MSP430C325IFN [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430C325IFN
型号: MSP430C325IFN
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器和处理器 外围集成电路 可编程只读存储器 时钟
文件: 总33页 (文件大小:437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
Low Supply Voltage Range, 2.5 V – 5.5 V  
Integrated 12+2 Bit A/D Converter  
Low Operation Current, 400 A at 1 MHz,  
3 V  
Family Members Include:  
– MSP430C323, 8KB ROM, 256 Byte RAM  
– MSP430C325, 16KB ROM, 512 Byte RAM  
– MSP430P325A, 16KB OTP, 512 Byte RAM  
Ultra-Low Power Consumption (Standby  
Mode Down to 0.1 A)  
EPROM Version Available for Prototyping:  
PMS430E325A  
Five Power-Saving Modes  
Wakeup From Standby Mode in 6 s  
Serial Onboard Programming  
16-Bit RISC Architecture, 300 ns Instruction  
Cycle Time  
Programmable Code Protection by Security  
Fuse  
Single Common 32 kHz Crystal, Internal  
System Clock up to 3.3 MHz  
Avaliable in 64 Pin Quad Flatpack (QFP),  
68 Pin Plastic J-Leaded Chip Carrier  
(PLCC), 68 Pin J-Leaded Ceramic Chip  
Carrier (JLCC) Package (EPROM Version)  
Integrated LCD Driver for up to 84  
Segments  
description  
The Texas Instruments MSP430 is an ultra-low power mixed-signal microcontroller family consisting of several  
deviceswhichfeaturedifferentsetsofmodulestargetedtovariousapplications. Themicrocontrollerisdesigned  
to be battery operated for an extended application lifetime. With 16-bit RISC architecture, 16-bit integrated  
registers on the CPU, and a constant generator, the MSP430 achieves maximum code efficiency. The digitally-  
controlled oscillator, together with the frequency-locked-loop (FLL), provides a wakeup from a low-power mode  
to active mode in less than 6 s.  
PG Package  
(TOP VIEW)  
64 636261 6059585756 55545352  
1
2
3
4
5
6
7
8
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AV  
DV  
SV  
Rext  
A2  
COM0  
CC  
CC  
CC  
S20/O20/CMPI  
S19/O19  
S18/O18  
S17/O17  
S16/O16  
S15/O15  
S14/O14  
S13/O13  
S12/O12  
S11/O11  
S10/O10  
S9/O9  
A3  
A4  
A5  
9
Xin  
Xout/TCLK  
CIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
TP0.0  
TP0.1  
TP0.2  
TP0.3  
TP0.4  
TP0.5  
P0.0  
S8/O8  
S7/O7  
S6/O6  
S5/O5  
S4/O4  
P0.1/RXD  
S3/O3  
202122 232425 26 272829303132  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
description (continued)  
Typicalapplicationsincludesensorsystemsthatcaptureanalogsignals, convertthemtodigitalvalues, andthen  
process the data and display them or transmit them to a host system. The MSP430x32x offers an integrated  
12+2 bit A/D converter with six multiplexed inputs.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PLASTIC  
64-PIN QFP  
(PM)  
PLASTIC  
68-PIN PLCC  
(FN)  
CERAMIC  
68-PIN JLCC  
(FZ)  
PLASTIC  
64-PIN QFP  
(PG)  
T
A
MSP430C323IPG  
MSP430C325IPG  
MSP430P325AIPG  
MSP430C323IPM  
MSP430C325IPM  
MSP430P325AIPM  
MSP430C323IFN  
MSP430C325IFN  
MSP430P325AIFN  
40°C to 85°C  
25°C  
PMS430E325AFZ  
functional block diagram  
RST/NMI  
XIN Xout/TCLK  
XBUF  
P0.0  
P0.7  
Oscillator  
FLL  
System Clock  
ACLK  
MCLK  
256/512 B  
RAM  
Power-on-  
8 b Timer/  
Counter  
I/O Port  
8/16 kB ROM  
16 kB OTP  
Reset  
8 I/O’s, All With  
Interr. Cap.  
TXD  
RXD  
Serial Protocol  
Support  
’C’: ROM  
’P’: OTP  
3 Int. Vectors  
TDI/VPP  
TDO/TDI  
MAB, 16 Bit  
MDB, 16 Bit  
MAB, 4 Bit  
CPU  
Test  
JTAG  
MCB  
Incl. 16 Reg.  
MDB, 8 Bit  
Bus  
Conv  
TMS  
TCK  
LCD  
ADC  
Watchdog  
timer  
Timer/Port  
Basic  
Timer1  
12 + 2 Bit  
84 Segments  
Applications:  
Com0–3  
A/D Conv.  
Timer, O/P  
6 Channels  
Current S.  
S0–19/O2–19  
S20/O20CMPI  
f
15/16 Bit  
LCD  
1, 2, 3, 4 MUX  
CMPI  
6
6
A0–5  
SVCC  
TP0.0–5  
CIN  
R33  
R13  
R03  
Rext  
R23  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
1
AV  
AV  
A0  
A1  
Positive analog supply voltage  
Analog ground reference  
CC  
63  
SS  
61  
I
I
Analog-to-digital converter input port 0 or digital input port 0  
Analog-to-digital converter input port 1 or digital input port 1  
Analog-to-digital converter inputs ports 2–5 or digital inputs ports 2–5  
Input used as enable of counter TPCNT1 – Timer/Port  
Common outputs, used for LCD backplanes – LCD  
Positive digital supply voltage  
62  
A2–A5  
CIN  
5–8  
11  
I
I
COM0–3  
51–54  
2
O
DV  
DV  
CC  
SS  
64  
Digital ground reference  
P0.0  
18  
19  
I/O  
General-purpose digital I/O  
P0.1/RXD  
P0.2/TXD  
P0.3–P0.7  
Rext  
I/O  
General-purpose digital I/O, receive digital input port, 8-bit Timer/Counter  
General-purpose digital I/O, transmit data output port, 8-bit Timer/Counter  
Five general-purpose digital I/Os, bit 3 to bit 7  
20  
I/O  
21–25  
4
I/O  
I
I
Programming resistor input of internal current source  
Reset input or non-maskable interrupt input  
RST/NMI  
R03  
59  
29  
I
Input of fourth positive analog LCD level (V4) – LCD  
Input of third positive analog LCD level (V3) – LCD  
Input of second positive analog LCD level (V2) – LCD  
Output of first positive analog LCD level (V1) – LCD  
R13  
28  
I
R23  
27  
I
R33  
26  
O
SV  
S0  
S1  
3
Switched AV to analog-to-digital converter  
CC  
CC  
30  
O
O
Segment line S0 – LCD  
31  
Segment line S1 – LCD  
S2–S5/O2–O5  
S20/O20/CMPI  
32–35  
50  
O
Segment lines S2 to S5 or digital output ports O2–O5, group 1 – LCD  
Segment line S20 can be used as comparator input port CMPI – Timer/Port  
I/O  
S6–S9/O6–O9  
S10–S13/O10–O13  
S14–S17/O14–O17  
S18-S19/O18-O19  
TCK  
36–39  
40–43  
44–47  
48, 49  
58  
O
O
O
O
I
Segment lines S6 to S9 or digital output ports O6–O9, group 2 – LCD  
Segment lines S10 to S13 or digital output ports O10–O13, group 3 – LCD  
Segment lines S14 to S17 or digital output ports O14 to O17, group 4 – LCD  
Segment lines S18 and S19 or digital output port O18 and O19, group 5 – LCD  
Test clock, clock input terminal for device programming and test  
Test data output, data output terminal or data input during programming  
Test data input, data input terminal or input of programming voltage  
Test mode select, input terminal for device programming and test  
General-purpose 3-state digital output port, bit 0 – Timer/Port  
TDO/TDI  
55  
I/O  
I
TDI/VPP  
56  
TMS  
57  
I
TP0.0  
12  
O
TP0.1  
TP0.2  
TP0.3  
TP0.4  
TP0.5  
13  
14  
15  
16  
17  
O
O
General-purpose 3-state digital output port, bit 1 – Timer/Port  
General-purpose 3-state digital output port, bit 2 – Timer/Port  
General-purpose 3-state digital output port, bit 3 – Timer/Port  
General-purpose 3-state digital output port, bit 4 – Timer/Port  
General-purpose digital input/output port, bit 5 – Timer/Port  
O
O
I/O  
XBUF  
Xin  
60  
9
O
I
Clock signal output of system clock MCLK or crystal clock ACLK  
Input terminal of crystal oscillator  
Xout/TCLK  
10  
I/O  
Output terminal of crystal oscillator or test clock input  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
short-form description  
processing unit  
The processing unit is based on a consistent and orthogonally-designed CPU and instruction set. This design  
structure results in a RISC-like architecture, highly transparent to the application development and is  
distinguished due to ease of programming. All operations other than program-flow instructions are  
consequently performed as register operations in conjunction with seven addressing modes for source and four  
modes for destination operand.  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Program Counter  
CPU  
Stack Pointer  
Sixteen registers are located inside the CPU,  
providing reduced instruction execution time. This  
reduces a register-register operation execution  
time to one cycle of the processor frequency.  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
Four of the registers are reserved for special  
use as a program counter, a stack pointer, a status  
register and a constant generator. The remaining  
registers are available as general-purpose  
registers.  
R5  
Peripherals are connected to the CPU using a  
data address and control bus and can be handled  
easily with all instructions for memory  
manipulation.  
General-Purpose Register  
General-Purpose Register  
R14  
R15  
instruction set  
The instruction set for this register-register architecture provides a powerful and easy-to-use assembler  
language. The instruction set consists of 51 instructions with three formats and seven addressing modes.  
Table 1 provides a summation and example of the three types of instruction formats; the addressing modes are  
listed in Table 2.  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un-/conditional  
e.g. ADD R4, R5  
e.g. CALL R8  
e.g. JNE  
R4 + R5 R5  
PC (TOS), R8 PC  
Jump-on equal bit = 0  
Each instruction that operates on word and byte data is identified by the suffix B.  
Examples: Instructions for word operation Instructions for byte operation  
MOV  
EDE, TONI  
#235h, &MEM  
R5  
MOV.B  
ADD.B  
EDE, TONI  
ADD  
#35h, &MEM  
PUSH  
SWPB  
PUSH.B R5  
R5  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
s
d
SYNTAX  
MOV Rs, Rd  
EXAMPLE  
MOV R10, R11  
OPERATION  
R10 R11  
Indexed  
MOV X(Rn), Y(Rm)  
MOV EDE, TONI  
MOV &MEM, &TCDAT  
MOV @Rn, Y(Rm)  
MOV @Rn+, RM  
MOV #X, TONI  
MOV 2(R5), 5(R6)  
M(2 + R5) M(6 + R6)  
M(EDE) M(TONI)  
Symbolic (PC relative)  
Absolute  
M(MEM) M(TCDAT)  
M(R10) M(Tab + R6)  
M(R10) R11, R10 + 2 R10  
#45 M(TONI)  
Indirect  
MOV @R10, Tab(R6)  
MOV @R10+, R11  
MOV #45, TONI  
Indirect autoincrement  
Immediate  
NOTE: s = source  
d = destination  
Computedbranches(BR)andsubroutinecalls(CALL)instructionsusethesameaddressingmodesastheother  
instructions. These addressing modes provide indirect addressing, ideally suited for computed branches and  
calls. The full use of this programming capability permits a program structure different from conventional 8- and  
16-bit controllers. For example, numerous routines can easily be designed to deal with pointers and stacks  
instead of using flag type programs for flow control.  
operation modes and interrupts  
The MSP430 operating modes support various advanced requirements for ultra low power and ultra low energy  
consumption. This is achieved by the intelligent management of the operations during the different module  
operation modes and CPU states. The requirements are fully supported during interrupt event handling. An  
interrupt event awakens the system from each of the various operating modes and returns with the RETI  
instruction to the mode that was selected before the interrupt event. The clocks used are ACLK and MCLK.  
ACLK is the crystal frequency and MCLK is a multiple of ACLK and is used as the system clock.  
The software can configure five operating modes:  
Active mode (AM). The CPU is enabled with different combinations of active peripheral modules.  
Low power mode 0 (LPM0). The CPU is disabled, peripheral operation continues, ACLK and MCLK signals  
are active, and loop control for MCLK is active.  
Low power mode 1 (LPM1). The CPU is disabled, peripheral operation continues, ACLK and MCLK signals  
are active, and loop control for MCLK is inactive.  
Low power mode 2 (LPM2). The CPU is disabled, peripheral operation continues, ACLK signal is active,  
and MCLK and loop control for MCLK are inactive.  
Low power mode 3 (LPM3). The CPU is disabled, peripheral operation continues, ACLK signal is active,  
MCLKand loop control for MCLK are inactive, and the dc generator for the digital controlled oscillator(DCO)  
(
MCLK generator) is switched off.  
Low power mode 4 (LPM4). The CPU is disabled, peripheral operation continues, ACLK signal is inactive  
(crystal oscillator stopped), MCLK and loop control for MCLK are inactive, and the dc generator for the DCO  
is switched off.  
The special function registers (SFR) include module-enable bits that stop or enable the operation of the specific  
peripheral module. All registers of the peripherals may be accessed if the operational function is stopped or  
enabled. However, some peripheral current-saving functions are accessed through the state of local register  
bits. An example is the enable/disable of the analog voltage generator in the LCD peripheral, which is turned  
on or off using one register bit.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
operation modes and interrupts (continued)  
The most general bits that influence current consumption and support fast turnon from low-power operating  
modesarelocatedinthestatusregister(SR). FourofthesebitscontroltheCPUandthesystemclockgenerator:  
SCG1, SCG0, OscOff, and CPUOff.  
15  
Reserved For Future  
Enhancements  
9
8
7
0
V
SCG1  
SCG0  
OscOff  
rw-0  
CPUOff  
GIE  
N
Z
C
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the ROM with an address range of  
0FFFFh-0FFE0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction  
sequence.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT WORD ADDRESS  
PRIORITY  
WDTIFG  
Power-up, external reset, watchdog  
Reset  
0FFFEh  
15, highest  
(see Note1)  
Non-maskable,  
(Non)-maskable  
NMIIFG (see Notes 1 and 3)  
OFIFG (see Notes 1 and 4)  
NMI, oscillator fault  
Dedicated I/O P0.0  
0FFFCh  
0FFFAh  
0FFF8h  
14  
13  
12  
P0.0IFG  
maskable  
maskable  
Dedicated I/O P0.1 or 8-bit Timer/Counter  
RXD  
P0.1IFG  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
11  
10  
9
Watchdog Timer  
WDTIFG  
ADCIFG  
maskable  
8
7
6
ADC  
maskable  
maskable  
0FFEAh  
0FFE8h  
5
4
RC1FG, RC2FG, EN1FG  
(see Note 2)  
Timer/Port  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
3
2
1
Basic Timer1  
BTIFG  
maskable  
maskable  
I/O port 0, P0.2–7  
0, lowest  
P0.27IFG (see Note 1)  
NOTE 1: Multiple source flags  
NOTE 2: Timer/Port interrupt flags are located in the T/P registers  
NOTE 3: Non-maskable: neither the individual nor the general interrupt enable bit will disable an interrupt event.  
NOTE 4: (Non)-maskable: the individual interrupt enable bit can disable on interrupt event, but the general interrupt enable bit cannot.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
operation modes and interrupts (continued)  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
that are not allocated to a functional purpose are not physically present in the device. Simple SW access is  
provided with this arrangement.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
P0IE.1  
P0IE.0  
OFIE  
WDTIE  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
OFIE:  
P0IE.0:  
P0IE.1:  
Watchdog Timer enable signal  
Oscillator fault enable signal  
Dedicated I/O P0.0  
P0.1 or 8-bit Timer/Counter, RXD  
7
6
5
4
3
2
1
0
Address  
01h  
BTIE  
TPIE  
ADIE  
rw-0  
rw-0  
rw-0  
ADIE:  
TPIE:  
BTIE:  
A/D converter enable signal  
Timer/Port enable signal  
Basic Timer1 enable signal  
interrupt flag register 1 and 2  
7
6
5
4
3
2
1
0
Address  
02h  
NMIIFG  
P0IFG.1  
rw-0  
P0IFG.0  
OFIFG  
WDTIFG  
rw-0  
rw-0  
rw-1  
rw-0  
WDTIFG:  
Set on overflow or security key violation  
or  
Reset on V  
power on or reset condition at RST/NMI-pin  
CC  
OFIFG:  
Flag set on oscillator fault  
Dedicated I/O P0.0  
P0.1 or 8-bit Timer/Counter, RXD  
Signal at RST/NMI-pin  
P0.0IFG:  
P0.1IFG:  
NMIIFG:  
7
6
5
4
3
2
1
0
Address  
03h  
BTIFG  
ADIFG  
rw  
rw-0  
BTIFG  
ADFIG  
Basic Timer1 flag  
Analog-to-digital converter flag  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
operation modes and interrupts (continued)  
module enable register 1 and 2  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
Address  
04h  
Address  
05h  
Legend rw:  
Bit can be read and written.  
rw-0:  
Bit can be read and written. It is reset by PUC.  
SFR bit not present in device.  
memory organization  
MSP430P325A  
PMS430E325A  
MSP430C323  
Int. Vector  
MSP430C325  
Int. Vector  
FFFFh  
FFFFh  
FFFFh  
Int. Vector  
FFE0h  
FFDFh  
FFE0h  
FFDFh  
FFE0h  
FFDFh  
8 kB ROM  
16 kB OTP  
or  
16 kB ROM  
E000h  
EPROM  
C000h  
C000h  
03FFh  
0200h  
03FFh  
0200h  
512B RAM  
512B RAM  
02FFh  
0200h  
256B RAM  
16b Per.  
8b Per.  
SFR  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
01FFh  
0100h  
00FFh  
0010h  
000Fh  
0000h  
16b Per.  
8b Per.  
SFR  
16b Per.  
8b Per.  
SFR  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
peripherals  
Peripherals connect to the CPU through data, address, and control busses and can be handled easily with all  
instructions for memory manipulation.  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Watchdog  
ADC  
Watchdog Timer control  
WDTCTL  
ADAT  
0120h  
Data register  
Reserved  
Control register  
Input enable register  
Input register  
0118h  
0116h  
0114h  
o112h  
0110h  
ACTL  
AEN  
AIN  
PERIPHERALS WITH BYTE ACCESS  
EPROM control  
EPROM  
EPCTL  
CBCTL  
054h  
053h  
Crystal buffer  
System clock  
Crystal buffer control  
SCG frequency control  
SCFQCTL 052h  
SCG frequency integrator  
SCG frequency integrator  
SCFI1  
SCFI0  
051h  
050h  
Timer/Port  
Timer/Port enable  
Timer/Port data  
Timer/Port counter2  
Timer/Port counter1  
Timer/Port control  
TPE  
TPD  
TPCNT2  
TPCNT1  
TPCTL  
04Fh  
04Eh  
04Dh  
04Ch  
04Bh  
8-Bit Timer/Counter  
Basic Timer1  
LCD  
8-Bit Timer/Counter data  
8-Bit Timer/Counter preload  
8-Bit Timer/Counter control  
TCDAT  
TCPLD  
TCCTL  
044h  
043h  
042h  
Basic Timer counter2  
Basic Timer counter1  
Basic Timer control  
BTCNT2  
BTCNT1  
BTCTL  
047h  
046h  
040h  
LCD memory 15  
:
LCDM15  
:
03Fh  
:
LCD memory 1  
LCD control & mode  
LCDM1  
LCDCTL  
031h  
030h  
Port P0  
Port P0 interrupt enable  
Port P0 interrupt edge select  
Port P0 interrupt flag  
Port P0 direction  
Port P0 output  
Port P0 input  
P0IE  
015h  
014h  
013h  
012h  
011h  
010h  
P0IES  
P0IFG  
P0DIR  
P0OUT  
P0IN  
Special function  
SFR interrupt flag2  
SFR interrupt flag1  
SFR interrupt enable2  
SFR interrupt enable1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
oscillator and system clock  
Twoclocksareusedinthesystem, thesystem(master)clock(MCLK)andtheauxiliaryclock(ACLK). TheMCLK  
isamultipleoftheACLK. TheACLK runswiththecrystaloscillatorfrequency. Thespecialdesignoftheoscillator  
supports the feature of low current consumption and the use of a 32 768 Hz crystal. The crystal is connected  
across two terminals without any other external components being required.  
The oscillator starts after applying VCC, due to a reset of the control bit (OscOff) in the status register (SR). It  
can be stopped by setting the OscOff bit to a 1. The enabled clock signals ACLK, ACLK/2, ACLK/4, or MCLK  
are accessible for use by external devices at output terminal XBUF.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
oscillator and system clock (continued)  
The controller system clock has to operate with different requirements according to the application and system  
conditions. Requirements include:  
High frequency in order to react quickly to system hardware requests or events  
Low frequency in order to minimize current consumption, EMI, etc.  
Stable frequency for timer applications e.g. real time clock (RTC)  
Enable start-stop operation with a minimum of delay  
These requirements cannot all be met with fast frequency high-Q crystals or with RC-type low-Q oscillators. The  
compromise selected for the MSP430 uses a low-crystal frequency which is multiplied to achieve the desired  
nominal operating range:  
f
= (N+1) × f  
crystal)  
(
(system)  
The crystal frequency multiplication is acheived with a frequency locked loop (FLL) technique. The factor N is  
set to 31 after a power-up clear condition. The FLL technique, in combination with a digital controlled oscillator  
(DCO) provides immediate start-up capability together with long term crystal stability. The frequency variation  
of the DCO with the FLL inactive is typically 330 ppm which means that with a cycle time of 1 µs the maximum  
possible variation is 0.33 ns. For more precise timing, the FLL can be used which forces longer cycle times if  
the previous cycle time was shorter than the selected one. This switching of cycle times makes it possible to  
meet the chosen system frequency over a long period of time.  
The start-up operation of the system clock depends on the previous machine state. During a power up clear  
(PUC), the DCO is reset to its lowest possible frequency. The control logic starts operation immediately after  
recognition of PUC. Connect operation of the FLL control logic requires the presence of a stable crystal  
oscillator.  
digital I/O  
One 8-bit I/O port (Port0) is implemented. Six control registers give maximum flexibility of digital input/output  
to the application:  
All individual I/O bits are programmable independently.  
Any combination of input, output, and interrupt conditions is possible.  
Interrupt processing of external events is fully implemented for all eight bits of port P0.  
Provides read/write access to all registers with all instructions.  
The six registers are:  
Input register  
Contains information at the pins  
Contains output information  
Output register  
Direction register  
Interrupt flags  
Controls direction  
Indicates if interrupt(s) are pending  
Contains input signal change necessary for interrupt  
Contains interrupt enable pins  
Interrupt edge select  
Interrupt enable  
All six registers contain eight bits except for the interrupt flag register and the interrupt enable register. The two  
LSBsof the interrupt flag and interrupt enable registers are located in the special functions register (SFR). Three  
interrupt vectors are implemented, one for Port0.0, one for Port0.1, and one commonly used for any interrupt  
event on Port0.2 to Port0.7. The Port0.1 and Port0.2 pin function is shared with the 8-bit Timer/Counter.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
LCD drive  
Liquid crystal displays (LCDs) for static, 2-, 3- and 4-MUX operations can be driven directly. The controller LCD  
logic operation is defined by software using memory-bit manipulation. LCD memory is part of the LCD module,  
not part of data memory. Eight mode and control bits define the operation and current consumption of the LCD  
drive. The information for the individual digits can be easily obtained using table programming techniques  
combined with the correct addressing mode. The segment information is stored in LCD memory using  
instructions for memory manipulation.  
The drive capability is mainly defined by the external resistor divider that supports the analog levels for 2-, 3-  
and 4-MUX operation. Groups of the LCD segment lines can be selected for digital output signals. The  
MSP430x32x configuration has four common signal lines and 21 segment lines.  
A/D converter  
The analog-to-digital converter (ADC) is a cascaded converter type that converts analog signals from V  
to  
CC  
GND. It is a 12+2 bit converter with a software or automatically-controlled range select. Five inputs can be  
selected for analog or digital function. A ratiometric current source can be used on four of the analog pins. The  
current is adjusted by an external resistor and is enabled/disabled by bits located in the control registers. The  
conversion is started by setting the start-of-conversion bit (SOC) in the control register and the  
end-of-conversions sets the interrupt flag. The analog input signal is sampled starting with SOC during the next  
twelve MCLK clock pulses. The power-down bit in the control register controls the operating mode of the ADC  
peripheral. The current consumption and operation is stopped when it is set. The system reset PUC sets the  
power-down bit.  
Basic Timer1  
The Basic Timer1 (BT1) divides the frequency of MCLK or ACLK, as selected with the SSEL bit, to provide low  
frequency control signals. This is done within the system by one central divider, the Basic Timer1, to support  
low current applications. The BTCTL control register contains the flags which controls or selects the different  
operational functions. When the supply voltage is applied or when a reset of the device (RST/NMI pin), a  
watchdog overflow, or a watchdog security key violation occurs, all bits in the register hold undefined or  
unchanged status. The user software usually configures the operational conditions on the BT1 during  
initialization.  
The Basic Timer1 has two 8-bit timers which can be cascaded to a 16-bit timer. Both timers can be read and  
written by software. Two bits in the SFR address range handle the system control interaction according to the  
function implemented in the Basic Timer1. These two bits are the Basic Timer1 interrupt flag (BTIFG) and the  
Basic Timer1 interrupt enable (BTIE) bit.  
Watchdog Timer  
The primary function of the Watchdog Timer (WDT) module is to perform a controlled system restart after a  
software upset has occurred. If the selected time interval expires, a system reset is generated. If this watchdog  
function is not needed in an application, the module can work as an interval timer, which generates an interrupt  
after the selected time interval.  
The Watchdog Timer counter (WDTCNT) is a 15/16-bit up-counter which is not directly accessible by software.  
The WDTCNT is controlled using the Watchdog Timer control register (WDTCTL), which is an 8-bit read/write  
register. Writing to WDTCTL, in both operating modes (watchdog or timer) is only possible by using the correct  
password in the high-byte. The low-byte stores data written to the WDTCTL. The high-byte password is 05Ah.  
If any value other than 05Ah is written to the high-byte of the WDTCTL, a system reset PUC is generated. When  
the password is read it’s value is 069h. This minimizes accidental write operations to the WDTCTL register. In  
addition to the Watchdog Timer control bits, two bits included in the WDTCTL configure the NMI pin.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
8-bit Timer/Counter  
The 8-bit interval timer supports three major functions for the application:  
Serial communication or data exchange  
Pulse counting or pulse accumulation  
Timer  
The 8-bit Timer/Counter peripheral includes the following major blocks: an 8-bit Up-Counter with preload  
register, an 8-bit control register, an Input clock selector, an edge detection (e.g. Start bit detection for  
asynchronous protocols), and an input and output data latch, triggered by the carry-out-signal from the 8-bit  
counter.  
The 8-bit counter counts up with an input clock which is selected by two control bits from the control register.  
The four possible clock sources are MCLK, ACLK, the external signal from terminal P0.1, and the signal from  
the logical AND of MCLK and terminal P0.1.  
Two counter inputs (load, enable) control the counter operation. The load input controls load operations. A  
write-access to the counter results in loading the content of the preload register into the counter. The software  
writes or reads the preload register with all instructions. The preload register acts as a buffer and can be written  
immediately after the load of the counter is completed. The enable input enables the count operation. When  
the enable signal is set HIGH, the counter will count-up each time a positive clock edge is applied to the clock  
input of the counter.  
Serial protocols, like UART protocol, need start-bit edge-detection to determine, at the receiver, the start of a  
data transmission. When this function is activated, the counter starts counting after the start-bit condition is  
detected. The first signal level is sampled into the RXD input data-latch after completing the first timing interval,  
which is programmed into the counter. Two latches are used for input and output data (RXD_FF and TXD_FF)  
are clocked by the counter after the programmed timing interval has elapsed.  
UART  
The serial communication is realized by using software and the 8-bit Timer/Counter hardware. The hardware  
supports the output of the serial data stream, bit-by-bit, with the timing determined by the counter. The  
software/hardware interface connects the mixed signal controller to external devices, systems, or networks.  
Timer/Port  
The Timer/Port module has two 8-bit counters, an input that triggers one counter, and six 3-state digital outputs.  
Both counters have an independent clock-selector for selecting an external signal or one of the internal clocks  
(ACLK or MCLK). One of the counters has an extended control capability to halt, count continuously, or gate  
the counter by selecting one of two external signals. This gate signal sets the interrupt flag, if an external signal  
is selected, and the gate stops the counter.  
Both timers can be read from and written to by software. The two 8-bit counters can be cascaded to a 16-bit  
counter. A common interrupt vector is implemented. The interrupt flag can be set from three events in the 8-bit  
counter mode (gate signal, overflow from the counters) or from two events in the 16-bit counter mode (gate  
signal, overflow from the MSB of the cascaded counter).  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
absolute maximum ratings  
Voltage applied at V  
to V (see Note 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6 V  
SS  
CC  
Voltage applied to any pin (referenced to V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V  
+ 0.3 V  
SS  
CC  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 2 mA  
Storage temperature,T (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to 150°C  
stg  
stg  
T
(programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 5: All voltage values relative to V  
.
SS  
recommended operating conditions  
MIN  
2.5  
NOM  
MAX  
5.5  
UNIT  
V
Supply voltage, V  
Supply voltage, V  
(MSP430C32x)  
CC  
(MSP430P/E325A)  
2.5  
5.5  
V
CC  
Supply voltage, during programming OTP/EPROM  
(AV = DV = V  
MSP430P325A, PMS430E325A  
4.5  
5
0
5.5  
V
V
)
CC  
CC  
CC  
SS  
Supply voltage, V  
MSP430C32x, MSP430P325A  
PMS430E325A  
–40  
85  
Operating free-air temperature range, T  
°C  
Hz  
A
25  
XTAL frequency, f  
(XTAL)  
32 768  
V
V
= 3 V  
= 5 V  
DC  
DC  
2.2  
3.3  
CC  
Processor frequency (signal MCLK), f  
MHz  
(system)  
CC  
Low-level input voltage, V (excluding Xin, Xout)  
V
V
+0.8  
IL  
SS  
SS  
V
V
High-level input voltage, V (excluding Xin, Xout)  
IH  
0.7 V  
V
CC  
CC  
CC  
CC  
V
CC  
= 3 V/5 V  
Low-level input voltage, V  
V
SS  
0.2×V  
IL(Xin, Xout)  
IH(Xin, Xout)  
High-level input voltage, V  
0.8×V  
V
CC  
f(MHz)  
3.3  
2.2  
1.1  
Minimum  
2.5  
3
5
5.5  
V
CC  
(V)  
V
CC  
– Supply Voltage – V  
NOTE: Minimum processor frequency is defined by system clock.  
Figure 1. Processor Frequency vs Supply Voltage  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
supply current into AV +DV  
CC  
excluding external current, f  
= 1 MHz  
system  
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
400  
800  
500  
950  
50  
MAX  
500  
900  
550  
1050  
70  
UNIT  
T
= –40°C to 85°C,  
= –40°C to 85°C,  
= –40°C to 85°C,  
= –40°C to 85°C,  
= –40°C to 85°C,  
= –40°C to 85°C,  
= –40°C to 85°C,  
= –40°C to 85°C,  
= –40°C to 85°C,  
= –40°C to 85°C,  
= –40°C  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
A
C32x  
T
A
Active mode, A/D conversion in  
power-down  
I
µA  
(AM)  
T
A
P325A  
C32x  
T
A
T
A
T
A
100  
50  
130  
70  
I
I
Low power mode, (LPM0, LPM1)  
Low power mode, (LPM2)  
µA  
µA  
(CPUOff)  
T
A
P325A  
T
A
100  
6
130  
12  
T
A
(LPM2)  
T
A
15  
25  
T
A
1.5  
1.3  
1.6  
5.2  
4.2  
4
2.4  
2
T
A
= 25°C  
V
CC  
V
CC  
V
CC  
= 3 V  
T
A
= 85°C  
2.8  
7
I
Low power mode, (LPM3)  
Low power mode, (LPM4)  
µA  
(LPM3)  
T
A
= –40°C  
T
A
= 25°C  
= 5 V  
6.5  
7
T
A
= 85°C  
T
A
= –40°C  
0.1  
0.1  
0.4  
0.8  
0.8  
1.3  
I
T
A
= 25°C  
= 3 V/5 V  
µA  
(LPM4)  
T
A
= 85°C  
NOTE: All inputs are tied to 0 V or V . Outputs do not source or sink any current. The current consumption in LPM2, LPM3 and LPM4 are  
CC  
measured with active Basic Timer1 (ACLK selected) and LCD Module (f  
=1024 Hz, 4 MUX).  
(LCD)  
current consumption of active mode versus system frequency  
= I × f [MHz]  
I
AM  
AM[1 MHz]  
system  
current consumption of active mode versus supply voltage  
= I + 200 µA/V × (V –3 V)  
I
AM  
AM[3 V]  
CC  
Schmitt-trigger inputs Port 0, P0.x Timer/Port, CIN, TP 0.5  
PARAMETER  
TEST CONDITIONS  
MIN  
1.2  
2.3  
0.5  
1.4  
0.3  
0.6  
TYP  
MAX  
2.1  
3.4  
1.35  
2.3  
1
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
V
IT+  
V
IT–  
V
hys  
Positive-going input threshold voltage  
Negative-going input threshold voltage  
V
Hysteresis (V –V  
)
IT+ IT–  
1.4  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
outputs – Port 0: P0.x; Timer/Port: TP0.0...5; LCD: Sxx/Oxx; XBUF, (see Note 6)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
= –1.2 mA,  
= –3.5 mA,  
= –1.5 mA,  
= –4.5 mA,  
= 1.2 mA,  
= 3.5 mA,  
= 1.5 mA,  
= 4.5 mA,  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V,  
= 3 V,  
= 5 V,  
= 5 V,  
= 3 V,  
= 3 V,  
= 5 V,  
= 5 V,  
See Note 6  
See Note 7  
See Note 6  
See Note 7  
See Note 6  
See Note 7  
See Note 6  
See Note 7  
V
–0.4  
V
V
V
V
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
CC  
CC  
CC  
CC  
CC  
V
–1  
CC  
V
High-level output current  
V
OH  
OL  
V
CC  
–0.4  
V
–1  
CC  
V
SS  
V
SS  
V
SS  
V
SS  
V
+0.4  
SS  
V
+1  
SS  
V
Low-level output voltage  
V
V
+0.4  
SS  
V
+1  
SS  
NOTES: 6. The maximum total current, I  
voltage drop specified.  
max and I max, for all outputs combined, should not exceed ±9.6 mA to satisfy the maximum  
OL  
OH  
7. Themaximumtotalcurrent,I  
drop specified.  
maxandI max,foralloutputscombined,shouldnotexceed±20mAtosatisfythemaximumvoltage  
OL  
OH  
leakage current (see Note 8)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Timer/Port:V  
(see Note 9)  
)
(TP0.x,CIN  
I
Leakage current, Timer/Port  
±50  
nA  
lkg(TP)  
Port 0: V  
(P0.x)  
(see Note 10)  
I
I
I
I
Leakage current, port 0  
Leakage current, S20  
Leakage current, ADC  
Leakage current, RST/NMI  
±50  
±50  
±30  
±50  
nA  
nA  
nA  
nA  
lkg(P0x)  
V
CC  
= 3 V/5 V  
V
(S20)  
= V  
to V  
SS CC  
lkg(S20)  
ADC: Ax, x= 0 to 5  
(see Note 11)  
lkg(Ax)  
lkg(RST/NMI)  
NOTES: 8. The leakage current is measured with V  
SS  
or V  
applied to the corresponding pin(s), unless otherwise noted.  
CC  
9. All Timer/Port pins TP0.0 to TP0.5 are Hi-Z. Pins CIN and TP.0 to TP0.5 are connected together during leakage current  
measurement. In the leakage measurement the input CIN is included. The input voltage is V or V  
.
CC  
SS  
10. The port pin must be selected for input and there must be no optional pullup or pulldown resistor.  
11. The input voltage is V = V to V , the current source is off, AEN.x bit is normally reset to stop throughput current flowing from  
(IN)  
terminal.  
SS  
CC  
V
CC  
to V  
SS  
optional resistors (see Note 12)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.2  
1.8  
3.6  
5.5  
11  
TYP  
2.4  
3.6  
7.3  
11  
MAX  
4.8  
UNIT  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
R
R
R
R
R
R
R
R
R
R
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
(opt1)  
(opt2)  
(opt3)  
(opt4)  
(opt5)  
(opt6)  
(opt7)  
(opt8)  
(opt9)  
(opt10)  
7.2  
14.6  
22  
22  
44  
Resistors, individually programmable with ROM code, all port pins,  
values applicable for pulldown and pullup  
22  
44  
88  
33  
66  
132  
220  
310  
400  
55  
110  
154  
200  
77  
100  
NOTE 12: Optional resistors R  
for pulldown or pullup are not programmed in standard OTP/EPROM devices P/E 325A.  
(optx)  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
input frequency – Port 0: P0.1; Timer/Port: CIN, TP0.5  
PARAMETER  
Input frequency  
TEST CONDITIONS  
MIN  
DC  
TYP  
MAX  
UNIT  
MHz  
ns  
f
t
f
(system)  
(IN)  
P0.x, CIN, TP.5  
3 V  
5 V  
300  
125  
or t  
High level or low level time  
(H)  
(L)  
ns  
output frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f
XBUF,  
XBUF,  
C
= 20 pF  
f
MHz  
XBUF  
Xdc  
L
(system)  
60%  
f
f
f
= 1.1 MHz  
40%  
35%  
MCLK  
C
= 20 pF,  
L
t
Duty cycle of O/P frequency  
= f  
XBUF ACLK  
65%  
V
CC  
= 3 V/5 V  
= f  
XBUF ACLK/n  
50%  
external interrupt timing  
PARAMETER  
TEST CONDITIONS  
MIN  
1.5  
TYP  
MAX  
UNIT  
Port P0: External trigger signal for the  
interrupt flag (see Notes 13 and 14)  
t
cycle  
(int)  
NOTES: 13. The external signal sets the interrupt flag every time t  
is met. It may be set even with trigger signals shorter than t  
. The  
(int)  
conditions to set the flag must be met independently of this timing constraint. Input frequency (t  
(int)  
) is defined in MCLK cycles.  
(int)  
14. The external signal needs additionally a timing resulting from the maximum input frequency constraint.  
RAM  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
CPU halted (see Note 15)  
1.8  
V
RAMh  
NOTE 15: This parameter defines the minimum supply voltage when the data in the program memory RAM remains unchanged. No program  
execution should take place during this supply voltage condition.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
DCO  
PARAMETER  
TEST CONDITIONS  
= 1A0h, FN_4=FN_3=FN_2=0  
MIN  
TYP  
MAX  
UNIT  
f
DCO  
N
N
V
V
V
V
V
= 3 V/5 V  
= 3 V  
1
MHz  
(NOM)  
DCO  
DCO  
CC  
CC  
CC  
CC  
CC  
0.15  
0.18  
1.25  
1.45  
0.6  
0.62  
4.7  
f
f
f
f
f
f
f
f
= 00 0110 0000, FN_4=FN_3=FN_2=0  
= 11 0100 0000 FN_4=FN_3=FN_2=0  
= 00 0110 0000, FN_4=FN_3=0, FN_2=1  
= 11 0100 0000, FN_4=FN_3=0, FN_2=1  
= 00 0110 0000, FN_4=0, FN_3= 1, FN_2=X  
= 11 0100 0000, FN_4= 0, FN_3=1, FN_2=X  
= 00 0110 0000 FN_4 =1, FN_3=FN_2=X  
= 11 0100 0000, FN_4=1, FN_3=FN_2=X  
DCO3  
DCO26  
DCO3  
DC26  
= 5 V  
f
MHz  
MHz  
MHz  
MHz  
(NOM)  
= 3 V  
N
N
N
N
N
N
N
DCO  
DCO  
DCO  
DCO  
DCO  
DCO  
DCO  
= 5 V  
5.5  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
0.36  
0.39  
2.5  
3
1.05  
1.2  
8.1  
9.9  
1.5  
1.8  
2xf  
3xf  
4xf  
(NOM)  
(NOM)  
(NOM)  
0.5  
0.6  
DCO3  
DCO26  
DCO3  
DCO26  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
3.7  
4.5  
0.7  
0.8  
4.8  
6
11  
13.8  
1.85  
2.4  
13.3  
17.7  
N
S
f
= f  
MCLK NOM  
,
FN_4=FN_3=FN_2=0  
NDCO  
V
= 3 V/5 V  
= 3 V/5 V  
A0h 1A0h  
1.07  
340h  
1.13  
DCO  
CC  
CC  
f
= S × f  
V
NDCO+1  
f
(DCO26)  
4xf  
NOM  
f
(DCO26)  
f
(DCO3)  
Legend  
3xf  
NOM  
f
(DCO26)  
f
(DCO3)  
2xf  
f
NOM  
Tolerance at Tap 26  
f
(DCO26)  
DCO Frequency  
Adjusted by Bits  
2 9–2 5 in SCFI1  
f
(DCO3)  
NOM  
Tolerance at Tap 3  
f
(DCO3)  
FN_2 = 0  
FN_3 = 0  
FN_4 = 0  
FN_2 = 1  
FN_3 = 0  
FN_4 = 0  
FN_2 = X  
FN_3 = 1  
FN_4 = 0  
FN_2 = X  
FN_3 = X  
FN_4 = 1  
Figure 2  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
crystal oscillator  
PARAMETER  
Integrated capacitance at input  
Integrated capacitance at output  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
pF  
C
C
V
= 3 V/5 V  
= 3 V/5 V  
12  
12  
(Xin)  
CC  
CC  
V
pF  
(Xout)  
PUC/POR  
PARAMETER  
POR  
TEST CONDITIONS  
MIN NOM  
MAX  
250  
2.4  
UNIT  
t
150  
µs  
(POR_delay)  
T
= –40°C  
= 25°C  
= 85°C  
1.5  
1.2  
0.9  
0
V
V
A
V
T
A
2.1  
(POR)  
V
CC  
= 3 V/5 V  
T
A
1.8  
V
V
0.4  
V
(min)  
t
PUC/POR  
Reset is accepted internally  
2
µs  
(reset)  
V
VCC  
V
(POR)  
No POR  
POR  
POR  
V
(min)  
t
Figure 3. Power-On Reset (POR) vs Supply Voltage  
3
2.4  
1.5  
2.5  
2.1  
1.8  
2
1.5  
1
MAX  
MIN  
0.9  
1.2  
0.5  
0
25°C  
–40  
–20  
0
20  
40  
60  
80  
Temperature [°C]  
Figure 4. V  
vs Temperature  
(POR)  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
LCD  
PARAMETER  
Output 1 (HLCD)  
TEST CONDITIONS  
<= 10 nA  
MIN  
–0.125  
TYP  
MAX  
UNIT  
V
V
I
I
V
CC  
V
O(HLCD)  
(HLCD)  
CC  
+0.125  
V
= 3 V/5 V  
V
CC  
Output 0 (LLCD)  
Input leakage  
Resistance  
<= 10 nA  
V
SS  
V
SS  
O(LLCD)  
(LLCD)  
R03 = V  
SS,  
I
I
I
I(R03)  
I(R13)  
I(R23)  
No load at all seg and com pins  
R13 = V / 3,  
CC  
No load at all seg and com pins  
V
V
= 3 V/5 V  
= 3 V/5 V  
±20  
nA  
CC  
R23 = 2 V / 3,  
CC  
No load at all seg and com pins  
r
I
= –3 µA,  
50  
kΩ  
o(Rx3 to Sxx)  
(SXX)  
CC  
comparator (Timer/Port)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
350  
UNIT  
µA  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
250  
450  
I
Comparator (Timer/Port)  
CPON = 1  
CPON = 1  
CPON = 1  
(com)  
= 5 V  
600  
V
Internal reference voltage at (–) terminal  
Input hysteresis (comparator)  
= 3 V/5 V  
= 3 V  
0.23×V  
0.25×V  
5
0.26×V  
37  
V
ref(com)  
CC  
CC  
CC  
V
mV  
hys(com)  
=5 V  
10  
42  
wake-up LPM3  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3 V  
= 5 V  
= 3 V  
= 5 V  
= 5 V  
f = 1 MHz  
6
t
Delay time  
µs  
(LPM3)  
f = 2 MHz  
f = 3 MHz  
6
6
ADC supply current (f  
= 1 MHz)  
(ADCLK)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
200  
MAX  
400  
UNIT  
µA  
I
I
SV  
SV  
on, current source off,  
on, current source off,  
V
V
= 3 V  
(ADC)  
CC  
CC  
CC  
ADC current  
= 5 V  
300  
740  
µA  
(ADC)  
CC  
SV  
(switched AV  
)
CC  
CC  
PARAMETER  
TEST CONDITIONS  
= –8 mA,  
MIN  
–0.2 V  
NOM  
MAX  
UNIT  
V
V
SV  
SV  
SV  
on,  
I
V
= 2.5 V  
= 5 V  
CC  
V
CC  
V
CC  
(SVCC)  
CC  
CC  
CC  
(SVCC)  
off, SV = 0 V,  
CC  
I
V
±0.1  
µA  
(SVCC)  
CC  
= 3 V/5 V  
Z
Input impedance  
off,  
V
40  
100  
kΩ  
(SVCC)  
CC  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
current source (ADC)  
PARAMETER  
Voltage, (Rext)  
External resistor  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
= V  
= 6 mA,  
– V  
V
= 3 V/5 V,  
0.246 ×  
(SVCC)  
95  
0.249 ×  
0.252 ×  
(SVCC)  
1600  
(Rext)  
(SVCC)  
(RI),  
CC  
V
(Rext)  
I
V
V
V
(RI)  
(SVCC)  
R
V
V
= 3 V/5 V  
= 3 V,  
(ext)  
CC  
VA0..A3 = 0 .. 0.4 × V  
, I  
,
=
S
(SVCC)  
CC  
–1  
–3.2  
–1.5  
–3.2  
1
3.2  
1.5  
3.2  
µA  
V
/R = 1 mA  
(Rext) (ext)  
VA0..A3 = 0 .. 0.4 × V  
= V /R  
V
CC  
V
CC  
V
CC  
= 3 V,  
= 5 V,  
= 5 V,  
(SVCC)  
µA  
µA  
µA  
I
S
= 6 mA  
(Rext) (ext)  
I  
Load compliance  
S
VA0..A3 = 0 .. 0.5 × V  
(SVCC)  
I
S
= V  
/R  
= 1 mA  
(Rext) (ext)  
VA0..A3 = 0 .. 0.5 × V  
= V /R  
(SVCC)  
I
S
= 6 mA  
(Rext) (ext)  
A/D converter (f  
= 1 MHz)  
(ADCLK)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
12 + 2  
bits  
12-bit conversion  
12+2-bit conversion  
12-bit conversion  
12+2-bit conversion  
0.1  
1.5  
1.5  
f
Conversion frequency  
Conversion cycles  
f
= f  
(con) (ADCLK)  
V
V
= 3 V/5 V  
MHz  
(con)  
CC  
0.14  
96  
cycles of  
ADCLK  
f
f
= f  
/N  
= 3 V/5 V  
(concyc)  
(ADCLK) (MCLK)  
CC  
132  
LSB Voltage  
V
V
V
V
V
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
0.000061×V  
V
CC  
CC  
CC  
CC  
CC  
SVCC  
INL  
1
0 DDV 127  
LSB  
LSB  
LSB  
LSB  
–2  
–3  
–7  
2
3
INL  
2
128 DDV 255  
256 DDV 2047  
2048 DDV 4095  
Integral nonlinearity,  
(see Note 18)  
INL  
3
7
INL  
4
–10  
10  
Differential nonlinearity,  
(see Note 19)  
DNL  
V
= 3 V/5 V  
LSB  
–1  
1
CC  
V
/R  
= 6mA, Range A  
0.008  
(Rext) (ext)  
Temperature stability  
V
V
= 3 V/5 V  
= 3 V/5 V  
dN/dT  
LSB/°C  
LSB/V  
CC  
Range B  
0.015  
Range A, B, V  
SV  
CC  
/R = 1 mA,  
(Rext) (ext)  
CC  
dN/dV  
V
rejection ratio  
1.25  
0.24  
0.49  
0.6  
(SVCC)  
(SVCC)  
±10%  
% FSR  
(see Note 17)  
A
Range A  
V
V
V
V
V
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
= 3 V/5 V  
–1.2  
–1.7  
–0.49  
–0.6  
–0.6  
0.6  
CC  
CC  
CC  
CC  
CC  
% FSR  
(see Note 17)  
B
Range B  
Conversion offset 12 bit analog input to  
digital value (see Note 16)  
% FSR  
(see Note 17)  
C
Range C  
Range D  
Range ABCD  
–1.8  
% FSR  
(see Note 17)  
D
–1.7  
0.49  
0.13  
Conversion offset 14 bit analog input to  
digital value (see Note 16)  
%FSR  
(see Note 17)  
ABCD  
–0.27  
–0.06  
Slope 12 bit  
Slope 14 bit  
V
V
= 3 V/5 V  
= 3 V/5 V  
0.9925  
0.9982  
1
1
1.0075  
1.0018  
CC  
CC  
C
R
Input capacitance  
V
V
= 3 V/5 V  
= 3 V/5 V  
pF  
40  
2
45  
(IN)  
CC  
Serial input resistance  
k  
(SIN)  
CC  
NOTES: 16. Offset referred to full scale 12/14 bit  
17. FSRx: full scale range, separate for the four 12-bit ranges and the 14-bit (12+2) range.  
18. DDV is short form of delta digital value. The DDV is a span of conversion results. It is assumed that the conversion is of 12 bit not  
12+2 bit.  
19. DNL is valid for all 12-bit ranges and the 14-bit (12+2) range.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
JTAG  
PARAMETER  
TEST CONDITIONS  
MIN  
DC  
DC  
TYP  
MAX  
5
UNIT  
V
V
= 3 V  
= 5 V  
CC  
f
TCK frequency  
MHz  
(TCK)  
10  
CC  
JTAG/Test  
Pullup resistors on TMS, TCK, TDI  
(see Note 20)  
R
V
V
CC  
V
CC  
V
CC  
= 3 V/ 5 V  
= 3 V/ 5 V  
= 3 V/ 5 V  
25  
5.5  
11  
60  
90  
6
kΩ  
(TEST)  
Fuse blow voltage, C versions (see Note 22)  
V
Fuse blow voltage, E/P versions  
(see Note 22)  
(FB)  
12  
JTAG/Fuse (see Note 21)  
I
t
Supply current on TDI to blow fuse  
Time to blow the fuse  
100  
1
mA  
ms  
V
(FB)  
(FB)  
V
Programming voltage, applied to TDI/VPP  
Current from programming voltage source  
Programming time, single pulse  
12  
5
12.5  
100  
13  
70  
(PP)  
(PP)  
(pps)  
(ppf)  
I
t
t
mA  
ms  
EPROM (E) and OTP(P) –  
versions only  
Programming time, fast algorithm  
Number of pulses for successful programming  
µs  
P
4
100  
n
Data retention T < 55°C  
10  
year  
min  
J
2
Erase time wave length 2537 Å at 15 Ws/cm  
t
30  
(erase)  
2
(UV lamp of 12 mW/ cm )  
EPROM (E) versions only  
Write/Erase cycles  
1000  
cycles  
NOTES: 20. The TMS and TCK pullup resistors are implemented in all C-, P-, and E-versions. The pullup resistor on TDI is implemented in  
C-versions only.  
21. Once the JTAG fuse is blown, no further access to the MSP430 JTAG/test feature is possible. The JTAG block switches to by-pass  
mode.  
22. The voltage supply to blow the JTAG fuse is applied to TDI/VPP pin when fuse blowing is desired.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
DIGITAL CONTROLLED OSCILLATOR FREQUENCY  
DIGITAL CONTROLLED OSCILLATOR FREQUENCY  
vs  
vs  
SUPPLY VOLTAGE  
1.2  
OPERATING FREE-AIR TEMPERATURE  
1.8  
1.5  
1.2  
0.9  
1
0.8  
0.6  
0.6  
0.4  
0.3  
0
0.2  
0
–40  
–20  
0
20  
40  
60  
80  
90  
0
2
4
6
V
CC  
– Supply Voltage – V  
T – Operating Free-Air Temperature – °C  
Figure 5  
Figure 6  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
typical input/output schematics  
V
CC  
V
CC  
(see Note A)  
(see Note A)  
(see Note B)  
(see Note B)  
(see Note B)  
(see Note B)  
(see Note A)  
GND  
(see Note A)  
GND  
CMOS INPUT (RST/NMI)  
CMOS SCHMITT-TRIGGER INPUT (CIN)  
V
CC  
(see Note A)  
(see Note B)  
(see Note B)  
(see Note A)  
GND  
I/O WITH SCHMITT-TRIGGER INPUT (P0.x, TP5)  
CMOS 3-STATE OUTPUT  
(TP0–4, XBUF)  
TDO_Internal  
V
CC  
TDO_Control  
TDI_Control  
60 k TYP  
TDI_Internal  
MSP430C32x: TMS, TCK, TDI  
MSP430P/E325A: TMS, TCK  
MSP430C32x: TDO/TDI  
MSP430P/E325A: TDO/TDI  
NOTES: A. Optionalselection of pullup or pulldown resistors with ROM (masked) versions. Anti-parallel diodes are connected between AV  
SS  
and DV  
.
SS  
B. Fuses for the optional pullup and pulldown resistors can only be programmed at the factory.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
typical input/output schematics  
VC  
VD  
COM 0–3  
Control COM0–3  
VA  
S0, S1  
VB  
Segment contol  
VA  
VB  
S2/O2–Sn/On  
Segment control  
LCDCTL (LCDM5,6,7)  
Data (LCD RAM bits 0–3  
or bits 4–7)  
LCD OUTPUT (COM0–4, Sn, Sn/On)  
NOTE: The signals VA, VB, VC, and VD come from the LCD module analog voltage generator.  
VPP_ Internal  
TDI_ Internal  
TDI/VPP  
JTAG  
Fuse  
TDO/TDI_Control  
TDO/TDI  
TMS  
TDO_ Internal  
JTAG Fuse  
Blow  
Control  
From/To JTAG_CBT_SIG_REG  
NOTES: A. During programming activity and when blowing the JTAG enable fuse, the TDI/VPP terminal is used to apply the correct voltage  
source. The TDO/TDI terminal is used to apply the test input data for JTAG circuitry.  
B. The TDI/VPP terminal of the ’P325A and ’E325A does not have an internal pullup resistor. An external pulldown resistor is  
recommended to avoid a floating node which could increase the current consumption of the device.  
C. TheTDO/TDIterminalisinahigh-impedancestateafterPOR. TheP325AandE325Aneedsapulluporapulldownresistortoavoid  
floating a node which could increase the current consumption of the device.  
Figure 7. MSP430P325A/E325A: TDI/VPP, TDO/TDI  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TDI/VPP terminal have a fuse check mode that tests the continuity  
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, I , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI/VPP pin to ground if the fuse is not burned.  
TF  
Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS  
is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode.  
After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse  
check mode has the potential to be activated.  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TDI  
Figure 8. Fuse Check Mode Current, MSP430P/E325A, C32x  
Care must be taken to avoid accidentally activating the fuse check mode, including guarding against EMI/ESD  
spikes that could cause signal edges on the TMS pin.  
Configuration of TMS, TCK, TDI/VPP and TDO/TDI pins in applications.  
C3xx  
Open  
Open  
Open  
Open  
P/E3xx  
68k, pulldown  
68k, pulldown  
Open  
TDI  
TDO  
TMS  
TCK  
Open  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
MECHANICAL DATA  
PG (R-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,45  
0,25  
M
0,20  
1,00  
51  
33  
52  
32  
14,20 18,00  
13,80 17,20  
12,00 TYP  
64  
20  
1
19  
0,15 NOM  
18,00 TYP  
20,20  
19,80  
24,40  
23,60  
Gage Plane  
0,25  
0,10 MIN  
2,70 TYP  
0°10°  
1,10  
0,70  
Seating Plane  
3,10 MAX  
0,10  
4040101/B 03/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Contact field sales office to determine if a tighter coplanarity requirement is available for this package.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
MECHANICAL DATA  
pinning MSP43C323, MSP430C325, MSP430P325A (PM package)  
PM PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DV  
SV  
S19/O19  
S18/O18  
S17/O17  
S16/O16  
S15/O15  
S14/O14  
S13/O13  
S12/O12  
S11/O11  
S10/O10  
1
2
3
4
5
6
7
8
9
10  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
CC  
CC  
Rext  
A2  
A3  
A4  
A5  
Xin  
Xout/TCLK  
CIN  
TP0.0 11  
TP0.1 12  
TP0.2 13  
38 S9/O9  
37 S8/O8  
36  
35  
34  
33  
S7/O7  
S6/O6  
S5/O5  
S4/O4  
14  
15  
16  
TP0.3  
TP0.4  
TP0.5  
1718 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
MECHANICAL DATA  
PM (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
33  
48  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
0°7°  
11,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
1,60 MAX  
0,08  
4040152/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. May also be thermally enhanced plastic with leads connected to the die pads.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
MECHANICAL DATA  
pinning MSP43C323, MSP430C325, MSP430P325A (FN package)  
FN PACKAGE  
(TOP VIEW)  
9
8
7
6
5
4
3
2
1 68 67 66 65 64 63 62 61  
60 S20/O20/CMPI  
DV  
SV  
10  
11  
12  
13  
14  
15  
16  
17  
CC  
CC  
59  
S19/O19  
S18/O18  
S17/O17  
S16/O16  
S15/O15  
S14/O14  
S13/O13  
S12/O12  
S11/O11  
S10/O10  
S9/O9  
Rext  
A2  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
A3  
A4  
A5  
Xin  
Xout/TCLK 18  
19  
20  
21  
22  
23  
24  
25  
26  
CIN  
TP0.0  
TP0.1  
TP0.2  
TP0.3  
TP0.4  
TP0.5  
P0.0  
S8/O8  
S7/O7  
S6/O6  
S5/O5  
S4/O4  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
NC – No internal connection  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
MECHANICAL DATA  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.050 (1,27)  
9
13  
0.007 (0,18)  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
pinning PMS430E325A (FZ package)  
FZ PACKAGE  
(TOP VIEW)  
9
8
7
6
5
4
3
2
1 68 67 66 65 64 63 62 61  
60 S20/O20/CMPI  
DV  
SV  
10  
11  
12  
13  
14  
15  
16  
17  
CC  
CC  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
S19/O19  
S18/O18  
S17/O17  
S16/O16  
S15/O15  
S14/O14  
S13/O13  
S12/O12  
S11/O11  
S10/O10  
S9/O9  
rext  
A2  
A3  
A4  
A5  
Xin  
Xout/TCLK 18  
19  
20  
21  
22  
23  
24  
25  
26  
CIN  
TP0.0  
TP0.1  
TP0.2  
TP0.3  
TP0.4  
TP0.5  
P0.0  
S8/O8  
S7/O7  
S6/O6  
S5/O5  
S4/O4  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
NC – No internal connection  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430C32x, MSP430P325A  
MIXED SIGNAL MICROCONTROLLER  
SLAS219B – MARCH 1999 – REVISED MARCH 2000  
MECHANICAL DATA  
FZ (S-CQCC-J**)  
J-LEADED CERAMIC CHIP CARRIER  
28 LEAD SHOWN  
0.040 (1,02)  
45°  
Seating Plane  
0.180 (4,57)  
0.155 (3,94)  
0.140 (3,55)  
0.120 (3,05)  
A
B
1
4
26  
25  
5
0.050 (1,27)  
C
(at Seating  
Plane)  
A
B
0.032 (0,81)  
0.026 (0,66)  
0.020 (0,51)  
0.014 (0,36)  
19  
11  
18  
12  
0.025 (0,64) R TYP  
0.040 (1,02) MIN  
0.120 (3,05)  
0.090 (2,29)  
A
B
C
JEDEC  
NO. OF  
PINS**  
OUTLINE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
0.485  
0.495  
0.430  
0.455  
0.410  
0.430  
MO-087AA  
MO-087AB  
MO-087AC  
MO-087AD  
28  
44  
52  
68  
(12,32)  
(12,57)  
(10,92)  
(11,56)  
(10,41)  
(10,92)  
0.685  
0.695  
0.630  
0.655  
0.610  
0.630  
(17,40)  
(17,65)  
(16,00)  
(16,64)  
(15,49)  
(16,00)  
0.785  
0.795  
0.730  
0.765  
0.680  
0.740  
(19,94)  
(20,19)  
(18,54)  
(19,43)  
(17,28)  
(18,79)  
0.985  
0.995  
0.930  
0.955  
0.910  
0.930  
(25,02)  
(25,27)  
(23,62)  
(24,26)  
(23,11)  
(23,62)  
4040219/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

MSP430C325IPG

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C325IPM

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C32X

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C32XPG

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C32X_10

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C32X_14

MIXED SIGNAL MICROCONTROLLER
TI

MSP430C336

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C336HFD

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C336IPJM

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C336PJM

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C337

MIXED SIGNAL MICROCONTROLLERS
TI

MSP430C337HFD

MIXED SIGNAL MICROCONTROLLERS
TI