MSP430F2013-EP_16 [TI]

MIXED SIGNAL MICROCONTROLLER;
MSP430F2013-EP_16
型号: MSP430F2013-EP_16
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER

文件: 总80页 (文件大小:1650K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢅ ꢆꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
D
D
Low Supply Voltage Range 1.8 V to 3.6 V  
D
Brownout Detector  
Ultralow-Power Consumption  
− Active Mode: 220 µA at 1 MHz, 2.2 V  
− Standby Mode: 0.5 µA  
D
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by  
Security Fuse  
− Off Mode (RAM Retention): 0.1 µA  
D
D
D
D
Five Power-Saving Modes  
D
D
On-Chip Emulation Logic with Spy-Bi-Wire  
Interface  
Ultrafast Wake-Up From Standby Mode in  
less than 1 µs  
16-Bit RISC Architecture, 62.5 ns  
Instruction Cycle Time  
Family Members Include:  
MSP430F2001 : 1KB + 256B Flash Memory  
128B RAM  
MSP430F2011 : 2KB + 256B Flash Memory  
Basic Clock Module Configurations:  
− Internal Frequencies up to 16MHz with  
4 Calibrated Frequencies to 1%  
− Internal Very Low Power LF oscillator  
− 32-kHz Crystal  
128B RAM  
MSP430F2002 : 1KB + 256B Flash Memory  
128B RAM  
MSP430F2012 : 2KB + 256B Flash Memory  
128B RAM  
− External Digital Clock Source  
MSP430F2003: 1KB + 256B Flash Memory  
128B RAM  
MSP430F2013: 2KB + 256B Flash Memory  
128B RAM  
Available in a 14-Pin Plastic Small-Outline  
Thin Package (TSSOP), 14-Pin Plastic Dual  
Inline Package (PDIP), and 16-Pin QFN  
For Complete Module Descriptions, Refer  
to the MSP430x2xx Family User’s Guide  
D
D
16-Bit Timer_A With Two Capture/Compare  
Registers  
On-Chip Comparator for Analog Signal  
Compare Function or Slope A/D  
(MSP430x20x1 only)  
D
D
D
D
D
10-Bit, 200-ksps A/D Converter with Internal  
Reference, Sample-and-Hold, and  
Autoscan. (MSP430x20x2 only)  
Product Preview  
16-Bit Sigma-Delta A/D Converter with  
Differential PGA Inputs, and Internal  
Reference (MSP430x20x3 only)  
Universal Serial Interface (USI), supporting  
SPI and I2C  
(MSP430x20x2 and MSP430x20x3 only)  
description  
The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1µs.  
The MSP430x20xx series is an ultralow-power mixed signal microcontroller with a built-in 16-bit timer, and ten  
I/O pins. In addition the MSP430x20x1 has a versatile analog comparator. The MSP430x20x2 and  
MSP430x20x3 have built-in communication capability using synchronous protocols (SPI or I2C), and a 10-bit  
A/D converter (MSP430x20x2) or a 16-bit sigma-delta A/D converter (MSP430x20x3).  
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then  
process the data for display or for transmission to a host system. Stand alone RF sensor front end is another  
area of application.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢕꢢ  
Copyright 2005 Texas Instruments Incorporated  
ꢞ ꢢ ꢟ ꢞꢗ ꢘꢫ ꢚꢙ ꢝ ꢥꢥ ꢣꢝ ꢛ ꢝ ꢜ ꢢ ꢞ ꢢ ꢛ ꢟ ꢧ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PLASTIC  
PLASTIC  
14-PIN TSSOP  
(PW)  
PLASTIC  
16-PIN QFN  
(RSA)  
T
A
14-PIN DIP  
(N)  
MSP430F2001IRSA  
MSP430F2011IRSA  
MSP430F2002IRSA  
MSP430F2001IPW  
MSP430F2011IPW  
MSP430F2001IN  
MSP430F2011IN  
MSP430F2002IPW  
MSP430F2002IN  
40°C to 85°C  
MSP430F2012IPW  
MSP430F2003IPW  
MSP430F2013IPW  
MSP430F2012IN  
MSP430F2012IRSA  
MSP430F2003IRSA  
MSP430F2003IN  
MSP430F2013IN  
MSP430F2013IRSA  
Product Preview  
device pinout, MSP430x20x1  
PW or N PACKAGE  
(TOP VIEW)  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
V
V
SS  
CC  
XIN/P2.6/TA1  
P1.0/TACLK/ACLK/CA0  
P1.1/TA0/CA1  
XOUT/P2.7  
TEST/SBWTCK  
P1.2/TA1/CA2  
RST/NMI/SBWTDIO  
P1.7/CAOUT/CA7/TDO/TDI  
P1.6/TA1/CA6/TDI/TCLK  
P1.3/CAOUT/CA3  
P1.4/SMCLK/CA4/TCK  
P1.5/TA0/CA5/TMS  
8
RSA PACKAGE  
(TOP VIEW)  
15 14  
1
12  
11  
10  
9
XIN/P2.6/TA1  
XOUT/P2.7  
P1.0/TACLK/ACLK/CA0  
2
P1.1/TA0/CA1  
P1.2/TA1/CA2  
3
4
TEST/SBWTCK  
RST/NMI/SBWTDIO  
P1.3/CAOUT/CA3  
6
7
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
device pinout, MSP430x20x2  
PW or N PACKAGE  
(TOP VIEW)  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
V
V
SS  
CC  
XIN/P2.6/TA1  
XOUT/P2.7  
P1.0/TACLK/ACLK/A0  
P1.1/TA0/A1  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
P1.2/TA1/A2  
P1.3/ADC10CLK/A3/VREF−/VeREF−  
P1.7/A7/SDI/SDA/TDO/TDI  
P1.4/SMCLK/A4/VREF+/VeREF+/TCK  
P1.5/TA0/A5/SCLK/TMS  
8
P1.6/TA1/A6/SDO/SCL/TDI/TCLK  
RSA PACKAGE  
(TOP VIEW)  
15 14  
1
2
3
4
12  
11  
10  
9
XIN/P2.6/TA1  
XOUT/P2.7  
P1.0/TACLK/ACLK/A0  
P1.1/TA0/A1  
P1.2/TA1/A2  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
P1.3/ADC10CLK/A3/VREF−/VeREF−  
6
7
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
device pinout, MSP430x20x3  
PW or N PACKAGE  
(TOP VIEW)  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
V
V
SS  
CC  
XIN/P2.6/TA1  
P1.0/TACLK/ACLK/A0+  
P1.1/TA0/A0−/A4+  
P1.2/TA1/A1+/A4−  
P1.3/VREF/A1−  
XOUT/P2.7  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
P1.7/A3−/SDI/SDA/TDO/TDI  
P1.6/TA1/A3+/SDO/SCL/TDI/TCLK  
P1.4/SMCLK/A2+/TCK  
8
P1.5/TA0/A2−/SCLK/TMS  
RSA PACKAGE  
(TOP VIEW)  
15 14  
1
2
3
4
12  
11  
10  
9
XIN/P2.6/TA1  
XOUT/P2.7  
P1.0/TACLK/ACLK/A0+  
P1.1/TA0/A0−/A4+  
P1.2/TA1/A1+/A4−  
P1.3/VREF/A1−  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
6
7
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
functional block diagram, MSP430x20x1  
P2.x &  
XIN/XOUT  
2
VCC  
VSS  
P1.x & JTAG  
8
XIN  
XOUT  
Port P1  
Port P2  
ACLK  
Comparator  
_A+  
Basic Clock  
System+  
Flash  
RAM  
8 I/O  
2 I/O  
SMCLK  
Interrupt  
capability,  
pullup/down pullup/down  
Interrupt  
capability,  
2kB  
1kB  
128B  
128B  
8 channel  
input mux  
MCLK  
resistors  
resistors  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
Watchdog  
WDT+  
Timer_A2  
JTAG  
Interface  
Brownout  
Protection  
2 CC  
15/16Bit  
Registers  
SpyBi Wire  
RST/NMI  
NOTE: See port schematics section for detailed I/O information.  
functional block diagram, MSP430x20x2  
P2.x &  
XIN/XOUT  
2
VCC  
VSS  
P1.x & JTAG  
8
XIN  
XOUT  
Port P1  
Port P2  
ACLK  
ADC10  
Basic Clock  
System+  
Flash  
RAM  
8 I/O  
Interrupt  
capability,  
pullup/down pullup/down  
resistors  
2 I/O  
Interrupt  
capability,  
10bit  
8 Channels  
Autoscan  
DTC  
SMCLK  
2kB  
1kB  
128B  
128B  
MCLK  
resistors  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
USI  
Watchdog  
WDT+  
Timer_A2  
JTAG  
Interface  
Brownout  
Protection  
Universal  
Serial  
2 CC  
15/16Bit  
Registers  
Interface  
SPI, I2C  
SpyBi Wire  
RST/NMI  
NOTE: See port schematics section for detailed I/O information.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
functional block diagram, MSP430x20x3  
P2.x &  
XIN/XOUT  
2
VCC  
VSS  
P1.x & JTAG  
8
XIN  
XOUT  
Port P1  
Port P2  
ACLK  
SD16_A  
Basic Clock  
System+  
Flash  
RAM  
8 I/O  
Interrupt  
capability,  
pullup/down pullup/down  
resistors  
2 I/O  
Interrupt  
capability,  
16bit  
Sigma−  
Delta A/D  
Converter  
SMCLK  
2kB  
1kB  
128B  
128B  
MCLK  
resistors  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
USI  
Watchdog  
WDT+  
Timer_A2  
JTAG  
Interface  
Brownout  
Protection  
Universal  
Serial  
2 CC  
15/16Bit  
Registers  
Interface  
SPI, I2C  
SpyBi Wire  
RST/NMI  
NOTE: See port schematics section for detailed I/O information.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Terminal Functions, MSP430x20x1  
TERMINAL  
PW, or N  
RSA  
NO.  
1
DESCRIPTION  
NAME  
I/O  
NO.  
P1.0/TACLK/ACLK/CA0  
2
I/O General-purpose digital I/O pin  
Timer_A, clock signal TACLK input  
ACLK signal ouput  
Comparator_A+, CA0 input  
P1.1/TA0/CA1  
P1.2/TA1/CA2  
3
4
2
3
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI0A input, compare: Out0 output  
Comparator_A+, CA1 input  
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI1A input, compare: Out1 output  
Comparator_A+, CA2 input  
P1.3/CAOUT/CA3  
5
6
4
5
I/O General-purpose digital I/O pin  
Comparator_A+, output / CA3 input  
P1.4/SMCLK/C4/TCK  
I/O General-purpose digital I/O pin  
SMCLK signal output  
Comparator_A+, CA4 input  
JTAG test clock, input terminal for device programming and test  
P1.5/TA0/CA5/TMS  
P1.6/TA1/CA6/TDI/TCLK  
P1.7/CAOUT/CA7/TDO/TDI  
XIN/P2.6/TA1  
7
8
6
7
I/O General-purpose digital I/O pin  
Timer_A, compare: Out0 output  
Comparator_A+, CA5 input  
JTAG test mode select, input terminal for device programming and test  
I/O General-purpose digital I/O pin  
Timer_A, compare: Out1 output  
Comparator_A+, CA6 input  
JTAG test data input or test clock input during programming and test  
9
8
I/O General-purpose digital I/O pin  
Comparator_A+, output / CA7 input  
JTAG test data output terminal or test data input during programming and  
test  
13  
12  
I/O Input terminal of crystal oscillator  
General-purpose digital I/O pin  
Timer_A, compare: Out1 output  
XOUT/P2.7  
12  
10  
11  
11  
9
I/O Output terminal of crystal oscillator  
General-purpose digital I/O pin  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
I
Reset or nonmaskable interrupt input  
Spy-Bi-Wire test data input/output during programming and test  
10  
I
Selects test mode for JTAG pins on Port1. The device protection fuse is  
connected to TEST.  
Spy-Bi-Wire test clock input during programming and test  
V
V
1
16  
14  
Supply voltage  
Ground reference  
Not connected  
CC  
14  
NA  
NA  
SS  
NC  
13, 15  
QFN Pad  
Package  
Pad  
NA QFN package pad connection to V recommended.  
SS  
TDO or TDI is selected via JTAG instruction.  
NOTE: If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection  
to this pad after reset.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Terminal Functions, MSP430x20x2  
TERMINAL  
PW, or N  
RSA  
NO.  
1
DESCRIPTION  
NAME  
I/O  
NO.  
P1.0/TACLK/ACLK/A0  
2
I/O General-purpose digital I/O pin  
Timer_A, clock signal TACLK input  
ACLK signal ouput  
ADC10 analog input A0  
P1.1/TA0/A1  
P1.2/TA1/A2  
3
4
5
2
3
4
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI0A input, compare: Out0 output  
ADC10 analog input A1  
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI1A input, compare: Out1 output  
ADC10 analog input A2  
P1.3/ADC10CLK/  
A3/VREF−/VeREF−  
I/O General-purpose digital I/O pin  
ADC10 conversion clock output  
ADC10 analog input A3  
Input for negative external reference voltage/negative internal reference  
voltage output  
P1.4/SMCLK/A4/VREF+/VeREF+/  
TCK  
6
5
I/O General-purpose digital I/O pin  
SMCLK signal output  
ADC10 analog input A4  
Input for positive external reference voltage/positive internal reference  
voltage output  
JTAG test clock, input terminal for device programming and test  
P1.5/TA0/A5/SCLK/TMS  
7
8
6
7
I/O General-purpose digital I/O pin  
Timer_A, compare: Out0 output  
ADC10 analog input A5  
USI: external clock input in SPI or I2C mode; clock output in SPI mode  
JTAG test mode select, input terminal for device programming and test  
P1.6/TA1/A6/SDO/SCL/TDI/TCLK  
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI1B input, compare: Out1 output  
ADC10 analog input A6  
USI: Data output in SPI mode; I2C clock in I2C mode  
JTAG test data input or test clock input during programming and test  
P1.7/A7/SDI/SDA/TDO/TDI  
XIN/P2.6/TA1  
9
8
I/O General-purpose digital I/O pin  
ADC10 analog input A7  
USI: Data input in SPI mode; I2C data in I2C mode  
JTAG test data output terminal or test data input during programming and  
test  
13  
12  
I/O Input terminal of crystal oscillator  
General-purpose digital I/O pin  
Timer_A, compare: Out1 output  
XOUT/P2.7  
12  
10  
11  
11  
9
I/O Output terminal of crystal oscillator  
General-purpose digital I/O pin  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
I
Reset or nonmaskable interrupt input  
Spy-Bi-Wire test data input/output during programming and test  
10  
I
Selects test mode for JTAG pins on Port1. The device protection fuse is  
connected to TEST.  
Spy-Bi-Wire test clock input during programming and test  
V
V
1
NA  
NA  
Supply voltage  
CC  
14  
Ground reference  
SS  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Terminal Functions, MSP430x20x2 (Continued)  
TERMINAL  
PW, or N  
RSA  
NO.  
16  
DESCRIPTION  
NAME  
I/O  
NO.  
NA  
NA  
NA  
NA  
NA  
DV  
Digital supply voltage  
Analog supply voltage  
Digital ground reference  
Analog ground reference  
CC  
AV  
DV  
15  
CC  
14  
SS  
SS  
AV  
13  
QFN Pad  
Package  
Pad  
NA QFN package pad connection to V recommended.  
SS  
TDO or TDI is selected via JTAG instruction.  
NOTE: If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection  
to this pad after reset.  
Terminal Functions, MSP430x20x3  
TERMINAL  
PW, or N  
RSA  
NO.  
1
DESCRIPTION  
NAME  
I/O  
NO.  
P1.0/TACLK/ACLK/A0+  
2
I/O General-purpose digital I/O pin  
Timer_A, clock signal TACLK input  
ACLK signal ouput  
SD16_A positive analog input A0  
P1.1/TA0/A0−/A4+  
3
4
5
6
7
2
3
4
5
6
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI0A input, compare: Out0 output  
SD16_A negative analog input A0  
SD16_A positive analog input A4  
P1.2/TA1/A1+/A4−  
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI1A input, compare: Out1 output  
SD16_A positive analog input A1  
SD16_A negative analog input A4  
P1.3/VREF/A1−  
I/O General-purpose digital I/O pin  
Input for an external reference voltage/internal reference voltage output  
(can be used as mid-voltage)  
SD16_A negative analog input A1  
P1.4/SMCLK/A2+/TCK  
P1.5/TA0/A2−/SCLK/TMS  
I/O General-purpose digital I/O pin  
SMCLK signal output  
SD16_A positive analog input A2  
JTAG test clock, input terminal for device programming and test  
I/O General-purpose digital I/O pin  
Timer_A, compare: Out0 output  
SD16_A negative analog input A2  
USI: external clock input in SPI or I2C mode; clock output in SPI mode  
JTAG test mode select, input terminal for device programming and test  
P1.6/TA1/A3+/SDO/SCL/TDI/TCLK  
8
9
7
8
I/O General-purpose digital I/O pin  
Timer_A, capture: CCI1B input, compare: Out1 output  
SD16_A positive analog input A3  
USI: Data output in SPI mode; I2C clock in I2C mode  
JTAG test data input or test clock input during programming and test  
P1.7/A3−/SDI/SDA/TDO/TDI  
I/O General-purpose digital I/O pin  
SD16_A negative analog input A3  
USI: Data input in SPI mode; I2C data in I2C mode  
JTAG test data output terminal or test data input during programming and  
test  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Terminal Functions, MSP430x20x3 (Continued)  
TERMINAL  
PW, or N  
RSA  
NO.  
12  
DESCRIPTION  
NAME  
I/O  
NO.  
XIN/P2.6/TA1  
XOUT/P2.7  
13  
I/O Input terminal of crystal oscillator  
General-purpose digital I/O pin  
Timer_A, compare: Out1 output  
12  
10  
11  
11  
9
I/O Output terminal of crystal oscillator  
General-purpose digital I/O pin  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
I
Reset or nonmaskable interrupt input  
Spy-Bi-Wire test data input/output during programming and test  
10  
I
Selects test mode for JTAG pins on Port1. The device protection fuse is  
connected to TEST.  
Spy-Bi-Wire test clock input during programming and test  
V
V
1
NA  
NA  
16  
15  
14  
13  
Supply voltage  
CC  
14  
Ground reference  
SS  
DV  
NA  
NA  
NA  
NA  
NA  
Digital supply voltage  
Analog supply voltage  
Digital ground reference  
Analog ground reference  
CC  
AV  
DV  
CC  
SS  
SS  
AV  
QFN Pad  
Package  
Pad  
NA QFN package pad connection to V recommended.  
SS  
TDO or TDI is selected via JTAG instruction.  
NOTE: If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection  
to this pad after reset.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g. ADD R4,R5  
R4 + R5 −−−> R5  
e.g. CALL  
e.g. JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
F
F
F
F
F
F
F
F
F
MOV Rs,Rd  
R10 −−> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5)−−> M(6+R6)  
M(EDE) −−> M(TONI)  
M(MEM) −−> M(TCDAT)  
M(R10) −−> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) −−> R11  
R10 + 2−−> R10  
F
F
MOV @Rn+,Rm  
Immediate  
MOV #X,TONI  
#45 −−> M(TONI)  
NOTE: S = source  
D = destination  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
D
Active mode AM;  
All clocks are active  
Low-power mode 0 (LPM0);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
D
D
Low-power mode 1 (LPM1);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
DCO’s dc-generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4);  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
Crystal oscillator is stopped  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh−0FFC0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g. flash is not programmed) the CPU will  
go into LPM4 immediately after power-up.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
PORIFG  
RSTIFG  
Watchdog Timer+  
Flash key violation  
PC out-of-range (see Note 1)  
Reset  
0FFFEh  
31, highest  
WDTIFG  
KEYV  
(see Note 2)  
NMIIFG  
OFIFG  
ACCVIFG  
NMI  
Oscillator fault  
Flash memory access violation  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
0FFFCh  
30  
(see Notes 2 & 4)  
0FFFAh  
0FFF8h  
0FFF6h  
0FFF4h  
0FFF2h  
29  
28  
27  
26  
25  
Comparator_A+ (MSP430x20x1 only)  
Watchdog Timer+  
CAIFG (see Note 3)  
WDTIFG  
maskable  
maskable  
maskable  
Timer_A2  
TACCR0 CCIFG (see Note 3)  
TACCR1 CCIFG.  
TAIFG (see Notes 2 & 3)  
Timer_A2  
maskable  
0FFF0h  
24  
0FFEEh  
0FFECh  
23  
22  
ADC10 (MSP430x20x2 only)  
SD16_A (MSP430x20x3 only)  
ADC10IFG (see Note 3)  
maskable  
maskable  
SD16CCTL0 SD16OVIFG,  
SD16CCTL0 SD16IFG  
(see Notes 2 & 3)  
0FFEAh  
21  
USI  
USIIFG, USISTTIFG  
(see Notes 2 & 3)  
maskable  
maskable  
maskable  
0FFE8h  
0FFE6h  
0FFE4h  
20  
19  
18  
(MSP430x20x2, MSP430x20x3 only)  
I/O Port P2  
(two flags)  
P2IFG.6 to P2IFG.7  
(see Notes 2 & 3)  
I/O Port P1  
(eight flags)  
P1IFG.0 to P1IFG.7  
(see Notes 2 & 3)  
0FFE2h  
0FFE0h  
17  
16  
(see Note 5)  
0FFDEh ... 0FFC0h  
15 ... 0, lowest  
NOTES: 1. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h−01FFh).  
2. Multiple source flags  
3. Interrupt flags are located in the module  
4. (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
5. The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if  
necessary.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
OFIE  
WDTIE  
ACCVIE  
NMIIE  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer  
is configured in interval timer mode.  
OFIE:  
Oscillator fault enable  
NMIIE:  
ACCVIE:  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
7
6
5
4
3
2
1
0
Address  
01h  
interrupt flag register 1 and 2  
7
6
5
4
3
2
1
0
Address  
02h  
NMIIFG  
RSTIFG  
PORIFG  
OFIFG  
WDTIFG  
rw-0  
rw-(0)  
rw-1  
rw-(0)  
rw-(1)  
WDTIFG:  
Set on Watchdog Timer overflow (in watchdog mode) or security key violation.  
Reset on V power-up or a reset condition at RST/NMI pin in reset mode.  
Flag set on oscillator fault  
CC  
OFIFG:  
RSTIFG:  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on V  
power-up  
CC  
PORIFG:  
NMIIFG:  
Power-On Reset interrupt flag. Set on V  
Set via RST/NMI-pin  
power-up.  
CC  
7
6
5
4
3
2
1
0
Address  
03h  
Legend  
rw:  
Bit can be read and written.  
rw-0,1:  
rw-(0,1):  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
memory organization  
MSP430F200x  
MSP430F201x  
Memory  
Size  
1KB Flash  
2KB Flash  
Main: interrupt vector  
Main: code memory  
Flash  
Flash  
0FFFFh−0FFC0h  
0FFFFh−0FC00h  
0FFFFh−0FFC0h  
0FFFFh−0F800h  
Information memory  
Size  
256 Byte  
256 Byte  
Flash  
010FFh − 01000h  
010FFh − 01000h  
RAM  
Size  
128 Byte  
128 Byte  
027Fh − 0200h  
027Fh − 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
flash memory  
The flash memory can be programmed via the Spy-Bi-Wire/JTAG port, or in-system by the CPU. The CPU can  
perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and four segments of information memory (A to D) of 64  
bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0−n.  
Segments A to D are also called information memory.  
D
Segment A contains calibration data. After reset segment A is protected against programming and erasing.  
It can be unlocked but care should be taken not to erase this segment if the device-specific calibration data  
is required.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, refer to the MSP430x2xx Family User’s Guide.  
oscillator and system clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal very low power, low frequency oscillator and an internal digitally-controlled oscillator  
(DCO). The basic clock module is designed to meet the requirements of both low system cost and low-power  
consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic  
clock module provides the following clock signals:  
D
D
D
Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
DCO Calibration Data (provided from factory in flash info memory segment A)  
DCO Frequency  
Calibration Register  
CALBC1_1MHz  
CALDCO_1MHz  
CALBC1_8MHz  
CALDCO_8MHz  
CALBC1_12MHz  
CALDCO_12MHz  
CALBC1_16MHz  
CALDCO_16MHz  
Size  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
Address  
010FFh  
010FEh  
010FDh  
010FCh  
010FBh  
010FAh  
010F9h  
010F8h  
1 MHz  
8 MHz  
12 MHz  
16 MHz  
brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off.  
digital I/O  
There is one 8-bit I/O port implemented—port P1—and two bits of I/O port P2:  
D
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt condition is possible.  
Edge-selectable interrupt input capability for all the eight bits of port P1 and the two bits of port P2.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pull-up/pull-down resistor.  
WDT+ watchdog timer  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be disabled or configured as an interval timer and can  
generate interrupts at selected time intervals.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
timer_A2  
Timer_A2 is a 16-bit timer/counter with two capture/compare registers. Timer_A2 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A2 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A2 Signal Connections (MSP43020x1 only)  
Input  
Pin Number  
Device  
Input Signal  
Module  
Input Name  
Module  
Block  
Module  
Output Signal  
Output  
Pin Number  
PW, N  
RSA  
PW, N  
RSA  
2 - P1.0  
1 - P1.0  
TACLK  
ACLK  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
NA  
TA0  
TA1  
SMCLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
2 - P1.0  
3 - P1.1  
1 - P1.0  
2 - P1.1  
TACLK  
TA0  
3 - P1.1  
7 - P1.5  
2 - P1.1  
6 - P1.5  
ACLK (internal)  
V
SS  
V
CC  
V
CC  
4 - P1.2  
3 - P1.2  
TA1  
CCI1A  
CCI1B  
GND  
4 - P1.2  
8 - P1.6  
13 - P2.6  
3 - P1.2  
7 - P1.6  
12 - P2.6  
CAOUT (internal)  
V
SS  
V
CC  
V
CC  
Timer_A2 Signal Connections (MSP430F20x2, MSP430F20x3)  
Input  
Pin Number  
Device  
Input Signal  
Module  
Input Name  
Module  
Block  
Module  
Output Signal  
Output  
Pin Number  
PW, N  
RSA  
PW, N  
RSA  
2 - P1.0  
1 - P1.0  
TACLK  
ACLK  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
NA  
TA0  
TA1  
SMCLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
2 - P1.0  
3 - P1.1  
7 - P1.5  
1 - P1.0  
2 - P1.1  
6 - P1.5  
TACLK  
TA0  
3 - P1.1  
7 - P1.5  
2 - P1.1  
6 - P1.5  
ACLK (internal)  
V
SS  
V
CC  
V
CC  
4 - P1.2  
8 - P1.6  
3 - P1.2  
7 - P1.6  
TA1  
TA1  
CCI1A  
CCI1B  
GND  
4 - P1.2  
8 - P1.6  
13 - P2.6  
3 - P1.2  
7 - P1.6  
12 - P2.6  
V
SS  
V
CC  
V
CC  
comparator_A+ (MSP430x20x1 only)  
The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions,  
battery-voltage supervision, and monitoring of external analog signals.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
USI (MSP430x20x2 and MSP430x20x3 only)  
The universal serial interface (USI) module is used for serial data communication and provides the basic  
hardware for synchronous communication protocols like SPI and I2C.  
ADC10 (MSP430x20x2 only)  
The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion  
result handling allowing ADC samples to be converted and stored without any CPU intervention.  
SD16_A (MSP430x20x3 only)  
The SD16_A module supports 16-bit analog-to-digital conversions. The module implements a 16-bit  
sigma-delta core and reference generator. In addition to external analog inputs, an internal V  
temperature sensor are also available.  
sense and  
CC  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
ADC10 (MSP430x20x2 only)  
ADC control 0  
ADC control 1  
ADC memory  
ADC10CTL0  
ADC10CTL0  
ADC10MEM  
01B0h  
01B2h  
01B4h  
SD16_A (MSP430x20x3 only) General Control  
SD16CTL  
SD16CCTL0  
SD16IV  
0100h  
0102h  
0110h  
0112h  
Channel 0 Control  
Interrupt vector word register  
Channel 0 conversion memory  
SD16MEM0  
Timer_A  
Capture/compare register  
Capture/compare register  
Timer_A register  
Capture/compare control  
Capture/compare control  
Timer_A control  
TACCR1  
TACCR0  
TAR  
TACCTL1  
TACCTL0  
TACTL  
TAIV  
0174h  
0172h  
0170h  
0164h  
0162h  
0160h  
012Eh  
Timer_A interrupt vector  
Flash Memory  
Flash control 3  
Flash control 2  
Flash control 1  
FCTL3  
FCTL2  
FCTL1  
012Ch  
012Ah  
0128h  
Watchdog Timer+  
Watchdog/timer control  
WDTCTL  
0120h  
PERIPHERALS WITH BYTE ACCESS  
Analog enable  
ADC10 (MSP430x20x2 only)  
ADC10AE  
04Ah  
SD16_A (MSP430x20x3 only) Channel 0 Input Control  
SD16INCTL0  
SD16AE  
0B0h  
0B7h  
Analog Enable  
USI  
USI control 0  
USI control 1  
USI clock control  
USI bit counter  
USI shift register  
USICTL0  
USICTL1  
USICKCTL  
USICNT  
USISR  
078h  
079h  
07Ah  
07Bh  
07Ch  
(MSP430x20x2 and  
MSP430x20x3 only)  
Comparator_A+  
(MSP430x20x1 only)  
Comparator_A+ port disable  
Comparator_A+ control 2  
Comparator_A+ control 1  
CAPD  
CACTL2  
CACTL1  
05Bh  
05Ah  
059h  
Basic Clock System+  
Port P2  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
053h  
058h  
057h  
056h  
Port P2 resistor enable  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
P2REN  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
02Fh  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
Port P2 output  
Port P2 input  
Port P1  
Port P1 resistor enable  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1REN  
P1SEL  
P1IE  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
Port P1 output  
Port P1 input  
Special Function  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
absolute maximum ratings  
Voltage applied at V  
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V  
CC  
SS  
Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V +0.3 V  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA  
CC  
Storage temperature, T (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
stg  
Storage temperature, T (programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
stg  
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended  
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
2. All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage  
SS  
FB  
is applied to the TEST pin when blowing the JTAG fuse.  
3. Higher temperature may be applied during board soldering process according to the current JEDEC J−STD−020 specification with  
peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.  
recommended operating conditions  
MIN  
1.8  
NOM  
MAX UNITS  
Supply voltage during program execution, V  
CC  
3.6  
3.6  
V
V
Supply voltage during program/erase flash memory, V  
CC  
2.2  
Supply voltage, V  
SS  
0
V
Operating free-air temperature range, T  
−40  
dc  
85  
6
°C  
A
V
= 1.8 V,  
CC  
Duty Cycle = 50% 10%  
V
= 2.7 V,  
CC  
Duty Cycle = 50% 10%  
dc  
dc  
12  
16  
Processor frequency f  
SYSTEM  
(Maximum MCLK frequency)  
MHz  
V
3.3 V,  
CC  
Duty Cycle = 50% 10%  
NOTES: 1. The MSP430 CPU is clocked directly with MCLK.  
Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.  
2. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this  
datasheet.  
Legend:  
16 MHz  
Supply voltage range,  
during flash memory  
programming  
12 MHz  
Supply voltage range,  
during program execution  
6 MHz  
1.8 V  
2.2 V  
2.7 V  
3.3 V 3.6 V  
Supply Voltage −V  
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V  
of 2.2 V.  
CC  
Figure 1. Save Operating Area  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
active mode supply current (into V ) excluding external current (see Notes 1 and 2)  
CC  
PARAMETER  
TEST CONDITIONS  
= f = 1MHz, f  
Program executes in flash,  
BCSCTL1 = CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz,  
VCC  
MIN  
TYP  
MAX UNIT  
f
= f  
= 32,768Hz,  
DCO MCLK SMCLK ACLK  
2.2 V  
220  
270  
µA  
Active mode (AM)  
current (1MHz)  
I
AM, 1MHz  
AM, 1MHz  
3 V  
2.2 V  
3 V  
300  
190  
260  
1.2  
370  
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0  
f
= f = f = 1MHz, f = 32,768Hz,  
DCO MCLK SMCLK ACLK  
Program executes in RAM,  
Active mode (AM)  
current (1MHz)  
BCSCTL1 = CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0  
I
µA  
f
= f = 32,768Hz/8 = 4,096Hz,  
= f  
MCLK SMCLK ACLK  
2.2 V  
3 V  
3
f
= 0Hz,  
DCO  
Active mode (AM)  
current (4kHz)  
Program executes in flash,  
SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11,  
CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0  
I
I
µA  
4
AM, 4kHz  
1.6  
f
= f  
= f  
100kHz, f = 0Hz,  
ACLK  
MCLK SMCLK DCO(0, 0)  
2.2 V  
3 V  
37  
40  
50  
µA  
55  
Active mode (AM)  
current (100kHz)  
Program executes in flash,  
RSELx = 0, DCOx = 0,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 1  
AM,100kHz  
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a Micro Crystal CC4V−T1A SMD cyrstal with a load capacitance of 9 pF.  
The internal and external load capacitance is chosen to closely match the required 9pF.  
typical characteristics − active mode supply current (into V  
)
CC  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
f
= 16 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
3.0  
T
A
V
= 3 V  
CC  
2.0  
1.0  
0.0  
f
= 12 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
f
= 8 MHz  
DCO  
2.0  
f
= 1 MHz  
V
CC  
= 2.2 V  
DCO  
1.5  
2.5  
3.0  
3.5  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
CC  
− Supply Voltage − V  
f
DCO  
− DCO Frequency − MHz  
Figure 2. Active mode current vs V , T = 25°C  
Figure 3. Active mode current vs DCO frequency  
CC  
A
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
low power mode supply currents (into V ) excluding external current (see Notes 1 and 2)  
CC  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
f
f
f
= 0MHz,  
MCLK  
2.2 V  
65  
80  
µA  
= f  
SMCLK DCO  
= 1MHz,  
Low-power mode  
0 (LPM0) current,  
see Note 3  
= 32,768Hz,  
ACLK  
I
LPM0, 1MHz  
BCSCTL1 = CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz,  
3 V  
85  
100  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0  
f
f
f
= 0MHz,  
= f  
= 0Hz,  
MCLK  
SMCLK DCO(0, 0)  
ACLK  
2.2 V  
3 V  
37  
41  
22  
25  
48  
µA  
52  
100kHz,  
Low-power mode  
0 (LPM0) current,  
see Note 3  
I
I
LPM01,00kHz  
RSELx = 0, DCOx = 0,  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 1  
f
= f  
MCLK SMCLK  
= 0MHz, f = 1MHz,  
DCO  
2.2 V  
3 V  
29  
µA  
32  
f
= 32,768Hz,  
Low-power mode  
1 (LPM2) current,  
see Note 4  
ACLK  
BCSCTL1 = CALBC1_1MHz,  
DCOCTL = CALDCO_1MHz,  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0  
LPM2  
T
= −40°C  
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
0.7  
0.7  
1.4  
0.9  
0.9  
1.6  
0.4  
0.5  
1.0  
0.5  
0.6  
1.3  
0.1  
0.1  
0.8  
1.2  
1.0  
A
T
A
2.2 V  
3 V  
Low-power mode  
3 (LPM3) current,  
see Note 4  
f
= f = 0MHz,  
= f  
= 32,768Hz,  
DCO MCLK SMCLK  
T
A
2.3  
µA  
1.2  
f
ACLK  
I
LPM3,LFXT1  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
T
A
T
A
1.2  
2.8  
0.7  
0.7  
T
A
T
A
T
A
2.2 V  
3 V  
Low-power mode  
3 current, (LPM3)  
see Note 4  
f
= f = 0MHz,  
= f  
from internal LF oscillator (VLO),  
DCO MCLK SMCLK  
T
A
1.6  
µA  
0.9  
f
ACLK  
I
I
LPM3,VLO  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
T
A
T
A
0.9  
1.8  
0.5  
T
A
f
= f = f = 0MHz,  
= 32,768Hz,  
T
A
DCO MCLK SMCLK  
Low-power mode  
4 (LPM4) current,  
see Note 5  
f
ACLK  
T
A
0.5  
1.5  
2.2 V/3 V  
µA  
LPM4  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
T
A
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a Micro Crystal CC4V−T1A SMD crystal with a load capacitance of 9 pF.  
The internal and external load capacitance is chosen to closely match the required 9pF.  
3. Current for brownout and WDT clocked by SMCLK included.  
4. Current for brownout and WDT clocked by ACLK included.  
5. Current for brownout included.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Schmitt-trigger inputs − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45  
1.00  
1.35  
0.25  
0.55  
0.75  
0.2  
TYP  
MAX UNIT  
0.75  
1.65  
2.25  
0.55  
1.20  
1.65  
1.0  
V
CC  
V
Positive-going input threshold  
voltage  
2.2 V  
3 V  
V
IT+  
V
CC  
V
Negative-going input threshold  
voltage  
2.2 V  
3 V  
V
V
IT−  
2.2 V  
3 V  
Input voltage hysteresis (V  
IT+  
V
hys  
V
)
0.3  
1.0  
IT−  
For pull-up: V = V  
For pull-down: V = V  
IN  
;
IN SS  
R
C
Pull-up/pull-down resistor  
Input Capacitance  
20  
35  
50  
kW  
Pull  
I
CC  
V
IN  
= V  
SS  
or V  
CC  
5
pF  
inputs − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Port P1, P2: P1.x to P2.x, External  
trigger puls width to set interrupt  
flag, (see Note 1)  
t
External interrupt timing  
2.2 V/3 V  
20  
ns  
(int)  
NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t  
(int)  
is met. It may be set even with trigger signals  
shorter than t  
(int)  
.
leakage current − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
see Notes 1 and 2  
or V applied to the corresponding pin(s), unless otherwise noted.  
VCC  
MIN  
TYP  
MAX UNIT  
50 nA  
I
High-impedance leakage current  
2.2 V/3 V  
lkg(Px.x)  
NOTES: 1. The leakage current is measured with V  
SS  
CC  
2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pull-up/pull-down resistor is  
disabled.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
outputs − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
= −1.5 mA (see Notes 1)  
= −6 mA (see Notes 2)  
= −1.5 mA (see Notes 1)  
= −6 mA (see Notes 2)  
= 1.5 mA (see Notes 1)  
= 6 mA (see Notes 2)  
= 1.5 mA (see Notes 1)  
= 6 mA (see Notes 2)  
VCC  
2.2 V  
2.2 V  
3 V  
MIN  
−0.25  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
V
V
CC  
V
CC  
V
CC  
V
CC  
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OLmax)  
(OLmax)  
(OLmax)  
(OLmax)  
CC  
V
−0.6  
High-level output  
voltage  
CC  
−0.25  
V
V
OH  
OL  
V
CC  
3 V  
V
−0.6  
CC  
2.2 V  
2.2 V  
3 V  
V
V
+0.25  
SS  
SS  
SS  
SS  
SS  
V
V
V
V +0.6  
SS  
Low-level output  
voltage  
V
V
V
+0.25  
+0.6  
SS  
3 V  
V
SS  
NOTES: 1. The maximum total current, I  
voltage drop specified.  
and I  
, for all outputs combined, should not exceed 12 mA to hold the maximum  
OHmax  
OLmax  
OLmax  
2. The maximum total current, I  
voltage drop specified.  
and I  
, for all outputs combined, should not exceed 48 mA to hold the maximum  
OHmax  
output frequency − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
MAX UNIT  
10 MHz  
12 MHz  
12 MHz  
16 MHz  
Port output frequency  
(with load)  
P1.4/SMCLK, C = 20 pF, R = 1 kOhm  
L
L
f
f
Px.y  
(see Note 1 and 2)  
2.2 V  
3 V  
P2.0/ACLK, P1.4/SMCLK, C = 20 pF  
L
(see Note 2)  
Clock output frequency  
Port_CLK  
NOTES: 1. A resistive divider with 2 times 0.5 kW between V  
and V  
is used as load. The output is connected to the center tap of the divider.  
at the specified toggle frequency.  
CC  
SS  
2. The output voltage reaches at least 10% and 90% V  
CC  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − outputs  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
CC  
P1.7  
= 2.2 V  
V
CC  
P1.7  
= 3 V  
T
A
= 25°C  
= 85°C  
T
= 25°C  
= 85°C  
A
T
A
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 4  
Figure 5  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−10.0  
−20.0  
−30.0  
−40.0  
−50.0  
0.0  
−5.0  
V
= 3 V  
V
= 2.2 V  
CC  
P1.7  
CC  
P1.7  
−10.0  
−15.0  
−20.0  
−25.0  
T
A
= 85°C  
T
= 85°C  
A
T
A
= 25°C  
T
= 25°C  
A
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 6  
Figure 7  
NOTE: One output loaded at a time.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
POR/brownout reset (BOR) (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
dV /dt 3 V/s  
VCC  
MIN  
TYP  
MAX UNIT  
V
V
V
(see Figure 8)  
0.7 × V  
V
CC(start)  
CC  
(B_IT−)  
(see Figure 8 through Figure 10)  
(see Figure 8)  
dV /dt 3 V/s  
1.71  
180  
V
(B_IT−)  
hys(B_IT−)  
d(BOR)  
CC  
dV /dt 3 V/s  
70  
2
130  
mV  
µs  
CC  
t
(see Figure 8)  
2000  
Pulse length needed at RST/NMI pin  
to accepted reset internally  
t
2.2 V/3 V  
µs  
(reset)  
NOTES: 1. The current consumption of the brownout module is already included in the I  
current consumption data. The voltage level V  
(B_IT−)  
CC  
+ V  
is 1.8V.  
2. During power up, the CPU begins code execution following a period of t  
hys(B_IT−)  
after V  
CC  
= V  
(B_IT−)  
+ V . The default  
hys(B_IT−)  
d(BOR)  
CC(min)  
DCO settings must not be changed until V  
operating frequency.  
V  
, where V  
is the minimum supply voltage for the desired  
CC  
CC(min)  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − POR/brownout reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 9. V  
Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
t = t  
f
r
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 10. V  
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
main DCO characteristics  
D
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
D
DCO control bits DCOx have a step size as defined by parameter S  
.
DCO  
D
Modulation control bits MODx select how often f  
is used within the period of 32 DCOCLK  
DCO(RSEL,DCO+1)  
cycles. The frequency f  
to:  
is used for the remaining cycles. The frequency is an average equal  
DCO(RSEL,DCO)  
32   fDCO(RSEL,DCO)   fDCO(RSEL,DCO)1)  
faverage  
+
MOD   fDCO(RSEL,DCO))(32*MOD)   fDCO(RSEL,DCO)1)  
DCO frequency  
PARAMETER  
TEST CONDITIONS  
RSELx < 14  
VCC  
MIN  
1.8  
TYP  
MAX UNIT  
3.6  
3.6  
3.6  
V
V
V
RSELx = 14  
2.2  
3.0  
Vcc  
Supply voltage range  
RSELx = 15  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
Frequency step between  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
3 V  
0.06  
0.07  
0.10  
0.14  
0.20  
0.28  
0.39  
0.54  
0.80  
1.10  
1.60  
2.50  
3.00  
4.30  
6.00  
8.60  
12.0  
16.0  
0.14 MHz  
0.17 MHz  
0.20 MHz  
0.28 MHz  
0.40 MHz  
0.54 MHz  
0.77 MHz  
1.06 MHz  
1.50 MHz  
2.10 MHz  
3.00 MHz  
4.30 MHz  
5.50 MHz  
7.30 MHz  
9.60 MHz  
13.9 MHz  
18.5 MHz  
26.0 MHz  
DCO(0,0)  
DCO(0,3)  
DCO(1,3)  
DCO(2,3)  
DCO(3,3)  
DCO(4,3)  
DCO(5,3)  
DCO(6,3)  
DCO(7,3)  
DCO(8,3)  
DCO(9,3)  
DCO(10,3)  
DCO(11,3)  
DCO(12,3)  
DCO(13,3)  
DCO(14,3)  
DCO(15,3)  
DCO(15,7)  
3 V  
S
S
f =  
/f  
/f  
2.2 V/3 V  
1.55  
ratio  
1.12  
RSEL  
DCO  
RSDECLO(RSEL+1,DCO) DCO(RSEL,DCO)  
range RSEL and RSEL+1  
Frequency step between  
tap DCO and DCO+1  
S
S f =  
DCDOCO(RSEL,DCO+1) DCO(RSEL,DCO)  
2.2 V/3 V  
2.2 V/3 V  
1.05  
40  
1.08  
50  
Duty Cycle  
Measured at P1.4/SMCLK  
60  
%
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
calibrated DCO frequencies − tolerance at calibration  
PARAMETER  
TEST CONDITIONS  
T
VCC  
MIN  
−1  
TYP  
0.2  
MAX UNIT  
+1  
A
Frequency tolerance at calibration  
25°C  
3 V  
%
BCSCTL1= CALBC1_1MHz;  
DCOCTL = CALDCO_1MHz  
Gating time: 5ms  
f
1MHz calibration value  
8MHz calibration value  
25°C  
3 V  
3 V  
3 V  
3 V  
0.990  
7.920  
11.88  
15.84  
1
8
1.010 MHz  
8.080 MHz  
CAL(1MHz)  
BCSCTL1= CALBC1_8MHz;  
DCOCTL = CALDCO_8MHz  
Gating time: 5ms  
f
25°C  
25°C  
25°C  
CAL(8MHz)  
BCSCTL1= CALBC1_12MHz;  
12MHz calibration value DCOCTL = CALDCO_12MHz  
Gating time: 5ms  
f
12 12.12 MHz  
16 16.16 MHz  
CAL(12MHz)  
BCSCTL1= CALBC1_16MHz;  
16MHz calibration value DCOCTL = CALDCO_16MHz  
Gating time: 2ms  
f
CAL(16MHz)  
calibrated DCO frequencies − tolerance over temperature 0°C − +85°C  
PARAMETER  
TEST CONDITIONS  
T
VCC  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
2.2 V  
3.0 V  
3.6 V  
2.2 V  
3.0 V  
3.6 V  
2.2 V  
3.0 V  
3.6 V  
MIN  
TYP  
MAX UNIT  
A
1 MHz tolerance over temperature  
8 MHz tolerance over temperature  
12 MHz tolerance over temperature  
16 MHz tolerance over temperature  
0°C − +85°C  
0°C − +85°C  
0°C − +85°C  
0°C − +85°C  
−2.5  
0.5  
1.0  
1.0  
2.0  
1
+2.5  
+2.5  
+2.5  
+3.0  
%
%
%
%
−2.5  
−2.5  
−3.0  
0.970  
0.975  
0.970  
7.760  
7.800  
7.600  
11.70  
11.70  
11.70  
1.030 MHz  
1.025 MHz  
1.030 MHz  
8.400 MHz  
8.200 MHz  
8.240 MHz  
BCSCTL1= CALBC1_1MHz;  
DCOCTL = CALDCO_1MHz  
Gating time: 5ms  
1
f
1MHz calibration value  
8MHz calibration value  
0°C − +85°C  
0°C − +85°C  
CAL(1MHz)  
1
8
BCSCTL1= CALBC1_8MHz;  
DCOCTL = CALDCO_8MHz  
Gating time: 5ms  
8
f
CAL(8MHz)  
8
12 12.30 MHz  
12 12.30 MHz  
12 12.30 MHz  
BCSCTL1= CALBC1_12MHz;  
DCOCTL = CALDCO_12MHz  
Gating time: 5ms  
f
12MHz calibration value  
16MHz calibration value  
0°C − +85°C  
0°C − +85°C  
CAL(12MHz)  
BCSCTL1= CALBC1_16MHz;  
DCOCTL = CALDCO_16MHz  
Gating time: 2ms  
3.0 V  
3.6 V  
15.52  
15.00  
16 16.48 MHz  
16 16.48 MHz  
f
CAL(16MHz)  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
calibrated DCO frequencies − tolerance over supply voltage V  
CC  
PARAMETER  
TEST CONDITIONS  
T
VCC  
MIN  
−2.5  
−2.5  
−2.5  
−3  
TYP  
MAX UNIT  
A
1 MHz tolerance over V  
8 MHz tolerance over V  
25°C  
25°C  
25°C  
25°C  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
2
+2.5  
+2.5  
+2.5  
+3  
%
%
%
%
CC  
2
2
2
CC  
12 MHz tolerance over V  
CC  
CC  
16 MHz tolerance over V  
BCSCTL1= CALBC1_1MHz;  
DCOCTL = CALDCO_1MHz  
Gating time: 5ms  
f
1MHz calibration value  
8MHz calibration value  
25°C  
25°C  
25°C  
25°C  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
0.970  
7.760  
11.64  
15.00  
1
8
1.030 MHz  
8.240 MHz  
CAL(1MHz)  
BCSCTL1= CALBC1_8MHz;  
DCOCTL = CALDCO_8MHz  
Gating time: 5ms  
f
CAL(8MHz)  
BCSCTL1= CALBC1_12MHz;  
12MHz calibration value DCOCTL = CALDCO_12MHz  
Gating time: 5ms  
f
12 12.36 MHz  
16 16.48 MHz  
CAL(12MHz)  
BCSCTL1= CALBC1_16MHz;  
16MHz calibration value DCOCTL = CALDCO_16MHz  
Gating time: 2ms  
f
CAL(16MHz)  
calibrated DCO frequencies − overall tolerance  
PARAMETER  
TEST CONDITIONS  
T
VCC  
MIN  
−5  
TYP  
MAX UNIT  
A
1 MHz tolerance overall  
8 MHz tolerance overall  
12 MHz tolerance overall  
16 MHz tolerance overall  
−40°C − +85°C  
−40°C − +85°C  
−40°C − +85°C  
−40°C − +85°C  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
2
2
2
3
+5  
+5  
+5  
+6  
%
%
%
%
−5  
−5  
−6  
BCSCTL1= CALBC1_1MHz;  
DCOCTL = CALDCO_1MHz  
Gating time: 5ms  
f
1MHz calibration value  
8MHz calibration value  
−40°C − +85°C  
−40°C − +85°C  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
2.2 V − 3.6 V  
3.0 V − 3.6 V  
0.950  
7.600  
11.40  
15.00  
1
8
1.050 MHz  
8.400 MHz  
CAL(1MHz)  
BCSCTL1= CALBC1_8MHz;  
DCOCTL = CALDCO_8MHz  
Gating time: 5ms  
f
CAL(8MHz)  
BCSCTL1= CALBC1_12MHz;  
f
12MHz calibration value DCOCTL = CALDCO_12MHz −40°C − +85°C  
12 12.60 MHz  
16 17.00 MHz  
CAL(12MHz)  
Gating time: 5ms  
BCSCTL1= CALBC1_16MHz;  
16MHz calibration value DCOCTL = CALDCO_16MHz −40°C − +85°C  
Gating time: 2ms  
f
CAL(16MHz)  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − calibrated 1MHz DCO frequency  
1.03  
1.02  
V
V
= 1.8 V  
= 2.2 V  
CC  
1.01  
1.00  
0.99  
0.98  
0.97  
CC  
V
CC  
= 3.0 V  
V
CC  
= 3.6 V  
−50.0 −25.0  
0.0  
25.0  
50.0  
75.0 100.0  
T
A
− Temperature − °C  
Figure 11. Calibrated 1 MHz Frequency vs. Temperature  
1.03  
1.02  
1.01  
T
= 85 °C  
= 25 °C  
A
1.00  
0.99  
0.98  
0.97  
T
A
T
A
= −40 °C  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
CC  
− Supply Voltage − V  
Figure 12. Calibrated 1 MHz Frequency vs. V  
CC  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
wake-up from lower power modes (LPM3/4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
BCSCTL1= CALBC1_1MHz;  
DCOCTL = CALDCO_1MHz  
2.2 V/3 V  
2
BCSCTL1= CALBC1_8MHz;  
DCOCTL = CALDCO_8MHz  
2.2 V/3 V  
2.2 V/3 V  
3 V  
1.5  
DCO clock wake-up time from  
LPM3/4  
(see Note 1)  
t
t
µs  
DCO,LPM3/4  
BCSCTL1= CALBC1_12MHz;  
DCOCTL = CALDCO_12MHz  
1
BCSCTL1= CALBC1_16MHz;  
DCOCTL = CALDCO_16MHz  
1
CPU wake-up time from LPM3/4  
(see Note 2)  
1/f  
+
MCLK  
CPU,LPM3/4  
t
Clock,LPM3/4  
NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g. port interrupt) to the first clock edge  
observable externally on a clock pin (MCLK or SMCLK).  
2. Parameter applicable only if DCOCLK is used for MCLK.  
typical characteristics − DCO clock wake-up time from LPM3/4  
10.00  
RSELx = 0...11  
1.00  
0.10  
RSELx = 12...15  
0.10  
1.00  
DCO Frequency − MHz  
10.00  
Figure 13. Clock wake-up time from LPM3 vs DCO frequency  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
crystal oscillator, LFXT1, low frequency modes (see Note 4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
f
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V − 3.6 V  
32,768  
Hz  
LFXT1,LF  
LFXT1 oscillator logic level  
square wave input frequency,  
LF mode  
f
XTS = 0, LFXT1Sx = 3  
XTS = 0, LFXT1Sx = 0;  
1.8 V − 3.6 V  
10,000 32,768 50,000  
Hz  
kW  
kW  
LFXT1,LF,logic  
f
C
= 32,768 kHz,  
500  
200  
LFXT1,LF  
= 6 pF  
L,eff  
XTS = 0, LFXT1Sx = 0;  
= 32,768 kHz,  
Oscillation Allowance for LF  
crystals  
OA  
LF  
f
LFXT1,LF  
= 12 pF  
C
L,eff  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
XTS = 0, Measured at  
1
5.5  
8.5  
11  
pF  
pF  
pF  
pF  
Integrated effective Load  
Capacitance, LF mode  
(see Note 1)  
C
L,eff  
Duty Cycle  
LF mode  
P1.4/ACLK, f  
Hz  
= 32,768  
2.2 V/3 V  
2.2 V/3 V  
30  
10  
50  
70  
%
LFXT1,LF  
Osc. fault frequency threshold,  
LF mode (see Note 3)  
XTS = 0, LFXT1Sx = 3  
(see Note 2)  
f
10,000  
Hz  
Fault,LF  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Measured with logic level input frequency but also applies to operation with crystals.  
3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.  
Frequencies in between might set the flag.  
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.  
Keep as short of a trace as possible between the device and the crystal.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
internal very low power, low frequency oscillator (VLO)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
12  
MAX UNIT  
f
VLO frequency  
2.2 V/3 V  
2.2 V/3 V  
4
20  
kHz  
VLO  
df  
VLO  
/dT  
VLO frequency temperature drift (see Note 1)  
VLO frequency supply voltage  
0.5  
%/°C  
df /dV  
VLO CC  
T
A
= 25°C (see Note 2)  
1.8V...3.6V  
4
%/V  
drift  
NOTES: 1. Calculated using the box method: (MAX(−40...85_C) − MIN(−40...85_C))/MIN(−40...85_C)/(85_C − (−40_C))  
2. Calculated using the box method: (MAX(1.8...3.6V) − MIN(1.8...3.6V))/MIN(1.8...3.6V)/(3.6V − 1.8V)  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Timer_A  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK;  
External: TACLK, INCLK;  
Duty Cycle = 50% 10%  
2.2 V  
10  
f
t
Timer_A clock frequency  
Timer_A, capture timing  
MHz  
16  
TA  
3 V  
TA0, TA1  
2.2 V/3 V  
20  
ns  
TA,cap  
USI, Universal Serial Interface (MSP430x20x2, MSP430x20x3 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
External: SCLK;  
2.2 V  
10  
f
USI clock frequency  
MHz  
16  
Duty Cycle = 50% 10%;  
SPI Slave Mode  
USI  
3 V  
Low-level output voltage on SDA  
and SCL  
USI module in I2C mode  
V
2.2 V/3 V  
V
SS  
V +0.4  
SS  
V
OL,I2C  
I
= 1.5 mA  
(OLmax)  
typical characteristics − USI low-level output voltage on SDA and SCL (MSP430x20x2, MSP430x20x3 only)  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
T
A
= 25°C  
V
CC  
= 2.2 V  
V
CC  
= 3 V  
T
= 25°C  
= 85°C  
A
T
A
= 85°C  
T
A
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 14. USI Low-Level Output Voltage vs.  
Output Current  
Figure 15. USI Low-Level Output Voltage vs.  
Output Current  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x1 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted)  
Comparator_A+ (see Note 1, MSP430x20x1 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
25  
MAX UNIT  
40  
µA  
60  
I
I
CAON=1, CARSEL=0, CAREF=0  
(DD)  
45  
30  
CAON=1, CARSEL=0,  
CAREF=1/2/3,  
no load at P1.0/CA0 and P1.1/CA1  
2.2 V  
3 V  
50  
µA  
71  
(Refladder/RefDiode)  
45  
Common-mode input  
voltage  
V
CAON=1  
2.2 V/3 V  
2.2 V/3 V  
0
V
CC  
−1  
V
(IC)  
Voltage @ 0.25 V  
node  
PCA0=1, CARSEL=1, CAREF=1,  
no load at P1.0/CA0 and P1.1/CA1  
CC  
V
0.23  
0.47  
0.24  
0.48  
0.25  
0.5  
(Ref025)  
V
CC  
node  
Voltage @ 0.5V  
PCA0=1, CARSEL=1, CAREF=2,  
no load at P1.0/CA0 and P1.1/CA1  
CC  
V
2.2 V/3 V  
(Ref050)  
(RefVT)  
V
CC  
PCA0=1, CARSEL=1, CAREF=3,  
no load at P1.0/CA0 and P1.1/CA1,  
2.2 V  
3 V  
390  
400  
480  
490  
540  
550  
V
(see Figure 19 and Figure 20)  
mV  
T
A
= 85°C  
V
V
Offset voltage  
See Note 2  
CAON=1  
2.2 V/3 V  
2.2 V/3 V  
−30  
0
30  
mV  
mV  
(offset)  
Input hysteresis  
0.7  
1.4  
hys  
T
= 25°C, Overdrive 10 mV,  
A
2.2 V  
3 V  
80  
70  
165  
300  
240  
2.8  
2.2  
Without filter: CAF=0  
(see Note 3, Figure 16 and  
Figure 17)  
ns  
120  
1.9  
1.5  
Response time  
(low−high and high−low)  
t
(response)  
T
= 25°C, Overdrive 10 mV,  
A
2.2 V  
1.4  
0.9  
With filter: CAF=1  
(see Note 3, Figure 16 and  
Figure 17)  
µs  
3 V  
NOTES: 1. The leakage current for the Comparator_A+ terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements.  
The two successive measurements are then summed together.  
3. Response time measured at P1.3/CAOUT.  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x1 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted) (continued)  
0 V  
V
CC  
0
1
CAF  
CAON  
To Internal  
Modules  
Low Pass Filter  
0
1
0
1
+
_
V+  
V−  
CAOUT  
Set CAIFG  
Flag  
τ ≈ 2.0 µs  
Figure 16. Block Diagram of Comparator_A+ Module  
V
CAOUT  
Overdrive  
V−  
400 mV  
V+  
t
(response)  
Figure 17. Overdrive Definition  
CASHORT  
CA1  
CA0  
1
+
I
= 10µA  
OUT  
V
IN  
Comparator_A+  
CASHORT = 1  
Figure 18. Comparator_A+ Short Resistance Test Condition  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x1 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted) (continued)  
typical characteristics − Comparator_A+ (MSP430x20x1 only)  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
= 2.2 V  
V
CC  
= 3 V  
CC  
Typical  
Typical  
−45  
−25  
−5  
15  
35  
55  
75  
95  
−45  
−25  
−5  
15  
35  
55  
75  
95  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 20. V  
vs Temperature, V  
= 2.2 V  
Figure 19. V  
vs Temperature, V  
= 3 V  
(RefVT)  
CC  
(RefVT)  
CC  
100.00  
10.00  
1.00  
V
CC  
= 1.8V  
V
= 2.2V  
CC  
V
CC  
= 3.0V  
V
CC  
= 3.6V  
0.6  
0.0  
0.2  
/V  
0.4  
0.8  
1.0  
V
− Normalized Input Voltage − V/V  
IN CC  
Figure 21. Short Resistance vs V /V  
IN CC  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted) (continued)  
10-bit ADC, power supply and input range conditions (see Note 1, MSP430x20x2 only)  
PARAMETER  
TEST CONDITIONS  
= 0 V  
SS  
VCC  
MIN  
2.2  
TYP  
MAX UNIT  
V
CC  
Analog supply voltage range  
V
3.6  
V
All Ax terminals.  
Analog inputs selected in ADC10AE  
register.  
Analog input voltage range  
(see Note 2)  
V
Ax  
0
V
CC  
V
f
= 5.0 MHz  
ADC10CLK  
2.2 V  
3 V  
0.52  
0.6  
1.05  
1.2  
ADC10 supply current  
(see Note 3)  
ADC10ON = 1, REFON = 0  
ADC10SHT0 = 1, ADC10SHT1 = 0,  
ADC10DIV = 0  
I
mA  
ADC10  
f
= 5.0 MHz  
ADC10CLK  
REF2_5V=0  
REF2_5V=1  
2.2 V/3 V  
3 V  
mA  
mA  
Reference supply current,  
reference buffer disabled  
(see Note 4)  
ADC10ON = 0,  
REFON = 1,  
REFOUT = 0  
I
0.25  
0.4  
REF+  
REFB  
f
= 5.0 MHz  
ADC10CLK  
ADC10SR=0 2.2 V/3 V  
ADC10SR=1 2.2 V/3 V  
1.1  
1.4  
mA  
mA  
ADC10ON = 0,  
REFON = 1,  
REF2_5V = 0  
REFOUT = 1  
Reference buffer supply current  
(see Note 4)  
I
0.46  
0.55  
Only one terminal Ax selected at a  
time  
C
R
Input capacitance  
27  
pF  
I
I
Input MUX ON resistance  
0V V V  
Ax CC  
2.2 V/3 V  
2000  
NOTES: 1. The leakage current is defined in the leakage current table with Px.x/Ax parameter.  
2. The analog input voltage range must be within the selected reference voltage range V  
to V  
for valid conversion results.  
R+  
R−  
3. The internal reference supply current is not included in current consumption parameter I  
.
ADC10  
4. The internal reference current is supplied via terminal V . Consumption is independent of the ADC10ON control bit, unless a  
CC  
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted) (continued)  
10-bit ADC, built-in voltage reference (MSP430x20x2 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN TYP  
MAX UNIT  
I
I
I
I
I
1mA, REF2_5V=0  
0.5mA, REF2_5V=1  
1mA, REF2_5V=1  
2.2  
V
V
V
VREF+  
VREF+  
VREF+  
CC  
CC  
CC  
Positive built-in reference analog  
supply voltage range  
V
+0.15  
REF+  
V
V
V
CC,REF+  
V
+0.15  
REF+  
1.41  
I  
max, REF2_5V=0 2.2 V/3 V  
1.5  
2.5  
1.59  
2.65  
0.5  
1
V
V
VREF+ VREF+  
Positive built-in reference voltage  
REF+  
I max, REF2_5V=1  
VREF+ VREF+  
3 V  
2.2 V  
3 V  
2.35  
I
Maximum V  
REF+  
load current  
mA  
LD,VREF+  
I
= 500 µA +/− 100 µA  
VREF+  
Analog input voltage V 0.75 V;  
REF2_5V=0  
2.2 V/3 V  
3 V  
2
LSB  
Ax  
V
load regulation  
REF+  
REF+  
I
= 500 µA 100 µA  
VREF+  
Analog input voltage V 1.25 V;  
REF2_5V=1  
2
LSB  
Ax  
I
=
VREF+  
100µA900µA,  
0.5 x V  
ADC10SR=0  
ADC10SR=1  
3 V  
3V  
400  
V
V
load regulation response time  
ns  
Ax  
REF+  
Error of conversion  
result 1 LSB  
2000  
100  
Max. capacitance at pin V  
(see Note 1)  
I
1mA,  
REF+  
VREF+  
C
2.2 V/3 V  
2.2 V/3 V  
pF  
VREF+  
REFON=1, REFOUT=1  
I
= const. with  
VREF+  
0 mA I  
TC  
Temperature coefficient  
100 ppm/°C  
REF+  
1 mA  
VREF+  
Settling time of internal reference  
voltage (see Note 2)  
I
= 0.5 mA, REF2_5V=0  
VREF+  
3.6 V  
2.2 V  
2.2 V  
30  
t
REFON  
REFON = 0 1  
I
= 0.5 mA,  
VREF+  
µs  
ADC10SR=0  
ADC10SR=1  
1
Settling time of reference buffer  
(see Note 2)  
REF2_5V=0,  
REFON = 1,  
t
REFBURST  
2.5  
REFBURST = 1  
NOTES: 1. The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA2/A4/V  
/V (REFOUT=1),  
REF+ eREF+  
must be limited; the reference buffer may become unstable otherwise.  
2. The condition is that the error in a conversion started after t  
REFON  
or t is less than 0.5 LSB.  
RefBuf  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted) (continued)  
10-bit ADC, external reference (see Note 1, MSP430x20x2 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.4  
TYP  
MAX UNIT  
V
> V  
eREF+  
eREF−  
V
V
V
V
CC  
3.0  
SREF1 = 1, SREF0 = 0  
Positive external reference input  
voltage range (see Note 2)  
V
eREF+  
V
V  
V  
− 0.15V  
eREF−  
eREF+ CC  
1.4  
0
SREF1 = 1, SREF0 = 1 (see Note 3)  
Negative external reference input  
voltage range (see Note 4)  
V
V
> V  
1.2  
eREF−  
eREF+  
eREF−  
Differential external reference input  
voltage range  
V  
eREF  
V
> V  
(see Note 5)  
1.4  
V
V
eREF+  
eREF−  
CC  
1
V  
eREF  
= V  
− V  
eREF+  
eREF−  
0V V  
SREF1 = 1, SREF0 = 0  
V ,  
CC  
eREF+  
2.2 V/3 V  
µA  
I
I
Static input current into V  
Static input current into V  
VeREF+  
eREF+  
0V V  
eREF+  
V − 0.15V 3V  
CC  
2.2 V/3 V  
2.2 V/3 V  
0
1
µA  
µA  
SREF1 = 1, SREF0 = 1 (see Note 3)  
0V V V  
VeREF−  
eREF−  
eREF− CC  
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C , is also  
I
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
3. Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer  
supply current I  
REFB  
. The current consumption can be limited to the sample and conversion period with REBURST = 1.  
4. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied  
with reduced accuracy requirements.  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted) (continued)  
10-bit ADC, timing parameters (MSP430x20x2 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified  
performance of  
ADC10 linearity  
parameters  
ADC10SR=0 2.2 V/3 V  
ADC10SR=1 2.2 V/3 V  
0.45  
6.3  
f
f
ADC10 input clock frequency  
MHz  
1.5  
ADC10CLK  
0.45  
3.7  
ADC10DIVx=0, ADC10SSELx = 0  
= f  
ADC10 built-in oscillator frequency  
2.2 V/3 V  
2.2 V/3 V  
6.3 MHz  
ADC10OSC  
f
ADC10CLK ADC10OSC  
ADC10 built-in oscillator,  
ADC10SSELx = 0  
2.06  
3.51  
100  
µs  
f
= f  
ADC10CLK ADC10OSC  
t
t
Conversion time  
CONVERT  
13×  
f
from ACLK, MCLK or  
ADC10CLK  
ADC10DIV×  
1/f  
µs  
SMCLK: ADC10SSELx 0  
ADC10CLK  
Turn on settling time of the ADC  
(see Note 1)  
ns  
ADC10ON  
NOTES: 1. The condition is that the error in a conversion started after t  
settled.  
is less than 0.5 LSB. The reference and input signal are already  
ADC10ON  
10-bit ADC, linearity parameters (MSP430x20x2 only)  
PARAMETER  
Integral linearity error  
Differential linearity error  
Offset error  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
E
E
E
E
E
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
1
1
1
2
5
LSB  
LSB  
LSB  
LSB  
LSB  
I
D
O
G
T
Source impedance R < 100 ,  
S
1.1  
Gain error  
2
Total unadjusted error  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted) (continued)  
10-bit ADC, temperature sensor and built-in V  
(MSP430x20x2 only)  
MID  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
40  
MAX  
120  
160  
UNIT  
Temperature sensor supply  
current (see Note 1)  
REFON = 0, INCHx = 0Ah,  
I
µA  
SENSOR  
T
A
= 25_C  
ADC10ON = 1, INCHx = 0Ah  
(see Notes 2, 3)  
60  
2.2 V/3 V  
3.44  
3.55  
3.66 mV/°C  
TC  
SENSOR  
ADC10ON = 1, INCHx = 0Ah  
(see Notes 2, 3)  
V
Sensor offset voltage  
−100  
TBD  
TBD  
935  
100  
TBD  
TBD  
1035  
mV  
mV  
Offset,Sensor  
Temperature sensor voltage  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
TBD  
TBD  
985  
at T = 85°C  
A
Temperature sensor voltage  
Sensor output voltage  
(see Note 4)  
V
Sensor  
at T = 25°C  
A
Temperature sensor voltage  
at T = 0°C (see Note 2)  
A
Sample time required if  
channel 10 is selected (see  
Note 5)  
ADC10ON = 1, INCHx = 0Ah,  
Error of conversion result 1 LSB  
2.2 V/3 V  
30  
µs  
t
Sensor(sample)  
2.2 V  
3 V  
NA  
NA  
Current into divider at channel  
11 (see Note 6)  
I
ADC10ON = 1, INCHx = 0Bh,  
ADC10ON = 1, INCHx = 0Bh,  
µA  
VMID  
2.2 V  
3 V  
1.06  
1.46  
1.1  
1.5  
1.14  
1.54  
V
V
CC  
divider at channel 11  
V
MID  
V
MID  
is 0.5 x V  
CC  
Sample time required if  
channel 11 is selected (see  
Note 7)  
2.2 V  
3 V  
1400  
1220  
ADC10ON = 1, INCHx = 0Bh,  
Error of conversion result 1 LSB  
t
ns  
VMID(sample)  
Not production tested, limits characterized  
NOTES: 1. The sensor current I  
is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON=1 and INCH=0Ah and sample signal  
is included in I . When REFON = 0, I applies during conversion of the temperature  
SENSOR  
is high). When REFON = 1, I  
SENSOR  
sensor input (INCH = 0Ah).  
2. Not production tested, limits characterized.  
3. The following formula can be used to calculate the temperature sensor output voltage:  
REF+ SENSOR  
V
V
= TC  
= TC  
( 273 + T [°C] ) + V [mV] or  
Offset,sensor  
Sensor,typ  
Sensor,typ  
Sensor  
Sensor  
T [°C] + V  
(T = 0°C) [mV]  
Sensor  
A
4. Results based on characterization and/or production test, not TC  
5. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time t  
or V .  
Offset,sensor  
Sensor  
.
SENSOR(on)  
6. No additional current is needed. The V  
is used during sampling.  
MID  
7. The on-time t  
VMID(on)  
is included in the sampling time t ; no additional on time is needed.  
VMID(sample)  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted)  
SD16_A, power supply and recommended operating conditions (MSP430x20x3 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
3.6  
UNIT  
AV  
AV  
= DV  
= DV  
= V  
= V  
CC  
SS  
CC  
SS  
CC  
SS  
AV  
CC  
Analog supply voltage range  
2.5  
V
= 0V  
GAIN: 1,2  
GAIN: 4,8,16  
GAIN: 32  
3 V  
3 V  
3 V  
730  
1050  
1150  
1700  
SD16LP = 0,  
= 1 MHz,  
SD16OSR = 256  
810  
f
SD16  
Analog supply current  
including internal reference  
1160  
ISD16  
µA  
SD16LP = 1,  
GAIN: 1  
3 V  
3 V  
720  
810  
1030  
1150  
f
= 0.5 MHz,  
SD16  
GAIN: 32  
SD16OSR = 256  
SD16LP = 0  
(Low power mode disabled)  
3 V  
3 V  
0.03  
0.03  
1
1.1  
f
SD16 input clock frequency  
MHz  
SD16  
SD16LP = 1  
(Low power mode enabled)  
0.5  
SD16_A, input range (MSP430x20x3 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
−(V  
REF  
GAIN  
/2)/ +(V  
/2)/  
GAIN  
REF  
Bipolar Mode, SD16UNI = 0  
mV  
Differential full scale input voltage  
range (see Note 1)  
V
ID,FSR  
+(V  
/2)/  
REF  
GAIN  
Unipolar Mode, SD16UNI = 1  
0
mV  
mV  
kΩ  
SD16GAINx=1  
500  
250  
125  
62  
SD16GAINx=2  
SD16GAINx=4  
SD16GAINx=8  
SD16GAINx=16  
SD16GAINx=32  
SD16GAINx=1  
SD16GAINx=32  
SD16GAINx=1  
SD16GAINx=32  
Differential input voltage range  
for specified performance  
(see Note 1)  
V
ID  
SD16REFON=1  
31  
15  
3 V  
3 V  
3 V  
3 V  
200  
75  
Input impedance  
(one input pin to AV  
Z
Z
f
f
= 1MHz  
= 1MHz  
I
SD16  
)
SS  
300  
100  
400  
150  
Differential Input impedance  
(IN+ to IN−)  
kΩ  
V
ID  
SD16  
AV  
SS  
-0.1V  
V
I
Absolute input voltage range  
AV  
AV  
CC  
Common-mode input voltage  
range  
AV  
SS  
-0.1V  
V
IC  
V
CC  
NOTES: 1. The analog input range depends on the reference voltage applied to V  
. If V is sourced externally, the full-scale range  
REF  
REF  
is defined by V  
FSR+  
= +(V /2)/GAIN and V  
REF FSR−  
= −(V /2)/GAIN. The analog input range should not exceed 80% of  
REF  
V
or V .  
FSR+  
FSR−  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted) (continued)  
SD16_A, SINAD performance (f  
= 1MHz, SD16OSRx = 1024, SD16REFON = 1, MSP430x20x3 only)  
SD16  
PW, or N  
MIN TYP  
RSA  
PARAMETER  
TEST CONDITIONS  
VCC  
UNIT  
MIN  
TYP  
SD16GAINx = 1,  
Signal Amplitude: V = 500mV,  
Signal Frequency: f = 100Hz  
IN  
3 V  
84  
82  
78  
73  
68  
62  
85  
83  
79  
74  
69  
63  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
IN  
SD16GAINx = 2,  
Signal Amplitude: V = 250mV,  
3 V  
3 V  
3 V  
3 V  
3 V  
TBD  
TBD  
TBD  
TBD  
TBD  
IN  
Signal Frequency: f = 100Hz  
IN  
SD16GAINx = 4,  
Signal Amplitude: V = 125mV,  
IN  
Signal Frequency: f = 100Hz  
IN  
Signal-to-Noise + Distortion Ratio  
(OSR = 1024)  
SINAD  
1024  
dB  
SD16GAINx = 8,  
Signal Amplitude: V = 62mV,  
IN  
Signal Frequency: f = 100Hz  
IN  
SD16GAINx = 16,  
Signal Amplitude: V = 31mV,  
IN  
Signal Frequency: f = 100Hz  
IN  
SD16GAINx = 32,  
Signal Amplitude: V = 15mV,  
IN  
Signal Frequency: f = 100Hz  
IN  
SD16_A, SINAD performance (f  
= 1MHz, SD16OSRx = 256, SD16REFON = 1, MSP430x20x3 only)  
SD16  
PW, or N  
MIN TYP  
RSA  
PARAMETER  
TEST CONDITIONS  
VCC  
UNIT  
MIN  
TYP  
SD16GAINx = 1,  
Signal Amplitude: V = 500mV,  
Signal Frequency: f = 100Hz  
IN  
3 V  
80  
74  
69  
63  
58  
52  
81  
75  
70  
64  
59  
53  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
IN  
SD16GAINx = 2,  
Signal Amplitude: V = 250mV,  
3 V  
3 V  
3 V  
3 V  
3 V  
TBD  
TBD  
TBD  
TBD  
TBD  
IN  
Signal Frequency: f = 100Hz  
IN  
SD16GAINx = 4,  
Signal Amplitude: V = 125mV,  
IN  
Signal Frequency: f = 100Hz  
IN  
Signal-to-Noise + Distortion Ratio  
(OSR = 256)  
SINAD  
256  
dB  
SD16GAINx = 8,  
Signal Amplitude: V = 62mV,  
IN  
Signal Frequency: f = 100Hz  
IN  
SD16GAINx = 16,  
Signal Amplitude: V = 31mV,  
IN  
Signal Frequency: f = 100Hz  
IN  
SD16GAINx = 32,  
Signal Amplitude: V = 15mV,  
IN  
Signal Frequency: f = 100Hz  
IN  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted) (continued)  
typical characteristics − SD16_A SINAD performance over OSR (MSP430x20x3 only)  
100.0  
95.0  
90.0  
85.0  
80.0  
75.0  
70.0  
65.0  
60.0  
PW, or N  
55.0  
50.0  
10.00  
100.00  
OSR  
1000.00  
Figure 22. SINAD performance over OSR, f  
= 1MHz, SD16REFON = 1, SD16GAINx = 1  
SD16  
SD16_A, performance (f  
= 1MHz, SD16OSRx = 256, SD16REFON = 1, MSP430x20x3 only)  
SD16  
PARAMETER  
TEST CONDITIONS  
SD16GAINx = 1  
VCC  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
MIN  
0.97  
TYP  
1.00  
MAX  
1.02  
2.02  
3.96  
7.84  
UNIT  
SD16GAINx = 2  
1.90  
3.76  
7.36  
1.96  
3.86  
7.62  
SD16GAINx = 4  
G
Nominal Gain (see Note 1)  
SD16GAINx = 8  
SD16GAINx = 16  
SD16GAINx = 32  
SD16GAINx = 1 (see Note 2)  
14.56 15.04 15.52  
27.20 28.35 29.76  
15  
dG/dT  
dG/dV  
Gain Temperature Drift  
ppm/_C  
SD16GAINx = 1; V  
(see Note 3)  
= 2.5V - 3.6V  
CC  
Gain Supply Voltage Drift  
2.5V-3.6V  
0.35  
%/V  
CC  
SD16GAINx = 1  
SD16GAINx = 32  
SD16GAINx = 1  
SD16GAINx = 32  
SD16GAINx = 1,  
3 V  
3 V  
3 V  
3 V  
0.2  
1.5  
E
Offset Error (see Note 1)  
%FSR  
OS  
4
20  
Offset Error Temperature  
Coefficient (see Note 1)  
ppm  
FSR/_C  
dE /dT  
OS  
20  
100  
Common-mode input signal:  
= 500 mV, f = 50 Hz, 100 Hz  
3 V  
>90  
V
ID  
IN  
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
dB  
dB  
SD16GAINx = 32,  
Common-mode input signal:  
3 V  
3 V  
>75  
>80  
V
= 16 mV, f = 50 Hz, 100 Hz  
ID  
SD16GAINx = 1  
IN  
NOTES: 1. Not production tested, limits characterized.  
2. Calculated using the box method: (MAX(−40...85_C) − MIN(−40...85_C))/MIN(−40...85_C)/(85_C − (−40_C))  
3. Calculated using the box method: (MAX(2.5...3.6V) − MIN(2.5...3.6V))/MIN(2.5...3.6V)/(3.6V − 2.5V)  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and  
operating free-air temperature (unless otherwise noted) (continued)  
SD16_A, temperature sensor (MSP430x20x3 only)  
PARAMETER  
TEST CONDITIONS  
See Note 1  
VCC  
MIN  
1.18  
TYP  
1.32  
MAX  
1.46  
100  
UNIT  
mV/K  
mV  
TC  
Sensor  
Sensor temperature coefficient  
Sensor offset voltage  
V
See Note 1  
−100  
Offset,Sensor  
Temperature sensor voltage  
3 V  
3 V  
3 V  
435  
475  
395  
360  
515  
435  
400  
at T = 85°C  
A
Temperature sensor voltage  
Sensor output voltage  
(see Note 3)  
355  
320  
V
mV  
Sensor  
at T = 25°C  
A
Temperature sensor voltage  
at T = 0°C (see Note 1)  
A
NOTES: 1. Not production tested, limits characterized.  
2. The following formula can be used to calculate the temperature sensor output voltage:  
V
V
= TC  
= TC  
( 273 + T [°C] ) + V [mV] or  
Sensor,typ  
Sensor,typ  
Sensor  
Sensor  
Offset,sensor  
T [°C] + V  
Sensor  
(T = 0°C) [mV]  
A
3. Results based on characterization and/or production test, not TC  
or V .  
Offset,sensor  
Sensor  
SD16_A, built-in voltage reference (MSP430x20x3 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
MIN  
TYP  
MAX  
1.26  
280  
UNIT  
V
V
REF  
Internal reference voltage  
Reference supply current  
Temperature coefficient  
SD16REFON = 1, SD16VMIDON = 0  
SD16REFON = 1, SD16VMIDON = 0  
SD16REFON = 1, SD16VMIDON = 0  
1.14  
1.20  
190  
18  
I
3 V  
µA  
REF  
TC  
3 V  
50 ppm/K  
SD16REFON = 1, SD16VMIDON = 0  
(see Note 1)  
C
V
REF  
load capacitance  
100  
nF  
REF  
I
V
maximum load current  
SD16REFON = 1; SD16VMIDON = 0  
3 V  
3 V  
3 V  
200  
nA  
ms  
LOAD  
REF(I)  
SD16REFON = 0 1;  
SD16VMIDON = 0;  
t
Turn on time  
5
ON  
C
= 100nF  
REF  
SD16REFON = 1; SD16VMIDON = 0  
PSRR  
Line regulation  
10  
uV/V  
NOTES: 1. There is no capacitance required on V  
voltage noise.  
. However, a capacitance of at least 100nF is recommended to reduce any reference  
REF  
SD16_A, reference output buffer (MSP430x20x3 only)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
1.2  
MAX  
UNIT  
V
Reference buffer output voltage  
SD16REFON = 1, SD16VMIDON = 1  
3 V  
V
REF,BUF  
Reference Supply + Reference  
output buffer quiescent current  
I
SD16REFON = 1, SD16VMIDON = 1  
3 V  
385  
100  
600  
µA  
REF,BUF  
Required load capacitance  
on V  
REF  
C
SD16REFON = 1, SD16VMIDON = 1  
SD16REFON = 1, SD16VMIDON = 1  
470  
nF  
REF(O)  
I
Maximum load current on V  
REF  
3 V  
3 V  
1
mA  
mV  
LOAD,Max  
Maximum voltage variation vs. load current  
|I  
| = 0 to 1mA  
−15  
+15  
LOAD  
SD16REFON = 0 1;  
SD16VMIDON = 1;  
t
Turn on time  
3 V  
µs  
ON  
C
= 470nF  
REF  
SD16_A, external reference input (MSP430x20x3 only)  
PARAMETER  
Input voltage range  
Input current  
TEST CONDITIONS  
VCC  
3 V  
MIN  
1.0  
TYP  
1.25  
MAX  
1.5  
UNIT  
V
V
SD16REFON = 0  
SD16REFON = 0  
REF(I)  
I
3 V  
50  
nA  
REF(I)  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Flash Memory  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
TYP  
MAX UNIT  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from V  
Supply current from V  
during program  
during erase  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
2.2 V/3.6 V  
1
1
PGM  
CC  
7
mA  
ERASE  
CPT  
CC  
Cumulative program time (see Note 1)  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
10  
ms  
20  
ms  
CMErase  
4
10  
5
10  
cycles  
years  
t
T = 25°C  
J
100  
Retention  
t
t
t
t
t
t
Word or byte program time  
30  
25  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
18  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 2  
t
FTG  
6
10593  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. These values are hardwired into the Flash Controller’s state machine (t  
FTG  
= 1/f ).  
FTG  
RAM  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
TYP  
MAX UNIT  
V
RAM retention supply voltage (see Note 1)  
1.6  
V
(RAMh)  
NOTE 1: This parameter defines the minimum supply voltage V  
happen during this supply voltage condition.  
when the data in RAM remains unchanged. No program execution should  
CC  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
JTAG and Spy-Bi-Wire Interface  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX  
UNIT  
f
t
Spy-Bi-Wire input frequency  
2.2 V / 3 V  
2.2 V / 3 V  
0
20  
15  
MHz  
us  
SBW  
Spy-Bi-Wire low clock pulse length  
0.025  
SBW,Low  
Spy-Bi-Wire enable time  
t
(TEST high to acceptance of first clock edge, see  
Note 1)  
2.2 V/ 3 V  
1
us  
SBW,En  
t
f
Spy-Bi-Wire return to normal operation time  
2.2 V/ 3 V  
2.2 V  
15  
0
100  
5
us  
SBW,Ret  
MHz  
MHz  
kΩ  
TCK input frequency − 4-wire JTAG (see Note 2)  
Internal pull-down resistance on TEST  
TCK  
3 V  
0
10  
90  
R
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum t  
before appling the first SBWCLK clock edge.  
time after pulling the TEST/SBWCLK pin high  
SBW,En  
2.  
f
may be restricted to meet the timing requirements of the module selected.  
TCK  
JTAG Fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
TYP  
MAX  
UNIT  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse-blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
T
A
= 25°C  
2.5  
6
V
V
CC(FB)  
7
100  
1
FB  
I
t
mA  
ms  
FB  
FB  
NOTES: 1. Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible and JTAG is switched  
to bypass mode.  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
APPLICATION INFORMATION, MSP430x20x1  
Port P1 (P1.0 to P1.3) pin functions, MSP430x20x1  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
CAPD.x  
P1.0/TACLK/ACLK/  
CA0  
0
P1.0† Input/Output  
0/1  
0
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
Timer_A2.TACLK/INCLK  
ACLK  
1
CA0 (see Note 3)  
P1.1† Input/Output  
Timer_A2.CCI0A  
Timer_A2.TA0  
CA1 (see Note 3)  
P1.2† Input/Output  
Timer_A2.CCI1A  
Timer_A2.TA1  
CA2 (see Note 3)  
P1.3† Input/Output  
N/A  
X
P1.1/TA0/CA1  
P1.2/TA1/CA2  
P1.3/CAOUT/CA3  
1
2
3
0/1  
0
1
X
0/1  
0
1
X
0/1  
0
CAOUT  
1
CA3 (see Note 3)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the CAPD.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying  
analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer  
for that pin, regardless of the state of the associated CAPD.x bit.  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.0 to P1.3) pin schematics, MSP430x20x1  
Pad Logic  
To Comparator_A+  
From Comparator_A+  
CAPD.x  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.0/TACLK/ACLK/CA0  
P1.1/TA0/CA1  
P1.2/TA1/CA2  
Bus  
Keeper  
P1SEL.x  
P1IN.x  
P1.3/CAOUT/CA3  
EN  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
Control signal “From Comparator_A+”  
SIGNAL “FROM COMPARATOR_A+” = 1  
PIN NAME  
FUNCTION  
P2CA4  
P2CA0  
P2CA3  
P2CA2  
P2CA1  
P1.0/TACLK/ACLK/CA0  
P1.1/TA0/CA1  
CA0  
CA1  
CA2  
CA3  
0
1
1
0
N/A  
0
N/A  
0
N/A  
1
OR  
P1.2/TA1/CA2  
1
1
0
1
0
P1.3/CAOUT/CA3  
N/A  
N/A  
0
1
1
NOTES: 1. N/A: Not available or not applicable.  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.4 to P1.7) pin functions, MSP430x20x1  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
CAPD.x  
JTAG Mode  
P1.4/SMCLK/CA4/  
TCK  
4
P1.4† Input/Output  
0/1  
0
0
1
1
X
X
0
1
1
X
X
0
1
1
X
X
0
1
1
X
X
0
0
0
1
X
0
0
0
1
X
0
0
0
1
X
0
0
0
1
X
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
N/A  
SMCLK  
1
CA4 (see Note 3)  
TCK (see Note 4)  
P1.5† Input/Output  
N/A  
X
X
P1.5/TA0/CA5/  
TMS  
5
6
7
0/1  
0
Timer_A2.TA0  
CA5 (see Note 3)  
TMS (see Note 4)  
P1.6† Input/Output  
N/A  
1
X
X
P1.6/TA1/CA6/  
TDI  
0/1  
0
Timer_A2.TA1  
CA6 (see Note 3)  
TDI (see Note 4)  
P1.7† Input/Output  
N/A  
1
X
X
P1.7/CAOUT/CA7/  
TDO/TDI  
0/1  
0
CAOUT  
1
CA7 (see Note 3)  
TDO/TDI (see Notes 4, 5)  
X
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the CAPD.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying  
analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer  
for that pin, regardless of the state of the associated CAPD.x bit.  
4. In JTAG mode the internal pull-up/down resistors are disabled.  
5. Function controlled by JTAG  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.4 to P1.6) pin schematics, MSP430x20x1  
Pad Logic  
To Comparator_A+  
From Comparator_A+  
CAPD.x  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.4/SMCLK/CA4/TCK  
P1.5/TA0/CA5/TMS  
P1.6/TA1/CA6/TDI  
Bus  
Keeper  
P1SEL.x  
P1IN.x  
EN  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
To JTAG  
From JTAG  
Control signal “From Comparator_A+”  
SIGNAL “FROM COMPARATOR_A+” = 1  
PIN NAME  
FUNCTION  
P2CA3  
P2CA2  
P2CA1  
P1.4/SMCLK/CA4/TCK  
CA4  
CA5  
CA6  
1
1
1
0
0
1
0
1
0
P1.5/TA0/CA5/TMS  
P1.6/TA1/CA6/TDI  
NOTES: 1. N/A: Not available or not applicable.  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.7) pin schematics, MSP430x20x1  
Pad Logic  
To Comparator_A+  
From Comparator_A+  
CAPD.7  
P1REN.7  
DVSS  
DVCC  
0
1
1
P1DIR.7  
0
1
Direction  
0: Input  
1: Output  
P1OUT.7  
0
1
Module X OUT  
P1.7/CAOUT/CA7/TDO/TDI  
Bus  
Keeper  
P1SEL.7  
P1IN.7  
EN  
EN  
D
Module X IN  
P1IRQ.7  
P1IE.7  
EN  
Q
Set  
P1IFG.7  
Interrupt  
Edge  
Select  
P1SEL.7  
P1IES.7  
To JTAG  
From JTAG  
From JTAG  
From JTAG (TDO)  
Control signal “From Comparator_A+”  
SIGNAL “FROM COMPARATOR_A+” = 1  
PIN NAME  
FUNCTION  
P2CA3  
P2CA2  
P2CA1  
P1.7/CAOUT/CA7/TDO/TDI  
CA7  
1
1
1
NOTES: 1. N/A: Not available or not applicable.  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P2 (P2.6) pin schematics, MSP430x20x1  
LFXT1 Oscillator  
BCSCTL3.LFXT1Sx = 11  
P2.7/XOUT  
LFXT1 off  
0
1
LFXT1CLK  
P2SEL.7  
P2REN.6  
Pad Logic  
DVSS  
0
1
1
DVCC  
P2DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.6  
Module X OUT  
P2.6/XIN/TA1  
Bus  
Keeper  
P2SEL.6  
P2IN.6  
EN  
EN  
D
Module X IN  
P2IRQ.6  
P2IE.6  
EN  
Set  
Q
P2IFG.6  
Interrupt  
Edge  
Select  
P2SEL.6  
P2IES.6  
Port P2 (P2.6) pin functions, MSP430x20x1  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.6/XIN/TA1  
6
P2.6 Input/Output  
XIN† (see Note 3)  
Timer_A2.TA1  
0/1  
0
0
1
1
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. XIN is used as digital clock input if the bits LFXT1Sx in register BCSCTL3 are set to 11.  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P2 (P2.7) pin schematics, MSP430x20x1  
LFXT1 Oscillator  
BCSCTL3.LFXT1Sx = 11  
LFXT1 off  
0
1
LFXT1CLK  
From P2.6/XIN  
P2.6/XIN/TA1  
Pad Logic  
P2SEL.6  
P2REN.7  
DVSS  
DVCC  
0
1
1
P2DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.7  
Module X OUT  
P2.7/XOUT  
Bus  
Keeper  
P2SEL.7  
P2IN.7  
EN  
EN  
D
Module X IN  
P2IRQ.7  
P2IE.7  
EN  
Set  
Q
P2IFG.7  
Interrupt  
Edge  
Select  
P2SEL.7  
P2IES.7  
Port P2 (P2.7) pin functions, MSP430x20x1  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.7/XOUT  
7
P2.7 Input/Output  
DVSS  
0/1  
0
0
1
1
XOUT† (see Note 3)  
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. If the pin P2.7/XOUT is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection  
to this pin after reset.  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
APPLICATION INFORMATION, MSP430x20x2  
Port P1 (P1.0 to P1.2) pin functions, MSP430x20x2  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
ADC10AE.x  
INCHx  
N/A  
N/A  
N/A  
0
P1.0/TACLK/ACLK/A0  
0
P1.0† Input/Output  
0/1  
0
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
Timer_A2.TACLK/INCLK  
ACLK  
1
A0 (see Note 3)  
P1.1† Input/Output  
Timer_A2.CCI0A  
Timer_A2.TA0  
X
P1.1/TA0/A1  
P1.2/TA1/A2  
1
2
0/1  
0
N/A  
N/A  
N/A  
1
1
A1 (see Note 3)  
P1.2† Input/Output  
Timer_A2.CCI1A  
Timer_A2.TA1  
X
0/1  
0
N/A  
N/A  
N/A  
2
1
A2 (see Note 3)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the ADC10AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
56  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.0 to P1.2) pin schematics, MSP430x20x2  
Pad Logic  
To ADC 10  
INCHx = x  
ADC10AE.x  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.0/TACLK/ACLK/A0  
P1.1/TA0/A1  
P1.2/TA1/A2  
Bus  
Keeper  
P1SEL.x  
P1IN.x  
EN  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
57  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.3) pin schematics, MSP430x20x2  
SREF2  
VSS  
Pad Logic  
0
1
To ADC 10 V  
R−  
A3  
INCHx = 3  
ADC10AE.3  
P1REN.3  
P1DIR.3  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.3  
Module X OUT  
P1.3/ADC10CLK/  
A3/VREF/VeREF−  
Bus  
Keeper  
P1SEL.3  
P1IN.3  
EN  
EN  
D
Module X IN  
P1IRQ.3  
P1IE.3  
EN  
Q
Set  
P1IFG.3  
Interrupt  
Edge  
Select  
P1SEL.3  
P1IES.3  
Port P1 (P1.0 to P1.3) pin functions, MSP430x20x2  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
ADC10AE.x  
INCHx  
N/A  
N/A  
N/A  
3
P1.3/ADC10CLK/  
A3/VREF−/VeREF−  
3
P1.3† Input/Output  
0/1  
0
0
1
0
0
0
1
1
N/A  
ADC10CLK  
1
1
A3 (see Note 3)  
X
X
X
VREF−/VeREF− (see Notes 3, 4)  
X
N/A  
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the ADC10AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
4. An applied voltage is used as negative reference if bit SREF3 in register ADC10CTL0 is set.  
58  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.4 to P1.7) pin functions, MSP430x20x2  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
JTAG  
Mode  
P1DIR.x  
P1SEL.x  
USIP.x  
ADC10AE.x  
INCHx  
P1.4/SMCLK/A4/  
VREF+/VeREF+/  
TCK  
4
P1.4† Input/Output  
N/A  
0/1  
0
0
1
1
X
0
0
0
1
N/A  
N/A  
N/A  
4
0
0
0
0
SMCLK  
1
A4 (see Note 3)  
X
N/A  
VREF+/VeREF+  
(see Notes 3, 4)  
X
X
1
N/A  
0
TCK (see Note 5)  
P1.5† Input/Output  
N/A  
X
0/1  
0
X
0
1
1
X
X
X
0
1
1
X
X
X
0
1
1
X
X
X
0
0
0
0
1
X
0
0
0
0
1
X
0
0
0
0
1
X
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
P1.5/TA0/SCLK/A5/  
TMS  
5
6
7
X
X
X
1
N/A  
N/A  
N/A  
N/A  
5
Timer_A2.TA0  
SCLK  
1
X
A5 (see Note 3)  
TMS (see Note 5)  
P1.6† Input/Output  
Timer_A2.CCI1B  
Timer_A2.TA1  
SDO (SPI) / SCL (I2C)  
A6 (see Note 3)  
TDI (see Note 5)  
P1.7† Input/Output  
N/A  
X
X
X
X
X
X
1
X
X
P1.6/TA1/SDO/SCL/A6/  
TDI  
0/1  
0
N/A  
N/A  
N/A  
N/A  
6
1
X
X
X
X
X
X
X
1
X
X
P1.7/SDI/SDA/A7/  
TDO/TDI  
0/1  
0
N/A  
N/A  
N/A  
N/A  
7
DVSS  
1
SDI (SPI) / SDA (I2C)  
A7 (see Note 3)  
X
X
X
TDO/TDI (see Notes 5,  
6)  
X
X
X
X
X
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the ADC10AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
4. The reference voltage is output if bit REFOUT in register ADC10CTL0 is set. An applied voltage is used as positive reference if  
bits SREF0/1 in register ADC10CTL0 are set to 10 or 11.  
5. In JTAG mode the internal pull-up/down resistors are disabled.  
6. Function controlled by JTAG  
59  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.4) pin schematics, MSP430x20x2  
Pad Logic  
To/from ADC10  
positive reference  
A4  
INCHx = 4  
ADC10AE.4  
P1REN.4  
DVSS  
DVCC  
0
1
1
P1DIR.4  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.4  
Module X OUT  
P1.4/SMCLK/A4/VREF+/VeREF+/TCK  
Bus  
Keeper  
P1SEL.4  
EN  
EN  
D
Module X IN  
P1IRQ.4  
P1IE.4  
EN  
Q
Set  
P1IFG.4  
Interrupt  
Edge  
Select  
P1SEL.4  
P1IES.4  
To JTAG  
From JTAG  
60  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.5) pin schematics, MSP430x20x2  
Pad Logic  
A5  
INCHx = 5  
ADC10AE.5  
P1REN.5  
P1SEL.5  
USIPE5  
DVSS  
DVCC  
0
1
1
P1DIR.5  
0
1
Direction  
0: Input  
1: Output  
USI Module Direction  
P1OUT.5  
0
1
Module X OUT  
P1.5/TA0/SCLK/A5/TMS  
Bus  
Keeper  
EN  
P1IN.5  
EN  
D
Module X IN  
P1IE.5  
EN  
Q
P1IRQ.5  
Set  
P1IFG.5  
Interrupt  
Edge  
Select  
P1SEL.5  
P1IES.5  
To JTAG  
From JTAG  
61  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.6) pin schematics, MSP430x20x2  
Pad Logic  
A6  
INCHx = 6  
ADC10AE.6  
P1REN.6  
P1SEL.6  
USIPE6  
DVSS  
DVCC  
0
1
1
P1DIR.6  
0
1
Direction  
0: Input  
1: Output  
USI Module Direction  
0
1
P1OUT.6  
Module X OUT  
P1.6/TA1/SDO/SCL/A6/TDI  
USI Module Output  
2
(I C Mode)  
Bus  
Keeper  
EN  
P1IN.6  
EN  
D
Module X IN  
P1IE.6  
EN  
Q
P1IRQ.6  
Set  
P1IFG.6  
Interrupt  
Edge  
Select  
P1SEL.6  
P1IES.6  
To JTAG  
From JTAG  
62  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.7) pin schematics, MSP430x20x2  
Pad Logic  
A7  
INCHx = 7  
ADC10AE.7  
P1REN.7  
P1SEL.7  
USIPE7  
DVSS  
DVCC  
0
1
1
P1DIR.7  
0
1
Direction  
0: Input  
1: Output  
USI Module Direction  
P1OUT.7  
0
1
Module X OUT  
P1.7/SDI/SDA/A7/TDO/TDI  
USI Module Output  
2
(I C Mode)  
Bus  
Keeper  
EN  
P1IN.7  
EN  
D
Module X IN  
P1IE.7  
EN  
Q
P1IRQ.7  
Set  
P1IFG.7  
Interrupt  
Edge  
Select  
P1SEL.7  
P1IES.7  
To JTAG  
From JTAG  
From JTAG  
From JTAG (TDO)  
63  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P2 (P2.6) pin schematics, MSP430x20x2  
LFXT1 Oscillator  
BCSCTL3.LFXT1Sx = 11  
P2.7/XOUT  
LFXT1 off  
0
1
LFXT1CLK  
P2SEL.7  
P2REN.6  
Pad Logic  
DVSS  
0
1
1
DVCC  
P2DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.6  
Module X OUT  
P2.6/XIN/TA1  
Bus  
Keeper  
P2SEL.6  
P2IN.6  
EN  
EN  
D
Module X IN  
P2IRQ.6  
P2IE.6  
EN  
Set  
Q
P2IFG.6  
Interrupt  
Edge  
Select  
P2SEL.6  
P2IES.6  
Port P2 (P2.6) pin functions, MSP430x20x2  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.6/XIN/TA1  
6
P2.6 Input/Output  
XIN† (see Note 3)  
Timer_A2.TA1  
0/1  
0
0
1
1
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. XIN is used as digital clock input if the bits LFXT1Sx in register BCSCTL3 are set to 11.  
64  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P2 (P2.7) pin schematics, MSP430x20x2  
LFXT1 Oscillator  
BCSCTL3.LFXT1Sx = 11  
LFXT1 off  
0
1
LFXT1CLK  
From P2.6/XIN  
P2.6/XIN/TA1  
Pad Logic  
P2SEL.6  
P2REN.7  
DVSS  
DVCC  
0
1
1
P2DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.7  
Module X OUT  
P2.7/XOUT  
Bus  
Keeper  
P2SEL.7  
P2IN.7  
EN  
EN  
D
Module X IN  
P2IRQ.7  
P2IE.7  
EN  
Set  
Q
P2IFG.7  
Interrupt  
Edge  
Select  
P2SEL.7  
P2IES.7  
Port P2 (P2.7) pin functions, MSP430x20x2  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.7/XOUT  
7
P2.7 Input/Output  
DVSS  
0/1  
0
0
1
1
XOUT† (see Note 3)  
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. If the pin P2.7/XOUT is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection  
to this pin after reset.  
65  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
APPLICATION INFORMATION, MSP430x20x3  
Port P1 (P1.0 to P1.3) pin functions, MSP430x20x3  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
SD16AE.x  
INCHx  
N/A  
N/A  
N/A  
0
P1.0/TACLK/ACLK/A0+  
0
P1.0† Input/Output  
0/1  
0
0
1
1
X
0
1
1
X
X
0
1
1
X
X
0
1
X
0
0
0
1
0
0
0
1
1
0
0
0
1
1
0
0
1
Timer_A2.TACLK/INCLK  
ACLK  
1
A0+ (see Note 3)  
P1.1† Input/Output  
Timer_A2.CCI0A  
Timer_A2.TA0  
X
P1.1/TA0/A0−/A4+  
P1.2/TA1/A1+/A4−  
P1.3/VREF/A1−  
1
2
3
0/1  
0
N/A  
N/A  
N/A  
0
1
A0− (see Notes 3, 4)  
A4+ (see Note 3)  
P1.2† Input/Output  
Timer_A2.CCI1A  
Timer_A2.TA1  
X
X
4
0/1  
0
N/A  
N/A  
N/A  
1
1
A1+ (see Note 3)  
A4− (see Notes 3, 4)  
P1.3† Input/Output  
VREF  
X
X
4
0/1  
X
N/A  
N/A  
1
A1− (see Notes 3, 4)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the SD16AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
4. With SD16AE.x = 0 the negative inputs are connected to VSS if the corresponding input is selected.  
66  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.0) pin schematics, MSP430x20x3  
INCH=0  
Pad Logic  
A0+  
SD16AE.0  
P1REN.0  
DVSS  
DVCC  
0
1
1
P1DIR.0  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.0  
Module X OUT  
P1.0/TACLK/ACLK/A0+  
Bus  
Keeper  
P1SEL.0  
P1IN.0  
EN  
EN  
D
Module X IN  
P1IRQ.0  
P1IE.0  
EN  
Q
Set  
P1IFG.0  
Interrupt  
Edge  
Select  
P1SEL.0  
P1IES.0  
67  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.1) pin schematics, MSP430x20x3  
=4  
INCH  
A4+  
=0  
Pad Logic  
INCH  
0
1
AV  
SS  
A0−  
SD16AE.1  
P1REN.1  
P1DIR.1  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.1  
Module X OUT  
+
P1.1/TA0/A0/A4  
Bus  
Keeper  
P1SEL.1  
P1IN.1  
EN  
EN  
D
Module X IN  
P1IRQ.1  
P1IE.1  
EN  
Q
Set  
P1IFG.1  
Interrupt  
Edge  
Select  
P1SEL.1  
P1IES.1  
68  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.2) pin schematics, MSP430x20x3  
=1  
INCH  
A1+  
=4  
Pad Logic  
INCH  
0
1
AV  
SS  
A4−  
SD16AE.2  
P1REN.2  
P1DIR.2  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.2  
Module X OUT  
P1.2/TA1/A1+/A4−  
Bus  
Keeper  
P1SEL.2  
P1IN.2  
EN  
EN  
D
Module X IN  
P1IRQ.2  
P1IE.2  
EN  
Q
Set  
P1IFG.2  
Interrupt  
Edge  
Select  
P1SEL.2  
P1IES.2  
69  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.3) pin schematics, MSP430x20x3  
Pad Logic  
V
REF  
=1  
INCH  
0
1
AV  
SS  
A1−  
SD16AE.3  
P1REN.3  
DVSS  
DVCC  
0
1
1
P1DIR.3  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.3  
P1.3/VREF/A1−  
Bus  
Keeper  
P1SEL.3  
P1IN.3  
EN  
P1IE.3  
EN  
Q
P1IRQ.3  
Set  
P1IFG.3  
Interrupt  
Edge  
Select  
P1SEL.3  
P1IES.3  
70  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.4 to P1.7) pin functions, MSP430x20x3  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
JTAG  
Mode  
P1DIR.x  
P1SEL.x  
USIP.x  
SD16AE.x  
INCHx  
P1.4/SMCLK/A2+/  
TCK  
4
P1.4† Input/Output  
N/A  
0/1  
0
0
1
1
X
X
0
1
1
X
X
X
0
1
1
X
X
X
0
1
1
X
X
X
N/A  
N/A  
N/A  
N/A  
N/A  
X
0
0
0
1
X
0
0
0
0
1
X
0
0
0
0
1
X
0
0
0
0
1
X
N/A  
N/A  
N/A  
2
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
SMCLK  
1
A2+ (see Note 3)  
TCK (see Note 5)  
P1.5† Input/Output  
N/A  
X
X
X
P1.5/TA0/SCLK/A2−/  
TMS  
5
6
7
0/1  
0
N/A  
N/A  
N/A  
N/A  
2
X
Timer_A2.TA0  
SCLK  
1
X
X
1
A2− (see Notes 3, 4)  
TMS (see Note 5)  
P1.6† Input/Output  
Timer_A2.CCI1B  
Timer_A2.TA1  
SDO (SPI) / SCL (I2C)  
A3+ (see Note 3)  
TDI (see Note 5)  
P1.7† Input/Output  
N/A  
X
X
X
X
X
P1.6/TA1/SDO/SCL/A3+/  
TDI  
0/1  
0
X
N/A  
N/A  
N/A  
N/A  
3
X
1
X
X
1
X
X
X
X
X
P1.7/SDI/SDA/A3−/  
TDO/TDI  
0/1  
0
X
N/A  
N/A  
N/A  
N/A  
3
X
DVSS  
1
X
SDI (SPI) / SDA (I2C)  
A3− (see Notes 3, 4)  
TDO/TDI (see Notes 5, 6)  
X
1
X
X
X
X
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the SD16AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
4. With SD16AE.x = 0 the negative inputs are connected to VSS if the corresponding input is selected.  
5. In JTAG mode the internal pull-up/down resistors are disabled.  
6. Function controlled by JTAG  
71  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.4) pin schematics, MSP430x20x3  
INCH=2  
A2+  
Pad Logic  
SD16AE.4  
P1REN.4  
DVSS  
DVCC  
0
1
1
P1DIR.4  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.4  
Module X OUT  
P1.4/SMCLK/A2+/TCK  
Bus  
Keeper  
P1SEL.4  
P1IN.4  
EN  
EN  
D
Module X IN  
P1IRQ.4  
P1IE.4  
EN  
Q
Set  
P1IFG.4  
Interrupt  
Edge  
Select  
P1SEL.4  
P1IES.4  
To JTAG  
From JTAG  
72  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.5) pin schematics, MSP430x20x3  
Pad Logic  
=2  
INCH  
0
1
AV  
SS  
A2−  
SD16AE.5  
P1REN.5  
P1SEL.5  
USIPE5  
DVSS  
DVCC  
0
1
1
P1DIR.5  
0
1
Direction  
0: Input  
1: Output  
USI Module Direction  
0
1
P1OUT.5  
Module X OUT  
P1.5/TA0/SCLK/A2/TMS  
Bus  
Keeper  
EN  
P1IN.5  
EN  
D
Module X IN  
P1IE.5  
EN  
Q
P1IRQ.5  
Set  
P1IFG.5  
Interrupt  
Edge  
Select  
P1SEL.5  
P1IES.5  
To JTAG  
From JTAG  
73  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.6) pin schematics, MSP430x20x3  
Pad Logic  
INCH=3  
A3+  
SD16AE.6  
P1REN.6  
P1SEL.6  
USIPE6  
DVSS  
DVCC  
0
1
1
P1DIR.6  
0
1
Direction  
0: Input  
1: Output  
USI Module Direction  
0
1
P1OUT.6  
Module X OUT  
P1.6/TA1/SDO/SCL/A3+/TDI  
USI Module Output  
2
(I  
)
C Mode  
Bus  
Keeper  
EN  
P1IN.6  
EN  
D
Module X IN  
P1IRQ.6  
P1IE.6  
EN  
Q
Set  
P1IFG.6  
Interrupt  
Edge  
Select  
P1SEL.6  
P1IES.6  
To JTAG  
From JTAG  
74  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢅ ꢆ ꢇꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢇꢅꢆ ꢄ  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P1 (P1.7) pin schematics, MSP430x20x3  
Pad Logic  
INCH=3  
0
1
AV  
SS  
A3−  
SD16AE.x  
P1REN.x  
P1SEL.x  
USIPE7  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
USI Module Direction  
0
1
P1OUT.x  
Module X OUT  
P1.7/SDI/SDA/A3/TDO/TDI  
USI Module Output  
2
(I  
)
C Mode  
Bus  
Keeper  
EN  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
To JTAG  
From JTAG  
From JTAG  
From JTAG (TDO)  
75  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P2 (P2.6) pin schematics, MSP430x20x3  
LFXT1 Oscillator  
BCSCTL3.LFXT1Sx = 11  
P2.7/XOUT  
LFXT1 off  
0
1
LFXT1CLK  
P2SEL.7  
P2REN.6  
Pad Logic  
DVSS  
0
1
1
DVCC  
P2DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.6  
Module X OUT  
P2.6/XIN/TA1  
Bus  
Keeper  
P2SEL.6  
P2IN.6  
EN  
EN  
D
Module X IN  
P2IRQ.6  
P2IE.6  
EN  
Set  
Q
P2IFG.6  
Interrupt  
Edge  
Select  
P2SEL.6  
P2IES.6  
Port P2 (P2.6) pin functions, MSP430x20x3  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.6/XIN/TA1  
6
P2.6 Input/Output  
XIN† (see Note 3)  
Timer_A2.TA1  
0/1  
0
0
1
1
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. XIN is used as digital clock input if the bits LFXT1Sx in register BCSCTL3 are set to 11.  
76  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢊꢋꢌ ꢍ ꢁꢊ ꢎ ꢏꢐꢑ ꢀ ꢊꢒꢓꢔ ꢒꢔ ꢏꢕ ꢓꢔ ꢑꢑ ꢌꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Port P2 (P2.7) pin schematics, MSP430x20x3  
LFXT1 Oscillator  
BCSCTL3.LFXT1Sx = 11  
LFXT1 off  
0
1
LFXT1CLK  
From P2.6/XIN  
P2.6/XIN/TA1  
Pad Logic  
P2SEL.6  
P2REN.7  
DVSS  
DVCC  
0
1
1
P2DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.7  
Module X OUT  
P2.7/XOUT  
Bus  
Keeper  
P2SEL.7  
P2IN.7  
EN  
EN  
D
Module X IN  
P2IRQ.7  
P2IE.7  
EN  
Set  
Q
P2IFG.7  
Interrupt  
Edge  
Select  
P2SEL.7  
P2IES.7  
Port P2 (P2.7) pin functions, MSP430x20x3  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.7/XOUT  
7
P2.7 Input/Output  
DVSS  
0/1  
0
0
1
1
XOUT† (see Note 3)  
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. If the pin P2.7/XOUT is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection  
to this pin after reset.  
77  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢅꢆꢈ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇ ꢅ ꢆꢇ ꢉ ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢇꢅ ꢆ ꢄ  
ꢀ ꢊ ꢋ ꢌꢍ ꢁꢊ ꢎꢏ ꢐ ꢑ ꢀꢊ ꢒ ꢓꢔꢒ ꢔꢏ ꢕꢓ ꢔꢑ ꢑꢌ ꢓ  
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005  
Data Sheet Revision History  
Literature  
Number  
Summary  
SLAS491  
Preliminary PRODUCT PREVIEW datasheet release.  
MSP430x20x3 production datasheet release.  
Updated specification and added characterization graphs.  
NOTE: The referring page and figure numbers are referred to the respective document revision.  
SLAS491A  
78  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

MSP430F2013IN

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2013IPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2013IPWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2013IRSA

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2013IRSAR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2013IRSAT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2013QRSATEP

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2013TN

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2013TPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2013TPWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2013TRSA

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2013TRSAR

MIXED SIGNAL MICROCONTROLLER
TI