MC33078P

更新时间:2024-09-18 06:59:29
品牌:TI
描述:DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER

MC33078P 概述

DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER 双高速低噪声运算放大器 运算放大器 运算放大器

MC33078P 规格参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Active零件包装代码:DIP
包装说明:DIP-8针数:8
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.33.00.01风险等级:1.33
放大器类型:OPERATIONAL AMPLIFIER架构:VOLTAGE-FEEDBACK
最大平均偏置电流 (IIB):0.75 µA25C 时的最大偏置电流 (IIB):0.75 µA
最小共模抑制比:80 dB标称共模抑制比:100 dB
频率补偿:YES最大输入失调电流 (IIO):0.15 µA
最大输入失调电压:2000 µVJESD-30 代码:R-PDIP-T8
JESD-609代码:e4长度:9.81 mm
低-偏置:NO低-失调:NO
微功率:NO负供电电压上限:-18 V
标称负供电电压 (Vsup):-15 V功能数量:2
端子数量:8最高工作温度:85 °C
最低工作温度:-40 °C封装主体材料:PLASTIC/EPOXY
封装代码:DIP封装等效代码:DIP8,.3
封装形状:RECTANGULAR封装形式:IN-LINE
包装方法:TUBE峰值回流温度(摄氏度):NOT SPECIFIED
功率:NO电源:+-5/+-18 V
可编程功率:NO认证状态:Not Qualified
座面最大高度:5.08 mm最小摆率:5 V/us
标称压摆率:7 V/us子类别:Operational Amplifier
最大压摆率:2.5 mA供电电压上限:18 V
标称供电电压 (Vsup):15 V表面贴装:NO
技术:BIPOLAR温度等级:INDUSTRIAL
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)端子形式:THROUGH-HOLE
端子节距:2.54 mm端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED标称均一增益带宽:16000 kHz
最小电压增益:17800宽带:NO
宽度:6.35 mmBase Number Matches:1

MC33078P 数据手册

通过下载MC33078P数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
www.ti.com  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
FEATURES  
D (SOIC), DGK (MSOP), OR P (PDIP) PACKAGE  
(TOP VIEW)  
Dual-Supply Operation . . . ±5 V to ±18 V  
Low Noise Voltage . . . 4.5 nV/Hz  
1
2
3
4
8
7
6
5
OUT1  
IN1−  
IN1+  
V
CC+  
Low Input Offset Voltage . . . 0.15 mV  
Low Total Harmonic Distortion . . . 0.002%  
High Slew Rate . . . 7 V/µs  
OUT2  
IN2−  
IN2+  
V
CC−  
High-Gain Bandwidth Product . . . 16 MHz  
High Open-Loop AC Gain . . . 800 at 20 kHz  
Large Output-Voltage Swing . . . 14.1 V to  
–14.6 V  
Excellent Gain and Phase Margins  
DESCRIPTION/ORDERING INFORMATION  
The MC33078 is a bipolar dual operational amplifier with high-performance specifications for use in quality audio  
and data-signal applications. This device operates over a wide range of single- and dual-supply voltages and  
offers low noise, high-gain bandwidth, and high slew rate. Additional features include low total harmonic  
distortion, excellent phase and gain margins, large output voltage swing with no deadband crossover distortion,  
and symmetrical sink/source performance.  
ORDERING INFORMATION  
TA  
PACKAGE(1)  
ORDERABLE PART NUMBER  
MC33078P  
TOP-SIDE MARKING(2)  
MC33078P  
PDIP – P  
SOIC – D  
Tube of 50  
Tube of 75  
MC33078D  
M33078  
MY_  
–40°C to 85°C  
Reel of 2500  
Reel of 2500  
Reel of 250  
MC33078DR  
MC33078DGKR  
MC33078DGKT  
VSSOP/MSOP – DGK  
(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/sc/package.  
(2) DGK: The actual top-side marking has one additional character that designates the assembly/test site.  
SYMBOL (EACH AMPLIFIER)  
IN+  
IN−  
+
OUT  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2004–2006, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
www.ti.com  
Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
18  
UNIT  
VCC+  
Supply voltage(2)  
V
VCC–  
Supply voltage(2)  
–18  
V
V
VCC+ – VCC–  
Supply voltage  
36  
Input voltage, either input(2)(3)  
Input current(4)  
Duration of output short circuit(5)  
VCC+ or VCC–  
V
±10  
Unlimited  
97  
mA  
D package  
DGK package  
P package  
θJA  
Package thermal impedance, junction to free air(6)(7)  
172  
°C/W  
85  
TJ  
Operating virtual junction temperature  
Storage temperature range  
150  
°C  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC–  
.
(3) The magnitude of the input voltage must never exceed the magnitude of the supply voltage.  
(4) Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless  
some limiting resistance is used.  
(5) The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the  
maximum dissipation rating is not exceeded.  
(6) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient  
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.  
(7) The package thermal impedance is calculated in accordance with JESD 51-7.  
Recommended Operating Conditions  
MIN  
–5  
MAX UNIT  
VCC–  
VCC+  
TA  
–18  
V
Supply voltage  
5
18  
Operating free-air temperature range  
–40  
85  
°C  
2
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
www.ti.com  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
Electrical Characteristics  
VCC– = –15 V, VCC+ = 15 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
0.15  
2
3
VIO  
αVIO  
IIB  
Input offset voltage  
VO = 0, RS = 10 , VCM = 0  
VO = 0, RS = 10 , VCM = 0  
VO = 0, VCM = 0  
mV  
TA = –40°C to 85°C  
Input offset voltage  
temperature coefficient  
TA = –40°C to 85°C  
2
µV/°C  
TA = 25°C  
300  
750  
800  
150  
175  
Input bias current  
Input offset current  
nA  
TA = –40°C to 85°C  
TA = 25°C  
25  
IIO  
VO = 0, VCM = 0  
nA  
V
TA = –40°C to 85°C  
Common-mode input voltage  
range  
VICR  
AVD  
VIO = 5 mV, VO = 0  
±13  
±14  
TA = 25°C  
TA = –40°C to 85°C  
VOM+  
90  
85  
110  
Large-signal differential  
voltage amplification  
RL 2 k, VO = ±10 V  
dB  
10.7  
–11.9  
13.8  
RL = 600 Ω  
RL = 2k Ω  
RL = 10k Ω  
VOM–  
VOM+  
13.2  
VOM  
Maximum output voltage swing VID = ±1 V  
Common-mode rejection ratio VIN = ±13 V  
V
VOM–  
–13.2 –13.7  
13.5 14.1  
–14 –14.6  
VOM+  
VOM–  
CMMR  
80  
80  
100  
105  
29  
dB  
dB  
(1)  
kSVR  
Supply-voltage rejection ratio  
VCC+ = 5 V to 15 V, VCC– = –5 V to –15 V  
Source current  
15  
IOS  
Output short-circuit current  
|VID| = 1 V, Output to GND  
VO = 0  
mA  
mA  
Sink current  
–20  
–37  
2.05  
TA = 25°C  
2.5  
ICC  
Supply current (per channel)  
TA = –40°C to 85°C  
2.75  
(1) Measured with VCC± differentially varied at the same time  
Operating Characteristics  
VCC– = –15 V, VCC+ = 15 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
5
TYP  
7
MAX  
UNIT  
V/µs  
MHz  
MHz  
SR  
Slew rate at unity gain  
AVD = 1, VIN = –10 V to 10 V, RL = 2 k, CL = 100 pF  
GBW Gain bandwidth product  
f = 100 kHz  
Open loop  
10  
16  
B1  
Unity gain frequency  
9
CL = 0 pF  
–11  
–6  
Gm  
Gain margin  
RL = 2 kΩ  
dB  
CL = 100 pF  
CL = 0 pF  
55  
Φm  
Phase margin  
RL = 2 kΩ  
deg  
CL = 100 pF  
40  
Amp-to-amp isolation  
f = 20 Hz to 20 kHz  
–120  
120  
0.002  
37  
dB  
kHz  
%
Power bandwidth  
VO = 27 V(PP), RL = 2 k, THD 1%  
THD  
zo  
Total harmonic distortion  
Open-loop output impedance  
Differential input resistance  
Differential input capacitance  
Equivalent input noise voltage  
Equivalent input noise current  
VO = 3 Vrms, AVD = 1, RL = 2 k, f = 20 Hz to 20 kHz  
VO = 0, f = 9 MHz  
VCM = 0  
rid  
175  
12  
kΩ  
Cid  
Vn  
In  
VCM = 0  
pF  
f = 1 kHz, RS = 100 Ω  
f = 1 kHz  
4.5  
0.5  
nV/Hz  
pA/Hz  
3
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
www.ti.com  
0.1 µF  
100 kΩ  
10 Ω  
2.0 kΩ  
22 µF  
4.3 kΩ  
+
D.U.T.  
1/2  
Scope  
x 1  
MC33078  
4.7 µF  
R
= 1.0 MΩ  
IN  
100 kΩ  
Voltage Gain = 50,000  
2.2 µF  
24.3 kΩ  
110 kΩ  
0.1 µF  
NOTE: All capacitors are non-polarized.  
Figure 1. Voltage Noise Test Circuit (0.1 Hz to 10 Hz)  
4
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
www.ti.com  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT  
vs  
COMMON-MODE VOLTAGE  
INPUT BIAS CURRENT  
vs  
SUPPLY VOLTAGE  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
VCM = 0 V  
TA = 25°C  
VCC+ = 15 V  
VCC– = –15 V  
TA = 25°C  
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
-15  
-10  
-5  
0
5
10  
15  
VCC+/–VCC– – Supply Voltage – V  
VCM – Common Mode Voltage – V  
INPUT BIAS CURRENT  
vs  
INPUT OFFSET VOLTAGE  
vs  
TEMPERATURE  
TEMPERATURE  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2
VCC+ = 15 V  
VCC+ = 15 V  
VCC– = –15 V  
VCM = 0 V  
VCC– = –15 V  
VCM = 0 V  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-55 -35 -15  
5
25 45 65 85 105 125  
-55 -35 -15  
5
25 45 65 85 105 125  
TA – Temperature – °C  
TA – Temperature – °C  
5
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
INPUT COMMON-MODE VOLTAGE  
LOW PROXIMITY TO VCC–  
vs  
INPUT COMMON-MODE VOLTAGE  
HIGH PROXIMITY TO VCC+  
vs  
TEMPERATURE  
TEMPERATURE  
1.4  
1.2  
1
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
VCC+ = 3 V to 15 V  
VCC– = -3 V to -15 V  
D
VIO = 5 mV  
VO = 0 V  
0.8  
0.6  
0.4  
0.2  
0
VCC+ = 3 V to 15 V  
VCC– = -3 V to -15 V  
D
VIO = 5 mV  
-1.2  
VO = 0 V  
-1.4  
-55  
-25  
5
35  
65  
95  
125  
-55  
-25  
5
35  
65  
95  
125  
TA – Temperature – °C  
TA – Temperature – °C  
OUTPUT SATURATION VOLTAGE PROXIMITY TO VCC+  
OUTPUT SATURATION VOLTAGE PROXIMITY TO VCC–  
vs  
vs  
LOAD RESISTANCE  
LOAD RESISTANCE  
10  
9
0
-1  
TA = 125°C  
8
-2  
TA = 25°C  
7
-3  
TA = –55°C  
-4  
-5  
6
5
TA = 125°C  
-6  
4
TA = 25°C  
3
-7  
TA = –55°C  
-8  
2
1
0
-9  
-10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
kW  
4
4.5  
kW  
RL – Load Resistance –
RL – Load Resistance –
6
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
www.ti.com  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
OUTPUT SHORT-CIRCUIT CURRENT  
SUPPLY CURRENT  
vs  
TEMPERATURE  
vs  
TEMPERATURE  
70  
60  
50  
40  
30  
20  
10  
10  
9
8
7
6
5
4
3
2
1
0
VCC+ = 15 V  
VCC– = –15 V  
VID = 1 V  
VCM = 0 V  
RL = High Impedance  
VO = 0 V  
VCC± = ±15 V  
Source  
Sink  
VCC± = ±10 V  
VCC± = ±5 V  
-55 -35 -15  
5
25  
45  
65  
85 105 125  
-55 -35 -15  
5
25 45 65 85 105 125  
TA – Temperature – °C  
TA – Temperature – °C  
CMRR  
vs  
FREQUENCY  
PSSR  
vs  
FREQUENCY  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCC+ = 15 V  
VCC+ = 15 V  
VCC– = –15 V  
VCM = 0 V  
VCC– = –15 V  
TA = 25°C  
DVCM = ±1.5 V  
TA = 25°C  
T3P  
T3N  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k 1M  
10k 100k 10M  
f – Frequency – Hz  
f – Frequency – Hz  
7
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
GAIN BANDWIDTH PRODUCT  
GAIN BANDWIDTH PRODUCT  
vs  
vs  
SUPPLY VOLTAGE  
TEMPERATURE  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-55 -35 -15  
5
25  
45  
65  
85 105 125  
5
6
7
8
9 10 11 12 13 14 15 16 17 18  
TA – Temperature – °C  
VCC+/–VCC– – Supply Voltage – V  
OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
OUTPUT VOLTAGE  
vs  
FREQUENCY  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
VCC+ = 15 V  
VCC– = –15 V  
RL = 2 kW  
AV = 1  
RL = 10 kW  
RL = 2 kW  
THD < 1%  
TA = 25°C  
0
-5  
RL = 10 kW  
RL = 2 kW  
-10  
-15  
-20  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
f – Frequency – Hz  
VCC+/–VCC– – Supply Voltage – V  
8
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
www.ti.com  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
OPEN-LOOP GAIN  
vs  
SUPPLY VOLTAGE  
OPEN-LOOP GAIN  
vs  
TEMPERATURE  
120  
115  
110  
105  
100  
95  
110  
105  
100  
95  
RL = 2 kW  
f < 10 Hz  
DVO = 2/3(VCC+ – VCC–  
)
TA = 25°C  
90  
90  
RL = 2 kW  
f < 10 Hz  
DVO = 2/3(VCC+ – VCC–  
85  
)
85  
TA = 25°C  
80  
5
80  
6
7
8
9 10 11 12 13 14 15 16 17 18  
-55 -35 -15  
5
25 45 65 85 105 125  
VCC+/–VCC– – Supply Voltage – V  
T
A – Temperature – °C  
OUTPUT IMPEDANCE  
vs  
CROSSTALK REJECTION  
vs  
FREQUENCY  
FREQUENCY  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
50  
45  
40  
35  
30  
25  
20  
15  
Drive Channel  
VCC+ = 15 V  
CC– = –15 V  
VCC+ = 15 V  
VCC– = –15 V  
RL = 2 kW  
VO = 20 VPP  
TA = 25°C  
V
VO = 1 Vrms  
TA = 25°C  
AV = 1000  
10  
5
AV = 10  
AV = 1  
AV = 100  
0
10
100
1k  
10k  
100k  
1k  
10k
100k
1M  
10M
f – Frequency – Hz  
f – Frequency – Hz  
9
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
OUTPUT VOLTAGE  
1
1
VCC+ = 15 V  
VCC– = –15 V  
VO = 1 Vrms  
AV = 1  
AV = 1000  
0.1  
RL = 2 kW  
TA = 25°C  
0.1  
AV = 100  
0.01  
0.01  
AV = 10  
0.001  
0.001  
0.0001  
VCC+ = 15 V  
VCC– = –15 V  
f = 2 kHz  
AV = 1  
RL = 2 kW  
TA = 25°C  
0.0001  
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
f – Frequency – Hz  
VO – Output Voltage – Vrms  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
SLEW RATE  
vs  
TEMPERATURE  
10  
9
10  
9
8
Falling Edge  
8
Falling Edge  
7
7
6
5
4
3
2
Rising Edge  
Rising Edge  
6
5
VCC+ = 15 V  
4
DVIN = 2/3(VCC+ – VCC–  
)
VCC– = –15 V  
DVIN = 20 V  
AV = 1  
AV = 1  
3
RL = 2 kW  
TA = 25°C  
RL = 2 kW  
2
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
-55 -35 -15  
5
25  
45  
65  
85 105 125  
VCC+/–VCC– – Supply Voltage – V  
TA – Temperature – °C  
10  
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
www.ti.com  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
GAIN AND PHASE  
vs  
FREQUENCY  
GAIN AND PHASE MARGIN  
vs  
OUTPUT LOAD CAPACITANCE  
12  
9
0
80  
70  
60  
50  
40  
30  
20  
0
VCC+ = 15 V  
Phase  
Gain,TA = 125°C  
VCC– = –15 V  
VO = 0 V  
10  
20  
30  
40  
50  
60  
70  
80  
Gain,TA = 25°C  
Gain,TA = –55°C  
-45  
-90  
-135  
-180  
Gain  
6
Phase,TA = 125°C  
3
VCC+ = 15 V  
Phase,TA = 25°C  
Phase,TA = –55°C  
VCC– = –15 V  
RL = 2 kW  
TA = 25°C  
10  
0
0
1
10  
100  
1000  
1k  
10k  
100k  
1M  
10M  
Cout – Output Load Capacitance – pF  
f – Frequency – Hz  
OVERSHOOT  
vs  
OUTPUT LOAD CAPACITANCE  
INPUT VOLTAGE AND CURRENT NOISE  
vs  
FREQUENCY  
100  
10  
1
10  
100  
VCC+ = 15 V  
CC– = –15 V  
VCC+ = 15 V  
VCC– = –15 V  
TA = 25°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
VIN = 100 mVPP  
1
Input Voltage Noise  
Input Current Noise  
TA = 125°C  
TA = 25°C  
TA = –55°C  
0.1  
10  
100  
Cout – Output Load Capacitance – pF  
1000  
10  
100  
1k  
10k  
100k  
f – Frequency – Hz  
11  
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
INPUT REFERRED NOISE VOLTAGE  
GAIN AND PHASE MARGIN  
vs  
DIFFERENTIAL SOURCE RESISTANCE  
vs  
SOURCE RESISTANCE  
16  
14  
12  
10  
8
64  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
1000  
100  
10  
VCC+ = 15 V  
VCC– = –15 V  
f = 1 Hz  
TA = 25°C  
Phase Margin  
Gain Margin  
6
VCC+ = 15 V  
VCC– = –15 V  
AV = 100  
4
VO = 0 V  
2
TA = 25°C  
4
1
0
0
10  
100  
1k  
10k  
100k  
1M  
0
1
10  
100  
1k  
10k 100k  
W
RS – Source Resistance – 
W
RSD – Differential Source Resistance – 
LARGE SIGNAL TRANSIENT RESPONSE  
(AV = 1)  
LARGE SIGNAL TRANSIENT RESPONSE  
(AV = –1)  
Input  
Input  
55  
10  
55  
45  
35  
25  
15  
5
10  
45  
35  
25  
15  
5
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-10  
VCC+ = 15 V  
VCC+ = 15 V  
VCC– = –15 V  
AV = 1  
VCC– = –15 V  
AV = –1  
-20  
-30  
-40  
-50  
-60  
RL = 2 kW  
CL = 100 pF  
TA = 25°C  
RL = 2 kW  
CL = 100 pF  
TA = 25°C  
Output  
Output  
-5  
-5  
-15  
-15  
-2  
2
6
10  
14  
18  
22  
-2  
2
6
10  
14  
18  
22  
Time – µs  
Time – µs  
12  
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
www.ti.com  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
SMALL SIGNAL TRANSIENT RESPONSE  
LOW_FREQUENCY NOISE  
0.6  
0.5  
0.4  
0.2  
0.1  
0.0  
400  
300  
200  
100  
0
Input  
0.3  
0.2  
0.1  
0
-0.1  
VCC+ = 15 V  
VCC– = –15 V  
-0.2  
AV = 1  
-100  
-200  
-300  
-400  
-500  
RL = 2 kW  
CL = 100 pF  
TA = 25°C  
-0.3  
-0.4  
-0.5  
-0.6  
T3  
CC+ = 15 V  
V
VCC– = –15 V  
Output  
BW = 0.1 Hz to 10 Hz  
-0.1  
-0.2  
T
A = 25°C  
-0.5  
0.0  
0.5  
1.0  
1.5  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
Time – µs  
Time – s  
13  
Submit Documentation Feedback  
MC33078  
DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER  
SLLS633COCTOBER 2004REVISED NOVEMBER 2006  
www.ti.com  
APPLICATION INFORMATION  
Output Characteristics  
All operating characteristics are specified with 100-pF load capacitance. The MC33078 can drive higher  
capacitance loads. However, as the load capacitance increases, the resulting response pole occurs at lower  
frequencies, causing ringing, peaking, or oscillation. The value of the load capacitance at which oscillation  
occurs varies from lot to lot. If an application appears to be sensitive to oscillation due to load capacitance,  
adding a small resistance in series with the load should alleviate the problem (see Figure 2).  
PULSE RESPONSE  
(RL = 600 , CL = 380 pF)  
PULSE RESPONSE  
(RL = 2 k, CL = 560 pF)  
PULSE RESPONSE  
(RL = 10 k, CL = 590 pF)  
Maximum capacitance  
before oscillation = 380 pF  
Maximum capacitance  
before oscillation = 590 pF  
Maximum capacitance  
before oscillation = 560 pF  
250 ns per Division  
250 ns per Division  
250 ns per Division  
PULSE RESPONSE  
(RO = 0 , CO = 1000 pF, RL = 2 k)  
PULSE RESPONSE  
(RO = 4 , CO = 1000 pF, RL = 2 k)  
PULSE RESPONSE  
(RO = 35 , CO = 1000 pF, RL = 2 k)  
250 ns per Division  
250 ns per Division  
250 ns per Division  
15 V  
RO  
VO  
5 V  
–5 V  
–15 V  
CL  
RL = 2 k  
Figure 2. Output Characteristics  
14  
Submit Documentation Feedback  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Dec-2006  
PACKAGING INFORMATION  
Orderable Device  
MC33078D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MC33078DE4  
MC33078DGKR  
MC33078DGKRG4  
MC33078DGKT  
MC33078DGKTG4  
MC33078DR  
SOIC  
MSOP  
MSOP  
MSOP  
MSOP  
SOIC  
SOIC  
PDIP  
D
DGK  
DGK  
DGK  
DGK  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MC33078DRE4  
MC33078P  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
MC33078PE4  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

MC33078P CAD模型

  • 引脚图

  • 封装焊盘图

  • MC33078P 替代型号

    型号 制造商 描述 替代类型 文档
    MC33078PE4 TI DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER 类似代替
    MC33078N STMICROELECTRONICS LOW NOISE DUAL OPERATIONAL AMPLIFIERS 功能相似
    MC33078PG ONSEMI Low Noise Dual/Quad Operational Amplifiers 功能相似

    MC33078P 相关器件

    型号 制造商 描述 价格 文档
    MC33078PE4 TI DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER 获取价格
    MC33078PG ONSEMI Low Noise Dual/Quad Operational Amplifiers 获取价格
    MC33078YD STMICROELECTRONICS Low Noise Dual Operational Amplifier 获取价格
    MC33078YDT STMICROELECTRONICS Low noise dual operational amplifier 获取价格
    MC33078_06 STMICROELECTRONICS Low Noise Dual Operational Amplifier 获取价格
    MC33078_06 ONSEMI Low Noise Dual/Quad Operational Amplifiers 获取价格
    MC33078_08 STMICROELECTRONICS Low noise dual operational amplifier 获取价格
    MC33078_1 TI DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER 获取价格
    MC33078_17 UTC DUAL LOW NOISE OPERATIONAL AMPLIFIERS 获取价格
    MC33078_2 TI DUAL HIGH-SPEED LOW-NOISE OPERATIONAL AMPLIFIER 获取价格

    MC33078P 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6