2h  
0FFE0h  
(DMAIV)(1)  
TA1CCR0.CCIFG  
TA1CCR1.CCIFG, TA1CCR2.CCIFG,  
TA1CTL.TAIFG  
(TA1IV)(1)  
P1IFG.0 to P1IFG.7  
(P1IV)(1)  
I/O Port P1  
TA2  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
TA2CCR0.CCIFG  
TA2CCR1.CCIFG  
TA2CTL.TAIFG  
(TA2IV)(1)  
TA2  
Maskable  
0FFDAh  
P2IFG.0 to P2IFG.7  
(P2IV)(1)  
I/O Port P2  
TA3  
Maskable  
Maskable  
0FFD8h  
0FFD6h  
TA3CCR0.CCIFG  
TA3CCR1.CCIFG  
TA3CTL.TAIFG  
(TA3IV)(1)  
TA3  
Maskable  
0FFD4h  
P3IFG.0 to P3IFG.7  
(P3IV)(1)  
I/O Port P3  
I/O Port P4  
Maskable  
Maskable  
0FFD2h  
0FFD0h  
P4IFG.0 to P4IFG.2  
(P4IV)(1)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG,  
RT1PSIFG, RTCOFIFG  
RTC_B  
AES  
Maskable  
Maskable  
0FFCEh  
0FFCCh  
(RTCIV)(1)  
AESRDYIFG  
lowest  
5-5. Signatures  
SIGNATURE  
IP Encapsulation Signature 2  
IP Encapsulation Signature 1(1)  
BSL Signature 2  
WORD ADDRESS  
0FF8Ah  
0FF88h  
0FF86h  
0FF84h  
0FF82h  
0FF80h  
BSL Signature 1  
JTAG Signature 2  
JTAG Signature 1  
(1) Must not contain 0AAAAh if used as JTAG password and IP encapsulation functionality is not desired.  
52  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.5 Memory Organization  
5-6 summarizes the memory map for all device variants.  
5-6. Memory Organization(1)  
MSP430FR5969-SP  
Memory (FRAM)  
63KB  
Main: interrupt vectors and signatures  
Main: code memory  
Total Size  
00FFFFh–00FF80h  
013FFFh–004400h  
2KB  
RAM  
0023FFh–001C00h  
256 B  
001AFFh–001A00h  
Device Descriptor Info (TLV) (FRAM)  
128 B  
0019FFh–001980h  
Info A  
Info B  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
128 B  
00197Fh–001900h  
Information memory (FRAM)  
128 B  
0018FFh–001880h  
128 B  
00187Fh–001800h  
512 B  
0017FFh–001600h  
512 B  
0015FFh–001400h  
Bootloader (BSL) memory (ROM)  
512 B  
0013FFh–001200h  
512 B  
0011FFh–001000h  
4KB  
000FFFh–0h  
Peripherals  
(1) All address space not listed is considered vacant memory.  
5.6 Bootloader (BSL)  
The BSL enables users to program the FRAM or RAM using a UART serial interface (FRxxxx devices).  
Access to the device memory through the BSL is protected by an user-defined password. 5-7 list the  
BSL pins requirements. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and  
TEST/SBWTCK pins. For a complete description of the features of the BSL and its implementation, see  
the MSP430 Programming With the Bootloader (BSL).  
5-7. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
Entry sequence signal  
P2.0  
P2.1  
VCC  
VSS  
Devices with UART BSL (FRxxxx): Data transmit  
Devices with UART BSL (FRxxxx): Data receive  
Power supply  
Ground supply  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
53  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.7 JTAG Operation  
5.7.1 JTAG Standard Interface  
The MSP430 supports the standard JTAG interface which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable  
the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with  
MSP430 development tools and device programmers. 5-8 lists the JTAG pin requirements. For further  
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools  
User's Guide. For a complete description of the features of the JTAG interface and its implementation, see  
MSP430 Programming With the JTAG Interface.  
5-8. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
5.7.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 supports the 2-wire Spy-Bi-Wire interface. Spy-Bi-  
Wire can be used to interface with MSP430 development tools and device programmers. 5-9 lists the  
Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device  
programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features  
of the JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface.  
5-9. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
IN  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN, OUT  
VSS  
Ground supply  
54  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.8 FRAM  
The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. Features of the FRAM include:  
Ultra-low-power ultra-fast-write nonvolatile memory  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
Wait States  
For MCLK frequencies > 8 MHz, wait states must be configured following the flow described  
in the Wait State Control section of the FRAM Controller (FRCTRL) chapter in the  
MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide.  
For important software design information regarding FRAM including but not limited to partitioning the  
memory layout according to application-specific code, constant, and data space requirements, the use of  
FRAM to optimize application energy consumption, and the use of the Memory Protection Unit (MPU) to  
maximize application robustness by protecting the program code against unintended write accesses, see  
MSP430™ FRAM Technology – How To and Best Practices.  
5.9 Memory Protection Unit Including IP Encapsulation  
The FRAM can be protected from inadvertent CPU execution, read access, or write access by the MPU.  
Features of the MPU include:  
IP encapsulation with programmable boundaries in steps of 1KB (prevents reads from "outside"; for  
example, JTAG or non-IP software).  
Main memory partitioning is programmable up to three segments in steps of 1KB.  
Each segment's access rights can be individually selected (main and information memory).  
Access violation flags with interrupt capability for easy servicing of access violations.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
55  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.10 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be  
handled using all instructions. For complete module descriptions, see the MSP430FR58xx,  
MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide.  
5.10.1 Digital I/O  
Up to four 8-bit I/O ports are implemented:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all ports.  
Read and write access to port control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise in pairs.  
No cross-currents during start-up.  
Configuration of Digital I/Os After BOR Reset  
To prevent any cross currents during start-up of the device, all port pins are high-impedance  
with Schmitt triggers, and their module functions disabled. To enable the I/O functionality  
after a BOR reset, the ports must be configured first and then the LOCKLPM5 bit must be  
cleared. For details, see the Configuration After Reset section of the Digital I/O chapter in the  
MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide.  
5.10.2 Oscillator and Clock System (CS)  
The clock system includes support for a 32-kHz watch-crystal oscillator (XT1), an internal very-low-power  
low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-  
frequency crystal oscillator XT2. The clock system module is designed to meet the requirements of both  
low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The  
clock system module provides the following clock signals:  
Auxiliary clock (ACLK). ACLK can be sourced from a 32-kHz watch crystal (LFXT1), the internal low-  
frequency oscillator (VLO), or a digital external low-frequency (<50 kHz) clock source.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced from a high-frequency  
crystal (HFXT2), the internal digitally controlled oscillator DCO, a 32-kHz watch crystal (LFXT1), the  
internal low-frequency oscillator (VLO), or a digital external clock source.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be  
sourced by same sources made available to MCLK.  
5.10.3 Power-Management Module (PMM)  
The primary functions of the PMM are:  
Supply regulated voltages to the core logic  
Supervise voltages that are connected to the device (at DVCC pins)  
Give reset signals to the device during power on and power off  
56  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.10.4 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs  
operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed multiplication, unsigned  
multiplication, signed multiply-and-accumulate, and unsigned multiply-and-accumulate operations.  
5.10.5 Real-Time Clock (RTC_B) (Only MSP430FR596x and MSP430FR594x)  
The RTC_B module contains an integrated real-time clock (RTC). The RTC integrates an internal calendar  
that compensates for months with less than 31 days and includes leap year correction. The RTC_B also  
supports flexible alarm functions and offset-calibration hardware. RTC operation is available in LPM3.5  
modes to minimize power consumption.  
5.10.6 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart if a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not  
needed in an application, the module can be configured as an interval timer and can generate interrupts at  
selected time intervals. 5-10 lists the clock sources for the WDT_A module.  
5-10. WDT_A Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
LFMODCLK  
5.10.7 System Module (SYS)  
The SYS module manages many of the system functions within the device. These system functions  
include power on reset (POR) and power up clear (PUC) handling, NMI source selection and  
management, reset interrupt vector generators, bootloader (BSL) entry mechanisms, and configuration  
management (device descriptors). The SYS module also includes a data exchange mechanism through  
JTAG called a JTAG mailbox that can be used in the application. 5-11 lists the SYS module interrupt  
vector registers.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
57  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-11. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
REGISTER  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
Security violation (BOR)  
Reserved  
SVSHIFG SVSH event (BOR)  
Reserved  
Reserved  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection (PUC)  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
MPUPW MPU password violation (PUC)  
CSPW CS password violation (PUC)  
SYSRSTIV, System Reset  
019Eh  
MPUSEGPIFG encapsulated IP memory segment violation  
(PUC)  
26h  
MPUSEGIIFG information memory segment violation (PUC)  
MPUSEG1IFG segment 1 memory violation (PUC)  
MPUSEG2IFG segment 2 memory violation (PUC)  
MPUSEG3IFG segment 3 memory violation (PUC)  
28h  
2Ah  
2Ch  
2Eh  
(1)  
ACCTEIFG access time error (PUC)  
30h  
Reserved  
No interrupt pending  
32h to 3Eh  
00h  
Lowest  
Highest  
Reserved  
02h  
Uncorrectable FRAM bit error detection  
Reserved  
04h  
06h  
MPUSEGPIFG encapsulated IP memory segment violation  
MPUSEGIIFG information memory segment violation  
MPUSEG1IFG segment 1 memory violation  
MPUSEG2IFG segment 2 memory violation  
MPUSEG3IFG segment 3 memory violation  
VMAIFG vacant memory access  
JMBINIFG JTAG mailbox input  
08h  
0Ah  
0Ch  
0Eh  
SYSSNIV, System NMI  
019Ch  
10h  
12h  
14h  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
16h  
18h  
1Ah to  
1Eh  
Reserved  
Lowest  
(1) Indicates incorrect wait state settings.  
58 Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-11. System Module Interrupt Vector Registers (continued)  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
NMIIFG NMI pin  
OFIFG oscillator fault  
Reserved  
00h  
02h  
04h  
06h  
08h  
Highest  
SYSUNIV, User NMI  
019Ah  
Reserved  
0Ah to  
1Eh  
Reserved  
Lowest  
5.10.8 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU  
intervention. For example, the DMA controller can be used to move data from the ADC12_B conversion  
memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA  
controller reduces system power consumption by allowing the CPU to remain in sleep mode, without  
having to wake to move data to or from a peripheral. 5-12 lists the available triggers for the DMA.  
5-12. DMA Trigger Assignments(1)  
TRIGGER  
CHANNEL 0  
DMAREQ  
CHANNEL 1  
DMAREQ  
CHANNEL 2  
DMAREQ  
0
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA3CCR0 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Reserved  
Reserved  
Reserved  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
AES Trigger 0  
AES Trigger 1  
AES Trigger 2  
UCA0RXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA0TXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCA1TXIFG  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
UCB0RXIFG (SPI)  
UCB0RXIFG0 (I2C)  
18  
19  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
UCB0TXIFG (SPI)  
UCB0TXIFG0 (I2C)  
20  
21  
22  
23  
24  
25  
26  
27  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
ADC12 end of conversion  
Reserved  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
ADC12 end of conversion  
Reserved  
UCB0RXIFG1 (I2C)  
UCB0TXIFG1 (I2C)  
UCB0RXIFG2 (I2C)  
UCB0TXIFG2 (I2C)  
UCB0RXIFG3 (I2C)  
UCB0TXIFG3 (I2C)  
ADC12 end of conversion  
Reserved  
(1) If a reserved trigger source is selected, no trigger is generated.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
59  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-12. DMA Trigger Assignments(1) (continued)  
TRIGGER  
CHANNEL 0  
Reserved  
MPY ready  
DMA2IFG  
DMAE0  
CHANNEL 1  
Reserved  
MPY ready  
DMA0IFG  
DMAE0  
CHANNEL 2  
28  
29  
30  
31  
Reserved  
MPY ready  
DMA1IFG  
DMAE0  
5.10.9 Enhanced Universal Serial Communication Interface (eUSCI)  
The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous  
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols  
such as UART, enhanced UART with automatic baudrate detection, and IrDA.  
The eUSCI_An module provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.  
The eUSCI_Bn module provides support for SPI (3 or 4 pin) and I2C.  
Two eUSCI_A modules and one eUSCI_B module are implemented.  
60  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.10.10 TA0, TA1  
TA0 and TA1 are 16-bit timers and counters (Timer_A type) with three capture/compare registers each.  
TA0 and TA can support multiple captures or compares, PWM outputs, and interval timing (see 5-13  
and 5-14). TA0 and TA have extensive interrupt capabilities. Interrupts may be generated from the  
counter on overflow conditions and from each of the capture/compare registers.  
5-13. TA0 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
INPUT PORT PIN  
OUTPUT PORT PIN  
P1.2  
TA0CLK  
ACLK (internal)  
SMCLK (internal)  
TA0CLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
P1.2  
P1.6  
P2.3  
TA0.0  
P1.6  
P2.3  
TA0.0  
TA0.0  
DVSS  
DVCC  
VCC  
P1.0  
P1.1  
TA0.1  
CCI1A  
P1.0  
ADC12(internal)  
ADC12SHSx = {1}  
COUT (internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA0.1  
TA0.2  
DVSS  
DVCC  
GND  
VCC  
TA0.2  
CCI2A  
CCI2B  
GND  
VCC  
P1.1  
ACLK (internal)  
DVSS  
DVCC  
5-14. TA1 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
MODULE  
BLOCK  
INPUT PORT PIN  
OUTPUT PORT PIN  
SIGNAL  
P1.1  
TA1CLK  
ACLK (internal)  
SMCLK (internal)  
TA1CLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
N/A  
TA0  
N/A  
P1.1  
P1.7  
P2.4  
TA1.0  
P1.7  
P2.4  
TA1.0  
TA1.0  
DVSS  
DVCC  
VCC  
P1.2  
P1.3  
TA1.1  
CCI1A  
P1.2  
ADC12(internal)  
ADC12SHSx = {4}  
COUT (internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA1.1  
TA1.2  
DVSS  
DVCC  
GND  
VCC  
TA1.2  
CCI2A  
CCI2B  
GND  
VCC  
P1.3  
ACLK (internal)  
DVSS  
DVCC  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
61  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.10.11 TA2, TA3  
TA2 and TA3 are 16-bit timers and counters (Timer_A type) with two capture/compare registers each and  
with internal connections only. TA2 and TA3 can support multiple captures or compares, PWM outputs,  
and interval timing (see 5-15 and 5-16). TA2 and TA3 have extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the  
capture/compare registers.  
5-15. TA2 Signal Connections  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
TACLK  
ACLK  
Timer  
N/A  
TA0  
TA1  
SMCLK  
TA3 CCR0 output  
(internal)  
CCI0A  
TA3 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
DVCC  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
DVCC  
5-16. TA3 Signal Connections  
MODULE OUTPUT  
DEVICE OUTPUT  
SIGNAL  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
SIGNAL  
COUT (internal)  
ACLK (internal)  
SMCLK (internal)  
TACLK  
ACLK  
Timer  
N/A  
SMCLK  
TA2 CCR0 output  
(internal)  
CCI0A  
TA2 CCI0A input  
ACLK (internal)  
DVSS  
CCI0B  
GND  
VCC  
CCR0  
CCR1  
TA0  
TA1  
DVCC  
COUT (internal)  
DVSS  
CCI1B  
GND  
VCC  
DVCC  
62  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.10.12 TB0  
TB0 is a 16-bit timer and counter (Timer_B type) with seven capture/compare registers. TB0 can support  
multiple captures or compares, PWM outputs, and interval timing (see 5-17). TB0 has extensive  
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each  
of the capture/compare registers.  
5-17. TB0 Signal Connections  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
BLOCK  
INPUT PORT PIN  
OUTPUT PORT PIN  
P2.0  
TB0CLK  
ACLK (internal)  
SMCLK (internal)  
TB0CLK  
TBCLK  
ACLK  
Timer  
CCR0  
N/A  
N/A  
SMCLK  
INCLK  
CCI0A  
CCI0B  
P2.0  
P2.1  
P2.5  
TB0.0  
P2.1  
P2.5  
TB0.0  
TB0  
TB0.0  
ADC12 (internal)  
ADC12SHSx = {2}  
DVSS  
GND  
DVCC  
TB0.1  
VCC  
P1.4  
P1.5  
CCI1A  
CCI1B  
P1.4  
P2.6  
COUT (internal)  
CCR1  
TB1  
TB0.1  
ADC12 (internal)  
ADC12SHSx = {3}  
DVSS  
GND  
DVCC  
TB0.2  
VCC  
CCI2A  
CCI2B  
GND  
P1.5  
P2.2  
ACLK (internal)  
DVSS  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
TB2  
TB3  
TB4  
TB5  
TB6  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
DVCC  
TB0.3  
VCC  
P3.4  
P1.6  
CCI3A  
CCI3B  
GND  
P3.4  
P1.6  
TB0.3  
DVSS  
DVCC  
TB0.4  
VCC  
P3.5  
P1.7  
CCI4A  
CCI4B  
GND  
P3.5  
P1.7  
TB0.4  
DVSS  
DVCC  
TB0.5  
VCC  
P3.6  
P4.4  
CCI5A  
CCI5B  
GND  
P3.6  
P4.4  
TB0.5  
DVSS  
DVCC  
TB0.6  
VCC  
P3.7  
P2.0  
CCI6A  
CCI6B  
GND  
P3.7  
P2.0  
TB0.6  
DVSS  
DVCC  
VCC  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
63  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.10.13 ADC12_B  
The ADC12_B module supports fast 12-bit analog-to-digital conversions with differential and single-ended  
inputs. The module implements a 12-bit SAR core, sample select control, reference generator, and a  
conversion result buffer. A window comparator with lower and upper limits allows CPU-independent result  
monitoring with three window comparator interrupt flags.  
5-18 lists the external trigger sources.  
5-18. ADC12_B Trigger Signal Connections  
ADC12SHSx  
CONNECTED TRIGGER  
SOURCE  
BINARY  
DECIMAL  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
Software (ADC12SC)  
TA0 CCR1 output  
TB0 CCR0 output  
TB0 CCR1 output  
TA1 CCR1 output  
TA2 CCR1 output  
TA3 CCR1 output  
Reserved (DVSS)  
5-19 lists the available multiplexing between internal and external analog inputs.  
5-19. ADC12_B External and Internal Signal Mapping  
CONTROL BIT IN ADC12CTL3  
REGISTER  
EXTERNAL ADC INPUT  
(CONTROL BIT = 0)  
INTERNAL ADC INPUT  
(CONTROL BIT = 1)  
ADC12BATMAP  
ADC12TCMAP  
ADC12CH0MAP  
ADC12CH1MAP  
ADC12CH2MAP  
ADC12CH3MAP  
A31  
A30  
A29  
A28  
A27  
A26  
Battery monitor  
Temperature sensor  
N/A(1)  
N/A(1)  
N/A(1)  
N/A(1)  
(1) N/A = No internal signal is available on this device.  
5.10.14 Comparator_E  
The primary function of the Comparator_E module is to support precision slope analog-to-digital  
conversions, battery voltage supervision, and monitoring of external analog signals.  
5.10.15 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used  
for data checking. The CRC16 module signature is based on the CRC-CCITT standard.  
5.10.16 AES256 Accelerator  
The AES accelerator module performs encryption and decryption of 128-bit data with 128-, 192-, or 256-  
bit keys according to the Advanced Encryption Standard (AES) (FIPS PUB 197) in hardware.  
5.10.17 True Random Seed  
The Device Descriptor (TLV) (see 5.12) contains a 128-bit true random seed that can be used to  
implement a deterministic random number generator.  
64  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.10.18 Shared Reference (REF)  
The REF module generates all of the critical reference voltages that can be used by the various analog  
peripherals in the device.  
5.10.19 Embedded Emulation  
5.10.19.1 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers that can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
5.10.19.2 EnergyTrace++ Technology  
The devices implement circuitry to support EnergyTrace++ technology. The EnergyTrace++ technology  
allows you to observe information about the internal states of the microcontroller. These states include the  
CPU Program Counter (PC), the ON or OFF status of the peripherals and the system clocks (regardless of  
the clock source), and the low-power mode currently in use. These states can always be read by a debug  
tool, even when the microcontroller sleeps in LPMx.5 modes.  
The activity of the following modules can be observed:  
MPY is calculating.  
WDT is counting.  
RTC is counting.  
ADC: a sequence, sample, or conversion is active.  
REF: REFBG or REFGEN active and BG in static mode.  
COMP is on.  
AES is encrypting or decrypting.  
eUSCI_A0 is transferring (receiving or transmitting) data.  
eUSCI_A1 is transferring (receiving or transmitting) data.  
eUSCI_B0 is transferring (receiving or transmitting) data.  
TB0 is counting.  
TA0 is counting.  
TA1 is counting.  
TA2 is counting.  
TA3 is counting.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
65  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.10.20 Peripheral File Map  
5-20 lists the base address for each peripheral. For complete module register descriptions, see the  
MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide.  
5-20. Peripherals  
OFFSET ADDRESS  
MODULE NAME  
BASE ADDRESS  
RANGE  
Special Functions (see 5-21)  
PMM (see 5-22)  
0100h  
0120h  
0140h  
0150h  
015Ch  
0160h  
0180h  
01B0h  
0200h  
0220h  
0320h  
0340h  
0380h  
03C0h  
0400h  
0440h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
05A0h  
05C0h  
05E0h  
0640h  
0800h  
08C0h  
09C0h  
000h–01Fh  
000h–01Fh  
000h–00Fh  
000h–007h  
000h–001h  
000h–00Fh  
000h–01Fh  
000h–001h  
000h–01Fh  
000h–01Fh  
000h–01Fh  
000h–02Fh  
000h–02Fh  
000h–02Fh  
000h–02Fh  
000h–02Fh  
000h–01Fh  
000h–02Fh  
000h–00Fh  
000h–00Fh  
000h–00Fh  
000h–00Fh  
000h–00Fh  
000h–01Fh  
000h–01Fh  
000h–02Fh  
000h–09Fh  
000h–00Fh  
000h–00Fh  
FRAM Control (see 5-23)  
CRC16 (see 5-24)  
Watchdog (see 5-25)  
CS (see 5-26)  
SYS (see 5-27)  
Shared Reference (see 5-28)  
Port P1, P2 (see 5-29)  
Port P3, P4 (see 5-30)  
Port PJ (see 5-31)  
TA0 (see 5-32)  
TA1 (see 5-33)  
TB0 (see 5-34)  
TA2 (see 5-35)  
TA3 (see 5-36)  
Real-Time Clock (RTC_B) (see 5-37)  
32-Bit Hardware Multiplier (see 5-38)  
DMA General Control (see 5-39)  
DMA Channel 0 (see 5-39)  
DMA Channel 1 (see 5-39)  
DMA Channel 2 (see 5-39)  
MPU Control (see 5-40)  
eUSCI_A0 (see 5-41)  
eUSCI_A1 (see 5-42)  
eUSCI_B0 (see 5-43)  
ADC12_B (see 5-44)  
Comparator_E (see 5-45)  
AES (see 5-46)  
66  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-21. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
OFFSET  
OFFSET  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
5-22. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMM control 0  
PMM interrupt flags  
PM5 control 0  
PMMCTL0  
PMMIFG  
00h  
0Ah  
10h  
PM5CTL0  
5-23. FRAM Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
FRCTL0  
FRAM control 0  
General control 0  
General control 1  
00h  
04h  
06h  
GCCTL0  
GCCTL1  
5-24. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC16DI  
CRC data input  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
5-25. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
WDTCTL  
OFFSET  
OFFSET  
Watchdog timer control  
00h  
5-26. CS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
CS control 0  
CS control 1  
CS control 2  
CS control 3  
CS control 4  
CS control 5  
CS control 6  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
5-27. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
System control  
SYSCTL  
00h  
06h  
08h  
0Ah  
0Ch  
0Eh  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
67  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-27. SYS Registers (Base Address: 0180h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
SYSUNIV  
OFFSET  
User NMI vector generator  
1Ah  
1Ch  
1Eh  
System NMI vector generator  
Reset vector generator  
SYSSNIV  
SYSRSTIV  
5-28. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
REFCTL  
OFFSET  
OFFSET  
Shared reference control  
00h  
5-29. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
Port P1 direction  
Port P1 resistor enable  
Port P1 selection 0  
Port P1 selection 1  
Port P1 interrupt vector word  
P1SEL0  
P1SEL1  
P1IV  
Port P1 complement selection  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1SELC  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2SEL1  
P2SELC  
P2IV  
Port P2 direction  
Port P2 resistor enable  
Port P2 selection 0  
Port P2 selection 1  
Port P2 complement selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
5-30. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
0Eh  
16h  
18h  
1Ah  
1Ch  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
Port P3 direction  
Port P3 resistor enable  
Port P3 selection 0  
P3SEL0  
P3SEL1  
P3IV  
Port P3 selection 1  
Port P3 interrupt vector word  
Port P3 complement selection  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
P3SELC  
P3IES  
P3IE  
P3IFG  
68  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-30. Port P3, P4 Registers (Base Address: 0220h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P4 input  
P4IN  
01h  
03h  
05h  
07h  
0Bh  
0Dh  
17h  
1Eh  
19h  
1Bh  
1Dh  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
Port P4 direction  
Port P4 resistor enable  
Port P4 selection 0  
Port P4 selection 1  
P4SEL0  
P4SEL1  
P4SELC  
P4IV  
Port P4 complement selection  
Port P4 interrupt vector word  
Port P4 interrupt edge select  
Port P4 interrupt enable  
P4IES  
P4IE  
Port P4 interrupt flag  
P4IFG  
5-31. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
0Ah  
0Ch  
16h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
Port PJ direction  
Port PJ resistor enable  
Port PJ selection 0  
Port PJ selection 1  
Port PJ complement selection  
PJSEL0  
PJSEL1  
PJSELC  
5-32. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA0 control  
TA0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
TA0 interrupt vector  
TA0IV  
5-33. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA1 control  
TA1CTL  
00h  
02h  
04h  
06h  
10h  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
69  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-33. TA1 Registers (Base Address: 0380h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
TA1CCR0  
OFFSET  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
12h  
14h  
16h  
20h  
2Eh  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1IV  
TA1 interrupt vector  
5-34. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TB0 control  
TB0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0 interrupt vector  
TB0IV  
5-35. TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA2 control  
TA2CTL  
TA2CCTL0  
TA2CCTL1  
TA2R  
00h  
02h  
04h  
10h  
12h  
14h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
TA2 counter  
Capture/compare 0  
Capture/compare 1  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2EX0  
TA2IV  
TA2 interrupt vector  
5-36. TA3 Registers (Base Address: 0440h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA3 control  
TA3CTL  
00h  
02h  
04h  
10h  
12h  
14h  
Capture/compare control 0  
Capture/compare control 1  
TA3 counter  
TA3CCTL0  
TA3CCTL1  
TA3R  
Capture/compare 0  
Capture/compare 1  
TA3CCR0  
TA3CCR1  
70  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-36. TA3 Registers (Base Address: 0440h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
TA3EX0  
TA3IV  
OFFSET  
OFFSET  
TA3 expansion 0  
20h  
2Eh  
TA3 interrupt vector  
5-37. RTC_B Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
RTC control 0  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Eh  
RTC control 1  
RTCCTL1  
RTC control 2  
RTCCTL2  
RTC control 3  
RTCCTL3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTC prescaler 1  
RTC interrupt vector word  
RTC seconds  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTCPS1  
RTCIV  
RTCSEC/RTCNT1  
RTCMIN/RTCNT2  
RTCHOUR/RTCNT3  
RTCDOW/RTCNT4  
RTCDAY  
RTC minutes  
RTC hours  
RTC day of week  
RTC days  
RTC month  
RTCMON  
RTC year low  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTC alarm day of week  
RTC alarm days  
Binary-to-BCD conversion  
BCD-to-binary conversion  
RTCAHOUR  
RTCADOW  
RTCADAY  
BIN2BCD  
BCD2BIN  
5-38. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
16-bit operand 1 – signed multiply  
MPYS  
MAC  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
71  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-38. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2L  
OP2H  
RES0  
RES1  
RES2  
RES3  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
32 × 32 result 2  
32 × 32 result 3 – most significant word  
MPY32 control 0  
MPY32CTL0  
5-39. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)  
REGISTER DESCRIPTION  
REGISTER  
DMA0CTL  
OFFSET  
DMA channel 0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Eh  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA module control 0  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA module control 1  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
5-40. MPU Control Registers (Base Address: 05A0h)  
REGISTER DESCRIPTION  
REGISTER  
MPUCTL0  
OFFSET  
MPU control 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
MPU control 1  
MPUCTL1  
MPU segmentation border 2  
MPU segmentation border 1  
MPU access management  
MPU IP control 0  
MPUSEGB2  
MPUSEGB1  
MPUSAM  
MPUIPC0  
MPU IP encapsulation segment border 2  
MPU IP encapsulation segment border 1  
MPUIPSEGB2  
MPUIPSEGB1  
72  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-41. eUSCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
OFFSET  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
UCA0CTLW0  
UCA0CTLW1  
UCA0BR0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
eUSCI_A baud rate 1  
UCA0BR1  
eUSCI_A modulation control  
eUSCI_A status word  
UCA0MCTLW  
UCA0STATW  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
UCA0IFG  
UCA0IV  
5-42. eUSCI_A1 Registers (Base Address:05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA1CTLW0  
eUSCI_A control word 0  
eUSCI _A control word 1  
eUSCI_A baud rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA1CTLW1  
UCA1BR0  
eUSCI_A baud rate 1  
UCA1BR1  
eUSCI_A modulation control  
eUSCI_A status word  
UCA1MCTLW  
UCA1STATW  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
UCA1IFG  
UCA1IV  
5-43. eUSCI_B0 Registers (Base Address: 0640h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTLW0  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
00h  
02h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
14h  
16h  
18h  
1Ah  
1Ch  
UCB0CTLW1  
UCB0BR0  
eUSCI_B bit rate 1  
UCB0BR1  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B received address  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
73  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-43. eUSCI_B0 Registers (Base Address: 0640h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
OFFSET  
eUSCI_B address mask  
eUSCI I2C slave address  
eUSCI interrupt enable  
eUSCI interrupt flags  
1Eh  
20h  
2Ah  
2Ch  
2Eh  
UCB0IFG  
eUSCI interrupt vector word  
UCB0IV  
5-44. ADC12_B Registers (Base Address: 0800h)  
REGISTER DESCRIPTION  
REGISTER  
ADC12CTL0  
OFFSET  
ADC12_B control 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
4Eh  
50h  
52h  
ADC12_B control 1  
ADC12CTL1  
ADC12_B control 2  
ADC12CTL2  
ADC12_B control 3  
ADC12CTL3  
ADC12_B window comparator low threshold  
ADC12_B window comparator high threshold  
ADC12_B interrupt flag 0  
ADC12LO  
ADC12HI  
ADC12IFGR0  
ADC12IFGR1  
ADC12IFGR2  
ADC12IER0  
ADC12_B interrupt flag 1  
ADC12_B interrupt flag 2  
ADC12_B interrupt enable 0  
ADC12_B interrupt enable 1  
ADC12_B interrupt enable 2  
ADC12_B interrupt vector  
ADC12IER1  
ADC12IER2  
ADC12IV  
ADC12_B memory control 0  
ADC12_B memory control 1  
ADC12_B memory control 2  
ADC12_B memory control 3  
ADC12_B memory control 4  
ADC12_B memory control 5  
ADC12_B memory control 6  
ADC12_B memory control 7  
ADC12_B memory control 8  
ADC12_B memory control 9  
ADC12_B memory control 10  
ADC12_B memory control 11  
ADC12_B memory control 12  
ADC12_B memory control 13  
ADC12_B memory control 14  
ADC12_B memory control 15  
ADC12_B memory control 16  
ADC12_B memory control 17  
ADC12_B memory control 18  
ADC12_B memory control 19  
ADC12_B memory control 20  
ADC12_B memory control 21  
ADC12_B memory control 22  
ADC12_B memory control 23  
ADC12_B memory control 24  
ADC12_B memory control 25  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MCTL16  
ADC12MCTL17  
ADC12MCTL18  
ADC12MCTL19  
ADC12MCTL20  
ADC12MCTL21  
ADC12MCTL22  
ADC12MCTL23  
ADC12MCTL24  
ADC12MCTL25  
74  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-44. ADC12_B Registers (Base Address: 0800h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
ADC12MCTL26  
OFFSET  
ADC12_B memory control 26  
ADC12_B memory control 27  
ADC12_B memory control 28  
ADC12_B memory control 29  
ADC12_B memory control 30  
ADC12_B memory control 31  
ADC12_B memory 0  
54h  
56h  
58h  
5Ah  
5Ch  
5Eh  
60h  
62h  
64h  
66h  
68h  
6Ah  
6Ch  
6Eh  
70h  
72h  
74h  
76h  
78h  
7Ah  
7Ch  
7Eh  
80h  
82h  
84h  
86h  
88h  
8Ah  
8Ch  
8Eh  
90h  
92h  
94h  
96h  
98h  
9Ah  
9Ch  
9Eh  
ADC12MCTL27  
ADC12MCTL28  
ADC12MCTL29  
ADC12MCTL30  
ADC12MCTL31  
ADC12MEM0  
ADC12MEM1  
ADC12MEM2  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
ADC12MEM16  
ADC12MEM17  
ADC12MEM18  
ADC12MEM19  
ADC12MEM20  
ADC12MEM21  
ADC12MEM22  
ADC12MEM23  
ADC12MEM24  
ADC12MEM25  
ADC12MEM26  
ADC12MEM27  
ADC12MEM28  
ADC12MEM29  
ADC12MEM30  
ADC12MEM31  
ADC12_B memory 1  
ADC12_B memory 2  
ADC12_B memory 3  
ADC12_B memory 4  
ADC12_B memory 5  
ADC12_B memory 6  
ADC12_B memory 7  
ADC12_B memory 8  
ADC12_B memory 9  
ADC12_B memory 10  
ADC12_B memory 11  
ADC12_B memory 12  
ADC12_B memory 13  
ADC12_B memory 14  
ADC12_B memory 15  
ADC12_B memory 16  
ADC12_B memory 17  
ADC12_B memory 18  
ADC12_B memory 19  
ADC12_B memory 20  
ADC12_B memory 21  
ADC12_B memory 22  
ADC12_B memory 23  
ADC12_B memory 24  
ADC12_B memory 25  
ADC12_B memory 26  
ADC12_B memory 27  
ADC12_B memory 28  
ADC12_B memory 29  
ADC12_B memory 30  
ADC12_B memory 31  
5-45. Comparator_E Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
CECTL0  
OFFSET  
Comparator_E control 0  
Comparator_E control 1  
Comparator_E control 2  
Comparator_E control 3  
Comparator_E interrupt  
Comparator_E interrupt vector word  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
CECTL1  
CECTL2  
CECTL3  
CEINT  
CEIV  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
75  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-46. AES Accelerator Registers (Base Address: 09C0h)  
REGISTER DESCRIPTION  
REGISTER  
AESACTL0  
OFFSET  
AES accelerator control 0  
AES accelerator control 1  
AES accelerator status  
AES accelerator key  
00h  
AESACTL1  
AESASTAT  
AESAKEY  
AESADIN  
02h  
04h  
06h  
AES accelerator data in  
AES accelerator data out  
008h  
00Ah  
00Ch  
00Eh  
AESADOUT  
AESAXDIN  
AESAXIN  
AES accelerator XORed data in  
AES accelerator XORed data in (no trigger)  
76  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.11 Input and Output Diagrams  
5.11.1 Port P1 (P1.0 to P1.2) Input/Output With Schmitt Trigger  
5-2 shows the port diagram. 5-47 summarizes the selection of the pin function.  
Pad Logic  
(ADC) Reference  
(P1.0, P1.1)  
To ADC  
From ADC  
To Comparator  
From Comparator  
CEPDx  
P1REN.x  
0 0  
0 1  
1 0  
1 1  
P1DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
DVSS  
P1.0/TA0.1/DMAE0/RTCCLK/  
A0/C0/VREF-/VeREF-  
P1.1/TA0.2/TA1CLK/COUT/  
A1/C1VREF+/VeREF+  
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
P1SEL1.x  
P1SEL0.x  
P1IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
5-2. Port P1 (P1.0 to P1.2) Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
77  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-47. Port P1 (P1.0 to P1.2) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.0 (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
0
0
0
0
1
1
0
1
P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/  
VREF-/VeREF-  
0
DMAE0  
RTCCLK(2)(3)  
0
1
A0, C0, VREF-, VeREF-(4)(5)  
X
1
0
1
0
P1.1 (I/O)  
I: 0; O: 1  
TA0.CCI2A  
TA0.2  
0
0
1
1
0
1
P1.1/TA0.2/TA1CLK/COUT/A1/C1/  
VREF+/VeREF+  
1
2
TA1CLK  
COUT(6)  
A1, C1, VREF+, VeREF+(4)(5)  
0
1
X
1
0
1
0
P1.2 (I/O)  
I: 0; O: 1  
TA1.CCI1A  
TA1.1  
0
1
0
1
X
0
1
P1.2/TA1.1/TA0CLK/COUT/A2/C2  
(1) X = Don't care  
TA0CLK  
COUT(7)  
A2, C2(4)(5)  
1
1
0
1
(2) Not available on MSP430FR5x5x devices  
(3) Do not use this pin as RTCCLK output if the DMAE0 functionality is used on any other pin. Select an alternative RTCCLK output pin.  
(4) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(5) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
(6) Do not use this pin as COUT output if the TA1CLK functionality is used on any other pin. Select an alternative COUT output pin.  
(7) Do not use this pin as COUT output if the TA0CLK functionality is used on any other pin. Select an alternative COUT output pin.  
78  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.11.2 Port P1 (P1.3 to P1.5) Input/Output With Schmitt Trigger  
5-3 shows the port diagram. 5-48 summarizes the selection of the pin function.  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CEPDx  
P1REN.x  
0 0  
0 1  
1 0  
1 1  
P1DIR.x  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
DVSS  
P1.3/TA1.2/UCB0STE/A3/C3  
P1.4/TB0.1/UCA0STE/A4/C4  
P1.5/TB0.2/UCA0CLK/A5/C5  
P1SEL1.x  
P1SEL0.x  
P1IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
5-3. Port P1 (P1.3 to P1.5) Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
79  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-48. Port P1 (P1.3 to P1.5) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.3 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
0
0
0
0
1
P1.3/TA1.2/UCB0STE/A3/C3  
3
1
UCB0STE  
A3, C3(3)(4)  
P1.4 (I/O)  
TB0.CCI1A  
TB0.1  
X(2)  
1
1
0
0
1
0
X
I: 0; O: 1  
0
0
1
P1.4/TB0.1/UCA0STE/A4/C4  
4
5
1
X(5)  
UCA0STE  
A4, C4(3)(4)  
P1.5(I/O)  
TB0.CCI2A  
TB0.2  
1
1
0
0
1
0
X
I: 0; O: 1  
0
0
1
P1.5/TB0.2/UCA0CLK/A5/C5  
(1) X = Don't care  
1
UCA0CLK  
A5, C5(3)(4)  
X(5)  
X
1
1
0
1
(2) Direction controlled by eUSCI_B0 module.  
(3) Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
(5) Direction controlled by eUSCI_A0 module.  
80  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.11.3 Port P1 (P1.6 and P1.7) Input/Output With Schmitt Trigger  
5-4 shows the port diagram. 5-49 summarizes the selection of the pin function.  
Pad Logic  
P1REN.x  
0 0  
0 1  
1 0  
1 1  
P1DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
From module 2  
1
0 0  
0 1  
1 0  
1 1  
P1OUT.x  
From module 1  
From module 2  
From module 3  
P1.6/TB0.3/UCB0SIMO/UCB0SDA/TA0.0  
P1.7/TB0.4/UCB0SOMI/UCB0SCL/TA1.0  
P1SEL1.x  
P1SEL0.x  
P1IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
5-4. Port P1 (P1.6 and P1.7) Diagram  
5-49. Port P1 (P1.6 and P1.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL1.x  
P1SEL0.x  
P1.6 (I/O)  
TB0.CCI3B  
TB0.3  
I: 0; O: 1  
0
0
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1
X(2)  
P1.6/TB0.3/UCB0SIMO/UCB0SDA/ TA0.0  
6
UCB0SIMO/UCB0SDA  
TA0.CCI0A  
TA0.0  
0
1
P1.7 (I/O)  
I: 0; O: 1  
TB0.CCI4B  
TB0.4  
0
1
X(3)  
P1.7/TB0.4/UCB0SOMI/UCB0SCL/ TA1.0  
(1) X = Don't care  
7
UCB0SOMI/UCB0SCL  
TA1.CCI0A  
TA1.0  
0
1
(2) Direction controlled by eUSCI_B0 module.  
(3) Direction controlled by eUSCI_A0 module.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
81  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.11.4 Port P2 (P2.0 to P2.2) Input/Output With Schmitt Trigger  
5-5 shows the port diagram. 5-50 summarizes the selection of the pin function.  
Pad Logic  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
From module 2  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
From module 3  
P2.0/TB0.6/UCA0TXD/UCA0SIMO/  
TB0CLK/ACLK  
P2.1/TB0.0/UCA0RXD/UCA0SOMI/  
TB0.0  
P2.2/TB0.2/UCB0CLK  
P2SEL1.x  
P2SEL0.x  
P2IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
5-5. Port P2 (P2.0 to P2.2) Diagram  
5-50. Port P2 (P2.0 to P2.2) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.0 (I/O)  
TB0.CCI6B  
TB0.6  
I: 0; O: 1  
0
0
0
0
1
1
0
X
1
1
0
1
0
1
0
1
X(2)  
P2.0/TB0.6/UCA0TXD/UCA0SIMO/  
TB0CLK/ACLK  
0
UCA0TXD/UCA0SIMO  
TB0CLK  
ACLK(3)  
0
1
P2.1 (I/O)  
I: 0; O: 1  
TB0.CCI0A  
0
1
X(2)  
P2.1/TB0.0/UCA0RXD/UCA0SOMI/  
TB0.0  
1
TB0.0  
UCA0RXD/UCA0SOMI  
(1) X = Don't care  
(2) Direction controlled by eUSCI_A0 module.  
(3) Do not use this pin as ACLK output if the TB0CLK functionality is used on any other pin. Select an alternative ACLK output pin.  
82 Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-50. Port P2 (P2.0 to P2.2) Pin Functions (continued)  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.2 (I/O)  
N/A  
I: 0; O: 1  
0
0
1
0
1
0
0
1
1
TB0.2  
1
P2.2/TB0.2/UCB0CLK  
2
(4)  
UCB0CLK  
N/A  
X
0
1
Internally tied to DVSS  
(4) Direction controlled by eUSCI_B0 module.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
83  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.11.5 Port P2 (P2.3 and P2.4) Input/Output With Schmitt Trigger  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CEPDx  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
From module 2  
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
DVSS  
P2.3/TA0.0/UCA1STE/A6/C10  
P2.4/TA1.0/UCA1CLK/A7/C11  
P2SEL1.x  
P2SEL0.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
5-6. Port P2 (P2.3 and P2.4) Diagram  
84  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-51. Port P2 (P2.3 and P2.4) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.3 (I/O)  
TA0.CCI0B  
TA0.0  
I: 0; O: 1  
0
0
0
0
1
P2.3/TA0.0/UCA1STE/A6/C10  
3
1
(2)  
UCA1STE  
A6, C10(3)(4)  
P2.4 (I/O)  
TA1.CCI0B  
TA1.0  
X
1
1
0
0
1
0
X
I: 0; O: 1  
0
0
1
P2.4/TA1.0/UCA1CLK/A7/C11  
(1) X = Don't care  
4
1
(2)  
UCA1CLK  
A7, C11(3)(4)  
X
1
1
0
1
X
(2) Direction controlled by eUSCI_A1 module.  
(3) Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(4) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
85  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.11.6 Port P2 (P2.5 and P2.6) Input/Output With Schmitt Trigger  
5-7 shows the port diagram. 5-52 summarizes the selection of the pin function.  
Pad Logic  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
From module 2  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
From module 1  
From module 2  
DVSS  
P2.5/TB0.0/UCA1TXD/UCA1SIMO  
P2.6/TB0.1/UCA1RXD/UCA1SOMI  
P2SEL1.x  
P2SEL0.x  
P2IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
5-7. Port P2 (P2.5 and P2.6) Diagram  
5-52. Port P2 (P2.5 and P2.6) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.5(I/O)  
TB0.CCI0B  
TB0.0  
I: 0; O: 1  
0
0
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1
X(2)  
P2.5/TB0.0/UCA1TXD/UCA1SIMO  
5
UCA1TXD/UCA1SIMO  
N/A  
0
Internally tied to DVSS  
1
P2.6(I/O)  
I: 0; O: 1  
N/A  
0
1
X(2)  
TB0.1  
P2.6/TB0.1/UCA1RXD/UCA1SOMI  
(1) X = Don't care  
6
UCA1RXD/UCA1SOMI  
N/A  
0
Internally tied to DVSS  
1
(2) Direction controlled by eUSCI_A1 module.  
86  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.11.7 Port P2 (P2.7) Input/Output With Schmitt Trigger  
5-8 shows the port diagram. 5-53 summarizes the selection of the pin function.  
Pad Logic  
P2REN.x  
0 0  
0 1  
1 0  
1 1  
P2DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P2OUT.x  
DVSS  
DVSS  
P2.7  
DVSS  
P2SEL1.x  
P2SEL0.x  
P2IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
5-8. Port P2 (P2.7) Diagram  
5-53. Port P2 (P2.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL1.x  
P2SEL0.x  
P2.7(I/O)  
N/A  
I: 0; O: 1  
0
0
0
1
0
1
0
1
1
P2.7  
7
Internally tied to DVSS  
N/A  
X
Internally tied to DVSS  
(1) X = Don't care  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
87  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.11.8 Port P3 (P3.0 to P3.3) Input/Output With Schmitt Trigger  
5-9 shows the port diagram. 5-54 summarizes the selection of the pin function.  
Pad Logic  
To ADC  
From ADC  
To Comparator  
From Comparator  
CEPDx  
P3REN.x  
0 0  
0 1  
1 0  
1 1  
P3DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P3OUT.x  
DVSS  
DVSS  
DVSS  
P3.0/A12/C12  
P3.1/A13/C13  
P3.2/A14/C14  
P3.3/A15/C15  
P3SEL1.x  
P3SEL0.x  
P3IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
5-9. Port P3 (P3.0 to P3.3) Diagram  
88  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-54. Port P3 (P3.0 to P3.3) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
P3.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
Internally tied to DVSS  
N/A  
1
P3.0/A12/C12  
P3.1/A13/C13  
P3.2/A14/C14  
0
0
0
Internally tied to DVSS  
A12/C12(2)(3)  
P3.1 (I/O)  
1
X
1
0
1
0
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
1
2
3
0
Internally tied to DVSS  
A13/C13(2)(3)  
P3.2 (I/O)  
1
X
1
0
1
0
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
N/A  
1
0
Internally tied to DVSS  
A14/C14(2)(3)  
P3.3 (I/O)  
1
X
1
0
1
0
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
Internally tied to DVSS  
N/A  
P3.3/A15/C15  
1
1
0
1
Internally tied to DVSS  
A15/C15(2)(3)  
(1) X = Don't care  
(2) Setting P3SEL1.x and P3SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
(3) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
89  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.11.9 Port P3 (P3.4 to P3.7) Input/Output With Schmitt Trigger  
5-10 shows the port diagram. 5-55 summarizes the selection of the pin function.  
Pad Logic  
P3REN.x  
0 0  
0 1  
1 0  
1 1  
P3DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P3OUT.x  
From module 1  
From module 2  
From module 3  
P3.4/TB0.3/SMCLK  
P3.5/TB0.4/CBOUT  
P3.6/TB0.5  
P3.7/TB0.6  
P3SEL1.x  
P3SEL0.x  
P3IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
5-10. Port P3 (P3.4 to P3.7) Diagram  
90  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-55. Port P3 (P3.4 to P3.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL1.x  
P3SEL0.x  
P3.4 (I/O)  
TB0.CCI3A  
TB0.3  
I: 0; O: 1  
0
0
0
0
1
P3.4/TB0.3/SMCLK  
P3.5/TB0.4/COUT  
P3.6/TB0.5  
4
1
N/A  
0
1
0
0
X
0
1
SMCLK  
P3.5 (I/O)  
TB0.CCI4A  
TB0.4  
1
I: 0; O: 1  
0
5
6
7
1
N/A  
0
1
0
0
X
0
1
COUT  
1
P3.6 (I/O)  
TB0.CCI5A  
TB0.5  
I: 0; O: 1  
0
1
N/A  
0
1
0
0
X
0
1
Internally tied to DVSS  
P3.7 (I/O)  
1
I: 0; O: 1  
TB0.CCI6A  
0
1
0
1
P3.7/TB0.6  
TB0.6  
N/A  
1
X
Internally tied to DVSS  
(1) X = Don't care  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
91  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.11.10 Port P4 (P4.0 to P4.3) Input/Output With Schmitt Trigger  
5-11 shows the port diagram. 5-56 summarizes the selection of the pin function.  
Pad Logic  
To ADC  
From ADC  
P4REN.x  
0 0  
0 1  
1 0  
1 1  
P4DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P4OUT.x  
DVSS  
DVSS  
P4.0/A8  
P4.1/A9  
P4.2/A10  
P4.3/A11  
DVSS  
P4SEL1.x  
P4SEL0.x  
P4IN.x  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
5-11. Port P4 (P4.0 to P4.3) Diagram  
92  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-56. Port P4 (P4.0 to P4.3) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
P4.0 (I/O)  
N/A  
I: 0; O: 1  
0
0
0
0
1
1
Internally tied to DVSS  
1
P4.0/A8  
P4.1/A9  
P4.2/A10  
0
N/A  
0
0
Internally tied to DVSS  
1
A8(2)  
X
1
0
1
0
P4.1 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
1
1
2
3
N/A  
0
Internally tied to DVSS  
A9(2)  
1
X
1
0
1
0
P4.2 (I/O)  
I: 0; O: 1  
N/A  
0
0
1
1
0
Internally tied to DVSS  
1
N/A  
0
Internally tied to DVSS  
A10(2)  
1
X
1
0
1
0
P4.3 (I/O)  
I: 0; O: 1  
N/A  
0
1
0
1
X
0
1
Internally tied to DVSS  
N/A  
P4.3/A11  
1
1
0
1
Internally tied to DVSS  
A11(2)  
(1) X = Don't care  
(2) Setting P4SEL1.x and P4SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
93  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.11.11 Port P4 (P4.4 to P4.7) Input/Output With Schmitt Trigger  
5-12 shows the port diagram. 5-57 summarizes the selection of the pin function.  
Pad Logic  
P4REN.x  
0 0  
0 1  
1 0  
1 1  
P4DIR.x  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
P4OUT.x  
From module 1  
DVSS  
DVSS  
P4.4/TB0.5  
P4.5  
P4.6  
P4SEL1.x  
P4.7  
P4SEL0.x  
P4IN.x  
EN  
D
To modules  
NOTE: Functional representation only.  
5-12. Port P4 (P4.4 to P4.7) Diagram  
94  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-57. Port P4 (P4.4 to P4.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL1.x  
P4SEL0.x  
P4.4 (I/O)  
TB0.CCI5B  
TB0.5  
I: 0; O: 1  
0
0
0
0
1
P4.4/TB0.5  
4
1
N/A  
0
1
0
0
X
0
1
Internally tied to DVSS  
1
P4.5 (I/O)  
I: 0; O: 1  
N/A  
0
P4.5  
5
6
7
Internally tied to DVSS  
1
N/A  
0
1
0
0
X
0
1
Internally tied to DVSS  
P4.6 (I/O)  
1
I: 0; O: 1  
N/A  
0
P4.6  
Internally tied to DVSS  
N/A  
1
0
1
0
0
X
0
1
Internally tied to DVSS  
P4.7 (I/O)  
1
I: 0; O: 1  
N/A  
0
1
0
1
P4.7  
Internally tied to DVSS  
N/A  
1
X
Internally tied to DVSS  
(1) X = Don't care  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
95  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.11.12 Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt Trigger  
5-13 and 5-14 show the port diagrams. 5-58 summarizes the selection of the pin function.  
Pad Logic  
To LFXT XIN  
PJREN.4  
0 0  
0 1  
1 0  
1 1  
PJDIR.4  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.4  
DVSS  
DVSS  
DVSS  
PJ.4/LFXIN  
PJSEL1.4  
PJSEL0.4  
PJIN.4  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
5-13. Port PJ (PJ.4) Diagram  
96  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
Pad Logic  
To LFXT XOUT  
PJSEL0.4  
PJSEL1.4  
LFXTBYPASS  
PJREN.5  
0 0  
0 1  
1 0  
1 1  
PJDIR.5  
DVSS  
DVCC  
0
Direction  
0: Input  
1: Output  
1
1
0 0  
0 1  
1 0  
1 1  
PJOUT.5  
DVSS  
DVSS  
PJ.5/LFXOUT  
DVSS  
PJSEL1.5  
PJSEL0.5  
PJIN.5  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
5-14. Port PJ (PJ.5) Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
97  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-58. Port PJ (PJ.4 and PJ.5) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJ.4 (I/O)  
LFXT  
BYPASS  
PJDIR.x  
PJSEL1.5  
PJSEL0.5  
PJSEL1.4  
PJSEL0.4  
I: 0; O: 1  
X
X
0
0
X
N/A  
0
1
X
X
1
X
X
PJ.4/LFXIN  
4
Internally tied to DVSS  
LFXIN crystal mode(2)  
LFXIN bypass mode(2)  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
0
0
1(3)  
0
PJ.5 (I/O)  
N/A  
I: 0; O: 1  
0
0
X
X
0
0
see(4)  
see(4)  
X
X
0
PJ.5/LFXOUT  
5
1(3)  
0
Internally tied to DVSS  
LFXOUT crystal mode(2)  
1
see(4)  
X
see(4)  
X
X
X
1
1(3)  
0
X
(1) X = Don't care  
(2) If PJSEL1.4 = 0 and PJSEL0.4 = 1, the general-purpose I/O is disabled. When LFXTBYPASS = 0, PJ.4 and PJ.5 are configured for  
crystal operation and PJSEL1.5 and PJSEL0.5 are don't care. When LFXTBYPASS = 1, PJ.4 is configured for bypass operation and  
PJ.5 is configured as general-purpose I/O.  
(3) When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.  
(4) If PJSEL0.5 = 1 or PJSEL1.5 = 1, the general-purpose I/O functionality is disabled. No input function is available. Configured as output,  
the pin is actively pulled to zero.  
98  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5.11.13 Port PJ (PJ.6 and PJ.7) Input/Output With Schmitt Trigger  
5-15 and 5-16 show the port diagrams. 5-59 summarizes the selection of the pin function.  
Pad Logic  
To HFXT XIN  
PJREN.6  
0 0  
0 1  
1 0  
1 1  
PJDIR.6  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.6  
DVSS  
DVSS  
DVSS  
PJ.6/HFXIN  
PJSEL1.6  
PJSEL0.6  
PJIN.6  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
5-15. Port PJ (PJ.6) Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
99  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Pad Logic  
To HFXT XOUT  
PJSEL0.6  
PJSEL1.6  
HFXTBYPASS  
PJREN.7  
0 0  
0 1  
1 0  
1 1  
PJDIR.7  
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.7  
DVSS  
DVSS  
DVSS  
PJ.7/HFXOUT  
PJSEL1.7  
PJSEL0.7  
PJIN.7  
Bus  
Keeper  
EN  
D
To modules  
NOTE: Functional representation only.  
5-16. Port PJ (PJ.7) Diagram  
100  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-59. Port PJ (PJ.6 and PJ.7) Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJ.6 (I/O)  
HFXT  
BYPASS  
PJDIR.x  
PJSEL1.7  
PJSEL0.7  
PJSEL1.6  
PJSEL0.6  
I: 0; O: 1  
X
X
0
0
X
N/A  
0
1
X
X
1
X
X
PJ.6/HFXIN  
6
Internally tied to DVSS  
HFXIN crystal mode(2)  
HFXIN bypass mode(2)  
X
X
X
X
X
X
0
0
0
1
X
0
1
X
0
1
X
0
1
1
0
1
0
0
1(4)  
0
PJ.7 (I/O)(3)  
I: 0; O: 1  
0
0
X
X
0
(3)  
(3)  
N/A  
0
see  
see  
X
X
0
PJ.7/HFXOUT  
7
1(4)  
0
(3)  
(3)  
Internally tied to DVSS  
HFXOUT crystal mode(2)  
1
see  
see  
X
X
1
1(4)  
0
X
X
X
(1) X = Don't care  
(2) Setting PJSEL1.6 = 0 and PJSEL0.6 = 1 causes the general-purpose I/O to be disabled. When HFXTBYPASS = 0, PJ.6 and PJ.7 are  
configured for crystal operation and PJSEL1.6 and PJSEL0.7 are do not care. When HFXTBYPASS = 1, PJ.6 is configured for bypass  
operation, and PJ.7 is configured as general-purpose I/O.  
(3) With PJSEL0.7 = 1 or PJSEL1.7 = 1 the general-purpose I/O functionality is disabled. No input function is available. When configured as  
output, the pin is actively pulled to zero.  
(4) When PJ.6 is configured in bypass mode, PJ.7 is configured as general-purpose I/O.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
101  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.11.14 Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With  
Schmitt Trigger  
5-17 shows the port diagram. 5-60 summarizes the selection of the pin function.  
To Comparator  
From Comparator  
Pad Logic  
CEPDx  
JTAG enable  
From JTAG  
From JTAG  
PJREN.x  
0 0  
0 1  
1 0  
1 1  
PJDIR.x  
1
0
DVSS  
DVCC  
0
1
Direction  
0: Input  
1: Output  
1
0 0  
0 1  
1 0  
1 1  
PJOUT.x  
From module 1  
1
0
From Status Register (SR)  
DVSS  
PJ.0/TDO/TB0OUTH/SMCLK/  
SRSCG1/C6  
PJ.1/TDI/TCLK/MCLK/  
SRSCG0/C7  
PJ.2/TMS/ACLK/  
SROSCOFF/C8  
PJ.3/TCK/  
PJSEL1.x  
PJSEL0.x  
PJIN.x  
Bus  
Keeper  
EN  
D
SRCPUOFF/C9  
To modules  
and JTAG  
NOTE: Functional representation only.  
5-17. Port PJ (PJ.0 to PJ.3) Diagram  
102  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-60. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS/ SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJSEL1.x  
PJSEL0.x  
CEPDx (Cx)  
PJ.0 (I/O)(2)  
TDO(3)  
I: 0; O: 1  
0
0
0
0
X
X
X
TB0OUTH  
SMCLK(4)  
N/A  
0
0
1
1
1
0
1
0
0
0
1
PJ.0/TDO/TB0OUTH/  
SMCLK/SRSCG1/C6  
0
0
CPU Status Register Bit SCG1  
1
N/A  
0
Internally tied to DVSS  
1
C6(5)  
PJ.1 (I/O)(2)  
TDI/TCLK(3) (6)  
X
X
0
X
0
1
0
0
I: 0; O: 1  
X
X
X
N/A  
0
0
1
1
1
0
1
0
0
0
MCLK  
1
PJ.1/TDI/TCLK/MCLK/  
SRSCG0/C7  
1
2
3
N/A  
0
CPU Status Register Bit SCG0  
1
N/A  
0
Internally tied to DVSS  
1
C7(5)  
PJ.2 (I/O)(2)  
TMS(3) (6)  
X
X
0
X
0
1
0
0
I: 0; O: 1  
X
X
X
N/A  
0
0
1
1
1
0
1
0
0
0
ACLK  
1
PJ.2/TMS/ACLK/  
SROSCOFF/C8  
N/A  
0
CPU Status Register Bit OSCOFF  
1
N/A  
0
Internally tied to DVSS  
1
C8(5)  
PJ.3 (I/O)(2)  
TCK(3) (6)  
X
X
0
X
0
1
0
0
I: 0; O: 1  
X
0
1
0
1
0
1
X
X
X
N/A  
0
1
1
0
0
0
Internally tied to DVSS  
PJ.3/TCK/SRCPUOFF/C9  
N/A  
CPU Status Register Bit CPUOFF  
N/A  
1
1
0
1
Internally tied to DVSS  
C9(5)  
X
X
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module. JTAG mode selection is made via the SYS module or by the Spy-Bi-Wire four-wire  
entry sequence. Neither PJSEL1.x and PJSEL0.x nor CEPDx bits have an effect in these cases.  
(4) Do not use this pin as SMCLK output if the TB0OUTH functionality is used on any other pin. Select an alternative SMCLK output pin.  
(5) Setting the CEPDx bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals. Selecting the Cx input pin to the comparator multiplexer with the input select bits in the comparator module  
automatically disables output driver and input buffer for that pin, regardless of the state of the associated CEPDx bit.  
(6) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
103  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.12 Device Descriptor (TLV)  
5-61 lists the Device ID for the MSP430FR5969-SP device. 5-62 lists the contents of the device  
descriptor tag-length-value (TLV) structure for MSP430FR5969-SP.  
5-61. Device IDs  
DEVICE ID  
DEVICE  
MSP430FR5969-SP  
01A05h  
01A04h  
081h  
069h  
5-62. Device Descriptor(1)  
MSP430FR59xx (UART BSL)  
DESCRIPTION  
ADDRESS  
VALUE  
06h  
Info length  
01A00h  
01A01h  
01A02h  
01A03h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Bh  
01A0Ch  
01A0Dh  
01A0Eh  
01A0Fh  
01A10h  
01A11h  
01A12h  
01A13h  
CRC length  
06h  
Per unit  
Per unit  
CRC value  
Device ID  
nfo Block  
See 5-61.  
Hardware revision  
Firmware revision  
Die record tag  
Per unit  
Per unit  
08h  
Die record length  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Lot/Wafer ID  
Die Record  
Die X position  
Die Y position  
Test results  
(1) NA = Not applicable, Per unit = content can differ from device to device  
104 Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
5-62. Device Descriptor(1) (continued)  
MSP430FR59xx (UART BSL)  
DESCRIPTION  
ADDRESS  
VALUE  
11h  
ADC12 calibration tag  
01A14h  
01A15h  
01A16h  
01A17h  
01A18h  
01A19h  
01A1Ah  
01A1Bh  
01A1Ch  
01A1Dh  
01A1Eh  
01A1Fh  
01A20h  
01A21h  
01A22h  
01A23h  
01A24h  
01A25h  
01A26h  
01A27h  
01A28h  
01A29h  
01A2Ah  
01A2Bh  
01A2Ch  
01A2Dh  
ADC12 calibration length  
ADC gain factor(2)  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
12h  
ADC offset(3)  
ADC 1.2-V reference  
Temperature sensor 30°C  
ADC 1.2-V reference  
Temperature sensor 85°C  
ADC12 Calibration  
ADC 2.0-V reference  
Temperature sensor 30°C  
ADC 2.0-V reference  
Temperature sensor 85°C  
ADC 2.5-V reference  
Temperature sensor 30°C  
ADC 2.5-V reference  
Temperature sensor 85°C  
REF calibration tag  
REF calibration length  
06h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
REF 1.2-V reference  
REF 2.0-V reference  
REF 2.5-V reference  
REF Calibration  
(2) ADC gain: the gain correction factor is measured at room temperature using a 2.5-V external voltage reference without internal buffer  
(ADC12VRSEL=0x2, 0x4, or 0xE). Other settings (for example, using internal reference) can result in different correction factors.  
(3) ADC offset: the offset correction factor is measured at room temperature using ADC12VRSEL= 0x2 or 0x4, an external reference,  
VR+ = external 2.5 V, VR- = AVSS.  
版权 © 2017–2018, Texas Instruments Incorporated  
Detailed Description  
105  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5-62. Device Descriptor(1) (continued)  
MSP430FR59xx (UART BSL)  
ADDRESS VALUE  
DESCRIPTION  
128-bit random number tag  
Random number length  
01A2Eh  
01A2Fh  
01A30h  
01A31h  
01A32h  
01A33h  
01A34h  
01A35h  
01A36h  
01A37h  
01A38h  
01A39h  
01A3Ah  
01A3Bh  
01A3Ch  
01A3Dh  
01A3Eh  
01A3Fh  
01A40h  
01A41h  
01A42h  
01A43h  
15h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
1Ch  
Random Number  
128-bit random number(4)  
BSL tag  
BSL length  
02h  
BSL Configuration  
BSL Interface  
00h  
BSL interface configuration  
00h  
(4) 128-bit random number: The random number is generated during production test using the CryptGenRandom() function from Microsoft®.  
5.13 Identification  
5.13.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The  
device-specific errata sheet describes these markings. For links to the errata sheets for the devices in this  
data sheet, see 7.3.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Hardware Revision" entries in 5.12.  
5.13.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific  
errata sheet describes these markings. For links to the errata sheets for the devices in this data sheet, see  
7.3.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Device ID" entries in 5.12.  
5.13.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in  
detail in the MSP430 Programming With the JTAG Interface.  
106  
Detailed Description  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
6 Applications, Implementation, and Layout  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
6.1 Software Best Practices for Radiation Effects Mitigation  
Use of any MCU in a radiation environment introduces challenges for understanding radiation effects. The  
most common approach for characterizing single events effects (SEE) is using a system approach. The  
system requirements are modeled and implemented in hardware capable of being exposed to heavy ions  
or protons. The effects on actual system behavior are then characterized, rather than utilizing specific  
cross sections for the various hardware blocks. It is recommended that this approach be used to fully  
understand the SEE performance of the MCU in a given end application.  
Following are important recommendations that system designers can adopt to mitigate radiation effects:  
The FRAM array is known to be very robust to corruption due to SEE. Accessing the FRAM (read or  
write) creates possibility of corruption of data due to FRAM controller sensitivity. The probability of SEE  
can be lowered by minimizing FRAM accesses and operating at lower frequency. A boot time  
mitigation technique could implement a software code health check. Any detected corruption in critical  
FRAM could be repaired by utilizing redundant code stored in unused area FRAM.  
Creating error handlers for all critical interrupts is essential for device self-recovery from events.  
Using the MPU to protect code space, look-up tables and interrupt vector tables (IVT) lowers  
probability of corruption of critical data.  
SRAM will have higher cross section than FRAM. It is recommended to use FRAM in place of SRAM  
for volatile data.  
Avoid pointer indexing and incrementing near memory space with critical data, such as code and IVT.  
An event could offset the index resulting in reading/writing to unexpected locations.  
The probability of SEE will be lowered when operating at a higher VCC  
.
6.2 Device Connection and Layout Fundamentals  
This section describes the recommended guidelines when designing with the MSP430. These guidelines  
ensure that the device has proper connections for powering, programming, debugging, and optimum  
analog performance.  
6.2.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 1-µF capacitor and a 100-nF low-ESR ceramic decoupling  
capacitor to each AVCC and DVCC pin. Higher-value capacitors may be used but can affect supply rail  
ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple  
(within a few millimeters). Additionally, TI recommends separated grounds with a single-point connection  
for better noise isolation from digital to analog circuits on the board and to achieve high analog accuracy.  
版权 © 2017–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
107  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
DVCC  
Digital  
Power Supply  
Decoupling  
+
+
1 µF  
100 nF  
100 nF  
DVSS  
AVCC  
Analog  
Power Supply  
Decoupling  
1 µF  
AVSS  
6-1. Power Supply Decoupling  
6.2.2 External Oscillator  
The device can support a low-frequency crystal (32 kHz) on the LFXT pins, a high-frequency crystal on  
the HFXT pins, or both. External bypass capacitors for the crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the  
specifications of the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is  
selected. In this case, the associated LFXOUT and HFXOUT pins can be used for other purposes. If the  
LFXIN and HFXIN are left unused, they must be terminated according to Section 3.4.  
6-2 shows a typical connection diagram.  
LFXIN  
or  
LFXOUT  
or  
HFXIN  
HFXOUT  
CL1  
CL2  
6-2. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP430 devices.  
6.2.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or  
MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the  
connections also support the MSP-GANG production programmers, thus providing an easy way to  
program prototype boards, if desired. 6-3 shows the connections between the 14-pin JTAG connector  
and the target device required to support in-system programming and debugging for 4-wire JTAG  
communication. 6-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are  
identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-  
FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an  
alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the  
target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. 图  
6-3 and 6-4 show a jumper block that supports both scenarios of supplying VCC to the target board. If  
this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the jumper  
block. Pins 2 and 4 must not be connected at the same time.  
108  
Applications, Implementation, and Layout  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User’s  
Guide.  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
AVCC/DVCC  
J2 (see Note A)  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
3
VCC TARGET  
4
TMS  
TMS  
6
5
TEST  
TCK  
8
7
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,  
make connection J2.  
B. The upper limit for C1 is 2.2 nF when using current TI tools.  
6-3. Signal Connections for 4-Wire JTAG Communication  
版权 © 2017–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
109  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
AVCC/DVCC  
R1  
47 kΩ  
(See Note B)  
JTAG  
VCC TOOL  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
VCC TARGET  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(See Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the  
debug or programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during  
JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with  
the device. The upper limit for C1 is 2.2 nF when using current TI tools.  
6-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
6.2.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function  
Register (SFR), SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is  
edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the  
external NMI. When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either  
pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not.  
If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an  
external 47-kΩ pullup resistor to the RST/NMI pin with a 2.2-nF pulldown capacitor. The pulldown  
capacitor should not exceed 2.2 nF when using devices in Spy-Bi-Wire mode or in 4-wire JTAG mode with  
TI tools like FET interfaces or GANG programmers. If JTAG or Spy-Bi-Wire access is not needed, up to a  
10-nF pulldown capacitor may be used.  
See the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide for  
more information on the referenced control registers and bits.  
6.2.5 Unused Pins  
For details on the connection of unused pins, see Section 3.4.  
110  
Applications, Implementation, and Layout  
提交文档反馈意见  
版权 © 2017–2018, Texas Instruments Incorporated  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
6.2.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430  
32-kHz Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC, AVCC, and reference pins if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital  
switching signals such as PWM or JTAG signals away from the oscillator circuit.  
See Circuit Board Layout Techniques for a detailed description of PCB layout considerations. This  
document is written primarily about op amps, but the guidelines are generally applicable for all mixed-  
signal applications.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
6.2.7 Do's and Don'ts  
TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up,  
power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the  
limits specified in Section 4.1. Exceeding the specified limits may cause malfunction of the device  
including erroneous writes to RAM and FRAM.  
6.3 Peripheral- and Interface-Specific Design Information  
6.3.1 ADC12_B Peripheral  
6.3.1.1 Partial Schematic  
6-5 shows the recommended decoupling circuit when an external voltage reference is used.  
AVSS  
VREF+/VEREF+  
Using an  
External  
Positive  
Reference  
+
4.7 µF  
10 µF  
VEREF-  
Using an  
External  
+
Negative  
Reference  
10 µF  
4.7 µF  
6-5. ADC12_B Grounding and Noise Considerations  
6.3.1.2 Design Requirements  
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should  
be followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with  
other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset  
voltages that can add to or subtract from the reference or input voltages of the ADC. The general  
guidelines in 6.2.1 combined with the connections in 6.3.1.1 prevent this.  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital  
switching or switching power supplies can corrupt the conversion result. TI recommends a noise-free  
design using separate analog and digital ground planes with a single-point connection to achieve high  
accuracy.  
版权 © 2017–2018, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
111  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
6-5 shows the recommended decoupling circuit when an external voltage reference is used. The  
internal reference module has a maximum drive current as specified in the Reference module's IO(VREF+)  
specification.  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor is used to buffer the reference pin and filter any low-  
frequency ripple. A bypass capacitor of 4.7 µF is used to filter out any high-frequency noise.  
6.3.1.3 Detailed Design Procedure  
For additional design information, see Designing With the MSP430FR58xx, FR59xx, FR68xx, and FR69xx  
ADC.  
6.3.1.4 Layout Guidelines  
Component that are shown in the partial schematic (see 6-5) should be placed as close as possible to  
the respective device pins. Avoid long traces, because they add additional parasitic capacitance,  
inductance, and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM),  
because the high-frequency switching can be coupled into the analog signal.  
If differential mode is used for the ADC12_B, the analog differential input signals must be routed closely  
together to minimize the effect of noise on the resulting signal.  
112  
Applications, Implementation, and Layout  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
7 器件和文档支持  
7.1 入门和后续步骤  
有关 MSP430 系列器件以及有助于开发的工具和库的更多信息,请访问入门页面。  
版权 © 2017–2018, Texas Instruments Incorporated  
器件和文档支持  
113  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
7.2 工具和软件  
7-1 列出 了 MSP430FR59xx 微控制器支持的调试特性。关于可用特性的详细信息,请参见《适用于  
MSP430 Code Composer Studio 用户指南 》。  
7-1. 硬件 功能  
断点  
(N)  
状态序列发生  
LPMx.5 调试支 EnergyTrace++ 技  
MSP430 架构  
4 线 JTAG 2 线 JTAG  
范围断点  
时钟控制  
跟踪缓冲器  
MSP430Xv2  
3
EnergyTrace™技术可用于 Code Composer Studio 6.0 及更高版本。EnergyTrace 技术需要专用的调试器  
电路,该电路受新一代板载 eZ-FET 闪存仿真工具和新一代独立 MSP-FET JTAG 仿真器的支持。有关更多  
信息,请参阅《使用 Code Composer Studio 版本  
6 与增强型仿真模块 (EEM) 进行高级调试》和  
MSP430™ 高级功耗优化:ULP Advisor™ EnergyTrace™ 技术》。  
设计套件与评估模块  
MSP430FR5969 LaunchPad™ 开发套件  
MSP-EXP430FR5969  
LaunchPad  
开发套件是适用于  
MSP430FR5969 MCU 的易用型微控制器开发板。它包含了在 MSP430FRxx FRAM 平台上快  
速开始开发所需要的全部资源,包括用于编程、调试和能量测量的板载仿真。  
适用于 MSP430FRxx FRAM MCU 48 引脚目标开发板和 MSP-FET 编程器包 MSP-FET430U48C 是一  
款强大的设计套件,可在 MSP 微控制器上快速进行应用开发。它包含 USB 调试接口,用于  
通过 JTAG 接口或节省引脚的 Spy-Bi-Wire2 线 JTAG)协议对系统内的 MSP MCU 进行编  
程和调试。只需使用几次按键即可在数秒钟内擦除 FRAM 并对其进行编程;而且由于 MSP  
FRAM 的功耗极低,因此无需外部电源。  
MSP-TS430RGZ48C - 适用于 MSP430FRxx FRAM MCU 48 引脚目标开发板 MSP-TS430RGZ48C 是  
一款独立的 48 引脚 ZIF 插座目标板,用于通过 JTAG 接口或 Spy-Bi-Wire2 线 JTAG)协议  
对系统内的 MSP430 MCU 进行编程和调试。  
软件  
MSP430Ware™ 软件 MSP430Ware 软件集合了所有 MSP430 器件的代码示例、数据表以及其他设计资  
源,打包提供给用户。除了提供已有 MSP430 MCU 设计资源的完整集合外,MSP430Ware  
软件还包含名为 MSP 驱动程序库的高级 API。借助该库可以轻松地对 MSP430 硬件进行编  
程。MSP430Ware 软件以 CCS 组件或独立软件包两种形式提供。  
MSP430FR59xxMSP430FR58xx 代码示例 根据不同应用需求配置各集成外设的每个 MSP 器件均具备  
相应的 C 代码示例。  
适用于 MSP 超低功耗微控制器的 FRAM 嵌入式软件实用程序 TI FRAM 实用程序软件旨在用作不断扩充的  
嵌入式软件实用程序集合,其中的实用程序充分利用了 FRAM 的超低功耗和近乎无限次的写  
入寿命。这些实用程序适用于 MSP430FRxx FRAM 微控制器,并提供示例代码来协助应用程  
序开发。  
114  
器件和文档支持  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
MSP 驱动程序库 MSP 驱动程序库的抽象 API 提供易用的函数调用,无需直接操纵 MSP430 硬件的位与字  
节。完整的文档通过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证的  
参数的详细信息。开发人员可以使用驱动程序库功能,以最低开销编写完整项目。  
MSP EnergyTrace™ 技术 适用于 MSP430 微控制器的 EnergyTrace 技术是基于电能的代码分析工具,适  
用于测量和显示应用的电能系统配置并帮助优化应用以实现超低功耗。  
ULP(超低功耗)Advisor ULP Advisor™软件是一款辅助工具,旨在指导开发人员编写更为高效的代码,  
从而充分利用 MSP MSP432 微控制器独特的 超低功耗 功能。ULP Advisor 的目标人群是  
微控制器的资深开发者和开发新手,可以根据详尽的 ULP 检验表检查代码,以便最大限度地  
减少应用程序的能耗。在编译时,ULP Advisor 会提供通知和备注以突出显示代码中可以进一  
步优化的区域,进而实现更低功耗。  
IEC60730 软件包 IEC60730 MSP430 软件包经过专门开发,用于协助客户达到 IEC 60730-1:2010(家用  
及类似用途的自动化电气控制 - 1 部分:一般要求)B 类产品的要求。其中涵盖家用电器、  
电弧检测器、电源转换器、电动工具、电动自行车及其他诸多产品。IEC60730 MSP430 软件  
包可以嵌入在 MSP430 MCU 中 运行的客户应用, 从而帮助客户简化其消费类器件在功能安  
全方面遵循 IEC 60730-1:2010 B 类规范的认证工作。  
适用于 MSP 的定点数学运算库 MSP IQmath Qmath 库是一套经过高度优化的高精度数学运算函数集  
合,适用于 C 语言开发者,能够将浮点算法无缝嵌入 MSP430 MSP432 器件的定点代码  
中。这些例程通常用于计算密集的实时 应用, 而优化的执行速度、高精度以及超低能耗通常  
是影响这些实时应用的关键因素。与使用浮点数学算法编写的同等代码相比,使用 IQmath 和  
Qmath 库可以大幅提高执行速度并显著降低能耗。  
适用于 MSP430 的浮点数学运算库  
TI  
在低功耗和低成本微控制器领域锐意创新,为您提供  
MSPMATHLIB。此标量函数的浮点数学运算库,能够充分利用器件的智能外设,使速度最高  
达到标准 MSP430 数学函数的 26 倍。Mathlib 能够轻松集成到您的设计中。该运算库免费使  
用并集成在 Code Composer Studio IDE IAR Embedded Workbench IDE 中。  
开发工具  
适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境 Code Composer Studio (CCS) 是一种  
集成开发环境 (IDE),支持所有 MSP 微控制器器件。CCS 包含一整套用于开发和调试嵌入式  
应用。CCS 包含了优化的 C/C++ 编译器、源代码编辑器、项目构建环境、调试器、描述器以  
及其他众多 功能。  
命令行编程器 MSP Flasher 是一款基于 shell 的开源接口,可使用 JTAG Spy-Bi-Wire (SBW) 通信通过  
FET 编程器或 eZ430 MSP 微控制器进行编程。MSP Flasher 可用于将二进制文件(.txt 或  
.hex 文件)直接下载到 MSP 微控制器,而无需使用 IDE。  
MSP MCU 编程器和调试器 MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可帮助用户在  
MSP 低功耗微控制器 (MCU) 中快速开发应用。创建 MCU 软件通常需要将生成的二进制程序  
下载到 MSP 器件中,从而进行验证和调试。  
MSP-GANG 生产编程器 MSP Gang 编程器是一款 MSP430 MSP432 器件编程器,可同时对多达八个  
完全相同的 MSP430 MSP432 闪存或 FRAM 器件进行编程。MSP Gang 编程器可使用标  
准的 RS-232 USB 连接与主机 PC 相连并提供灵活的编程选项,允许用户完全自定义流  
程。  
版权 © 2017–2018, Texas Instruments Incorporated  
器件和文档支持  
115  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
7.3 文档支持  
以下文档对 MSP430FR59xx MCU 进行了介绍。www.ti.com.cn 网站上提供了这些文档的副本。  
接收文档更新通知  
要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹(关于产品文件  
夹的链接,请参见7.5)。请单击右上角的通知我按钮。点击后,您将每周定期收到已更改的产品信息  
(如果有的话)。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
用户指南  
MSP430FR58xxMSP430FR59xxMSP430FR68xx MSP430FR69xx 系列用户指南该器件系列  
提供的所有模块和外设的详细 说明 。  
MSP430FR57xxMSP430FR58xxMSP430FR59xxMSP430FR68xx MSP430FR69xx 引导加载程  
(BSL) 引导加载程序(BSL,之前称为自举加载程序)可在 MSP430 MCU 项目的开发和更  
新过程中对存储器进行编程。该程序可由使用串行协议发送命令的工具激活。BSL 支持用户控  
MSP430 的活动,可与个人计算机或其他设备进行数据交换。  
《通过 JTAG 接口对 MSP430 进行编程》 本文档介绍了使用 JTAG 通信端口擦除、编程和验证基于  
MSP430 闪存和 FRAM 的微控制器系列的存储器模块所需的功能。此外,该文档还描述了如  
何设定所有 MSP430 器件提供的 JTAG 访问安全熔丝。本文档介绍了使用标准 4 线 JTAG 接  
口和 2 线 JTAG 接口(也称为 Spy-Bi-Wire (SBW))访问 MCU。  
MSP430 硬件工具用户指南》 本手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针对  
MSP430 超低功耗微控制器的程序开发工具。对提供的接口类型,即并行端口接口和 USB 接  
口进行了说明。  
116  
器件和文档支持  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
应用报告  
MSP430 FRAM 技术 操作方法和最佳实践 FRAM 采用非易失性存储器技术,行为与 SRAM 类似,支持  
大量新 应用的同时,还改变了固件的设计方式。该应用程序报告从嵌入式软件开发方面概述了  
FRAM 技术在 MSP430 中的使用方法和最佳实践。其中介绍了如何按照应用程序特定的代  
码、常量、数据空间要求实施存储器布局以及如何使用 FRAM 优化应用程序的能耗。  
MSP430 32kHz 晶体振荡器 对于稳定的晶体振荡器,选择合适的晶振、正确的负载电路和适当的电路板布  
局布线至关重要。该应用报告总结了晶体振荡器的功能,介绍了为实现 MSP430 超低功耗运  
行而选择正确晶体的参数。此外,还给出了正确电路板布局布线的提示和示例。本文档还包含  
与可能振荡器测试相关的详细信息以确保大批量生产中的稳定振荡器运行。  
MSP430 系统级 ESD 注意事项》 系统级 ESD 对于低电压下的硅晶技术以及经济高效型和超低功耗组件  
的需求日益增加。该应用报告提出了三项不同的 ESD 主题,旨在帮助电路板设计人员和 OEM  
理解并设计出稳健耐用的系统级设计。  
7.4 辐射信息  
有关辐射信息详情,请访问 ti.com/radiation。  
7.5 相关链接  
7-2 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件以及申请样片或购买产品的  
快速访问链接。  
7-2. 相关链接  
器件  
产品文件夹  
请单击此处  
立即订购  
技术文档  
工具和软件  
请单击此处  
支持和社区  
请单击此处  
MSP430FR5969  
请单击此处  
请单击此处  
版权 © 2017–2018, Texas Instruments Incorporated  
器件和文档支持  
117  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
 
MSP430FR5969-SP  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
7.6 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参见 TI 《使用条款》。  
TI E2E™ 社区  
TI 的工程师交流 (E2E) 社区. 此社区的创建目的是为了促进工程师之间协作。在 e2e.ti.com 中,您可以提  
问、共享知识、拓展思路,在同领域工程师的帮助下解决问题。  
TI 嵌入式处理器维基网页  
德州仪器 (TI) 嵌入式处理器维基网页。此网站的建立是为了帮助开发人员熟悉德州仪器 (TI) 的嵌入式处理  
器,并且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。  
7.7 商标  
EnergyTrace++, MSP430, EnergyTrace, LaunchPad, MSP430Ware, ULP Advisor, 适用于 MSP 微控制器  
Code Composer Studio, E2E are trademarks of Texas Instruments.  
Microsoft is a registered trademark of Microsoft Corporation.  
All other trademarks are the property of their respective owners.  
7.8 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
7.9 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过非披露义务的披露方获得的任何产品或技术数据  
(其中包括软件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制  
产品或此项技术的任何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政  
府机构授权的情况下,接收方不得在知情的情况下,以直接或间接的方式将其出口。  
7.10 术语表  
TI 术语表  
这份术语表列出并解释术语、缩写和定义。  
118  
器件和文档支持  
版权 © 2017–2018, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
MSP430FR5969-SP  
www.ti.com.cn  
ZHCSH89A DECEMBER 2017REVISED MARCH 2018  
8 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,也不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
机械、封装和可订购信息  
119  
提交文档反馈意见  
产品主页链接: MSP430FR5969-SP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
M4FR5969SPHPT-MLS  
M4FR5969SRGZT-MLS  
ACTIVE  
ACTIVE  
HTQFP  
VQFN  
PHP  
RGZ  
48  
48  
10  
1
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 105  
-55 to 105  
FR5969-MLS  
FR5969-MLS  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Nov-2022  
OTHER QUALIFIED VERSIONS OF MSP430FR5969-SP :  
Catalog : MSP430FR5969  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
M4FR5969SRGZT-MLS  
VQFN  
RGZ  
48  
1
180.0  
16.4  
7.3  
7.3  
1.1  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGZ 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
M4FR5969SRGZT-MLS  
1
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.15  
6.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.5  
4.1 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
13  
24  
44X 0.5  
12  
25  
49  
SYMM  
2X  
5.5  
0.30  
0.18  
36  
48X  
1
0.1  
0.05  
C B A  
48  
37  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
48X  
4218795/B 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.1)  
(1.115) TYP  
(0.685)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
(1.115)  
TYP  
44X (0.5)  
(0.685)  
TYP  
SYMM  
49  
(
0.2) TYP  
VIA  
(6.8)  
(R0.05)  
TYP  
12  
25  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218795/B 02/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.37)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
44X (0.5)  
(1.37)  
TYP  
SYMM  
49  
(R0.05) TYP  
(6.8)  
9X  
METAL  
TYP  
(
1.17)  
12  
25  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
73% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4218795/B 02/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
PHP 48  
7 x 7, 0.5 mm pitch  
TQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226443/A  
www.ti.com  
PACKAGE OUTLINE  
TM  
PHP0048C  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
7.2  
6.8  
B
NOTE 3  
37  
48  
PIN 1 ID  
1
36  
7.2  
6.8  
9.2  
TYP  
8.8  
NOTE 3  
12  
25  
13  
24  
A
0.27  
48X  
44X 0.5  
0.17  
0.08  
C A B  
4X 5.5  
1.2 MAX  
C
SEATING PLANE  
SEE DETAIL A  
0.08  
(0.13)  
TYP  
13  
24  
12  
25  
0.25  
(1)  
GAGE PLANE  
4.6  
3.6  
49  
0.75  
0.45  
0.15  
0.05  
0 -7  
A
16  
36  
DETAIL A  
TYPICAL  
1
48  
37  
4X (0.115)NOTE5  
4.6  
3.6  
4226381/A 11/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
5. Feature may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
PHP0048C  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
6.5)  
NOTE 10  
(4.6)  
SYMM  
48  
37  
SOLDER MASK  
DEFINED PAD  
48X (1.6)  
1
36  
48X (0.3)  
SYMM  
49  
(4.6)  
(1.1 TYP)  
(8.5)  
44X (0.5)  
12  
25  
(R0.05) TYP  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
13  
24  
(1.1 TYP)  
SEE DETAILS  
(8.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4226381/A 11/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
PHP0048C  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(4.6)  
BASED ON  
0.125 THICK STENCIL  
SEE TABLE FOR  
SYMM  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
48  
37  
48X (1.6)  
1
36  
48X (0.3)  
(8.5)  
(4.6)  
SYMM  
49  
BASED ON  
0.125 THICK  
STENCIL  
44X (0.5)  
12  
25  
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
24  
13  
(8.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
5.14 X 5.14  
4.6 X 4.6 (SHOWN)  
4.2 X 4.2  
0.125  
0.150  
0.175  
3.89 X 3.89  
4226381/A 11/2020  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

M4G

Double-Balanced Mixer
TE

M4G

SURFACE MOUNT GENERAL RECTIFIER
SEMTECH

M4G

SMAF surface mount glass passivated rectifier
JDSU

M4G1

MEDIUM CURRENT SILICON RECTIFIERS
ETC

M4G5

MEDIUM CURRENT SILICON RECTIFIERS
ETC

M4G9

MEDIUM CURRENT SILICON RECTIFIERS
ETC

M4H1

MEDIUM CURRENT SILICON RECTIFIERS
ETC

M4H5

MEDIUM CURRENT SILICON RECTIFIERS
ETC

M4H9

MEDIUM CURRENT SILICON RECTIFIERS
ETC

M4K1

MEDIUM CURRENT SILICON RECTIFIERS
ETC

M4K5

MEDIUM CURRENT SILICON RECTIFIERS
ETC

M4K9

MEDIUM CURRENT SILICON RECTIFIERS
ETC