MSP430AFE231IPW [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430AFE231IPW
型号: MSP430AFE231IPW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器和处理器 外围集成电路 光电二极管 时钟
文件: 总47页 (文件大小:904K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
MIXED SIGNAL MICROCONTROLLER  
1
FEATURES  
Low Supply Voltage Range: 1.8 V to 3.6 V  
Up to Three 24-Bit Sigma-Delta  
Analog-to-Digital (A/D) Converters With  
Differential PGA Inputs  
Ultra-Low Power Consumption  
Active Mode: 220 µA at 1 MHz, 2.2 V  
Standby Mode: 0.5 µA  
16-Bit Timer_A With Three Capture/Compare  
Registers  
Off Mode (RAM Retention): 0.1 µA  
Serial Communication Interface (USART),  
Asynchronous UART or Synchronous SPI  
Selectable by Software  
Five Power-Saving Modes  
Ultra-Fast Wake-Up From Standby Mode in  
Less Than 1 µs  
16-Bit Hardware Multiplier  
Brownout Detector  
16-Bit RISC Architecture, up to 12-MHz System  
Clock  
Supply Voltage Supervisor/Monitor with  
Programmable Level Detection  
Basic Clock Module Configurations  
Internal Frequencies up to 12 MHz With  
Two Calibrated Frequencies  
Serial Onboard Programming, No External  
Programming Voltage Needed Programmable  
Code Protection by Security Fuse  
Internal Very-Low-Power Low-Frequency  
(LF) Oscillator  
On-Chip Emulation Module  
High-Frequency (HF) Crystal up to 16 MHz  
Resonator  
Family Members are Summarized in Table 1.  
For Complete Module Descriptions, See the  
MSP430x2xx Family User's Guide, Literature  
Number SLAU144  
External Digital Clock Source  
DESCRIPTION  
The Texas Instruments MSP430family of ultra-low-power microcontrollers consists of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features a  
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs.  
The MSP430AFE2x3 devices are ultra-low-power mixed signal microcontrollers integrating three independent  
24-bit sigma-delta A/D converters, one 16-bit timer, one 16-bit hardware multiplier, USART communication  
interface, watchdog timer, and 11 I/O pins.  
The MSP430AFE2x2 devices are identical to the MSP430AFE2x3, except that there are only two 24-bit  
sigma-delta A/D converters integrated.  
The MSP430AFE2x1 devices are identical to the MSP430AFE2x3, except that there is only one 24-bit  
sigma-delta A/D converter integrated.  
Available family members are summarized in Table 1.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 20102011, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 1. Family Members(1)  
USART  
(UART/  
SPI)  
Flash  
(KB)  
SRAM  
(Byte)  
SD24_A  
Converters  
16-Bit  
MPY  
Package  
Type(3)  
Device  
EEM  
Timer_A(2)  
Clocks  
I/O  
HF, DCO,  
VLO  
MSP430AFE253IPW  
MSP430AFE233IPW  
MSP430AFE223IPW  
MSP430AFE252IPW  
MSP430AFE232IPW  
MSP430AFE222IPW  
MSP430AFE251IPW  
MSP430AFE231IPW  
MSP430AFE221IPW  
16  
8
512  
512  
256  
512  
512  
256  
512  
512  
256  
1
1
1
1
1
1
1
1
1
3
3
3
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
11  
11  
11  
11  
11  
11  
11  
11  
11  
24-TSSOP  
24-TSSOP  
24-TSSOP  
24-TSSOP  
24-TSSOP  
24-TSSOP  
24-TSSOP  
24-TSSOP  
24-TSSOP  
HF, DCO,  
VLO  
HF, DCO,  
VLO  
4
HF, DCO,  
VLO  
16  
8
HF, DCO,  
VLO  
HF, DCO,  
VLO  
4
HF, DCO,  
VLO  
16  
8
HF, DCO,  
VLO  
HF, DCO,  
VLO  
4
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM  
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
(3) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
Development Tool Support  
All MSP430microcontrollers include an Embedded Emulation Module (EEM) that allows advanced debugging  
and programming through easy-to-use development tools. Recommended hardware options include:  
Debugging and Programming Interface  
MSP-FET430UIF (USB)  
MSP-FET430PIF (Parallel Port)  
Debugging and Programming Interface with Target Board  
MSP-TS430PW24  
Production Programmer  
MSP-GANG430  
2
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Functional Block Diagram  
AVCC AVSS  
P2.x  
DVCC DVSS  
P1.x  
XT2IN XT2OUT  
3
8
ACLK  
Hardware  
Multiplier  
(16x16)  
Port P2  
Port P1  
Basic  
Clock  
System+  
16KB  
8KB  
4KB  
512B  
512B  
256B  
3 I/O  
8 I/O  
Interrupt  
capability  
Pull-up/  
down  
Interrupt  
capability  
Pull-up/  
down  
SMCLK  
MPY,  
MPYS,  
MAC,  
Flash  
RAM  
MCLK  
MACS  
resistors  
resistors  
12MHz  
CPU  
MAB  
MDB  
incl. 16  
Registers  
Emulation  
2BP  
Timer_A3  
SD24_A  
(w/o BUF)  
USART0  
Watchdog  
WDT+  
JTAG  
Interface  
BOR  
UART  
or SPI  
Function  
3 CC  
Registers  
3 Converter  
2 Converter  
1 Converter  
SVS/SVM  
15/16-bit  
Spy-Bi  
Wire  
RST/NMI  
Pin Designation, MSP430AFE2x3IPW  
A0.0+  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P2.0/STE0/TA0/TDI/TCLK  
P1.7/UCLK0/TA1/TDO/TDI  
P1.6/SOMI0/TA2/TCK  
P1.5/SIMO0/SVSOUT/TMS  
P1.4/URXD0/SD2DO  
P1.3/UTXD0/SD1DO  
P1.2/TA0/SD0DO  
P1.1/TA1/SDCLK  
DVCC  
A0.0-  
A1.0+  
3
A1.0-  
4
AVCC  
5
AVSS  
6
MSP430AFE2x3  
VREF  
A2.0+  
7
8
A2.0-  
9
TEST/SBWTCK  
10  
11  
12  
P2.7/XT2OUT  
RST/NMI/SBWTDIO  
P1.0/SVSIN/TACLK/SMCLK/TA2  
P2.6/XT2IN  
DVSS  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Pin Designation, MSP430AFE2x2IPW  
A0.0+  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P2.0/STE0/TA0/TDI/TCLK  
A0.0-  
P1.7/UCLK0/TA1/TDO/TDI  
P1.6/SOMI0/TA2/TCK  
P1.5/SIMO0/SVSOUT/TMS  
P1.4/URXD0  
A1.0+  
3
A1.0-  
4
AVCC  
5
AVSS  
6
P1.3/UTXD0/SD1DO  
P1.2/TA0/SD0DO  
P1.1/TA1/SDCLK  
DVCC  
MSP430AFE2x2  
VREF  
7
NC  
NC  
8
9
TEST/SBWTCK  
10  
11  
12  
P2.7/XT2OUT  
RST/NMI/SBWTDIO  
P1.0/SVSIN/TACLK/SMCLK/TA2  
P2.6/XT2IN  
DVSS  
A. Connect NC pins to analog ground (AVSS)  
Pin Designation, MSP430AFE2x1IPW  
A0.0+  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P2.0/STE0/TA0/TDI/TCLK  
P1.7/UCLK0/TA1/TDO/TDI  
P1.6/SOMI0/TA2/TCK  
P1.5/SIMO0/SVSOUT/TMS  
P1.4/URXD0  
A0.0-  
NC  
3
NC  
4
AVCC  
5
AVSS  
6
P1.3/UTXD0  
MSP430AFE2x1  
VREF  
7
P1.2/TA0/SD0DO  
P1.1/TA1/SDCLK  
DVCC  
NC  
NC  
8
9
TEST/SBWTCK  
10  
11  
12  
P2.7/XT2OUT  
RST/NMI/SBWTDIO  
P1.0/SVSIN/TACLK/SMCLK/TA2  
P2.6/XT2IN  
DVSS  
B. Connect NC pins to analog ground (AVSS)  
4
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Table 2. Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
1
A0.0+  
A0.0-  
A1.0+  
A1.0-  
AVCC  
AVSS  
I
I
I
I
SD24_A positive analog input A0.0(1)  
SD24_A negative analog input A0.0(1)  
SD24_A positive analog input A1.0 (not available on MSP430AFE2x1)(1)  
SD24_A negative analog input A1.0 (not available on MSP430AFE2x1)(1)  
Analog supply voltage, positive terminal. Must not power up prior to DVCC.  
Analog supply voltage, negative terminal  
2
3
4
5
6
Input for an external reference voltage/  
output for internal reference voltage (can be used as mid-voltage)  
VREF  
A2.0+  
A2.0-  
7
8
9
I/O  
SD24_A positive analog input A2.0 (not available on MSP430AFE2x2 and  
MSP430AFE2x1)(1)  
I
I
SD24_A negative analog input A2.0 (not available on MSP430AFE2x2 and  
MSP430AFE2x1)(1)  
Selects test mode for JTAG pins on P1.5 to P1.7 and P2.0.  
The device protection fuse is connected to TEST.  
Spy-Bi-Wire test clock input for device programming and test.  
TEST/SBWTCK  
10  
11  
I
I
Reset or nonmaskable interrupt input  
Spy-Bi-Wire test data input/output for device programming and test.  
RST/NMI/SBWTDIO  
General-purpose digital I/O pin  
Analog input to supply voltage supervisor  
Timer_A3, clock signal TACLK input  
SMCLK signal output  
P1.0/SVSIN/TACLK/SMCLK/TA2  
12  
I/O  
Timer_A3, compare: Out2 Output  
DVSS  
13  
14  
Digital supply voltage, negative terminal  
Input terminal of crystal oscillator  
General-purpose digital I/O pin  
P2.6/XT2IN  
I/O  
I/O  
Output terminal of crystal oscillator  
General-purpose digital I/O pin  
P2.7/XT2OUT  
DVCC  
15  
16  
Digital supply voltage, positive terminal.  
General-purpose digital I/O pin  
P1.1/TA1/SDCLK  
P1.2/TA0/SD0DO  
P1.3/UTXD0/SD1DO  
17  
18  
19  
I/O  
I/O  
I/O  
Timer_A3, capture: CCI1A and CCI1B inputs, compare: Out1 output  
SD24_A bit stream clock output  
General-purpose digital I/O pin  
Timer_A3, capture: CCI0A and CCI0B inputs, compare: Out0 output  
SD24_A bit stream data output for channel 0  
General-purpose digital I/O pin  
Transmit data out - USART0/UART mode  
SD24_A bit stream data output for channel 1 (not available on MSP430AFE2x1)  
General-purpose digital I/O pin  
Receive data in - USART0/UART mode  
SD24_A bit stream data output for channel 2 (not available on MSP430AFE2x2 and  
MSP430AFE2x1)  
P1.4/URXD0/SD2DO  
20  
21  
22  
I/O  
I/O  
I/O  
General-purpose digital I/O  
Slave in/master out of USART0/SPI mode  
SVS: output of SVS comparator  
JTAG test mode select. TMS is used as an input port for device programming and  
test.  
P1.5/SIMO0/SVSOUT/TMS  
P1.6/SOMI0/TA2/TCK  
General-purpose digital I/O pin  
Slave out/master in of USART0/SPI mode  
Timer_A3, compare: Out2 output  
JTAG test clock. TCK is the clock input port for device programming and test.  
General-purpose digital I/O pin  
External clock input - USART0/UART or SPI mode, clock output - USART0/SPI  
mode.  
P1.7/UCLK0/TA1/TDO/TDI  
23  
I/O  
Timer_A3, compare: Out1 output  
JTAG test data output port. TDO/TDI data output or programming data input  
terminal.  
(1) It is recommended to short unused analog input pairs and connect them to analog ground.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
General-purpose digital I/O pin  
Slave transmit enable - USART0/SPI mode.  
Timer_A3, compare: Out0 output  
P2.0/STE0/TA0/TDI/TCLK  
24  
I/O  
JTAG test data input or test clock input for device programming and test.  
6
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
SHORT-FORM DESCRIPTION  
Program Counter  
Stack Pointer  
PC/R0  
CPU  
The MSP430CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions, are  
performed as register operations in conjunction with  
seven addressing modes for source operand and four  
addressing modes for destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that provide  
reduced  
instruction  
execution  
time.  
The  
R5  
register-to-register operation execution time is one  
cycle of the CPU clock.  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and  
constant generator respectively. The remaining  
registers are general-purpose registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses and can be handled with  
all instructions.  
R10  
R11  
Instruction Set  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 3 shows examples of the three types of  
instruction formats; Table 4 shows the address  
modes.  
R12  
R13  
R14  
R15  
Table 3. Instruction Word Formats  
INSTRUCTION FORMAT  
Dual operands, source-destination  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
R4 + R5 R5  
Single operands, destination only  
PC (TOS), R8 PC  
Relative jump, unconditional/conditional  
Jump-on-equal bit = 0  
Table 4. Address Mode Descriptions  
ADDRESS MODE  
Register  
S(1)  
D(2)  
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
OPERATION  
R10 R11  
MOV R10,R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
MOV 2(R5),6(R6)  
M(2+R5) M(6+R6)  
M(EDE) M(TONI)  
M(MEM) M(TCDAT)  
M(R10) M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) R11  
R10 + 2 R10  
Indirect autoincrement  
Immediate  
MOV @Rn+,Rm  
MOV #X,TONI  
#45 M(TONI)  
(1) S = source  
(2) D = destination  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
 
 
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Operating Modes  
The MSP430 microcontrollers have one active mode and five software-selectable low-power modes of operation.  
An interrupt event can wake up the device from any of the five low-power modes, service the request, and  
restore back to the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
Active mode ( AM)  
All clocks are active.  
Low-power mode 0 (LPM0)  
CPU is disabled.  
ACLK and SMCLK remain active. MCLK is disabled.  
Low-power mode 1 (LPM1)  
CPU is disabled ACLK and SMCLK remain active. MCLK is disabled.  
DCO dc-generator is disabled if DCO not used in active mode.  
Low-power mode 2 (LPM2)  
CPU is disabled.  
MCLK and SMCLK are disabled.  
DCO dc-generator remains enabled.  
ACLK remains active.  
Low-power mode 3 (LPM3)  
CPU is disabled.  
MCLK and SMCLK are disabled.  
DCO dc-generator is disabled.  
ACLK remains active.  
Low-power mode 4 (LPM4)  
CPU is disabled.  
ACLK is disabled.  
MCLK and SMCLK are disabled.  
DCO dc-generator is disabled.  
Crystal oscillator is stopped.  
8
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Interrupt Vector Addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFE0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, if flash is not programmed), the  
CPU goes into LPM4 immediately after power up.  
Table 5. Interrupt Vector Addresses  
SYSTEM  
INTERRUPT  
INTERRUPT SOURCE  
INTERRUPT FLAG  
WORD ADDRESS  
PRIORITY  
Power up  
External reset  
Watchdog  
PORIFG  
RSTIFG  
WDTIFG  
Reset  
0FFFEh  
15, highest  
Flash key violation  
KEYV  
(2)  
PC out-of-range(1)  
NMI  
Oscillator fault  
Flash memory access violation  
NMIIFG  
OFIFG  
ACCVIFG  
(Non)maskable,  
(Non)maskable,  
(Non)maskable  
0FFFCh  
14  
(2) (3)  
0FFFAh  
0FFF8h  
13  
12  
SD24CCTLx SD24OVIFG,  
SD24CCTLx SD24IFG(2) (4)  
SD24_A  
Maskable  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
11  
10  
9
Watchdog Timer  
USART0 Receive  
USART0 Transmit  
WDTIFG  
URXIFG0  
UTXIFG0  
Maskable  
Maskable  
Maskable  
8
7
Timer_A3  
Timer_A3  
TA0CCR0 CCIFG(4)  
Maskable  
Maskable  
Maskable  
6
TA0CCR1 CCIFG,  
TA0CCR2 CCIFG,  
TA0CTL TAIFG  
P1IFG.0 to P1IFG.7(2) (4)  
0FFEAh  
5
(2) (4)  
I/O Port P1 (eight flags)  
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
4
3
2
1
I/O Port P2 (three flags)  
P2IFG.0 to P2IFG.2(2) (4)  
Maskable  
0, lowest  
(1) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from  
within unused address range.  
(2) Multiple source flags  
(3) (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
(4) Interrupt flags are located in the module.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Special Function Registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
Legend  
rw  
Bit can be read and written.  
rw-0, 1  
rw-(0), (1)  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device.  
Table 6. Interrupt Enable 1  
Address  
00h  
7
6
5
4
3
2
1
0
UTXIE0  
rw-0  
URXIE0  
rw-0  
ACCVIE  
rw-0  
NMIIE  
rw-0  
OFIE  
rw-0  
WDTIE  
rw-0  
WDTIE  
Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval  
timer mode.  
OFIE  
Oscillator fault interrupt enable  
NMIIE  
(Non)maskable interrupt enable  
ACCVIE  
URXIE0  
UTXIE0  
Flash access violation interrupt enable  
USART0: UART and SPI receive interrupt enable  
USART0: UART and SPI transmit interrupt enable  
Table 7. Interrupt Enable 2  
Address  
7
6
5
4
3
2
1
0
01h  
Table 8. Interrupt Flag Register 1  
Address  
02h  
7
6
5
4
3
2
1
0
UTXIFG0  
rw-1  
URXIFG0  
rw-0  
NMIIFG  
rw-0  
RSTIFG  
rw-(0)  
PORIFG  
rw-(1)  
OFIFG  
rw-1  
WDTIFG  
rw-(0)  
WDTIFG  
Set on watchdog timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.  
OFIFG  
Flag set on oscillator fault  
RSTIFG  
PORIFG  
NMIIFG  
URXIFG0  
UTXIFG0  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up.  
Power-on reset interrupt flag. Set on VCC power up.  
Set via RST/NMI-pin  
USART0: UART and SPI receive interrupt flag  
USART0: UART and SPI transmit interrupt flag  
Table 9. Interrupt Flag Register 2  
Address  
03h  
7
6
5
4
3
2
1
0
10  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Table 10. Module Enable Register 1  
Address  
04h  
7
6
5
4
3
2
1
0
UTXE0  
URXE0  
USPIE0  
rw-0  
rw-0  
URXE0  
USART0: UART mode receive enable  
USART0: UART mode transmit enable  
UTXE0  
USPIE0  
USART0: SPI mode transmit and receive enable  
Table 11. Module Enable Register 2  
Address  
05h  
7
6
5
4
3
2
1
0
Memory Organization  
Table 12. Memory Organization  
MSP430AFE22x  
MSP430AFE23x  
MSP430AFE25x  
Memory  
Size  
4 KB  
8 KB  
16 KB  
Main: interrupt vector  
Main: code memory  
Flash 0xFFFF to 0xFFE0  
0xFFFF to 0xFFE0  
0xFFFF to 0xE000  
0xFFFF to 0xFFE0  
0xFFFF to 0xC000  
Flash  
0xFFFF to 0xF000  
Size  
256 Byte  
256 Byte  
0x10FFh to 0x1000  
256 Byte  
0x10FFh to 0x1000  
Information memory  
Flash 0x10FFh to 0x1000  
256 Byte  
Size  
512 Byte  
0x03FF to 0x0200  
512 Byte  
0x03FF to 0x0200  
RAM  
0x02FF to 0x0200  
16-bit  
8-bit  
8-bit SFR  
0x01FF to 0x0100  
0x00FF to 0x0010  
0x000F to 0x0000  
0x01FF to 0x0100  
0x00FF to 0x0010  
0x000F to 0x0000  
0x01FF to 0x0100  
0x00FF to 0x0010  
0x000F to 0x0000  
Peripherals  
Flash Memory  
The flash memory can be programmed via the Spy-Bi-Wire/JTAG port or in-system by the CPU. The CPU can  
perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
64 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n.  
Segments A to D are also called information memory.  
Segment A contains calibration data. After reset segment A is protected against programming and erasing. It  
can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is  
required.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).  
Oscillator and System Clock  
The clock system is supported by the basic clock module that includes support for an internal digitally controlled  
oscillator (DCO), a high-frequency crystal oscillator, and an internal very-low-power low-frequency oscillator  
(VLO). The basic clock module is designed to meet the requirements of both low system cost and low power  
consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic  
clock module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from the VLO  
Main clock (MCLK), the system clock used by the CPU  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules  
Table 13. DCO Calibration Data  
(Provided From Factory in Flash Information Memory Segment A)  
DCO FREQUENCY  
CALIBRATION REGISTER  
CALBC1_8MHZ  
SIZE  
byte  
byte  
byte  
byte  
ADDRESS  
010FDh  
010FCh  
010FBh  
010FAh  
8 MHz  
CALDCO_8MHZ  
CALBC1_12MHZ  
12 MHz  
CALDCO_12MHZ  
Brownout, Supply Voltage Supervisor  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and  
power off. The supply voltage supervisor (SVS) circuitry detects if supply voltage drops below a user-selectable  
level and supports both supply voltage supervision (the device is automatically reset) and supply voltage  
monitoring (SVM) (the device is not automatically reset).  
The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have  
ramped to VCC(min) at that time. The user must ensure that the default DCO settings are not changed until VCC  
reaches VCC(min) . If desired, the SVS circuit can be used to determine when VCC reaches VCC(min)  
.
Digital I/O  
There are two I/O ports implemented: 8-bit port P1 and 3-bit port P2.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt condition is possible.  
Edge-selectable interrupt input capability for all eight bits of port P1 and three bits of port P2.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pullup/pulldown resistor.  
Because there are only three I/O pins implemented from port P2, bits [5:1] of all port P2 registers read as 0, and  
write data is ignored.  
Watchdog Timer (WDT+)  
The primary function of the WDT+ module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be disabled or configured as an interval timer and can generate interrupts at  
selected time intervals.  
12  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 14. Timer_A3 Signal Connections  
OUTPUT PIN  
NUMBER  
INPUT PIN NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
MODULE BLOCK  
24-PIN PW  
24-PIN PW  
12 - P1.0  
TACLK  
ACLK  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
SMCLK  
TACLK  
TA0  
12 - P1.0  
18 - P1.2  
18 - P1.2  
18 - P1.2  
24 - P2.0  
TA0  
CCR0  
CCR1  
CCR2  
TA0  
TA1  
TA2  
DVSS  
DVCC  
TA1  
VCC  
17 - P1.1  
17 - P1.1  
CCI1A  
CCI1B  
GND  
17 - P1.1  
23 - P1.7  
TA1  
DVSS  
DVCC  
DVSS  
ACLK (internal)  
DVSS  
DVCC  
VCC  
CCI2A  
CCI2B  
GND  
12 - P1.0  
22 - P1.6  
VCC  
USART0  
The MSP430AFE2xx devices have one hardware universal synchronous/asynchronous receive transmit  
(USART0) peripheral module that is used for serial data communication. The USART0 module supports  
synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit  
and receive channels. The maximum operational frequency for the USART0 module is 8 MHz.  
Hardware Multiplier  
The multiplication operation is supported by a dedicated peripheral module. The module performs 16x16, 16x8,  
8x16, and 8x8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as  
signed and unsigned multiply and accumulate operations. The result of an operation can be accessed  
immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are  
required.  
SD24_A  
The SD24_A module integrates up to three independent 24-bit sigma-delta A/D converters. Each channel is  
designed with fully differential analog input pair and programmable gain amplifier input stage. In addition to  
external analog inputs, an internal VCC sense and temperature sensor are also available.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Peripheral File Map  
Table 15. Peripherals With Word Access  
Timer_A3  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_A register  
TACCR2  
TACCR1  
TACCR0  
TAR  
0x0176  
0x0174  
0x0172  
0x0170  
0x0166  
0x0164  
0x0162  
0x0160  
0x012E  
0x013E  
0x013C  
0x013A  
0x0138  
0x0136  
0x0134  
0x0132  
0x0130  
0x012C  
0x012A  
0x0128  
0x0120  
0x0100  
0x0102  
0x0104  
0x0106  
0x0110  
0x0112  
0x0114  
0x01AE  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_A control  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
Timer_A interrupt vector  
Sum extend  
TAIV  
Hardware Multiplier  
SUMEXT  
RESHI  
Result high word  
Result low word  
RESLO  
Second operand  
OP2  
Multiply signed + accumulate/operand 1  
Multiply + accumulate/operand 1  
Multiply signed/operand 1  
Multiply unsigned/operand 1  
Flash control 3  
MACS  
MAC  
MPYS  
MPY  
Flash Memory  
FCTL3  
Flash control 2  
FCTL2  
Flash control 1  
FCTL1  
Watchdog Timer+  
Watchdog/timer control  
General Control  
WDTCTL  
SD24CTL  
SD24CCTL0  
SD24CCTL1  
SD24CCTL2  
SD24MEM0  
SD24MEM1  
SD24MEM2  
SD24IV  
SD24_A  
(also see Table 16)  
Channel 0 Control  
Channel 1Control  
Channel 2 Control  
Channel 0 conversion memory  
Channel 1 conversion memory  
Channel 2 conversion memory  
SD24 Interrupt vector word register  
14  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
 
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Table 16. Peripherals With Byte Access  
SD24_A  
(also see Table 15)  
Channel 0 Input Control  
Channel 1 Input Control  
Channel 2 Input Control  
Channel 0 Preload  
SD24INCTL0  
SD24INCTL1  
SD24INCTL2  
SD24PRE0  
SD24PRE1  
SD24PRE2  
SD24CONF1  
U0TXBUF  
U0RXBUF  
U0BR1  
U0BR0  
U0MCTL  
U0RCTL  
U0TCTL  
U0CTL  
0x00B0  
0x00B1  
0x00B2  
0x00B8  
0x00B9  
0x00BA  
0x00BF  
0x0077  
0x0076  
0x0075  
0x0074  
0x0073  
0x0072  
0x0071  
0x0070  
0x0053  
0x0058  
0x0057  
0x0056  
0x0055  
0x0042  
0x002F  
0x002E  
0x002D  
0x002C  
0x002B  
0x002A  
0x0029  
0x0028  
0x0041  
0x0027  
0x0026  
0x0025  
0x0024  
0x0023  
0x0022  
0x0021  
0x0020  
0x0005  
0x0004  
0x0003  
0x0002  
0x0001  
0x0000  
Channel 1 Preload  
Channel 2 Preload  
Reserved (Internal SD24_A Configuration 1)  
Transmit buffer  
USART0  
Receive buffer  
Baud rate  
Baud rate  
Modulation control  
Receive control  
Transmit control  
USART control  
Basic Clock System+  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
SVS control register (reset by brownout signal)  
Port P2 selection 2  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
SVSCTL  
P2SEL2  
P2REN  
P2SEL  
Brownout, SVS  
Port P2  
Port P2 resistor enable  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
P2IE  
P2IES  
P2IFG  
P2DIR  
Port P2 output  
P2OUT  
P2IN  
Port P2 input  
Port P1  
Port P1 selection 2 register  
Port P1 resistor enable  
Port P1 selection  
P1SEL2  
P1REN  
P1SEL  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1IE  
P1IES  
P1IFG  
P1DIR  
Port P1 output  
P1OUT  
P1IN  
Port P1 input  
Special Function  
SFR module enable 2  
SFR module enable 1  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
ME2  
ME1  
IFG2  
IFG1  
IE2  
IE1  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Absolute Maximum Ratings(1)  
Voltage applied at VCC to VSS  
Voltage applied to any pin(2)  
-0.3 V to 4.1 V  
-0.3 V to VCC + 0.3 V  
±2 mA  
Diode current at any device terminal  
Unprogrammed device  
Programmed device  
-55°C to 150°C  
-40°C to 85°C  
(3)  
Storage temperature, Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is  
applied to the TEST pin when blowing the JTAG fuse.  
(3) Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak  
reflow temperatures not higher than classified on the device label on the shipping boxes or reels.  
Recommended Operating Conditions(1) (2)  
MIN NOM  
MAX UNIT  
During program  
execution(3)  
1.8  
3.6  
3.6  
V
V
(1)  
VCC  
Supply voltage  
AVCC = DVCC = VCC  
AVSS = DVSS = VSS  
During program/erase  
flash memory  
2.2  
VSS  
TA  
Supply voltage  
0
V
Operating free-air temperature  
-40  
dc  
dc  
dc  
85  
4.15  
9
°C  
VCC = 1.8 V, Duty cycle = 50% ±10%  
(maximum MCLK frequency)(1)(2) VCC = 2.7 V, Duty cycle = 50% ±10%  
Processor frequency  
fSYSTEM  
MHz  
(see Figure 1)  
V
CC 3.3 V, Duty cycle = 50% ±10%  
12  
(1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the  
specified maximum frequency.  
(2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(3) The operating voltage range for SD24_A is 2.5 V to 3.6 V  
Legend :  
12 MHz  
Supply voltage range  
during flash memory  
programming  
9
MHz  
Supply voltage range  
during program execution  
6.5 MHz  
4.15 MHz  
1.8 V  
2.2 V  
2.7 V  
3.3 V 3.6 V  
Supply Voltage − V  
A. Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC  
of 2.2 V.  
B. If high frequency crystal used is above 12 MHz and selected to source CPU clock then MCLK divider should be  
programmed appropriately to run CPU below 8 MHz.  
Figure 1. Operating Area  
16  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
 
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Active Mode Supply Current (into DVCC + AVCC) Excluding External Current(1)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fDCO = fMCLK = fSMCLK = DCO default  
frequency (approximately 1 MHz),  
fACLK = fVLO = 12 kHz,  
Program executes in flash,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
2.2 V  
220  
Active mode (AM)  
current at 1 MHz  
IAM, 1MHz  
µA  
3 V  
350  
4.0  
fDCO = fMCLK = fSMCLK = 12 MHz,  
fACLK = fVLO = 12 kHz,  
Program executes in flash,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active mode (AM)  
current at 12 MHz  
IAM, 12MHz  
3.3 V  
4.5  
mA  
(1) All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.  
Typical Characteristics Active-Mode Supply Current (Into DVCC + AVCC)  
4
3.5  
3
5
4.5  
4
fDCO = 12 MHz  
VCC = 3 V,  
TA = 85°C  
3.5  
3
VCC = 3 V,  
TA = 25°C  
fDCO = 8 MHz  
2.5  
2
VCC = 2.2 V,  
TA = 85°C  
2.5  
2
1.5  
1
1.5  
1
VCC = 2.2 V,  
TA = 25°C  
fDCO = 1 MHz  
0.5  
0
0.5  
0
1.5 1.75  
2
2.25 2.5 2.75  
3
3.25 3.5 3.75  
4
0
2
4
6
8
fDCO - DCO Frequency - MHz  
10  
12  
VCC - Supply Voltage - V  
Figure 2. Active-Mode Current vs VCC, TA = 25°C  
Figure 3. Active-Mode Current vs DCO Frequency  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
MAX UNIT  
(1)  
Low-Power-Mode Supply Currents (Into VCC) Excluding External Current  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
fMCLK = 0 MHz,  
fSMCLK = fDCO = DCO default frequency  
(approximately 1 MHz),  
fACLK = fVLO = 12 kHz,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Low-power mode 0  
(LPM0) current(2)  
ILPM0  
25°C  
2.2 V  
65  
µA  
µA  
fMCLK = fSMCLK = 0 MHz,  
fDCO = DCO default frequency  
(approximately 1 MHz),  
fACLK = fVLO = 12 kHz,  
CPUOFF = 1, SCG0 = 0, SCG1 = 1,  
OSCOFF = 0  
Low-power mode 2  
(LPM2) current(3)  
ILPM2  
25°C  
25°C  
2.2 V  
22  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = fVLO = 12 kHz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
Low-power mode 3  
(LPM3) current(3)  
ILPM3,VLO  
2.2 V  
2.2 V  
0.5  
1.0  
µA  
µA  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = fVLO = 0 Hz,  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
25°C  
85°C  
0.1  
1.1  
0.7  
2.5  
Low-power mode 4  
(LPM4) current(4)  
ILPM4  
(1) All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.  
(2) Current for brownout and WDT clocked by SMCLK included.  
(3) Current for brownout and WDT clocked by ACLK included.  
(4) Current for brownout included.  
Typical Characteristics LPM4 Current  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VCC = 3.6 V  
VCC = 3 V  
VCC = 2.2 V  
VCC = 1.8 V  
-40  
-20  
0
20  
TA - Temperature - °C  
Figure 4. ILPM4 -- LPM4 Current vs Temperature  
40  
60  
80  
100  
120  
18  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Schmitt-Trigger Inputs (Ports Px and RST/NMI)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45 VCC  
1.35  
TYP  
MAX UNIT  
0.75 VCC  
VIT+  
Positive-going input threshold voltage  
V
V
3 V  
2.25  
0.55 VCC  
1.65  
0.25 VCC  
0.75  
VIT-  
Negative-going input threshold voltage  
3 V  
3 V  
Vhys  
RPull  
CI  
Input voltage hysteresis (VIT+ - VIT-  
)
0.3  
1.0  
V
Pullup/pulldown resistor  
(not RST/NMI pin)  
For pullup: VIN = VSS;  
For pulldown: VIN = VCC  
3 V  
20  
35  
5
50  
kΩ  
pF  
Input capacitance  
VIN = VSS or VCC  
Leakage Current (Ports Px)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
±50 nA  
(1)(2)  
Ilkg(Px.y)  
High-impedance leakage current  
3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
Outputs (Ports Px)  
PARAMETER  
TEST CONDITIONS  
IOH(max) = -6 mA(1)  
IOL(max) = 6 mA(1)  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
CC 0.2  
V
V
VSS + 0.2  
(1) The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
Output Frequency (Ports Px)  
PARAMETER  
TEST CONDITIONS  
Px.y, CL = 20 pF, RL = 1 k(1)(2)  
Px.y, CL = 20 pF(2)  
VCC  
3 V  
3 V  
MIN  
TYP  
12  
MAX UNIT  
MHz  
fPx.y  
Port output frequency (with load)  
Clock output frequency  
fPort_CLK  
16  
MHz  
(1) A resistive divider with two 0.5-kresistors between VCC and VSS is used as load. The output is connected to the center tap of the  
divider.  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Typical Characteristics Outputs  
One output loaded at a time.  
TYPICAL LOW-LEVEL OUTPUT CURRENT TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
25.0  
20.0  
15.0  
10.0  
5.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
= 2.2 V  
T
= 25°C  
V = 3 V  
CC  
CC  
A
P1.0  
P1.0  
T
= 25°C  
= 85°C  
A
T
= 85°C  
A
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output V oltage − V  
V
OL  
− Low-Level Output V oltage − V  
Figure 5.  
Figure 6.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−5.0  
0.0  
−10.0  
−20.0  
−30.0  
−40.0  
−50.0  
V
= 2.2 V  
V
= 3 V  
CC  
CC  
P1.0  
P1.0  
−10.0  
−15.0  
−20.0  
−25.0  
T
= 85°C  
A
T
A
= 85°C  
T = 25°C  
A
T
A
= 25°C  
1.5  
0.0  
0.5  
1.0  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output V oltage − V  
V
OH  
− High-Level Output V oltage − V  
Figure 7.  
Figure 8.  
20  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
POR/Brownout Reset (BOR)(1) (2)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
0.7 ×  
V(B_IT-)  
VCC(start)  
See Figure 9  
dVCC/dt 3 V/s  
V
V(B_IT-)  
See Figure 9 through Figure 11  
See Figure 9  
dVCC/dt 3 V/s  
dVCC/dt 3 V/s  
1.42  
120  
V
Vhys(B_IT-)  
td(BOR)  
mV  
µs  
See Figure 9  
2000  
Pulse length needed at RST/NMI pin  
to accepted reset internally  
t(reset)  
3 V  
2
µs  
(1) The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT-)  
Vhys(B_IT- ) is 1.8 V.  
+
(2) During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT-) + Vhys(B_IT-). The default DCO settings  
must not be changed until VCC VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency.  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 9. POR/Brownout Reset (BOR) vs Supply Voltage  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
 
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Typical Characteristics POR/Brownout Reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
Typical Conditions  
CC  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 10. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(drop)  
0.5  
t
t
r
f =  
0
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 11. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
22  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Supply Voltage Supervisor (SVS) / Supply Voltage Monitor (SVM)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
2000  
100  
12  
MAX UNIT  
dVCC/dt > 30 V/ms (see Figure 12)  
t(SVSR)  
µs  
dVCC/dt 30 V/ms  
td(SVSon)  
tsettle  
SVS on, switch from VLD = 0 to VLD 0, VCC =3 V  
VLD 0(2)  
µs  
µs  
V(SVSstart)  
VLD 0, VCC/dt 3 V/s (see Figure 12)  
1.55  
120  
15  
1.7  
V
VLD = 1  
mV  
mV  
VCC/dt 3 V/s (see Figure 12)  
VLD = 2 to 14  
Vhys(SVS_IT-)  
VCC/dt 3 V/s (see Figure 12), external voltage applied on  
SVSIN  
VLD = 15  
10  
mV  
VLD = 1  
VLD = 2  
VLD = 3  
VLD = 4  
VLD = 5  
VLD = 6  
VLD = 7  
VLD = 8  
VLD = 9  
VLD = 10  
VLD = 11  
VLD = 12  
VLD = 13  
VLD = 14  
1.8  
2.24  
2.69  
1.9  
2.1  
2.05  
2.6  
2.2  
2.3  
2.4  
2.5  
2.65  
2.8  
VCC/dt 3V/s (see Figure 12)  
V(SVS_IT-)  
V
2.9  
3.13  
3.05  
3.2  
3.35  
3.24  
1.1  
3.5 3.76(3)  
3.7(3)  
VCC/dt 3 V/s (see Figure 12), external voltage applied on  
SVSIN  
VLD = 15  
1.2  
12  
1.3  
17  
(1)  
ICC(SVS)  
VLD 0, VCC = 3 V  
µA  
(1) The current consumption of the SVS module is not included in the ICC current consumption data.  
(2) tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value  
somewhere between 2 and 15. The overdrive is assumed to be > 50 mV.  
(3) The recommended operating voltage range is limited to 3.6 V.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Typical Characteristics SVS  
Software sets VLD > 0:  
SVS is active  
AV  
CC  
V
hys(SVS_IT- )  
V
(SVS_IT- )  
V
(SVSstart)  
V
hys(B_IT- )  
V
(B_IT- )  
V
CC(start)  
Brown-  
out  
Region  
Brownout  
Region  
Brownout  
1
0
t
t
SVS out  
1
d(BOR)  
d(BOR)  
SVS CircuitisActiveFromVLD>toV  
< V(  
CC  
B_IT- )  
0
t
t
d(SVSon)  
d(SVSR)  
Set POR  
1
undefined  
0
Figure 12. SVS Reset (SVSR) vs Supply Voltage  
V
CC  
t
pw  
3 V  
2
Rectangular Drop  
V
CC(min)  
1.5  
1
Triangular Drop  
1 ns  
1ns  
V
t
CC  
pw  
0.5  
0
3 V  
1
10  
101000  
t
pw  
– Pulse Width – µs  
V
CC(min)  
t = t  
f
r
t
f
t
r
t – Pulse Width – µs  
Figure 13. VCC(min) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal  
24  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Main DCO Characteristics  
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
DCO control bits DCOx have a step size as defined by parameter SDCO.  
Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK  
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to:  
32 × f  
× f  
DCO(RSEL,DCO)  
DCO(RSEL,DCO+1)  
f
=
average  
MOD × f  
+ (32 – MOD) × f  
DCO(RSEL,DCO)  
DCO(RSEL,DCO+1)  
DCO Frequency  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.8  
TYP  
MAX UNIT  
RSELx < 14  
RSELx = 14  
RSELx = 15  
3.6  
VCC  
Supply voltage range  
2.2  
3.6  
3.6  
V
3.0  
fDCO(0,0)  
fDCO(0,3)  
fDCO(1,3)  
fDCO(2,3)  
fDCO(3,3)  
fDCO(4,3)  
fDCO(5,3)  
fDCO(6,3)  
fDCO(7,3)  
fDCO(8,3)  
fDCO(9,3)  
fDCO(10,3)  
fDCO(11,3)  
fDCO(12,3)  
fDCO(13,3)  
fDCO(14,3)  
fDCO(15,3)  
fDCO(15,7)  
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
0.06  
0.10  
0.12  
0.15  
0.21  
0.30  
0.41  
0.58  
0.80  
1.15  
1.60  
2.30  
3.40  
4.25  
5.80  
7.80  
0.14 MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
M Hz  
MHz  
8.6 11.25  
15.30  
13.9 MHz  
MHz  
21.00  
MHz  
Frequency step between  
range RSEL and RSEL+1  
SRSEL  
SDCO  
SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO)  
3.3 V  
1.35  
ratio  
Frequency step between tap  
DCO and DCO+1  
SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO)  
Measured at SMCLK output  
3.3 V  
3.3 V  
1.08  
50  
ratio  
%
Duty cycle  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Calibrated DCO Frequencies Tolerance  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3.3V  
8-MHz tolerance over  
temperature(1)  
0°C to 85°C  
3.3 V  
7.76  
8
8.24 MHz  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3.3V  
8-MHz tolerance over VCC  
8-MHz tolerance overall  
30°C  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
3.3 V  
7.76  
7.52  
8
8
8.24 MHz  
8.48 MHz  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
calibrated at 30°C and 3.3V  
-40°C to 85°C  
0°C to 85°C  
30°C  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3.3V  
12-MHz tolerance over  
temperature(1)  
11.64  
11.64  
11.28  
12 12.36 MHz  
12 12.36 MHz  
12 12.72 MHz  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3.3V  
12-MHz tolerance over VCC  
12-MHz tolerance overall  
3.3 V to 3.6 V  
3.3 V to 3.6 V  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
calibrated at 30°C and 3.3V  
-40°C to 85°C  
(1) This is the frequency change from the measured frequency at 30°C over temperature.  
Wake-Up From Lower-Power Modes (LPM3/4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
1.5  
MAX UNIT  
DCO clock wake-up time from  
LPM3/4(1)  
fDCO = DCO default frequency  
(approximately 1 MHz)  
tDCO,LPM3/4  
tCPU,LPM3/4  
3 V  
µs  
CPU wake-up time from  
LPM3/4(2)  
1 / fMCLK  
tDCO,LPM3/4  
+
µs  
(1) The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, a port interrupt) to the first clock  
edge observable externally on a clock pin (MCLK or SMCLK).  
(2) Parameter applicable only if DCOCLK is used for MCLK.  
Typical Characteristics DCO Clock Wake-Up Time From LPM3/4  
10.00  
RSELx = 0...11  
RSELx = 12...15  
1.00  
0.10  
0.10  
1.00  
DCO Frequency − MHz  
Figure 14. Clock Wake-Up Time From LPM3 vs DCO Frequency  
10.00  
26  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
PARAMETER  
TA  
VCC  
3 V  
MIN  
TYP  
12  
MAX UNIT  
22 kHz  
%/°C  
fVLO  
VLO frequency  
-40°C to 85°C  
-40°C to 85°C  
25°C  
4
dfVLO/dT  
dfVLO/dVCC  
VLO frequency temperature drift(1)  
VLO frequency supply voltage drift(2)  
3 V  
0.5  
4
1.8 V to 3.6 V  
%/V  
(1) Calculated using the box method: [MAX(-40...85°C) - MIN(-40...85°C)]/MIN(-40...85°C)/[85°C - (-40°C)]  
(2) Calculated using the box method: [MAX(1.8...3.6 V) - MIN(1.8...3.6 V)]/MIN(1.8...3.6 V)/(3.6 V - 1.8 V)  
Crystal Oscillator (XT2)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
XT2 oscillator crystal frequency,  
HF mode 0  
fXT2,HF0  
fXT2,HF1  
XT2OFF = 0, XT2Sx = 0  
1.8 V to 3.6 V  
0.4  
1
MHz  
MHz  
XT2 oscillator crystal frequency,  
HF mode 1  
XT2OFF = 0, XT2Sx = 1  
XT2OFF = 0, XT2Sx = 2  
1.8 V to 3.6 V  
1
4
1.8 V to 2.2 V  
2.2 V to 3.0 V  
3.0 V to 3.6 V  
1.8 V to 2.2 V  
2.2 V to 3.0 V  
3.0 V to 3.6 V  
2
2
10  
XT2 oscillator crystal frequency,  
HF mode 2  
fXT2,HF2  
12 MHz  
2
16  
0.4  
0.4  
0.4  
10  
XT2 oscillator logic-level  
square-wave input frequency,  
HF mode  
fXT2,HF,logic  
XT2OFF = 0, XT2Sx = 3  
12 MHz  
16  
XT2OFF = 0, XT2Sx = 0  
fXT2,HF = 1 MHz,  
CL,eff = 15 pF  
2700  
800  
Oscillation allowance for HF  
crystals (see Figure 15 and  
Figure 16)  
XT2OFF = 0, XT2Sx = 1  
fXT2,HF = 4 MHz,  
OAHF  
CL,eff = 15 pF  
XT2OFF = 0, XT2Sx = 2  
fXT2,HF = 16 MHz,  
CL,eff = 15 pF  
300  
1
Integrated effective load  
capacitance, HF mode(2)  
CL,eff  
XT2OFF = 0(3)  
pF  
XT2OFF = 0, Measured at  
P1.0/SVSIN/TACLK/SMCLK/TA2,  
fXT2,HF = 10 MHz  
40  
50  
60  
Duty cycle  
3 V  
3 V  
%
XT2OFF = 0, Measured at  
P1.0/SVSIN/TACLK/SMCLK/TA2,  
fXT2,HF = 16 MHz  
XT2OFF = 0, XT2Sx = 3(5)  
40  
30  
50  
60  
(4)  
fFault,HF  
Oscillator fault frequency  
300 kHz  
(1) To improve EMI on the XT2 oscillator the following guidelines should be observed:  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.  
(d) Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(2) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is  
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should  
always match the specification of the used crystal.  
(3) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(4) Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and  
frequencies in between might set the flag.  
(5) Measured with logic-level input frequency, but also applies to operation with crystals.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Typical Characteristics XT2 Oscillator  
100000.00  
10000.00  
1000.00  
100.00  
1800.0  
1600.0  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.0  
LFXT1Sx = 2  
LFXT1Sx = 2  
LFXT1Sx = 1  
LFXT1Sx = 1  
LFXT1Sx = 0  
1.00  
LFXT1Sx = 0  
8.0 12.0  
Crystal Frequency − MHz  
Figure 16. XT2 Oscillator Supply Current vs Crystal  
10.00  
0.10  
10.00  
100.00  
0.0  
4.0  
16.0  
20.0  
Crystal Frequency − MHz  
Figure 15. Oscillation Allowance vs Crystal Frequency,  
CL,eff = 15 pF, TA = 25°C  
Frequency, CL,eff = 15 pF, TA = 25°C  
SD24_A, Power Supply and Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC = DVCC  
AVSS = DVSS = 0 V  
AVCC Analog supply voltage  
2.5  
3.6  
V
GAIN: 1, 2  
GAIN: 4, 8, 16  
GAIN: 32  
800  
900  
1200  
800  
900  
1
1100  
SD24LP = 0, fSD24 = 1 MHz,  
SD24OSR = 256  
Analog supply current: 1 active  
SD24_A channel including  
internal reference  
ISD24  
3 V  
3 V  
µA  
GAIN: 1  
SD24LP = 1, fSD24 = 0.5 MHz,  
SD24OSR = 256  
GAIN: 32  
SD24LP = 0 (low-power mode disabled)  
SD24LP = 1 (low-power mode enabled)  
0.03  
0.03  
1.1  
Analog front-end input clock  
frequency  
fSD24  
MHz  
0.5  
28  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
SD24_A, Input Range(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
-VREF  
2GAIN  
/
+VREF  
2GAIN  
/
Bipolar mode, SD24UNI = 0  
Differential full scale input  
voltage range  
VID,FSR  
mV  
mV  
+VREF  
2GAIN  
/
Unipolar mode, SD24UNI = 1  
0
SD24GAINx = 1  
±500  
±250  
±125  
±62  
±31  
±15  
200  
75  
SD24GAINx = 2  
SD24GAINx = 4  
SD24GAINx = 8  
SD24GAINx = 16  
SD24GAINx = 32  
SD24GAINx = 1  
SD24GAINx = 32  
SD24GAINx = 1  
SD24GAINx = 32  
Differential input voltage  
VID  
range for specified  
SD24REFON = 1  
performance(2)  
Input impedance (one input  
pin to AVSS)  
ZI  
fSD24 = 1 MHz  
fSD24 = 1 MHz  
3 V  
3 V  
kΩ  
kΩ  
300  
100  
400  
150  
Differential input impedance  
(IN+ to IN-)  
ZID  
VI  
Absolute input voltage range  
AVSS - 1  
AVCC  
AVCC  
V
V
Common-mode input voltage  
range  
VIC  
AVSS - 1  
(1) All parameters pertain to each SD24_A channel.  
(2) The full-scale range is defined by VFSR+ = +(VREF/2)/GAIN and VFSR- = -(VREF/2)/GAIN. If VREF is sourced externally, the analog input  
range should not exceed 80% of VFSR+ or VFSR-; that is, VID = 0.8 VFSR- to 0.8 VFSR+. If VREF is sourced internally, the given VID ranges  
apply.  
SD24_A, Performance (fSD24 = 1 MHz, SD24OSRx = 256, SD24REFON = 1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
1
MAX  
UNIT  
SD24GAINx = 1  
SD24GAINx = 2  
SD24GAINx = 4  
SD24GAINx = 8  
1.96  
3.86  
7.62  
15.04  
28.35  
G
Nominal gain  
3 V  
SD24GAINx = 16  
SD24GAINx = 32  
SD24GAINx = 1  
SD24GAINx = 32  
SD24GAINx = 1  
SD24GAINx = 32  
±0.2  
±1.5  
±20  
EOS  
Offset error  
3 V  
3 V  
%FSR  
±4  
Offset error temperature  
coefficient  
ppm  
FSR/°C  
ΔEOS/ΔT  
±20  
±100  
SD24GAINx = 1, Common-mode input signal:  
VID = 500 mV, fIN = 50 Hz, 100 Hz  
>90  
>75  
Common-mode rejection  
ratio  
CMRR  
3 V  
dB  
SD24GAINx = 32, Common-mode input signal:  
VID = 16 mV, fIN = 50 Hz, 100 Hz  
AC power supply  
rejection ratio  
SD24GAINx = 1, VCC = 3 V ± 100 mV,  
fVCC = 50 Hz  
AC PSRR  
XT  
3 V  
3 V  
>80  
dB  
dB  
SD24GAINx = 1, VID = 500 mV,  
fIN = 50 Hz, 100 Hz  
Crosstalk  
<-100  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
SD24_A, Temperature Sensor and Built-In VCC Sense  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.18  
-100  
420  
TYP  
MAX UNIT  
TCSensor  
Sensor temperature coefficient  
Sensor offset voltage  
1.32  
1.46 mV/°C  
VOffset,sensor  
100  
515  
442  
mV  
Temperature sensor voltage at TA = 85°C  
Temperature sensor voltage at TA = 30°C  
475  
402  
VSensor  
Sensor output voltage(1)(2)  
3 V  
mV  
350  
fSD24 = 1 MHz, SD24OSRx = 256,  
SD24REFON = 1  
VCC/1  
1
VCC,Sense  
VCC divider at input 5  
V
Source resistance of VCC  
divider at input 5  
RSource,VCC  
20  
kΩ  
(1) The following formula can be used to calculate the temperature sensor output voltage:  
VSensor,typ = TCSensor (273 + T [°C]) + VOffset,sensor [mV]  
(2) Results based on characterization and/or production test, not TCSensor or VOffset,sensor. Measured with fSD24 = 1 MHz, SD24OSRx = 256,  
SD24REFON = 1.  
SD24_A, Built-In Voltage Reference  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
MIN  
TYP  
1.2  
MAX  
1.26  
320  
UNIT  
V
VREF  
IREF  
Internal reference voltage  
Reference supply current  
Temperature coefficient  
VREF load capacitance  
VREF(I) maximum load current  
SD24REFON = 1, SD24VMIDON = 0  
SD24REFON = 1, SD24VMIDON = 0  
SD24REFON = 1, SD24VMIDON = 0(1)  
SD24REFON = 1, SD24VMIDON = 0(2)  
SD24REFON = 1, SD24VMIDON = 0  
1.14  
200  
18  
µA  
TC  
50 ppm/°C  
CREF  
ILOAD  
100  
nF  
3 V  
3 V  
±200  
nA  
SD24REFON = 01, SD24VMIDON = 0,  
CREF = 100nF  
tON  
Turn-on time  
5
ms  
DC power supply rejection  
ΔVREF/ΔVCC  
SD24REFON = 1, SD24VMIDON = 0,  
VCC = 2.5 V to 3.6 V  
DC PSR  
100  
µV/V  
(1) Calculated using the box method: (MAX(-40...85°C) - MIN(-40...85°C)) / MIN(-40...85°C) / (85°C - (-40°C))  
(2) There is no capacitance required on VREF. However, a capacitance of at least 100 nF is recommended to reduce any reference voltage  
noise.  
SD24_A, Reference Output Buffer  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Reference buffer output  
voltage  
VREF,BUF  
SD24REFON = 1, SD24VMIDON = 1  
3 V  
1.2  
V
Reference supply + reference  
output buffer quiescent  
current  
IREF,BUF  
SD24REFON = 1, SD24VMIDON = 1  
3 V  
430  
650  
µA  
Required load capacitance  
on VREF  
CREF(O)  
SD24REFON = 1, SD24VMIDON = 1  
SD24REFON = 1, SD24VMIDON = 1  
|ILOAD| = 0 to 1 mA  
470  
-15  
nF  
mA  
mV  
µs  
Maximum load current on  
VREF  
ILOAD,Max  
3 V  
3 V  
3 V  
±1  
Maximum voltage variation vs  
load current  
+15  
SD24REFON = 01, SD24VMIDON = 01,  
CREF = 470 nF  
tON  
Turn-on time  
100  
30  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
SD24_A, External Reference Input  
PARAMETER  
TEST CONDITIONS  
SD24REFON = 0  
SD24REFON = 0  
VCC  
3 V  
3 V  
MIN  
TYP  
MAX UNIT  
VREF(I) Input voltage range  
IREF(I) Input current  
1.0  
1.25  
1.5  
50  
V
nA  
USART0  
PARAMETER  
fUSART USART clock frequency  
t(τ)  
USART0: deglitch time(1)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
8
MHz  
ns  
VCC = 3 V, SYNC = 0, UART mode  
150  
280  
500  
(1) The signal applied to the USART0 receive signal/terminal (URXD0) should meet the timing requirements of t(τ) to ensure that the URXS  
flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(τ). The operating conditions to  
set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the  
URXD0 line.  
Timer_A3  
PARAMETER  
TEST CONDITIONS  
SMCLK, Duty cycle = 50% ± 10%  
TA0, TA1  
VCC  
MIN  
TYP  
MAX UNIT  
fTA  
Timer_A3 clock frequency  
Timer_A3, capture timing  
fSYSTEM  
MHz  
ns  
tTA,cap  
3 V  
20  
Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
VCC(PGM/ERASE)  
fFTG  
Program and erase supply voltage  
Flash timing generator frequency  
Supply current from VCC during program  
Supply current from VCC during erase  
Cumulative program time(1)  
2.2  
3.6  
V
257  
476 kHz  
IPGM  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
1
1
5
7
mA  
mA  
IERASE  
tCPT  
10  
ms  
tCMErase  
Cumulative mass erase time  
20  
104  
100  
ms  
Program/erase endurance  
105  
cycles  
years  
tFTG  
tFTG  
tRetention  
tWord  
Data retention duration  
TJ = 25°C  
(2)  
Word or byte program time  
30  
25  
(2)  
tBlock, 0  
Block program time for first byte or word  
Block program time for each additional byte or  
word  
(2)  
tBlock, 1-63  
18  
tFTG  
(2)  
(2)  
(2)  
tBlock, End  
tMass Erase  
tSeg Erase  
Block program end-sequence wait time  
Mass erase time  
6
10593  
4819  
tFTG  
tFTG  
tFTG  
Segment erase time  
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
(2) These values are hardwired into the flash controller's state machine (tFTG = 1 / fFTG).  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
RAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
MAX UNIT  
(1)  
V(RAMh)  
RAM retention supply voltage  
1.6  
V
(1) This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should  
happen during this supply voltage condition.  
JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
MIN  
0
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
Spy-Bi-Wire low clock pulse length  
20 MHz  
tSBW,Low  
0.025  
15  
µs  
µs  
µs  
Spy-Bi-Wire enable time  
tSBW,En  
3 V  
1
(TEST high to acceptance of first clock edge(1)  
)
tSBW,Ret  
fTCK  
Spy-Bi-Wire return to normal operation time  
TCK input frequency(2)  
3 V  
3 V  
3 V  
15  
0
100  
10 MHz  
90 kΩ  
RInternal  
Internal pulldown resistance on TEST  
25  
60  
(1) Tools accessing the Spy-Bi-Wire interface must wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before  
applying the first SBWCLK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
JTAG Fuse(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.5  
6
MAX UNIT  
VCC(FB)  
VFB  
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
TA = 25°C  
V
7
100  
1
V
IFB  
mA  
ms  
tFB  
(1) Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, or emulation feature is possible, and JTAG is switched to  
bypass mode.  
32  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P1 Pin Schematic: P1.0 Input/Output With Schmitt Trigger  
Pad Logic  
To SVS Mux  
VLD = 15  
P1REN.0  
0
1
DVSS  
DVCC  
1
0
1
P1DIR.0  
P1SEL2.0  
Direction  
0: Input  
1: Output  
0
1
From Timer_A3  
SMCLK  
1
0
P1OUT.0  
P1.0/SVSIN/TACLK/SMCLK/TA2  
Bus  
Keeper  
EN  
P1SEL.0  
P1IN.0  
EN  
To Timer_A3  
P1IRQ.0  
D
P1IE.0  
EN  
Set  
Q
P1IFG.0  
P1SEL.0  
P1IES.0  
Interrupt  
Edge Select  
Table 17. Port P1 (P1.0) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
P1.0 (I/O)  
I: 0, O: 1  
0
X
1
1
1
X
X
0
1
0
SVSIN (VLD = 15)  
Timer_A3.TACLK  
SMCLK  
X
0
1
1
P1.0/SVSIN/TACLK/SMCLK/TA2  
0
Timer_A3.TA2  
(1) X = don't care  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Port P1 Pin Schematic: P1.1 and P1.2 Input/Output With Schmitt Trigger  
Pad Logic  
P1REN.x  
0
1
DVSS  
DVCC  
1
0
1
P1DIR.x  
P1SEL2.x  
Direction  
0: Input  
1: Output  
From Timer_A3  
From SD24_A  
0
1
1
0
P1OUT.x  
P1.1/TA1/SDCLK  
P1.2/TA0/SD0DO  
Bus  
Keeper  
EN  
P1SEL.x  
P1IN.x  
EN  
To Timer_A3  
P1IRQ.x  
D
P1IE.x  
EN  
Set  
Q
P1IFG.x  
P1SEL.x  
P1IES.x  
Interrupt  
Edge Select  
Table 18. Port P1 (P1.1 and P1.2) Pin Functions  
CONTROL BITS / SIGNAL(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
P1.1 (I/O)  
I: 0, O: 1  
0
1
1
1
0
1
1
1
X
0
0
1
X
0
0
1
Timer_A3.CCI1A and CCI1B  
Timer_A3.TA1  
SDCLK  
0
P1.1/TA1/SDCLK  
1
1
1
P1.2 (I/O)  
I: 0, O: 1  
Timer_A3.CCI0A and CCI0B  
Timer_A3.TA0  
SD0DO  
0
1
1
P1.2/TA0/SD0DO  
2
(1) X = don't care  
34  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Port P1 Pin Schematic: P1.3 Input/Output With Schmitt Trigger  
Pad Logic  
P1REN.3  
0
1
DVSS  
DVCC  
P1DIR.3  
1
0
1
1
0
Direction  
0: Input  
1: Output  
USART0  
direction  
P1OUT.3  
0
1
SD24_A data  
1
0
P1.3/UTXD0/SD1DO  
USART0  
data out  
P1SEL.3  
P1SEL2.3  
Bus  
Keeper  
EN  
P1IN.3  
EN  
Not used  
P1IRQ.3  
D
P1IE.3  
EN  
Set  
Q
P1IFG.3  
P1SEL.3  
P1IES.3  
Interrupt  
Edge Select  
Table 19. Port P1 (P1.3) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
P1.3 (I/O)  
I: 0, O: 1  
0
1
1
X
0
1
P1.3/UTXD0/SD1DO  
3
UTXD0  
SD1DO  
X
1
(1) X = don't care  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Port P1 Pin Schematic: P1.4 Input/Output With Schmitt Trigger  
Pad Logic  
P1REN.4  
0
1
DVSS  
DVCC  
P1DIR.4  
1
0
1
1
0
Direction  
0: Input  
1: Output  
USART0  
direction  
P1OUT.4  
P1SEL2.4  
0
1
SD24_A data  
P1SEL.4  
P1.4/URXD0/SD2DO  
Bus  
Keeper  
EN  
P1IN.4  
EN  
USART0  
data in  
D
P1IE.4  
EN  
Set  
P1IRQ.4  
Q
P1IFG.4  
P1SEL.4  
Interrupt  
Edge Select  
P1IES.4  
Table 20. Port P1 (P1.4) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
P1.4 (I/O)  
URXD0  
I: 0, O: 1  
0
1
1
X
0
1
P1.4/URXD0/SD2DO  
4
X
1
SD2DO  
(1) X = don't care  
36  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Port P1 Pin Schematic: P1.5 to P1.7 Input/Output With Schmitt Trigger  
Pad Logic  
P1REN.x  
0
1
DVSS  
DVCC  
P1DIR.x  
Direction  
0: Input  
1: Output  
1
0
1
1
0
USART0  
direction  
P1OUT.x  
0
1
Module X out  
1
0
USART0  
data out  
P1.5/SIMO0/SVSOUT/TMS  
P1.6/SOMI0/TA2/TCK  
P1.7/UCLK0/TA1/TDO/TDI  
P1SEL.x  
P1SEL2.x  
Bus  
Keeper  
EN  
P1IN.x  
EN  
USART0  
data in  
D
P1IE.x  
EN  
Set  
P1IRQ.x  
Q
P1IFG.x  
P1SEL.x  
P1IES.x  
Interrupt  
Edge Select  
To JTAG  
From JTAG  
From JTAG  
From JTAG (TDO)  
Table 21. Port P1 (P1.5 to P1.7) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
JTAG  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
Mode(2)  
5
P1.5 (I/O)  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
X
0
1
X
X
0
1
X
X
0
1
X
0
0
0
1
0
0
0
1
0
0
0
1
SIMO0  
X
P1.5/SIMO0/SVSOUT/TMS  
SVSOUT  
TMS  
1
X
6
7
P1.6 (I/O)  
SOMI0  
I: 0; O: 1  
X
P1.6/SOMI0/TA2/TCK  
Timer_A3.TA2  
TCK  
1
X
P1.7 (I/O)  
UCLK0  
I: 0; O: 1  
X
1
P1.7/UCLK0/TA1/TDO/TDI  
Timer_A3.TA1  
TDO/TDI  
X
(1) X = don't care  
(2) JTAG Mode is not a register bit but signal generated internally when 4-wire JTAG option is selected in IDE  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Port P2 Pin Schematic: P2.0 Input/Output With Schmitt Trigger  
P2REN.0  
Pad Logic  
0
1
DVSS  
DVCC  
P2DIR.0  
Direction  
0: Input  
1: Output  
1
0
1
1
0
USART0  
direction  
P2OUT.0  
0
1
Timer_A3 out  
1
0
USART0  
data out  
P2.0/STE0/TA0/TDI/TCLK  
P2SEL.0  
P2SEL2.0  
Bus  
Keeper  
EN  
P2IN.0  
EN  
USART0  
data in  
D
P2IE.0  
EN  
Set  
P2IRQ.0  
Q
P2IFG.0  
P2SEL.0  
P2IES.0  
Interrupt  
Edge Select  
To JTAG  
From JTAG  
Table 22. Port P2 (P2.0) Pin Functions  
CONTROL BITS / SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
JTAG  
P2DIR.x  
P2SEL.x  
P2SEL2.x  
Mode(2)  
0
P2.0 (I/O)  
STE0  
I: 0; O: 1  
0
1
1
X
X
0
1
X
0
0
0
1
X
1
P2.0/STE0/TA0/TDI/TCLK  
Timer_A3.TA0  
TDI/TCLK  
X
(1) X = don't care  
(2) JTAG Mode is not a register bit but signal generated internally when 4-wire JTAG option is selected in IDE  
38  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger  
BCSCTL3.XT2Sx = 11  
XT2 off  
P2.7/XT2OUT  
0
XT2CLK  
1
P2SEL.7  
Pad Logic  
P2REN.6  
0
DVSS  
1
1
DVCC  
P2DIR.6  
0
1
Direction  
0: Input  
1: Output  
P2OUT.6  
0
1
Module X OUT  
P2.6/XT2IN  
Bus  
Keeper  
EN  
P2SEL.6  
P2IN.6  
EN  
Module X IN  
P2IRQ.6  
D
P2IE.6  
EN  
Set  
Q
P2IFG.6  
P2SEL.6  
P2IES.6  
Interrupt  
Edge Select  
Table 23. Port P2 (P2.6) Pin Functions  
CONTROL BITS / SIGNALS  
Pin Name (P2.x)  
x
FUNCTION  
P2DIR.6  
P2SEL.6  
P2.6 (I/O)  
I: 0; O: 1  
0
0
1
P2.6/XT2IN  
6
XT2IN (default)  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger  
BCSCTL3.XT2Sx = 11  
P2.6/XT2IN  
XT2 off  
0
XT2CLK  
From P2.6/XT2IN  
1
P2SEL.6  
Pad Logic  
P2REN.7  
0
1
DVSS  
DVCC  
1
P2DIR.7  
0
1
Direction  
0: Input  
1: Output  
P2OUT.7  
0
1
Module X OUT  
P2.7/XT2OUT  
Bus  
Keeper  
EN  
P2SEL.7  
P2IN.7  
EN  
Module X IN  
P2IRQ.7  
D
P2IE.7  
EN  
Set  
Q
P2IFG.7  
P2SEL.7  
P2IES.7  
Interrupt  
Edge Select  
Table 24. Port P2 (P2.7) Pin Functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.7  
I: 0, O: 1  
0
P2SEL.7  
P2.7 (I/O)  
0
1
P2.7/XT2OUT  
7
XT2OUT (default)  
40  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
www.ti.com  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
JTAG Fuse Check Mode  
MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the  
fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, ITF , of 1 mA at 3 V or 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care  
must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense  
currents are terminated.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is  
being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode.  
After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR, the fuse  
check mode has the potential to be activated.  
The fuse check current flow only when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 17). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TEST  
Figure 17. Fuse Check Mode Current  
NOTE  
The CODE and RAM data protection is ensured if the JTAG fuse is blown.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
 
MSP430AFE2x3  
MSP430AFE2x2  
MSP430AFE2x1  
SLAS701A NOVEMBER 2010REVISED MARCH 2011  
www.ti.com  
REVISION HISTORY  
REVISION  
COMMENTS  
SLAS701  
Product Preview release  
Production Data release  
SLAS701A  
42  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430AFE221IPW  
MSP430AFE221IPWR  
MSP430AFE222IPW  
MSP430AFE222IPWR  
MSP430AFE223IPW  
MSP430AFE223IPWR  
MSP430AFE231IPW  
MSP430AFE231IPWR  
MSP430AFE232IPW  
MSP430AFE232IPWR  
MSP430AFE233IPW  
MSP430AFE233IPWR  
MSP430AFE251IPW  
MSP430AFE251IPWR  
MSP430AFE252IPW  
MSP430AFE252IPWR  
MSP430AFE253IPW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
60  
2000  
60  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
2000  
60  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
60  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
60  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
60  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
60  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
60  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
60  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2011  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430AFE253IPWR  
ACTIVE  
TSSOP  
PW  
24  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

MSP430AFE231IPWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430AFE232

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430AFE232IPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430AFE232IPWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430AFE233

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430AFE233IPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430AFE233IPWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430AFE251

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430AFE251IPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430AFE251IPWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430AFE252

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430AFE252IPW

MIXED SIGNAL MICROCONTROLLER
TI