MAX202 [TI]

5-V DUAL RS-232 LINE DRIVER/RECEIVER WITH +-15KV ESD PROTECTION; 5 - V双RS - 232线路驱动器/接收器, + - 15KV ESD保护
MAX202
型号: MAX202
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5-V DUAL RS-232 LINE DRIVER/RECEIVER WITH +-15KV ESD PROTECTION
5 - V双RS - 232线路驱动器/接收器, + - 15KV ESD保护

驱动器
文件: 总14页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄꢃ  
ꢅ ꢆꢇ ꢈꢉꢁ ꢊ ꢋꢌ ꢆꢃꢍ ꢃ ꢊ ꢎꢏꢐ ꢈꢋꢎ ꢇꢐ ꢋꢑꢋꢐ ꢒꢐ ꢎ ꢇ ꢐꢋ  
ꢓ ꢎꢔ ꢕ ꢖ ꢅ ꢆꢗ ꢇ ꢐꢌ ꢈ ꢘꢋ ꢙ ꢔꢐ ꢒꢔ ꢎꢙ ꢏ  
SLLS576D − JULY 2003 − REVISED JANUARY 2004  
D, DW, N, OR PW PACKAGE  
(TOP VIEW)  
D
D
D
D
D
D
ESD Protection for RS-232 Bus Pins  
15-kV − Human-Body Model  
Meets or Exceeds the Requirements of  
TIA/EIA-232-F and ITU v.28 Standards  
C1+  
V+  
V
CC  
15 GND  
1
2
3
4
5
6
7
8
16  
Operates at 5-V V  
Supply  
CC  
14  
13  
12  
11  
10  
9
C1−  
C2+  
C2−  
V−  
DOUT1  
RIN1  
Operates Up To 120 kbit/s  
ROUT1  
DIN1  
External Capacitors . . . 4 × 0.1 µF  
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
DOUT2  
RIN2  
DIN2  
ROUT2  
D
Applications  
− Battery-Powered Systems, PDAs,  
Notebooks, Laptops, Palmtop PCs, and  
Hand-Held Equipment  
description/ordering information  
The MAX202 device consists of two line drivers, two line receivers, and a dual charge-pump circuit with  
15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the  
requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication  
controller and the serial-port connector. The charge pump and four small external capacitors allow operation  
from a single 5-V supply. The device operates at data signaling rates up to 120 kbit/s and a maximum of 30-V/µs  
driver output slew rate.  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
PACKAGE  
T
A
PDIP (N)  
SOIC (D)  
Tube of 25  
Tube of 40  
Reel of 2500  
Tube of 40  
Reel of 2000  
Tube of 90  
Reel of 2000  
Tube of 25  
Tube of 40  
Reel of 2500  
Tube of 40  
Reel of 2000  
Tube of 90  
Reel of 2000  
MAX202CN  
MAX202C  
MAX202CD  
MAX202C  
MAX202C  
MAX202CDR  
MAX202CDW  
MAX202CDWR  
MAX202CPW  
MAX202CPWR  
MAX202IN  
0°C to 70°C  
SOIC (DW)  
TSSOP (PW)  
PDIP (N)  
MAX202C  
MAX202I  
MAX202ID  
SOIC (D)  
MAX202I  
MAX202I  
MAX202I  
MAX202IDR  
MAX202IDW  
MAX202IDWR  
MAX202IPW  
MAX202IPWR  
−40°C to 85°C  
SOIC (DW)  
TSSOP (PW)  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are  
available at www.ti.com/sc/package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢔꢥ  
Copyright 2004, Texas Instruments Incorporated  
ꢡ ꢥ ꢢ ꢡꢚ ꢛꢯ ꢝꢜ ꢠ ꢨꢨ ꢦꢠ ꢞ ꢠ ꢟ ꢥ ꢡ ꢥ ꢞ ꢢ ꢪ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢐꢒ  
ꢗꢇ  
SLLS576D − JULY 2003 − REVISED JANUARY 2004  
Function Tables  
EACH DRIVER  
INPUT  
OUTPUT  
D
D
OUT  
IN  
L
H
H
L
H = high level, L = low  
level  
EACH RECEIVER  
INPUT  
OUTPUT  
R
R
OUT  
IN  
L
H
H
L
Open  
H
H = high level, L = low  
level, Open  
disconnected  
=
input  
or  
connected driver off  
logic diagram (positive logic)  
11  
14  
7
DIN1  
DIN2  
DOUT1  
DOUT2  
RIN1  
10  
12  
9
13  
8
ROUT1  
ROUT2  
RIN2  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ  
ꢅ ꢆꢇ ꢈꢉꢁ ꢊ ꢋꢌꢆ ꢃꢍ ꢃ ꢊ ꢎꢏꢐ ꢈꢋꢎ ꢇꢐ ꢋꢑꢋ ꢐꢒ ꢐ ꢎꢇ ꢐ ꢋ  
ꢓ ꢎꢔ ꢕ ꢖ ꢅ ꢆꢗ ꢇ ꢐꢌ ꢈ ꢘꢋꢙ ꢔꢐ ꢒ ꢔꢎ ꢙ ꢏ  
SLLS576D − JULY 2003 − REVISED JANUARY 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
Positive charge pump voltage range, V+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Negative charge pump voltage range, V− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −14 V to 0.3 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
CC  
− 0.3 V to 14 V  
CC  
Input voltage range, V : Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V+ + 0.3 V  
I
Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V  
Output voltage range, V : Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V− − 0.3 V to V+ + 0.3 V  
O
Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V  
+ 0.3 V  
CC  
Short-circuit duration: D  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
OUT  
Package thermal impedance, θ (see Notes 2 and 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W  
JA  
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . 57°C/W  
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W  
PW package . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W  
Operating virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltages are with respect to network GND.  
2. Maximum power dissipation is a function of T (max), θ , and T . The maximum allowable power dissipation at any allowable  
J
JA  
A
ambient temperature is P = (T (max) − T )/θ . Operating at the absolute maximum T of 150°C can affect reliability.  
D
J
A
JA  
J
3. The package thermal impedance is calculated in accordance with JESD 51-7.  
recommended operating conditions (see Note 4 and Figure 4)  
MIN NOM  
MAX  
UNIT  
Supply voltage  
4.5  
2
5
5.5  
V
V
V
V
V
Driver high-level input voltage  
Driver low-level input voltage  
Driver input voltage  
D
D
D
IH  
IN  
IN  
IN  
0.8  
5.5  
30  
70  
85  
IL  
0
−30  
0
V
I
V
Receiver input voltage  
MAX202C  
MAX202I  
T
A
Operating free-air temperature  
°C  
−40  
NOTE 4: Test conditions are C1−C4 = 0.1 µF at V  
CC  
= 5 V 0.5 V.  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (see Note 4 and Figure 4)  
PARAMETER  
TEST CONDITIONS  
No load, = 5 V  
MIN TYP  
MAX  
UNIT  
I
Supply current  
V
8
15  
mA  
CC  
CC  
All typical values are at V  
= 5 V, and T = 25°C.  
A
CC  
NOTE 4: Test conditions are C1−C4 = 0.1 µF at V  
= 5 V 0.5 V.  
CC  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢅꢆ  
ꢗꢇ  
SLLS576D − JULY 2003 − REVISED JANUARY 2004  
DRIVER SECTION  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (see Note 4 and Figure 4)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
V
High-level output voltage  
Low-level output voltage  
High-level input current  
Low-level input current  
D
D
at R = 3 kto GND,  
D
D
= GND  
5
9
OH  
OUT  
OUT  
L
IN  
IN  
at R = 3 kto GND,  
= V  
CC  
−5  
−9  
15  
V
OL  
L
I
I
I
V = V  
I CC  
200  
µA  
µA  
IH  
V at 0 V  
I
−15 −200  
10 60  
IL  
Short-circuit output current  
Output resistance  
V
V
= 5.5 V,  
V
O
= 0 V  
mA  
OS  
CC  
r
, V+, and V− = 0 V,  
V
O
=
2 V  
300  
W
o
CC  
All typical values are at V  
CC  
= 5 V, and T = 25°C.  
A
Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output  
should be shorted at a time.  
NOTE 4: Test conditions are C1−C4 = 0.1 µF at V  
CC  
= 5 V 0.5 V.  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (see Note 4 and Figure 4)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
C
One D  
= 50 to1000 pF, = 3 kto 7 k,  
R
L
L
Maximum data rate  
120  
kbit/s  
switching,  
= 2500 pF,  
See Figure 1  
R = 3 k,  
L
OUT  
Propagation delay time,  
low- to high-level output  
C
L
t
t
t
2
2
µs  
µs  
PLH (D)  
PHL (D)  
sk(p)  
All drivers loaded,  
See Figure 1  
Propagation delay time,  
high- to low-level output  
C
= 2500 pF,  
R
L
= 3 k,  
See Figure 1  
L
All drivers loaded,  
C
= 150 pF to 2500 pF,  
R
L
= 3 kto 7 k,  
L
§
Pulse skew  
300  
6
ns  
See Figure 2  
R = 3 kto 7 k,  
L
Slew rate, transition region  
(see Figure 1)  
C
= 50 pF to 1000 pF,  
= 5 V  
L
SR(tr)  
3
30  
V/µs  
V
CC  
§
All typical values are at V  
CC  
= 5 V, and T = 25°C.  
A
Pulse skew is defined as |t  
− t | of each channel of the same device.  
PLH PHL  
NOTE 4: Test conditions are C1−C4 = 0.1 µF at V  
= 5 V 0.5 V.  
CC  
ESD protection  
PIN  
TEST CONDITIONS  
TYP  
UNIT  
D
, R  
OUT IN  
Human-Body Model  
15  
kV  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ  
ꢅ ꢆꢇ ꢈꢉꢁ ꢊ ꢋꢌꢆ ꢃꢍ ꢃ ꢊ ꢎꢏꢐ ꢈꢋꢎ ꢇꢐ ꢋꢑꢋ ꢐꢒ ꢐ ꢎꢇ ꢐ ꢋ  
ꢓ ꢎꢔ ꢕ ꢖ ꢅ ꢆꢗ ꢇ ꢐꢌ ꢈ ꢘꢋꢙ ꢔꢐ ꢒ ꢔꢎ ꢙ ꢏ  
SLLS576D − JULY 2003 − REVISED JANUARY 2004  
RECEIVER SECTION  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (see Note 4 and Figure 4)  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
= −1 mA  
MIN  
TYP  
V −0.4 V  
CC  
MAX  
UNIT  
V
V
OH  
V
OL  
V
IT+  
V
IT−  
V
hys  
I
I
3.5V  
OH  
Low-level output voltage  
= 1.6 mA  
0.4  
2.4  
V
OL  
Positive-going input threshold voltage  
Negative-going input threshold voltage  
V
= 5 V,  
= 5 V,  
T
= 25°C  
= 25°C  
1.7  
1.2  
0.5  
5
V
CC  
CC  
A
V
T
A
0.8  
0.2  
3
V
Input hysteresis (V  
− V  
)
1
7
V
IT+  
IT−  
r
Input resistance  
V = 3 V to 25 V  
kW  
i
I
All typical values are at V  
CC  
= 5 V, and T = 25°C.  
A
NOTE 4: Test conditions are C1−C4 = 0.1 µF at V  
= 5 V 0.5 V.  
CC  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (see Note 4 and Figure 3)  
PARAMETER  
TEST CONDITIONS  
C = 150 pF  
MIN TYP  
MAX  
10  
UNIT  
µs  
t
t
t
Propagation delay time, low- to high-level output  
Propagation delay time, high- to low-level output  
0.5  
0.5  
PLH (R)  
PHL (R)  
sk(p)  
L
C = 150 pF  
L
10  
µs  
Pulse skew  
300  
ns  
All typical values are at V  
Pulse skew is defined as |t  
= 5 V, and T = 25°C.  
A
PLH PHL  
CC  
− t  
| of each channel of the same device.  
= 5 V 0.5 V.  
NOTE 4: Test conditions are C1−C4 = 0.1 µF, at V  
CC  
PARAMETER MEASUREMENT INFORMATION  
3 V  
0 V  
Input  
1.5 V  
1.5 V  
RS-232  
Output  
Generator  
(see Note B)  
50 Ω  
t
t
C
PHL (D)  
PLH (D)  
L
R
(see Note A)  
L
V
OH  
OL  
3 V  
−3 V  
3 V  
−3 V  
Output  
V
TEST CIRCUIT  
VOLTAGE WAVEFORMS  
6 V  
or t  
SR(tr) +  
t
PHL (D)  
PLH (D)  
NOTES: A.  
C includes probe and jig capacitance.  
L
B. The pulse generator has the following characteristics: PRR = 120 kbit/s, Z = 50 , 50% duty cycle, t 10 ns, t 10 ns.  
O
r
f
Figure 1. Driver Slew Rate  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢅꢆ  
SLLS576D − JULY 2003 − REVISED JANUARY 2004  
PARAMETER MEASUREMENT INFORMATION  
3 V  
RS-232  
Output  
1.5 V  
1.5 V  
Input  
0 V  
Generator  
(see Note B)  
50 Ω  
C
t
t
L
PHL (D)  
PLH (D)  
R
(see Note A)  
L
V
OH  
OL  
50%  
50%  
Output  
V
TEST CIRCUIT  
VOLTAGE WAVEFORMS  
NOTES: A.  
C
includes probe and jig capacitance.  
L
B. The pulse generator has the following characteristics: PRR = 120 kbit/s, Z = 50 , 50% duty cycle, t 10 ns, t 10 ns.  
O
r
f
Figure 2. Driver Pulse Skew  
3 V  
Input  
1.5 V  
1.5 V  
−3 V  
Output  
Generator  
(see Note B)  
50 Ω  
t
t
PLH (R)  
PHL (R)  
C
L
(see Note A)  
V
V
OH  
50%  
50%  
Output  
OL  
TEST CIRCUIT  
VOLTAGE WAVEFORMS  
NOTES: A.  
C includes probe and jig capacitance.  
L
B. The pulse generator has the following characteristics: Z = 50 , 50% duty cycle, t 10 ns, t 10 ns.  
O
r
f
Figure 3. Receiver Propagation Delay Times  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ  
ꢅ ꢆꢇ ꢈꢉꢁ ꢊ ꢋꢌꢆ ꢃꢍ ꢃ ꢊ ꢎꢏꢐ ꢈꢋꢎ ꢇꢐ ꢋꢑꢋ ꢐꢒ ꢐ ꢎꢇ ꢐ ꢋ  
ꢓ ꢎꢔ ꢕ ꢖ ꢅ ꢆꢗ ꢇ ꢐꢌ ꢈ ꢘꢋꢙ ꢔꢐ ꢒ ꢔꢎ ꢙ ꢏ  
SLLS576D − JULY 2003 − REVISED JANUARY 2004  
APPLICATION INFORMATION  
1
2
3
4
16  
15  
V
C1+  
V+  
CC  
+
C
BYPASS  
= 0.1 µF  
C1  
0.1 µF,  
6.3 V  
+
GND  
C3  
+
0.1 µF,  
16 V  
14  
13  
C1−  
C2+  
C2−  
DOUT1  
RIN1  
5 kΩ  
C2  
0.1 µF,  
16 V  
+
5
6
7
12  
11  
ROUT1  
DIN1  
V−  
C4  
0.1 µF,  
16 V  
+
10  
9
DOUT2  
DIN2  
8
RIN2  
ROUT2  
5 kΩ  
C3 can be connected to V  
or GND.  
NOTES: A. Resistor values shown are nominal.  
CC  
B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be  
connected as shown.  
Figure 4. Typical Operating Circuit and Capacitor Values  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢐꢒ  
ꢅꢆ  
ꢗꢇ  
ꢔꢐ  
SLLS576D − JULY 2003 − REVISED JANUARY 2004  
APPLICATION INFORMATION  
capacitor selection  
The capacitor type used for C1−C4 is not critical for proper operation. The MAX202 requires 0.1-µF capacitors,  
although capacitors up to 10 µF can be used without harm. Ceramic dielectrics are suggested for the 0.1-µF  
capacitors. When using the minimum recommended capacitor values, make sure the capacitance value does  
not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (e.g., 2×)  
nominal value. The capacitors’ effective series resistance (ESR), which usually rises at low temperatures,  
influences the amount of ripple on V+ and V−.  
Use larger capacitors (up to 10 µF) to reduce the output impedance at V+ and V−.  
Bypass V  
charge pumps, decouple V  
capacitors (C1−C4).  
to ground with at least 0.1 µF. In applications sensitive to power-supply noise generated by the  
CC  
to ground with a capacitor the same size as (or larger than) the charge-pump  
CC  
ESD protection  
TI MAX202 devices have standard ESD protection structures incorporated on the pins to protect against  
electrostatic discharges encountered during assembly and handling. In addition, the RS232 bus pins (driver  
outputs and receiver inputs) of these devices have an extra level of ESD protection. Advanced ESD structures  
were designed to successfully protect these bus pins against ESD discharge of 15-kV when powered down.  
ESD test conditions  
Stringent ESD testing is performed by TI, based on various conditions and procedures. Please contact TI for  
a reliability report that documents test setup, methodology, and results.  
Human-Body Model (HBM)  
The HBM of ESD testing is shown in Figure 5. Figure 6 shows the current waveform that is generated during  
a discharge into a low impedance. The model consists of a 100-pF capacitor, charged to the ESD voltage of  
concern, and subsequently discharged into the device under test (DUT) through a 1.5-kresistor.  
R
D
1.5 kΩ  
C
+
S
DUT  
V
HBM  
100 pF  
Figure 5. HBM ESD Test Circuit  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢃ  
ꢅ ꢆꢇ ꢈꢉꢁ ꢊ ꢋꢌꢆ ꢃꢍ ꢃ ꢊ ꢎꢏꢐ ꢈꢋꢎ ꢇꢐ ꢋꢑꢋ ꢐꢒ ꢐ ꢎꢇ ꢐ ꢋ  
ꢓ ꢎꢔ ꢕ ꢖ ꢅ ꢆꢗ ꢇ ꢐꢌ ꢈ ꢘꢋꢙ ꢔꢐ ꢒ ꢔꢎ ꢙ ꢏ  
SLLS576D − JULY 2003 − REVISED JANUARY 2004  
APPLICATION INFORMATION  
1.5  
V
= 2 kV  
HBM  
DUT = 10-V, 1-Zener Diode  
|
1.0  
0.5  
0.0  
0
50  
100  
150  
200  
Time – ns  
Figure 6. Typical HBM Current Waveform  
Machine Model (MM)  
The MM ESD test applies to all pins using a 200-pF capacitor with no discharge resistance. The purpose of the  
MM test is to simulate possible ESD conditions that can occur during the handling and assembly processes of  
manufacturing. In this case, ESD protection is required for all pins, not just RS-232 pins. However, after PC  
board assembly, the MM test no longer is as pertinent to the RS-232 pins.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
MAX202CD  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
40  
2500  
40  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
MAX202CDR  
MAX202CDW  
MAX202CDWR  
MAX202CPW  
MAX202CPWR  
MAX202ID  
SOIC  
SOIC  
D
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
DW  
DW  
PW  
PW  
D
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
SOIC  
2000  
90  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
TSSOP  
TSSOP  
SOIC  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
2000  
40  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
MAX202IDR  
SOIC  
D
2500  
40  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
MAX202IDW  
MAX202IDWR  
MAX202IPW  
MAX202IPWR  
SOIC  
DW  
DW  
PW  
PW  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
SOIC  
2000  
90  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
TSSOP  
TSSOP  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
2000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

MAX2021

1700MHz to 2200MHz High-Linearity, SPI-Controlled DVGA with Integrated Loopback Mixer
MAXIM

MAX2021ETX

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod
MAXIM

MAX2021ETX+

Baseband Circuit, BICMOS, 6 X 6 MM, ROHS COMPLIANT, TQFN-36
MAXIM

MAX2021ETX+T

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod
MAXIM

MAX2021ETX-T

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod
MAXIM

MAX2021EVKIT

Evaluation Kit
MAXIM

MAX2021_1

Evaluation Kit
MAXIM

MAX2022

High-Dynamic-Range, Direct Upconversion 1500MHz to 2500MHz Quadrature Modulator
MAXIM

MAX2022ETX

High-Dynamic-Range, Direct Upconversion 1500MHz to 2500MHz Quadrature Modulator
MAXIM

MAX2022ETX+

Modulator, Quadraphase, 1500MHz Min, 2500MHz Max, ROHS COMPLIANT, 6 X 6 MM, QFN-36
MAXIM

MAX2022ETX+D

High-Dynamic-Range, Direct Upconversion 1500MHz to 2500MHz Quadrature Modulator
MAXIM

MAX2022ETX+T

Modulator, Quadraphase, 1500MHz Min, 2500MHz Max, ROHS COMPLIANT, 6 X 6 MM, QFN-36
MAXIM