MCP6292 [TI]

双路、5.5V、10MHz、低噪声 (8.7nV/√Hz)、RRIO 运算放大器;
MCP6292
型号: MCP6292
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、5.5V、10MHz、低噪声 (8.7nV/√Hz)、RRIO 运算放大器

放大器 运算放大器
文件: 总46页 (文件大小:2528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
MCP629x 10MHz 轨至轨运算放大器  
1 特性  
3 说明  
1
增益带宽积产品:典型值 10MHz  
MCP6291(单通道)、MCP6292(双通道)和  
MCP6294(四通道)器件组成了一个通用低功耗运算  
放大器系列。具有轨至轨 输入和输出摆幅、低静态电  
流(每通道的典型值为 600μA)、10MHz 的较宽带宽  
和低噪声(10kHz 时为 8.7nV/Hz)等特性,因此对  
于需要在成本与性能间实现良好平衡的各类 应用需  
求, 本系列器件非常有吸引力。其低输入偏置电流使  
该系列器件适合用于带有高源阻抗的 应用 。  
工作电源电压范围:2.4V 5.5V  
轨至轨输入/输出  
低输入偏置电流:1pA  
低静态电流:0.6mA  
输入电压噪声:8.7nV/Hzf = 10kHz 时)  
内部射频和 EMI 滤波器  
工作温度范围:–40°C 125°C  
单位增益稳定  
MCP629x 采用稳健耐用的设计,方便电路设计人员使  
用。该器件具有单位增益稳定的集成 RFI EMI 抑制  
滤波器,在过驱条件下不会出现反相并且具有高静电放  
(ESD) 保护(4kV 人体模型 (HBM))。  
由于具有电阻式开环输出阻抗,因此可在更高的容  
性负载下更轻松地实现稳定  
2 应用  
电源模块  
MCP629x 系列的工作温度范围为 –40°C 125°C。  
该系列器件的电源电压范围为 2.4V 5.5V。  
烟雾探测器  
HVAC:暖通空调  
电池供电 应用  
传感器信号调节  
光电二极管放大器  
模拟滤波器  
器件信息(1)  
器件型号  
MCP6291  
封装  
SOT-23 (5)  
SC70 (5)  
封装尺寸(标称值)  
1.60mm × 2.90mm  
1.25mm × 2.00mm  
3.91mm × 4.90mm  
3.00mm × 3.00mm  
1.60mm × 2.90mm  
8.65mm × 3.91mm  
4.40mm × 5.00mm  
SOIC (8)  
医疗仪器  
MCP6292  
MCP6294  
VSSOP (8)  
SOT-23 (8)  
SOIC (14)  
TSSOP (14)  
笔记本电脑和 PDA  
条形码扫描仪  
音频接收器  
汽车信息娱乐系统  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
小信号过冲与负载电容间的关系  
低侧电机控制  
60  
VBUS  
50  
40  
30  
20  
ILOAD  
ZLOAD  
5 V  
+
MCP629x  
VOUT  
RSHUNT  
VSHUNT  
0.1  
RF  
165 kꢀ  
10  
0
Overshoot+  
Overshoot-  
RG  
0
50  
100  
150  
200  
250  
300  
3.4 kꢀ  
Capacitive Load (pF)  
C025  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS879  
 
 
 
 
 
 
 
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 19  
8.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Application .................................................. 20  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 8  
7.1 Absolute Maximum Ratings ...................................... 8  
7.2 ESD Ratings.............................................................. 8  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information: MCP6291................................ 8  
7.5 Thermal Information: MCP6292................................ 9  
7.6 Thermal Information: MCP6294................................ 9  
9
10 Power Supply Recommendations ..................... 22  
10.1 Input and ESD Protection ..................................... 22  
11 Layout................................................................... 23  
11.1 Layout Guidelines ................................................. 23  
11.2 Layout Example .................................................... 23  
12 器件和文档支持 ..................................................... 24  
12.1 文档支持................................................................ 24  
12.2 相关链接................................................................ 24  
12.3 接收文档更新通知 ................................................. 24  
12.4 社区资源................................................................ 24  
12.5 ....................................................................... 24  
12.6 静电放电警告......................................................... 24  
12.7 Glossary................................................................ 24  
13 机械、封装和可订购信息....................................... 24  
7.7 Electrical Characteristics: VS (Total Supply Voltage) =  
(V+) – (V–) = 2.4 V to 5.5 V..................................... 10  
7.8 Typical Characteristics............................................ 12  
Detailed Description ............................................ 18  
8.1 Overview ................................................................. 18  
8.2 Functional Block Diagram ....................................... 18  
8
4 修订历史记录  
Changes from Revision C (January 2019) to Revision D  
Page  
已添加 向数据表添加了 SOT-23 (8) (DDF) 封装 .................................................................................................................... 1  
Changes from Revision B (April 2018) to Revision C  
Page  
已删除 从器件信息 表中删除了 SOT-23 封装预览符号........................................................................................................... 1  
已添加 向器件信息 表添加了 SC70 封装 ................................................................................................................................ 1  
Added DCK package information to Device Comparison Table ........................................................................................... 4  
Deleted DBV package preview notation from Pin Configuration and Functions section........................................................ 5  
Added DCK package drawing and pin functions to Pin Configuration and Functions section............................................... 5  
Added DBV (SOT-23) and DCK (SC70) thermal information................................................................................................. 8  
Changes from Revision A (October 2017) to Revision B  
Page  
Added DGK package to Thermal Information table .............................................................................................................. 9  
Changes from Original (July 2017) to Revision A  
Page  
已删除 删除了器件信息 表中的 MCP6291 SC70SOT-553 SOIC 封装........................................................................... 1  
已删除 删除了器件信息 表中的 MCP6292 WSON VSSOP (10) 封装................................................................................ 1  
已更改 将器件信息 表中的 MCP6294 14 引脚 SOIC 封装从预览更改为生产数据.................................................................. 1  
Deleted DCK, DRL, DSG, RTE and 8-pin D packages from Device Comparison table ....................................................... 4  
Deleted DRL (SOT-533) package from MCP6291 pinout image and table in Pin Configuration and Functions section ..... 5  
Deleted MCP6291 DCK (SC70) and D (SOIC) package pinout drawings and pin information from Pin Configuration  
and Functions section............................................................................................................................................................. 5  
Deleted MCP6292 DSG (WSON) and DGS (VSSOP) package pinout drawings and pin table information in Pin  
Configuration and Functions section ..................................................................................................................................... 6  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
MCP6291, MCP6292, MCP6294  
www.ti.com.cn  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
Deleted package preview note from MCP6294 pinout drawing in Pin Configuration and Functions section ....................... 7  
Added MCP6294 Thermal Information table ......................................................................................................................... 9  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
5 Device Comparison Table  
PACKAGE LEADS  
NO. OF  
DEVICE  
CHANNELS  
DBV  
5
DCK  
5
D
8
DGK  
PW  
DDF  
MCP6291  
MCP6292  
MCP6294  
1
2
4
8
8
14  
14  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
MCP6291, MCP6292, MCP6294  
www.ti.com.cn  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
6 Pin Configuration and Functions  
MCP6291 DBV Package  
5-Pin SOT-23  
MCP6291 DCK Package  
5-Pin SC70  
Top View  
Top View  
OUT  
V-  
1
2
3
5
4
V+  
IN+  
Vœ  
1
2
3
5
V+  
+IN  
-IN  
INœ  
4
OUT  
Not to scale  
Pin Functions: MCP6921  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
SOT-23 (DBV)  
SC70 (DCK)  
–IN  
+IN  
OUT  
V–  
4
3
1
2
5
3
1
4
8
5
I
Inverting input  
Noninverting input  
Output  
I
O
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
MCP6292 D, DGK, DDF Packages  
8-Pin SOIC, VSSOP  
Top View  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT B  
-IN B  
+IN B  
Pin Functions: MCP6292  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
I
I
Inverting input, channel A  
3
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Output, channel A  
6
I
5
I
1
O
O
7
Output, channel B  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
8
6
Copyright © 2017–2019, Texas Instruments Incorporated  
MCP6291, MCP6292, MCP6294  
www.ti.com.cn  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
MCP6294 D, PW Packages  
14-Pin SOIC, TSSOP  
Top View  
OUT A  
-IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
A
D
13 -IN D  
12 +IN D  
11 V-  
+IN B  
-IN B  
OUT B  
10 +IN C  
9
8
-IN C  
B
C
OUT C  
Pin Functions: MCP6294  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
–IN C  
+IN C  
–IN D  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
NO.  
2
I
I
Inverting input, channel A  
3
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Inverting input, channel C  
Noninverting input, channel C  
Inverting input, channel D  
Noninverting input, channel D  
Output, channel A  
6
I
5
I
9
I
10  
13  
12  
1
I
I
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
11  
4
Output, channel D  
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)(1)  
MIN  
(V–) – 0.5  
–10  
MAX  
UNIT  
Supply voltage  
6
(V+) + 0.5  
(V+) – (V–) + 0.2  
10  
V
Common-mode  
Voltage(2)  
V
Signal input pins  
Differential  
Current(2)  
mA  
mA  
°C  
Output short-circuit(3)  
Specified, TA  
Continuous  
–40  
125  
150  
150  
Junction, TJ  
°C  
Storage, Tstg  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Current limit input signals that can swing more than 0.5 V beyond the supply  
rails to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
7.2 ESD Ratings  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.4  
MAX  
UNIT  
VS  
Supply voltage  
5.5  
V
Specified temperature  
–40  
125  
°C  
7.4 Thermal Information: MCP6291  
MCP6291  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
221.7  
DCK (SC70)  
5 PINS  
263.3  
75.5  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
144.7  
49.7  
51.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
26.1  
1.0  
ψJB  
49.0  
50.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
 
MCP6291, MCP6292, MCP6294  
www.ti.com.cn  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
7.5 Thermal Information: MCP6292  
MCP6292  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
157.6  
104.6  
99.7  
DGK (VSSOP)  
8 PINS  
201.2  
DDF (SOT-23)  
8 PINS  
184.4  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
85.7  
112.8  
122.9  
99.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
55.6  
21.2  
18.7  
ψJB  
99.2  
121.4  
99.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.6 Thermal Information: MCP6294  
MCP6294  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
106.9  
64  
PW (TSSOP)  
14 PINS  
135.8  
64  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
63  
79  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
25.9  
15.7  
ψJB  
62.7  
78.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
7.7 Electrical Characteristics: VS (Total Supply Voltage) = (V+) – (V–) = 2.4 V to 5.5 V  
at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VS = 5 V  
±0.3  
±3  
±5  
VOS  
Input offset voltage  
mV  
VS = 5 V, TA = –40°C to 125°C  
VS = 5 V, TA = –40°C to 125°C  
VS = 2.4 V – 5.5 V, VCM = (V–)  
At DC  
dVOS/dT Drift  
PSRR Power-supply rejection ratio  
Channel separation, DC  
INPUT VOLTAGE RANGE  
±1.1  
±7  
µV/°C  
µV/V  
dB  
100  
VCM  
Common-mode voltage range  
VS = 2.4 V to 5.5 V  
(V–) – 0.1  
80  
(V+) + 0.1  
V
VS = 5.5 V  
(V–) – 0.1 V < VCM < (V+) – 1.4 V  
TA = –40°C to 125°C  
103  
87  
VS = 5.5 V  
VCM = –0.1 V to 5.6 V  
TA = –40°C to 125°C  
57  
CMRR  
Common-mode rejection ratio  
dB  
VS = 2.4 V  
(V–) – 0.1 V < VCM < (V+) – 1.4 V  
TA = –40°C to 125°C  
88  
VS = 2.4 V  
VCM = –0.1 V to 1.9 V  
TA = –40°C to 125°C  
81  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
±1  
pA  
pA  
IOS  
±0.05  
NOISE  
En  
Input voltage noise (peak-to-peak)  
Input voltage noise density  
Input current noise density  
VS = 5 V, f = 0.1 Hz to 10 Hz  
VS = 5 V, f = 10 kHz, RL = 10 kΩ  
VS = 5 V, f = 1 kHz, RL = 10 kΩ  
f = 1 kHz  
4.77  
8.7  
16  
µVPP  
nV/Hz  
fA/Hz  
en  
in  
10  
INPUT CAPACITANCE  
CID  
CIC  
Differential  
2
4
pF  
pF  
Common-mode  
OPEN-LOOP GAIN  
VS = 2.4 V  
(V–) + 0.04 V < VO < (V+) – 0.04 V  
RL = 10 kΩ  
100  
130  
100  
130  
VS = 5.5 V  
(V–) + 0.05 V < VO < (V+) – 0.05 V  
RL = 10 kΩ  
104  
AOL  
Open-loop voltage gain  
dB  
VS = 2.4 V  
(V–) + 0.06 V < VO < (V+) – 0.06 V  
RL = 2 kΩ  
VS = 5.5 V  
(V–) + 0.15 V < VO < (V+) – 0.15 V  
RL = 2 kΩ  
FREQUENCY RESPONSE  
GBP  
φm  
Gain bandwidth product  
VS = 5 V, G = 1  
VS = 5 V, G = 1  
VS = 5 V, G = 1  
10  
55  
MHz  
°
Phase margin  
Slew rate  
SR  
6.5  
V/µs  
To 0.1%, VS = 5 V, 2-V step , G = 1  
CL = 100 pF  
0.5  
1
tS  
Settling time  
µs  
µs  
To 0.01%, VS = 5 V, 2-V step , G = 1  
CL = 100 pF  
VS = 5 V  
VIN × gain > VS  
tOR  
Overload recovery time  
0.2  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
MCP6291, MCP6292, MCP6294  
www.ti.com.cn  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
Electrical Characteristics: VS (Total Supply Voltage) = (V+) – (V–) = 2.4 V to 5.5 V (continued)  
at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
THD + N Total harmonic distortion + noise(1)  
OUTPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VS = 5 V  
VO = 1 VRMS  
G = 1, f = 1 kHz  
0.0008%  
VS = 5.5 V, RL = 10 kΩ  
VS = 5.5 V, RL = 2 kΩ  
VS = 5 V  
15  
50  
VO  
Voltage output swing from supply rails  
mV  
ISC  
ZO  
Short-circuit current  
±50  
100  
mA  
Open-loop output impedance  
VS = 5 V, f = 10 MHz  
Ω
POWER SUPPLY  
IQ Quiescent current per amplifier  
VS = 5.5 V, IO = 0 mA  
600  
1300  
µA  
(1) Third-order filter; bandwidth = 80 kHz at –3 dB.  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
7.8 Typical Characteristics  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
500  
400  
2500  
2000  
1500  
1000  
500  
300  
200  
100  
0
0
œ100  
œ200  
œ300  
œ400  
œ500  
œ500  
œ1000  
œ1500  
œ2000  
œ2500  
0
25  
50  
75  
100  
125  
150  
-4  
-3  
-2  
-1  
0
1
2
3
4
œ50  
œ25  
Temperature (°C)  
Input Common Mode Voltage (V)  
C003  
C005  
V+ = 2.75 V, V– = –2.75 V  
1. Offset Voltage vs Temperature  
2. Offset Voltage vs Common-Mode Voltage  
120  
210  
1000  
Gain  
Phase  
100  
80  
60  
40  
20  
0
180  
500  
0
150  
120  
90  
60  
30  
0
500  
1000  
-20  
1.5  
2.0  
2.5  
3.0  
Supply Voltage (V)  
VS = 2.4 V to 5.5 V  
3.5  
4.0  
4.5  
5.0  
5.5  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
C006  
C004  
CL = 10 pF  
4. Open-Loop Gain and Phase vs Frequency  
3. Offset Voltage vs Power Supply  
40  
30  
250  
200  
150  
100  
50  
IBN  
IBP  
IOS  
20  
10  
0
-10  
-20  
-30  
-40  
0
G = +1  
G = +10  
G = -1  
œ50  
0
25  
Temperature (°C)  
6. Input Bias Current vs Temperature  
50  
75  
100  
125  
œ50  
œ25  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
C007  
C008  
5. Closed-Loop Gain vs Frequency  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
 
MCP6291, MCP6292, MCP6294  
www.ti.com.cn  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
3
2
120  
100  
80  
60  
40  
20  
0
PSRR-  
PSRR+  
CMRR  
-40°C  
-40°C  
125°C  
85°C  
1
25°C  
0
25°C  
85°C  
œ1  
œ2  
œ3  
125°C  
10  
20  
30  
40  
50  
60  
Output Current (mA)  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
C009  
V+ = 2.75 V, V– = –2.75 V  
C011  
8. CMRR and PSRR vs Frequency  
7. Output Voltage Swing vs Output Current  
(Referred to Input)  
10  
9
8
7
6
5
4
3
2
1
55  
50  
45  
40  
35  
30  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
œ50  
œ25  
Temperature (°C)  
Temperature (°C)  
C016  
C012  
VS = 5.5 V  
VCM = (V–) – 0.1 V to (V+) – 1.4 V  
TA= –40°C to 125°C  
VS = 5.5 V  
VCM = (V–) – 0.1 V to (V+) + 0.1 V  
RL= 10 kΩ  
TA= –40°C to 125°C  
RL= 10 kΩ  
10. CMRR vs Temperature  
9. CMRR vs Temperature  
10  
9
8
7
6
5
Time (1s/div)  
0
25  
50  
75  
100  
125  
œ50  
œ25  
Temperature (°C)  
C013  
C014  
VS = 2.4 V to 5.5 V  
11. PSRR vs Temperature  
VS = 2.4 V to 5.5 V  
12. 0.1-Hz to 10-Hz Input Voltage Noise  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
120  
100  
80  
60  
40  
20  
0
-90  
-95  
-100  
-105  
-110  
-115  
-120  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
100  
1k  
Frequency (Hz)  
10k  
C015  
C017  
VS = 5.5 V  
VCM = 2.5 V  
G = 1  
RL = 2 kΩ  
VOUT = 0.5 VRMS  
BW = 80 kHz  
13. Input Voltage Noise Spectral Density vs Frequency  
œ40  
14. THD + N vs Frequency  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ100  
œ120  
œ120  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Output Voltage Amplitude (VRMS  
)
Output Voltage Amplitude (VRMS  
)
C019  
C018  
VS = 5.5 V  
G = –1  
VCM = 2.5 V  
RL = 2 kΩ  
VS = 5.5 V  
G = 1  
VCM = 2.5 V  
RL = 2 kΩ  
BW = 80 kHz  
f = 1 kHz  
BW = 80 kHz  
f = 1 kHz  
16. THD + N vs Amplitude  
15. THD + N vs Amplitude  
800  
700  
600  
500  
400  
300  
200  
100  
0
600  
580  
560  
540  
520  
500  
1.5  
0
25  
50  
75  
100  
125  
œ50  
œ25  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Temperature (°C)  
Supply Voltage (V)  
C021  
C020  
17. Quiescent Current vs Supply Voltage  
18. Quiescent Current vs Temperature  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
MCP6291, MCP6292, MCP6294  
www.ti.com.cn  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
200  
60  
50  
160  
40  
120  
30  
80  
20  
40  
10  
0
Overshoot+  
Overshoot-  
0
10k  
0
50  
100  
150  
200  
250  
300  
100k  
Frequency (Hz)  
1M  
10M  
Capacitive Load (pF)  
C025  
C024  
V+ = 2.75 V  
V– = –2.75 V  
G = 1 V/V  
RL = 10 kΩ  
VOUT step = 100 mVp-p  
20. Small-Signal Overshoot vs Load Capacitance  
19. Open-Loop Output Impedance vs Frequency  
60  
50  
40  
30  
20  
10  
0
Input  
Output  
Overshoot(+)  
Overshoot(-)  
Time (200 µs/div)  
0
50  
100  
150  
200  
250  
300  
Capacitive Load (pF)  
C026  
C036  
V+ = 2.75 V  
V– = –2.75 V  
G = –1 V/V  
V+ = 2.75 V, V– = –2.75 V  
RL = 10 kΩ  
VOUT step = 100 mVp-p  
21. Small-Signal Overshoot vs Load Capacitance  
22. No Phase Reversal  
Input  
Output  
INPUT  
OUTPUT  
Time (1 µs/div)  
Time (0.1µs/div)  
C028  
C030  
V+ = 2.75 V  
V– = –2.75 V  
G = –10 V/V  
V+ = 2.75 V  
V– = –2.75 V  
G = 1 V/V  
23. Overload Recovery  
24. Small-Signal Step Response  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
80  
60  
40  
20  
Sinking  
0
Sourcing  
œ20  
œ40  
Input  
œ60  
Output  
œ80  
Time (1 µs/div)  
0
25  
50  
75  
100  
125  
œ50  
œ25  
Temperature (°C)  
C031  
C034  
V+ = 2.75 V  
G = 1 V/V  
V– = –2.75 V  
CL = 100 pF  
25. Large-Signal Step Response  
26. Short-Circuit Current vs Temperature  
0
-20  
140  
120  
100  
80  
-40  
-60  
60  
-80  
40  
-100  
-120  
-140  
20  
0
10M  
100M  
Frequency (Hz)  
1G  
C041  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
PRF = –10 dBm  
C038  
V+ = 2.75 V, V– = –2.75 V  
28. Channel Separation vs Frequency  
27. Electromagnetic Interference Rejection Ratio  
Referred to Noninverting Input (EMIRR+) vs Frequency  
200  
160  
120  
80  
90  
75  
60  
45  
30  
15  
0
40  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Capacitive Load (pF)  
Output Voltage (V)  
C037  
C023  
VS = 5.5 V  
VS = 5.5 V  
29. Phase Margin vs Capacitive Load  
30. Open Loop Voltage Gain vs Output Voltage  
版权 © 2017–2019, Texas Instruments Incorporated  
16  
MCP6291, MCP6292, MCP6294  
www.ti.com.cn  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5.5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
100  
100  
75  
75  
50  
50  
25  
25  
0
0
-25  
-50  
-75  
-100  
-125  
-150  
œ25  
œ50  
œ75  
œ100  
0
0.3  
0.6  
0.9  
0
0.3  
0.6  
0.9  
1.2  
1.5  
Settling time (µs)  
Settling time (µs)  
C032  
C033  
31. Large Signal Settling Time (Positive)  
32. Large Signal Settling Time (Negative)  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The MCP629x series is a family of low-power, rail-to-rail input and output op amps. These devices operate from  
2.4 V to 5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose applications. The  
input common-mode voltage range includes both rails and allows the MCP629x series to be used in any single-  
supply application. Rail-to-rail input and output swing significantly increases dynamic range in low-supply  
applications and are designed for driving sampling analog-to-digital converters (ADCs).  
8.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
VINÛ  
VBIAS1  
Class AB  
Control  
Circuitry  
VO  
VBIAS2  
VÛ  
(Ground)  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
 
MCP6291, MCP6292, MCP6294  
www.ti.com.cn  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
8.3 Feature Description  
8.3.1 Rail-to-Rail Input  
The input common-mode voltage range of the MCP629x family extends 100 mV beyond the supply rails for the  
full supply voltage range of 2.4 V to 5.5 V. This performance is achieved with a complementary input stage: an  
N-channel input differential pair in parallel with a P-channel differential pair, as the Functional Block Diagram  
shows. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 1.4 V to 100 mV  
above the positive supply, whereas the P-channel pair is active for inputs from 100 mV below the negative  
supply to approximately (V+) – 1.4 V. There is a small transition region, typically (V+) – 1.2 V to (V+) – 1 V, in  
which both pairs are on. This 200-mV transition region can vary up to 200 mV with process variation. Thus, the  
transition region (with both stages on) can range from (V+) – 1.4 V to (V+) – 1.2 V on the low end, and up to  
(V+) – 1 V to (V+) – 0.8 V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset drift,  
and THD can degrade compared to device operation outside this region.  
8.3.2 Rail-to-Rail Output  
Designed as a low-power, low-voltage operational amplifier, the MCP629x series delivers a robust output drive  
capability. A class AB output stage with common-source transistors achieves full rail-to-rail output swing  
capability. For resistive loads of 10 kΩ, the output swings to within 15 mV of either supply rail, regardless of the  
applied power-supply voltage. Different load conditions change the ability of the amplifier to swing close to the  
rails.  
8.3.3 Overload Recovery  
Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated  
state to a linear state. The output devices of the operational amplifier enter a saturation region when the output  
voltage exceeds the rated operating voltage, because of the high input voltage or the high gain. After the device  
enters the saturation region, the charge carriers in the output devices require time to return to the linear state.  
After the charge carriers return to the linear state, the device begins to slew at the specified slew rate. Therefore,  
the propagation delay (in case of an overload condition) is the sum of the overload recovery time and the slew  
time. The overload recovery time for the MCP629x series is approximately 200 ns.  
8.4 Device Functional Modes  
The MCP629x family has a single functional mode. These devices are powered on as long as the power-supply  
voltage is between 2.4 V (±1.2 V) and 5.5 V (±2.75 V).  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The MCP629x series features 10-MHz bandwidth and 6.5-V/µs slew rate with only 600µA of supply current per  
channel, providing good AC performance at low power consumption. DC applications are well served with a low  
input noise voltage of 8.7 nV / Hz at 10 kHz, low input bias current, and a typical input offset voltage of 0.3 mV.  
9.2 Typical Application  
33 shows the MCP629x configured in a low-side, motor-control application.  
VBUS  
ILOAD  
ZLOAD  
5 V  
+
MCP629x  
VOUT  
RSHUNT  
VSHUNT  
0.1  
RF  
165 kꢀ  
RG  
3.4 kꢀ  
33. MCP629x in a Low-Side, Motor-Control Application  
9.2.1 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Output voltage: 4.95 V  
Maximum shunt voltage: 100 mV  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
 
MCP6291, MCP6292, MCP6294  
www.ti.com.cn  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
Typical Application (接下页)  
9.2.2 Detailed Design Procedure  
The transfer function of the circuit in 33 is shown in 公式 1.  
VOUT = ILOAD ìRSHUNT ìGain  
(1)  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from  
0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
defined using 公式 2.  
VSHUNT _MAX  
100mV  
1A  
RSHUNT  
=
=
=100mW  
ILOAD_MAX  
(2)  
Using 公式 2, RSHUNT is 100 mΩ. The voltage drop produced by ILOAD and RSHUNT is amplified by the MCP629x to  
produce an output voltage of roughly 0 V to 4.95 V. The gain needed by the MCP629x to produce the necessary  
output voltage is calculated using 公式 3:  
V
OUT _MAX - VOUT _MIN  
(
)
Gain =  
VIN_MAX - V  
(
)
IN_MIN  
(3)  
Using 公式 3, the required gain is calculated to be 49.5 V/V, which is set with resistors RF and RG. 公式 4 is used  
to size the resistors, RF and RG, to set the gain of the MCP629x to 49.5 V/V.  
R
(
(
)
)
F
Gain = 1+  
R
G
(4)  
Choosing RF as 165 kand RG as 3.4 kprovides a combination that equals roughly 49.5 V/V. 34 shows the  
measured transfer function of the circuit shown in 33.  
9.2.3 Application Curve  
5
4
3
2
1
0
0
0.2  
0.4  
0.6  
0.8  
1
ILOAD (A)  
C219  
34. Low-Side, Current-Sense Transfer Function  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
 
 
 
 
 
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The MCP629x series is specified for operation from 2.4 V to 5.5 V (±1.2 V to ±2.75 V); many specifications apply  
from –40°C to 125°C. The Typical Characteristics section presents parameters that can exhibit significant  
variance with regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 6 V can permanently damage the device; see the Absolute  
Maximum Ratings table.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
Example section.  
10.1 Input and ESD Protection  
The MCP629x series incorporates internal ESD protection circuits on all pins. For input and output pins, this  
protection primarily consists of current-steering diodes connected between the input and power-supply pins.  
These ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to 10-  
mA, as stated in the Absolute Maximum Ratings table. 35 shows how a series input resistor is added to the  
driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and the  
value must be kept to a minimum in noise-sensitive applications.  
V+  
IOVERLOAD  
10-mA maximum  
VOUT  
Device  
VIN  
5 kW  
35. Input Current Protection  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
 
MCP6291, MCP6292, MCP6294  
www.ti.com.cn  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good printed-circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of op amp  
itself. Bypass capacitors reduce the coupled noise by providing low-impedance power sources local to the  
analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground  
planes. A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise  
pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the  
ground current. For more detailed information, see Circuit Board Layout Techniques.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much  
better as opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 37, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance on the inverting input.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is  
recommended to remove moisture introduced into the device packaging during the cleaning process. A  
low-temperature, post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
11.2 Layout Example  
VIN A  
VIN B  
+
+
VOUT A  
VOUT B  
RG  
RG  
RF  
RF  
36. Schematic Representation for 37  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT A  
Use low-ESR,  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VS+  
GND  
OUT A  
V+  
RF  
OUT B  
GND  
-IN A  
+IN A  
Vœ  
OUT B  
-IN B  
RF  
RG  
GND  
VIN A  
RG  
+IN B  
VIN B  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VSœ  
Ground (GND) plane on another layer  
as possible.  
37. Layout Example  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
 
MCP6291, MCP6292, MCP6294  
ZHCSGF0D JULY 2017REVISED OCTOBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
《电路板布局技巧》(SLOA089)  
12.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
MCP6291  
MCP6292  
MCP6294  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MCP6291IDBVR  
MCP6291IDCKR  
MCP6292IDDFR  
MCP6292IDGKR  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
DDF  
DGK  
5
5
8
8
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1U3F  
1EL  
Samples  
Samples  
Samples  
Samples  
SN  
ACTIVE SOT-23-THIN  
NIPDAU  
M292  
M292  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
NIPDAU | SN  
| NIPDAUAG  
MCP6292IDGKT  
DGK  
8
250  
RoHS & Green  
NIPDAU | SN  
| NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 125  
M292  
Samples  
MCP6292IDR  
MCP6294IDR  
MCP6294IPWR  
MCP6294IPWT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
2500 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAU | SN  
NIPDAU  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
MC6292  
Samples  
Samples  
Samples  
Samples  
14  
14  
14  
MCP6294D  
MCP6294  
MCP6294  
TSSOP  
TSSOP  
PW  
PW  
250  
RoHS & Green  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Jun-2023  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MCP6291IDBVR  
MCP6291IDBVR  
MCP6291IDCKR  
MCP6292IDDFR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DDF  
5
5
5
8
3000  
3000  
3000  
3000  
180.0  
180.0  
178.0  
180.0  
8.4  
8.4  
9.0  
8.4  
3.2  
3.2  
2.4  
3.2  
3.2  
3.2  
2.5  
3.2  
1.4  
1.4  
1.2  
1.4  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
SOT-23-  
THIN  
MCP6292IDGKR  
MCP6292IDGKR  
MCP6292IDGKT  
MCP6292IDGKT  
MCP6292IDGKT  
MCP6292IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
DGK  
D
8
8
2500  
2500  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
6.4  
6.5  
6.9  
6.9  
3.4  
3.4  
3.4  
3.4  
3.4  
5.2  
9.0  
5.6  
5.6  
1.4  
1.4  
1.4  
1.4  
1.4  
2.1  
2.1  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
8
8
250  
8
250  
8
2500  
2500  
2000  
250  
MCP6294IDR  
SOIC  
D
14  
14  
14  
MCP6294IPWR  
MCP6294IPWT  
TSSOP  
TSSOP  
PW  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MCP6291IDBVR  
MCP6291IDBVR  
MCP6291IDCKR  
MCP6292IDDFR  
MCP6292IDGKR  
MCP6292IDGKR  
MCP6292IDGKT  
MCP6292IDGKT  
MCP6292IDGKT  
MCP6292IDR  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DDF  
DGK  
DGK  
DGK  
DGK  
DGK  
D
5
5
3000  
3000  
3000  
3000  
2500  
2500  
250  
210.0  
210.0  
190.0  
210.0  
366.0  
366.0  
356.0  
366.0  
366.0  
356.0  
356.0  
366.0  
366.0  
185.0  
185.0  
190.0  
185.0  
364.0  
364.0  
356.0  
364.0  
364.0  
356.0  
356.0  
364.0  
364.0  
35.0  
35.0  
30.0  
35.0  
50.0  
50.0  
35.0  
50.0  
50.0  
35.0  
35.0  
50.0  
50.0  
5
SOT-23-THIN  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
8
8
8
8
8
250  
8
250  
8
2500  
2500  
2000  
250  
MCP6294IDR  
SOIC  
D
14  
14  
14  
MCP6294IPWR  
MCP6294IPWT  
TSSOP  
TSSOP  
PW  
PW  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

MCP6292-E/MS

1.0 mA, 10 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6292-E/P

1.0 mA, 10 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6292-E/SN

1.0 mA, 10 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6292-EMS

1.0 mA, 10 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6292-EP

1.0 mA, 10 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6292-ESN

1.0 mA, 10 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6292IDDFR

Dual, 5.5-V, 10-MHz, low noise (8.7-nV/√Hz), RRIO operational amplifier | DDF | 8 | -40 to 125
TI

MCP6292IDGKR

Dual, 5.5-V, 10-MHz, low noise (8.7-nV/√Hz), RRIO operational amplifier | DGK | 8 | -40 to 125
TI

MCP6292IDGKT

Dual, 5.5-V, 10-MHz, low noise (8.7-nV/√Hz), RRIO operational amplifier | DGK | 8 | -40 to 125
TI

MCP6292IDR

Dual, 5.5-V, 10-MHz, low noise (8.7-nV/√Hz), RRIO operational amplifier | D | 8 | -40 to 125
TI

MCP6292T

1.0 mA, 10 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6292T-E

1.0 mA, 10 MHz Rail-to-Rail Op Amp
MICROCHIP