MSP430BT5190_V01 [TI]

MSP430BT5190 Mixed-Signal Microcontroller;
MSP430BT5190_V01
型号: MSP430BT5190_V01
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MSP430BT5190 Mixed-Signal Microcontroller

微控制器
文件: 总110页 (文件大小:2734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
MSP430BT5190 Mixed-Signal Microcontroller  
Unified clock system  
1 Features  
– FLL control loop for frequency stabilization  
– Low-power low-frequency internal clock source  
(VLO)  
– Low-frequency trimmed internal reference  
source (REFO)  
Designed for use with CC2560 TI Bluetooth®  
based solutions  
Commercially licensed MindtreeEthermind  
Bluetooth Stack for MSP430  
Bluetooth v2.1 + enhanced data rate (EDR)  
compliant  
– 32-kHz crystals  
– High-frequency crystals up to 32 MHz  
16-bit timer TA0, Timer_A with five capture/  
compare registers  
16-bit timer TA1, Timer_A with three capture/  
compare registers  
16-bit timer TB0, Timer_B with seven capture/  
compare shadow registers  
Up to four universal serial communication  
interfaces (USCIs)  
– Serial port profile (SPP)  
– Sample applications  
Low supply voltage range:  
3.6 V down to 1.8 V  
Ultra-low power consumption  
– Active mode (AM):  
all system clocks active  
230 µA/MHz at 8 MHz, 3 V, flash program  
execution (typical)  
110 µA/MHz at 8 MHz, 3 V, RAM program  
execution (typical)  
– USCI_A0, USCI_A1, USCI_A2, and USCI_A3  
each support:  
Enhanced UART supports automatic baud-  
rate detection  
– Standby mode (LPM3):  
real-time clock (RTC) with crystal, watchdog,  
and supply supervisor operational, full RAM  
retention, fast wakeup:  
1.7 µA at 2.2 V, 2.1 µA at 3 V (typical)  
low-power oscillator (VLO), general-purpose  
counter, watchdog, and supply supervisor  
operational, full RAM retention, fast wakeup:  
1.2 µA at 3 V (typical)  
IrDA encoder and decoder  
Synchronous SPI  
– USCI_B0, USCI_B1, USCI_B2, and USCI_B3  
each support:  
I2C  
Synchronous SPI  
12-bit analog-to-digital converter (ADC)  
– Internal reference  
– Off mode (LPM4):  
full RAM retention, supply supervisor  
operational, fast wakeup:  
1.2 µA at 3 V (typical)  
– 14 external channels, 2 internal channels  
Hardware multiplier supports 32-bit operations  
Serial onboard programming, no external  
programming voltage needed  
3-channel internal DMA  
Basic timer with RTC feature  
– Shutdown mode (LPM4.5):  
0.1 µA at 3 V (typical)  
Wake up from standby mode in less than 5 µs  
16-bit RISC architecture  
2 Applications  
Flexible power-management system  
– Fully integrated LDO with programmable  
regulated core supply voltage  
– Supply voltage supervision, monitoring, and  
brownout  
Remote Controls  
Thermostats  
Smart Meters  
Blood Glucose Meters  
Pulseoximeters  
3 Description  
The TI MSP430family of ultra-low-power microcontrollers consists of several devices featuring different sets of  
peripherals targeted for various applications. The architecture, combined with extensive low-power modes, is  
optimized to achieve extended battery life in portable measurement applications. The device features a powerful  
16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in less  
than 5 µs.  
MSP430BT5190 is a microcontroller configuration with three 16-bit timers, a high-performance 12-bit ADC, four  
USCIs, a hardware multiplier, DMA, an RTC module with alarm capabilities, and 87 I/O pins.  
The MSP430BT5190 microcontroller is designed for commercial use with TI’s CC2560 based Bluetooth solutions  
in conjunction with Mindtree’s Ethermind Bluetooth stack and SPP. This MSP430BT5190+CC2560 Bluetooth  
platform is ideal for applications that need a wireless serial link for cable replacement, such as remote controls,  
thermostats, smart meters, blood glucose meters, pulseoximeters, and many others.  
For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide  
Device Information  
PART NUMBER(1)  
MSP430BT5190IPZ  
PACKAGE  
BODY SIZE(2)  
14 mm × 14 mm  
7 mm × 7 mm  
7 mm × 7 mm  
LQFP (100)  
MSP430BT5190IZCA  
nFBGA (113)  
MSP430BT5190IZQW(3)  
MicroStar JuniorBGA (113)  
(1) For the most current part, package, and ordering information, see the Package Option Addendum  
in Section Mechanical, Packaging, and Orderable Information, or see the TI website at www.ti.com.  
(2) The sizes shown here are approximations. For the package dimensions with tolerances, see the  
Mechanical Data in Section Mechanical, Packaging, and Orderable Information.  
(3) All orderable part numbers in the ZQE (MicroStar Junior BGA) package have been changed to a  
status of Last Time Buy. Visit the Product life cycle page for details on this status.  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
4 Functional Block Diagram  
Figure 4-1 shows the functional block diagram.  
PA  
PB  
PC  
PD  
PE  
PF  
P11.x  
XIN XOUT  
DVCC DVSS AVCC AVSS  
RST/NMI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x P9.x P10.x  
XT2IN  
I/O Ports  
ACLK  
Power  
Management  
I/O Ports  
P3/P4  
2×8 I/Os  
I/O Ports  
P5/P6  
2×8 I/Os  
I/O Ports  
P7/P8  
2×8 I/Os  
I/O Ports  
P9/P10  
2×8 I/Os  
I/O Ports  
P11  
1×3 I/Os  
Unified  
Clock  
System  
P1/P2  
2×8 I/Os  
Interrupt  
Capability  
256KB  
Flash  
16KB  
RAM  
XT2OUT  
SYS  
SMCLK  
LDO  
SVM/SVS  
Brownout  
Watchdog  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
PD  
1×16 I/Os  
PE  
1×16 I/Os  
PF  
1×3 I/Os  
PA  
1×16 I/Os  
MCLK  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(L: 8+2)  
ADC12_A  
USCI0,1,2,3  
12 Bit  
200 KSPS  
TA0  
TA1  
TB0  
USCI_Ax:  
UART,  
IrDA, SPI  
JTAG/  
SBW  
Interface  
RTC_A  
MPY32  
CRC16  
REF  
Timer_A  
5 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_B  
7 CC  
Registers  
16 Channels  
(14 ext/2 int)  
Autoscan  
UCSI_Bx:  
SPI, I2C  
Figure 4-1. Functional Block Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Functional Block Diagram.............................................. 3  
5 Revision History.............................................................. 4  
6 Terminal Configuration and Functions..........................7  
6.1 Pin Diagrams.............................................................. 7  
6.2 Signal Descriptions..................................................... 9  
7 Specifications................................................................ 14  
7.1 Absolute Maximum Ratings...................................... 14  
7.2 ESD Ratings............................................................. 14  
7.3 Recommended Operating Conditions.......................14  
7.4 Active Mode Supply Current Into VCC Excluding  
7.27 Wake-up Times From Low-Power Modes and  
Reset...........................................................................28  
7.28 Timer_A...................................................................29  
7.29 Timer_B...................................................................29  
7.30 USCI (UART Mode), Recommended Operating  
Conditions................................................................... 29  
7.31 USCI (UART Mode)................................................ 29  
7.32 USCI (SPI Master Mode), Recommended  
Operating Conditions...................................................30  
7.33 USCI (SPI Master Mode)........................................ 30  
7.34 USCI (SPI Slave Mode).......................................... 32  
7.35 USCI (I2C Mode).....................................................34  
7.36 12-Bit ADC, Power Supply and Input Range  
External Current.......................................................... 15  
Conditions................................................................... 35  
7.37 12-Bit ADC, Timing Parameters..............................35  
7.38 12-Bit ADC, Linearity Parameters...........................35  
7.39 12-Bit ADC, Temperature Sensor and Built-In  
7.5 Low-Power Mode Supply Currents (Into VCC  
)
Excluding External Current..........................................16  
7.6 Thermal Characteristics............................................16  
7.7 Schmitt-Trigger Inputs – General-Purpose I/O .........17  
7.8 Inputs – Ports P1 and P2..........................................17  
7.9 Leakage Current – General-Purpose I/O..................17  
7.10 Outputs – General-Purpose I/O (Full Drive  
Strength)......................................................................17  
7.11 Outputs – General-Purpose I/O (Reduced Drive  
Strength)......................................................................18  
7.12 Output Frequency – General-Purpose I/O..............18  
7.13 Typical Characteristics – Outputs, Full Drive  
VMID ............................................................................36  
7.40 REF, External Reference........................................ 37  
7.41 REF, Built-In Reference.......................................... 38  
7.42 Flash Memory......................................................... 39  
7.43 JTAG and Spy-Bi-Wire Interface.............................39  
8 Detailed Description......................................................40  
8.1 CPU.......................................................................... 40  
8.2 Operating Modes...................................................... 41  
8.3 Interrupt Vector Addresses....................................... 42  
8.4 Memory Organization................................................44  
8.5 Bootstrap Loader (BSL)............................................ 44  
8.6 JTAG Operation........................................................ 45  
8.7 Flash Memory........................................................... 46  
8.8 RAM..........................................................................46  
8.9 Peripherals................................................................47  
8.10 Input/Output Schematics.........................................68  
8.11 Device Descriptors (TLV)........................................ 92  
9 Device and Documentation Support............................95  
9.1 Device Support......................................................... 95  
9.2 Documentation Support............................................ 98  
9.3 Support Resources................................................... 98  
9.4 Trademarks...............................................................98  
9.5 Electrostatic Discharge Caution................................98  
9.6 Export Control Notice................................................98  
9.7 Glossary....................................................................98  
Strength (PxDS.y = 1)................................................. 19  
7.14 Typical Characteristics – Outputs, Reduced  
Drive Strength (PxDS.y = 0)........................................20  
7.15 Crystal Oscillator, XT1, Low-Frequency Mode .......21  
7.16 Crystal Oscillator, XT1, High-Frequency Mode ......22  
7.17 Crystal Oscillator, XT2............................................ 23  
7.18 Internal Very-Low-Power Low-Frequency  
Oscillator (VLO)...........................................................24  
7.19 Internal Reference, Low-Frequency Oscillator  
(REFO)........................................................................24  
7.20 DCO Frequency......................................................24  
7.21 PMM, Brown-Out Reset (BOR)...............................25  
7.22 PMM, Core Voltage.................................................26  
7.23 PMM, SVS High Side..............................................26  
7.24 PMM, SVM High Side............................................. 27  
7.25 PMM, SVS Low Side...............................................28  
7.26 PMM, SVM Low Side..............................................28  
5 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from revision B to revision C  
Changes from August 7, 2015 to September 11, 2020  
Page  
Updated the numbering for sections, tables, figures, and cross-references throughout the document..............1  
Added nFBGA package (ZXH) information throughout document......................................................................1  
Added note about status change for all orderable part numbers in the ZQE package in Device Information ... 1  
Changed the MAX value of the IERASE and IMERASE, IBANK parameters in Section 7.42, Flash Memory ......... 39  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Changes from revision A to revision B  
Changes from August 5, 2013 to August 6, 2015  
Page  
Document format and organization changes throughout, including addition of section numbering ...................1  
Added Device Information table..........................................................................................................................1  
Moved functional block diagram to Figure 4-1, Functional Block Diagram ........................................................3  
Added Section Device Characteristics, Device Characteristics, and moved Table 6-1 to it............................... 6  
Added signal names to ZQW pinout...................................................................................................................7  
Added Section 7.2, ESD Ratings .....................................................................................................................14  
Added note to CVCORE ..................................................................................................................................... 14  
Moved Section 7.6, Thermal Characteristics ...................................................................................................16  
Changed the TYP value of CL,eff with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to 1 pF.................21  
Corrected spelling of MRG bits in symbol and description for fMCLK,MRG parameter........................................ 39  
Corrected spelling of NMIIFG in Table 8-6, System Module Interrupt Vector Registers ..................................49  
Changed P5.3 schematic (added P5SEL.2 and XT2BYPASS inputs with AND and OR gates) ..................... 78  
Changed P5SEL.3 column from X to 0 for "P5.3 (I/O)" rows............................................................................78  
Changed P7.1 schematic (added P7SEL.1 input and OR gate).......................................................................83  
Changed P7SEL.1 column from X to 0 for "P7.1 (I/O)" rows............................................................................83  
Added Section 9 and moved Tools Support, Device Nomenclature, ESD Caution, and Trademarks sections to  
it........................................................................................................................................................................95  
Added Section Mechanical, Packaging, and Orderable Information ............................................................... 99  
Changes from initial release to revision A  
Added Applications, Development Tools Support, and Device and Development Tool Nomenclature sections.  
Signal Descriptions table, Added note about pullup resistor to RST/NMI/SBWTDIO pin.  
DMA Trigger Assignments table, Changed SYSRSTIV interrupt event at 1Ch to Reserved.  
Recommended Operating Conditions, Added note about interaction between minimum VCC and SVS; Added  
note about test conditions for typical values.  
DCO Frequency, Added note (1).  
12-Bit ADC, Temperature Sensor and Built-In VMID, Changed ADC12 tSENSOR(sample) MIN to 100 μs;  
changed note (2).  
Flash Memory, Changed IERASE and IMERASE, IBANK limits.  
Changed SLAU265 references to SLAU319 or SLAU320 as appropriate.  
Editorial changes throughout.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Device Characteristics  
Table 6-1 summarizes the device characteristics.  
Table 6-1. Device Characteristics  
USCI  
FLASH  
(KB)  
SRAM  
(KB)  
ADC12_A  
(Ch)  
DEVICE(1) (2)  
Timer_A(3) Timer_B(4)  
I/O  
PACKAGE  
CHANNEL A: CHANNEL B:  
UART, IrDA,  
SPI  
SPI, I2C  
100 PZ,  
113 ZQW  
MSP430BT5190  
256  
16  
5, 3  
7
4
4
14 ext, 2 int  
87  
(1) For the most current part, package, and ordering information, see the Package Option Addendum in Section Mechanical, Packaging,  
and Orderable Information, or see the TI website at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and  
PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first  
instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.  
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and  
PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first  
instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
6 Terminal Configuration and Functions  
6.1 Pin Diagrams  
Figure 6-1 shows the pinout of the 100-pin PZ package.  
P6.4/A4  
P6.5/A5  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7  
2
P9.6  
P6.6/A6  
3
P9.5/UCA2RXDUCA2SOMI  
P9.4/UCA2TXD/UCA2SIMO  
P9.3/UCB2CLK/UCA2STE  
P9.2/UCB2SOMI/UCB2SCL  
P9.1/UCB2SIMO/UCB2SDA  
P9.0/UCB2STE/UCA2CLK  
P8.7  
P6.7/A7  
4
P7.4/A12  
5
P7.5/A13  
6
P7.6/A14  
7
P7.7/A15  
8
P5.0/A8/VREF+/VeREF+  
P5.1/A9/VREF−/VeREF−  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/TA1.1  
AVCC  
AVSS  
P8.5/TA1.0  
DVCC2  
DVSS2  
P7.0/XIN  
VCORE  
P7.1/XOUT  
DVSS1  
P8.4/TA0.4  
P8.3/TA0.3  
DVCC1  
P8.2/TA0.2  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3/TA0.2  
P1.4/TA0.3  
P1.5/TA0.4  
P1.6/SMCLK  
P1.7  
P8.1/TA0.1  
P8.0/TA0.0  
P7.3/TA1.2  
P7.2/TB0OUTH/SVMOUT  
P5.7/UCA1RXD/UCA1SOMI  
P5.6/UCA1TXD/UCA1SIMO  
P5.5/UCB1CLK/UCA1STE  
P5.4/UCB1SOMI/UCB1SCL  
P2.0/TA1CLK/MCLK  
Figure 6-1. 100-Pin PZ Package (Top View)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Figure 6-2 shows the pinout of the 113-pin ZQW package.  
P6.4  
A1  
P6.2  
A2  
RST  
A3  
PJ.1  
A4  
P5.3  
A5  
P5.2  
A6  
P11.2  
A7  
P11.0  
A8  
P10.6  
A9  
P10.4  
A10  
P10.1  
A11  
P9.7  
A12  
P6.6  
B1  
P6.3  
B2  
P6.1  
B3  
PJ.3  
B4  
PJ.0  
B5  
DVSS4 DVCC4 P10.7  
P10.5  
B9  
P10.3  
B10  
P9.6  
B11  
P9.5  
B12  
B6  
B7  
B8  
P7.5  
C1  
P6.7  
C2  
Reserved  
C3  
P9.4  
C11  
P9.2  
C12  
P5.0  
D1  
P7.6  
D2  
P6.0  
D4  
PJ.2  
D5  
TEST  
D6  
P11.1  
D7  
P10.2  
D8  
P10.0  
D9  
P9.0  
D11  
P8.7  
D12  
P5.1  
E1  
AVCC  
E2  
P6.5  
E4  
Reserved Reserved Reserved Reserved  
P9.3  
E9  
P8.6  
E11  
DVCC2  
E12  
E5  
E6  
E7  
E8  
P7.0  
F1  
AVSS  
F2  
P7.4  
F4  
Reserved  
F5  
Reserved  
F8  
P9.1  
F9  
P8.5  
F11  
DVSS2  
F12  
P7.1  
G1  
DVSS1  
G2  
P7.7  
G4  
Reserved  
G5  
Reserved  
G8  
P8.3  
G9  
P8.4 VCORE  
G11  
G12  
P1.0  
H1  
DVCC1  
H2  
P1.1  
H4  
Reserved Reserved Reserved  
A8  
H8  
P8.0  
H9  
P8.1  
H11  
P8.2  
H12  
H5  
H6  
H7  
P1.3  
J1  
P1.4  
J2  
P1.2  
J4  
P2.7  
J5  
P3.2  
J6  
P3.5  
J7  
P4.0  
J8  
P5.5  
J9  
P7.2  
J11  
P7.3  
J12  
P1.5  
K1  
P1.6  
K2  
P5.6  
K11  
P5.7  
K12  
P1.7  
L1  
P2.1  
L2  
P2.3  
L3  
P2.5  
L4  
P3.0  
L5  
P3.3  
L6  
P3.4  
L7  
P3.7  
L8  
P4.2  
L9  
P4.3  
L10  
P4.5  
L11  
P5.4  
L12  
P2.0  
M1  
P2.2  
M2  
P2.4  
M3  
P2.6  
M4  
P3.1  
M5  
DVSS3 DVCC3  
M6  
M7  
P3.6  
M8  
P4.1  
M9  
P4.4  
M10  
P4.6  
M11  
P4.7  
M12  
Figure 6-2. 113-Pin ZQW Package (Top View)  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
6.2 Signal Descriptions  
Section 6.2.1 describes the signals.  
6.2.1 Terminal Functions  
TERMINAL  
NO.  
I/O(1)  
DESCRIPTION  
NAME  
PZ ZQW  
General-purpose digital I/O  
Analog input A4 – ADC  
P6.4/A4  
P6.5/A5  
P6.6/A6  
P6.7/A7  
P7.4/A12  
P7.5/A13  
P7.6/A14  
P7.7/A15  
1
2
3
4
5
6
7
8
A1  
E4  
B1  
C2  
F4  
C1  
D2  
G4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
Analog input A5 – ADC  
General-purpose digital I/O  
Analog input A6 – ADC  
General-purpose digital I/O  
Analog input A7 – ADC  
General-purpose digital I/O  
Analog input A12 –ADC  
General-purpose digital I/O  
Analog input A13 – ADC  
General-purpose digital I/O  
Analog input A14 – ADC  
General-purpose digital I/O  
Analog input A15 – ADC  
General-purpose digital I/O  
Analog input A8 – ADC  
Output of reference voltage to the ADC  
P5.0/A8/VREF+/VeREF+  
P5.1/A9/VREF-/VeREF-  
9
D1  
E1  
I/O  
I/O  
Input for an external reference voltage to the ADC  
General-purpose digital I/O  
Analog input A9 – ADC  
Negative terminal for the ADC reference voltage for both sources, the internal  
reference voltage, or an external applied reference voltage  
10  
AVCC  
AVSS  
11  
12  
E2  
F2  
Analog power supply  
Analog ground supply  
General-purpose digital I/O  
Input terminal for crystal oscillator XT1  
P7.0/XIN  
13  
14  
F1  
I/O  
I/O  
General-purpose digital I/O  
Output terminal of crystal oscillator XT1  
P7.1/XOUT  
G1  
DVSS1  
DVCC1  
15  
16  
G2  
H2  
Digital ground supply  
Digital power supply  
General-purpose digital I/O with port interrupt  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
17  
18  
19  
H1  
H4  
J4  
I/O TA0 clock signal TACLK input  
ACLK output (divided by 1, 2, 4, 8, 16, or 32)  
General-purpose digital I/O with port interrupt  
I/O TA0 CCR0 capture: CCI0A input, compare: Out0 output  
BSL transmit output  
General-purpose digital I/O with port interrupt  
I/O TA0 CCR1 capture: CCI1A input, compare: Out1 output  
BSL receive input  
P1.2/TA0.1  
General-purpose digital I/O with port interrupt  
TA0 CCR2 capture: CCI2A input, compare: Out2 output  
P1.3/TA0.2  
P1.4/TA0.3  
P1.5/TA0.4  
20  
21  
22  
J1  
J2  
K1  
I/O  
General-purpose digital I/O with port interrupt  
I/O  
TA0 CCR3 capture: CCI3A input compare: Out3 output  
General-purpose digital I/O with port interrupt  
TA0 CCR4 capture: CCI4A input, compare: Out4 output  
I/O  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
TERMINAL  
NO.  
I/O(1)  
DESCRIPTION  
NAME  
PZ ZQW  
General-purpose digital I/O with port interrupt  
SMCLK output  
P1.6/SMCLK  
P1.7  
23  
24  
K2  
L1  
I/O  
I/O General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
I/O TA1 clock signal TA1CLK input  
MCLK output  
P2.0/TA1CLK/MCLK  
25  
M1  
General-purpose digital I/O with port interrupt  
TA1 CCR0 capture: CCI0A input, compare: Out0 output  
P2.1/TA1.0  
P2.2/TA1.1  
P2.3/TA1.2  
26  
27  
28  
L2  
M2  
L3  
I/O  
General-purpose digital I/O with port interrupt  
TA1 CCR1 capture: CCI1A input, compare: Out1 output  
I/O  
General-purpose digital I/O with port interrupt  
TA1 CCR2 capture: CCI2A input, compare: Out2 output  
I/O  
General-purpose digital I/O with port interrupt  
RTCCLK output  
P2.4/RTCCLK  
P2.5  
29  
30  
31  
M3  
L4  
I/O  
I/O General-purpose digital I/O with port interrupt  
General-purpose digital I/O with port interrupt  
I/O  
P2.6/ACLK  
M4  
ACLK output (divided by 1, 2, 4, 8, 16, or 32)  
General-purpose digital I/O with port interrupt  
I/O Conversion clock output ADC  
DMA external trigger input  
P2.7/ADC12CLK/DMAE0  
P3.0/UCB0STE/UCA0CLK  
32  
33  
J5  
L5  
General-purpose digital I/O  
Slave transmit enable – USCI_B0 SPI mode  
Clock signal input – USCI_A0 SPI slave mode  
I/O  
Clock signal output – USCI_A0 SPI master mode  
General-purpose digital I/O  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
34  
35  
M5  
J6  
I/O Slave in, master out – USCI_B0 SPI mode  
I2C data – USCI_B0 I2C mode  
General-purpose digital I/O  
I/O Slave out, master in – USCI_B0 SPI mode  
I2C clock – USCI_B0 I2C mode  
General-purpose digital I/O  
Clock signal input – USCI_B0 SPI slave mode  
Clock signal output – USCI_B0 SPI master mode  
P3.3/UCB0CLK/UCA0STE  
36  
L6  
I/O  
Slave transmit enable – USCI_A0 SPI mode  
DVSS3  
DVCC3  
37  
38  
M6  
M7  
Digital ground supply  
Digital power supply  
General-purpose digital I/O  
P3.4/UCA0TXD/UCA0SIMO  
P3.5/UCA0RXD/UCA0SOMI  
39  
40  
L7  
J7  
I/O Transmit data – USCI_A0 UART mode  
Slave in, master out – USCI_A0 SPI mode  
General-purpose digital I/O  
I/O Receive data – USCI_A0 UART mode  
Slave out, master in – USCI_A0 SPI mode  
General-purpose digital I/O  
Slave transmit enable – USCI_B1 SPI mode  
Clock signal input – USCI_A1 SPI slave mode  
Clock signal output – USCI_A1 SPI master mode  
P3.6/UCB1STE/UCA1CLK  
P3.7/UCB1SIMO/UCB1SDA  
41  
42  
M8  
L8  
I/O  
General-purpose digital I/O  
I/O Slave in, master out – USCI_B1 SPI mode  
I2C data – USCI_B1 I2C mode  
General-purpose digital I/O  
TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
P4.0/TB0.0  
P4.1/TB0.1  
43  
44  
J8  
I/O  
General-purpose digital I/O  
TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
M9  
I/O  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
TERMINAL  
NAME  
NO.  
I/O(1)  
DESCRIPTION  
PZ ZQW  
General-purpose digital I/O  
TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
P4.2/TB0.2  
P4.3/TB0.3  
P4.4/TB0.4  
P4.5/TB0.5  
P4.6/TB0.6  
45  
46  
47  
48  
49  
L9  
I/O  
I/O  
General-purpose digital I/O  
TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output  
L10  
General-purpose digital I/O  
TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output  
M10 I/O  
General-purpose digital I/O  
TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output  
L11  
I/O  
I/O  
General-purpose digital I/O  
TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output  
M11  
General-purpose digital I/O  
P4.7/TB0CLK/SMCLK  
50  
51  
M12 I/O TB0 clock input  
SMCLK output  
General-purpose digital I/O  
P5.4/UCB1SOMI/UCB1SCL  
L12  
J9  
I/O Slave out, master in – USCI_B1 SPI mode  
I2C clock – USCI_B1 I2C mode  
General-purpose digital I/O  
Clock signal input – USCI_B1 SPI slave mode  
Clock signal output – USCI_B1 SPI master mode  
P5.5/UCB1CLK/UCA1STE  
52  
I/O  
Slave transmit enable – USCI_A1 SPI mode  
General-purpose digital I/O  
P5.6/UCA1TXD/UCA1SIMO  
P5.7/UCA1RXD/UCA1SOMI  
P7.2/TB0OUTH/SVMOUT  
53  
54  
55  
K11  
K12  
J11  
I/O Transmit data – USCI_A1 UART mode  
Slave in, master out – USCI_A1 SPI mode  
General-purpose digital I/O  
I/O Receive data – USCI_A1 UART mode  
Slave out, master in – USCI_A1 SPI mode  
General-purpose digital I/O  
I/O Switch all PWM outputs high impedance – Timer TB0  
SVM output  
General-purpose digital I/O  
TA1 CCR2 capture: CCI2B input, compare: Out2 output  
P7.3/TA1.2  
P8.0/TA0.0  
P8.1/TA0.1  
P8.2/TA0.2  
P8.3/TA0.3  
P8.4/TA0.4  
56  
57  
58  
59  
60  
61  
J12  
H9  
I/O  
General-purpose digital I/O  
TA0 CCR0 capture: CCI0B input, compare: Out0 output  
I/O  
General-purpose digital I/O  
TA0 CCR1 capture: CCI1B input, compare: Out1 output  
H11  
H12  
G9  
I/O  
General-purpose digital I/O  
TA0 CCR2 capture: CCI2B input, compare: Out2 output  
I/O  
General-purpose digital I/O  
TA0 CCR3 capture: CCI3B input, compare: Out3 output  
I/O  
General-purpose digital I/O  
TA0 CCR4 capture: CCI4B input, compare: Out4 output  
G11  
I/O  
VCORE(2)  
DVSS2  
62  
63  
64  
G12  
F12  
E12  
Regulated core power supply output (internal use only, no external current loading)  
Digital ground supply  
Digital power supply  
DVCC2  
General-purpose digital I/O  
TA1 CCR0 capture: CCI0B input, compare: Out0 output  
P8.5/TA1.0  
65  
F11  
I/O  
General-purpose digital I/O  
TA1 CCR1 capture: CCI1B input, compare: Out1 output  
P8.6/TA1.1  
P8.7  
66  
67  
E11  
D12  
I/O  
I/O General-purpose digital I/O  
General-purpose digital I/O  
Slave transmit enable – USCI_B2 SPI mode  
Clock signal input – USCI_A2 SPI slave mode  
P9.0/UCB2STE/UCA2CLK  
68  
D11  
I/O  
Clock signal output – USCI_A2 SPI master mode  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
TERMINAL  
NO.  
I/O(1)  
DESCRIPTION  
NAME  
PZ ZQW  
General-purpose digital I/O  
P9.1/UCB2SIMO/UCB2SDA  
P9.2/UCB2SOMI/UCB2SCL  
69  
70  
F9  
I/O Slave in, master out – USCI_B2 SPI mode  
I2C data – USCI_B2 I2C mode  
General-purpose digital I/O  
C12  
I/O Slave out, master in – USCI_B2 SPI mode  
I2C clock – USCI_B2 I2C mode  
General-purpose digital I/O  
Clock signal input – USCI_B2 SPI slave mode  
Clock signal output – USCI_B2 SPI master mode  
P9.3/UCB2CLK/UCA2STE  
71  
E9  
I/O  
Slave transmit enable – USCI_A2 SPI mode  
General-purpose digital I/O  
P9.4/UCA2TXD/UCA2SIMO  
P9.5/UCA2RXD/UCA2SOMI  
72  
73  
C11  
B12  
I/O Transmit data – USCI_A2 UART mode  
Slave in, master out – USCI_A2 SPI mode  
General-purpose digital I/O  
I/O Receive data – USCI_A2 UART mode  
Slave out, master in – USCI_A2 SPI mode  
P9.6  
P9.7  
74  
75  
B11  
A12  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
General-purpose digital I/O  
Slave transmit enable – USCI_B3 SPI mode  
Clock signal input – USCI_A3 SPI slave mode  
P10.0/UCB3STE/UCA3CLK  
76  
D9  
I/O  
Clock signal output – USCI_A3 SPI master mode  
General-purpose digital I/O  
P10.1/UCB3SIMO/UCB3SDA  
P10.2/UCB3SOMI/UCB3SCL  
77  
78  
A11  
D8  
I/O Slave in, master out – USCI_B3 SPI mode  
I2C data – USCI_B3 I2C mode  
General-purpose digital I/O  
I/O Slave out, master in – USCI_B3 SPI mode  
I2C clock – USCI_B3 I2C mode  
General-purpose digital I/O  
Clock signal input – USCI_B3 SPI slave mode  
Clock signal output – USCI_B3 SPI master mode  
P10.3/UCB3CLK/UCA3STE  
79  
B10  
I/O  
Slave transmit enable – USCI_A3 SPI mode  
General-purpose digital I/O  
P10.4/UCA3TXD/UCA3SIMO  
P10.5/UCA3RXD/UCA3SOMI  
80  
81  
A10  
B9  
I/O Transmit data – USCI_A3 UART mode  
Slave in, master out – USCI_A3 SPI mode  
General-purpose digital I/O  
I/O Receive data – USCI_A3 UART mode  
Slave out, master in – USCI_A3 SPI mode  
P10.6  
P10.7  
82  
83  
A9  
B8  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
General-purpose digital I/O  
ACLK output (divided by 1, 2, 4, 8, 16, or 32)  
P11.0/ACLK  
P11.1/MCLK  
P11.2/SMCLK  
84  
85  
86  
A8  
D7  
A7  
I/O  
General-purpose digital I/O  
MCLK output  
I/O  
General-purpose digital I/O  
SMCLK output  
I/O  
DVCC4  
DVSS4  
87  
88  
B7  
B6  
Digital power supply  
Digital ground supply  
General-purpose digital I/O  
I/O  
P5.2/XT2IN  
89  
90  
91  
A6  
A5  
D6  
Input terminal for crystal oscillator XT2  
General-purpose digital I/O  
I/O  
P5.3/XT2OUT  
TEST/SBWTCK(3)  
Output terminal of crystal oscillator XT2  
Test mode pin – Selects four wire JTAG operation.  
Spy-Bi-Wire input clock when Spy-Bi-Wire operation activated  
I
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
TERMINAL  
NAME  
NO.  
I/O(1)  
DESCRIPTION  
PZ ZQW  
General-purpose digital I/O  
JTAG test data output port  
PJ.0/TDO(4)  
92  
93  
94  
95  
B5  
A4  
D5  
B4  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
JTAG test data input or test clock input  
PJ.1/TDI/TCLK(4)  
PJ.2/TMS(4)  
General-purpose digital I/O  
JTAG test mode select  
General-purpose digital I/O  
JTAG test clock  
PJ.3/TCK(4)  
Reset input active low(5)  
I/O Nonmaskable interrupt input  
RST/NMI/SBWTDIO(3)  
96  
A3  
Spy-Bi-Wire data input/output when Spy-Bi-Wire operation activated.  
General-purpose digital I/O  
I/O  
P6.0/A0  
P6.1/A1  
P6.2/A2  
P6.3/A3  
97  
98  
D4  
B3  
A2  
B2  
Analog input A0 – ADC  
General-purpose digital I/O  
I/O  
Analog input A1 – ADC  
General-purpose digital I/O  
I/O  
99  
Analog input A2 – ADC  
General-purpose digital I/O  
I/O  
100  
Analog input A3 – ADC  
G5,  
E8,  
F8,  
G8,  
H8,  
E7,  
H7,  
E6,  
H6,  
E5,  
F5,  
H5,  
C3  
Reserved  
N/A  
Reserved. Connect to ground.  
(1) I = input, O = output, N/A = not available on this package offering  
(2) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended  
capacitor value, CVCORE  
.
(3) See Section 8.5 and Section 8.6 for use with BSL and JTAG functions, respectively.  
(4) See Section 8.6 for use with JTAG function.  
(5) When this pin is configured as reset, the internal pullup resistor is enabled by default.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
UNIT  
V
Voltage applied at VCC to VSS  
–0.3  
4.1  
Voltage applied to any pin (excluding VCORE)(2)  
–0.3 VCC + 0.3  
±2  
V
Diode current at any device pin  
mA  
°C  
(3)  
Storage temperature range, Tstg  
–55  
105  
95  
Maximum junction temperature, TJ  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
7.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as  
±250 V may actually have higher performance.  
7.3 Recommended Operating Conditions  
Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted)  
MIN NOM MAX UNIT  
Supply voltage during program execution and flash programming  
VCC  
1.8  
3.6  
V
V
(1) (2)  
(AVCC = DVCC1/2/3/4 = DVCC  
)
VSS  
TA  
Supply voltage (AVSS = DVSS1/2/3/4 = DVSS  
Operating free-air temperature  
)
0
I version  
I version  
–40  
–40  
85 °C  
85 °C  
nF  
TJ  
Operating junction temperature  
CVCORE  
Recommended capacitor at VCORE(3)  
470  
CDVCC  
CVCORE  
/
Capacitor ratio of DVCC to VCORE  
10  
PMMCOREVx = 0, 1.8 V ≤ VCC ≤ 3.6 V  
PMMCOREVx = 1, 2.0 V ≤ VCC ≤ 3.6 V  
PMMCOREVx = 2, 2.2 V ≤ VCC ≤ 3.6 V  
PMMCOREVx = 3, 2.4 V ≤ VCC ≤ 3.6 V  
0
0
0
0
8.0  
12.0  
Processor frequency (maximum MCLK  
frequency)(4) (5) (see Figure 7-1)  
fSYSTEM  
MHz  
20.0  
25.0  
(1) TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Section 7.23 threshold parameters for  
the exact values and further details.  
(3) A capacitor tolerance of ±20% or better is required.  
(4) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the  
specified maximum frequency.  
(5) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
25  
20  
12  
8
3
2, 3  
2
1, 2  
1, 2, 3  
1
0
0, 1  
0, 1, 2  
0, 1, 2, 3  
0
1.8  
2.0  
2.2  
2.4  
3.6  
Supply Voltage - V  
The numbers within the fields denote the supported PMMCOREVx settings.  
Figure 7-1. Frequency vs Supply Voltage  
7.4 Active Mode Supply Current Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3)  
FREQUENCY (fDCO = fMCLK = fSMCLK  
)
PARAMETE EXECUTION  
PMMCOREV  
x
VCC  
1 MHz  
8 MHz 12 MHz 20 MHz  
25 MHz  
UNIT  
R
MEMORY  
TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX  
0
1
2
3
0
1
2
3
0.29 0.33 1.84 2.08  
0.32  
0.33  
0.35  
2.08  
2.24  
2.36  
3.10  
3.50  
3.70  
IAM, Flash  
Flash  
3 V  
mA  
6.37  
6.75  
8.90 9.60  
4.50 4.90  
0.17 0.19 0.88 0.99  
0.18  
0.19  
0.20  
1.00  
1.13  
1.20  
1.47  
1.68  
1.78  
IAM, RAM  
RAM  
3 V  
mA  
2.82  
3.00  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external  
load capacitance are chosen to closely match the required 12.5 pF.  
(3) Characterized with program executing typical data processing.  
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
–40°C  
25°C  
60°C  
85°C  
PARAMETER  
VCC  
PMMCOREVx  
UNIT  
TYP MAX  
TYP MAX  
TYP MAX  
TYP MAX  
2.2 V  
3 V  
0
3
0
3
0
1
2
0
1
2
3
0
1
2
3
0
1
2
3
69  
73  
93  
100  
69  
73  
93  
100  
69  
73  
93  
100  
69  
73  
93  
100  
Low-power  
ILPM0,1MHz  
µA  
mode 0(3) (9)  
2.2 V  
3 V  
11  
15.5  
17.5  
11  
15.5  
17.5  
11  
15.5  
17.5  
11  
15.5  
17.5  
Low-power  
ILPM2  
µA  
mode 2(4) (9)  
11.7  
1.4  
1.5  
1.5  
1.8  
1.8  
1.9  
2.0  
1.0  
1.0  
1.1  
1.2  
1.1  
1.2  
1.3  
1.3  
0.10  
11.7  
1.7  
1.8  
2.0  
2.1  
2.3  
2.4  
2.3  
1.2  
1.3  
1.4  
1.4  
1.2  
1.2  
1.3  
1.3  
0.10  
11.7  
2.6  
2.9  
3.3  
2.8  
3.1  
3.5  
3.9  
2.0  
2.3  
2.8  
3.0  
1.9  
2.2  
2.6  
2.9  
0.20  
11.7  
6.6  
2.2 V  
9.9  
10.1  
7.1  
Low-power mode 3,  
crystal mode(5) (9)  
ILPM3,XT1LF  
2.4  
13.6  
µA  
µA  
10.5  
10.6  
11.8  
5.8  
3 V  
2.6  
14.8  
12.9  
1.42  
6.0  
Low-power mode 3,  
VLO mode(6) (9)  
ILPM3,VLO  
3 V  
6.2  
1.62  
1.35  
6.2  
13.9  
12.9  
5.7  
5.9  
Low-power  
ILPM4  
3 V  
3 V  
µA  
µA  
mode 4(7) (9)  
6.1  
1.52  
0.13  
6.2  
13.9  
1.14  
ILPM4.5  
Low-power mode 4.5(8)  
0.50  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external  
load capacitance are chosen to closely match the required 12.5 pF.  
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz  
(4) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCO setting =  
1 MHz operation, DCO bias generator enabled.  
(5) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
(6) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz  
(7) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(8) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(9) Current for brownout, high side supervisor (SVSH) normal mode included. Low-side supervisor and monitors disabled (SVSL, SVML).  
High side monitor disabled (SVMH). RAM retention enabled.  
7.6 Thermal Characteristics  
VALUE  
50.1  
60  
UNIT  
QFP (PZ)  
Low-K board (JESD51-3)  
High-K board (JESD51-7)  
BGA (ZQW)  
QFP (PZ)  
θJA  
Junction-to-ambient thermal resistance, still air  
Junction-to-case thermal resistance  
°C/W  
40.8  
42  
BGA (ZQW)  
QFP (PZ)  
8.9  
θJC  
°C/W  
BGA (ZQW)  
8
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.7 Schmitt-Trigger Inputs – General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.80  
1.50  
0.45  
0.75  
0.3  
TYP  
MAX UNIT  
1.40  
V
2.10  
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
1.8 V  
3 V  
1.00  
V
1.65  
Negative-going input threshold voltage  
1.8 V  
3 V  
0.85  
V
1.0  
Input voltage hysteresis (VIT+ – VIT–  
)
0.4  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI  
Pullup or pulldown resistor(1)  
Input capacitance  
20  
35  
5
50  
kΩ  
pF  
VIN = VSS or VCC  
(1) Also applies to RST pin when the pullup or pulldown resistor is enabled.  
7.8 Inputs – Ports P1 and P2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Port P1, P2: P1.x to P2.x, external trigger pulse  
duration to set interrupt flag  
t(int)  
External interrupt timing(2)  
2.2 V, 3 V  
20  
ns  
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.  
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
7.9 Leakage Current – General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
(1) (2)  
Ilkg(Px.y)  
High-impedance leakage current  
1.8 V, 3 V  
±50 nA  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
7.10 Outputs – General-Purpose I/O (Full Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –10 mA(2)  
I(OHmax) = –5 mA(1)  
I(OHmax) = –15 mA(2)  
I(OLmax) = 3 mA(1)  
I(OLmax) = 10 mA(2)  
I(OLmax) = 5 mA(1)  
I(OLmax) = 15 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.11 Outputs – General-Purpose I/O (Reduced Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(3)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –3 mA(2)  
I(OHmax) = –2 mA(1)  
I(OHmax) = –6 mA(2)  
I(OLmax) = 1 mA(1)  
I(OLmax) = 3 mA(2)  
I(OLmax) = 2 mA(1)  
I(OLmax) = 6 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(3) Selecting reduced drive strength may reduce EMI.  
7.12 Output Frequency – General-Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
VCC = 1.8 V  
PMMCOREVx = 0  
16  
Port output frequency  
(with load)  
fPx.y  
P1.6/SMCLK (1) (2)  
MHz  
25  
VCC = 3 V  
PMMCOREVx = 3  
VCC = 1.8 V  
PMMCOREVx = 0  
P1.0/TA0CLK/ACLK  
P1.6/SMCLK  
16  
fPort_CLK  
Clock output frequency  
MHz  
25  
P2.0/TA1CLK/MCLK  
VCC = 3 V  
PMMCOREVx = 3  
CL = 20 pF(2)  
(1) A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full  
drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS  
.
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.13 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
60.0  
TA = 25°C  
TA = 85°C  
24  
20  
16  
12  
8
VCC = 1.8 V  
Px.y  
VCC = 3.0 V  
Px.y  
55.0  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
TA = 25°C  
TA = 85°C  
4
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
Figure 7-2. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 7-3. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0
0.0  
VCC = 1.8 V  
Px.y  
VCC = 3.0 V  
-5.0  
Px.y  
-10.0  
-15.0  
-20.0  
-25.0  
-30.0  
-35.0  
-40.0  
-4  
-8  
-12  
TA = 85°C  
-16  
-45.0  
TA = 85°C  
-50.0  
-55.0  
TA = 25°C  
-60.0  
TA = 25°C  
-20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
Figure 7-4. Typical High-Level Output Current vs  
High-Level Output Voltage  
Figure 7-5. Typical High-Level Output Current vs  
High-Level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.14 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
25.0  
20.0  
15.0  
10.0  
5.0  
TA = 25°C  
TA = 85°C  
VCC = 3.0 V  
Px.y  
VCC = 1.8 V  
Px.y  
TA = 25°C  
TA = 85°C  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
Figure 7-6. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 7-7. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0.0  
0.0  
VCC = 1.8 V  
VCC = 3.0 V  
Px.y  
Px.y  
-1.0  
-5.0  
-2.0  
-3.0  
-4.0  
-10.0  
TA = 85°C  
-5.0  
-15.0  
TA = 85°C  
-6.0  
TA = 25°C  
-20.0  
TA = 25°C  
-7.0  
-8.0  
-25.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
Figure 7-8. Typical High-Level Output Current vs  
High-Level Output Voltage  
Figure 7-9. Typical High-Level Output Current vs  
High-Level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.15 Crystal Oscillator, XT1, Low-Frequency Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
TA = 25°C  
0.075  
Differential XT1 oscillator crystal  
current consumption from lowest  
drive setting, LF mode  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 2,  
TA = 25°C  
ΔIDVCC.LF  
3 V  
0.170  
µA  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C  
0.290  
XT1 oscillator crystal frequency,  
LF mode  
fXT1,LF0  
XTS = 0, XT1BYPASS = 0  
32768  
Hz  
XT1 oscillator logic-level square-  
wave input frequency, LF mode  
fXT1,LF,SW  
XTS = 0, XT1BYPASS = 1(5) (6)  
10 32.768  
210  
50 kHz  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
fXT1,LF = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(7)  
OALF  
kΩ  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,LF = 32768 Hz, CL,eff = 12 pF  
300  
XTS = 0, XCAPx = 0(2)  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
Integrated effective load  
capacitance, LF mode(1)  
CL,eff  
pF  
8.5  
12.0  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30%  
10  
70%  
Oscillator fault frequency,  
LF mode(4)  
fFault,LF  
XTS = 0(3)  
10000  
Hz  
ms  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TA = 25°C, CL,eff = 6 pF  
1000  
500  
tSTART,LF  
Start-up time, LF mode  
3 V  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C, CL,eff = 12 pF  
(1) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(2) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(3) Measured with logic-level input frequency but also applies to operation with crystals.  
(4) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX might set the flag.  
(5) When XT1BYPASS is set, XT1 circuits are automatically powered down. The input signal must be a digital square wave with the  
parametrics defined in the Section 7.7 section.  
(6) Maximum frequency of operation of the entire device cannot be exceeded.  
(7) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For XT1DRIVEx = 0, CL,eff ≤ 6 pF.  
For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF.  
For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF.  
For XT1DRIVEx = 3, CL,eff ≥ 6 pF.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.16 Crystal Oscillator, XT1, High-Frequency Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TA = 25°C  
200  
fOSC = 12 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
TA = 25°C  
260  
325  
450  
XT1 oscillator crystal current,  
HF mode  
IDVCC.HF  
3 V  
µA  
fOSC = 20 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVEx = 2,  
TA = 25°C  
fOSC = 32 MHz,  
XTS = 1, XOSCOFF = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C  
XT1 oscillator crystal frequency,  
HF mode 0  
XTS = 1,  
fXT1,HF0  
fXT1,HF1  
fXT1,HF2  
fXT1,HF3  
4
8
8
MHz  
XT1BYPASS = 0, XT1DRIVEx = 0(6)  
XT1 oscillator crystal frequency,  
HF mode 1  
XTS = 1,  
16 MHz  
24 MHz  
32 MHz  
XT1BYPASS = 0, XT1DRIVEx = 1(6)  
XT1 oscillator crystal frequency,  
HF mode 2  
XTS = 1,  
16  
24  
XT1BYPASS = 0, XT1DRIVEx = 2(6)  
XT1 oscillator crystal frequency,  
HF mode 3  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVEx = 3(6)  
XT1 oscillator logic-level square-  
wave input frequency, HF mode,  
bypass mode  
XTS = 1,  
fXT1,HF,SW  
1.5  
32 MHz  
XT1BYPASS = 1(5) (6)  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
fXT1,HF = 6 MHz, CL,eff = 15 pF  
450  
320  
200  
200  
0.5  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,HF = 12 MHz, CL,eff = 15 pF  
Oscillation allowance for  
HF crystals(7)  
OAHF  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVEx = 2,  
fXT1,HF = 20 MHz, CL,eff = 15 pF  
XTS = 1,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
fXT1,HF = 32 MHz, CL,eff = 15 pF  
fOSC = 6 MHz, XTS = 1,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TA = 25°C, CL,eff = 15 pF  
tSTART,HF  
Start-up time, HF mode  
3 V  
ms  
pF  
fOSC = 20 MHz, XTS = 1,  
XT1BYPASS = 0, XT1DRIVEx = 2,  
TA = 25°C, CL,eff = 15 pF  
0.3  
Integrated effective load  
CL,eff  
XTS = 1  
1
capacitance, HF mode(1) (2)  
XTS = 1, Measured at ACLK,  
fXT1,HF2 = 20 MHz  
Duty cycle, HF mode  
40%  
30  
50%  
60%  
300 kHz  
Oscillator fault frequency,  
HF mode(4)  
fFault,HF  
XTS = 1(3)  
(1) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(2) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
(3) Measured with logic-level input frequency but also applies to operation with crystals.  
(4) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX might set the flag.  
(5) When XT1BYPASS is set, XT1 circuits are automatically powered down. The input signal must be a digital square wave with the  
parametrics defined in the Section 7.7 section.  
(6) This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device  
operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.  
(7) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
7.17 Crystal Oscillator, XT2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2) (5)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C  
200  
fOSC = 12 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 1,  
TA = 25°C  
260  
325  
450  
XT2 oscillator crystal current  
consumption  
IDVCC.XT2  
3 V  
µA  
fOSC = 20 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 2,  
TA = 25°C  
fOSC = 32 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 3,  
TA = 25°C  
XT2 oscillator crystal frequency,  
mode 0  
fXT2,HF0  
fXT2,HF1  
fXT2,HF2  
fXT2,HF3  
fXT2,HF,SW  
XT2DRIVEx = 0, XT2BYPASS = 0(7)  
XT2DRIVEx = 1, XT2BYPASS = 0(7)  
XT2DRIVEx = 2, XT2BYPASS = 0(7)  
XT2DRIVEx = 3, XT2BYPASS = 0(7)  
XT2BYPASS = 1(6) (7)  
4
8
8
MHz  
XT2 oscillator crystal frequency,  
mode 1  
16 MHz  
24 MHz  
32 MHz  
32 MHz  
XT2 oscillator crystal frequency,  
mode 2  
16  
24  
1.5  
XT2 oscillator crystal frequency,  
mode 3  
XT2 oscillator logic-level square-  
wave input frequency, bypass mode  
XT2DRIVEx = 0, XT2BYPASS = 0,  
fXT2,HF0 = 6 MHz, CL,eff = 15 pF  
450  
320  
200  
200  
XT2DRIVEx = 1, XT2BYPASS = 0,  
fXT2,HF1 = 12 MHz, CL,eff = 15 pF  
Oscillation allowance for  
HF crystals(8)  
OAHF  
XT2DRIVEx = 2, XT2BYPASS = 0,  
fXT2,HF2 = 20 MHz, CL,eff = 15 pF  
XT2DRIVEx = 3, XT2BYPASS = 0,  
fXT2,HF3 = 32 MHz, CL,eff = 15 pF  
fOSC = 6 MHz  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C, CL,eff = 15 pF  
0.5  
0.3  
tSTART,HF  
Start-up time  
3 V  
ms  
pF  
fOSC = 20 MHz  
XT2BYPASS = 0, XT2DRIVEx = 2,  
TA = 25°C, CL,eff = 15 pF  
Integrated effective load  
CL,eff  
1
capacitance, HF mode(1) (2)  
Duty cycle  
Measured at ACLK, fXT2,HF2 = 20 MHz  
XT2BYPASS = 1(3)  
40%  
30  
50%  
60%  
300 kHz  
fFault,HF  
Oscillator fault frequency(4)  
(1) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(2) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(3) Measured with logic-level input frequency but also applies to operation with crystals.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
(4) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX might set the flag.  
(5) To improve EMI on the XT2 oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.  
Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.  
Use assembly materials and techniques that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(6) When XT2BYPASS is set, XT2 circuits are automatically powered down. The input signal must be a digital square wave with the  
parametrics defined in the Section 7.7 section.  
(7) This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device  
operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.  
(8) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
7.18 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
9.4  
0.5  
4
MAX UNIT  
14 kHz  
%/°C  
fVLO  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
dfVLO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
Duty cycle  
%/V  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
7.19 Internal Reference, Low-Frequency Oscillator (REFO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
IREFO  
REFO oscillator current consumption TA = 25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
3
µA  
REFO frequency calibrated  
Measured at ACLK  
32768  
Hz  
fREFO  
Full temperature range  
TA = 25°C  
±3.5%  
±1.5%  
%/°C  
%/V  
REFO absolute tolerance calibrated  
dfREFO/dT  
REFO frequency temperature drift  
Measured at ACLK(1)  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
0.01  
1.0  
dfREFO/dVCC  
REFO frequency supply voltage drift Measured at ACLK(2)  
Duty cycle  
Measured at ACLK  
40%/60% duty cycle  
40%  
50%  
25  
60%  
tSTART  
REFO start-up time  
µs  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
7.20 DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DCORSELx = 0, DCOx = 0, MODx = 0  
DCORSELx = 0, DCOx = 31, MODx = 0  
DCORSELx = 1, DCOx = 0, MODx = 0  
DCORSELx = 1, DCOx = 31, MODx = 0  
DCORSELx = 2, DCOx = 0, MODx = 0  
DCORSELx = 2, DCOx = 31, MODx = 0  
DCORSELx = 3, DCOx = 0, MODx = 0  
DCORSELx = 3, DCOx = 31, MODx = 0  
DCORSELx = 4, DCOx = 0, MODx = 0  
MIN  
0.07  
0.70  
0.15  
1.47  
0.32  
3.17  
0.64  
6.07  
1.3  
TYP  
MAX UNIT  
0.20 MHz  
1.70 MHz  
0.36 MHz  
3.45 MHz  
0.75 MHz  
7.38 MHz  
1.51 MHz  
14.0 MHz  
3.2 MHz  
fDCO(0,0)  
fDCO(0,31)  
fDCO(1,0)  
fDCO(1,31)  
fDCO(2,0)  
fDCO(2,31)  
fDCO(3,0)  
fDCO(3,31)  
fDCO(4,0)  
DCO frequency (0, 0)(1)  
DCO frequency (0, 31)(1)  
DCO frequency (1, 0)(1)  
DCO frequency (1, 31)(1)  
DCO frequency (2, 0)(1)  
DCO frequency (2, 31)(1)  
DCO frequency (3, 0)(1)  
DCO frequency (3, 31)(1)  
DCO frequency (4, 0)(1)  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DCORSELx = 4, DCOx = 31, MODx = 0  
DCORSELx = 5, DCOx = 0, MODx = 0  
DCORSELx = 5, DCOx = 31, MODx = 0  
DCORSELx = 6, DCOx = 0, MODx = 0  
DCORSELx = 6, DCOx = 31, MODx = 0  
DCORSELx = 7, DCOx = 0, MODx = 0  
DCORSELx = 7, DCOx = 31, MODx = 0  
MIN  
12.3  
2.5  
TYP  
MAX UNIT  
28.2 MHz  
6.0 MHz  
fDCO(4,31)  
fDCO(5,0)  
fDCO(5,31)  
fDCO(6,0)  
fDCO(6,31)  
fDCO(7,0)  
fDCO(7,31)  
DCO frequency (4, 31)(1)  
DCO frequency (5, 0)(1)  
DCO frequency (5, 31)(1)  
DCO frequency (6, 0)(1)  
DCO frequency (6, 31)(1)  
DCO frequency (7, 0)(1)  
DCO frequency (7, 31)(1)  
23.7  
4.6  
54.1 MHz  
10.7 MHz  
88.0 MHz  
19.6 MHz  
135 MHz  
39.0  
8.5  
60  
Frequency step between range  
DCORSEL and DCORSEL + 1  
SDCORSEL  
SDCO  
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)  
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)  
1.2  
2.3 ratio  
Frequency step between tap DCO  
and DCO + 1  
1.02  
40%  
1.12 ratio  
Duty cycle  
Measured at SMCLK  
fDCO = 1 MHz  
50%  
0.1  
60%  
%/°C  
%/V  
dfDCO/dT  
DCO frequency temperature drift(2)  
dfDCO/dVCC DCO frequency voltage drift(3)  
fDCO = 1 MHz  
1.9  
(1) When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the  
range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,  
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31  
(DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual  
fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the  
selected range is at its minimum or maximum tap setting.  
(2) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(3) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Typical DCO Frequency, VCC = 3.0 V,TA = 25°C  
100  
10  
DCOx = 31  
1
DCOx = 0  
0.1  
0
1
2
3
4
5
6
7
DCORSEL  
Figure 7-10. Typical DCO Frequency  
7.21 PMM, Brown-Out Reset (BOR)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BORH on voltage,  
DVCC falling level  
V(DVCC_BOR_IT–)  
| dDVCC/dt | < 3 V/s  
1.45  
V
BORH off voltage,  
DVCC rising level  
V(DVCC_BOR_IT+)  
V(DVCC_BOR_hys)  
| dDVCC/dt | < 3 V/s  
0.80  
60  
1.30  
1.50  
250  
V
BORH hysteresis  
mV  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430BT5190  
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Pulse duration required at RST/NMI pin  
to accept a reset  
tRESET  
2
µs  
7.22 PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
2.4 V ≤ DVCC ≤ 3.6 V  
2.2 V ≤ DVCC ≤ 3.6 V  
2.0 V ≤ DVCC ≤ 3.6 V  
1.8 V ≤ DVCC ≤ 3.6 V  
2.4 V ≤ DVCC ≤ 3.6 V  
2.2 V ≤ DVCC ≤ 3.6 V  
2.0 V ≤ DVCC ≤ 3.6 V  
1.8 V ≤ DVCC ≤ 3.6 V  
MIN  
TYP  
1.90  
1.80  
1.60  
1.40  
1.94  
1.84  
1.64  
1.44  
MAX  
UNIT  
V
VCORE3(AM)  
VCORE2(AM)  
VCORE1(AM)  
VCORE0(AM)  
Core voltage, active mode, PMMCOREV = 3  
Core voltage, active mode, PMMCOREV = 2  
Core voltage, active mode, PMMCOREV = 1  
Core voltage, active mode, PMMCOREV = 0  
V
V
V
VCORE3(LPM) Core voltage, low-current mode, PMMCOREV = 3  
VCORE2(LPM) Core voltage, low-current mode, PMMCOREV = 2  
VCORE1(LPM) Core voltage, low-current mode, PMMCOREV = 1  
VCORE0(LPM) Core voltage, low-current mode, PMMCOREV = 0  
V
V
V
V
7.23 PMM, SVS High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSHE = 0, DVCC = 3.6 V  
0
nA  
I(SVSH)  
SVS current consumption  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1  
SVSHE = 1, SVSHRVL = 0  
200  
1.5  
µA  
1.57  
1.79  
1.98  
2.10  
1.62  
1.88  
2.07  
2.20  
2.32  
2.52  
2.90  
2.90  
1.68  
1.88  
2.08  
2.18  
1.74  
1.94  
2.14  
2.30  
2.40  
2.70  
3.10  
3.10  
1.78  
SVSHE = 1, SVSHRVL = 1  
1.98  
V
V(SVSH_IT–)  
SVSH on voltage level(1)  
SVSHE = 1, SVSHRVL = 2  
2.21  
SVSHE = 1, SVSHRVL = 3  
2.31  
1.85  
2.07  
2.28  
SVSHE = 1, SVSMHRRL = 0  
SVSHE = 1, SVSMHRRL = 1  
SVSHE = 1, SVSMHRRL = 2  
SVSHE = 1, SVSMHRRL = 3  
SVSHE = 1, SVSMHRRL = 4  
SVSHE = 1, SVSMHRRL = 5  
SVSHE = 1, SVSMHRRL = 6  
SVSHE = 1, SVSMHRRL = 7  
2.42  
V
V(SVSH_IT+)  
SVSH off voltage level(1)  
2.55  
2.88  
3.23  
3.23  
SVSHE = 1, dVDVCC/dt = 10 mV/µs,  
SVSHFP = 1  
2.5  
20  
tpd(SVSH)  
SVSH propagation delay  
µs  
SVSHE = 1, dVDVCC/dt = 1 mV/µs,  
SVSHFP = 0  
SVSHE = 0 → 1, dVDVCC/dt = 10 mV/µs,  
SVSHFP = 1  
12.5  
100  
t(SVSH)  
SVSH on or off delay time  
DVCC rise time  
µs  
SVSHE = 0 → 1, dVDVCC/dt = 1 mV/µs,  
SVSHFP = 0  
dVDVCC/dt  
0
1000 V/s  
(1) The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and use.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.24 PMM, SVM High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVMHE = 0, DVCC = 3.6 V  
0
nA  
I(SVMH)  
SVMH current consumption  
SVMHE= 1, DVCC = 3.6 V, SVMHFP = 0  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1  
SVMHE = 1, SVSMHRRL = 0  
SVMHE = 1, SVSMHRRL = 1  
SVMHE = 1, SVSMHRRL = 2  
SVMHE = 1, SVSMHRRL = 3  
SVMHE = 1, SVSMHRRL = 4  
SVMHE = 1, SVSMHRRL = 5  
SVMHE = 1, SVSMHRRL = 6  
SVMHE = 1, SVSMHRRL = 7  
SVMHE = 1, SVMHOVPE = 1  
200  
1.5  
µA  
1.85  
1.62  
1.88  
2.07  
2.20  
2.32  
2.52  
2.90  
2.90  
1.74  
1.94  
2.14  
2.30  
2.40  
2.70  
3.10  
3.10  
3.75  
2.07  
2.28  
2.42  
V(SVMH)  
SVMH on or off voltage level(1)  
2.55  
2.88  
3.23  
3.23  
V
SVMHE = 1, dVDVCC/dt = 10 mV/µs,  
SVMHFP = 1  
2.5  
20  
tpd(SVMH)  
SVMH propagation delay  
SVMH on or off delay time  
µs  
µs  
SVMHE = 1, dVDVCC/dt = 1 mV/µs,  
SVMHFP = 0  
SVMHE = 0 → 1, dVDVCC/dt = 10 mV/µs,  
SVMHFP = 1  
12.5  
100  
t(SVMH)  
SVMHE = 0 → 1, dVDVCC/dt = 1 mV/µs,  
SVMHFP = 0  
(1) The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and use.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.25 PMM, SVS Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSLE = 0, PMMCOREV = 2  
0
nA  
µA  
I(SVSL)  
SVSL current consumption  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1  
200  
1.5  
SVSLE = 1, dVCORE/dt = 10 mV/µs,  
SVSLFP = 1  
2.5  
20  
tpd(SVSL)  
SVSL propagation delay  
SVSL on or off delay time  
µs  
µs  
SVSLE = 1, dVCORE/dt = 1 mV/µs,  
SVSLFP = 0  
SVSLE = 0 → 1, dVCORE/dt = 10 mV/µs,  
SVSLFP = 1  
12.5  
100  
t(SVSL)  
SVSLE = 0 → 1, dVCORE/dt = 1 mV/µs,  
SVSLFP = 0  
7.26 PMM, SVM Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVMLE = 0, PMMCOREV = 2  
0
nA  
µA  
I(SVML)  
SVML current consumption  
SVMLE= 1, PMMCOREV = 2, SVMLFP = 0  
SVMLE= 1, PMMCOREV = 2, SVMLFP = 1  
200  
1.5  
SVMLE = 1, dVCORE/dt = 10 mV/µs,  
SVMLFP = 1  
2.5  
20  
tpd(SVML)  
SVML propagation delay  
SVML on or off delay time  
µs  
µs  
SVMLE = 1, dVCORE/dt = 1 mV/µs,  
SVMLFP = 0  
SVMLE = 0 → 1, dVCORE/dt = 10 mV/µs,  
SVMLFP = 1  
12.5  
100  
t(SVML)  
SVMLE = 0 → 1, dVCORE/dt = 1 mV/µs,  
SVMLFP = 0  
7.27 Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
PMMCOREV = SVSMLRRL = n fMCLK ≥ 4.0 MHz  
(where n = 0, 1, 2, or 3),  
fMCLK < 4.0 MHz  
SVSLFP = 1  
5
tWAKE-UP-  
Wake-up time from LPM2, LPM3, or LPM4  
to active mode(1)  
µs  
FAST  
6
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 0  
tWAKE-UP-  
Wake-up time from LPM2, LPM3 or LPM4 to  
active mode(2)  
150 165 µs  
SLOW  
tWAKE-UP-  
Wake-up time from LPM4.5 to active mode(3)  
2
2
3
3
ms  
ms  
LPM5  
tWAKE-UP-  
Wake-up time from RST or BOR event to  
active mode(3)  
RESET  
(1) This value represents the time from the wake-up event to the first active edge of MCLK. The wakeup time depends on the performance  
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). Fastest wakeup times are possible with SVSL and SVML in full  
performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSL and SVML while  
operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx  
and MSP430x6xx Family User's Guide (SLAU208).  
(2) This value represents the time from the wake-up event to the first active edge of MCLK. The wakeup time depends on the performance  
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). In this case, the SVSL and SVML are in normal mode (low  
current) mode when operating in AM, LPM0, and LPM1. Various options are available for SVSL and SVML while operating in LPM2,  
LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx  
Family User's Guide (SLAU208).  
(3) This value represents the time from the wake-up event to the reset vector execution.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.28 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
fTA  
Timer_A input clock frequency  
External: TACLK  
1.8 V, 3 V  
25 MHz  
Duty cycle = 50% ±10%  
All capture inputs, Minimum pulse  
duration required for capture  
tTA,cap  
Timer_A capture timing  
1.8 V, 3 V  
20  
ns  
7.29 Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
fTB  
Timer_B input clock frequency  
External: TBCLK  
1.8 V, 3 V  
25 MHz  
Duty cycle = 50% ±10%  
All capture inputs, Minimum pulse  
duration required for capture  
tTB,cap  
Timer_B capture timing  
1.8 V, 3 V  
20  
ns  
7.30 USCI (UART Mode), Recommended Operating Conditions  
PARAMETER  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
1 MHz  
7.31 USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
MAX UNIT  
50  
600  
ns  
600  
tτ  
UART receive deglitch time(1)  
50  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.32 USCI (SPI Master Mode), Recommended Operating Conditions  
PARAMETER  
CONDITIONS  
Internal: SMCLK, ACLK  
Duty cycle = 50% ±10%  
VCC  
MIN  
MAX UNIT  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
7.33 USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 7-11 and Figure 7-12)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
SMCLK, ACLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
PMMCOREV = 0  
1.8 V  
3 V  
55  
38  
30  
25  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
ns  
2.4 V  
3 V  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
1.8 V  
3 V  
0
tHD,MI  
ns  
2.4 V  
3 V  
0
0
1.8 V  
3 V  
20  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 0  
18  
ns  
16  
tVALID,MO  
2.4 V  
3 V  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 3  
15  
1.8 V  
3 V  
–10  
–8  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
tHD,MO  
ns  
2.4 V  
3 V  
–10  
–8  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).  
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), refer to the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 7-11 and Figure 7-12.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure  
7-11 and Figure 7-12.  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
tHD,MO  
tVALID,MO  
SIMO  
Figure 7-11. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
tHD,MO  
tVALID,MO  
SIMO  
Figure 7-12. SPI Master Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.34 USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 7-13 and Figure 7-14)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
11  
8
MAX UNIT  
PMMCOREV = 0  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE low to clock  
ns  
2.4 V  
3 V  
7
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
6
1.8 V  
3 V  
3
3
STE lag time, Last clock to STE high  
ns  
2.4 V  
3 V  
3
3
1.8 V  
3 V  
66  
50  
ns  
36  
STE access time, STE low to SOMI data out  
2.4 V  
3 V  
30  
30  
1.8 V  
3 V  
23  
ns  
16  
STE disable time, STE high to SOMI high  
impedance  
2.4 V  
3 V  
13  
1.8 V  
3 V  
5
5
2
2
5
5
5
5
SIMO input data setup time  
SIMO input data hold time  
ns  
2.4 V  
3 V  
1.8 V  
3 V  
tHD,SI  
ns  
2.4 V  
3 V  
UCLK edge to SOMI valid,  
CL = 20 pF,  
PMMCOREV = 0  
1.8 V  
76  
60  
3 V  
2.4 V  
3 V  
tVALID,SO  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF,  
PMMCOREV = 3  
44  
40  
1.8 V  
3 V  
18  
12  
10  
8
CL = 20 pF,  
PMMCOREV = 0  
tHD,SO  
ns  
2.4 V  
3 V  
CL = 20 pF,  
PMMCOREV = 3  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).  
For the master parameters tSU,MI(Master) and tVALID,MO(Master), refer to the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 7-13 and Figure 7-14.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure  
7-13 and Figure 7-14.  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 7-13. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 7-14. SPI Slave Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.35 USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see  
Figure 7-15)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400  
kHz  
µs  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3 V  
2.2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
tSU,STO  
Setup time for STOP  
2.2 V, 3 V  
µs  
ns  
2.2 V  
3 V  
600  
600  
tSP  
Pulse duration of spikes suppressed by input filter  
50  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 7-15. I2C Mode Timing  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.36 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
0
TYP  
MAX UNIT  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
Analog supply voltage,  
full performance  
AVCC  
3.6  
V
V(Ax)  
Analog input voltage range(2) All ADC12 analog input pins Ax  
AVCC  
155  
220  
25  
V
2.2 V  
3 V  
125  
150  
20  
Operating supply current into fADC12CLK = 5.0 MHz, ADC12ON = 1,  
IADC12_A  
µA  
AVCC terminal(3)  
REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0  
CI  
RI  
Input capacitance  
Only one terminal Ax can be selected at one time  
0 V ≤ VAx ≤ AVCC  
2.2 V  
pF  
Input MUX ON resistance  
10  
200  
1900  
(1) The leakage current is specified by the digital I/O input leakage.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. If the  
reference voltage is supplied by an external source or if the internal reference voltage is used and REFOUT = 1, then decoupling  
capacitors are required. See Section 7.40 and Section 7.41.  
(3) The internal reference supply current is not included in current consumption parameter IADC12_A  
.
7.37 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC12 linearity  
parameters  
fADC12CLK  
fADC12OSC  
2.2 V, 3 V  
0.45  
4.8  
5.4 MHz  
Internal ADC12  
oscillator(3)  
ADC12DIV = 0, fADC12CLK = fADC12OSC  
2.2 V, 3 V  
2.2 V, 3 V  
4.2  
2.4  
4.8  
5.4 MHz  
REFON = 0, Internal oscillator,  
fADC12OSC = 4.2 MHz to 5.4 MHz  
3.1  
µs  
tCONVERT  
Conversion time  
Sampling time  
External fADC12CLK from ACLK, MCLK or SMCLK,  
ADC12SSEL ≠ 0  
(2)  
RS = 400 Ω, RI = 1000 Ω, CI = 20 pF,  
tSample  
2.2 V, 3 V  
1000  
ns  
(1)  
τ = [RS + RI] × CI  
(1) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB:  
tSample = ln(2n+1) x (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance  
(2) 13 × ADC12DIV × 1/fADC12CLK  
(3) The ADC12OSC is sourced directly from MODOSC inside the UCS.  
7.38 12-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
1.4 V ≤ (VeREF+ – VREF–/VeREF–)min ≤ 1.6 V  
1.6 V < (VeREF+ – VREF–/VeREF–)min ≤ VAVCC  
VCC  
MIN  
TYP  
MAX UNIT  
±2  
LSB  
±1.7  
Integral linearity error  
(INL)  
EI  
2.2 V, 3 V  
Differential  
linearity error (DNL)  
(VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–),  
CVREF+ = 20 pF  
ED  
EO  
EG  
ET  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±1.0 LSB  
±2.0 LSB  
±2.0 LSB  
±3.5 LSB  
(VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–),  
Internal impedance of source RS < 100 Ω, CVREF+ = 20 pF  
Offset error  
±1.0  
±1.0  
±1.4  
(VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–),  
CVREF+ = 20 pF  
Gain error  
(VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–),  
CVREF+ = 20 pF  
Total unadjusted error  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.39 12-Bit ADC, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
680  
680  
2.25  
2.25  
MAX UNIT  
ADC12ON = 1, INCH = 0Ah,  
TA = 0°C  
VSENSOR  
See (2)  
mV  
2.2 V  
3 V  
TCSENSOR  
ADC12ON = 1, INCH = 0Ah  
mV/°C  
2.2 V  
3 V  
100  
100  
Sample time required if  
channel 10 is selected(3)  
ADC12ON = 1, INCH = 0Ah,  
Error of conversion result ≤ 1 LSB  
tSENSOR(sample)  
µs  
AVCC divider at channel 11,  
VAVCC factor  
ADC12ON = 1, INCH = 0Bh  
ADC12ON = 1, INCH = 0Bh  
0.48  
0.5  
0.52 VAVCC  
VMID  
2.2 V  
3 V  
1.06  
1.44  
1.1  
1.5  
1.14  
V
1.56  
AVCC divider at channel 11  
Sample time required if  
channel 11 is selected(4)  
ADC12ON = 1, INCH = 0Bh,  
Error of conversion result ≤ 1 LSB  
tVMID(sample)  
2.2 V, 3 V  
1000  
ns  
(1) The temperature sensor is provided by the REF module. See the REF module parametric, IREF+, regarding the current consumption of  
the temperature sensor.  
(2) The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor. The TLV structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference  
voltage levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature,°C) + VSENSOR, where TCSENSOR and  
VSENSOR can be computed from the calibration values for higher accuracy. See also the MSP430x5xx and MSP430x6xx Family User's  
Guide (SLAU208).  
(3) The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on)  
(4) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
.
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Ambient Temperature (°C)  
Figure 7-16. Typical Temperature Sensor Voltage  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.40 REF, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.4  
0
TYP  
MAX UNIT  
(2)  
VeREF+  
Positive external reference voltage input  
VeREF+ > VREF–/VeREF–  
AVCC  
1.2  
V
V
(3)  
VREF–/VeREF–  
Negative external reference voltage input VeREF+ > VREF–/VeREF–  
(VeREF+  
VREF–/VeREF–  
Differential external reference voltage  
VeREF+ > VREF–/VeREF–  
input  
(4)  
1.4  
AVCC  
V
)
1.4 V ≤ VeREF+ ≤ VAVCC  
VeREF– = 0 V  
,
fADC12CLK = 5  
MHz,ADC12SHTx = 1h,  
Conversion rate 200 ksps  
2.2 V, 3 V  
2.2 V, 3 V  
±8.5  
±26  
IVeREF+,  
IVREF–/VeREF–  
Static input current  
µA  
µF  
1.4 V ≤ VeREF+ ≤ VAVCC  
VeREF– = 0 V  
fADC12CLK = 5  
,
±1  
MHz,ADC12SHTx = 8h,  
Conversion rate 20 ksps  
CVREF+/-  
Capacitance at VREF+ or VREF- terminal See (5)  
10  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is  
also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.41 REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
REFVSEL = {2} for 2.5 V,  
REFON = REFOUT = 1, IVREF+= 0 A  
3 V  
2.50 ±1.5%  
1.98 ±1.5%  
1.49 ±1.5%  
Positive built-in reference  
voltage output  
REFVSEL = {1} for 2.0 V,  
REFON = REFOUT = 1, IVREF+= 0 A  
VREF+  
3 V  
V
V
REFVSEL = {0} for 1.5 V,  
REFON = REFOUT = 1, IVREF+= 0 A  
2.2 V, 3 V  
REFVSEL = {0} for 1.5 V, reduced  
performance  
1.8  
AVCC minimum voltage,  
Positive built-in reference  
active  
REFVSEL = {0} for 1.5 V  
2.2  
2.3  
2.8  
AVCC(min)  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
REFON = 1, REFOUT = 0, REFBURST = 0  
REFON = 1, REFOUT = 1, REFBURST = 0  
3 V  
3 V  
100  
0.9  
140  
1.5  
µA  
Operating supply current into  
AVCC terminal(2) (3)  
IREF+  
mA  
REFVSEL = {0, 1, 2},  
Load-current regulation,  
VREF+ terminal(4)  
IVREF+ = +10 µA/–1000 µA,  
AVCC = AVCC (min) for each reference level,  
REFVSEL = (0, 1, 2}, REFON = REFOUT = 1  
IL(VREF+)  
2500 µV/mA  
Capacitance at VREF+ and  
VREF- terminals  
CVREF+/-  
REFON = REFOUT = 1(6)  
20  
100  
pF  
IVREF+ = 0 A,  
REFVSEL = (0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
Temperature coefficient of  
built-in reference(5)  
TCREF+  
30  
50 ppm/°C  
AVCC = AVCC (min) - AVCC(max)  
,
Power supply rejection ratio TA = 25°C,  
PSRR_DC  
PSRR_AC  
120  
300  
µV/V  
(DC)  
REFVSEL = (0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
AVCC = AVCC (min) - AVCC(max)  
,
TA = 25°C,  
f = 1 kHz, ΔVpp = 100 mV,  
REFVSEL = (0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
Power supply rejection ratio  
(AC)  
6.4  
mV/V  
AVCC = AVCC (min) - AVCC(max)  
,
REFVSEL = (0, 1, 2}, REFOUT = 0,  
REFON = 0 → 1  
75  
75  
Settling time of reference  
voltage(7)  
tSETTLE  
µs  
AVCC = AVCC (min) - AVCC(max)  
,
CVREF = CVREF(max),  
REFVSEL = (0, 1, 2}, REFOUT = 1,  
REFON = 0 → 1  
(1) The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers,  
one smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal, as  
well as, used as the reference for the conversion and utilizes the larger buffer. When REFOUT = 0, the reference is only used as the  
reference for the conversion and utilizes the smaller buffer.  
(2) The internal reference current is supplied from terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a  
conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current  
contribution of the larger buffer without external load.  
(3) The temperature sensor is provided by the REF module. Its current is supplied from terminal AVCC and is equivalent to IREF+ with  
REFON =1 and REFOUT = 0.  
(4) Contribution only due to the reference and buffer including package. This does not include resistance due to other factors such as PCB  
traces.  
(5) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).  
(6) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).  
(7) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external  
capacitive load when REFOUT = 1.  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7.42 Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
DVCC(PGM/ERASE) Program and erase supply voltage  
1.8  
3.6  
5
V
IPGM  
Average supply current from DVCC during program  
3
6
mA  
IERASE  
Average supply current from DVCC during erase  
15 mA  
15 mA  
Average supply current from DVCC during mass erase or bank  
erase  
IMERASE, IBANK  
tCPT  
6
Cumulative program time  
See (1)  
16  
ms  
cycles  
years  
µs  
Program and erase endurance  
Data retention duration  
104  
100  
64  
105  
tRetention  
tWord  
TJ = 25°C  
See (2)  
Word or byte program time  
Block program time for first byte or word  
85  
65  
tBlock, 0  
See (2)  
49  
µs  
Block program time for each additional byte or word, except for last  
byte or word  
tBlock, 1–(N–1)  
tBlock, N  
See (2)  
See (2)  
See (2)  
37  
55  
23  
49  
73  
32  
µs  
µs  
Block program time for last byte or word  
Erase time for segment, mass erase, and bank erase when  
available  
tErase  
ms  
MCLK frequency in marginal read mode  
(FCTL4.MRG0 = 1 or FCTL4. MRG1 = 1)  
fMCLK,MRG  
0
1
MHz  
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming  
methods: individual word or byte write and block write modes.  
(2) These values are hardwired into the state machine of the flash controller.  
7.43 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
Spy-Bi-Wire input frequency  
MIN  
TYP  
MAX UNIT  
fSBW  
2.2 V, 3 V  
0
20 MHz  
tSBW,Low  
tSBW, En  
tSBW,Rst  
Spy-Bi-Wire low clock pulse length  
2.2 V, 3 V  
0.025  
15  
1
µs  
µs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)(1)  
2.2 V, 3 V  
Spy-Bi-Wire return to normal operation time  
15  
0
100  
5
µs  
2.2 V  
3 V  
MHz  
fTCK  
TCK input frequency, 4-wire JTAG(2)  
Internal pulldown resistance on TEST  
0
10 MHz  
80 kΩ  
Rinternal  
2.2 V, 3 V  
45  
60  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8 Detailed Description  
8.1 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant  
generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all  
instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes and  
additional instructions for the expanded address range. Each instruction can operate on word and byte data.  
Program Counter  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Stack Pointer  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.2 Operating Modes  
The MSP430 has one active mode and six software selectable low-power modes of operation. An interrupt event  
can wake up the device from any of the low-power modes, service the request, and restore back to the low-  
power mode on return from the interrupt program.  
The following operating modes can be configured by software:  
Active mode (AM)  
– All clocks are active  
Low-power mode 0 (LPM0)  
– CPU is disabled  
– ACLK and SMCLK remain active  
– MCLK is disabled  
– FLL loop control remains active  
Low-power mode 1 (LPM1)  
– CPU is disabled  
– FLL loop control is disabled  
– ACLK and SMCLK remain active  
– MCLK is disabled  
Low-power mode 2 (LPM2)  
– CPU is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DCO DC generator remains enabled  
– ACLK remains active  
Low-power mode 3 (LPM3)  
– CPU is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DCO DC generator is disabled  
– ACLK remains active  
Low-power mode 4 (LPM4)  
– CPU is disabled  
– ACLK is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DCO DC generator is disabled  
– Crystal oscillator is stopped  
– Complete data retention  
Low-power mode 4.5 (LPM4.5)  
– Internal regulator disabled  
– No data retention  
– Wake-up signal from RST, digital I/O  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.3 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h. The vector  
contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 8-1. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power-Up  
External Reset  
Watchdog Time-out, Password  
Violation  
WDTIFG, KEYV (SYSRSTIV)(1) (3)  
Reset  
0FFFEh  
63, highest  
Flash Memory Password Violation  
PMM Password Violation  
System NMI  
PMM  
Vacant Memory Access  
JTAG Mailbox  
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,  
VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG,  
JMBOUTIFG (SYSSNIV)(1)  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
62  
61  
User NMI  
NMI  
Oscillator Fault  
NMIIFG, OFIFG, ACCVIFG (SYSUNIV)(1) (3)  
TBCCR0 CCIFG0 (2)  
Flash Memory Access Violation  
TB0  
TB0  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
60  
59  
TBCCR1 CCIFG1 ... TBCCR6 CCIFG6,  
TBIFG (TBIV)(1) (2)  
Watchdog Timer_A Interval Timer  
Mode  
WDTIFG  
Maskable  
0FFF4h  
58  
USCI_A0 Receive or Transmit  
USCI_B0 Receive or Transmit  
ADC12_A  
UCA0RXIFG, UCA0TXIFG (UCA0IV)(1) (2)  
UCB0RXIFG, UCB0TXIFG (UCAB0IV)(1) (2)  
ADC12IFG0 ... ADC12IFG15 (ADC12IV)(1) (2)  
TA0CCR0 CCIFG0(2)  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
57  
56  
55  
54  
TA0  
TA0CCR1 CCIFG1 ... TA0CCR4 CCIFG4,  
TA0IFG (TA0IV)(1) (2)  
TA0  
Maskable  
0FFEAh  
53  
USCI_A2 Receive or Transmit  
UCA2RXIFG, UCA2TXIFG (UCA2IV)(1) (2)  
UCB2RXIFG, UCB2TXIFG (UCB2IV)(1) (2)  
DMA0IFG, DMA1IFG, DMA2IFG (DMAIV)(1) (2)  
TA1CCR0 CCIFG0(2)  
Maskable  
Maskable  
Maskable  
Maskable  
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
52  
51  
50  
49  
USCI_B2 Receive or Transmit  
DMA  
TA1  
TA1CCR1 CCIFG1 ... TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)(1) (2)  
TA1  
Maskable  
0FFE0h  
48  
I/O Port P1  
P1IFG.0 to P1IFG.7 (P1IV)(1) (2)  
UCA1RXIFG, UCA1TXIFG (UCA1IV)(1) (2)  
UCB1RXIFG, UCB1TXIFG (UCB1IV)(1) (2)  
UCA3RXIFG, UCA3TXIFG (UCA3IV)(1) (2)  
UCB3RXIFG, UCB3TXIFG (UCB3IV)(1) (2)  
P2IFG.0 to P2IFG.7 (P2IV)(1) (2)  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
0FFDAh  
0FFD8h  
0FFD6h  
0FFD4h  
47  
46  
45  
44  
43  
42  
USCI_A1 Receive or Transmit  
USCI_B1 Receive or Transmit  
USCI_A3 Receive or Transmit  
USCI_B3 Receive or Transmit  
I/O Port P2  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RT0PSIFG, RT1PSIFG (RTCIV)(1) (2)  
RTC_A  
Maskable  
0FFD2h  
41  
0FFD0h  
40  
Reserved  
Reserved(4)  
0FF80h  
0, lowest  
(1) Multiple source flags  
(2) Interrupt flags are located in the module.  
(3) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
(4) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To  
maintain compatibility with other devices, TI recommends reserving these locations.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.4 Memory Organization  
Table 8-2 lists the memory locations and sizes for the device.  
Table 8-2. Memory Organization  
MSP430BT5190  
Memory (flash)  
Total Size  
256KB  
Main: interrupt vector  
Main: code memory  
Flash  
Flash  
00FFFFh–00FF80h  
045BFFh–005C00h  
Bank D  
Bank C  
Bank B  
Bank A  
64KB  
03FFFFh–030000h  
64KB  
02FFFFh–020000h  
Main: code memory  
64KB  
01FFFFh–010000h  
64KB  
045BFFh–040000h  
00FFFFh–005C00h  
Size  
16KB  
Sector 3  
4KB  
005BFFh–004C00h  
Sector 2  
Sector 1  
Sector 0  
Info A  
4KB  
RAM  
004BFFh–003C00h  
4KB  
003BFFh–002C00h  
4KB  
002BFFh–001C00h  
128 B  
0019FFh–001980h  
Info B  
128 B  
00197Fh–001900h  
Information memory (flash)  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
128 B  
0018FFh–001880h  
128 B  
00187Fh–001800h  
512 B  
0017FFh–001600h  
512 B  
0015FFh–001400h  
Bootstrap loader (BSL) memory (Flash)  
512 B  
0013FFh–001200h  
512 B  
0011FFh–001000h  
4KB  
Peripherals  
000FFFh–000000h  
8.5 Bootstrap Loader (BSL)  
The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the  
device memory through the BSL is protected by an user-defined password. Usage of the BSL requires four pins  
as shown in Table 8-3. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/  
SBWTCK pins. For further details on interfacing to development tools and device programmers, see the MSP430  
Hardware Tools User's Guide (SLAU278). For a complete description of the features of the BSL and its  
implementation, see the MSP430 Programming Via the Bootstrap Loader User's Guide (SLAU319).  
Copyright © 2020 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-3. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
RST/NMI/SBWTDIO  
Entry sequence signal  
Entry sequence signal  
Data transmit  
TEST/SBWTCK  
P1.1  
P1.2  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
8.6 JTAG Operation  
8.6.1 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430  
development tools and device programmers. The JTAG pin requirements are shown in Table 8-4. For further  
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's  
Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see  
MSP430 Programming Via the JTAG Interface (SLAU320).  
Table 8-4. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input; TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
PJ.3/TCK  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.6.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-  
Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire  
interface pin requirements are shown in Table 8-5. For further details on interfacing to development tools and  
device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of  
the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface  
(SLAU320).  
Table 8-5. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN  
IN, OUT  
VSS  
Ground supply  
8.7 Flash Memory  
The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the  
flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually. Segments A to D are also called information memory.  
Segment A can be locked separately.  
8.8 RAM  
The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all  
data is lost. Features of the RAM include:  
RAM has n sectors. The size of a sector can be found in Section 8.4.  
Each sector 0 to n can be complete disabled; however, data retention is lost.  
Each sector 0 to n automatically enters low-power retention mode when possible.  
Copyright © 2020 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.9 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide  
(SLAU208).  
8.9.1 Digital I/O  
There are up to ten 8-bit I/O ports implemented: For 100-pin options, P1 through P10 are complete. P11 contains  
three individual I/O ports. For 80-pin options, P1 through P7 are complete. P8 contains seven individual I/O  
ports. P9 through P11 do not exist. Port PJ contains four individual I/O ports, common to all devices.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Pullup or pulldown on all ports is programmable.  
Drive strength on all ports is programmable.  
Edge-selectable interrupt and LPM4.5 wakeup input capability is available for all bits of ports P1 and P2.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise (P1 through P11) or word-wise in pairs (PA through PF).  
8.9.2 Oscillator and System Clock  
The clock system is supported by the Unified Clock System (UCS) module that includes support for a 32-kHz  
watch crystal oscillator (XT1 LF mode), an internal very-low-power low-frequency oscillator (VLO), an internal  
trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-  
frequency crystal oscillator (XT1 HF mode or XT2). The UCS module is designed to meet the requirements of  
both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL)  
hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple  
of the selected FLL reference frequency. The internal DCO provides a fast turnon clock source and stabilizes in  
less than 5 µs. The UCS module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal, a high-frequency crystal, the internal low-  
frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally controlled  
oscillator DCO.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made  
available to ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
same sources made available to ACLK.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.  
8.9.3 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains  
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor  
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is  
implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS  
and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply  
voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not  
automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.  
8.9.4 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations  
with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed  
and unsigned multiply-and-accumulate operations.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.9.5 Real-Time Clock (RTC_A)  
The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated real-  
time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit timers that  
can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Calendar mode  
integrates an internal calendar which compensates for months with less than 31 days and includes leap year  
correction. The RTC_A also supports flexible alarm functions and offset-calibration hardware.  
8.9.6 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
Copyright © 2020 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.9.7 System Module (SYS)  
The SYS module handles many of the system functions within the device. These include power-on reset and  
power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootstrap  
loader entry mechanisms, and configuration management (device descriptors). It also includes a data exchange  
mechanism through JTAG called a JTAG mailbox that can be used in the application.  
Table 8-6. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
SYSRSTIV, System Reset  
019Eh  
No interrupt pending  
Brownout (BOR)  
RST/NMI (POR)  
PMMSWBOR (BOR)  
Wakeup from LPMx.5  
Security violation (BOR)  
SVSL (POR)  
00h  
02h  
Highest  
04h  
06h  
08h  
0Ah  
0Ch  
SVSH (POR)  
0Eh  
SVML_OVP (POR)  
SVMH_OVP (POR)  
PMMSWPOR (POR)  
WDT time-out (PUC)  
WDT password violation (PUC)  
KEYV flash password violation (PUC)  
Reserved  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
Peripheral area fetch (PUC)  
PMM password violation (PUC)  
Reserved  
1Eh  
20h  
22h to 3Eh  
00h  
Lowest  
Highest  
SYSSNIV, System NMI  
019Ch  
No interrupt pending  
SVMLIFG  
02h  
SVMHIFG  
04h  
SVSMLDLYIFG  
SVSMHDLYIFG  
VMAIFG  
06h  
08h  
0Ah  
JMBINIFG  
0Ch  
JMBOUTIFG  
0Eh  
SVMLVLRIFG  
10h  
SVMHVLRIFG  
12h  
Reserved  
14h to 1Eh  
00h  
Lowest  
Highest  
SYSUNIV, User NMI  
019Ah  
No interrupt pending  
NMIIFG  
02h  
OFIFG  
04h  
ACCVIFG  
06h  
Reserved  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.9.8 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM.  
Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces  
system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move  
data to or from a peripheral.  
Table 8-7. DMA Trigger Assignments  
CHANNEL  
TRIGGER(1)  
0
1
2
0
DMAREQ  
DMAREQ  
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
Reserved  
Reserved  
Reserved  
9
Reserved  
Reserved  
Reserved  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC12IFGx  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC12IFGx  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC12IFGx  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MPY ready  
DMA2IFG  
MPY ready  
DMA0IFG  
MPY ready  
DMA1IFG  
DMAE0  
DMAE0  
DMAE0  
(1) Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not  
cause any DMA trigger event when selected.  
Copyright © 2020 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.9.9 Universal Serial Communication Interface (USCI)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3-pin or 4-pin) and I2C, and asynchronous communication protocols such  
as UART, enhanced UART with automatic baud-rate detection, and IrDA. Each USCI module contains two  
portions, A and B.  
The USCI_An module provides support for SPI (3-pin or 4-pin), UART, enhanced UART, or IrDA.  
The USCI_Bn module provides support for SPI (3-pin or 4-pin) or I2C.  
The MSP430BT5190 includes four complete USCI modules (n = 0 to 3).  
8.9.10 TA0  
TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple  
capture/compare registers, PWM outputs, and interval timing. It also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 8-8. TA0 Signal Connections  
INPUT PIN  
NUMBER  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
PZ, ZQW  
DEVICE INPUT MODULE INPUT  
MODULE  
BLOCK  
SIGNAL  
SIGNAL  
PZ, ZQW  
17, H1-P1.0  
TA0CLK  
ACLK  
TACLK  
ACLK  
Timer  
CCR0  
NA  
NA  
SMCLK  
TA0CLK  
TA0.0  
SMCLK  
TACLK  
CCI0A  
CCI0B  
17, H1-P1.0  
18, H4-P1.1  
57, H9-P8.0  
18, H4-P1.1  
57, H9-P8.0  
TA0.0  
TA0  
TA0.0  
ADC12 (internal)  
ADC12SHSx = {1}  
DVSS  
GND  
DVCC  
TA0.1  
TA0.1  
DVSS  
DVCC  
TA0.2  
TA0.2  
DVSS  
DVCC  
TA0.3  
TA0.3  
DVSS  
DVCC  
TA0.4  
TA0.4  
DVSS  
DVCC  
VCC  
CCI1A  
CCI1B  
GND  
19, J4-P1.2  
19, J4-P1.2  
58, H11-P8.1  
58, H11-P8.1  
CCR1  
CCR2  
CCR3  
CCR4  
TA1  
TA2  
TA3  
TA4  
TA0.1  
TA0.2  
TA0.3  
TA0.4  
VCC  
20, J1-P1.3  
CCI2A  
CCI2B  
GND  
20, J1-P1.3  
59, H12-P8.2  
59, H12-P8.2  
VCC  
21, J2-P1.4  
60, G9-P8.3  
CCI3A  
CCI3B  
GND  
21, J2-P1.4  
60, G9-P8.3  
VCC  
22, K1-P1.5  
CCI4A  
CCI4B  
GND  
22, K1-P1.5  
61, G11-P8.4  
61, G11-P8.4  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.9.11 TA1  
TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 can support multiple  
capture/compare registers, PWM outputs, and interval timing. It also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 8-9. TA1 Signal Connections  
INPUT PIN  
NUMBER  
OUTPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
MODULE BLOCK  
PZ, ZQW  
PZ, ZQW  
25, M1-P2.0  
TA1CLK  
ACLK  
SMCLK  
TA1CLK  
TA1.0  
TA1.0  
DVSS  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
TA0  
TA1  
TA2  
NA  
25, M1-P2.0  
26, L2-P2.1  
65, F11-P8.5  
26, L2-P2.1  
65, F11-P8.5  
CCR0  
CCR1  
CCR2  
TA1.0  
TA1.1  
TA1.2  
DVCC  
VCC  
27, M2-P2.2  
66, E11-P8.6  
TA1.1  
TA1.1  
DVSS  
CCI1A  
CCI1B  
GND  
27, M2-P2.2  
66, E11-P8.6  
DVCC  
VCC  
28, L3-P2.3  
56, J12-P7.3  
TA1.2  
TA1.2  
DVSS  
CCI2A  
CCI2B  
GND  
28, L3-P2.3  
56, J12-P7.3  
DVCC  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.9.12 TB0  
TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 can support multiple  
capture/compare registers, PWM outputs, and interval timing. It also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 8-10. TB0 Signal Connections  
INPUT PIN  
NUMBER  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
PZ, ZQW  
DEVICE INPUT MODULE INPUT  
MODULE  
BLOCK  
SIGNAL  
SIGNAL  
PZ, ZQW  
50, M12-P4.7  
TB0CLK  
ACLK  
TBCLK  
ACLK  
Timer  
CCR0  
NA  
NA  
SMCLK  
TB0CLK  
TB0.0  
SMCLK  
TBCLK  
CCI0A  
50, M12-P4.7  
43, J8-P4.0  
43, J8-P4.0  
ADC12 (internal)  
ADC12SHSx = {2}  
43, J8-P4.0  
TB0.0  
CCI0B  
TB0  
TB0.0  
DVSS  
DVCC  
TB0.1  
GND  
VCC  
44, M9-P4.1  
44, M9-P4.1  
CCI1A  
44, M9-P4.1  
ADC12 (internal)  
ADC12SHSx = {3}  
TB0.1  
CCI1B  
CCR1  
TB1  
TB0.1  
DVSS  
DVCC  
GND  
VCC  
45, L9-P4.2  
45, L9-P4.2  
TB0.2  
TB0.2  
DVSS  
CCI2A  
CCI2B  
GND  
VCC  
45, L9-P4.2  
46, L10-P4.3  
47, M10-P4.4  
48, L11-P4.5  
49, M11-P4.6  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
TB2  
TB3  
TB4  
TB5  
TB6  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
DVCC  
46, L10-P4.3  
46, L10-P4.3  
TB0.3  
TB0.3  
DVSS  
CCI3A  
CCI3B  
GND  
VCC  
DVCC  
47, M10-P4.4  
47, M10-P4.4  
TB0.4  
TB0.4  
DVSS  
CCI4A  
CCI4B  
GND  
VCC  
DVCC  
48, L11-P4.5  
48, L11-P4.5  
TB0.5  
TB0.5  
DVSS  
CCI5A  
CCI5B  
GND  
VCC  
DVCC  
49, M11-P4.6  
TB0.6  
ACLK (internal)  
DVSS  
CCI6A  
CCI6B  
GND  
VCC  
DVCC  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.9.13 ADC12_A  
The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR  
core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-  
and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU  
intervention.  
8.9.14 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
8.9.15 REF Voltage Reference  
The reference module (REF) is responsible for generation of all critical reference voltages that can be used by  
the various analog peripherals in the device.  
8.9.16 Embedded Emulation Module (EEM) (L Version)  
The EEM supports real-time in-system debugging. The L version of the EEM has the following features:  
Eight hardware triggers or breakpoints on memory access  
Two hardware triggers or breakpoints on CPU register write access  
Up to ten hardware triggers can be combined to form complex triggers or breakpoints  
Two cycle counters  
Sequencer  
State storage  
Clock control on module level  
Copyright © 2020 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.9.17 Peripheral File Map  
Table 8-11 lists the base address for the registers of each module.  
Table 8-11. Peripheral Map  
OFFSET ADDRESS  
RANGE  
MODULE NAME  
BASE ADDRESS  
Special Functions (see Table 8-12)  
PMM (see Table 8-13)  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
0200h  
0220h  
0240h  
0260h  
0280h  
02A0h  
0320h  
0340h  
0380h  
03C0h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
05C0h  
05E0h  
0600h  
0620h  
0640h  
0660h  
0680h  
06A0h  
0700h  
000h-01Fh  
000h-010h  
000h-00Fh  
000h-007h  
000h-001h  
000h-001h  
000h-01Fh  
000h-01Fh  
000h-001h  
000h-01Fh  
000h-00Bh  
000h-00Bh  
000h-00Bh  
000h-00Bh  
000h-00Ah  
000h-01Fh  
000h-02Eh  
000h-02Eh  
000h-02Eh  
000h-01Bh  
000h-02Fh  
000h-00Fh  
000h-00Ah  
000h-00Ah  
000h-00Ah  
000h-01Fh  
000h-01Fh  
000h-01Fh  
000h-01Fh  
000h-01Fh  
000h-01Fh  
000h-01Fh  
000h-01Fh  
000h-03Eh  
Flash Control (see Table 8-14)  
CRC16 (see Table 8-15)  
RAM Control (see Table 8-16)  
Watchdog (see Table 8-17)  
UCS (see Table 8-18)  
SYS (see Table 8-19)  
Shared Reference (see Table 8-20)  
Port P1, P2 (see Table 8-21)  
Port P3, P4 (see Table 8-22)  
Port P5, P6 (see Table 8-23)  
Port P7, P8 (see Table 8-24)  
Port P9, P10 (see Table 8-25)  
Port P11 (see Table 8-26)  
Port PJ (see Table 8-27)  
TA0 (see Table 8-28)  
TA1 (see Table 8-29)  
TB0 (see Table 8-30)  
Real-Time Clock (RTC_A) (see Table 8-31)  
32-Bit Hardware Multiplier (see Table 8-32)  
DMA General Control (see Table 8-33)  
DMA Channel 0 (see Table 8-33)  
DMA Channel 1 (see Table 8-33)  
DMA Channel 2 (see Table 8-33)  
USCI_A0 (see Table 8-34)  
USCI_B0 (see Table 8-35)  
USCI_A1 (see Table 8-36)  
USCI_B1 (see Table 8-37)  
USCI_A2 (see Table 8-38)  
USCI_B2 (see Table 8-39)  
USCI_A3 (see Table 8-40)  
USCI_B3 (see Table 8-41)  
ADC12_A (see Table 8-42)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-12. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
SFRIE1  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
Table 8-13. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
PMM Control 0  
PMMCTL0  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
10h  
PMM control 1  
PMMCTL1  
SVSMHCTL  
SVSMLCTL  
PMMIFG  
SVS high side control  
SVS low side control  
PMM interrupt flags  
PMM interrupt enable  
PMM power mode 5 control  
PMMIE  
PM5CTL0  
Table 8-14. Flash Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
Flash control 1  
Flash control 3  
Flash control 4  
FCTL1  
FCTL3  
FCTL4  
00h  
04h  
06h  
Table 8-15. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC data input  
CRC16DI  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
Table 8-16. RAM Control Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
OFFSET  
RAM control 0  
RCCTL0  
00h  
00h  
Table 8-17. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
Watchdog timer control  
WDTCTL  
Table 8-18. UCS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
UCS control 0  
UCS control 1  
UCS control 2  
UCS control 3  
UCS control 4  
UCS control 5  
UCS control 6  
UCS control 7  
UCS control 8  
UCSCTL0  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
UCSCTL1  
UCSCTL2  
UCSCTL3  
UCSCTL4  
UCSCTL5  
UCSCTL6  
UCSCTL7  
UCSCTL8  
Copyright © 2020 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-19. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
System control  
SYSCTL  
00h  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
Bootstrap loader configuration area  
JTAG mailbox control  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
SYSSNIV  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus Error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
SYSRSTIV  
Table 8-20. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
OFFSET  
Shared reference control  
REFCTL  
00h  
Table 8-21. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
Port P1 direction  
P1OUT  
P1DIR  
P1REN  
P1DS  
P1SEL  
P1IV  
Port P1 pullup/pulldown enable  
Port P1 drive strength  
Port P1 selection  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 input  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2DS  
P2SEL  
P2IV  
Port P2 direction  
Port P2 pullup/pulldown enable  
Port P2 drive strength  
Port P2 selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-22. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P3 output  
Port P3 direction  
P3OUT  
P3DIR  
P3REN  
P3DS  
Port P3 pullup/pulldown enable  
Port P3 drive strength  
Port P3 selection  
P3SEL  
P4IN  
Port P4 input  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4DS  
Port P4 direction  
Port P4 pullup/pulldown enable  
Port P4 drive strength  
Port P4 selection  
P4SEL  
Table 8-23. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P5 output  
P5OUT  
P5DIR  
P5REN  
P5DS  
Port P5 direction  
Port P5 pullup/pulldown enable  
Port P5 drive strength  
Port P5 selection  
P5SEL  
P6IN  
Port P6 input  
Port P6 output  
P6OUT  
P6DIR  
P6REN  
P6DS  
Port P6 direction  
Port P6 pullup/pulldown enable  
Port P6 drive strength  
Port P6 selection  
P6SEL  
Table 8-24. Port P7, P8 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P7 input  
P7IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P7 output  
P7OUT  
P7DIR  
P7REN  
P7DS  
Port P7 direction  
Port P7 pullup/pulldown enable  
Port P7 drive strength  
Port P7 selection  
P7SEL  
P8IN  
Port P8 input  
Port P8 output  
P8OUT  
P8DIR  
P8REN  
P8DS  
Port P8 direction  
Port P8 pullup/pulldown enable  
Port P8 drive strength  
Port P8 selection  
P8SEL  
Copyright © 2020 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-25. Port P9, P10 Registers (Base Address: 0280h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P9 input  
P9IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P9 output  
Port P9 direction  
P9OUT  
P9DIR  
P9REN  
P9DS  
Port P9 pullup/pulldown enable  
Port P9 drive strength  
Port P9 selection  
P9SEL  
P10IN  
Port P10 input  
Port P10 output  
P10OUT  
P10DIR  
P10REN  
P10DS  
Port P10 direction  
Port P10 pullup/pulldown enable  
Port P10 drive strength  
Port P10 selection  
P10SEL  
Table 8-26. Port P11 Registers (Base Address: 02A0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P11 input  
P11IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
Port P11 output  
P11OUT  
P11DIR  
P11REN  
P11DS  
Port P11 direction  
Port P11 pullup/pulldown enable  
Port P11 drive strength  
Port P11 selection  
P11SEL  
Table 8-27. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
08h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
PJDS  
Port PJ direction  
Port PJ pullup/pulldown enable  
Port PJ drive strength  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-28. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA0 control  
TA0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter register  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Capture/compare register 3  
Capture/compare register 4  
TA0 expansion register 0  
TA0 interrupt vector  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
TA0IV  
Table 8-29. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA1 control  
TA1CTL  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter register  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA1 expansion register 0  
TA1 interrupt vector  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1IV  
Copyright © 2020 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-30. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TB0 control  
TB0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 register  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Capture/compare register 3  
Capture/compare register 4  
Capture/compare register 5  
Capture/compare register 6  
TB0 expansion register 0  
TB0 interrupt vector  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
TB0IV  
Table 8-31. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
RTC control 0  
RTCCTL0  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
RTC control 1  
RTCCTL1  
RTC control 2  
RTCCTL2  
RTC control 3  
RTCCTL3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTC prescaler 1  
RTC interrupt vector word  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTCPS1  
RTCIV  
RTC seconds/counter register 1  
RTC minutes/counter register 2  
RTC hours/counter register 3  
RTC day of week/counter register 4  
RTC days  
RTCSEC/RTCNT1  
RTCMIN/RTCNT2  
RTCHOUR/RTCNT3  
RTCDOW/RTCNT4  
RTCDAY  
RTC month  
RTCMON  
RTC year low  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTCAHOUR  
RTCADOW  
RTCADAY  
RTC alarm day of week  
RTC alarm days  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-32. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension register  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control register 0  
RES3  
MPY32CTL0  
Copyright © 2020 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-33. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
DMA channel 0 control  
DMA0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Eh  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA module control 0  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA module control 1  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
Table 8-34. USCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI control 1  
UCA0CTL1  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 0  
UCA0CTL0  
UCA0BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA0BR1  
USCI modulation control  
USCI status  
UCA0MCTL  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA0IFG  
UCA0IV  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-35. USCI_B0 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
UCB0CTL1  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB0CTL0  
UCB0BR0  
UCB0BR1  
UCB0STAT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA  
UCB0I2CSA  
UCB0IE  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB0IFG  
USCI interrupt vector word  
UCB0IV  
Table 8-36. USCI_A1 Registers (Base Address: 0600h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI control 1  
UCA1CTL1  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 0  
UCA1CTL0  
UCA1BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA1BR1  
USCI modulation control  
USCI status  
UCA1MCTL  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA1IFG  
UCA1IV  
Copyright © 2020 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-37. USCI_B1 Registers (Base Address: 0620h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
UCB1CTL1  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB1CTL0  
UCB1BR0  
UCB1BR1  
UCB1STAT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA  
UCB1I2CSA  
UCB1IE  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB1IFG  
USCI interrupt vector word  
UCB1IV  
Table 8-38. USCI_A2 Registers (Base Address: 0640h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI control 1  
UCA2CTL1  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 0  
UCA2CTL0  
UCA2BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA2BR1  
USCI modulation control  
USCI status  
UCA2MCTL  
UCA2STAT  
UCA2RXBUF  
UCA2TXBUF  
UCA2ABCTL  
UCA2IRTCTL  
UCA2IRRCTL  
UCA2IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA2IFG  
UCA2IV  
Table 8-39. USCI_B2 Registers (Base Address: 0660h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
UCB2CTL1  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB2CTL0  
UCB2BR0  
UCB2BR1  
UCB2STAT  
UCB2RXBUF  
UCB2TXBUF  
UCB2I2COA  
UCB2I2CSA  
UCB2IE  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB2IFG  
USCI interrupt vector word  
UCB2IV  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-40. USCI_A3 Registers (Base Address: 0680h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI control 1  
UCA3CTL1  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 0  
UCA3CTL0  
UCA3BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA3BR1  
USCI modulation control  
USCI status  
UCA3MCTL  
UCA3STAT  
UCA3RXBUF  
UCA3TXBUF  
UCA3ABCTL  
UCA3IRTCTL  
UCA3IRRCTL  
UCA3IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA3IFG  
UCA3IV  
Table 8-41. USCI_B3 Registers (Base Address: 06A0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
UCB3CTL1  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB3CTL0  
UCB3BR0  
UCB3BR1  
UCB3STAT  
UCB3RXBUF  
UCB3TXBUF  
UCB3I2COA  
UCB3I2CSA  
UCB3IE  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB3IFG  
USCI interrupt vector word  
UCB3IV  
Copyright © 2020 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-42. ADC12_A Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Control register 0  
ADC12CTL0  
00h  
02h  
04h  
0Ah  
0Ch  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
Control register 1  
ADC12CTL1  
Control register 2  
ADC12CTL2  
Interrupt-flag register  
Interrupt-enable register  
Interrupt-vector-word register  
ADC12IFG  
ADC12IE  
ADC12IV  
ADC memory-control register 0  
ADC memory-control register 1  
ADC memory-control register 2  
ADC memory-control register 3  
ADC memory-control register 4  
ADC memory-control register 5  
ADC memory-control register 6  
ADC memory-control register 7  
ADC memory-control register 8  
ADC memory-control register 9  
ADC memory-control register 10  
ADC memory-control register 11  
ADC memory-control register 12  
ADC memory-control register 13  
ADC memory-control register 14  
ADC memory-control register 15  
Conversion memory 0  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MEM0  
ADC12MEM1  
ADC12MEM2  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
Conversion memory 1  
Conversion memory 2  
Conversion memory 3  
Conversion memory 4  
Conversion memory 5  
Conversion memory 6  
Conversion memory 7  
Conversion memory 8  
Conversion memory 9  
Conversion memory 10  
Conversion memory 11  
Conversion memory 12  
Conversion memory 13  
Conversion memory 14  
Conversion memory 15  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10 Input/Output Schematics  
8.10.1 Port P1, P1.0 to P1.7, Input/Output With Schmitt Trigger  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3/TA0.2  
P1.4/TA0.3  
P1.5/TA0.4  
P1.6/SMCLK  
P1.7  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
P1IFG.x  
Set  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
Copyright © 2020 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-43. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0/TA0CLK/ACLK  
0
P1.0 (I/O)  
TA0.TA0CLK  
ACLK  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
1
P1.1/TA0.0  
1
2
3
4
5
P1.1 (I/O)  
TA0.CCI0A  
TA0.0  
I: 0; O: 1  
0
1
P1.2/TA0.1  
P1.2 (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
0
1
P1.3/TA0.2  
P1.3 (I/O)  
TA0.CCI2A  
TA0.2  
I: 0; O: 1  
0
1
P1.4/TA0.3  
P1.4 (I/O)  
TA0.CCI3A  
TA0.3  
I: 0; O: 1  
0
1
P1.5/TA0.4  
P1.5 (I/O)  
TA0.CCI4A  
TA0.4  
I: 0; O: 1  
0
1
P1.6/SMCLK  
P1.7  
6
7
P1.6 (I/O)  
SMCLK  
I: 0; O: 1  
1
P1.7 (I/O)  
I: 0; O: 1  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.2 Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger  
Pad Logic  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
P2OUT.x  
0
1
Module X OUT  
P2.0/TA1CLK/MCLK  
P2.1/TA1.0  
P2.2/TA1.1  
P2.3/TA1.2  
P2.4/RTCCLK  
P2.5  
P2.6/ACLK  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2IN.x  
EN  
D
P2.7/ADC12CLK/DMAE0  
Module X IN  
P2IRQ.x  
P2IE.x  
EN  
Q
P2IFG.x  
Set  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
Copyright © 2020 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-44. Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.0/TA1CLK/MCLK  
0
P2.0 (I/O)  
TA1CLK  
MCLK  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
1
0
1
1
0
1
P2.1/TA1.0  
1
2
3
4
P2.1 (I/O)  
TA1.CCI0A  
TA1.0  
I: 0; O: 1  
0
1
P2.2/TA1.1  
P2.2 (I/O)  
TA1.CCI1A  
TA1.1  
I: 0; O: 1  
0
1
P2.3/TA1.2  
P2.3 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
0
1
P2.4/RTCCLK  
P2.4 (I/O)  
RTCCLK  
P2.5 (I/O  
P2.6 (I/O)  
ACLK  
I: 0; O: 1  
1
P2.5  
5
6
I: 0; O: 1  
P2.6/ACLK  
I: 0; O: 1  
1
P2.7/ADC12CLK/DMAE0  
7
P2.7 (I/O)  
DMAE0  
I: 0; O: 1  
0
1
ADC12CLK  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.3 Port P3, P3.0 to P3.7, Input/Output With Schmitt Trigger  
Pad Logic  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
P3OUT.x  
0
1
Module X OUT  
P3.0/UB0STE/UCA0CLK  
P3DS.x  
0: Low drive  
1: High drive  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/USC0CLK/UCA0STE  
P3.4/UCA0TXD/UCA0SIMO  
P3.5/UCA0RXD/UCA0SOMI  
P3.6/UCB1STE/UCA1CLK  
P3.7/UCB1SIMO/UCB1SDA  
P3SEL.x  
P3IN.x  
EN  
D
Module X IN  
Table 8-45. Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL.x  
P3.0/UCB0STE/UCA0CLK  
0
P3.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
UCB0STE/UCA0CLK(2) (4)  
X
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
P3.4/UCA0TXD/UCA0SIMO  
P3.5/UCA0RXD/UCA0SOMI  
P3.6/UCB1STE/UCA1CLK  
P3.7/UCB1SIMO/UCB1SDA  
1
2
3
4
5
6
7
P3.1 (I/O)  
I: 0; O: 1  
UCB0SIMO/UCB0SDA(2) (3)  
P3.2 (I/O)  
X
I: 0; O: 1  
UCB0SOMI/UCB0SCL(2) (3)  
X
P3.3 (I/O)  
I: 0; O: 1  
UCB0CLK/UCA0STE(2)  
P3.4 (I/O)  
X
I: 0; O: 1  
UCA0TXD/UCA0SIMO(2)  
X
P3.5 (I/O)  
I: 0; O: 1  
UCA0RXD/UCA0SOMI(2)  
P3.6 (I/O)  
X
I: 0; O: 1  
X
UCB1STE/UCA1CLK(2) (5)  
P3.7 (I/O)  
I: 0; O: 1  
X
UCB1SIMO/UCB1SDA(2) (3)  
(1) X = Don't care  
(2) The pin direction is controlled by the USCI module.  
(3) If the I2C functionality is selected, the output drives only the logical 0 to VSS level.  
(4) UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI B0 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
(5) UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output, USCI B1 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
Copyright © 2020 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.4 Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger  
Pad Logic  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
0
1
Module X OUT  
P4.0/TB0.0  
P4.1/TB0.1  
P4.2/TB0.2  
P4.3/TB0.3  
P4.4/TB0.4  
P4.5/TB0.5  
P4DS.x  
0: Low drive  
1: High drive  
P4SEL.x  
P4IN.x  
P4.6/TB0.6  
P4.7/TB0CLK/SMCLK  
EN  
D
Module X IN  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-46. Port P4 (P4.0 to P4.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P4.x)  
P4.0/TB0.0  
x
FUNCTION  
P4DIR.x  
P4SEL.x  
0
4.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
TB0.CCI0A and TB0.CCI0B  
TB0.0(1)  
0
1
P4.1/TB0.1  
1
2
3
4
5
6
7
4.1 (I/O)  
I: 0; O: 1  
TB0.CCI1A and TB0.CCI1B  
TB0.1(1)  
0
1
P4.2/TB0.2  
4.2 (I/O)  
I: 0; O: 1  
TB0.CCI2A and TB0.CCI2B  
TB0.2(1)  
0
1
P4.3/TB0.3  
4.3 (I/O)  
I: 0; O: 1  
TB0.CCI3A and TB0.CCI3B  
TB0.3(1)  
0
1
P4.4/TB0.5  
4.4 (I/O)  
I: 0; O: 1  
TB0.CCI4A and TB0.CCI4B  
TB0.4(1)  
0
1
P4.5/TB0.5  
4.5 (I/O)  
I: 0; O: 1  
TB0.CCI5A and TB0.CCI5B  
TB0.5(1)  
0
1
P4.6/TB0.6  
4.6 (I/O)  
I: 0; O: 1  
TB0.CCI6A and TB0.CCI6B  
TB0.6(1)  
0
1
P4.7/TB0CLK/SMCLK  
4.7 (I/O)  
I: 0; O: 1  
TB0CLK  
0
1
SMCLK  
(1) Setting TBOUTH causes all Timer_B configured outputs to be set to high impedance.  
Copyright © 2020 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.5 Port P5, P5.0 and P5.1, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC12  
INCHx = y  
To/From  
ADC12 Reference  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
P5OUT.x  
0
1
Module X OUT  
P5.0/A8/VREF+/VeREF+  
P5.1/A9/VREF–/VeREF–  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-47. Port P5 (P5.0 and P5.1) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
REFOUT  
P5.0/A8/VREF+/VeREF+  
0
P5.0 (I/O)(2)  
A8/VeREF+(3)  
A8/VREF+(4)  
P5.1 (I/O)(2)  
A9/VeREF–(5)  
A9/VREF–(6)  
I: 0; O: 1  
0
1
1
0
1
1
X
0
1
X
0
1
X
X
P5.1/A9/VREF–/VeREF–  
1
I: 0; O: 1  
X
X
(1) X = Don't care  
(2) Default condition  
(3) Setting the P5SEL.0 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A. Channel A8, when  
selected with the INCHx bits, is connected to the VREF+/VeREF+ pin.  
(4) Setting the P5SEL.0 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. The ADC12_A, VREF+ reference is available at the pin. Channel A8, when selected with the INCHx bits, is connected  
to the VREF+/VeREF+ pin.  
(5) Setting the P5SEL.1 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A. Channel A9, when selected  
with the INCHx bits, is connected to the VREF-/VeREF- pin.  
(6) Setting the P5SEL.1 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. The ADC12_A, VREF– reference is available at the pin. Channel A9, when selected with the INCHx bits, is connected  
to the VREF-/VeREF- pin.  
Copyright © 2020 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.6 Port P5, P5.2, Input/Output With Schmitt Trigger  
Pad Logic  
To XT2  
P5REN.2  
DVSS  
DVCC  
0
1
1
P5DIR.2  
0
1
P5OUT.2  
0
1
Module X OUT  
P5.2/XT2IN  
P5DS.2  
0: Low drive  
1: High drive  
P5SEL.2  
P5IN.2  
Bus  
Keeper  
EN  
D
Module X IN  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.7 Port P5, P5.3, Input/Output With Schmitt Trigger  
Pad Logic  
To XT2  
P5REN.3  
DVSS  
DVCC  
0
1
1
P5DIR.3  
0
1
P5OUT.3  
0
1
Module X OUT  
P5SEL.2  
P5.3/XT2OUT  
P5DS.3  
0: Low drive  
1: High drive  
XT2BYPASS  
P5SEL.3  
P5IN.3  
Bus  
Keeper  
EN  
D
Module X IN  
Table 8-48. Port P5 (P5.2 and P5.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.2  
P5SEL.3  
XT2BYPASS  
P5.2/XT2IN  
2
P5.2 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
0
X
0
1
X
0
1
XT2IN crystal mode(2)  
XT2IN bypass mode(2)  
P5.3 (I/O)  
X
X
P5.3/XT2OUT  
3
I: 0; O: 1  
XT2OUT crystal mode(3)  
P5.3 (I/O)(3)  
X
X
X
0
(1) X = Don't care  
(2) Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal  
mode or bypass mode.  
(3) Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as  
general-purpose I/O.  
Copyright © 2020 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.8 Port P5, P5.4 to P5.7, Input/Output With Schmitt Trigger  
Pad Logic  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
P5OUT.x  
0
1
Module X OUT  
P5.4/UCB1SOMI/UCB1SCL  
P5.5/UCB1CLK/UCA1STE  
P5.6/UCA1TXD/UCA1SIMO  
P5.7/UCA1RXD/UCA1SOMI  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
EN  
D
Module X IN  
Table 8-49. Port P5 (P5.4 to P5.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
I: 0; O: 1  
X
P5SEL.x  
P5.4/UCB1SOMI/UCB1SCL  
4
P5.4 (I/O)  
0
1
0
1
0
1
0
1
UCB1SOMI/UCB1SCL(2) (3)  
P5.5/UCB1CLK/UCA1STE  
P5.6/UCA1TXD/UCA1SIMO  
P5.7/UCA1RXD/UCA1SOMI  
5
6
7
P5.5 (I/O)  
I: 0; O: 1  
X
UCB1CLK/UCA1STE(2) (4)  
P5.6 (I/O)  
I: 0; O: 1  
X
UCA1TXD/UCA1SIMO(2)  
P5.7 (I/O)  
I: 0; O: 1  
X
UCA1RXD/UCA1SOMI(2)  
(1) X = Don't care  
(2) The pin direction is controlled by the USCI module.  
(3) If the I2C functionality is selected, the output drives only the logical 0 to VSS level.  
(4) UCB1CLK function takes precedence over UCA1STE function. If the pin is required as UCB1CLK input or output, USCI A1 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MSP430BT5190  
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.9 Port P6, P6.0 to P6.7, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC12  
INCHx = y  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
0
1
P6OUT.x  
0
1
Module X OUT  
P6.0/A0  
P6DS.x  
0: Low drive  
1: High drive  
P6.1/A1  
P6.2/A2  
P6.3/A3  
P6.4/A4  
P6.5/A5  
P6.6/A6  
P6.7/A7  
P6SEL.x  
P6IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Copyright © 2020 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-50. Port P6 (P6.0 to P6.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL.x  
INCHx  
P6.0/A0  
P6.1/A1  
P6.2/A2  
P6.3/A3  
P6.4/A4  
P6.5/A5  
P6.6/A6  
P6.7/A7  
0
P6.0 (I/O)  
A0(2) (3)  
I: 0; O: 1  
0
X
0
X
0
X
1
X
2
X
3
X
4
X
5
X
6
X
7
X
1
2
3
4
5
6
7
P6.1 (I/O)  
A1(2) (3)  
I: 0; O: 1  
X
X
0
P6.2 (I/O)  
A2(2) (3)  
I: 0; O: 1  
X
X
0
P6.3 (I/O)  
A3(2) (3)  
I: 0; O: 1  
X
X
0
P6.4 (I/O)  
A4(2) (3)  
I: 0; O: 1  
X
X
0
P6.5 (I/O)  
A5(1) (2) (3)  
P6.6 (I/O)  
A6(2) (3)  
I: 0; O: 1  
X
I: 0; O: 1  
X
X
0
X
0
P6.7 (I/O)  
A7(2) (3)  
I: 0; O: 1  
X
X
(1) X = Don't care  
(2) Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals.  
(3) The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.10 Port P7, P7.0, Input/Output With Schmitt Trigger  
Pad Logic  
To XT1  
P7REN.0  
DVSS  
DVCC  
0
1
1
P7DIR.0  
0
1
P7OUT.0  
0
1
Module X OUT  
P7.0/XIN  
P7DS.0  
0: Low drive  
1: High drive  
P7SEL.0  
P7IN.0  
Bus  
Keeper  
EN  
D
Module X IN  
Copyright © 2020 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.11 Port P7, P7.1, Input/Output With Schmitt Trigger  
Pad Logic  
To XT1  
P7REN.1  
DVSS  
DVCC  
0
1
1
P7DIR.1  
0
1
P7OUT.1  
0
1
Module X OUT  
P7SEL.0  
P7.1/XOUT  
P7DS.1  
0: Low drive  
1: High drive  
XT1BYPASS  
P7SEL.1  
P7IN.1  
Bus  
Keeper  
EN  
D
Module X IN  
Table 8-51. Port P7 (P7.0 and P7.1) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.0  
P7SEL.1  
XT1BYPASS  
P7.0/XIN  
0
P7.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
0
X
0
1
X
0
1
XIN crystal mode(2)  
XIN bypass mode(2)  
P7.1 (I/O)  
X
X
P7.1/XOUT  
1
I: 0; O: 1  
XOUT crystal mode(3)  
P7.1 (I/O)(3)  
X
X
X
0
(1) X = Don't care  
(2) Setting P7SEL.0 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P7.0 is configured for crystal  
mode or bypass mode.  
(3) Setting P7SEL.0 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.1 can be used as  
general-purpose I/O.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: MSP430BT5190  
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.12 Port P7, P7.2 and P7.3, Input/Output With Schmitt Trigger  
Pad Logic  
P7REN.x  
DVSS  
DVCC  
0
1
1
P7DIR.x  
0
1
Direction  
0: Input  
1: Output  
P7OUT.x  
0
1
Module X OUT  
P7.2/TB0OUTH/SVMOUT  
P7.3/TA1.2  
P7DS.x  
0: Low drive  
1: High drive  
P7SEL.x  
P7IN.x  
EN  
D
Module X IN  
Table 8-52. Port P7 (P7.2 and P7.3) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.x  
P7.2/TB0OUTH/SVMOUT  
2
P7.2 (I/O)  
TB0OUTH  
SVMOUT  
P7.3 (I/O)  
TA1.CCI2B  
TA1.2  
I: 0; O: 1  
0
1
1
0
1
1
0
1
P7.3/TA1.2  
3
I: 0; O: 1  
0
1
Copyright © 2020 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.13 Port P7, P7.4 to P7.7, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC12  
INCHx = y  
P7REN.x  
DVSS  
DVCC  
0
1
1
P7DIR.x  
0
1
P7OUT.x  
0
1
Module X OUT  
P7.4/A12  
P7.5/A13  
P7.6/A14  
P7.7/A15  
P7DS.x  
0: Low drive  
1: High drive  
P7SEL.x  
P7IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Table 8-53. Port P7 (P7.4 to P7.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.x  
INCHx  
P7.4/A12  
P7.5/A13  
P7.6/A14  
P7.7/A15  
4
P7.4 (I/O)  
I: 0; O: 1  
0
X
0
X
12  
X
A12(2) (3)  
P7.5 (I/O)  
A13(2) (3)  
P7.6 (I/O)  
A14(2) (3)  
P7.7 (I/O)  
A15(2) (3)  
X
5
6
7
I: 0; O: 1  
X
I: 0; O: 1  
X
X
0
13  
X
X
0
14  
X
I: 0; O: 1  
X
X
15  
(1) X = Don't care  
(2) Setting the P7SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals.  
(3) The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.14 Port P8, P8.0 to P8.7, Input/Output With Schmitt Trigger  
Pad Logic  
P8REN.x  
0
1
DVSS  
DVCC  
1
P8DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P8OUT.x  
Module X OUT  
P8.0/TA0.0  
P8DS.x  
0: Low drive  
1: High drive  
P8.1/TA0.1  
P8.2/TA0.2  
P8.3/TA0.3  
P8.4/TA0.4  
P8.5/TA1.0  
P8.6/TA1.1  
P8.7  
P8SEL.x  
P8IN.x  
EN  
D
Module X IN  
Table 8-54. Port P8 (P8.0 to P8.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL.x  
P8.0/TA0.0  
P8.1/TA0.1  
P8.2/TA0.2  
P8.3/TA0.3  
P8.4/TA0.4  
P8.5/TA1.0  
P8.6/TA1.1  
P8.7  
0
P8.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
TA0.CCI0B  
TA0.0  
0
1
1
2
3
4
5
6
7
P8.1 (I/O)  
TA0.CCI1B  
TA0.1  
I: 0; O: 1  
0
1
P8.2 (I/O)  
TA0.CCI2B  
TA0.2  
I: 0; O: 1  
0
1
P8.3 (I/O)  
TA0.CCI3B  
TA0.3  
I: 0; O: 1  
0
1
P8.4 (I/O)  
TA0.CCI4B  
TA0.4  
I: 0; O: 1  
0
1
P8.5 (I/O)  
TA1.CCI0B  
TA1.0  
I: 0; O: 1  
0
1
P8.6 (I/O)  
TA1.CCI1B  
TA1.1  
I: 0; O: 1  
0
1
P8.7 (I/O)  
I: 0; O: 1  
Copyright © 2020 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.15 Port P9, P9.0 to P9.7, Input/Output With Schmitt Trigger  
Pad Logic  
P9REN.x  
DVSS  
DVCC  
0
1
1
P9DIR.x  
0
1
Direction  
0: Input  
1: Output  
P9OUT.x  
0
1
Module X OUT  
P9.0/UCB2STE/UCA2CLK  
P9.1/UCB2SIMO/UCB2SDA  
P9.2/UCB2SOMI/UCB2SCL  
P9.3/UCB2CLK/UCA2STE  
P9.4/UCA2TXD/UCA2SIMO  
P9.5/UCA2RXD/UCA2SOMI  
P9.6  
P9DS.x  
0: Low drive  
1: High drive  
P9SEL.x  
P9IN.x  
EN  
D
P9.7  
Module X IN  
Table 8-55. Port P9 (P9.0 to P9.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P9.x)  
x
FUNCTION  
P9DIR.x  
I: 0; O: 1  
X
P9SEL.x  
P9.0/UCB2STE/UCA2CLK  
0
P9.0 (I/O)  
0
1
0
1
0
1
0
1
0
1
0
1
0
0
UCB2STE/UCA2CLK(2) (4)  
P9.1/UCB2SIMO/UCB2SDA  
P9.2/UCB2SOMI/UCB2SCL  
P9.3/UCB2CLK/UCA2STE  
P9.4/UCA2TXD/UCA2SIMO  
P9.5/UCA2RXD/UCA2SOMI  
1
2
3
4
5
P9.1 (I/O)  
I: 0; O: 1  
X
UCB2SIMO/UCB2SDA(2) (3)  
P9.2 (I/O)  
I: 0; O: 1  
X
UCB2SOMI/UCB2SCL(2) (3)  
P9.3 (I/O)  
I: 0; O: 1  
X
UCB2CLK/UCA2STE(2) (5)  
P9.4 (I/O)  
I: 0; O: 1  
X
UCA2TXD/UCA2SIMO(2)  
P9.5 (I/O)  
I: 0; O: 1  
X
UCA2RXD/UCA2SOMI(2)  
P9.6 (I/O)  
P9.6  
P9.7  
6
7
I: 0; O: 1  
I: 0; O: 1  
P9.7 (I/O)  
(1) X = Don't care  
(2) The pin direction is controlled by the USCI module.  
(3) If the I2C functionality is selected, the output drives only the logical 0 to VSS level.  
(4) UCA2CLK function takes precedence over UCB2STE function. If the pin is required as UCA2CLK input or output, USCI B2 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
(5) UCB2CLK function takes precedence over UCA2STE function. If the pin is required as UCB2CLK input or output, USCI A2 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.16 Port P10, P10.0 to P10.7, Input/Output With Schmitt Trigger  
Pad Logic  
P10REN.x  
DVSS  
DVCC  
0
1
1
P10DIR.x  
0
1
Direction  
0: Input  
1: Output  
P10OUT.x  
0
1
Module X OUT  
P10.0/UCB3STE/UCA3CLK  
P10.1/UCB3SIMO/UCB3SDA  
P10.2/UCB3SOMI/UCB3SCL  
P10.3/UCB3CLK/UCA3STE  
P10.4/UCA3TXD/UCA3SIMO  
P10.5/UCA3RXD/UCA3SOMI  
P10.6  
P10DS.x  
0: Low drive  
1: High drive  
P10SEL.x  
P10IN.x  
EN  
D
P10.7  
Module X IN  
Table 8-56. Port P10 (P10.0 to P10.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P10.x)  
x
FUNCTION  
P10DIR.x  
P10SEL.x  
P10.0/UCB3STE/UCA3CLK  
0
P10.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
UCB3STE/UCA3CLK(2) (4)  
X
P10.1/UCB3SIMO/UCB3SDA  
P10.2/UCB3SOMI/UCB3SCL  
P10.3/UCB3CLK/UCA3STE  
P10.4/UCA3TXD/UCA3SIMO  
P10.5/UCA3RXD/UCA3SOMI  
P10.6  
1
2
3
4
5
6
7
P10.1 (I/O)  
I: 0; O: 1  
UCB3SIMO/UCB3SDA(2) (3)  
P10.2 (I/O)  
X
I: 0; O: 1  
UCB3SOMI/UCB3SCL(2) (3)  
X
P10.3 (I/O)  
I: 0; O: 1  
UCB3CLK/UCA3STE(2)  
P10.4 (I/O)  
X
I: 0; O: 1  
UCA3TXD/UCA3SIMO(2)  
X
P10.5 (I/O)  
I: 0; O: 1  
UCA3RXD/UCA3SOMI(2)  
P10.6 (I/O)  
X
I: 0; O: 1  
Reserved(5)  
X
I: 0; O: 1  
x
P10.7  
P10.7 (I/O)  
Reserved(5)  
(1) X = Don't care  
(2) The pin direction is controlled by the USCI module.  
(3) If the I2C functionality is selected, the output drives only the logical 0 to VSS level.  
(4) UCA3CLK function takes precedence over UCB3STE function. If the pin is required as UCA3CLK input or output, USCI B3 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
(5) The secondary function on these pins are reserved for factory test purposes. Application should keep the P10SEL.x of these ports  
cleared to prevent potential conflicts with the application.  
Copyright © 2020 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.17 Port P11, P11.0 to P11.2, Input/Output With Schmitt Trigger  
Pad Logic  
P11REN.x  
0
1
DVSS  
DVCC  
1
P11DIR.x  
0
1
Direction  
0: Input  
1: Output  
P11OUT.x  
0
1
Module X OUT  
P11.0/ACLK  
P11.1/MCLK  
P11.2/SMCLK  
P11DS.x  
0: Low drive  
1: High drive  
P11SEL.x  
P11IN.x  
EN  
D
Module X IN  
Table 8-57. Port P11 (P11.0 to P11.2) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P11.x)  
x
FUNCTION  
P11DIR.x  
P11SEL.x  
P11.0/ACLK  
P11.1/MCLK  
P11.2/SMCLK  
0
P11.0 (I/O)  
ACLK  
I: 0; O: 1  
0
1
0
1
0
1
1
1
2
P11.1 (I/O)  
MCLK  
I: 0; O: 1  
1
I: 0; O: 1  
1
P11.2 (I/O)  
SMCLK  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.10.18 Port J, J.0 JTAG Pin TDO, Input/Output With Schmitt Trigger or Output  
Pad Logic  
PJREN.0  
0
1
DVSS  
DVCC  
1
PJDIR.0  
DVCC  
0
1
PJOUT.0  
0
1
From JTAG  
PJ.0/TDO  
PJDS.0  
0: Low drive  
1: High drive  
From JTAG  
PJIN.0  
EN  
D
8.10.19 Port J, J.1 to J.3 JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output  
Pad Logic  
PJREN.x  
0
1
DVSS  
DVCC  
1
PJDIR.x  
DVSS  
0
1
PJOUT.x  
0
1
From JTAG  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
PJDS.x  
0: Low drive  
1: High drive  
From JTAG  
PJIN.x  
EN  
D
To JTAG  
Copyright © 2020 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-58. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS  
OR SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
I: 0; O: 1  
X
PJ.0/TDO  
0
PJ.0 (I/O)(2)  
TDO(3)  
PJ.1/TDI/TCLK  
PJ.2/TMS  
1
2
3
PJ.1 (I/O)(2)  
TDI/TCLK(3) (4)  
PJ.2 (I/O)(2)  
TMS(3) (4)  
I: 0; O: 1  
X
I: 0; O: 1  
X
PJ.3/TCK  
PJ.3 (I/O)(2)  
TCK(3) (4)  
I: 0; O: 1  
X
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: MSP430BT5190  
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.11 Device Descriptors (TLV)  
Table 8-59 shows the complete contents of the device descriptor tag-length-value (TLV) structure.  
Table 8-59. Device Descriptor Table  
MSP430BT5190  
SIZE  
(bytes)  
DESCRIPTION  
ADDRESS  
VALUE  
06h  
Info Block  
Info length  
CRC length  
01A00h  
01A01h  
01A02h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
01A14h  
01A15h  
01A16h  
01A18h  
1
1
2
1
1
1
1
1
1
4
2
2
2
1
1
2
2
06h  
CRC value  
per unit  
05h  
Device ID  
Device ID  
80h  
Hardware revision  
Firmware revision  
Die Record Tag  
Die Record length  
Lot/Wafer ID  
per unit  
per unit  
08h  
Die Record  
0Ah  
per unit  
per unit  
per unit  
per unit  
11h  
Die X position  
Die Y position  
Test results  
ADC12 Calibration  
ADC12 Calibration Tag  
ADC12 Calibration length  
ADC Gain Factor  
ADC Offset  
10h  
per unit  
per unit  
ADC 1.5-V Reference  
Temp. Sensor 30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC 1.5-V Reference  
Temp. Sensor 85°C  
ADC 2.0-V Reference  
Temp. Sensor 30°C  
ADC 2.0-V Reference  
Temp. Sensor 85°C  
ADC 2.5-V Reference  
Temp. Sensor 30°C  
ADC 2.5-V Reference  
Temp. Sensor 85°C  
REF Calibration  
REF Calibration Tag  
REF Calibration length  
REF 1.5-V Reference  
REF 2.0-V Reference  
REF 2.5-V Reference  
Peripheral Descriptor Tag  
Peripheral Descriptor Length  
01A26h  
01A27h  
01A28h  
01A2Ah  
01A2Ch  
01A2Eh  
01A2Fh  
1
1
2
2
2
1
1
12h  
06h  
per unit  
per unit  
per unit  
02h  
Peripheral Descriptor  
61h  
08h  
8Ah  
Memory 1  
Memory 2  
Memory 3  
2
2
2
0Ch  
86h  
0Eh  
30h  
2Eh  
98h  
Memory 4  
Memory 5  
2
0/1  
NA  
Copyright © 2020 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-59. Device Descriptor Table (continued)  
MSP430BT5190  
SIZE  
(bytes)  
DESCRIPTION  
ADDRESS  
VALUE  
00h  
Delimiter  
1
1
Peripheral count  
21h  
00h  
23h  
MSP430CPUXV2  
SBW  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
00h  
0Fh  
00h  
05h  
EEM-8  
00h  
FCh  
TI BSL  
00h  
1Fh  
Package  
SFR  
10h  
41h  
02h  
30h  
PMM  
02h  
38h  
FCTL  
01h  
3Ch  
CRC16-straight  
CRC16-bit reversed  
RAMCTL  
WDT_A  
UCS  
00h  
3Dh  
00h  
44h  
00h  
40h  
01h  
48h  
02h  
42h  
SYS  
03h  
A0h  
REF  
05h  
51h  
Port 1/2  
Port 3/4  
Port 5/6  
Port 7/8  
Port 9/10  
Port 11/12  
JTAG  
02h  
52h  
02h  
53h  
02h  
54h  
02h  
55h  
02h  
56h  
08h  
5Fh  
02h  
62h  
TA0  
04h  
61h  
TA1  
04h  
67h  
TB0  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 8-59. Device Descriptor Table (continued)  
MSP430BT5190  
SIZE  
(bytes)  
DESCRIPTION  
ADDRESS  
VALUE  
0Eh  
68h  
RTC  
2
2
2
2
2
2
2
2
02h  
85h  
MPY32  
04h  
47h  
DMA-3  
0Ch  
90h  
USCI_A/B  
USCI_A/B  
USCI_A/B  
USCI_A/B  
ADC12_A  
04h  
90h  
04h  
90h  
04h  
90h  
08h  
D1h  
Interrupts  
TB0.CCIFG0  
TB0.CCIFG1..6  
WDTIFG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
94h  
95h  
46h  
62h  
63h  
50h  
92h  
93h  
96h  
97h  
51h  
68h  
00h  
USCI_A0  
USCI_B0  
ADC12_A  
TA0.CCIFG0  
TA0.CCIFG1..4  
USCI_A2  
USCI_B2  
DMA  
TA1.CCIFG0  
TA1.CCIFG1..2  
P1  
USCI_A1  
USCI_B1  
USCI_A3  
USCI_B3  
P2  
RTC_A  
Delimiter  
Copyright © 2020 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Getting Started and Next Steps  
For an introduction to the MSP430family of devices and the tools and libraries that are available to help with  
your development, visit the Getting Started page.  
9.1.2 Development Tools Support  
All MSP430microcontrollers are supported by a wide variety of software and hardware development tools.  
Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.  
9.1.2.1 Hardware Features  
See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features.  
Break-  
points  
(N)  
Range  
Break-  
points  
LPMx.5  
Debugging  
Support  
MSP430  
Architecture  
4-Wire  
JTAG  
2-Wire  
JTAG  
Clock  
Control  
State  
Sequencer  
Trace  
Buffer  
MSP430Xv2  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
No  
9.1.2.2 Recommended Hardware Options  
9.1.2.2.1 Experimenter Boards  
Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional  
hardware components and connectivity for full system evaluation and prototyping. See www.ti.com/msp430tools  
for details.  
9.1.2.2.2 Debugging and Programming Tools  
Hardware programming and debugging tools are available from TI and from its third party suppliers. See the full  
list of available tools at www.ti.com/msp430tools.  
9.1.2.2.3 Production Programmers  
The production programmers expedite loading firmware to devices by programming several devices  
simultaneously.  
Part Number  
PC Port  
Features  
Provider  
Program up to eight devices at a time. Works with a PC or as a  
stand-alone device.  
MSP-GANG  
Serial and USB  
Texas Instruments  
9.1.2.3 Recommended Software Options  
9.1.2.3.1 Integrated Development Environments  
Software development tools are available from TI or from third parties. Open source solutions are also available.  
This device is supported by Code Composer StudioIDE (CCS).  
9.1.2.3.2 MSP430Ware  
MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430 devices  
delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design  
resources, MSP430Ware also includes a high-level API called MSP430 Driver Library. This library makes it easy  
to program MSP430 hardware. MSP430Ware is available as a component of CCS or as a stand-alone package.  
9.1.2.3.3 TI-RTOS  
TI-RTOS is an advanced real-time operating system for the MSP430 microcontrollers. It features preemptive  
deterministic multitasking, hardware abstraction, memory management, and real-time analysis. TI-RTOS is  
available free of charge and is provided with full source code.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: MSP430BT5190  
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.1.2.3.4 Command-Line Programmer  
MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers through a  
FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher can be used to  
download binary files (.txt or .hex) files directly to the MSP430 microcontroller without the need for an IDE.  
9.1.3 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS – Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP – Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. Figure 9-1 provides a legend for reading the complete device  
name.  
Copyright © 2020 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
MSP 430 F 5 438 A I PM T -EP  
Processor Family  
MCU Platform  
Device Type  
Series  
Feature Set  
Optional: Additional Features  
Optional: Tape and Reel  
Packaging  
Optional: Temperature Range  
Optional: Revision  
Processor Family  
CC = Embedded RF Radio  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
PMS = Prototype Device  
MCU Platform  
Device Type  
430 = MSP430 low-power microcontroller platform  
Memory Type  
C = ROM  
F = Flash  
FR = FRAM  
G = Flash  
L = No nonvolatile memory  
Specialized Application  
AFE = Analog front end  
BQ = Contactless power  
CG = ROM medical  
FE = Flash energy meter  
FG = Flash medical  
FW = Flash electronic flow meter  
Series  
1 = Up to 8 MHz  
2 = Up to 16 MHz  
3 = Legacy  
4 = Up to 16 MHz with LCD driver  
5 = Up to 25 MHz  
6 = Up to 25 MHz with LCD driver  
0 = Low-voltage series  
Feature Set  
Various levels of integration within a series  
Updated version of the base part number  
Optional: Revision  
Optional: Temperature Range S = 0°C to 50°C  
C = 0°C to 70°C  
I = –40°C to 85°C  
T = –40°C to 105°C  
Packaging  
http://www.ti.com/packaging  
Optional: Tape and Reel  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
Optional: Additional Features -EP = Enhanced product (–40°C to 105°C)  
-HT = Extreme temperature parts (–55°C to 150°C)  
-Q1 = Automotive Q100 qualified  
Figure 9-1. Device Nomenclature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: MSP430BT5190  
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.2 Documentation Support  
The following documents describe the MSP430BT5190 device. Copies of these documents are available on the  
Internet at www.ti.com.  
SLAU208 MSP430x5xx and MSP430x6xx Family User's Guide. Detailed information on the modules and  
peripherals available in this device family.  
SLAZ071 MSP430BT5190 Device Erratasheet. Describes the known exceptions to the functional  
specifications for all silicon revisions of this device.  
9.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
9.4 Trademarks  
Mindtreeis a trademark of Mindtree Ltd.  
MSP430, MicroStar Junior, Code Composer Studio, and TI E2Eare trademarks of Texas Instruments.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
All other trademarks are the property of their respective owners.  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
9.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: MSP430BT5190  
 
 
 
 
 
 
MSP430BT5190  
SLAS703C – APRIL 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: MSP430BT5190  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430BT5190IPZ  
MSP430BT5190IPZR  
ACTIVE  
LQFP  
LQFP  
PZ  
100  
100  
90  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
M430BT5190  
ACTIVE  
PZ  
1000  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
M430BT5190  
MSP430BT5190IZCAR  
MSP430BT5190IZCAT  
MSP430BT5190IZQWR  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
ZCA  
ZCA  
ZQW  
113  
113  
113  
2500  
250  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
BT5190  
TBD  
BT5190  
BGA  
MICROSTAR  
JUNIOR  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
M430BT5190  
MSP430BT5190IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
M430BT5190  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430BT5190IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
330.0  
330.0  
24.4  
16.4  
17.0  
7.3  
17.0  
7.3  
2.1  
1.5  
20.0  
12.0  
24.0  
16.0  
Q2  
Q1  
MSP430BT5190IZQWR BGA MI  
ZQW  
CROSTA  
R JUNI  
OR  
MSP430BT5190IZQWT BGA MI  
ZQW  
113  
250  
180.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q1  
CROSTA  
R JUNI  
OR  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430BT5190IPZR  
LQFP  
PZ  
100  
113  
1000  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
MSP430BT5190IZQWR BGA MICROSTAR  
JUNIOR  
ZQW  
MSP430BT5190IZQWT BGA MICROSTAR  
JUNIOR  
ZQW  
113  
250  
213.0  
191.0  
55.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
A
7.1  
6.9  
B
BALL A1 CORNER  
7.1  
6.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.25  
0.15  
BALL TYP  
5.5  
TYP  
(0.75) TYP  
SYMM  
M
L
K
J
(0.75) TYP  
H
G
F
E
D
C
SYMM  
5.5  
TYP  
0.35  
0.25  
113X Ø  
B
A
0.15  
0.05  
C
C
A B  
1
2
3
4
5
6
7
8
9 10 11 12  
0.5 TYP  
0.5 TYP  
4225149/A 08/2019  
NanoFree is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
(0.5) TYP  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10 11 12  
A
B
C
D
E
F
113X (Ø0.25)  
SYMM  
G
H
J
K
L
M
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 10X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
(Ø 0.25)  
METAL  
(Ø 0.25)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225149/A 08/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments  
Literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
ZCA0113A  
(0.5) TYP  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10 11 12  
A
B
C
D
E
F
(R0.05)  
SYMM  
G
H
J
METAL TYP  
113X ( 0.25)  
K
L
M
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
SCALE: 10X  
4225149/A 08/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

MSP430C091SPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C092SPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C09X

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C1101

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C1101IDW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C1101IDWR

暂无描述
TI

MSP430C1101IPM

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C1101IPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C1101IRGE

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C111

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C1111IDW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C1111IPW

MIXED SIGNAL MICROCONTROLLER
TI