MAX208IDWRG4 [TI]

MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ESD PROTECTION;
MAX208IDWRG4
型号: MAX208IDWRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ESD PROTECTION

驱动 光电二极管 接口集成电路 驱动器
文件: 总14页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄꢅ  
ꢆ ꢇꢈ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢁꢏꢏꢐ ꢊ ꢑꢒ ꢇꢃꢓ ꢃ ꢊ ꢌꢏꢐ ꢔꢑꢌ ꢈꢐ ꢑꢕꢑꢐ ꢍꢐ ꢌ ꢈ ꢐꢑ  
ꢖ ꢌꢋ ꢎ ꢗ ꢆ ꢇꢘ ꢈ ꢐꢒ ꢔ ꢙꢑ ꢚ ꢋꢐ ꢍꢋ ꢌꢚ ꢏ  
SLLS596A − OCTOBER 2003 − REVISED JANUARY 2004  
DB, DW, OR NT PACKAGE  
(TOP VIEW)  
D
D
D
D
D
D
D
ESD Protection for RS-232 I/O Pins  
15 kV − Human-Body Model  
Meets or Exceeds the Requirements of  
TIA/EIA-232-F and ITU v.28 Standards  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DOUT2  
DOUT1  
RIN2  
DOUT3  
RIN3  
ROUT3  
DIN4  
DOUT4  
DIN3  
DIN2  
ROUT4  
RIN4  
V−  
2
Operates at 5-V V  
Supply  
3
CC  
4
ROUT2  
DIN1  
Four Drivers and Four Receivers  
Operates Up To 120 kbit/s  
5
6
ROUT1  
RIN1  
External Capacitors . . . 4 × 0.1 µF  
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
7
8
GND  
9
V
CC  
10  
11  
12  
D
Applications  
C1+  
V+  
C1−  
− Battery-Powered Systems, PDAs,  
Notebooks, Laptops, Palmtop PCs, and  
Hand-Held Equipment  
C2−  
C2+  
description/ordering information  
The MAX208 device consists of four line drivers, four line receivers, and a dual charge-pump circuit with  
15-kV HBM ESD protection pin to pin (serial-port connection pins, including GND). The device meets the  
requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication  
controller and the serial-port connector. The charge pump and four small external capacitors allow operation  
from a single 5-V supply. The devices operate at data signaling rates up to 120 kbit/s and a maximum of 30-V/µs  
driver output slew rate.  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
PACKAGE  
T
A
PDIP (NT)  
SOIC (DW)  
Tube of 15  
Tube of 25  
Reel of 2000  
Tube of 60  
Reel of 2000  
Tube of 15  
Tube of 25  
Reel of 2000  
Tube of 60  
Reel of 2000  
MAX208CNT  
MAX208CDW  
MAX208CDWR  
MAX208CDB  
MAX208CDBR  
MAX208INT  
MAX208CNT  
MAX208C  
0°C to 70°C  
SSOP (DB)  
PDIP (NT)  
MA208C  
MAX208INT  
MAX208IDW  
MAX208IDWR  
MAX208IDB  
SOIC (DW)  
SSOP (DB)  
MAX208I  
MB208I  
40°C to 85°C  
MAX208IDBR  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are  
available at www.ti.com/sc/package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢋꢦ  
Copyright 2004, Texas Instruments Incorporated  
ꢢ ꢦ ꢣ ꢢꢛ ꢜꢰ ꢞꢝ ꢡ ꢩꢩ ꢧꢡ ꢟ ꢡ ꢠ ꢦ ꢢ ꢦ ꢟ ꢣ ꢫ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ  
ꢖꢌ ꢋ ꢎ ꢗ ꢆꢇ ꢘꢈ ꢐꢒ ꢔ ꢙ ꢑꢚ ꢋꢐ ꢍꢋꢌ ꢚ ꢏ  
SLLS596A − OCTOBER 2003 − REVISED JANUARY 2004  
Function Tables  
EACH DRIVER  
INPUT  
OUTPUT  
D
D
OUT  
IN  
L
H
H
L
H = high level, L = low  
level  
EACH RECEIVER  
INPUT  
OUTPUT  
R
R
OUT  
IN  
L
H
H
L
Open  
H
H = high level, L = low  
level, Open  
disconnected  
=
input  
or  
connected driver off  
logic diagram (positive logic)  
5
2
DIN1  
DOUT1  
18  
19  
21  
1
24  
20  
DIN2  
DOUT2  
DOUT3  
DOUT4  
TTL/CMOS  
RS-232  
Outputs  
Inputs  
DIN3  
DIN4  
6
7
3
ROUT1  
RIN1  
RIN2  
RIN3  
4
ROUT2  
TTL/CMOS  
RS-232  
Inputs  
Outputs  
22  
23  
ROUT3  
17  
16  
ROUT4  
RIN4  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ  
ꢆ ꢇꢈ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢁꢏꢏꢐ ꢊ ꢑꢒ ꢇꢃꢓ ꢃ ꢊ ꢌꢏꢐ ꢔꢑꢌ ꢈꢐ ꢑꢕꢑꢐ ꢍꢐ ꢌ ꢈ ꢐꢑ  
ꢖ ꢌꢋ ꢎ ꢗ ꢆ ꢇꢘ ꢈ ꢐꢒ ꢔ ꢙꢑ ꢚ ꢋꢐ ꢍꢋ ꢌꢚ ꢏ  
SLLS596A − OCTOBER 2003 − REVISED JANUARY 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
CC  
Positive charge pump voltage range, V+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V −0.3 V to 14 V  
CC  
Negative charge pump voltage range, V− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −14 V to 0.3 V  
Supply voltage difference, V+ − V− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 V  
Input voltage range, V : Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V+ + 0.3 V  
I
Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V  
Output voltage range, V : Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V− − 0.3 V to V+ + 0.3 V  
O
Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V  
+ 0.3 V  
CC  
Short-circuit duration: D  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
OUT  
Package thermal impedance, θ (see Notes 2 and 3): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . 63°C/W  
JA  
(see Notes 2 and 3): DW package . . . . . . . . . . . . . . . . . . . . . . . . . . 46°C/W  
(see Notes 2 and 4): NT package . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W  
Operating virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltages are with respect to network GND.  
2. Maximum power dissipation is a function of T (max), θ , and T . The maximum allowable power dissipation at any allowable  
J
JA  
A
ambient temperature is P = (T (max) − T )/θ . Operating at the absolute maximum T of 150°C can affect reliability.  
D
J
A
JA  
J
3. The package thermal impedance is calculated in accordance with JESD 51-7.  
4. The package thermal impedance is calculated in accordance with JESD 51-3.  
recommended operating conditions (see Note 5 and Figure 4)  
MIN NOM  
MAX  
UNIT  
Supply voltage  
4.5  
2.4  
5
5.5  
V
V
V
V
V
Driver high-level input voltage  
Driver low-level input voltage  
Driver input voltage  
D
D
D
IH  
IN  
IN  
IN  
0.8  
5.5  
30  
70  
85  
IL  
0
−30  
0
V
I
V
Receiver input voltage  
MAX208C  
MAX208I  
T
A
Operating free-air temperature  
°C  
−40  
NOTE 5: Test conditions are C1−C4 = 0.1 µF at V  
CC  
= 5 V 0.5 V.  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (see Note 5 and Figure 4)  
PARAMETER  
Supply current  
NOTE 5: Test conditions are C1−C4 = 0.1 µF at V  
TEST CONDITIONS  
= 5 V, = 25°C  
MIN  
TYP  
MAX  
UNIT  
I
No load,  
V
T
A
11  
20  
mA  
CC  
CC  
= 5 V 0.5 V.  
CC  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ  
ꢆꢇ ꢈ ꢀ ꢉꢊꢋ ꢌ ꢍ ꢎꢁ ꢏ ꢏꢐꢊ ꢑꢒ ꢇꢃ ꢓ ꢃ ꢊꢌ ꢏ ꢐ ꢔꢑ ꢌ ꢈꢐ ꢑꢕꢑꢐ ꢍꢐꢌ ꢈꢐꢑ  
ꢖꢌ ꢋ ꢎ ꢗ ꢆꢇ ꢘꢈ ꢐꢒ ꢔ ꢙ ꢑꢚ ꢋꢐ ꢍꢋꢌ ꢚ ꢏ  
SLLS596A − OCTOBER 2003 − REVISED JANUARY 2004  
DRIVER SECTION  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (see Note 5 and Figure 4)  
PARAMETER  
TEST CONDITIONS  
MIN  
5
TYP MAX  
UNIT  
V
V
V
High-level output voltage  
Low-level output voltage  
High-level input current  
Low-level input current  
D
D
at R = 3 kto GND,  
D
D
= GND  
9
OH  
OUT  
OUT  
L
IN  
IN  
at R = 3 kto GND,  
= V  
CC  
−5  
−9  
V
OL  
L
I
I
I
V = V  
I CC  
15  
−15 −200  
10 60  
200  
µA  
µA  
IH  
V at 0 V  
I
IL  
Short-circuit output current  
Output resistance  
V
V
= 5.5 V,  
V
O
= 0 V  
mA  
OS  
CC  
r
, V+, and V− = 0 V,  
V
O
=
2 V  
300  
W
o
CC  
Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output  
should be shorted at a time.  
NOTE 5: Test conditions are C1−C4 = 0.1 µF at V  
CC  
= 5 V 0.5 V.  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (see Note 5 and Figure 4)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
C
One D  
= 50 to 1000 pF, = 3 kto 7 k,  
R
L
L
Maximum data rate  
120  
kbit/s  
switching,  
= 2500 pF,  
See Figure 1  
R = 3 k,  
L
OUT  
Propagation delay time,  
low- to high-level output  
C
L
t
t
t
2
2
µs  
µs  
PLH (D)  
PHL (D)  
sk(p)  
all drivers loaded,  
See Figure 1  
Propagation delay time,  
high- to low-level output  
C
= 2500 pF,  
R
L
= 3 k,  
See Figure 1  
L
all drivers loaded,  
C
= 150 pF to 2500 pF,  
R
L
= 3 kto 7 k,  
L
§
Pulse skew  
300  
6
ns  
See Figure 2  
R = 3 kto 7 k,  
L
Slew rate, transition region  
(see Figure 1)  
C
= 50 pF to 2500 pF,  
= 5 V  
L
SR(tr)  
3
30  
V/µs  
V
CC  
§
All typical values are at V  
CC  
= 5 V, and T = 25°C.  
A
Pulse skew is defined as |t  
− t | of each channel of the same device.  
PLH PHL  
NOTE 5: Test conditions are C1−C4 = 0.1 µF at V  
= 5 V 0.5 V.  
CC  
ESD protection  
PIN  
TEST CONDITIONS  
TYP  
UNIT  
D
, R  
OUT IN  
Human Body Model  
15  
kV  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ  
ꢆ ꢇꢈ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢁꢏꢏꢐ ꢊ ꢑꢒ ꢇꢃꢓ ꢃ ꢊ ꢌꢏꢐ ꢔꢑꢌ ꢈꢐ ꢑꢕꢑꢐ ꢍꢐ ꢌ ꢈ ꢐꢑ  
ꢖ ꢌꢋ ꢎ ꢗ ꢆ ꢇꢘ ꢈ ꢐꢒ ꢔ ꢙꢑ ꢚ ꢋꢐ ꢍꢋ ꢌꢚ ꢏ  
SLLS596A − OCTOBER 2003 − REVISED JANUARY 2004  
RECEIVER SECTION  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (see Note 5 and Figure 4)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
OH  
V
OL  
V
IT+  
V
IT−  
V
hys  
High-level output voltage  
I
I
= −1 mA  
= 1.6 mA  
3.5  
OH  
Low-level output voltage  
0.4  
2.4  
V
OL  
Positive-going input threshold voltage  
Negative-going input threshold voltage  
V
V
V
= 5 V,  
= 5 V,  
= 5 V  
T
= 25°C  
= 25°C  
1.7  
1.2  
0.5  
5
V
CC  
CC  
CC  
A
T
A
0.8  
0.2  
3
V
Input hysteresis (V  
− V  
)
1
7
V
IT+  
IT−  
r
Input resistance  
V = 3 V to 25 V,  
V
CC  
= 5 V,  
T = 25°C  
A
kW  
i
I
NOTE 5: Test conditions are C1−C4 = 0.1 µF at V  
CC  
= 5 V 0.5 V.  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (see Note 5 and Figure 3)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
10  
UNIT  
µs  
t
t
t
Propagation delay time, low- to high-level output  
Propagation delay time, high- to low-level output  
0.5  
0.5  
PLH (R)  
PHL (R)  
sk(p)  
C = 150 pF  
L
10  
µs  
Pulse skew  
300  
ns  
All typical values are at V  
Pulse skew is defined as |t  
= 5 V, and T = 25°C.  
A
CC  
− t  
| of each channel of the same device.  
PLH PHL  
= 5 V 0.5 V.  
NOTE 5: Test conditions are C1−C4 = 0.1 µF, at V  
CC  
PARAMETER MEASUREMENT INFORMATION  
3 V  
0 V  
Input  
1.5 V  
1.5 V  
RS-232  
Output  
Generator  
(see Note B)  
50 Ω  
t
t
C
PHL (D)  
PLH (D)  
L
R
(see Note A)  
L
V
OH  
OL  
3 V  
−3 V  
3 V  
−3 V  
Output  
V
TEST CIRCUIT  
VOLTAGE WAVEFORMS  
6 V  
or t  
SR(tr) +  
t
PHL (D)  
PLH (D)  
NOTES: A.  
C includes probe and jig capacitance.  
L
B. The pulse generator has the following characteristics: PRR = 120 kbit/s, Z = 50 , 50% duty cycle, t 10 ns, t 10 ns.  
O
r
f
Figure 1. Driver Slew Rate  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ  
ꢆꢇ ꢈ ꢀ ꢉꢊꢋ ꢌ ꢍ ꢎꢁ ꢏ ꢏꢐꢊ ꢑꢒ ꢇꢃ ꢓ ꢃ ꢊꢌ ꢏ ꢐ ꢔꢑ ꢌ ꢈꢐ ꢑꢕꢑꢐ ꢍꢐꢌ ꢈꢐꢑ  
ꢖꢌ ꢋ ꢎ ꢗ ꢆꢇ ꢘꢈ ꢐꢒ ꢔ ꢙ ꢑꢚ ꢋꢐ ꢍꢋꢌ ꢚ ꢏ  
SLLS596A − OCTOBER 2003 − REVISED JANUARY 2004  
PARAMETER MEASUREMENT INFORMATION  
3 V  
RS-232  
Output  
1.5 V  
1.5 V  
Input  
0 V  
Generator  
(see Note B)  
50 Ω  
C
t
t
L
PHL (D)  
PLH (D)  
R
(see Note A)  
L
V
OH  
OL  
50%  
50%  
Output  
V
TEST CIRCUIT  
VOLTAGE WAVEFORMS  
NOTES: A.  
C
includes probe and jig capacitance.  
L
B. The pulse generator has the following characteristics: PRR = 120 kbit/s, Z = 50 , 50% duty cycle, t 10 ns, t 10 ns.  
O
r
f
Figure 2. Driver Pulse Skew  
3 V  
Input  
1.5 V  
1.5 V  
−3 V  
Output  
Generator  
(see Note B)  
50 Ω  
t
t
PLH (R)  
PHL (R)  
C
L
(see Note A)  
V
V
OH  
50%  
50%  
Output  
OL  
TEST CIRCUIT  
VOLTAGE WAVEFORMS  
NOTES: A.  
C includes probe and jig capacitance.  
L
B. The pulse generator has the following characteristics: Z = 50 , 50% duty cycle, t 10 ns, t 10 ns.  
O
r
f
Figure 3. Receiver Propagation Delay Times  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ  
ꢆ ꢇꢈ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢁꢏꢏꢐ ꢊ ꢑꢒ ꢇꢃꢓ ꢃ ꢊ ꢌꢏꢐ ꢔꢑꢌ ꢈꢐ ꢑꢕꢑꢐ ꢍꢐ ꢌ ꢈ ꢐꢑ  
ꢖ ꢌꢋ ꢎ ꢗ ꢆ ꢇꢘ ꢈ ꢐꢒ ꢔ ꢙꢑ ꢚ ꢋꢐ ꢍꢋ ꢌꢚ ꢏ  
SLLS596A − OCTOBER 2003 − REVISED JANUARY 2004  
APPLICATION INFORMATION  
24  
23  
1
2
DOUT3  
RIN3  
DOUT2  
DOUT1  
5 kΩ  
3
4
22  
RIN2  
ROUT3  
5 kΩ  
5 V  
400 kΩ  
ROUT2  
21  
20  
DIN4  
5 V  
DOUT4  
400 kΩ  
5 V  
5 V  
5
6
DIN1  
400 kΩ  
400 kΩ  
19  
ROUT1  
DIN3  
18  
7
8
RIN1  
GND  
DIN2  
5 kΩ  
17  
16  
ROUT4  
RIN4  
+
0.1 µF  
5 kΩ  
0.1 µF  
16V  
9
V
CC  
15  
14  
V−  
+
+
0.1 µF  
6.3V  
10  
11  
C1+  
V+  
C2−  
0.1 µF  
16 V  
+
+
0.1 µF  
6.3V  
13  
12  
C2+  
C1−  
NOTES: A. Resistor values shown are nominal.  
B. Non-polarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be  
connected as shown.  
Figure 4. Typical Operating Circuit and Capacitor Values  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ  
ꢆꢇ ꢈ ꢀ ꢉꢊꢋ ꢌ ꢍ ꢎꢁ ꢏ ꢏꢐꢊ ꢑꢒ ꢇꢃ ꢓ ꢃ ꢊꢌ ꢏ ꢐ ꢔꢑ ꢌ ꢈꢐ ꢑꢕꢑꢐ ꢍꢐꢌ ꢈꢐꢑ  
ꢖꢌ ꢋ ꢎ ꢗ ꢆꢇ ꢘꢈ ꢐꢒ ꢔ ꢙ ꢑꢚ ꢋꢐ ꢍꢋꢌ ꢚ ꢏ  
SLLS596A − OCTOBER 2003 − REVISED JANUARY 2004  
APPLICATION INFORMATION  
capacitor selection  
The capacitor type used for C1−C4 is not critical for proper operation. The MAX208 requires 0.1-µF capacitors,  
although capacitors up to 10 µF can be used without harm. Ceramic dielectrics are suggested for the 0.1-µF  
capacitors. When using the minimum recommended capacitor values, ensure that the capacitance value does  
not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (e.g., 2)  
nominal value. The capacitors’ effective series resistance (ESR), which usually rises at low temperatures,  
influences the amount of ripple on V and V .  
+
Use larger capacitors (up to 10 µF) to reduce the output impedance at V and V .  
+
Bypass V  
charge pumps, decouple V  
capacitors (C1−C4).  
to ground with at least 0.1 µF. In applications sensitive to power-supply noise generated by the  
CC  
to ground with a capacitor the same size as (or larger than) the charge-pump  
CC  
ESD protection  
Texas Instruments MAX208 devices have standard ESD protection structures incorporated on the pins to  
protect against electrostatic discharges encountered during assembly and handling. In addition, the RS232 bus  
pins (driver outputs and receiver inputs) of these devices have an extra level of ESD protection. Advanced ESD  
structures were designed to successfully protect these bus pins against ESD discharge of 15-kV when  
powered down.  
ESD test conditions  
ESD testing is stringently performed by TI, based on various conditions and procedures. Please contact Texas  
Instruments for a reliability report that documents test setup, methodology, and results.  
Human-Body Model (HBM)  
The Human-Body Model of ESD testing is shown in Figure 5, while Figure 6 shows the current waveform that  
is generated during a discharge into a low impedance. The model consists of a 100-pF capacitor, charged to  
the ESD voltage of concern and subsequently discharged into the DUT through a 1.5-kresistor.  
R
D
1.5 kΩ  
+
100 pF  
C
DUT  
V
HBM  
S
Figure 5. HBM ESD Test Circuit  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄꢅ  
ꢆ ꢇꢈ ꢀ ꢉꢊꢋ ꢌꢍꢎ ꢁꢏꢏꢐ ꢊ ꢑꢒ ꢇꢃꢓ ꢃ ꢊ ꢌꢏꢐ ꢔꢑꢌ ꢈꢐ ꢑꢕꢑꢐ ꢍꢐ ꢌ ꢈ ꢐꢑ  
ꢖ ꢌꢋ ꢎ ꢗ ꢆ ꢇꢘ ꢈ ꢐꢒ ꢔ ꢙꢑ ꢚ ꢋꢐ ꢍꢋ ꢌꢚ ꢏ  
SLLS596A − OCTOBER 2003 − REVISED JANUARY 2004  
APPLICATION INFORMATION  
1.5  
V
= 2 kV  
HBM  
DUT = 10 V, 1-Zener Diode  
1.0  
0.5  
0.0  
0
50  
100  
Time − ns  
150  
200  
Figure 6. Typical HBM Current Waveform  
Machine Model  
The Machine Model (MM) ESD test applies to all pins using a 200-pF capacitor with no discharge resistance.  
The purpose of the MM test is to simulate possible ESD conditions that can occur during the handling and  
assembly processes of manufacturing. In this case, ESD protection is required for all pins, not just RS-232 pins.  
However, after PC board assembly, the MM test no longer is as pertinent to the RS-232 pins.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
MAX208CDB  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SSOP  
DB  
24  
24  
24  
24  
60  
2000  
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
MAX208CDBR  
MAX208CDW  
MAX208CDWR  
SSOP  
SOIC  
SOIC  
DB  
DW  
DW  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
2000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
MAX208CNT  
MAX208IDB  
PREVIEW  
ACTIVE  
PDIP  
NT  
DB  
24  
24  
15  
60  
None  
Call TI  
Call TI  
SSOP  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
MAX208IDBR  
MAX208IDW  
MAX208IDWR  
MAX208INT  
ACTIVE  
ACTIVE  
SSOP  
SOIC  
SOIC  
PDIP  
DB  
DW  
DW  
NT  
24  
24  
24  
24  
2000  
25  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
ACTIVE  
2000  
15  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-250C-1 YEAR/  
Level-1-235C-UNLIM  
PREVIEW  
None  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MPDI004 – OCTOBER 1994  
NT (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
24 PINS SHOWN  
A
PINS **  
24  
28  
DIM  
24  
13  
1.260  
(32,04) (36,20)  
1.425  
A MAX  
1.230  
(31,24) (35,18)  
1.385  
A MIN  
B MAX  
B MIN  
0.280 (7,11)  
0.250 (6,35)  
0.310  
(7,87)  
0.315  
(8,00)  
1
12  
0.290  
(7,37)  
0.295  
(7,49)  
0.070 (1,78) MAX  
B
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0.010 (0,25)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
M
0.010 (0,25) NOM  
4040050/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,25  
0,09  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°ā8°  
0,95  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
14  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
6,90  
9,90  
12,30  
4040065 /E 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

MAX208INT

5-V MULTICHANNEL RS-232 LINE DRIVER / RECEIVER WITH +-15-KV ESD PROTECTION
TI

MAX208MRG

Transceiver
MAXIM

MAX208_06

5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH +-15-KV ESD PROTECTION
TI

MAX208_14

MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ESD PROTECTION
TI

MAX209

+5V-Powered, Multichannel RS-232 Drivers/Receivers
MAXIM

MAX2090

50MHz to 1000MHz Analog VGA with Threshold Alarm Circuit and Error Amplifier for Level Control
MAXIM

MAX2090ETP

50MHz to 1000MHz Analog VGA with Threshold Alarm Circuit and Error Amplifier for Level Control
MAXIM

MAX2090ETP+

RF and Baseband Circuit, BICMOS, PQCC20, 5 X 5 MM, ROHS COMPLIANT, TQFN-20
MAXIM

MAX2090ETP+T

RF and Baseband Circuit, BICMOS, PQCC20, 5 X 5 MM, ROHS COMPLIANT, TQFN-20
MAXIM

MAX2090_V01

50MHz to 1000MHz Analog VGA with Threshold Alarm Circuit and Error Amplifier for Level Control
MAXIM

MAX2091

50MHz to 500MHz Analog VGA, 1735MHz to 1935MHz Upconverting Mixer with Image Filtering, Threshold Alarm Circuit, and Error Amplifier for Level Control
MAXIM

MAX2091BETP+

50MHz to 500MHz Analog VGA, 1735MHz to 1935MHz Upconverting Mixer with Image Filtering, Threshold Alarm Circuit, and Error Amplifier for Level Control
MAXIM