MSP430F2101IPW [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F2101IPW
型号: MSP430F2101IPW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总38页 (文件大小:546K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
D
D
Low Supply Voltage Range 1.8 V to 3.6 V  
D
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by  
Security Fuse  
Ultralow-Power Consumption  
− Active Mode: 200 µA at 1 MHz, 2.2 V  
− Standby Mode: 0.7 µA  
− Off Mode (RAM Retention): 0.1 µA  
Ultrafast Wake-Up From Standby Mode in  
less than 1 µs  
16-Bit RISC Architecture, 65 ns  
Instruction Cycle Time  
D
D
Bootstrap Loader in Flash Devices  
D
D
D
Family Members Include:  
MSP430F2101: 1KB + 256B Flash Memory  
128B RAM  
MSP430F2111: 2KB + 256B Flash Memory  
128B RAM  
MSP430F2121: 4KB + 256B Flash Memory  
256B RAM  
Basic Clock Module Configurations:  
− Internal Frequencies up to 16MHz  
− 32-kHz Crystal  
− High-Frequency Crystal up to 16MHz  
− Resonator  
MSP430F2131: 8KB + 256B Flash Memory  
256B RAM  
D
D
Available in a 20-Pin Plastic Small-Outline  
Wide Body (SOWB) Package, 20-Pin Plastic  
Small-Outline Thin (TSSOP) Package,  
20-Pin TVSOP and 24-Pin QFN  
For Complete Module Descriptions, Refer  
to the MSP430x2xx Family User’s Guide  
− External Clock Source  
D
D
16-Bit Timer_A With Three  
Capture/Compare Registers  
On-Chip Comparator for Analog Signal  
Compare Function or Slope A/D  
Conversion  
description  
The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1µs.  
The MSP430x21x1 series is an ultralow-power mixed signal microcontroller with a built-in 16-bit timer, versatile  
analog comparator and sixteen I/O pins.  
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then  
process the data for display or for transmission to a host system. Stand alone RF sensor front end is another  
area of application. The analog comparator provides slope A/D conversion capability.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PLASTIC  
20-PIN SOWB  
(DW)  
PLASTIC  
20-PIN TSSOP  
(PW)  
PLASTIC  
20-PIN TVSOP  
(DGV)  
PLASTIC  
24-PIN QFN  
(RGE)  
T
A
MSP430F2101IDW  
MSP430F2111IDW  
MSP430F2121IDW  
MSP430F2131IDW  
MSP430F2101IPW  
MSP430F2111IPW  
MSP430F2121IPW  
MSP430F2131IPW  
MSP430F2101IDGV  
MSP430F2111IDGV  
MSP430F2121IDGV  
MSP430F2131IDGV  
MSP430F2101IRGE  
MSP430F2111IRGE  
MSP430F2121IRGE  
MSP430F2131IRGE  
40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢤꢡ ꢢ ꢘ ꢨꢙ ꢣꢦ ꢞ ꢢ ꢡ ꢛꢚ ꢤꢡ ꢧ ꢡ ꢩꢛ ꢣꢝꢡ ꢙꢟꢪ ꢑ ꢦꢞ ꢜꢞ ꢠꢟ ꢡꢜ ꢘꢢ ꢟꢘ ꢠ ꢤꢞ ꢟꢞ ꢞꢙ ꢤ ꢛꢟ ꢦꢡꢜ  
Copyright 2004 Texas Instruments Incorporated  
ꢠ ꢦꢞ ꢙ ꢨꢡ ꢛꢜ ꢤꢘ ꢢ ꢠ ꢛꢙ ꢟꢘ ꢙꢥꢡ ꢟ ꢦꢡ ꢢ ꢡ ꢣꢜ ꢛꢤ ꢥꢠꢟ ꢢ ꢫ ꢘꢟꢦ ꢛꢥꢟ ꢙꢛꢟ ꢘꢠꢡ ꢪ  
ꢡꢢ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢓꢎ  
ꢓꢐ  
SLAS439 − SEPTEMBER 2004  
device pinout  
RGE PACKAGE  
(TOP VIEW)  
DW, PW, or DGV PACKAGE  
(TOP VIEW)  
TEST  
P1.7/TA2/TDO/TDI  
P1.6/TA1/TDI/TCLK  
P1.5/TA0/TMS  
P1.4/SMCLK/TCK  
P1.3/TA2  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
CC  
P2.5/CA5  
V
SS  
XOUT/P2.7/CA7  
XIN/P2.6/CA6  
P1.2/TA1  
RST/NMI  
P1.1/TA0  
24 23 22 21 20 19  
NC  
P1.5/TA0/TMS  
P1.4/SMCLK/TCK  
P1.3/TA2  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
P2.0/ACLK/CA2  
P2.1/INCLK/CA3  
P2.2/CAOUT/TA0/CA4  
P1.0/TACLK  
V
SS  
P2.4/TA2/CA1  
P2.3/TA1/CA0  
XOUT/P2.7/CA7  
XIN/P2.6/CA6  
RST/NMI  
P1.2/TA1  
P1.1/TA0  
P2.0/ACLK/CA2  
P1.0/TACLK  
7 8 9 10 11 12  
Note: NC pins not internally connected  
Power Pad connection to V recommended  
SS  
functional block diagram  
P1.x &  
JTAG  
P2.x &  
XIN/XOUT  
V
V
RST/NMI  
CC  
SS  
XIN  
XIN  
XOUT  
XOUT  
ACLK  
Basic  
Clock  
8kB Flash  
4kB Flash  
2KB Flash  
1KB Flash  
256B RAM  
256B RAM  
128B RAM  
128B RAM  
I/O Port P1  
8 I/Os with  
Interrupt  
I/O Port P2  
8 I/Os with  
Interrupt  
SMCLK  
Brownout  
Protection  
Capability  
Capability  
MCLK  
CPU &  
Working  
Registers  
Emulation  
Comparator_  
A+  
Watchdog  
WDT+  
Timer_A3  
3 CC  
Registers  
8 Channel  
Input Mux  
15/16−Bit  
Note: See port schematics section for detailed I/O information  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
Terminal Functions  
TERMINAL  
DW, PW, or DGV  
RGE  
NO.  
13  
DESCRIPTION  
NAME  
I/O  
NO.  
13  
P1.0/TACLK  
P1.1/TA0  
I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input  
14  
14  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input,  
compare: Out0 output/BSL transmit  
P1.2/TA1  
15  
16  
17  
18  
19  
20  
8
15  
16  
17  
18  
20  
21  
6
I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input,  
compare: Out1 output  
P1.3/TA2  
I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input,  
compare: Out2 output  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
P1.6/TA1/TDI/TCLK  
I/O General-purpose digital I/O pin/SMCLK signal output/test clock, input  
terminal for device programming and test  
I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output/test  
mode select, input terminal for device programming and test  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/test  
data input or test clock input during programming and test  
P1.7/TA2/TDO/TDI  
P2.0/ACLK/CA2  
P2.1/INCLK/CA3  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/test  
data output terminal or test data input during programming and test  
I/O General-purpose digital I/O pin/ACLK output/comparator_A+, CA2  
input  
9
7
I/O General-purpose digital I/O pin/Timer_A, clock signal at  
INCLK/comparator_A+, CA3 input  
P2.2/CAOUT/  
TA0/CA4  
10  
11  
12  
8
I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/  
comparator_A+, output/comparator_A+, CA4 input/BSL receive  
P2.3/CA0/TA1  
10  
11  
I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/  
comparator_A+, CA0 input  
P2.4/CA1/TA2  
I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/  
comparator_A+, CA1 input  
P2.5/CA5  
3
6
24  
4
I/O General-purpose digital I/O pin/ comparator_A+, CA5 input  
XIN/P2.6/CA6  
I/O Input terminal of crystal oscillator/general-purpose digital I/O pin/  
comparator_A+, CA6 input  
XOUT/P2.7/CA7  
5
3
I/O Output terminal of crystal oscillator/general-purpose digital I/O pin/  
comparator_A+, CA7 input  
RST/NMI  
TEST  
7
1
5
I
I
Reset or nonmaskable interrupt input  
22  
Selects test mode for JTAG pins on Port1. The device protection fuse  
is connected to TEST.  
V
V
2
4
23  
Supply voltage  
CC  
2
Ground reference  
SS  
QFN Pad  
NA  
Package Pad  
NA QFN package pad connection to V recommended.  
SS  
TDO or TDI is selected via JTAG instruction.  
NOTE: If XOUT/P2.7/CA7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output  
driver connection to this pad after reset.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g. ADD R4,R5  
R4 + R5 −−−> R5  
e.g. CALL  
e.g. JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
F
F
F
F
F
F
F
F
F
MOV Rs,Rd  
R10 −−> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5)−−> M(6+R6)  
M(EDE) −−> M(TONI)  
M(MEM) −−> M(TCDAT)  
M(R10) −−> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) −−> R11  
R10 + 2−−> R10  
F
F
MOV @Rn+,Rm  
Immediate  
MOV #X,TONI  
#45 −−> M(TONI)  
NOTE: S = source  
D = destination  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
D
Active mode AM;  
All clocks are active  
Low-power mode 0 (LPM0);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
D
D
Low-power mode 1 (LPM1);  
CPU is disabled  
ACLK and SMCLK remain active. MCLK is disabled  
DCO’s dc-generator is disabled if DCO not used in active mode  
Low-power mode 2 (LPM2);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3);  
CPU is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4);  
CPU is disabled  
ACLK is disabled  
MCLK and SMCLK are disabled  
DCO’s dc-generator is disabled  
Crystal oscillator is stopped  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh−0FFE0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g. flash is not programmed) the CPU will  
go into LPM4 immediately.  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
Watchdog  
PORIFG  
RSTIFG  
WDTIFG  
KEYV  
Reset  
0FFFEh  
15, highest  
Flash key violation  
PC out-of-range (see Note 1)  
(see Note 2)  
NMIIFG  
OFIFG  
ACCVIFG  
NMI  
Oscillator fault  
Flash memory access violation  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
0FFFCh  
14  
(see Notes 2 & 4)  
0FFFAh  
0FFF8h  
0FFF6h  
0FFF4h  
0FFF2h  
13  
12  
11  
10  
9
Comparator_A+  
Watchdog Timer  
Timer_A3  
CAIFG  
WDTIFG  
maskable  
maskable  
maskable  
TACCR0 CCIFG (see Note 3)  
TACCR1 CCIFG.  
TACCR2 CCIFG  
Timer_A3  
maskable  
0FFF0h  
8
TAIFG (see Notes 2 & 3)  
0FFEEh  
0FFECh  
0FFEAh  
0FFE8h  
7
6
5
4
I/O Port P2  
(eight flags)  
P2IFG.0 to P2IFG.7  
(see Notes 2 & 3)  
maskable  
maskable  
0FFE6h  
0FFE4h  
3
2
I/O Port P1  
(eight flags)  
P1IFG.0 to P1IFG.7  
(see Notes 2 & 3)  
0FFE2h  
0FFE0h  
1
0, lowest  
NOTES: 1. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h−01FFh).  
2. Multiple source flags  
3. Interrupt flags are located in the module  
4. (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
special function registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
OFIE  
WDTIE  
ACCVIE  
NMIIE  
rw-0  
rw-0  
rw-0  
rw-0  
WDTIE:  
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer  
is configured in interval timer mode.  
OFIE:  
Oscillator fault enable  
NMIIE:  
ACCVIE:  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
7
6
5
4
3
2
1
0
Address  
01h  
interrupt flag register 1 and 2  
7
6
5
4
3
2
1
0
Address  
02h  
NMIIFG  
RSTIFG  
PORIFG  
OFIFG  
WDTIFG  
rw-0  
rw-(0)  
rw-1  
rw-(0)  
rw-(1)  
WDTIFG:  
Set on Watchdog Timer overflow (in watchdog mode) or security key violation.  
Reset on V power-up or a reset condition at RST/NMI pin in reset mode.  
Flag set on oscillator fault  
CC  
OFIFG:  
RSTIFG:  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on V  
power−up  
CC  
PORIFG:  
NMIIFG:  
Power−On interrupt flag. Set on V  
Set via RST/NMI-pin  
power−up.  
CC  
7
6
5
4
3
2
1
0
Address  
03h  
Legend  
rw:  
Bit can be read and written.  
rw-0,1:  
rw-(0,1):  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
memory organization  
MSP430F2101  
MSP430F2111  
MSP430F2121  
MSP430F2131  
Memory  
Size  
1KB Flash  
2KB Flash  
4KB Flash  
8KB Flash  
Main: interrupt vector  
Main: code memory  
Flash  
Flash  
0FFFFh−0FFE0h  
0FFFFh−0FC00h  
0FFFFh−0FFE0h  
0FFFFh−0F800h  
0FFFFh−0FFE0h  
0FFFFh−0F000h  
0FFFFh−0FFE0h  
0FFFFh−0E000h  
Information memory  
Boot memory  
RAM  
Size  
Flash  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
Size  
ROM  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
Size  
128 Byte  
128 Byte  
256 Byte  
256 Byte  
027Fh − 0200h  
027Fh − 0200h  
02FFh − 0200h  
02FFh − 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
bootstrap loader (BSL)  
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial  
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete  
description of the features of the BSL and its implementation, see the Application report Features of the MSP430  
Bootstrap Loader, Literature Number SLAA089.  
BSL Function  
Data Transmit  
Data Receive  
DW, PW & DGV Package Pins  
14 - P1.1  
RGE Package Pins  
14 - P1.1  
10 - P2.2  
8 - P2.2  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and four segments of information memory (A to D) of 64  
bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0−n.  
Segments A to D are also called information memory.  
D
Segment A contains calibration data. After reset segment A is protected against programming or erasing.  
It can be unlocked but care should be taken not to erase this segment if the calibration data is required.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, refer to the MSP430x2xx Family User’s Guide.  
oscillator and system clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock  
module is designed to meet the requirements of both low system cost and low-power consumption. The internal  
DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the  
following clock signals:  
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
DCO Calibration Data (provided from factory in flash info memory segment A)  
DCO Frequency  
Calibration Register  
CALBC1_1MHz  
CALDCO_1MHz  
CALBC1_8MHz  
CALDCO_8MHz  
CALBC1_12MHz  
CALDCO_12MHz  
CALBC1_16MHz  
CALDCO_16MHz  
Size  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
Address  
010FFh  
010FEh  
010FDh  
010FCh  
010FBh  
010FAh  
010F9h  
010F8h  
1 MHz  
8 MHz  
12 MHz  
16 MHz  
brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off.  
digital I/O  
There are two 8-bit I/O ports implemented—ports P1 and P2:  
D
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of port P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pull−up/pull−down resistor.  
WDT+ watchdog timer  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
comparator_A+  
The primary function of the comparator_A module is to support precision slope analog-to-digital conversions,  
battery-voltage supervision, and monitoring of external analog signals.  
timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A3 Signal Connections  
Input  
Pin Number  
Device  
Input Signal  
Module  
Input Name  
Module  
Block  
Module  
Output Signal  
Output  
Pin Number  
DW, PW, DGV  
RGE  
DW, PW DGV  
RGE  
13 - P1.0  
13 - P1.0  
TACLK  
ACLK  
SMCLK  
INCLK  
TA0  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
NA  
TA0  
TA1  
TA2  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
9 - P2.1  
14 - P1.1  
10 - P2.2  
7 - P2.1  
14 - P1.1  
8 - P2.2  
14 - P1.1  
18 - P1.5  
14 - P1.1  
18 - P1.5  
TA0  
V
SS  
V
V
CC  
CC  
15 - P1.2  
16 - P1.3  
15 - P1.2  
16 - P1.3  
TA1  
CCI1A  
CCI1B  
GND  
11 - P2.3  
15 - P1.2  
19 - P1.6  
10 - P2.3  
15 - P1.2  
20 - P1.6  
CAOUT (internal)  
V
SS  
V
CC  
V
CC  
TA2  
CCI2A  
CCI2B  
GND  
12 - P2.4  
16 - P1.3  
20 - P1.7  
11 - P2.4  
16 - P1.3  
21 - P1.7  
ACLK (internal)  
V
SS  
V
CC  
V
CC  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Timer_A  
Reserved  
Reserved  
Reserved  
Reserved  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
Reserved  
Reserved  
Reserved  
Reserved  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
Timer_A interrupt vector  
017Eh  
017Ch  
017Ah  
0178h  
0176h  
0174h  
0172h  
0170h  
016Eh  
016Ch  
016Ah  
0168h  
0166h  
0164h  
0162h  
0160h  
012Eh  
TACCR2  
TACCR1  
TACCR0  
TAR  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
TAIV  
Flash Memory  
Flash control 3  
Flash control 2  
Flash control 1  
FCTL3  
FCTL2  
FCTL1  
012Ch  
012Ah  
0128h  
Watchdog  
Watchdog/timer control  
WDTCTL  
0120h  
PERIPHERALS WITH BYTE ACCESS  
Comparator_A  
Comparator_A port disable  
Comparator_A control 2  
Comparator_A control 1  
CAPD  
CACTL2  
CACTL1  
05Bh  
05Ah  
059h  
Basic Clock  
Port P2  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
BCSCTL3 053h  
BCSCTL2 058h  
BCSCTL1 057h  
DCOCTL  
056h  
Port P2 resistor enable  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
P2REN  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
02Fh  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
Port P2 output  
Port P2 input  
Port P1  
Port P1 resistor enable  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1REN  
P1SEL  
P1IE  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
Port P1 output  
Port P1 input  
Special Function  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
IE1  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
absolute maximum ratings  
Voltage applied at V  
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V  
CC  
SS  
Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V +0.3 V  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA  
CC  
Storage temperature, T (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
stg  
Storage temperature, T (programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
stg  
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended  
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
2. All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage  
SS  
FB  
is applied to the TEST pin when blowing the JTAG fuse.  
3. Higher temperature may be applied during board soldering process according to the current JEDEC J−STD−020 specification with  
peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.  
recommended operating conditions  
MIN  
1.8  
NOM  
MAX UNITS  
Supply voltage during program execution, V  
CC  
MSP430F21x1  
MSP430F21x1  
3.6  
3.6  
V
V
Supply voltage during program/erase flash memory, V  
CC  
2.2  
Supply voltage, V  
SS  
0
V
Operating free-air temperature range, T  
MSP430F21x1  
−40  
dc  
85  
6
°C  
A
V
= 1.8 V,  
CC  
Duty Cycle = 50% 10%  
V
= 2.2 V,  
CC  
Duty Cycle = 50% 10%  
dc  
dc  
dc  
dc  
dc  
8
V
= 2.7 V,  
CC  
Duty Cycle = 50% 10%  
12  
Processor frequency f  
SYSTEM  
(Maximum MCLK frequency)  
MHz  
V
= 3.0 V,  
TBD,  
>12MHz  
CC  
Duty Cycle = 50% 10%  
V
= 3.3 V,  
TBD,  
>12MHz  
CC  
Duty Cycle = 50% 10%  
V
CC  
= 3.6 V,  
TBD,  
>12MHz  
Duty Cycle = 50% 10%  
16 MHz  
Supply voltage  
range, ’x21x1, during  
program execution  
TBD  
12 MHz  
6 MHz  
Supply voltage range,  
’x21x1, during flash  
memory programming  
1.8 V 2.2 V 2.7 V 3.3 V 3.6 V  
Supply Voltage, V  
NOTE: Minimum processor frequency is defined by system clock. Flash  
program or erase operations require a minimum V of 2.2 V.  
CC  
Figure 1. Frequency vs Supply Voltage, MSP430x21x1  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
supply current (into V ) excluding external current (see Notes 1 and 2)  
CC  
PARAMETER  
TEST CONDITIONS  
= f = 1MHz,  
VCC  
MIN  
TYP MAX  
UNIT  
f
f
= f  
ACLK  
DCO MCLK SMCLK  
= 32,768Hz,  
2.2 V  
3 V  
200  
300  
250  
350  
Active mode  
current  
I
µA  
ACTIVE  
Program executes in flash  
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0  
Low-power mode  
0 current, (LPM0)  
see Note 3  
f
f
= 0MHz, f = 1MHz,  
= 32,768Hz,  
= f  
2.2 V  
3 V  
32  
55  
11  
17  
45  
70  
14  
22  
MCLK  
ACLK  
DCO SMCLK  
I
I
µA  
µA  
LPM0  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0  
Low-power mode  
1 current, (LPM2)  
see Note 4  
f
= f  
MCLK SMCLK  
= 0MHz, f = 1MHz,  
DCO  
= 32,768Hz,  
2.2 V  
3 V  
f
LPM2  
ACLK  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0  
T
= −40°C  
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
= −40°C  
= 25°C  
= 85°C  
0.7  
0.7  
1.0  
0.9  
0.9  
1.5  
0.1  
0.1  
0.8  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
A
T
A
2.2 V  
3 V  
Low-power mode  
2 current, (LPM3)  
see Note 4  
f
= f = 0MHz,  
= f  
= 32,768Hz,  
DCO MCLK SMCLK  
T
A
f
ACLK  
I
µA  
µA  
LPM3  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 0  
T
A
T
A
T
A
f
= f = f = 0MHz,  
= 32,768Hz,  
T
A
DCO MCLK SMCLK  
Low-power mode  
4 current, (LPM4)  
see Note 5  
f
ACLK  
T
A
I
2.2 V/3 V  
LPM4  
CPUOFF = 1, SCG0 = 1, SCG1 = 1,  
OSCOFF = 1  
T
A
NOTES: 1. All inputs are tied to 0 V or V . Outputs do not source or sink any current.  
CC  
2. The currents are characterized with a KDS Daishinku DT−38 (6 pF) crystal and CAPx = 1.  
3. Current for brownout and WDT clocked by SMCLK included.  
4. Current for brownout and WDT clocked by ACLK included.  
5. Current for brownout included.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
typical supply current (into V ) characteristics  
CC  
TBD  
V
CC  
− Supply Voltage − V  
Figure 2. Active mode current vs V  
CC  
TBD  
DCO Frequency − MHz  
Figure 3. Active mode current vs DCO frequency  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Schmitt-trigger inputs − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
MIN  
0.45  
1.00  
1.35  
0.25  
0.55  
0.75  
0.2  
TYP  
MAX  
0.75  
1.65  
2.25  
0.55  
1.20  
1.65  
1.0  
UNIT  
V
CC  
V
V
V
= 2.2 V  
V
IT+  
Positive-going input threshold voltage  
CC  
= 3 V  
CC  
V
CC  
V
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
V
V
Negative-going input threshold voltage  
IT−  
= 2.2 V  
= 3 V  
Input voltage hysteresis (V  
− V  
)
V
hys  
IT+  
IT−  
0.3  
1.0  
For pull−up: V = V  
For pull−down: V = V  
IN  
;
IN SS  
R
C
Pull−up/pull−down resistor  
Input Capacitance  
TBD  
TBD  
W
Pull  
I
CC  
V
IN  
= V  
SS  
or V  
CC  
TBD  
pF  
inputs − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
50  
TYP  
MAX  
UNIT  
Port P1, P2: P1.x to P2.x, External trigger puls  
width to set interrupt flag, (see Note 1)  
t
External interrupt timing  
ns  
(int)  
30  
NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t  
(int)  
is met. It may be set even with trigger signals  
shorter than t  
.
(int)  
leakage current − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V/3 V  
MIN  
TYP  
MAX  
UNIT  
I
High-impedance leakage current  
see Notes 1 and 2  
50  
nA  
lkg(Px.x)  
NOTES: 1. The leakage current is measured with V  
or V  
CC  
applied to the corresponding pin(s), unless otherwise noted.  
SS  
2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pull−up/pull−down resistor  
is disabled.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
outputs − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
= −1.5 mA (see Notes 1 and 3) 2.2 V  
= −6 mA (see Notes 2 and 3) 2.2 V  
= −1.5 mA (see Notes 1 and 3) 3 V  
= −6 mA (see Notes 2 and 3) 3 V  
= 1.5 mA (see Notes 1 and 3) 2.2 V  
V
−0.25  
V
V
V
V
(OHmax)  
(OHmax)  
(OHmax)  
(OHmax)  
(OLmax)  
(OLmax)  
(OLmax)  
(OLmax)  
CC  
CC  
CC  
CC  
CC  
V
−0.6  
CC  
−0.25  
V
High-level output voltage  
V
OH  
OL  
V
CC  
V
−0.6  
CC  
V
V
+0.25  
SS  
SS  
SS  
SS  
SS  
= 6 mA (see Notes 2 and 3)  
= 1.5 mA (see Notes 1 and 3) 3 V  
= 6 mA (see Notes 2 and 3) 3 V  
2.2 V  
V
V
V
V
+0.6  
SS  
V
Low-level output voltage  
Output capacitance  
V
V
SS  
+0.25  
V
+0.6  
SS  
C
TBD  
pF  
O
NOTES: 1. The maximum total current, I  
voltage drop specified.  
and I  
and I  
, for all outputs combined, should not exceed 12 mA to hold the maximum  
OHmax  
OLmax  
2. The maximum total current, I  
voltage drop specified.  
, for all outputs combined, should not exceed 48 mA to hold the maximum  
OHmax  
OLmax  
3. One output loaded at a time.  
output frequency − Ports P1 and P2  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
MAX  
10  
UNIT  
MHz  
MHz  
MHz  
MHz  
Port output frequency Px.y (TBD), C = 20 pF, R = 1 kOhm  
(with load)  
L
L
f
f
Px.y  
(see Note 1 and 2)  
12  
2.2 V  
3 V  
12  
Clock output  
frequency  
P2.0/ACLK, P1.4/SMCLK, C = 20 pF  
L
Port_CLK  
(see Note 2)  
16  
NOTES: 1. A resistive divider with 2 times 0.5 kW between V  
and V  
is used as load. The output is connected to the center tap of the divider.  
at the specified toggle frequency.  
CC  
SS  
2. The output voltage reaches at least 10% and 90% V  
CC  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
outputs − Ports P1 and P2 (continued)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
V
CC  
P1.0  
= 2.2 V  
T
= 25°C  
V
CC  
P1.0  
= 3 V  
A
T
= 25°C  
A
T
= 85°C  
A
T
= 85°C  
A
6
4
2
0
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 4  
Figure 5  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
−2  
0
−5  
V
CC  
P1.0  
= 2.2 V  
V
CC  
P1.0  
= 3 V  
−4  
−10  
−15  
−20  
−25  
−30  
−6  
−8  
T
A
= 85°C  
−10  
−12  
−14  
T
A
= 85°C  
T
A
= 25°C  
T
A
= 25°C  
0.0  
0.5  
OH  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 6  
Figure 7  
NOTE: One output loaded at a time.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Timer_A  
PARAMETER  
TEST CONDITIONS  
Internal: SMCLK, ACLK;  
VCC  
MIN  
TYP  
MAX  
UNIT  
2.2 V  
10  
f
t
Timer_A clock frequency  
MHz  
External: TACLK, INCLK;  
Duty Cycle = 50% 10%  
TA  
3 V  
16  
2.2 V  
3 V  
50  
30  
Timer_A, capture timing  
TA0, TA1, TA2  
ns  
TA,cap  
Comparator_A+ (see Note 1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
25  
MAX UNIT  
2.2 V  
3 V  
40  
µA  
60  
I
I
CAON=1, CARSEL=0, CAREF=0  
(DD)  
45  
CAON=1, CARSEL=0,  
CAREF=1/2/3, no load at  
P2.3/CA0/TA1 and P2.4/CA1/TA2  
2.2 V  
3 V  
30  
45  
50  
µA  
71  
(Refladder/RefDiode)  
Common-mode input  
voltage  
V
CAON =1  
2.2 V/3 V  
2.2 V/3 V  
0
V
CC  
−1  
V
(IC)  
PCA0=1, CARSEL=1, CAREF=1,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage @ 0.25 V  
CC  
node  
V
0.23  
0.24  
0.48  
0.25  
0.5  
(Ref025)  
V
CC  
PCA0=1, CARSEL=1, CAREF=2,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2  
Voltage @ 0.5V  
node  
CC  
V
2.2 V/3 V  
0.47  
(Ref050)  
(RefVT)  
V
CC  
PCA0=1, CARSEL=1, CAREF=3,  
No load at P2.3/CA0/TA1 and  
P2.4/CA1/TA2, T = 85°C  
2.2 V  
3 V  
390  
400  
480  
490  
540  
550  
V
(see Figure 8 and Figure 9)  
mV  
A
V
V
Offset voltage  
See Note 2  
2.2 V/3 V  
2.2 V/3 V  
2.2 V  
3 V  
−30  
0
30  
1.4  
mV  
mV  
(offset)  
Input hysteresis  
CAON=1  
0.7  
210  
150  
1.9  
hys  
160  
90  
300  
240  
3.4  
T
= 25°C, Overdrive 10 mV,  
A
ns  
µs  
ns  
µs  
Without filter: CAF=0  
t
(response LH)  
2.2 V  
3 V  
1.4  
0.9  
130  
80  
T
= 25°C, Overdrive 10 mV,  
A
With filter: CAF=1  
1.5  
2.6  
2.2 V  
3 V  
210  
150  
300  
240  
T
= 25°C, Overdrive 10 mV,  
A
Without filter: CAF=0  
t
(response HL)  
2.2 V  
3 V  
1.4  
0.9  
1.9  
1.5  
3.4  
2.6  
T
= 25°C, Overdrive 10 mV,  
A
With filter: CAF=1  
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.  
The two successive measurements are then summed together.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
= 2.2 V  
V
CC  
= 3 V  
CC  
Typical  
Typical  
−45  
−25  
−5  
15  
35  
55  
75  
95  
−45  
−25  
−5  
15  
35  
55  
75  
95  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 9. V  
vs Temperature, V  
= 2.2 V  
Figure 8. V  
vs Temperature, V  
= 3 V  
(RefVT)  
CC  
(RefVT)  
CC  
typical resistance between CA+ and CA− with CASHORT = 1  
TBD  
V
CC  
− Supply Voltage − V  
Figure 10. Short resistance vs V  
CC  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
0 V  
V
CC  
0
1
CAF  
CAON  
To Internal  
Modules  
Low Pass Filter  
0
1
0
1
+
_
V+  
V−  
CAOUT  
Set CAIFG  
Flag  
τ ≈ 2.0 µs  
Figure 11. Block Diagram of Comparator_A Module  
V
CAOUT  
Overdrive  
V−  
400 mV  
V+  
t
(response)  
Figure 12. Overdrive Definition  
POR/brownout reset (BOR) (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µs  
t
2000  
d(BOR)  
V
dV /dt 3 V/s (see Figure 13)  
CC  
0.7 × V  
(B_IT−)  
V
CC(start)  
Brownout  
V
V
dV /dt 3 V/s (see Figure 13 through Figure 15)  
CC  
dV /dt 3 V/s (see Figure 13)  
CC  
1.71  
180  
V
(B_IT−)  
(see Note 2)  
70  
2
130  
mV  
hys(B_IT−)  
Pulse length needed at RST/NMI pin to accepted reset internally,  
t
µs  
(reset)  
V
CC  
= 2.2 V/3 V  
NOTES: 1. The current consumption of the brownout module is already included in the I  
current consumption data. The voltage level V  
(B_IT−)  
CC  
+ V  
is 1.8V.  
2. During power up, the CPU begins code execution following a period of t  
hys(B_IT−)  
after V  
CC  
= V  
(B_IT−)  
+ V . The default  
hys(B_IT−)  
d(BOR)  
CC(min)  
DCO settings must not be changed until V  
operating frequency.  
V  
, where V  
is the minimum supply voltage for the desired  
CC  
CC(min)  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 13. POR/Brownout Reset (BOR) vs Supply Voltage  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(min)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 14. V  
Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
(CC)min  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(min)  
0.5  
t = t  
f
r
0
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 15. V  
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
CC(min)  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
main DCO characteristics  
D
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
D
DCO control bits DCOx have a step size as defined by parameter S  
.
DCO  
D
Modulation control bits MODx select how often f  
is used within the period of 32 DCOCLK  
DCO(RSEL,DCO+1)  
cycles. The frequency f  
to:  
is used for the remaining cycles. The frequency is an average equal  
DCO(RSEL,DCO)  
32   fDCO(RSEL,DCO)   fDCO(RSEL,DCO)1)  
faverage  
+
MOD   fDCO(RSEL,DCO))(32*MOD)   fDCO(RSEL,DCO)1)  
DCO frequency  
PARAMETER  
TEST CONDITIONS  
RSELx = 0, DCOx = 3, MODx = 0  
VCC  
2.2 V/3 V  
MIN  
0.08  
0.10  
0.14  
0.21  
0.29  
0.41  
0.58  
0.81  
1.14  
1.67  
2.35  
2.94  
4.15  
5.70  
8.25  
10.9  
16.0  
TYP  
MAX  
0.12  
0.15  
0.20  
0.29  
0.40  
0.56  
0.77  
1.07  
1.54  
2.27  
3.25  
4.07  
5.67  
7.45  
11.3  
16.5  
23.0  
1.4  
UNIT  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
DCO(0,3)  
DCO(1,3)  
DCO(2,3)  
DCO(3,3)  
DCO(4,3)  
DCO(5,3)  
DCO(6,3)  
DCO(7,3)  
DCO(8,3)  
DCO(9,3)  
DCO(10,3)  
DCO(11,3)  
DCO(12,3)  
DCO(13,3)  
DCO(14,3)  
DCO(15,3)  
DCO(15,7)  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
S
S
= f  
/f  
RSEL  
DCO  
RSEL DCO(RSEL+1,DCO) DCO(RSEL,DCO)  
ratio  
%
S
S = f /f  
DCO DCO(RSEL,DCO+1) DCO(RSEL,DCO)  
1.05  
45  
1.10  
50  
1.12  
Duty Cycle  
Measured at P1.4/SMCLK  
2.2 V/3 V  
55  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
DCO drift  
Temperature drift (Box Method),  
RSELx = 0, DCOx = 3, MODx = 0  
D
D
D
D
D
D
D
D
D
2.2 V/3 V  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
%
%
%
%
%
%
%
%
%
T(0,3)  
T(7,3)  
T(15,3)  
V(0,3)  
T(7,3)  
T(15,3)  
T(0,3)  
T(7,3)  
T(15,3)  
T
= −40°C − +85°C  
A
(see Note 1)  
Temperature drift (Box Method),  
RSELx = 7, DCOx = 3, MODx = 0  
2.2 V/3 V  
T
= −40°C − +85°C  
A
(see Note 1)  
Temperature drift (Box Method),  
RSELx = 15, DCOx = 3, MODx = 0  
2.2 V/3 V  
T
= −40°C − +85°C  
A
(see Note 1)  
Supply voltage drift (Box Method),  
RSELx = 0, DCOx = 3, MODx = 0  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
1.8 V − 3.6 V  
T
= 25°C  
A
(see Note 1)  
Supply voltage drift (Box Method),  
RSELx = 7, DCOx = 3, MODx = 0  
T
= 25°C  
A
(see Note 1)  
Supply voltage drift (Box Method),  
RSELx = 15, DCOx = 3, MODx = 0  
T
= 25°C  
A
(see Note 1)  
Total drift (Box Method),  
RSELx = 0, DCOx = 3, MODx = 0  
T
= −40°C − +85°C  
A
(see Note 1)  
Total drift (Box Method),  
RSELx = 7, DCOx = 3, MODx = 0  
T
= −40°C − +85°C  
A
(see Note 1)  
Total drift (Box Method),  
RSELx = 15, DCOx = 3, MODx = 0  
T
= −40°C − +85°C  
A
(see Note 1)  
NOTE 1: These parameters are not production tested.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
wake-up from lower power modes (LPM3/4)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
f
= f  
, RSELx = 3,  
, RSELx = 7,  
, RSELx = 11,  
, RSELx = 15,  
DCO DCO(3,3)  
2.2 V/3 V  
7
DCOx = 3  
f
= f  
DCO DCO(7,3)  
DCOx = 3  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2
1.5  
1.0  
DCO clock wake−up time from LPM3/4  
(see Note 1)  
t
µs  
Clock,LPM3/4  
CPU,LPM3/4  
f
= f  
DCO DCO(11,3)  
DCOx = 3  
f
= f  
DCO DCO(15,3)  
DCOx = 3  
1/f  
MCLK  
+
CPU wake−up time from LPM3/4  
(see Note 2)  
t
t
Clock,LPM3/4  
NOTES: 1. The DCO clock wake−up time is measured from the edge of an external wake−up signal (e.g. port interrupt) to the first clock edge  
observable externally on a clock pin (MCLK or SMCLK).  
2. Parameter applicable only if DCOCLK is used for MCLK.  
typical wake−up time characteristics  
TBD  
DCO Frequency − MHz  
Figure 16. Clock wake−up time vs DCO frequency  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
crystal oscillator, LFXT1  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX  
UNIT  
LFXT1 oscillator crystal  
f
frequency, LF mode 0,  
1
XTS = 0, LFXT1Sx = 0 or 1  
32,768  
Hz  
LFXT1,LF  
LFXT1 oscillator crystal  
frequency, HF mode 0  
f
f
f
XTS = 1, LFXT1Sx = 0  
XTS = 1, LFXT1Sx = 1  
XTS = 1, LFXT1Sx = 2  
0.4  
1
1
4
MHz  
MHz  
MHz  
LFXT1,HF0  
LFXT1,HF1  
LFXT1,HF2  
LFXT1 oscillator crystal  
frequency, HF mode 1  
LFXT1 oscillator crystal  
frequency, HF mode 2  
2
16  
LFXT1 oscillator logic  
f
level square wave input XTS = 0, LFXT1Sx = 3  
frequency, LF mode  
10,000  
32,768  
50,000  
Hz  
LFXT1,LF,logic  
LFXT1,HF,logic  
LFXT1 oscillator logic  
level square wave input XTS = 1, LFXT1Sx = 3  
frequency, HF mode  
f
0.4  
20  
16  
MHz  
Supported ESR for LF  
XTS = 0, LFXT1Sx = 0 or 1  
crystals  
ESR  
100  
kW  
W
LF  
XTS = 0, LFXT1Sx = 0,  
500  
100  
50  
f
= 1 MHz, C = 32 pF  
L
LFXT1,HF  
XTS = 0, LFXT1Sx = 1  
= 4 MHz, C = 32 pF  
Supported ESR for HF  
crystals (refer to  
Figure 17 and  
W
ESR  
HF  
f
LFXT1,HF  
XTS = 0, LFXT1Sx = 2  
= 16 MHz, C = 32 pF  
L
Figure 18)  
W
f
LFXT1,HF  
L
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
XTS = 1 (see Note 2)  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
XTS = 1 (see Note 2)  
XTS = 0, Measured at P1.4/ACLK,  
2
11  
17  
22  
2
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
Input capacitance  
(see Note 1)  
C
C
XIN  
2
11  
17  
22  
2
Output capacitance  
(see Note 1)  
XOUT  
LF mode  
HF mode  
2.2 V/ 3 V  
2.2 V/ 3 V  
2.2 V/ 3 V  
2.2 V/ 3 V  
2.2 V/ 3 V  
30  
35  
50  
50  
50  
70  
65  
%
%
f
= 32,768 Hz  
LFXT1,LF  
XTS = 1, Measured at P1.4/ACLK,  
= 10 MHz  
Duty Cycle  
f
LFXT1,HF  
XTS = 1, Measured at P1.4/ACLK,  
= 16 MHz  
40  
60  
%
f
LFXT1,HF  
Oscillator fault  
frequency, LF mode  
XTS = 0, LFXT1Sx = 3  
(see Note 3)  
f
f
TBD  
0.05  
10,000  
0.25  
Hz  
MHz  
Fault,LF  
Oscillator fault  
frequency, HF mode  
XTS = 1, LFXT1Sx = 3  
(see Note 3)  
Fault,HF  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF).  
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
3. Measured with logic level input frequency but also applies to operation with crystals.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical operating areas for oscillator LFXT1 in HF mode (XTS = 1)  
TBD  
Crystal Frequency − kHz  
Figure 17. ESR with Safety Factor (SF) = 3 vs Crystal Frequency, C = 32 pF  
L
TBD  
Crystal Frequency − kHz  
Figure 18. ESR with Safety Factor (SF) = 3 vs Crystal Frequency, C = 15 pF  
L
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
Flash Memory  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN  
NOM  
MAX  
UNIT  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
2.2  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from V  
Supply current from V  
during program  
during erase  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
2.7 V/ 3.6 V  
3
3
PGM  
CC  
7
mA  
ERASE  
CPT  
CC  
Cumulative program time  
see Note 1  
4
ms  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
20  
ms  
CMErase  
4
10  
5
10  
cycles  
years  
t
T = 25°C  
J
100  
Retention  
t
t
t
t
t
t
Word or byte program time  
30  
25  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
18  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 2  
t
FTG  
6
10593  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. These values are hardwired into the Flash Controller’s state machine (t  
= 1/f ).  
FTG  
FTG  
RAM  
PARAMETER  
MIN NOM  
MAX  
UNIT  
V
CPU halted (see Note 1)  
1.6  
V
(RAMh)  
NOTE 1: This parameter defines the minimum supply voltage V  
when the data in the program memory RAM remains unchanged. No program  
execution should happen during this supply voltage condition.  
CC  
JTAG Interface  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN NOM  
MAX  
UNIT  
2.2 V  
3 V  
0
0
5
10  
90  
MHz  
MHz  
kΩ  
f
TCK input frequency  
see Note 1  
TCK  
R
Internal pull-down resistance on TEST  
may be restricted to meet the timing requirements of the module selected.  
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. f  
TCK  
JTAG Fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
MIN NOM  
MAX  
UNIT  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse-blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
T
A
= 25°C  
2.5  
6
V
V
CC(FB)  
7
100  
1
FB  
I
t
mA  
ms  
FB  
FB  
NOTES: 1. Once the fuse is blown, no further access to the JTAG/Test and emulation feature is possible and is switched to bypass mode.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.0 to P1.3, input/output with Schmitt-trigger  
PxSEL.x  
CAPD.x  
PxDIR.x  
0
Direction  
1
0: Input  
Module Direction  
1: Output  
PxOUT.x  
0
1
Module Output  
P1.0/TACLK  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
Bus  
Keeper  
PxIN.x  
Module Input  
EN  
EN  
Interrupt  
Logic  
Set PxIFG.x  
PRIMARY FUNCTION  
SECONDARY FUNCTION  
GPIO  
Module IO  
Analog IO  
JTAG  
Control Bits/Signals  
input  
0†  
output  
input  
output  
P1SEL.x  
0
1
1
0
1
1
N/A  
N/A  
N/A  
N/A  
P1DIR.x  
0†  
Pin Name (P1.x)  
P1.0/TACLK  
P1.1/TA0  
P1.0 input†  
P1.1 input†  
P1.2 input†  
P1.3 input†  
P1.0 output  
P1.1 output  
P1.2 output  
P1.3 output  
Timer_A3.TACLK  
Timer_A3.CCI0A  
Timer_A3.CCI1A  
Timer_A3.CCI2A  
DV  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
SS  
Timer_A3.TA0  
Timer_A3.TA1  
Timer_A3.TA2  
P1.2/TA1  
P1.3/TA2  
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.4 to P1.7, input/output with Schmitt-trigger and in-system access features  
PxREN.x  
PxOUT.x  
PxSEL.x  
DV  
DV  
0
1
SS  
CC  
PxDIR.x  
0
1
Direction  
0: Input  
Module Direction  
1: Output  
PxOUT.x  
0
1
Module Output  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
P1.6/TA1/TDI  
Bus  
Keeper  
PxIN.x  
P1.7/TA2/TDO/TDI  
Module Input  
EN  
EN  
Set PxIFG.x  
To JTAG  
Interrupt  
Logic  
From TEST pad  
From JTAG  
From JTAG (TDO)  
P1.7/TA2/TDO/TDI only  
To JTAG pads  
TEST  
JTAG  
Fuse  
DV  
TEST pad  
SS  
PRIMARY FUNCTION  
SECONDARY FUNCTION  
GPIO  
Module IO  
Analog IO  
JTAG  
Control Bits/Signals  
P1SEL.x  
input  
0†  
output  
input  
output  
0
1
0
1
0
0
1
1
0
N/A  
N/A  
N/A  
X
X
1
P1DIR.x  
0†  
TEST (from pin)  
Pin Name (P1.x)  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
P1.6/TA1/TDI/TCLK  
P1.7/TA2/TDO/TDI  
0†  
P1.4 input†  
P1.5 input†  
P1.6 input†  
P1.7 input†  
P1.4 output  
P1.5 output  
P1.6 output  
P1.7 output  
N/A  
N/A  
N/A  
N/A  
SMCLK  
N/A  
N/A  
N/A  
N/A  
TCK  
TMS  
Timer_A3.TA0  
Timer_A3.TA1  
Timer_A3.TA2  
TDI/TCLK‡  
TDO/TDI‡  
Default after reset (PUC/POR)  
Function controlled by JTAG  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
APPLICATION INFORMATION  
Port P2 pin schematic: P2.0 to P2.5, input/output with Schmitt-trigger  
P2OUT.x  
CAPD.x  
P2REN.x  
P2SEL.x  
DV  
DV  
0
1
SS  
CC  
P2DIR.x  
0
Direction  
Module Direction  
1
0: Input  
1: Output  
P2OUT.x  
0
1
Module Output  
P2.0/ACLK/CA2  
P2.1/INCLK/CA3  
P2.2/CAOUT/TA0/CA4  
P2.3/TA1/CA0  
Bus  
Keeper  
P2IN.x  
Module Input  
EN  
P2.4/TA2/CA1  
P2.5/CA5  
EN  
Interrupt  
Logic  
Set P2IFG.x  
From Comparator  
To Comparator  
PRIMARY FUNCTION  
GPIO  
SECONDARY FUNCTION  
Module IO  
Analog IO  
JTAG  
Control Bits/Signals  
P2SEL.x  
input  
0†  
output  
input  
output  
0
1
0
1
0
0
1
1
0
X
X
1
N/A  
N/A  
N/A  
P2DIR.x  
0†  
CAPD.x  
0†  
Pin Name (P2.x)  
P2.0/ACLK/CA2  
P2.1/INCLK/CA3  
P2.2/CAOUT/TA0/CA4  
P2.3/TA1/CA0  
P2.4/TA2/CA1  
P2.5/CA5  
P2.0 input†  
P2.1 input†  
P2.2 input†  
P2.3 input†  
P2.4 input†  
P2.5 input†  
P2.0 output  
P2.1 output  
P2.2 output  
P2.3 output  
P2.4 output  
P2.5 output  
N/A  
ACLK  
CA2  
CA3  
CA4  
CA0  
CA1  
CA5  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Timer_A3.INCLK  
DV  
SS  
Timer_A3.CCI0B  
Comparator_A.OUT  
Timer_A3.TA1  
Timer_A3.TA2  
N/A  
N/A  
N/A  
N/A  
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
APPLICATION INFORMATION  
Port P2 pin schematic: P2.6, input/output with Schmitt-trigger and crystal oscillator input  
P2OUT.x  
P2REN.x  
P2SEL.x  
CAPD.x  
DV  
DV  
0
1
SS  
CC  
P2DIR.x  
DV  
0
Direction  
1
0: Input  
1: Output  
SS  
P2OUT.x  
P2IN.x  
XIN/P2.6/CA6  
Bus  
Keeper  
EN  
EN  
Interrupt  
Logic  
Set P2IFG.x  
From Comparator  
To Comparator  
LFXT1 Oscillator  
OSCOFF  
1
0
LFXT1CLK  
BCSCTL3.LFXT1S = 11  
XOUT  
PRIMARY FUNCTION  
GPIO  
SECONDARY FUNCTION  
Module IO  
output  
N/A  
Analog IO  
JTAG  
Control Bits/Signals  
P2SEL.x  
input  
0
output  
input  
1†  
X
0
1
0
0
X
1
N/A  
N/A  
N/A  
P2DIR.x  
0†  
N/A  
CAPD.x  
0†  
X
N/A  
Pin Name (P2.x)  
P2.6/XIN/CA6  
P2.6 input  
P2.6 output  
XIN†  
N/A  
CA6  
N/A  
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢀ ꢉ ꢊ ꢋꢌ ꢁꢉ ꢍꢎ ꢏ ꢐ ꢀꢉ ꢑ ꢒꢓꢑ ꢓꢎ ꢔꢒ ꢓꢐ ꢐꢋ ꢒ  
SLAS439 − SEPTEMBER 2004  
APPLICATION INFORMATION  
Port P2 pin schematic: P2.7, input/output with Schmitt-trigger and crystal oscillator output  
P2OUT.x  
P2REN.x  
P2SEL.x  
CAPD.x  
DV  
DV  
0
1
SS  
CC  
P2DIR.x  
DV  
0
Direction  
1
0: Input  
1: Output  
SS  
P2OUT.x  
P2IN.x  
XOUT/P2.7/CA7  
Bus  
Keeper  
EN  
EN  
Interrupt  
Logic  
Set P2IFG.x  
From Comparator  
To Comparator  
LFXT1 Oscillator  
OSCOFF  
From P2.6/XIN/CA6  
1
0
LFXT1CLK  
XIN  
BCSCTL3.LFXT1S = 11  
PRIMARY FUNCTION  
GPIO  
SECONDARY FUNCTION  
Module IO  
Analog IO  
JTAG  
Control Bits/Signals  
P2SEL.x  
input  
0
output  
input  
N/A  
N/A  
N/A  
output  
0
1
0
1†  
X
0
X
1
N/A  
N/A  
N/A  
P2DIR.x  
0†  
CAPD.x  
0†  
X
Pin Name (P2.x)  
XOUT/P2.7/CA7  
P2.7 input  
P2.7 output  
N/A  
XOUT†  
CA7  
N/A  
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. If the pin XOUT/P2.7/CA7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection  
to this pin after reset.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of  
the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, I , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care  
TF  
must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense  
currents are terminated.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS  
is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode.  
After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse  
check mode has the potential to be activated.  
The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 19). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TEST  
Figure 19. Fuse Check Mode Current, MSP430F21x1  
NOTE:  
The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader  
access key is used. Also, see the bootstrap loader section for more information.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢓꢑ  
ꢓꢎ  
ꢓꢐ  
ꢐꢋ  
SLAS439 − SEPTEMBER 2004  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PIN SHOWN  
0.050 (1,27)  
16  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
9
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°ā8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
PINS **  
16  
20  
24  
0.610  
DIM  
0.410  
0.510  
A MAX  
(10,41) (12,95) (15,49)  
0.400  
0.500  
0.600  
A MIN  
(10,16) (12,70) (15,24)  
4040000/D 02/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°ā8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈꢆꢈ  
ꢓꢑ  
ꢓꢎ  
ꢓꢐ  
ꢐꢋ  
SLAS439 − SEPTEMBER 2004  
MECHANICAL DATA  
DGV (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
24 PINS SHOWN  
0,23  
0,13  
M
0,07  
0,40  
24  
13  
0,16 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
0°ā8°  
0,75  
1
12  
0,50  
A
Seating Plane  
0,08  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
38  
48  
56  
DIM  
A MAX  
3,70  
3,50  
3,70  
3,50  
5,10  
4,90  
5,10  
4,90  
7,90  
7,70  
9,80  
9,60  
11,40  
11,20  
A MIN  
4073251/E 08/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.  
D. Falls within JEDEC: 24/48 Pins − MO-153  
14/16/20/56 Pins − MO-194  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇꢈ ꢆꢈ  
ꢀ ꢉꢊꢋ ꢌ ꢁꢉ ꢍ ꢎꢏꢐ ꢀ ꢉꢑꢒꢓ ꢑꢓ ꢎꢔ ꢒꢓ ꢐꢐ ꢋꢒ  
SLAS439 − SEPTEMBER 2004  
MECHANICAL DATA  
RGE (S-PQFP-N24)  
PLASTIC QUAD FLATPACK  
4,15  
3,85  
4,15  
3,85  
Pin 1 Index Area  
Top and Bottom  
1,00  
0,80  
0,20 REF.  
Seating Plane  
0,05  
0,00  
0,08  
2,55 MAX SQ.  
0,50  
24X  
0,50  
7
0,30  
1
6
24  
19  
12  
Exposed Thermal Die Pad  
(See Note D)  
0,30  
18  
2,50  
13  
24X  
0,18  
0,10  
4204104/B 11/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Quad Flatpack, No-leads, (QFN) package configuration.  
D. The package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane.  
E. Falls within JEDEC M0-220.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

MSP430F2101IPWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101IRGE

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101IRGER

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101IRGET

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TDGV

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TDGVR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TDW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TDWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TPW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TPWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TRGE

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2101TRGER

MIXED SIGNAL MICROCONTROLLER
TI