MSP430F2254IYFFT [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F2254IYFFT
型号: MSP430F2254IYFFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总95页 (文件大小:1891K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
MIXED SIGNAL MICROCONTROLLER  
1
FEATURES  
23  
Low Supply Voltage Range: 1.8 V to 3.6 V  
Two Configurable Operational Amplifiers  
(MSP430F22x4 Only)  
Ultra-Low Power Consumption  
Brownout Detector  
Active Mode: 270 µA at 1 MHz, 2.2 V  
Standby Mode: 0.7 µA  
Serial Onboard Programming, No External  
Programming Voltage Needed, Programmable  
Code Protection by Security Fuse  
Off Mode (RAM Retention): 0.1 µA  
Ultra-Fast Wake-Up From Standby Mode in  
Less Than 1 µs  
Bootstrap Loader  
On-Chip Emulation Module  
Family Members Include:  
16-Bit RISC Architecture, 62.5-ns Instruction  
Cycle Time  
MSP430F2232  
Basic Clock Module Configurations  
8KB + 256B Flash Memory  
512B RAM  
Internal Frequencies up to 16 MHz With  
Four Calibrated Frequencies to ±1%  
Internal Very-Low-Power Low-Frequency  
Oscillator  
MSP430F2252  
16KB + 256B Flash Memory  
512B RAM  
32-kHz Crystal  
High-Frequency (HF) Crystal up to 16 MHz  
Resonator  
MSP430F2272  
32KB + 256B Flash Memory  
1KB RAM  
External Digital Clock Source  
External Resistor  
MSP430F2234  
16-Bit Timer_A With Three Capture/Compare  
Registers  
8KB + 256B Flash Memory  
512B RAM  
16-Bit Timer_B With Three Capture/Compare  
Registers  
MSP430F2254  
16KB + 256B Flash Memory  
512B RAM  
Universal Serial Communication Interface  
Enhanced UART Supporting Auto-Baudrate  
Detection (LIN)  
MSP430F2274  
32KB + 256B Flash Memory  
1KB RAM  
IrDA Encoder and Decoder  
Synchronous SPI  
I2C™  
Available in a 38-Pin Thin Shrink Small-Outline  
Package (TSSOP) (DA), 40-Pin QFN Package  
(RHA), and 49-Pin Ball Grid Array Package  
(YFF) (See Table 1)  
10-Bit 200-ksps Analog-to-Digital (A/D)  
Converter With Internal Reference, Sample-  
and-Hold, Autoscan, and Data Transfer  
Controller  
For Complete Module Descriptions, See the  
MSP430x2xx Family User's Guide (SLAU144)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
MSP430 is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
DESCRIPTION  
The Texas Instruments MSP430™ family of ultra-low-power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features a  
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs.  
The MSP430F22x4/MSP430F22x2 series is an ultra-low-power mixed signal microcontroller with two built-in 16-  
bit timers, a universal serial communication interface, 10-bit A/D converter with integrated reference and data  
transfer controller (DTC), two general-purpose operational amplifiers in the MSP430F22x4 devices, and 32 I/O  
pins.  
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then  
process the data for display or for transmission to a host system. Stand-alone radio-frequency (RF) sensor front  
ends are another area of application.  
Table 1. Available Options  
PACKAGED DEVICES(1)(2)  
TA  
PLASTIC 49-PIN BGA  
(YFF)  
PLASTIC 38-PIN TSSOP  
(DA)  
PLASTIC 40-PIN QFN  
(RHA)  
MSP430F2232IYFF  
MSP430F2252IYFF  
MSP430F2272IYFF  
MSP430F2234IYFF  
MSP430F2254IYFF  
MSP430F2274IYFF  
MSP430F2232IDA  
MSP430F2252IDA  
MSP430F2272IDA  
MSP430F2234IDA  
MSP430F2254IDA  
MSP430F2274IDA  
MSP430F2232TDA  
MSP430F2252TDA  
MSP430F2272TDA  
MSP430F2234TDA  
MSP430F2254TDA  
MSP430F2274TDA  
MSP430F2232IRHA  
MSP430F2252IRHA  
MSP430F2272IRHA  
MSP430F2234IRHA  
MSP430F2254IRHA  
MSP430F2274IRHA  
MSP430F2232TRHA  
MSP430F2252TRHA  
MSP430F2272TRHA  
MSP430F2234TRHA  
MSP430F2254TRHA  
MSP430F2274TRHA  
-40°C to 85°C  
-40°C to 105°C  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
Development Tool Support  
All MSP430™ microcontrollers include an Embedded Emulation Module (EEM) that allows advanced debugging  
and programming through easy-to-use development tools. Recommended hardware options include:  
Debugging and Programming Interface  
MSP-FET430UIF (USB)  
MSP-FET430PIF (Parallel Port)  
Debugging and Programming Interface with Target Board  
MSP-FET430U38 (DA package)  
Production Programmer  
MSP-GANG430  
2
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
MSP430F22x2 Device Pinout, DA Package  
TEST/SBWTCK  
DVCC  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
P1.7/TA2/TDO/TDI  
P1.6/TA1/TDI  
2
P2.5/ROSC  
3
P1.5/TA0/TMS  
DVSS  
4
P1.4/SMCLK/TCK  
P1.3/TA2  
XOUT/P2.7  
5
XIN/P2.6  
6
P1.2/TA1  
RST/NMI/SBWTDIO  
P2.0/ACLK/A0  
P2.1/TAINCLK/SMCLK/A1  
P2.2/TA0/A2  
7
P1.1/TA0  
8
P1.0/TACLK/ADC10CLK  
P2.4/TA2/A4/VREF+/VeREF+  
P2.3/TA1/A3/VREF−/VeREF−  
P3.7/A7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P3.0/UCB0STE/UCA0CLK/A5  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
AVSS  
P3.6/A6  
P3.5/UCA0RXD/UCA0SOMI  
P3.4/UCA0TXD/UCA0SIMO  
P4.7/TBCLK  
AVCC  
P4.6/TBOUTH/A15  
P4.5/TB2/A14  
P4.0/TB0  
P4.1/TB1  
P4.4/TB1/A13  
P4.2/TB2  
P4.3/TB0/A12  
MSP430F22x4 Device Pinout, DA Package  
TEST/SBWTCK  
DVCC  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
P1.7/TA2/TDO/TDI  
2
P1.6/TA1/TDI  
P2.5/ROSC  
3
P1.5/TA0/TMS  
DVSS  
4
P1.4/SMCLK/TCK  
XOUT/P2.7  
5
P1.3/TA2  
XIN/P2.6  
6
P1.2/TA1  
RST/NMI/SBWTDIO  
P2.0/ACLK/A0/OA0I0  
P2.1/TAINCLK/SMCLK/A1/OA0O  
P2.2/TA0/A2/OA0I1  
P3.0/UCB0STE/UCA0CLK/A5  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
AVSS  
7
P1.1/TA0  
8
P1.0/TACLK/ADC10CLK  
P2.4/TA2/A4/VREF+/VeREF+/OA1I0  
P2.3/TA1/A3/VREF−/VeREF−/OA1I1/OA1O  
P3.7/A7/OA1I2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P3.6/A6/OA0I2  
P3.5/UCA0RXD/UCA0SOMI  
P3.4/UCA0TXD/UCA0SIMO  
P4.7/TBCLK  
AVCC  
P4.6/TBOUTH/A15/OA1I3  
P4.5/TB2/A14/OA0I3  
P4.4/TB1/A13/OA1O  
P4.3/TB0/A12/OA0O  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
Copyright © 2006–2012, Texas Instruments Incorporated  
3
 
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
MSP430F22x2 Device Pinout, RHA Package  
39 38 37 36 35 34 33 32  
DVSS  
XOUT/P2.7  
1
2
3
4
5
6
7
8
9
10  
30 P1.1/TA0  
29 P1.0/TACLK/ADC10CLK  
28 P2.4/TA2/A4/VREF+/VeREF+  
27 P2.3/TA1/A3/VREF−/VeREF−  
26 P3.7/A7  
XIN/P2.6  
DVSS  
RST/NMI/SBWTDIO  
P2.0/ACLK/A0  
25 P3.6/A6  
P2.1/TAINCLK/SMCLK/A1  
P2.2/TA0/A2  
24 P3.5/UCA0RXD/UCA0SOMI  
23 P3.4/UCA0TXD/UCA0SIMO  
22 P4.7/TBCLK  
P3.0/UCB0STE/UCA0CLK/A5  
P3.1/UCB0SIMO/UCB0SDA  
21 P4.6/TBOUTH/A15  
12 13 14 15 16 17 18 19  
4
Copyright © 2006–2012, Texas Instruments Incorporated  
 
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
MSP430F22x4 Device Pinout, RHA Package  
39 38 37 36 35 34 33 32  
DVSS  
XOUT/P2.7  
1
2
3
4
5
6
7
8
9
10  
30 P1.1/TA0  
29 P1.0/TACLK/ADC10CLK  
28 P2.4/TA2/A4/VREF+/VeREF+/OA1I0  
27 P2.3/TA1/A3/VREF−/VeREF−/OA1I1/OA1O  
26 P3.7/A7/OA1I2  
XIN/P2.6  
DVSS  
RST/NMI/SBWTDIO  
P2.0/ACLK/A0/OA0I0  
P2.1/TAINCLK/SMCLK/A1/OA0O  
P2.2/TA0/A2/OA0I1  
P3.0/UCB0STE/UCA0CLK/A5  
P3.1/UCB0SIMO/UCB0SDA  
25 P3.6/A6/OA0I2  
24 P3.5/UCA0RXD/UCA0SOMI  
23 P3.4/UCA0TXD/UCA0SIMO  
22 P4.7/TBCLK  
21 P4.6/TBOUTH/A15/OA1I3  
12 13 14 15 16 17 18 19  
Copyright © 2006–2012, Texas Instruments Incorporated  
5
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
MSP430F22x4, MSP430F22x2 Device Pinout, YFF Package  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
A2  
B2  
C2  
D2  
E2  
F2  
G2  
A3  
B3  
C3  
D3  
E3  
F3  
G3  
A4  
B4  
A5  
B5  
C5  
D5  
E5  
F5  
G5  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
A7  
B7  
C7  
D7  
E7  
F7  
G7  
C4  
TOP VIEW  
D4  
E4  
F4  
G4  
Package Dimensions  
The package dimensions for this YFF package are shown in Table 2. See the package drawing at the end of this  
data sheet for more details.  
Table 2. YFF Package Dimensions  
PACKAGED DEVICES  
D
E
MSP430F22x2  
MSP430F22x4  
3.33 ± 0.03 mm 3.49 ± 0.03 mm  
6
Copyright © 2006–2012, Texas Instruments Incorporated  
 
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
MSP430F22x2 Functional Block Diagram  
VCC  
VSS  
P1.x/P2.x  
2x8  
P3.x/P4.x  
2x8  
XIN  
XOUT  
ADC10  
10Bit  
Ports P1/P2  
ACLK  
Flash  
RAM  
Ports P3/P4  
Basic Clock  
System+  
2x8 I/O  
Interrupt  
capability,  
pullup/down  
resistors  
SMCLK  
32kB  
16kB  
8kB  
1kB  
512B  
512B  
12  
2x8 I/O  
pullup/down  
resistors  
Channels,  
Autoscan,  
DTC  
MCLK  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
Timer_B3  
USCI_A0:  
UART/LIN,  
IrDA, SPI  
Watchdog  
WDT+  
Timer_A3  
JTAG  
Interface  
Brownout  
Protection  
3 CC  
Registers,  
Shadow  
Reg  
3 CC  
Registers  
USCI_B0:  
SPI, I2C  
15/16Bit  
SpyBi Wire  
RST/NMI  
MSP430F22x4 Functional Block Diagram  
VCC  
VSS  
P1.x/P2.x  
2x8  
P3.x/P4.x  
2x8  
XIN  
XOUT  
ADC10  
10Bit  
Ports P1/P2  
ACLK  
Flash  
RAM  
Ports P3/P4  
Basic Clock  
System+  
OA0, OA1  
2x8 I/O  
Interrupt  
capability,  
pullup/down  
resistors  
SMCLK  
32kB  
16kB  
8kB  
1kB  
512B  
512B  
12  
2x8 I/O  
pullup/down  
resistors  
Channels,  
Autoscan,  
DTC  
2 Op Amps  
MCLK  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
Timer_B3  
USCI_A0:  
UART/LIN,  
IrDA, SPI  
Watchdog  
WDT+  
Timer_A3  
JTAG  
Interface  
Brownout  
Protection  
3 CC  
Registers,  
Shadow  
Reg  
3 CC  
Registers  
USCI_B0:  
SPI, I2C  
15/16Bit  
SpyBi Wire  
RST/NMI  
Copyright © 2006–2012, Texas Instruments Incorporated  
7
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Table 3. Terminal Functions, MSP430F22x2  
TERMINAL  
NO.  
DA  
I/O  
I/O  
I/O  
DESCRIPTION  
NAME  
YFF  
RHA  
General-purpose digital I/O pin  
P1.0/TACLK/ADC10CLK  
P1.1/TA0  
F2  
31  
32  
29  
Timer_A, clock signal TACLK input  
ADC10, conversion clock  
General-purpose digital I/O pin  
G2  
30  
Timer_A, capture: CCI0A input, compare: OUT0 output  
BSL transmit  
General-purpose digital I/O pin  
P1.2/TA1  
P1.3/TA2  
E2  
G1  
33  
34  
31  
32  
I/O  
I/O  
Timer_A, capture: CCI1A input, compare: OUT1 output  
General-purpose digital I/O pin  
Timer_A, capture: CCI2A input, compare: OUT2 output  
General-purpose digital I/O pin  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
F1  
E1  
E3  
D2  
A4  
35  
36  
37  
38  
8
33  
34  
35  
36  
6
I/O  
I/O  
I/O  
I/O  
I/O  
SMCLK signal output  
Test Clock input for device programming and test  
General-purpose digital I/O pin  
Timer_A, compare: OUT0 output  
Test Mode Select input for device programming and test  
General-purpose digital I/O pin  
P1.6/TA1/TDI/TCLK  
P1.7/TA2/TDO/TDI(1)  
P2.0/ACLK/A0  
Timer_A, compare: OUT1 output  
Test Data Input or Test Clock Input for programming and test  
General-purpose digital I/O pin  
Timer_A, compare: OUT2 output  
Test Data Output or Test Data Input for programming and test  
General-purpose digital I/O pin  
ACLK output  
ADC10, analog input A0  
General-purpose digital I/O pin  
Timer_A, clock signal at INCLK  
P2.1/TAINCLK/SMCLK/A1  
P2.2/TA0/A2  
B4  
A5  
F3  
9
7
8
I/O  
I/O  
I/O  
SMCLK signal output  
ADC10, analog input A1  
General-purpose digital I/O pin  
10  
29  
Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output  
ADC10, analog input A2  
General-purpose digital I/O pin  
Timer_A, capture CCI1B input, compare: OUT1 output  
ADC10, analog input A3  
P2.3/TA1/A3/VREF-/ VeREF-  
27  
Negative reference voltage input  
General-purpose digital I/O pin  
Timer_A, compare: OUT2 output  
P2.4/TA2/A4/VREF+/ VeREF+  
G3  
30  
28  
I/O  
ADC10, analog input A4  
Positive reference voltage output or input  
General-purpose digital I/O pin  
P2.5/ROSC  
XIN/P2.6  
C2  
A2  
3
6
40  
3
I/O  
I/O  
Input for external DCO resistor to define DCO frequency  
Input terminal of crystal oscillator  
General-purpose digital I/O pin  
(1) TDO or TDI is selected via JTAG instruction.  
8
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Table 3. Terminal Functions, MSP430F22x2 (continued)  
TERMINAL  
NO.  
DA  
I/O  
DESCRIPTION  
NAME  
YFF  
RHA  
Output terminal of crystal oscillator  
General-purpose digital I/O pin(2)  
XOUT/P2.7  
A1  
5
2
I/O  
General-purpose digital I/O pin  
USCI_B0 slave transmit enable  
P3.0/UCB0STE/UCA0CLK/  
A5  
B5  
11  
9
I/O  
USCI_A0 clock input/output  
ADC10, analog input A5  
General-purpose digital I/O pin  
P3.1/UCB0SIMO/  
UCB0SDA  
A6  
A7  
B6  
G6  
G5  
12  
13  
14  
25  
26  
10  
11  
12  
23  
24  
I/O  
I/O  
I/O  
I/O  
I/O  
USCI_B0 SPI mode: slave in/master out  
USCI_B0 I2C mode: SDA I2C data  
General-purpose digital I/O pin  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
USCI_B0 SPI mode: slave out/master in  
USCI_B0 I2C mode: SCL I2C clock  
General-purpose digital I/O pin  
USCI_B0 clock input/output  
USCI_A0 slave transmit enable  
General-purpose digital I/O pin  
P3.4/UCA0TXD/  
UCA0SIMO  
USCI_A0 UART mode: transmit data output  
USCI_A0 SPI mode: slave in/master out  
General-purpose digital I/O pin  
P3.5/UCA0RXD/  
UCA0SOMI  
USCI_A0 UART mode: receive data input  
USCI_A0 SPI mode: slave out/master in  
General-purpose digital I/O pin  
P3.6/A6  
F4  
G4  
D6  
D7  
E6  
27  
28  
17  
18  
19  
25  
26  
15  
16  
17  
I/O  
I/O  
I/O  
I/O  
I/O  
ADC10 analog input A6  
General-purpose digital I/O pin  
P3.7/A7  
ADC10 analog input A7  
General-purpose digital I/O pin  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
Timer_B, capture: CCI0A input, compare: OUT0 output  
General-purpose digital I/O pin  
Timer_B, capture: CCI1A input, compare: OUT1 output  
General-purpose digital I/O pin  
Timer_B, capture: CCI2A input, compare: OUT2 output  
General-purpose digital I/O pin  
P4.3/TB0/A12  
P4.4/TB1/A13  
P4.5/TB2/A14  
P4.6/TBOUTH/A15  
E7  
F7  
F6  
G7  
20  
21  
22  
23  
18  
19  
20  
21  
I/O  
I/O  
I/O  
I/O  
Timer_B, capture: CCI0B input, compare: OUT0 output  
ADC10 analog input A12  
General-purpose digital I/O pin  
Timer_B, capture: CCI1B input, compare: OUT1 output  
ADC10 analog input A13  
General-purpose digital I/O pin  
Timer_B, compare: OUT2 output  
ADC10 analog input A14  
General-purpose digital I/O pin  
Timer_B, switch all TB0 to TB3 outputs to high impedance  
ADC10 analog input A15  
(2) If XOUT/P2.7 is used as an input, excess current flows until P2SEL.7 is cleared. This is due to the oscillator output driver connection to  
this pad after reset.  
Copyright © 2006–2012, Texas Instruments Incorporated  
9
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Table 3. Terminal Functions, MSP430F22x2 (continued)  
TERMINAL  
NO.  
DA  
I/O  
DESCRIPTION  
NAME  
YFF  
RHA  
General-purpose digital I/O pin  
P4.7/TBCLK  
F5  
B3  
24  
7
22  
I/O  
I
Timer_B, clock signal TBCLK input  
Reset or nonmaskable interrupt input  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
5
Spy-Bi-Wire test data input/output during programming and test  
Selects test mode for JTAG pins on Port 1. The device protection fuse is  
connected to TEST.  
D1  
1
37  
I
Spy-Bi-Wire test clock input during programming and test  
C1,  
D3,  
D4,  
DVCC  
AVCC  
2
38, 39  
14  
Digital supply voltage  
E4, E5  
C6,  
C7,  
D5  
16  
Analog supply voltage  
Digital ground reference  
A3,  
B1,  
B2,  
C3,  
C4  
DVSS  
4
1, 4  
B7,  
C5  
AVSS  
15  
13  
Analog ground reference  
QFN Pad  
NA  
NA  
Pad  
NA  
QFN package pad; connection to DVSS recommended.  
10  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Table 4. Terminal Functions, MSP430F22x4  
TERMINAL  
NO.  
DA  
I/O  
I/O  
I/O  
DESCRIPTION  
NAME  
YFF  
RHA  
General-purpose digital I/O pin  
P1.0/TACLK/ADC10CLK  
P1.1/TA0  
F2  
31  
32  
29  
Timer_A, clock signal TACLK input  
ADC10, conversion clock  
General-purpose digital I/O pin  
Timer_A, capture: CCI0A input, compare: OUT0 output  
BSL transmit  
G2  
30  
General-purpose digital I/O pin  
Timer_A, capture: CCI1A input, compare: OUT1 output  
General-purpose digital I/O pin  
Timer_A, capture: CCI2A input, compare: OUT2 output  
General-purpose digital I/O pin  
SMCLK signal output  
P1.2/TA1  
P1.3/TA2  
E2  
G1  
33  
34  
31  
32  
I/O  
I/O  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
F1  
E1  
E3  
D2  
35  
36  
37  
38  
33  
34  
35  
36  
I/O  
I/O  
I/O  
I/O  
Test Clock input for device programming and test  
General-purpose digital I/O pin  
Timer_A, compare: OUT0 output  
Test Mode Select input for device programming and test  
General-purpose digital I/O pin  
Timer_A, compare: OUT1 output  
Test Data Input or Test Clock Input for programming and test  
General-purpose digital I/O pin  
Timer_A, compare: OUT2 output  
Test Data Output or Test Data Input for programming and test  
General-purpose digital I/O pin  
ACLK output  
P1.6/TA1/TDI/TCLK  
P1.7/TA2/TDO/TDI(1)  
P2.0/ACLK/A0/OA0I0  
A4  
B4  
A5  
8
9
6
7
8
I/O  
I/O  
I/O  
ADC10, analog input A0  
OA0, analog input IO  
General-purpose digital I/O pin  
Timer_A, clock signal at INCLK  
SMCLK signal output  
P2.1/TAINCLK/SMCLK/  
A1/OA0O  
ADC10, analog input A1  
OA0, analog output  
General-purpose digital I/O pin  
Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output  
ADC10, analog input A2  
P2.2/TA0/A2/OA0I1  
10  
OA0, analog input I1  
General-purpose digital I/O pin  
Timer_A, capture CCI1B input, compare: OUT1 output  
ADC10, analog input A3  
P2.3/TA1/A3/ VREF-/VeREF-  
OA1I1/OA1O  
/
F3  
29  
27  
I/O  
Negative reference voltage input  
OA1, analog input I1  
OA1, analog output  
(1) TDO or TDI is selected via JTAG instruction.  
Copyright © 2006–2012, Texas Instruments Incorporated  
11  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Table 4. Terminal Functions, MSP430F22x4 (continued)  
TERMINAL  
NO.  
DA  
I/O  
DESCRIPTION  
NAME  
YFF  
RHA  
General-purpose digital I/O pin  
Timer_A, compare: OUT2 output  
ADC10, analog input A4  
P2.4/TA2/A4/  
VREF+/VeREF+/OA1I0  
G3  
30  
28  
I/O  
Positive reference voltage output or input  
OA1, analog input I/O  
General-purpose digital I/O pin  
P2.5/ROSC  
XIN/P2.6  
C2  
A2  
A1  
3
6
5
40  
3
I/O  
I/O  
I/O  
Input for external DCO resistor to define DCO frequency  
Input terminal of crystal oscillator  
General-purpose digital I/O pin  
Output terminal of crystal oscillator  
General-purpose digital I/O pin(2)  
General-purpose digital I/O pin  
XOUT/P2.7  
2
USCI_B0 slave transmit enable  
USCI_A0 clock input/output  
P3.0/UCB0STE/UCA0CLK/  
A5  
B5  
11  
9
I/O  
ADC10, analog input A5  
General-purpose digital I/O pin  
P3.1/UCB0SIMO/  
UCB0SDA  
A6  
A7  
B6  
G6  
G5  
F4  
G4  
12  
13  
14  
25  
26  
27  
28  
10  
11  
12  
23  
24  
25  
26  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
USCI_B0 SPI mode: slave in/master out  
USCI_B0 I2C mode: SDA I2C data  
General-purpose digital I/O pin  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
USCI_B0 SPI mode: slave out/master in  
USCI_B0 I2C mode: SCL I2C clock  
General-purpose digital I/O pin  
USCI_B0 clock input/output  
USCI_A0 slave transmit enable  
General-purpose digital I/O pin  
P3.4/UCA0TXD/  
UCA0SIMO  
USCI_A0 UART mode: transmit data output  
USCI_A0 SPI mode: slave in/master out  
General-purpose digital I/O pin  
P3.5/UCA0RXD/  
UCA0SOMI  
USCI_A0 UART mode: receive data input  
USCI_A0 SPI mode: slave out/master in  
General-purpose digital I/O pin  
P3.6/A6/OA0I2  
P3.7/A7/OA1I2  
ADC10 analog input A6  
OA0 analog input I2  
General-purpose digital I/O pin  
ADC10 analog input A7  
OA1 analog input I2  
General-purpose digital I/O pin  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
D6  
D7  
E6  
17  
18  
19  
15  
16  
17  
I/O  
I/O  
I/O  
Timer_B, capture: CCI0A input, compare: OUT0 output  
General-purpose digital I/O pin  
Timer_B, capture: CCI1A input, compare: OUT1 output  
General-purpose digital I/O pin  
Timer_B, capture: CCI2A input, compare: OUT2 output  
(2) If XOUT/P2.7 is used as an input, excess current flows until P2SEL.7 is cleared. This is due to the oscillator output driver connection to  
this pad after reset.  
12  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Table 4. Terminal Functions, MSP430F22x4 (continued)  
TERMINAL  
NO.  
DA  
I/O  
DESCRIPTION  
NAME  
YFF  
RHA  
General-purpose digital I/O pin  
Timer_B, capture: CCI0B input, compare: OUT0 output  
ADC10 analog input A12  
P4.3/TB0/A12/OA0O  
P4.4/TB1/A13/OA1O  
P4.5/TB2/A14/OA0I3  
P4.6/TBOUTH/A15/OA1I3  
E7  
F7  
F6  
G7  
20  
21  
22  
23  
18  
I/O  
OA0 analog output  
General-purpose digital I/O pin  
Timer_B, capture: CCI1B input, compare: OUT1 output  
ADC10 analog input A13  
19  
20  
21  
I/O  
I/O  
I/O  
OA1 analog output  
General-purpose digital I/O pin  
Timer_B, compare: OUT2 output  
ADC10 analog input A14  
OA0 analog input I3  
General-purpose digital I/O pin  
Timer_B, switch all TB0 to TB3 outputs to high impedance  
ADC10 analog input A15  
OA1 analog input I3  
General-purpose digital I/O pin  
Timer_B, clock signal TBCLK input  
Reset or nonmaskable interrupt input  
Spy-Bi-Wire test data input/output during programming and test  
P4.7/TBCLK  
F5  
B3  
24  
7
22  
5
I/O  
I
RST/NMI/SBWTDIO  
Selects test mode for JTAG pins on Port 1. The device protection fuse is  
connected to TEST.  
TEST/SBWTCK  
D1  
1
37  
I
Spy-Bi-Wire test clock input during programming and test  
C1,  
D3,  
D4,  
DVCC  
AVCC  
2
38, 39  
14  
Digital supply voltage  
E4, E5  
C6,  
C7,  
D5  
16  
Analog supply voltage  
Digital ground reference  
A3,  
B1,  
B2,  
C3,  
C4  
DVSS  
4
1, 4  
B7,  
C5  
AVSS  
15  
13  
Analog ground reference  
QFN Pad  
NA  
NA  
Pad  
NA  
QFN package pad; connection to DVSS recommended.  
Copyright © 2006–2012, Texas Instruments Incorporated  
13  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
SHORT-FORM DESCRIPTION  
Program Counter  
Stack Pointer  
PC/R0  
CPU  
The MSP430™ CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions, are  
performed as register operations in conjunction with  
seven addressing modes for source operand and four  
addressing modes for destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that provide  
reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the  
CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and  
constant generator respectively. The remaining  
registers are general-purpose registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses and can be handled with  
all instructions.  
R10  
R11  
Instruction Set  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 5 shows examples of the three types of  
instruction formats; Table 6 shows the address  
modes.  
R12  
R13  
R14  
R15  
Table 5. Instruction Word Formats  
INSTRUCTION FORMAT  
Dual operands, source-destination  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
R4 + R5 R5  
Single operands, destination only  
PC (TOS), R8 PC  
Relative jump, unconditional/conditional  
Jump-on-equal bit = 0  
Table 6. Address Mode Descriptions  
(1)  
(2)  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
OPERATION  
R10 R11  
MOV R10,R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
MOV 2(R5),6(R6)  
M(2+R5) M(6+R6)  
M(EDE) M(TONI)  
M(MEM) M(TCDAT)  
M(R10) M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) R11  
R10 + 2 R10  
Indirect autoincrement  
Immediate  
MOV @Rn+,Rm  
MOV #X,TONI  
#45 M(TONI)  
(1) S = source  
(2) D = destination  
14  
Copyright © 2006–2012, Texas Instruments Incorporated  
 
 
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Operating Modes  
The MSP430 microcontrollers have one active mode and five software-selectable low-power modes of operation.  
An interrupt event can wake up the device from any of the five low-power modes, service the request, and  
restore back to the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
Active mode (AM)  
All clocks are active.  
Low-power mode 0 (LPM0)  
CPU is disabled.  
ACLK and SMCLK remain active. MCLK is disabled.  
Low-power mode 1 (LPM1)  
CPU is disabled ACLK and SMCLK remain active. MCLK is disabled.  
DCO dc-generator is disabled if DCO not used in active mode.  
Low-power mode 2 (LPM2)  
CPU is disabled.  
MCLK and SMCLK are disabled.  
DCO dc-generator remains enabled.  
ACLK remains active.  
Low-power mode 3 (LPM3)  
CPU is disabled.  
MCLK and SMCLK are disabled.  
DCO dc-generator is disabled.  
ACLK remains active.  
Low-power mode 4 (LPM4)  
CPU is disabled.  
ACLK is disabled.  
MCLK and SMCLK are disabled.  
DCO dc-generator is disabled.  
Crystal oscillator is stopped.  
Copyright © 2006–2012, Texas Instruments Incorporated  
15  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Interrupt Vector Addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFC0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, if flash is not programmed), the  
CPU goes into LPM4 immediately after power up.  
Table 7. Interrupt Vector Addresses  
SYSTEM  
INTERRUPT  
INTERRUPT SOURCE  
INTERRUPT FLAG  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
Watchdog  
PORIFG  
RSTIFG  
WDTIFG  
KEYV(2)  
Reset  
0FFFEh  
31, highest  
Flash key violation  
PC out-of-range(1)  
NMI  
Oscillator fault  
Flash memory access violation  
NMIIFG  
OFIFG  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
0FFFCh  
30  
ACCVIFG(2)(3)  
Timer_B3  
TBCCR0 CCIFG(4)  
maskable  
0FFFAh  
0FFF8h  
29  
28  
TBCCR1 and TBCCR2 CCIFGs,  
TBIFG(2)(4)  
Timer_B3  
maskable  
0FFF6h  
0FFF4h  
0FFF2h  
27  
26  
25  
Watchdog Timer  
Timer_A3  
WDTIFG  
maskable  
maskable  
TACCR0 CCIFG (see Note 3)  
TACCR1 CCIFG  
TACCR2 CCIFG  
TAIFG(2)(4)  
Timer_A3  
maskable  
0FFF0h  
24  
USCI_A0/USCI_B0 Receive  
USCI_A0/USCI_B0 Transmit  
ADC10  
UCA0RXIFG, UCB0RXIFG(2)  
UCA0TXIFG, UCB0TXIFG(2)  
ADC10IFG(4)  
maskable  
maskable  
maskable  
0FFEEh  
0FFECh  
0FFEAh  
0FFE8h  
23  
22  
21  
20  
I/O Port P2  
(eight flags)  
P2IFG.0 to P2IFG.7(2)(4)  
P1IFG.0 to P1IFG.7(2)(4)  
maskable  
maskable  
0FFE6h  
0FFE4h  
19  
18  
I/O Port P1  
(eight flags)  
0FFE2h  
0FFE0h  
17  
16  
15  
(5)  
(6)  
0FFDEh  
0FFDCh to 0FFC0h  
14 to 0, lowest  
(1) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from  
within unused address range.  
(2) Multiple source flags  
(3) (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.  
(4) Interrupt flags are located in the module.  
(5) This location is used as bootstrap loader security key (BSLSKEY).  
A 0AA55h at this location disables the BSL completely.  
A zero (0h) disables the erasure of the flash if an invalid password is supplied.  
(6) The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if  
necessary.  
16  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Special Function Registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
Legend  
rw  
Bit can be read and written.  
rw-0, 1  
rw-(0), (1)  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device.  
Table 8. Interrupt Enable 1  
Address  
00h  
7
6
5
4
3
2
1
0
ACCVIE  
rw-0  
NMIIE  
rw-0  
OFIE  
rw-0  
WDTIE  
rw-0  
WDTIE  
Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval  
timer mode.  
OFIE  
Oscillator fault interrupt enable  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
NMIIE  
ACCVIE  
Table 9. Interrupt Enable 2  
Address  
7
6
5
4
3
2
1
0
01h  
UCB0TXIE  
rw-0  
UCB0RXIE  
rw-0  
UCA0TXIE  
rw-0  
UCA0RXIE  
rw-0  
UCA0RXIE  
UCA0TXIE  
UCB0RXIE  
UCB0TXIE  
USCI_A0 receive-interrupt enable  
USCI_A0 transmit-interrupt enable  
USCI_B0 receive-interrupt enable  
USCI_B0 transmit-interrupt enable  
Table 10. Interrupt Flag Register 1  
Address  
02h  
7
6
5
4
3
2
1
0
NMIIFG  
rw-0  
RSTIFG  
rw-(0)  
PORIFG  
rw-(1)  
OFIFG  
rw-1  
WDTIFG  
rw-(0)  
WDTIFG  
Set on watchdog timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.  
OFIFG  
Flag set on oscillator fault  
RSTIFG  
PORIFG  
NMIIFG  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up.  
Power-on reset interrupt flag. Set on VCC power up.  
Set via RST/NMI pin  
Table 11. Interrupt Flag Register 2  
Address  
03h  
7
6
5
4
3
2
1
0
UCB0TXIFG UCB0RXIFG UCA0TXIFG UCA0RXIFG  
rw-1 rw-0 rw-1 rw-0  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
USCI_A0 receive-interrupt flag  
USCI_A0 transmit-interrupt flag  
USCI_B0 receive-interrupt flag  
USCI_B0 transmit-interrupt flag  
Copyright © 2006–2012, Texas Instruments Incorporated  
17  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Memory Organization  
Table 12. Memory Organization  
MSP430F223x  
MSP430F225x  
MSP430F227x  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
8KB Flash  
0FFFFh-0FFC0h  
0FFFFh-0E000h  
16KB Flash  
0FFFFh-0FFC0h  
0FFFFh-0C000h  
32KB Flash  
0FFFFh-0FFC0h  
0FFFFh-08000h  
Size  
Flash  
256 Byte  
010FFh-01000h  
256 Byte  
010FFh-01000h  
256 Byte  
010FFh-01000h  
Information memory  
Boot memory  
RAM  
Size  
ROM  
1KB  
0FFFh-0C00h  
1KB  
0FFFh-0C00h  
1KB  
0FFFh-0C00h  
512 Byte  
03FFh-0200h  
512 Byte  
03FFh-0200h  
1KB  
05FFh-0200h  
Size  
16-bit  
8-bit  
8-bit SFR  
01FFh-0100h  
0FFh-010h  
0Fh-00h  
01FFh-0100h  
0FFh-010h  
0Fh-00h  
01FFh-0100h  
0FFh-010h  
0Fh-00h  
Peripherals  
Bootstrap Loader (BSL)  
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial  
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete  
description of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap  
Loader User’s Guide (SLAU319).  
Table 13. BSL Function Pins  
BSL FUNCTION  
Data transmit  
Data receive  
DA PACKAGE PINS  
32 - P1.1  
RHA PACKAGE PINS  
30 - P1.1  
YFF PACKAGE PINS  
G3 - P1.1  
10 - P2.2  
8 - P2.2  
A5 - P2.2  
Flash Memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
64 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n.  
Segments A to D are also called information memory.  
Segment A contains calibration data. After reset, segment A is protected against programming and erasing. It  
can be unlocked, but care should be taken not to erase this segment if the device-specific calibration data is  
required.  
18  
Copyright © 2006–2012, Texas Instruments Incorporated  
 
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).  
Oscillator and System Clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal very-low-power low-frequency oscillator, an internal digitally-controlled oscillator (DCO), and  
a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low  
system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in  
less than 1 µs. The basic clock module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or the internal very-  
low-power LF oscillator.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
Table 14. DCO Calibration Data  
(Provided From Factory in Flash Information Memory Segment A)  
DCO FREQUENCY  
CALIBRATION REGISTER  
CALBC1_1MHZ  
SIZE  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
ADDRESS  
010FFh  
010FEh  
010FDh  
010FCh  
010FBh  
010FAh  
010F9h  
010F8h  
1 MHz  
CALDCO_1MHZ  
CALBC1_8MHZ  
8 MHz  
12 MHz  
16 MHz  
CALDCO_8MHZ  
CALBC1_12MHZ  
CALDCO_12MHZ  
CALBC1_16MHZ  
CALDCO_16MHZ  
Brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and  
power off.  
Digital I/O  
There are four 8-bit I/O ports implemented—ports P1, P2, P3, and P4:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt condition is possible.  
Edge-selectable interrupt input capability for all eight bits of port P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pullup/pulldown resistor.  
Because there are only three I/O pins implemented from port P2, bits [5:1] of all port P2 registers read as 0, and  
write data is ignored.  
Watchdog Timer (WDT+)  
The primary function of the WDT+ module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be disabled or configured as an interval timer and can generate interrupts at  
selected time intervals.  
Copyright © 2006–2012, Texas Instruments Incorporated  
19  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 15. Timer_A3 Signal Connections  
INPUT PIN NUMBER  
RHA  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
NAME  
MODULE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
RHA  
MODULE  
BLOCK  
DA  
YFF  
DA  
YFF  
31 - P1.0  
29 - P1.0  
F2 - P1.0  
TACLK  
ACLK  
SMCLK  
TAINCLK  
TA0  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
CCR1  
CCR2  
NA  
9 - P2.1  
32 - P1.1  
10 - P2.2  
7 - P2.1  
30 - P1.1  
8 - P2.2  
B4 - P2.1  
G2 - P1.1  
A5 - P2.2  
TA0  
TA1  
TA2  
32 - P1.1  
10 - P2.2  
36 - P1.5  
30 - P1.1  
8 - P2.2  
G2 - P1.1  
A5 - P2.2  
E1 - P1.5  
TA0  
VSS  
34 - P1.5  
VCC  
VCC  
33 - P1.2  
29 - P2.3  
31 - P1.2  
27 - P2.3  
E2 - P1.2  
F3 - P2.3  
TA1  
CCI1A  
CCI1B  
GND  
33 - P1.2  
29 - P2.3  
37 - P1.6  
31 - P1.2  
27 - P2.3  
35 - P1.6  
E2 - P1.2  
F3 - P2.3  
E3 - P1.6  
TA1  
VSS  
VCC  
VCC  
34 - P1.3  
32 - P1.3  
G1 - P1.3  
TA2  
CCI2A  
34 - P1.3  
30 - P2.4  
38 - P1.7  
32 - P1.3  
28 - P2.4  
36 - P1.7  
G1 - P1.3  
G3 - P2.4  
D2 - P1.7  
ACLK  
(internal)  
CCI2B  
VSS  
VCC  
GND  
VCC  
20  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Timer_B3  
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 16. Timer_B3 Signal Connections  
INPUT PIN NUMBER  
RHA  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
NAME  
MODULE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
RHA  
MODULE  
BLOCK  
DA  
YFF  
DA  
YFF  
24 - P4.7  
22 - P4.7  
F5 - P4.7  
TBCLK  
ACLK  
SMCLK  
TBCLK  
TB0  
TBCLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
CCR1  
CCR2  
NA  
24 - P4.7  
17 - P4.0  
20 - P4.3  
22 - P4.7  
15 - P4.0  
18 - P4.3  
F5 - P4.7  
D6 - P4.0  
E7 - P4.3  
TB0  
TB1  
TB2  
17 - P4.0  
20 - P4.3  
15 - P4.0  
18 - P4.3  
D6 - P4.0  
E7 - P4.3  
TB0  
VSS  
VCC  
VCC  
18 - P4.1  
21 - P4.4  
16 - P4.1  
19 - P4.4  
D7 - P4.1  
F7 - P4.4  
TB1  
CCI1A  
CCI1B  
GND  
18 - P4.1  
21 - P4.4  
16 - P4.1  
19 - P4.4  
D7 - P4.1  
F7 - P4.4  
TB1  
VSS  
VCC  
VCC  
19 - P4.2  
17 - P4.2  
E6 - P4.2  
TB2  
CCI2A  
19 - P4.2  
22 - P4.5  
17 - P4.2  
20 - P4.5  
E6 - P4.2  
F6 - P4.5  
ACLK  
(internal)  
CCI2B  
VSS  
VCC  
GND  
VCC  
Universal Serial Communications Interface (USCI)  
The USCI module is used for serial data communication. The USCI module supports synchronous  
communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols such as UART,  
enhanced UART with automatic baudrate detection (LIN), and IrDA.  
USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.  
USCI_B0 provides support for SPI (3 or 4 pin) and I2C.  
ADC10  
The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion  
result handling allowing ADC samples to be converted and stored without any CPU intervention.  
Copyright © 2006–2012, Texas Instruments Incorporated  
21  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Operational Amplifier (OA) (MSP430F22x4 only)  
The MSP430F22x4 has two configurable low-current general-purpose operational amplifiers. Each OA input and  
output terminal is software-selectable and offer a flexible choice of connections for various applications. The OA  
op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.  
Table 17. OA0 Signal Connections  
ANALOG INPUT PIN NUMBER  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
DA  
RHA  
6 - A0  
YFF  
8 - A0  
B4 - A0  
B5 - A2  
B5 - A2  
F4 - A6  
F6 - A14  
OA0I0  
OA0I1  
OA0I1  
OA0I2  
OA0I3  
OAxI0  
OA0I1  
OAxI1  
OAxIA  
OAxIB  
10 - A2  
10 - A2  
27 - A6  
22 - A14  
8 - A2  
8 - A2  
25 - A6  
20 - A14  
Table 18. OA1 Signal Connections  
ANALOG INPUT PIN NUMBER  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
DA  
RHA  
28 - A4  
8 - A2  
YFF  
30 - A4  
10 - A2  
29 - A3  
28 - A7  
23 - A15  
G3 - A4  
B5 - A2  
F3 - A3  
G4 - A7  
G7 - A15  
OA1I0  
OA0I1  
OA1I1  
OA1I2  
OA1I3  
OAxI0  
OA0I1  
OAxI1  
OAxIA  
OAxIB  
27 - A3  
26 - A7  
21 - A15  
22  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Peripheral File Map  
Table 19. Peripherals With Word Access  
MODULE  
ADC10  
REGISTER NAME  
SHORT NAME  
ADDRESS  
OFFSET  
ADC data transfer start address  
ADC memory  
ADC10SA  
ADC10MEM  
ADC10CTL1  
ADC10CTL0  
ADC10AE0  
ADC10AE1  
ADC10DTC1  
ADC10DTC0  
TBCCR2  
TBCCR1  
TBCCR0  
TBR  
1BCh  
1B4h  
ADC control register 1  
ADC control register 0  
ADC analog enable 0  
ADC analog enable 1  
ADC data transfer control register 1  
ADC data transfer control register 0  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_B register  
1B2h  
1B0h  
04Ah  
04Bh  
049h  
048h  
Timer_B  
0196h  
0194h  
0192h  
0190h  
0186h  
0184h  
0182h  
0180h  
011Eh  
0176h  
0174h  
0172h  
0170h  
0166h  
0164h  
0162h  
0160h  
012Eh  
012Ch  
012Ah  
0128h  
0120h  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_B control  
TBCCTL2  
TBCCTL1  
TBCCTL0  
TBCTL  
Timer_B interrupt vector  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
TBIV  
Timer_A  
TACCR2  
TACCR1  
TACCR0  
TAR  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
Timer_A interrupt vector  
Flash control 3  
TAIV  
Flash Memory  
FCTL3  
Flash control 2  
FCTL2  
Flash control 1  
FCTL1  
Watchdog Timer+  
Watchdog/timer control  
WDTCTL  
Copyright © 2006–2012, Texas Instruments Incorporated  
23  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Table 20. Peripherals With Byte Access  
MODULE  
REGISTER NAME  
SHORT NAME  
ADDRESS  
OFFSET  
0C3h  
0C2h  
0C1h  
0C0h  
06Fh  
06Eh  
06Dh  
06Bh  
06Ah  
069h  
068h  
011Ah  
0118h  
067h  
066h  
065h  
064h  
063h  
062h  
061h  
060h  
05Fh  
05Eh  
05Dh  
053h  
058h  
057h  
056h  
011h  
01Fh  
01Eh  
01Dh  
01Ch  
010h  
01Bh  
01Ah  
019h  
018h  
02Fh  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
OA1 (MSP430F22x4 only)  
OA0 (MSP430F22x4 only)  
USCI_B0  
Operational Amplifier 1 control register 1  
Operational Amplifier 1 control register 1  
Operational Amplifier 0 control register 1  
Operational Amplifier 0 control register 1  
USCI_B0 transmit buffer  
USCI_B0 receive buffer  
USCI_B0 status  
OA1CTL1  
OA1CTL0  
OA0CTL1  
OA0CTL0  
UCB0TXBUF  
UCB0RXBUF  
UCB0STAT  
UCB0BR1  
UCB0BR0  
UCB0CTL1  
UCB0CTL0  
UCB0SA  
UCB0OA  
UCA0TXBUF  
UCA0RXBUF  
UCA0STAT  
UCA0MCTL  
UCA0BR1  
UCA0BR0  
UCA0CTL1  
UCA0CTL0  
UCA0IRRCTL  
UCA0IRTCTL  
UCA0ABCTL  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
P4REN  
USCI_B0 bit rate control 1  
USCI_B0 bit rate control 0  
USCI_B0 control 1  
USCI_B0 control 0  
USCI_B0 I2C slave address  
USCI_B0 I2C own address  
USCI_A0 transmit buffer  
USCI_A0 receive buffer  
USCI_A0 status  
USCI_A0  
USCI_A0 modulation control  
USCI_A0 baud rate control 1  
USCI_A0 baud rate control 0  
USCI_A0 control 1  
USCI_A0 control 0  
USCI_A0 IrDA receive control  
USCI_A0 IrDA transmit control  
USCI_A0 auto baud rate control  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
Port P4 resistor enable  
Port P4 selection  
Basic Clock System+  
Port P4  
P4SEL  
Port P4 direction  
P4DIR  
Port P4 output  
P4OUT  
Port P4 input  
P4IN  
Port P3  
Port P2  
Port P3 resistor enable  
Port P3 selection  
P3REN  
P3SEL  
Port P3 direction  
P3DIR  
Port P3 output  
P3OUT  
Port P3 input  
P3IN  
Port P2 resistor enable  
Port P2 selection  
P2REN  
P2SEL  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
P2IE  
P2IES  
P2IFG  
Port P2 direction  
P2DIR  
Port P2 output  
P2OUT  
Port P2 input  
P2IN  
24  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Table 20. Peripherals With Byte Access (continued)  
MODULE  
REGISTER NAME  
SHORT NAME  
ADDRESS  
OFFSET  
Port P1  
Port P1 resistor enable  
P1REN  
P1SEL  
P1IE  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
003h  
002h  
001h  
000h  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
Special Function  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IFG2  
IFG1  
IE2  
IE1  
Copyright © 2006–2012, Texas Instruments Incorporated  
25  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Absolute Maximum Ratings(1)  
Voltage applied at VCC to VSS  
-0.3 V to 4.1 V  
-0.3 V to VCC + 0.3 V  
±2 mA  
(2)  
Voltage applied to any pin  
Diode current at any device terminal  
Unprogrammed device  
Programmed device  
-55°C to 150°C  
-55°C to 150°C  
(3)  
Storage temperature, Tstg  
(1) Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditionsis not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is  
applied to the TEST pin when blowing the JTAG fuse.  
(3) Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak  
reflow temperatures not higher than classified on the device label on the shipping boxes or reels.  
Recommended Operating Conditions(1)(2)  
MIN NOM  
MAX UNIT  
During program  
execution  
1.8  
3.6  
3.6  
V
VCC  
Supply voltage  
AVCC = DVCC = VCC  
AVSS = DVSS = VSS  
During program/erase  
flash memory  
2.2  
V
V
VSS  
TA  
Supply voltage  
0
I version  
T version  
-40  
-40  
dc  
85  
105  
Operating free-air temperature  
°C  
VCC = 1.8 V, Duty cycle = 50% ±10%  
(maximum MCLK frequency)(1)(2) VCC = 2.7 V, Duty cycle = 50% ±10%  
4.15  
Processor frequency  
fSYSTEM  
dc  
12 MHz  
16  
(see Figure 1)  
VCC 3.3 V, Duty cycle = 50% ±10%  
dc  
(1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the  
specified maximum frequency.  
(2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
Legend:  
16 MHz  
Supply voltage range,  
during flash memory  
programming  
12 MHz  
Supply voltage range,  
during program execution  
7.5 MHz  
4.15 MHz  
1.8 V  
2.2 V  
2.7 V  
3.3 V 3.6 V  
Supply Voltage −V  
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC  
of 2.2 V.  
Figure 1. Operating Area  
26  
Copyright © 2006–2012, Texas Instruments Incorporated  
 
 
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
(1)(2)  
Active Mode Supply Current (into DVCC + AVCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fDCO = fMCLK = fSMCLK = 1 MHz,  
fACLK = 32768 Hz,  
2.2 V  
270  
390  
Program executes in flash,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active mode (AM)  
current (1 MHz)  
IAM,1MHz  
µA  
3 V  
390  
240  
340  
550  
fDCO = fMCLK = fSMCLK = 1 MHz,  
fACLK = 32768 Hz,  
2.2 V  
3.3 V  
Program executes in RAM,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active mode (AM)  
current (1 MHz)  
IAM,1MHz  
µA  
fMCLK = fSMCLK = fACLK = 32768 Hz/8 =  
4096 Hz,  
fDCO = 0 Hz,  
Program executes in flash,  
SELMx = 11, SELS = 1,  
DIVMx = DIVSx = DIVAx = 11,  
CPUOFF = 0, SCG0 = 1, SCG1 = 0,  
OSCOFF = 0  
-40°C to  
85°C  
5
6
9
2.2 V  
3 V  
105°C  
18  
µA  
10  
Active mode (AM)  
current (4 kHz)  
IAM,4kHz  
-40°C to  
85°C  
105°C  
20  
85  
-40°C to  
85°C  
60  
72  
fMCLK = fSMCLK = fDCO(0, 0) 100 kHz,  
fACLK = 0 Hz,  
Program executes in flash,  
RSELx = 0, DCOx = 0, CPUOFF = 0,  
SCG0 = 0, SCG1 = 0, OSCOFF = 1  
2.2 V  
3 V  
105°C  
95  
Active mode (AM)  
current (100 kHz)  
IAM,100kHz  
µA  
-40°C to  
85°C  
95  
105°C  
105  
(1) All inputs are tied to 0 V or VCC . Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
Copyright © 2006–2012, Texas Instruments Incorporated  
27  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Typical Characteristics - Active-Mode Supply Current (Into DVCC + AVCC)  
ACTIVE-MODE CURRENT  
vs  
ACTIVE-MODE CURRENT  
SUPPLY VOLTAGE  
TA = 25°C  
vs  
DCO FREQUENCY  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
f
f
= 16 MHz  
= 12 MHz  
DCO  
DCO  
T
= 85 °C  
A
T
A
= 25 °C  
V
CC  
= 3 V  
f
= 8 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
V
CC  
= 2.2 V  
f
= 1 MHz  
DCO  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
CC  
− Supply Voltage − V  
f
DCO  
− DCO Frequency − MHz  
Figure 2.  
Figure 3.  
28  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
(1)(2)  
Low-Power-Mode Supply Currents (Into VCC ) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fMCLK = 0 MHz,  
2.2 V  
75  
90  
fSMCLK = fDCO = 1 MHz,  
fACLK = 32768 Hz,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0,  
SCG1 = 0, OSCOFF = 0  
Low-power mode 0  
ILPM0,1MHz  
µA  
(LPM0) current(3)  
3 V  
90  
120  
fMCLK = 0 MHz,  
fSMCLK = fDCO(0, 0) 100 kHz,  
fACLK = 0 Hz,  
RSELx = 0, DCOx = 0,  
CPUOFF = 1, SCG0 = 0,  
SCG1 = 0, OSCOFF = 1  
2.2 V  
3 V  
37  
41  
48  
Low-power mode 0  
(LPM0) current(3)  
ILPM0,100kHz  
µA  
65  
-40°C to  
85°C  
fMCLK = fSMCLK = 0 MHz,  
fDCO = 1 MHz,  
fACLK = 32768 Hz,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0,  
SCG1 = 1, OSCOFF = 0  
22  
25  
29  
2.2 V  
3 V  
105°C  
31  
Low-power mode 2  
(LPM2) current(4)  
ILPM2  
µA  
-40°C to  
85°C  
32  
105°C  
-40°C  
25°C  
34  
1.4  
1.4  
3.3  
0.7  
0.7  
2.4  
5
2.2 V  
3 V  
85°C  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 32768 Hz,  
CPUOFF = 1, SCG0 = 1,  
SCG1 = 1, OSCOFF = 0  
105°C  
-40°C  
25°C  
10  
µA  
1.5  
Low-power mode 3  
(LPM3) current(4)  
ILPM3,LFXT1  
0.9  
0.9  
2.6  
6
1.5  
3.8  
12  
1
85°C  
105°C  
-40°C  
25°C  
0.4  
0.5  
1.8  
4.5  
0.5  
0.6  
2.1  
5.5  
0.1  
0.1  
1.5  
4.5  
1
2.2 V  
3 V  
85°C  
2.9  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK from internal LF oscillator  
(VLO),  
CPUOFF = 1, SCG0 = 1,  
SCG1 = 1, OSCOFF = 0  
105°C  
-40°C  
25°C  
9
µA  
1.2  
Low-power mode 3  
current, (LPM3)(4)  
ILPM3,VLO  
1.2  
3.3  
11  
85°C  
105°C  
-40°C  
25°C  
0.5  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 0 Hz,  
CPUOFF = 1, SCG0 = 1,  
SCG1 = 1, OSCOFF = 1  
0.5  
µA  
3
Low-power mode 4  
(LPM4) current(5)  
2.2 V/  
3 V  
ILPM4  
85°C  
105°C  
9
(1) All inputs are tied to 0 V or VCC . Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
(3) Current for brownout and WDT clocked by SMCLK included.  
(4) Current for brownout and WDT clocked by ACLK included.  
(5) Current for brownout included.  
Copyright © 2006–2012, Texas Instruments Incorporated  
29  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
Schmitt-Trigger Inputs (Ports P1, P2, P3, P4, and RST/NMI)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45 VCC  
1
TYP  
0.75 VCC  
1.65  
VIT+  
Positive-going input threshold voltage  
2.2 V  
3 V  
V
1.35  
2.25  
0.25 VCC  
0.55  
0.55 VCC  
VIT-  
Negative-going input threshold voltage  
2.2 V  
3 V  
1.20  
1.65  
1
V
V
0.75  
2.2 V  
3 V  
0.1  
Vhys  
Input voltage hysteresis (VIT+ - VIT-)  
0.3  
1
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
,
RPull  
CI  
Pullup/pulldown resistor  
Input capacitance  
3 V  
20  
35  
5
50  
kΩ  
VIN = VSS or VCC  
pF  
Inputs (Ports P1, P2)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Port P1, P2: P1.x to P2.x, External trigger  
pulse width to set interrupt flag(1)  
t(int)  
External interrupt timing  
2.2 V, 3 V  
20  
ns  
(1) An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set even with trigger signals  
shorter than t(int)  
.
Leakage Current (Ports P1, P2, P3, and P4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
±50 nA  
(1) (2)  
Ilkg(Px.y)  
High-impedance leakage current  
2.2 V, 3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
30  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Outputs (Ports P1, P2, P3, and P4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
VCC - 0.25  
VCC - 0.6  
VCC - 0.25  
VCC - 0.6  
VSS  
MAX  
VCC  
UNIT  
(1)  
IOH(max) = -1.5 mA  
2.2 V  
(2)  
IOH(max) = -6 mA  
VCC  
VOH  
High-level output voltage  
V
IOH(max) = -1.5 mA(1)  
IOH(max) = -6 mA(2)  
IOL(max) = 1.5 mA(1)  
IOL(max) = 6 mA(2)  
IOL(max) = 1.5 mA(1)  
IOL(max) = 6 mA(2)  
VCC  
3 V  
2.2 V  
3 V  
VCC  
VSS + 0.25  
VSS + 0.6  
VSS + 0.25  
VSS + 0.6  
VSS  
VOL  
Low-level output voltage  
V
VSS  
VSS  
(1) The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
Output Frequency (Ports P1, P2, P3, and P4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
MAX UNIT  
10  
P1.4/SMCLK, CL = 20 pF,  
fPx.y  
Port output frequency (with load)  
MHz  
12  
RL = 1 kagainst VCC/2(1)(2)  
2.2 V  
3 V  
12  
fPort_CLK  
Clock output frequency  
P2.0/ACLK, P1.4/SMCLK, CL = 20 pF(2)  
MHz  
16  
(1) Alternatively, a resistive divider with two 2-kresistors between VCC and VSS is used as load. The output is connected to the center tap  
of the divider.  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2006–2012, Texas Instruments Incorporated  
31  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Typical Characteristics - Outputs  
One output loaded at a time.  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
25.0  
20.0  
15.0  
10.0  
5.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
CC  
= 2.2 V  
T
A
= 25°C  
V = 3 V  
CC  
P4.5  
P4.5  
T
A
= 25°C  
= 85°C  
T
A
= 85°C  
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output V oltage − V  
V
OL  
− Low-Level Output V oltage − V  
Figure 4.  
Figure 5.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−5.0  
0.0  
−10.0  
−20.0  
−30.0  
−40.0  
−50.0  
V
= 2.2 V  
V
= 3 V  
CC  
CC  
P4.5  
P4.5  
−10.0  
−15.0  
−20.0  
−25.0  
T
= 85°C  
A
T
A
= 85°C  
T = 25°C  
A
T
A
= 25°C  
1.5  
0.0  
0.5  
1.0  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output V oltage − V  
V
OH  
− High-Level Output V oltage − V  
Figure 6.  
Figure 7.  
32  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
(1) (2)  
POR/Brownout Reset (BOR)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
0.7 ×  
V(B_IT-)  
VCC(start)  
See Figure 8  
dVCC /dt 3 V/s  
V
V(B_IT-)  
See Figure 8 through Figure 10  
See Figure 8  
dVCC /dt 3 V/s  
dVCC /dt 3 V/s  
1.71  
210  
V
Vhys(B_IT-)  
td(BOR)  
70  
2
130  
mV  
µs  
See Figure 8  
2000  
Pulse length needed at RST/NMI pin  
to accepted reset internally  
t(reset)  
3 V  
µs  
+
(1) The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT-)  
Vhys(B_IT-) is 1.8 V.  
(2) During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT-) + Vhys(B_IT-) . The default DCO settings  
must not be changed until VCC VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency.  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage  
Copyright © 2006–2012, Texas Instruments Incorporated  
33  
 
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Typical Characteristics - POR/Brownout Reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
Typical Conditions  
CC  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(drop)  
0.5  
t = t  
f
r
0
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
34  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Main DCO Characteristics  
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
DCO control bits DCOx have a step size as defined by parameter SDCO .  
Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK  
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to:  
32 × f  
× f  
DCO(RSEL,DCO)  
DCO(RSEL,DCO+1)  
f
=
average  
MOD × f  
+ (32 – MOD) × f  
DCO(RSEL,DCO+1)  
DCO(RSEL,DCO)  
DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
RSELx < 14  
VCC  
MIN  
1.8  
TYP  
MAX UNIT  
3.6  
VCC  
Supply voltage range  
RSELx = 14  
2.2  
3.6  
3.6  
V
RSELx = 15  
3.0  
fDCO(0,0)  
fDCO(0,3)  
fDCO(1,3)  
fDCO(2,3)  
fDCO(3,3)  
fDCO(4,3)  
fDCO(5,3)  
fDCO(6,3)  
fDCO(7,3)  
fDCO(8,3)  
fDCO(9,3)  
fDCO(10,3)  
fDCO(11,3)  
fDCO(12,3)  
fDCO(13,3)  
fDCO(14,3)  
fDCO(15,3)  
fDCO(15,7)  
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
3 V  
0.06  
0.07  
0.10  
0.14  
0.20  
0.28  
0.39  
0.54  
0.80  
1.10  
1.60  
2.50  
3.00  
4.30  
6.00  
8.60  
12.0  
16.0  
0.14 MHz  
0.17 MHz  
0.20 MHz  
0.28 MHz  
0.40 MHz  
0.54 MHz  
0.77 MHz  
1.06 MHz  
1.50 MHz  
2.10 MHz  
3.00 MHz  
4.30 MHz  
5.50 MHz  
7.30 MHz  
9.60 MHz  
13.9 MHz  
18.5 MHz  
26.0 MHz  
3 V  
Frequency step between  
range RSEL and RSEL+1  
SRSEL  
SDCO  
SRSEL = fDCO(RSEL+1,DCO) /fDCO(RSEL,DCO)  
2.2 V, 3 V  
1.55 ratio  
1.12 ratio  
Frequency step between tap  
DCO and DCO+1  
SDCO = fDCO(RSEL,DCO+1) /fDCO(RSEL,DCO)  
Measured at P1.4/SMCLK  
2.2 V, 3 V  
2.2 V, 3 V  
1.05  
40  
1.08  
50  
Duty cycle  
60  
%
Copyright © 2006–2012, Texas Instruments Incorporated  
35  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
Calibrated DCO Frequencies - Tolerance at Calibration  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
Frequency tolerance at calibration  
25°C  
3 V  
-1  
±0.2  
+1  
%
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
fCAL(1MHz)  
fCAL(8MHz)  
fCAL(12MHz)  
fCAL(16MHz)  
1-MHz calibration value  
8-MHz calibration value  
12-MHz calibration value  
16-MHz calibration value  
25°C  
25°C  
25°C  
25°C  
3 V  
3 V  
3 V  
3 V  
0.990  
7.920  
11.88  
15.84  
1
8
1.010 MHz  
8.080 MHz  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
12 12.12 MHz  
16 16.16 MHz  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
Calibrated DCO Frequencies - Tolerance Over Temperature 0°C to 85°C  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX  
UNIT  
1-MHz tolerance over  
temperature  
0°C to 85°C  
3 V  
-2.5  
±0.5  
+2.5  
%
8-MHz tolerance over  
temperature  
0°C to 85°C  
0°C to 85°C  
0°C to 85°C  
3 V  
3 V  
3 V  
-2.5  
-2.5  
-3  
±1.0  
±1.0  
±2.0  
+2.5  
+2.5  
%
%
%
12-MHz tolerance over  
temperature  
16-MHz tolerance over  
temperature  
+3  
2.2 V  
3 V  
0.97  
0.975  
0.97  
7.76  
7.8  
1
1
1.03  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
fCAL(1MHz)  
1-MHz calibration value  
8-MHz calibration value  
0°C to 85°C  
0°C to 85°C  
1.025 MHz  
1.03  
3.6 V  
2.2 V  
3 V  
1
8
8.4  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
fCAL(8MHz)  
8
8.2 MHz  
8.24  
3.6 V  
2.2 V  
3 V  
7.6  
8
11.7  
11.7  
11.7  
15.52  
12  
12  
12  
12.3  
BCSCTL1 = CALBC1_12MHZ,  
fCAL(12MHz) 12-MHz calibration value DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
0°C to 85°C  
0°C to 85°C  
12.3 MHz  
12.3  
3.6 V  
3 V  
BCSCTL1 = CALBC1_16MHZ,  
fCAL(16MHz) 16-MHz calibration value DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
16 16.48  
16 16.48  
MHz  
3.6 V  
15  
36  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Calibrated DCO Frequencies - Tolerance Over Supply Voltage VCC  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
-3  
TYP  
±2  
MAX UNIT  
1-MHz tolerance over VCC  
8-MHz tolerance over VCC  
12-MHz tolerance over VCC  
16-MHz tolerance over VCC  
25°C  
25°C  
25°C  
25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
+3  
+3  
+3  
+3  
%
%
%
%
-3  
±2  
-3  
±2  
-6  
±2  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
fCAL(1MHz)  
1-MHz calibration value  
8-MHz calibration value  
25°C  
25°C  
25°C  
25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
0.97  
7.76  
11.64  
15  
1
8
1.03 MHz  
8.24 MHz  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
fCAL(8MHz)  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
fCAL(12MHz) 12-MHz calibration value  
fCAL(16MHz) 16-MHz calibration value  
12 12.36 MHz  
16 16.48 MHz  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
Calibrated DCO Frequencies - Overall Tolerance  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
1-MHz tolerance  
overall  
I: -40°C to 85°C  
T: -40°C to 105°C  
1.8 V to 3.6 V  
-5  
±2  
±2  
±2  
±3  
+5  
+5  
+5  
+6  
%
%
%
%
8-MHz tolerance  
overall  
I: -40°C to 85°C  
T: -40°C to 105°C  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
-5  
-5  
-6  
12-MHz  
tolerance overall  
I: -40°C to 85°C  
T: -40°C to 105°C  
16-MHz  
tolerance overall  
I: -40°C to 85°C  
T: -40°C to 105°C  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
1-MHz  
calibration value  
I: -40°C to 85°C  
T: -40°C to 105°C  
fCAL(1MHz)  
fCAL(8MHz)  
fCAL(12MHz)  
fCAL(16MHz)  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
0.95  
7.6  
1
8
1.05 MHz  
8.4 MHz  
12.6 MHz  
17 MHz  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
8-MHz  
calibration value  
I: -40°C to 85°C  
T: -40°C to 105°C  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
12-MHz  
calibration value  
I: -40°C to 85°C  
T: -40°C to 105°C  
11.4  
15  
12  
16  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
16-MHz  
calibration value  
I: -40°C to 85°C  
T: -40°C to 105°C  
Copyright © 2006–2012, Texas Instruments Incorporated  
37  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Typical Characteristics - Calibrated 1-MHz DCO Frequency  
CALIBRATED 1-MHz FREQUENCY  
CALIBRATED 1-MHz FREQUENCY  
vs  
vs  
TEMPERATURE  
SUPPLY VOLTAGE  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
V
V
= 1.8 V  
= 2.2 V  
CC  
T
= 105 °C  
A
T
= 85 °C  
A
CC  
V
CC  
= 3.0 V  
T
= 25 °C  
A
T
A
= −40°C  
V
CC  
= 3.6 V  
−50.0 −25.0  
0.0  
25.0  
50.0  
75.0 100.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
T
A
Temperature − °C  
V
CC  
− Supply Voltage − V  
Figure 11.  
Figure 12.  
38  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Wake-Up From Lower-Power Modes (LPM3/4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ  
2
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ  
2.2 V, 3 V  
1.5  
µs  
1
DCO clock wake-up time  
from LPM3/4  
tDCO,LPM3/4  
(1)  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ  
3 V  
1
CPU wake-up time from  
LPM3/4  
1 / fMCLK  
tClock,LPM3/4  
+
tCPU,LPM3/4  
(2)  
(1) The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, a port interrupt) to the first clock  
edge observable externally on a clock pin (MCLK or SMCLK).  
(2) Parameter applicable only if DCOCLK is used for MCLK.  
Typical Characteristics - DCO Clock Wake-Up Time From LPM3/4  
CLOCK WAKE-UP TIME FROM LPM3  
vs  
DCO FREQUENCY  
10.00  
RSELx = 0...11  
RSELx = 12...15  
1.00  
0.10  
0.10  
1.00  
10.00  
DCO Frequency − MHz  
Figure 13.  
Copyright © 2006–2012, Texas Instruments Incorporated  
39  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
(1)  
DCO With External Resistor ROSC  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DCOR = 1,  
2.2 V  
1.8  
fDCO,ROSC  
DCO output frequency with ROSC  
RSELx = 4, DCOx = 3, MODx = 0,  
TA = 25°C  
MHz  
3 V  
1.95  
±0.1  
DCOR = 1,  
RSELx = 4, DCOx = 3, MODx = 0  
DT  
DV  
Temperature drift  
Drift with VCC  
2.2 V, 3 V  
%/°C  
%/V  
DCOR = 1,  
RSELx = 4, DCOx = 3, MODx = 0  
2.2 V, 3 V  
10  
(1) ROSC = 100 kΩ. Metal film resistor, type 0257, 0.6 W with 1% tolerance and TK = ±50 ppm/°C.  
Typical Characteristics - DCO With External Resistor ROSC  
DCO FREQUENCY  
DCO FREQUENCY  
vs  
ROSC  
vs  
ROSC  
VCC = 2.2 V, TA = 25°C  
VCC = 3 V, TA = 25°C  
10.00  
1.00  
0.10  
0.01  
10.00  
1.00  
0.10  
0.01  
RSELx = 4  
RSELx = 4  
10.00  
100.00  
1000.00  
10000.00  
10.00  
100.00  
1000.00  
10000.00  
R
OSC  
− External Resistor − kW  
R
OSC  
− External Resistor − kW  
Figure 14.  
Figure 15.  
DCO FREQUENCY  
vs  
DCO FREQUENCY  
vs  
TEMPERATURE  
VCC = 3 V  
SUPPLY VOLTAGE  
TA = 25°C  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
R
OSC  
= 100k  
R
= 100k  
OSC  
R
R
= 270k  
= 1M  
R
= 270k  
= 1M  
OSC  
OSC  
R
OSC  
OSC  
−50.0 −25.0  
0.0  
25.0  
50.0  
75.0 100.0  
2.0  
2.5  
3.0  
3.5  
4.0  
T
A
Temperature −  
C
V
CC  
− Supply Voltage − V  
Figure 16.  
Figure 17.  
40  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Crystal Oscillator LFXT1, Low-Frequency Mode(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
fLFXT1,LF  
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V to 3.6 V  
32768  
Hz  
LFXT1 oscillator logic level  
fLFXT1,LF,logic  
square wave input frequency, XTS = 0, LFXT1Sx = 3  
LF mode  
1.8 V to 3.6 V 10000  
32768 50000  
Hz  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 6 pF  
500  
200  
Oscillation allowance for  
LF crystals  
OALF  
kΩ  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 12 pF  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
8.5  
11  
Integrated effective load  
capacitance, LF mode(2)  
CL,eff  
pF  
XTS = 0, Measured at P2.0/ACLK,  
fLFXT1,LF = 32768 Hz  
Duty cycle, LF mode  
2.2 V, 3 V  
2.2 V, 3 V  
30  
10  
50  
70  
%
Oscillator fault frequency,  
LF mode(3)  
fFault,LF  
XTS = 0, LFXT1Sx = 3(4)  
10000  
Hz  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This  
signal is no longer required for the serial programming adapter.  
(2) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the crystal that is used.  
(3) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(4) Measured with logic-level input frequency but also applies to operation with crystals.  
Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
VLO frequency supply voltage drift  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
-40°C to 85°C  
105°C  
4
12  
20  
fVLO  
2.2 V, 3 V  
kHz  
22  
I: -40°C to 85°C  
T: -40°C to 105°C  
(1)  
dfVLO/dT  
2.2 V, 3 V  
0.5  
4
%/°C  
%/V  
(2)  
dfVLO/dVCC  
25°C  
1.8 V to 3.6 V  
(1) Calculated using the box method:  
I version: [MAX(-40...85°C) - MIN(-40...85°C)]/MIN(-40...85°C)/[85°C - (-40°C)]  
T version: [MAX(-40...105°C) - MIN(-40...105°C)]/MIN(-40...105°C)/[105°C - (-40°C)]  
(2) Calculated using the box method: [MAX(1.8...3.6 V) - MIN(1.8...3.6 V)]/MIN(1.8...3.6 V)/(3.6 V - 1.8 V)  
Copyright © 2006–2012, Texas Instruments Incorporated  
41  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
Crystal Oscillator LFXT1, High-Frequency Mode(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
LFXT1 oscillator crystal  
frequency, HF mode 0  
fLFXT1,HF0  
fLFXT1,HF1  
XTS = 1, LFXT1Sx = 0  
XTS = 1, LFXT1Sx = 1  
1.8 V to 3.6 V  
0.4  
1
MHz  
MHz  
LFXT1 oscillator crystal  
frequency, HF mode 1  
1.8 V to 3.6 V  
1
4
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
2
2
10  
LFXT1 oscillator crystal  
frequency, HF mode 2  
fLFXT1,HF2  
XTS = 1, LFXT1Sx = 2  
12 MHz  
2
16  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
0.4  
0.4  
0.4  
10  
LFXT1 oscillator logic-level  
square-wave input frequency, HF XTS = 1, LFXT1Sx = 3  
mode  
fLFXT1,HF,logic  
12 MHz  
16  
XTS = 1, LFXT1Sx = 0,  
fLFXT1,HF = 1 MHz,  
CL,eff = 15 pF  
2700  
800  
Oscillation allowance for HF  
crystals (see Figure 18 and  
Figure 19)  
XTS = 1, LFXT1Sx = 1,  
fLFXT1,HF = 4 MHz,  
CL,eff = 15 pF  
OAHF  
XTS = 1, LFXT1Sx = 2,  
fLFXT1,HF = 16 MHz,  
CL,eff = 15 pF  
300  
1
Integrated effective load  
capacitance, HF mode(2)  
CL,eff  
XTS = 1(3)  
pF  
XTS = 1,  
Measured at P2.0/ACLK,  
fLFXT1,HF = 10 MHz  
40  
50  
60  
Duty cycle, HF mode  
2.2 V, 3 V  
2.2 V, 3 V  
%
XTS = 1,  
Measured at P2.0/ACLK,  
fLFXT1,HF = 16 MHz  
XTS = 1, LFXT1Sx = 3(5)  
40  
30  
50  
60  
fFault,HF  
Oscillator fault frequency(4)  
300 kHz  
(1) To improve EMI on the XT1 oscillator the following guidelines should be observed:  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This  
signal is no longer required for the serial programming adapter.  
(2) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is  
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should  
always match the specification of the used crystal.  
(3) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(4) Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and  
frequencies in between might set the flag.  
(5) Measured with logic-level input frequency, but also applies to operation with crystals.  
42  
Copyright © 2006–2012, Texas Instruments Incorporated  
 
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Typical Characteristics - LFXT1 Oscillator in HF Mode (XTS = 1)  
OSCILLATION ALLOWANCE  
vs  
OSCILLATOR SUPPLY CURRENT  
vs  
CRYSTAL FREQUENCY  
CL,eff = 15 pF, TA = 25°C  
CRYSTAL FREQUENCY  
CL,eff = 15 pF, TA = 25°C  
800.0  
700.0  
600.0  
500.0  
400.0  
300.0  
200.0  
100.0  
0.0  
100000.00  
LFXT1Sx = 3  
10000.00  
1000.00  
100.00  
10.00  
LFXT1Sx = 3  
LFXT1Sx = 2  
LFXT1Sx = 2  
LFXT1Sx = 1  
LFXT1Sx = 1  
8.0  
0.10  
1.00  
10.00  
100.00  
0.0  
4.0  
12.0  
16.0  
20.0  
Crystal Frequency − MHz  
Crystal Frequency − MHz  
Figure 18.  
Figure 19.  
Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
2.2 V  
10  
fTA  
Timer_A clock frequency  
Timer_A capture timing  
External: TACLK, INCLK  
Duty cycle = 50% ± 10%  
MHz  
3 V  
16  
tTA,cap  
TA0, TA1, TA2  
2.2 V, 3 V  
20  
ns  
Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
2.2 V  
10  
fTB  
Timer_B clock frequency  
Timer_B capture timing  
External: TACLK, INCLK  
Duty cycle = 50% ± 10%  
MHz  
3 V  
16  
tTB,cap  
TB0, TB1, TB2  
2.2 V, 3 V  
20  
ns  
Copyright © 2006–2012, Texas Instruments Incorporated  
43  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
tτ  
2.2 V, 3 V  
1
MHz  
ns  
2.2 V  
3 V  
50  
50  
150  
100  
600  
600  
UART receive deglitch time(1)  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
USCI (SPI Master Mode)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(see Figure 20 and Figure 21)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
SMCLK, ACLK  
Duty cycle = 50% ± 10%  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
2.2 V  
3 V  
110  
75  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time  
ns  
ns  
2.2 V  
3 V  
tHD,MI  
0
2.2 V  
3 V  
30  
ns  
20  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).  
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
USCI (SPI Slave Mode)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(see Figure 22 and Figure 23)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
STE lead time, STE low to clock  
STE lag time, Last clock to STE high  
STE access time, STE low to SOMI data out  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
50  
ns  
ns  
ns  
10  
50  
50  
STE disable time, STE high to SOMI high  
impedance  
tSTE,DIS  
tSU,SI  
2.2 V, 3 V  
ns  
ns  
2.2 V  
3 V  
20  
15  
10  
10  
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time  
2.2 V  
3 V  
tHD,SI  
ns  
2.2 V  
3 V  
75  
50  
110  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
75  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).  
For the master's parameters tSU,MI(Master) and tVALID,MO(Master) refer to the SPI parameters of the attached slave.  
44  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
t
LO/HI  
LO/HI  
SU,MI  
t
HD,MI  
SOMI  
SIMO  
t
VALID,MO  
Figure 20. SPI Master Mode, CKPH = 0  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
LO/HI  
LO/HI  
t
HD,MI  
t
SU,MI  
SOMI  
SIMO  
t
VALID,MO  
Figure 21. SPI Master Mode, CKPH = 1  
Copyright © 2006–2012, Texas Instruments Incorporated  
45  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
t
t
STE,LEAD  
STE,LAG  
STE  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
t
LO/HI  
LO/HI  
SU,SI  
t
HD,SI  
SIMO  
SOMI  
t
t
t
STE,ACC  
VALID,SO  
STE,DIS  
Figure 22. SPI Slave Mode, CKPH = 0  
t
t
STE,LEAD  
STE,LAG  
STE  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
LO/HI  
LO/HI  
t
HD,SI  
t
SU,SI  
SIMO  
SOMI  
t
t
t
STE,ACC  
VALID,SO  
STE,DIS  
Figure 23. SPI Slave Mode, CKPH = 1  
46  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 24)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
0
4
400 kHz  
µs  
f
SCL 100 kHz  
fSCL > 100 kHz  
SCL 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
0.6  
4.7  
0.6  
0
f
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
tSU,STO  
Data hold time  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V  
ns  
ns  
µs  
Data setup time  
Setup time for STOP  
250  
4
50  
50  
150  
100  
600  
ns  
tSP  
Pulse width of spikes suppressed by input filter  
3 V  
600  
t
t t  
SU,STA HD,STA  
HD,STA  
SDA  
SCL  
1/f  
SCL  
t
SP  
t
t
SU,STO  
SU,DAT  
t
HD,DAT  
Figure 24. I2C Mode Timing  
Copyright © 2006–2012, Texas Instruments Incorporated  
47  
 
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
10-Bit ADC, Power Supply and Input Range Conditions(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
Analog supply voltage  
range  
VCC  
VSS = 0 V  
2.2  
3.6  
V
V
All Ax terminals,  
Analog inputs selected in  
ADC10AE register  
Analog input voltage  
range(2)  
VAx  
0
VCC  
fADC10CLK = 5 MHz,  
ADC10ON = 1, REFON = 0,  
2.2 V  
3 V  
0.52  
0.6  
1.05  
I: -40°C to 85°C  
T: -40°C to 105°C  
IADC10 ADC10 supply current(3) ADC10SHT0 = 1,  
ADC10SHT1 = 0,  
mA  
mA  
1.2  
ADC10DIV = 0  
fADC10CLK = 5 MHz,  
ADC10ON = 0, REF2_5V = 0,  
REFON = 1, REFOUT = 0  
2.2 V, 3 V  
3 V  
0.25  
0.4  
0.4  
Reference supply  
current, reference buffer  
disabled(4)  
I: -40°C to 85°C  
T: -40°C to 105°C  
IREF+  
fADC10CLK = 5 MHz,  
ADC10ON = 0, REF2_5V = 1,  
REFON = 1, REFOUT = 0  
0.25  
1.1  
fADC10CLK = 5 MHz  
-40°C to 85°C  
105°C  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
1.4  
1.8  
0.7  
0.8  
Reference buffer supply  
ADC10ON = 0, REFON = 1,  
REF2_5V = 0, REFOUT = 1,  
ADC10SR = 0  
IREFB,0 current with  
mA  
mA  
ADC10SR = 0(4)  
fADC10CLK = 5 MHz,  
-40°C to 85°C  
105°C  
0.5  
Reference buffer supply  
ADC10ON = 0, REFON = 1,  
REF2_5V = 0, REFOUT = 1,  
ADC10SR = 1  
IREFB,1 current with  
ADC10SR = 1(4)  
Only one terminal Ax selected at  
a time  
I: -40°C to 85°C  
T: -40°C to 105°C  
CI  
RI  
Input capacitance  
27  
pF  
Input MUX ON  
resistance  
I: -40°C to 85°C  
T: -40°C to 105°C  
0 V VAx VCC  
2.2 V, 3 V  
2000  
Ω
(1) The leakage current is defined in the leakage current table with Px.x/Ax parameter.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VR-for valid conversion results.  
(3) The internal reference supply current is not included in current consumption parameter IADC10  
.
(4) The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.  
48  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
10-Bit ADC, Built-In Voltage Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VREF+ 1 mA, REF2_5V = 0  
VCC  
MIN  
2.2  
TYP  
MAX  
UNIT  
I
I
I
I
I
Positive built-in  
reference analog  
supply voltage range  
VCC,REF+  
VREF+ 0.5 mA, REF2_5V = 1  
VREF+ 1 mA, REF2_5V = 1  
2.8  
2.9  
V
VREF+ IVREF+max, REF2_5V = 0  
VREF+ IVREF+max, REF2_5V = 1  
2.2 V, 3 V  
3 V  
1.41  
2.35  
1.5  
2.5  
1.59  
2.65  
±0.5  
±1  
Positive built-in  
reference voltage  
VREF+  
V
2.2 V  
3 V  
Maximum VREF+  
load current  
ILD,VREF+  
mA  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 0.75 V,  
REF2_5V = 0  
2.2 V, 3 V  
3 V  
±2  
±2  
VREF+ load  
regulation  
LSB  
ns  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 1.25 V,  
REF2_5V = 1  
IVREF+ = 100 µA to 900 µA,  
Ax 0.5 x VREF+  
ADC10SR = 0  
400  
VREF+ load  
regulation response  
time  
V
,
3 V  
Error of conversion result  
1 LSB  
ADC10SR = 1  
2000  
Maximum  
I
VREF+ ±1 mA,  
CVREF+  
TCREF+  
tREFON  
capacitance at pin  
2.2 V, 3 V  
2.2 V, 3 V  
3.6 V  
100  
±100  
30  
pF  
ppm/°C  
µs  
REFON = 1, REFOUT = 1  
(1)  
VREF+  
Temperature  
coefficient(2)  
IVREF+ = constant with  
0 mA IVREF+ 1 mA  
Settling time of  
internal reference  
voltage(3)  
IVREF+ = 0.5 mA, REF2_5V = 0,  
REFON = 0 to 1  
IVREF+ = 0.5 mA,  
REF2_5V = 0,  
REFON = 1,  
ADC10SR = 0  
ADC10SR = 1  
ADC10SR = 0  
ADC10SR = 1  
1
2.5  
2
2.2 V  
3 V  
REFBURST = 1  
Settling time of  
tREFBURST  
µs  
reference buffer(3)  
IVREF+ = 0.5 mA,  
REF2_5V = 1,  
REFON = 1,  
4.5  
REFBURST = 1  
(1) The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA 2/A4/VREF+/ VeREF+ (REFOUT = 1),  
must be limited; the reference buffer may become unstable otherwise.  
(2) Calculated using the box method:  
I temperature: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C))  
T temperature: (MAX(-40 to 105°C) – MIN(-40 to 105°C)) / MIN(-40 to 105°C) / (105°C – (–40°C))  
(3) The condition is that the error in a conversion started after tREFON or tRefBuf is less than ±0.5 LSB.  
Copyright © 2006–2012, Texas Instruments Incorporated  
49  
 
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
10-Bit ADC, External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
VeREF+ > VeREF-  
SREF1 = 1, SREF0 = 0  
,
1.4  
VCC  
Positive external reference input  
voltage range(2)  
VeREF+  
V
V
eREF-VeREF+ VCC - 0.15 V,  
1.4  
0
3
SREF1 = 1, SREF0 = 1(3)  
Negative external reference input  
voltage range(4)  
VeREF-  
VeREF+ > VeREF-  
1.2  
VCC  
±1  
V
V
Differential external reference  
input voltage range  
ΔVeREF = VeREF+ - VeREF-  
(5)  
ΔVeREF  
VeREF+ > VeREF-  
1.4  
0 V VeREF+ VCC  
SREF1 = 1, SREF0 = 0  
,
IVeREF+  
Static input current into VeREF+  
Static input current into VeREF-  
2.2 V, 3 V  
2.2 V, 3 V  
µA  
µA  
0 V VeREF+ VCC - 0.15 V 3 V,  
0
SREF1 = 1, SREF0 = 1(3)  
IVeREF-  
0 V VeREF-VCC  
±1  
(1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the  
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) Under this condition, the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply  
current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1.  
(4) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(5) The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
10-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45  
0.45  
TYP  
MAX UNIT  
ADC10SR = 0  
ADC10SR = 1  
6.3  
ADC10 input clock  
frequency  
For specified performance of  
ADC10 linearity parameters  
fADC10CLK  
fADC10OSC  
2.2 V, 3 V  
MHz  
1.5  
ADC10 built-in oscillator ADC10DIVx = 0, ADC10SSELx = 0,  
2.2 V, 3 V  
2.2 V, 3 V  
3.7  
6.3 MHz  
frequency  
fADC10CLK = fADC10OSC  
ADC10 built-in oscillator, ADC10SSELx = 0,  
fADC10CLK = fADC10OSC  
2.06  
3.51  
µs  
tCONVERT  
Conversion time  
fADC10CLK from ACLK, MCLK or SMCLK,  
13 × ADC10DIVx ×  
1 / fADC10CLK  
ADC10SSELx 0  
Turn on settling time of  
the ADC(1)  
tADC10ON  
100  
ns  
(1) The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
50  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
10-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error  
Differential linearity error  
Offset error  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
±1 LSB  
±1 LSB  
±1 LSB  
EI  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
ED  
EO  
Source impedance RS < 100 Ω  
SREFx = 010, unbuffered external reference,  
VeREF+ = 1.5 V  
2.2 V  
3 V  
±1.1  
±1.1  
±1.1  
±1.1  
±2  
±2  
SREFx = 010, unbuffered external reference,  
VeREF+ = 2.5 V  
±2  
EG  
Gain error  
LSB  
±4  
SREFx = 011, buffered external reference(1)  
VeREF+ = 1.5 V  
,
2.2 V  
3 V  
SREFx = 011, buffered external reference(1)  
VeREF+ = 2.5 V  
,
±3  
±5  
SREFx = 010, unbuffered external reference,  
VeREF+ = 1.5 V  
2.2 V  
3 V  
SREFx = 010, unbuffered external reference,  
VeREF+ = 2.5 V  
±2  
±5  
ET  
Total unadjusted error  
LSB  
±7  
SREFx = 011, buffered external reference(1)  
VeREF+ = 1.5 V  
,
2.2 V  
3 V  
±2  
SREFx = 011, buffered external reference(1)  
VeREF+ = 2.5 V  
,
±2  
±6  
(1) The reference buffer offset adds to the gain and total unadjusted error.  
(1)  
10-Bit ADC, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
MIN  
TYP  
40  
MAX UNIT  
120  
µA  
Temperature sensor supply  
current(1)  
REFON = 0, INCHx = 0Ah,  
TA = 25°C  
ISENSOR  
3 V  
60  
160  
TCSENSOR  
ADC10ON = 1, INCHx = 0Ah(2)  
ADC10ON = 1, INCHx = 0Ah(2)  
2.2 V, 3 V  
3.44  
-100  
3.55  
3.66 mV/°C  
VOffset,Sensor  
Sensor offset voltage  
100  
mV  
Temperature sensor voltage at  
TA = 105°C (T version only)  
1265  
1365  
1465  
Temperature sensor voltage at TA = 85°C  
Temperature sensor voltage at TA = 25°C  
Temperature sensor voltage at TA = 0°C  
1195  
985  
1295  
1085  
995  
1395  
1185  
1095  
VSENSOR  
Sensor output voltage(3)  
2.2 V, 3 V  
2.2 V, 3 V  
mV  
895  
Sample time required if  
channel 10 is selected(4)  
ADC10ON = 1, INCHx = 0Ah,  
Error of conversion result 1 LSB  
tSENSOR(sample)  
IVMID  
30  
µs  
2.2 V  
3 V  
N/A  
N/A  
Current into divider at  
channel 11(4)  
ADC10ON = 1, INCHx = 0Bh  
µA  
2.2 V  
3 V  
1.06  
1.46  
1.1  
1.5  
1.14  
1.54  
ADC10ON = 1, INCHx = 0Bh,  
VMID  
VCC divider at channel 11  
V
VMID 0.5 × VCC  
2.2 V  
3 V  
1400  
1220  
Sample time required if  
channel 11 is selected(5)  
ADC10ON = 1, INCHx = 0Bh,  
Error of conversion result 1 LSB  
tVMID(sample)  
ns  
(1) The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON = 1 and INCH = 0Ah and sample signal is  
high).When REFON = 1, ISENSOR is included in IREF+.When REFON = 0, ISENSOR applies during conversion of the temperature sensor  
input (INCH = 0Ah).  
(2) The following formula can be used to calculate the temperature sensor output voltage:  
VSensor,typ = TCSensor ( 273 + T [°C] ) + VOffset,sensor [mV] or  
VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV]  
(3) Results based on characterization and/or production test, not TCSensor or VOffset,sensor  
.
(4) No additional current is needed. The VMID is used during sampling.  
(5) The on time, tVMID(on), is included in the sampling time, tVMID(sample); no additional on time is needed.  
Copyright © 2006–2012, Texas Instruments Incorporated  
51  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
Operational Amplifier (OA) Supply Specifications (MSP430F22x4 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
VCC  
Supply voltage range  
2.2  
3.6  
290  
190  
80  
V
Fast Mode  
180  
110  
50  
ICC  
Supply current(1)  
Medium Mode  
Slow Mode  
2.2 V, 3 V  
2.2 V, 3 V  
µA  
dB  
PSRR Power-supply rejection ratio  
Noninverting  
70  
(1) Corresponding pins configured as OA inputs and outputs, respectively.  
Operational Amplifier (OA) Input/Output Specifications (MSP430F22x4 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
-0.1  
-5  
TYP  
MAX  
UNIT  
VI/P  
Input voltage range  
VCC - 1.2  
V
TA = -40 to +55°C  
±0.5  
±5  
5
20  
50  
Input leakage  
current(1) (2)  
Ilkg  
TA = +55 to +85°C  
TA = +85 to +105°C  
Fast Mode  
2.2 V, 3 V  
-20  
-50  
nA  
50  
80  
Medium Mode  
Slow Mode  
fV(I/P) = 1 kHz  
140  
30  
Voltage noise  
density, I/P  
Vn  
nV/Hz  
Fast Mode  
Medium Mode  
Slow Mode  
fV(I/P) = 10 kHz  
50  
65  
VIO  
Offset voltage, I/P  
2.2 V, 3 V  
2.2 V, 3 V  
±10  
mV  
Offset temperature  
drift, I/P(3)  
±10  
µV/°C  
Offset voltage drift  
with supply, I/P  
0.3 V VIN VCC - 1.0 V  
ΔVCC ±10%, TA = 25°C  
2.2 V, 3 V  
2.2 V, 3 V  
±1.5  
mV/V  
V
Fast Mode, ISOURCE -500 µA  
Slow Mode, ISOURCE -150 µA  
Fast Mode, ISOURCE 500 µA  
Slow Mode, ISOURCE 150 µA  
VCC - 0.2  
VCC - 0.1  
VSS  
VCC  
VCC  
0.2  
High-level output  
voltage, O/P  
VOH  
Low-level output  
voltage, O/P  
VOL  
2.2 V, 3 V  
V
VSS  
0.1  
RLoad = 3 k, CLoad = 50 pF,  
VO/P(OAx) < 0.2 V  
Output resistance(4) RLoad = 3 k, CLoad = 50 pF,  
150  
150  
0.1  
70  
250  
250  
4
RO/P(OAx)  
2.2 V, 3 V  
2.2 V, 3 V  
(see Figure 25)  
VO/P(OAx) > VCC - 1.2 V  
RLoad = 3 k, CLoad = 50 pF,  
0.2 V VO/P(OAx) VCC - 0.2 V  
Common-mode  
rejection ratio  
CMRR  
Noninverting  
dB  
(1) ESD damage can degrade input current leakage.  
(2) The input bias current is overridden by the input leakage current.  
(3) Calculated using the box method  
(4) Specification valid for voltage-follower OAx configuration  
52  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
R
O/P(OAx)  
Max  
R
C
Load  
I
Load  
AV  
CC  
OAx  
2
O/P(OAx)  
Min  
Load  
0.2V  
AV  
−0.2V  
CC  
V
AV  
OUT  
CC  
Figure 25. OAx Output Resistance Tests  
Operational Amplifier (OA) Dynamic Specifications (MSP430F22x4 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
1.2  
0.8  
0.3  
100  
60  
MAX UNIT  
Fast Mode  
SR  
Slew rate  
Medium Mode  
Slow Mode  
V/µs  
Open-loop voltage gain  
Phase margin  
dB  
deg  
dB  
φm  
CL = 50 pF  
CL = 50 pF  
Gain margin  
20  
Noninverting, Fast Mode,  
RL = 47 k, CL = 50 pF  
2.2  
1.4  
Gain-bandwidth product  
(see Figure 26 and Figure 27)  
Noninverting, Medium Mode,  
RL = 300 k, CL = 50 pF  
GBW  
2.2 V, 3 V  
MHz  
Noninverting, Slow Mode,  
RL = 300 k, CL = 50 pF  
0.5  
10  
ten(on) Enable time on  
ten(off) Enable time off  
ton, noninverting, Gain = 1  
2.2 V, 3 V  
2.2 V, 3 V  
20  
1
µs  
µs  
TYPICAL OPEN-LOOP GAIN  
TYPICAL PHASE  
vs  
vs  
FREQUENCY  
FREQUENCY  
140  
120  
100  
80  
0
−50  
Fast Mode  
Fast Mode  
60  
−100  
−150  
−200  
−250  
40  
Medium Mode  
20  
Medium Mode  
0
Slow Mode  
−20  
−40  
−60  
−80  
Slow Mode  
1
10  
100  
1000  
10000  
100000  
1
10  
100  
1000  
10000  
100000  
Input Frequency − kHz  
Input Frequency − kHz  
Figure 26.  
Figure 27.  
Copyright © 2006–2012, Texas Instruments Incorporated  
53  
 
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
Operational Amplifier OA Feedback Network, Resistor Network (MSP430F22x4 Only)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Total resistance of resistor string  
Unit resistor of resistor string(2)  
TEST CONDITIONS  
VCC  
MIN  
76  
TYP  
96  
6
Rtotal  
Runit  
128  
8
kΩ  
kΩ  
4.8  
(1) A single resistor string is composed of 4 Runit + 4 Runit + 2 Runit + 2 Runit + 1 Runit + 1 Runit + 1 Runit + 1 Runit = 16 Runit = Rtotal  
.
(2) For the matching (that is, the relative accuracy) of the unit resistors on a device, see the gain and level specifications of the respective  
configurations.  
Operational Amplifier (OA) Feedback Network, Comparator Mode (OAFCx = 3) (MSP430F22x4  
Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
OAFBRx = 1, OARRIP = 0  
OAFBRx = 2, OARRIP = 0  
OAFBRx = 3, OARRIP = 0  
OAFBRx = 4, OARRIP = 0  
OAFBRx = 5, OARRIP = 0  
OAFBRx = 6, OARRIP = 0  
OAFBRx = 7, OARRIP = 0  
OAFBRx = 1, OARRIP = 1  
OAFBRx = 2, OARRIP = 1  
OAFBRx = 3, OARRIP = 1  
OAFBRx = 4, OARRIP = 1  
OAFBRx = 5, OARRIP = 1  
OAFBRx = 6, OARRIP = 1  
OAFBRx = 7, OARRIP = 1  
Fast Mode, Overdrive 10 mV  
Fast Mode, Overdrive 100 mV  
Fast Mode, Overdrive 500 mV  
Medium Mode, Overdrive 10 mV  
Medium Mode, Overdrive 100 mV  
Medium Mode, Overdrive 500 mV  
Slow Mode, Overdrive 10 mV  
Slow Mode, Overdrive 100 mV  
Slow Mode, Overdrive 500 mV  
VCC  
MIN  
0.245  
0.495  
0.619  
TYP  
MAX UNIT  
0.25 0.255  
0.5 0.505  
0.625 0.631  
N/A(1)  
N/A(1)  
N/A(1)  
N/A(1)  
VLevel Comparator level  
2.2 V, 3 V  
VCC  
0.061  
0.122  
0.184  
0.245  
0.367  
0.495  
0.0625 0.065  
0.125 0.128  
0.1875 0.192  
0.25 0.255  
0.375 0.383  
0.5 0.505  
N/A(1)  
40  
4
3
60  
6
tPLH  
tPHL  
,
Propagation delay  
(low-high and high-low)  
2.2 V, 3 V  
µs  
5
160  
20  
15  
(1) The level is not available due to the analog input voltage range of the operational amplifier.  
54  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Operational Amplifier (OA) Feedback Network, Noninverting Amplifier Mode (OAFCx = 4)  
(MSP430F22x4 Only)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
OAFBRx = 0  
VCC  
MIN  
0.998  
1.328  
1.985  
2.638  
3.94  
TYP  
1
MAX UNIT  
1.002  
1.340  
2.017  
2.696  
4.06  
OAFBRx = 1  
OAFBRx = 2  
OAFBRx = 3  
OAFBRx = 4  
OAFBRx = 5  
OAFBRx = 6  
OAFBRx = 7  
1.334  
2.001  
2.667  
4
G
Gain  
2.2 V, 3 V  
5.22  
5.33  
7.97  
15.8  
-60  
5.44  
7.76  
8.18  
15  
16.6  
2.2 V  
3 V  
THD  
tSettle  
Total harmonic distortion/nonlinearity  
Settling time(1)  
All gains  
dB  
-70  
All power modes  
2.2 V, 3 V  
7
12  
µs  
(1) The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The  
settling time of the amplifier itself might be faster.  
Operational Amplifier (OA) Feedback Network, Inverting Amplifier Mode (OAFCx = 6)  
(MSP430F22x4 Only)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
OAFBRx = 1  
VCC  
MIN  
-0.345  
-1.023  
-1.712  
-3.1  
TYP  
-0.335  
-1.002  
-1.668  
-3  
MAX UNIT  
-0.325  
-0.979  
-1.624  
-2.9  
OAFBRx = 2  
OAFBRx = 3  
OAFBRx = 4  
OAFBRx = 5  
OAFBRx = 6  
OAFBRx = 7  
G
Gain  
2.2 V, 3 V  
-4.51  
-7.37  
-16.3  
-4.33  
-6.97  
-14.8  
-60  
-4.15  
-6.57  
-13.1  
2.2 V  
3 V  
THD  
tSettle  
Total harmonic distortion/nonlinearity  
Settling time(2)  
All gains  
dB  
-70  
All power modes  
2.2 V, 3 V  
7
12  
µs  
(1) This includes the 2 OA configuration "inverting amplifier with input buffer". Both OA needs to be set to the same power mode OAPMx.  
(2) The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The  
settling time of the amplifier itself might be faster.  
Copyright © 2006–2012, Texas Instruments Incorporated  
55  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
TYP  
MAX  
3.6  
476  
5
UNIT  
V
VCC (PGM/ERASE) Program and erase supply voltage  
fFTG  
Flash timing generator frequency  
Supply current from VCC during program  
Supply current from VCC during erase  
Cumulative program time(1)  
257  
kHz  
mA  
IPGM  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
1
1
IERASE  
tCPT  
7
mA  
10  
ms  
tCMErase  
Cumulative mass erase time  
20  
104  
100  
ms  
Program/Erase endurance  
105  
cycles  
years  
tFTG  
tFTG  
tRetention  
tWord  
Data retention duration  
TJ = 25°C  
(2)  
Word or byte program time  
30  
25  
(2)  
(2)  
tBlock, 0  
Block program time for first byte or word  
Block program time for each additional  
byte or word  
tBlock, 1-63  
18  
tFTG  
(2)  
(2)  
(2)  
tBlock, End  
tMass Erase  
tSeg Erase  
Block program end-sequence wait time  
Mass erase time  
6
10593  
4819  
tFTG  
tFTG  
tFTG  
Segment erase time  
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
(2) These values are hardwired into the flash controller's state machine (tFTG = 1/fFTG).  
RAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
MAX UNIT  
(1)  
V(RAMh)  
RAM retention supply voltage  
1.6  
V
(1) This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should  
happen during this supply voltage condition.  
56  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
Spy-Bi-Wire low clock pulse length  
2.2 V, 3 V  
2.2 V, 3 V  
20 MHz  
tSBW,Low  
0.025  
15  
µs  
Spy-Bi-Wire enable time  
tSBW,En  
tSBW,Ret  
2.2 V, 3 V  
1
µs  
(TEST high to acceptance of first clock edge(1)  
)
Spy-Bi-Wire return to normal operation time  
TCK input frequency(2)  
2.2 V, 3 V  
2.2 V  
15  
0
100  
5
µs  
MHz  
fTCK  
3 V  
0
10 MHz  
90 kΩ  
RInternal  
Internal pulldown resistance on TEST  
2.2 V, 3 V  
25  
60  
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before  
applying the first SBWCLK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
JTAG Fuse(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
TEST CONDITIONS  
TA = 25°C  
MIN  
2.5  
6
MAX UNIT  
VCC(FB)  
VFB  
V
7
100  
1
V
IFB  
mA  
ms  
tFB  
(1) Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to  
bypass mode.  
Copyright © 2006–2012, Texas Instruments Incorporated  
57  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
APPLICATION INFORMATION  
Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.0/TACLK/ADC10CLK  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
P1SEL.x  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
Table 21. Port P1 (P1.0 to P1.3) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0(1)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
P1.0/TACLK/ADC10CLK  
0
Timer_A3.TACLK  
ADC10CLK  
P1.1(1) (I/O)  
0
1
I: 0; O: 1  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
1
2
3
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.2(1) (I/O)  
0
1
I: 0; O: 1  
Timer_A3.CCI1A  
Timer_A3.TA1  
P1.3(1) (I/O)  
0
1
I: 0; O: 1  
Timer_A3.CCI2A  
Timer_A3.TA2  
0
1
(1) Default after reset (PUC/POR)  
58  
Copyright © 2006–2012, Texas Instruments Incorporated  
 
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Port P1 Pin Schematic: P1.4 to P1.6, Input/Output With Schmitt Trigger and In-System Access  
Features  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
P1.6/TA1/TDI  
Bus  
Keeper  
P1SEL.x  
P1IN.x  
EN  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
To JTAG  
From JTAG  
Table 22. Port P1 (P1.4 to P1.6) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
4-Wire JTAG  
P1.4(2) (I/O)  
SMCLK  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
0
1
0
0
1
0
0
1
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
4
1
TCK  
X
P1.5(2) (I/O)  
Timer_A3.TA0  
TMS  
P1.6(2) (I/O)  
Timer_A3.TA1  
TDI/TCLK(3)  
I: 0; O: 1  
5
6
1
X
I: 0; O: 1  
P1.6/TA1/TDI/TCLK  
(1) X = Don't care  
1
X
(2) Default after reset (PUC/POR)  
(3) Function controlled by JTAG  
Copyright © 2006–2012, Texas Instruments Incorporated  
59  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Port P1 Pin Schematic: P1.7, Input/Output With Schmitt Trigger and In-System Access Features  
Pad Logic  
P1REN.7  
DVSS  
DVCC  
0
1
1
P1DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.7  
Module X OUT  
P1.7/TA2/TDO/TDI  
Bus  
Keeper  
P1SEL.7  
P1IN.7  
EN  
EN  
D
Module X IN  
P1IRQ.7  
P1IE.7  
EN  
Q
Set  
P1IFG.7  
Interrupt  
Edge  
Select  
P1SEL.7  
P1IES.7  
To JTAG  
From JTAG  
From JTAG  
From JTAG (TDO)  
Table 23. Port P1 (P1.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
I: 0; O: 1  
P1SEL.x  
4-Wire JTAG  
P1.7(2) (I/O)  
0
1
0
0
1
P1.7/TA2/TDO/TDI  
(1) X = Don't care  
7
Timer_A3.TA2  
TDO/TDI(3)  
1
X
X
(2) Default after reset (PUC/POR)  
(3) Function controlled by JTAG  
60  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Port P2 Pin Schematic: P2.0, P2.2, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = y  
ADC10AE0.y  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.x  
Module X OUT  
P2.0/ACLK/A0/OA0I0  
P2.2/TA0/A2/OA0I1  
Bus  
Keeper  
P2SEL.x  
P2IN.x  
EN  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
EN  
Q
Set  
P2IFG.x  
Interrupt  
Edge  
Select  
P2SEL.x  
P2IES.x  
+
OA0  
Table 24. Port P2 (P2.0, P2.2) Pin Functions  
CONTROL BITS/SIGNALS(1)  
Pin Name (P2.x)  
x
y
FUNCTION  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.0(2) (I/O)  
I: 0; O: 1  
0
1
X
0
1
1
X
0
0
1
0
0
0
1
P2.0/ACLK/A0/OA0I0  
0
2
0
ACLK  
1
A0/OA0I0(3)  
P2.2(2) (I/O)  
Timer_A3.CCI0B  
Timer_A3.TA0  
A2/OA0I1(3)  
X
I: 0; O: 1  
0
1
X
P2.2/TA0/A2/OA0I1  
(1) X = Don't care  
2
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2006–2012, Texas Instruments Incorporated  
61  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Port P2 Pin Schematic: P2.1, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = 1  
ADC10AE0.1  
P2REN.1  
DVSS  
DVCC  
0
1
1
P2DIR.1  
0
1
Direction  
0: Input  
1: Output  
P2OUT.1  
0
1
Module X OUT  
P2.1/TAINCLK/SMCLK/  
A1/OA0O  
Bus  
Keeper  
P2SEL.1  
P2IN.1  
EN  
EN  
D
Module X IN  
P2IRQ.1  
P2IE.1  
EN  
Q
Set  
P2IFG.1  
+
1
OA0  
Interrupt  
Edge  
Select  
P2SEL.1  
P2IES.1  
OAADCx  
OAFCx  
OAPMx  
(OAADCx = 10 or OAFCx = 000) and OAPMx> 00  
To OA0 Feedback Network  
1
Table 25. Port P2 (P2.1) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
y
FUNCTION  
P2DIR.x  
I: 0; O: 1  
P2SEL.x  
ADC10AE0.y  
P2.1(2) (I/O)  
0
1
1
X
0
0
0
1
Timer_A3.INCLK  
SMCLK  
A1/OA0O(3)  
0
1
X
P2.1/TAINCLK/SMCLK/  
A1/OA0O  
1
1
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
62  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Port P2 Pin Schematic: P2.3, Input/Output With Schmitt Trigger  
SREF2  
VSS  
Pad Logic  
0
1
To ADC10 V  
R−  
To ADC10  
INCHx = 3  
ADC10AE0.3  
P2REN.3  
P2DIR.3  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.3  
Module X OUT  
P2.3/TA1/  
A3/VREF/VeREF/  
OA1I1/OA1O  
Bus  
Keeper  
P2SEL.3  
P2IN.3  
EN  
EN  
D
Module X IN  
P2IRQ.3  
P2IE.3  
EN  
Q
Set  
P2IFG.3  
Interrupt  
Edge  
Select  
P2SEL.3  
P2IES.3  
+
1
OA1  
OAADCx  
OAFCx  
OAPMx  
(OAADCx = 10 or OAFCx = 000) and OAPMx> 00  
To OA1 Feedback Network  
1
Copyright © 2006–2012, Texas Instruments Incorporated  
63  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Table 26. Port P2 (P2.3) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
y
FUNCTION  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.3(2) (I/O)  
I: 0; O: 1  
0
1
1
X
0
0
0
1
Timer_A3.CCI1B  
0
1
X
P2.3/TA1/A3/VREF-  
/VeREF-/ OA1I1/OA1O  
3
3
Timer_A3.TA1  
A3/VREF-/VeREF-/OA1I1/OA1O(3)  
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
64  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Port P2 Pin Schematic: P2.4, Input/Output With Schmitt Trigger  
Pad Logic  
To/fromADC10  
positive reference  
To ADC10  
INCHx = 4  
ADC10AE0.4  
P2REN.4  
DVSS  
DVCC  
0
1
1
P2DIR.4  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.4  
Module X OUT  
P2.4/TA2/  
A4/VREF+/VeREF+/  
OA1I0  
Bus  
Keeper  
P2SEL.4  
P2IN.4  
EN  
EN  
D
Module X IN  
P2IRQ.4  
P2IE.4  
EN  
Q
Set  
P2IFG.4  
Interrupt  
Edge  
Select  
P2SEL.4  
+
P2IES.4  
OA1  
Table 27. Port P2 (P2.4) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
y
FUNCTION  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.4(2) (I/O)  
I: 0; O: 1  
0
1
X
0
0
1
P2.4/TA2/A4/VREF+  
VeREF+/ OA1I0  
/
4
4
Timer_A3.TA2  
A4/VREF+/VeREF+/OA1I0(3)  
1
X
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2006–2012, Texas Instruments Incorporated  
65  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Port P2 Pin Schematic: P2.5, Input/Output With Schmitt Trigger and External ROSC for DCO  
Pad Logic  
To DCO  
DCOR  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.x  
Module X OUT  
P2.5/ROSC  
Bus  
Keeper  
P2SEL.x  
P2IN.x  
EN  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
EN  
Q
Set  
P2IFG.x  
Interrupt  
Edge  
Select  
P2SEL.x  
P2IES.x  
Table 28. Port P2 (P2.5) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
I: 0; O: 1  
P2SEL.x  
DCOR  
P2.5(2) (I/O)  
N/A(3)  
0
1
1
X
0
0
0
1
0
1
P2.5/ROSC  
5
DVSS  
ROSC  
X
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) N/A = Not available or not applicable  
66  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger and Crystal Oscillator Input  
BCSCTL3.LFXT1Sx = 11  
LFXT1 Oscillator  
P2.7/XOUT  
LFXT1 off  
0
1
LFXT1CLK  
Pad Logic  
P2SEL.7  
P2REN.6  
DVSS  
0
1
1
DVCC  
P2DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.6  
Module X OUT  
P2.6/XIN  
Bus  
Keeper  
P2SEL.6  
P2IN.6  
EN  
EN  
D
Module X IN  
P2IRQ.6  
P2IE.6  
EN  
Set  
Q
P2IFG.6  
P2SEL.6  
Interrupt  
Edge  
Select  
P2IES.6  
Table 29. Port P2 (P2.6) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
I: 0; O: 1  
X
P2SEL.x  
P2.6 (I/O)  
XIN(2)  
0
1
P2.6/XIN  
6
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
Copyright © 2006–2012, Texas Instruments Incorporated  
67  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger and Crystal Oscillator Output  
BCSCTL3.LFXT1Sx = 11  
LFXT1 Oscillator  
LFXT1 off  
0
1
LFXT1CLK  
From P2.6/XIN  
P2.6/XIN  
Pad Logic  
P2SEL.6  
P2REN.7  
DVSS  
0
1
1
DVCC  
P2DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.7  
Module X OUT  
P2.7/XOUT  
Bus  
Keeper  
P2SEL.7  
P2IN.7  
EN  
EN  
D
Module X IN  
P2IRQ.7  
P2IE.7  
EN  
Set  
Q
P2IFG.7  
P2SEL.7  
Interrupt  
Edge  
Select  
P2IES.7  
Table 30. Port P2 (P2.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
I: 0; O: 1  
X
P2SEL.x  
P2.7 (I/O)  
XOUT(2) (3)  
0
1
XOUT/P2.7  
7
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) If the pin XOUT/P2.7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection to this  
pin after reset.  
68  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Port P3 Pin Schematic: P3.0, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = 5  
ADC10AE0.5  
P3REN.0  
DVSS  
DVCC  
0
1
1
P3DIR.0  
0
1
Direction  
0: Input  
1: Output  
USCI Direction  
Control  
0
1
P3OUT.0  
Module X OUT  
P3.0/UCB0STE/UCA0CLK/A5  
Bus  
Keeper  
P3SEL.0  
P3IN.0  
EN  
EN  
D
Module X IN  
Table 31. Port P3 (P3.0) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P1.x)  
x
y
FUNCTION  
P3DIR.x  
P3SEL.x  
ADC10AE0.y  
P3.0(2) (I/O)  
UCB0STE/UCA0CLK(3) (4)  
A5(5)  
I: 0; O: 1  
0
1
X
0
0
1
P3.0/UCB0STE/  
UCA0CLK/A5  
0
5
X
X
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) The pin direction is controlled by the USCI module.  
(4) UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI_B0 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
(5) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2006–2012, Texas Instruments Incorporated  
69  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Port P3 Pin Schematic: P3.1 to P3.5, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
USCI Direction  
Control  
0
1
P3OUT.x  
Module X OUT  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
P3.4/UCA0TXD/UCA0SIMO  
P3.5/UCA0RXD/UCA0SOMI  
Bus  
Keeper  
P3SEL.x  
P3IN.x  
EN  
EN  
D
Module X IN  
Table 32. Port P3 (P3.1 to P3.5) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P3.x)  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
P3.4/UCA0TXD/UCA0SIMO  
x
1
2
3
4
5
FUNCTION  
P3DIR.x  
P3SEL.x  
P3.1(2) (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
UCB0SIMO/UCB0SDA(3)  
P3.2(2) (I/O)  
X
I: 0; O: 1  
UCB0SOMI/UCB0SCL(3)  
P3.3(2) (I/O)  
X
I: 0; O: 1  
UCB0CLK/UCA0STE(3) (4)  
P3.4(2) (I/O)  
X
I: 0; O: 1  
X
UCA0TXD/UCA0SIMO(3)  
P3.5(2) (I/O)  
I: 0; O: 1  
X
P3.5/UCA0RXD/UCA0SOMI  
(1) X = Don't care  
UCA0RXD/UCA0SOMI(3)  
(2) Default after reset (PUC/POR)  
(3) The pin direction is controlled by the USCI module.  
(4) UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to  
3-wire SPI mode even if 4-wire SPI mode is selected.  
70  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Port P3 Pin Schematic: P3.6 to P3.7, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = y  
ADC10AE0.y  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
DVSS  
0
1
P3OUT.x  
Module X OUT  
P3.6/A6/OA0I2  
P3.7/A7/OA1I2  
Bus  
Keeper  
P3SEL.x  
P3IN.x  
EN  
EN  
D
Module X IN  
+
OA0/1  
Table 33. Port P3 (P3.6, P3.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P3.x)  
x
6
7
y
FUNCTION  
P3DIR.x  
P3SEL.x  
ADC10AE0.y  
P3.6(2) (I/O)  
A6/OA0I2(3)  
P3.7(2) (I/O)  
A7/OA1I2(3)  
I: 0; O: 1  
0
X
0
0
1
0
1
P3.6/A6/OA0I2  
6
7
X
I: 0; O: 1  
X
P3.7/A7/OA1I2  
X
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2006–2012, Texas Instruments Incorporated  
71  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Port P4 Pin Schematic: P4.0 to P4.2, Input/Output With Schmitt Trigger  
Timer_B OutputTristate Logic  
P4.6/TBOUTH/A15/OA1I3  
P4SEL.6  
Pad Logic  
P4DIR.6  
ADC10AE1.7  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.x  
Module X OUT  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
Table 34. Port P4 (P4.0 to P4.2) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL.x  
P4.0(1) (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
P4.0/TB0  
0
1
2
Timer_B3.CCI0A  
Timer_B3.TB0  
P4.1(1) (I/O)  
0
1
I: 0; O: 1  
P4.1/TB1  
P4.2/TB2  
Timer_B3.CCI1A  
Timer_B3.TB1  
P4.2(1) (I/O)  
0
1
I: 0; O: 1  
Timer_B3.CCI2A  
Timer_B3.TB2  
0
1
(1) Default after reset (PUC/POR)  
72  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Port P4 Pin Schematic: P4.3 to P4.4, Input/Output With Schmitt Trigger  
Timer_B OutputTristate Logic  
P4.6/TBOUTH/A15/OA1I3  
P4SEL.6  
P4DIR.6  
ADC10AE1.7  
Pad Logic  
To ADC10  
INCHx = 8+y  
ADC10AE1.y  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
0
1
Module X OUT  
P4.3/TB0/A12/OA0O  
P4.4/TB1/A13/OA1O  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
+
1
OA0/1  
OAADCx  
OAPMx  
OAADCx = 01 and OAPMx> 00  
To OA0/1 Feedback Network  
1
If OAADCx = 11 and not OAFCx = 000, the ADC input A12 or A13 is internally connected to the OA0 or OA1 output,  
respectively, and the connections from the ADC and the operational amplifiers to the pad are disabled.  
Copyright © 2006–2012, Texas Instruments Incorporated  
73  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Table 35. Port P4 (P4.3 to P4.4) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P4.x)  
x
y
FUNCTION  
P4DIR.x  
P4SEL.x  
ADC10AE1.y  
P4.3(2) (I/O)  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
Timer_B3.CCI0B  
Timer_B3.TB0  
A12/OA0O(3)  
P4.4(2) (I/O)  
0
P4.3/TB0/A12/OA0O  
3
4
1
X
I: 0; O: 1  
Timer_B3.CCI1B  
Timer_B3.TB1  
A13/OA1O(3)  
0
1
X
P4.4/TB1/A13/OA1O  
(1) X = Don't care  
4
5
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
74  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Port P4 Pin Schematic: P4.5, Input/Output With Schmitt Trigger  
Timer_B OutputTristate Logic  
P4.6/TBOUTH/A15/OA1I3  
P4SEL.6  
P4DIR.6  
ADC10AE1.7  
Pad Logic  
To ADC10  
INCHx = 14  
ADC10AE1.6  
P4REN.5  
DVSS  
DVCC  
0
1
1
P4DIR.5  
0
1
Direction  
0: Input  
1: Output  
P4OUT.5  
0
1
Module X OUT  
P4.5/TB3/A14/OA0I3  
Bus  
Keeper  
P4SEL.5  
P4IN.5  
EN  
EN  
D
Module X IN  
+
OA0  
Table 36. Port P4 (P4.5) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P4.x)  
x
y
FUNCTION  
P4DIR.x  
P4SEL.x  
ADC10AE1.y  
P4.5(2) (I/O)  
I: 0; O: 1  
0
1
X
0
0
1
P4.5/TB3/A14/OA0I3  
(1) X = Don't care  
5
6
Timer_B3.TB2  
A14/OA0I3(3)  
1
X
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2006–2012, Texas Instruments Incorporated  
75  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
Port P4 Pin Schematic: P4.6, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = 15  
ADC10AE1.7  
P4REN.6  
DVSS  
DVCC  
0
1
1
P4DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.6  
Module X OUT  
P4.6/TBOUTH/  
A15/OA1I3  
Bus  
Keeper  
P4SEL.6  
P4IN.6  
EN  
EN  
D
Module X IN  
+
OA1  
Table 37. Port P4 (P4.6) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P4.x)  
x
y
FUNCTION  
P4DIR.x  
I: 0; O: 1  
P4SEL.x  
ADC10AE1.y  
P4.6(2) (I/O)  
0
1
1
X
0
0
0
1
TBOUTH  
DVSS  
A15/OA1I3(3)  
0
1
P4.6/TBOUTH/A15/OA1I3  
(1) X = Don't care  
6
7
X
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
76  
Copyright © 2006–2012, Texas Instruments Incorporated  
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
Port P4 Pin Schematic: P4.7, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.x  
Module X OUT  
P4.7/TBCLK  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
Table 38. Port P4 (Pr.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL.x  
P4.7(1) (I/O)  
I: 0; O: 1  
0
1
1
P4.7/TBCLK  
7
Timer_B3.TBCLK  
DVSS  
0
1
(1) Default after reset (PUC/POR)  
Copyright © 2006–2012, Texas Instruments Incorporated  
77  
MSP430F22x2  
MSP430F22x4  
SLAS504G JULY 2006REVISED AUGUST 2012  
www.ti.com  
JTAG Fuse Check Mode  
MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the  
fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care  
must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense  
currents are terminated.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is  
being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode.  
After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse  
check mode has the potential to be activated.  
The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 28). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TEST  
Figure 28. Fuse Check Mode Current  
NOTE  
The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit  
bootloader access key is used. Also, see the Bootstrap Loader section for more  
information.  
78  
Copyright © 2006–2012, Texas Instruments Incorporated  
 
MSP430F22x2  
MSP430F22x4  
www.ti.com  
SLAS504G JULY 2006REVISED AUGUST 2012  
REVISION HISTORY  
Literature  
Summary  
Number  
SLAS504  
SLAS504A  
Preliminary data sheet release  
Production data sheet release  
Updated specification and added characterization graphs  
Updated/corrected port pin schematics  
SLAS504B  
SLAS504C  
SLAS504D  
Maximum low-power mode supply current limits decreased  
Added note concerning fUCxCLK to USCI SPI parameters  
Added Development Tool Support section (page 2)  
Changed Tstg for programmed devices from "-40°C to 105°C" to "-55°C to 105°C" (page 23)  
Corrected pin names in "Port P3 pin schematic: P3.0" and "Port P3 (P3.0) pin functions" (page 68)  
Corrected pin names in "Port P3 pin schematic: P3.1 to P3.5" and "Port P3 (P3.1 to P3.5) pin functions" (page 69)  
Corrected signal names in "Port P2 pin schematic: P2.5, input/output" (page 65) (D1)  
Corrected values in "x" column in "Port P3 (P3.1 to P3.5) pin functions" (page 69) (D2)  
SLAS504E  
SLAS504F  
Added information for YFF package  
Correct signal names for P3.6 and P3.7 in MSP430F22x2 pinouts – DA package, RHA package  
Changed Storage temperature range limit in Absolute Maximum Ratings  
Corrected Test Conditions in Crystal Oscillator LFXT1, High-Frequency Mode  
Corrected signal names in Port P1 (P1.0 to P1.3) Pin Functions  
Corrected typo in note 1 on Crystal Oscillator LFXT1, High-Frequency Mode table  
SLAS504G  
Terminal Functions tables, Corrected description of VREF-/VeREF-pins.  
Added note on TCREF+ in 10-Bit ADC, Built-In Voltage Reference.  
Copyright © 2006–2012, Texas Instruments Incorporated  
79  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
MSP430F2232IDA  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
TSSOP  
TSSOP  
VQFN  
DA  
38  
38  
40  
40  
49  
49  
38  
38  
40  
40  
38  
38  
40  
40  
49  
49  
38  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
SNAGCU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
M430F2232  
MSP430F2232IDAR  
MSP430F2232IRHAR  
MSP430F2232IRHAT  
MSP430F2232IYFFR  
MSP430F2232IYFFT  
MSP430F2232TDA  
MSP430F2232TDAR  
MSP430F2232TRHAR  
MSP430F2232TRHAT  
MSP430F2234IDA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DA  
RHA  
RHA  
YFF  
YFF  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
M430F2232  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
M430  
F2232  
VQFN  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
M430  
F2232  
DSBGA  
DSBGA  
TSSOP  
TSSOP  
VQFN  
2500  
250  
Green (RoHS  
& no Sb/Br)  
M430F2232  
M430F2232  
M430F2232T  
M430F2232T  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
SNAGCU  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
DA  
Green (RoHS  
& no Sb/Br)  
M430  
F2232T  
VQFN  
Green (RoHS  
& no Sb/Br)  
M430  
F2232T  
TSSOP  
TSSOP  
VQFN  
40  
Green (RoHS  
& no Sb/Br)  
M430F2234  
MSP430F2234IDAR  
MSP430F2234IRHAR  
MSP430F2234IRHAT  
MSP430F2234IYFFR  
MSP430F2234IYFFT  
MSP430F2234TDA  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
M430F2234  
RHA  
RHA  
YFF  
YFF  
DA  
Green (RoHS  
& no Sb/Br)  
M430  
F2234  
VQFN  
Green (RoHS  
& no Sb/Br)  
M430  
F2234  
DSBGA  
DSBGA  
TSSOP  
2500  
250  
Green (RoHS  
& no Sb/Br)  
M430F2234  
M430F2234  
M430F2234T  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
-40 to 105  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
MSP430F2234TDAR  
MSP430F2234TRHAR  
MSP430F2234TRHAT  
MSP430F2252IDA  
ACTIVE  
TSSOP  
VQFN  
DA  
38  
40  
40  
38  
38  
40  
40  
49  
49  
38  
38  
40  
40  
38  
38  
40  
40  
49  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
SNAGCU  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
M430F2234T  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RHA  
RHA  
DA  
2500  
250  
Green (RoHS  
& no Sb/Br)  
M430  
F2234T  
VQFN  
Green (RoHS  
& no Sb/Br)  
M430  
F2234T  
TSSOP  
TSSOP  
VQFN  
40  
Green (RoHS  
& no Sb/Br)  
M430F2252  
MSP430F2252IDAR  
MSP430F2252IRHAR  
MSP430F2252IRHAT  
MSP430F2252IYFFR  
MSP430F2252IYFFT  
MSP430F2252TDA  
MSP430F2252TDAR  
MSP430F2252TRHAR  
MSP430F2252TRHAT  
MSP430F2254IDA  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
M430F2252  
RHA  
RHA  
YFF  
YFF  
DA  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
M430  
F2252  
VQFN  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
M430  
F2252  
DSBGA  
DSBGA  
TSSOP  
TSSOP  
VQFN  
2500  
250  
Green (RoHS  
& no Sb/Br)  
M430F2252  
M430F2252  
M430F2252T  
M430F2252T  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
SNAGCU  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
DA  
Green (RoHS  
& no Sb/Br)  
M430  
F2252T  
VQFN  
Green (RoHS  
& no Sb/Br)  
M430  
F2252T  
TSSOP  
TSSOP  
VQFN  
40  
Green (RoHS  
& no Sb/Br)  
M430F2254  
MSP430F2254IDAR  
MSP430F2254IRHAR  
MSP430F2254IRHAT  
MSP430F2254IYFFR  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
M430F2254  
RHA  
RHA  
YFF  
Green (RoHS  
& no Sb/Br)  
M430  
F2254  
VQFN  
Green (RoHS  
& no Sb/Br)  
M430  
F2254  
DSBGA  
2500  
Green (RoHS  
& no Sb/Br)  
M430F2254  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
MSP430F2254IYFFT  
MSP430F2254TDA  
MSP430F2254TDAR  
MSP430F2254TRHAR  
MSP430F2254TRHAT  
MSP430F2272IDA  
ACTIVE  
DSBGA  
TSSOP  
TSSOP  
VQFN  
YFF  
49  
38  
38  
40  
40  
38  
38  
40  
40  
49  
49  
38  
38  
40  
40  
38  
38  
40  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
SNAGCU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
M430F2254  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DA  
DA  
40  
Green (RoHS  
& no Sb/Br)  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
M430F2254T  
M430F2254T  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
DA  
Green (RoHS  
& no Sb/Br)  
M430  
F2254T  
VQFN  
Green (RoHS  
& no Sb/Br)  
M430  
F2254T  
TSSOP  
TSSOP  
VQFN  
40  
Green (RoHS  
& no Sb/Br)  
M430F2272  
MSP430F2272IDAR  
MSP430F2272IRHAR  
MSP430F2272IRHAT  
MSP430F2272IYFFR  
MSP430F2272IYFFT  
MSP430F2272TDA  
MSP430F2272TDAR  
MSP430F2272TRHAR  
MSP430F2272TRHAT  
MSP430F2274IDA  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
M430F2272  
RHA  
RHA  
YFF  
YFF  
DA  
Green (RoHS  
& no Sb/Br)  
M430  
F2272  
VQFN  
Green (RoHS  
& no Sb/Br)  
M430  
F2272  
DSBGA  
DSBGA  
TSSOP  
TSSOP  
VQFN  
2500  
250  
Green (RoHS  
& no Sb/Br)  
M430F2272  
M430F2272  
M430F2272T  
M430F2272T  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 85  
-40 to 85  
-40 to 85  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
DA  
Green (RoHS  
& no Sb/Br)  
M430  
F2272T  
VQFN  
Green (RoHS  
& no Sb/Br)  
M430  
F2272T  
TSSOP  
TSSOP  
VQFN  
40  
Green (RoHS  
& no Sb/Br)  
M430F2274  
MSP430F2274IDAR  
MSP430F2274IRHAR  
DA  
2000  
2500  
Green (RoHS  
& no Sb/Br)  
M430F2274  
RHA  
Green (RoHS  
& no Sb/Br)  
M430  
F2274  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
MSP430F2274IRHAT  
MSP430F2274IYFFR  
MSP430F2274IYFFT  
MSP430F2274TDA  
ACTIVE  
VQFN  
DSBGA  
DSBGA  
TSSOP  
TSSOP  
VQFN  
RHA  
40  
49  
49  
38  
38  
40  
40  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
SNAGCU  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
M430  
F2274  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
YFF  
YFF  
DA  
2500  
250  
Green (RoHS  
& no Sb/Br)  
M430F2274  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
M430F2274  
M430F2274T  
M430F2274T  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
MSP430F2274TDAR  
MSP430F2274TRHAR  
MSP430F2274TRHAT  
DA  
2000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
RHA  
RHA  
Green (RoHS  
& no Sb/Br)  
M430  
F2274T  
VQFN  
Green (RoHS  
& no Sb/Br)  
M430  
F2274T  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF MSP430F2274 :  
Enhanced Product: MSP430F2274-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F2232IDAR  
MSP430F2232IRHAR  
MSP430F2232IRHAT  
MSP430F2232IYFFR  
MSP430F2232IYFFT  
MSP430F2232TRHAR  
MSP430F2232TRHAT  
MSP430F2234IDAR  
MSP430F2234IRHAR  
MSP430F2234IRHAT  
MSP430F2234IYFFR  
MSP430F2234IYFFT  
MSP430F2234TRHAR  
MSP430F2252IDAR  
MSP430F2252IRHAR  
MSP430F2252IRHAT  
MSP430F2252IYFFR  
MSP430F2252IYFFT  
TSSOP  
VQFN  
DA  
38  
40  
40  
49  
49  
40  
40  
38  
40  
40  
49  
49  
40  
38  
40  
40  
49  
49  
2000  
2500  
250  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
330.0  
180.0  
330.0  
180.0  
24.4  
16.4  
16.4  
12.4  
12.4  
16.4  
16.4  
24.4  
16.4  
16.4  
12.4  
12.4  
16.4  
24.4  
16.4  
16.4  
12.4  
12.4  
8.6  
6.3  
6.3  
3.5  
3.5  
6.3  
6.3  
8.6  
6.3  
6.3  
3.5  
3.5  
6.3  
8.6  
6.3  
6.3  
3.5  
3.5  
13.0  
6.3  
6.3  
3.7  
3.7  
6.3  
6.3  
13.0  
6.3  
6.3  
3.7  
3.7  
6.3  
13.0  
6.3  
6.3  
3.7  
3.7  
1.8  
1.5  
12.0  
12.0  
12.0  
8.0  
24.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
24.0  
16.0  
16.0  
12.0  
12.0  
16.0  
24.0  
16.0  
16.0  
12.0  
12.0  
Q1  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q1  
Q2  
Q2  
Q2  
Q2  
Q2  
Q1  
Q2  
Q2  
Q2  
Q2  
RHA  
RHA  
YFF  
YFF  
RHA  
RHA  
DA  
VQFN  
1.5  
DSBGA  
DSBGA  
VQFN  
2500  
250  
0.81  
0.81  
1.5  
8.0  
2500  
250  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
VQFN  
1.5  
TSSOP  
VQFN  
2000  
2500  
250  
1.8  
RHA  
RHA  
YFF  
YFF  
RHA  
DA  
1.5  
VQFN  
1.5  
DSBGA  
DSBGA  
VQFN  
2500  
250  
0.81  
0.81  
1.5  
8.0  
2500  
2000  
2500  
250  
12.0  
12.0  
12.0  
12.0  
8.0  
TSSOP  
VQFN  
1.8  
RHA  
RHA  
YFF  
YFF  
1.5  
VQFN  
1.5  
DSBGA  
DSBGA  
2500  
250  
0.81  
0.81  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2012  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F2252TRHAR  
MSP430F2252TRHAT  
MSP430F2254IDAR  
MSP430F2254IRHAR  
MSP430F2254IRHAT  
MSP430F2254IYFFR  
MSP430F2254IYFFT  
MSP430F2254TRHAR  
MSP430F2254TRHAT  
MSP430F2272IDAR  
MSP430F2272IRHAR  
MSP430F2272IRHAT  
MSP430F2272IYFFR  
MSP430F2272IYFFT  
MSP430F2272TRHAR  
MSP430F2272TRHAT  
MSP430F2274IRHAR  
MSP430F2274IRHAT  
MSP430F2274IYFFR  
MSP430F2274IYFFT  
MSP430F2274TRHAR  
MSP430F2274TRHAT  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
DSBGA  
DSBGA  
VQFN  
VQFN  
TSSOP  
VQFN  
VQFN  
DSBGA  
DSBGA  
VQFN  
VQFN  
VQFN  
VQFN  
DSBGA  
DSBGA  
VQFN  
VQFN  
RHA  
RHA  
DA  
40  
40  
38  
40  
40  
49  
49  
40  
40  
38  
40  
40  
49  
49  
40  
40  
40  
40  
49  
49  
40  
40  
2500  
250  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
16.4  
16.4  
24.4  
16.4  
16.4  
12.4  
12.4  
16.4  
16.4  
24.4  
16.4  
16.4  
12.4  
12.4  
16.4  
16.4  
16.4  
16.4  
12.4  
12.4  
16.4  
16.4  
6.3  
6.3  
8.6  
6.3  
6.3  
3.5  
3.5  
6.3  
6.3  
8.6  
6.3  
6.3  
3.5  
3.5  
6.3  
6.3  
6.3  
6.3  
3.5  
3.5  
6.3  
6.3  
6.3  
6.3  
13.0  
6.3  
6.3  
3.7  
3.7  
6.3  
6.3  
13.0  
6.3  
6.3  
3.7  
3.7  
6.3  
6.3  
6.3  
6.3  
3.7  
3.7  
6.3  
6.3  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
16.0  
16.0  
24.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
24.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Q1  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q1  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
2000  
2500  
250  
1.8  
RHA  
RHA  
YFF  
YFF  
RHA  
RHA  
DA  
1.5  
1.5  
2500  
250  
0.81  
0.81  
1.5  
8.0  
2500  
250  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
1.5  
2000  
2500  
250  
1.8  
RHA  
RHA  
YFF  
YFF  
RHA  
RHA  
RHA  
RHA  
YFF  
YFF  
RHA  
RHA  
1.5  
1.5  
2500  
250  
0.81  
0.81  
1.5  
8.0  
2500  
250  
12.0  
12.0  
12.0  
12.0  
8.0  
1.5  
2500  
250  
1.5  
1.5  
2500  
250  
0.81  
0.81  
1.5  
8.0  
2500  
250  
12.0  
12.0  
1.5  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F2232IDAR  
MSP430F2232IRHAR  
MSP430F2232IRHAT  
MSP430F2232IYFFR  
MSP430F2232IYFFT  
MSP430F2232TRHAR  
MSP430F2232TRHAT  
MSP430F2234IDAR  
MSP430F2234IRHAR  
MSP430F2234IRHAT  
MSP430F2234IYFFR  
MSP430F2234IYFFT  
MSP430F2234TRHAR  
MSP430F2252IDAR  
MSP430F2252IRHAR  
MSP430F2252IRHAT  
MSP430F2252IYFFR  
MSP430F2252IYFFT  
MSP430F2252TRHAR  
MSP430F2252TRHAT  
TSSOP  
VQFN  
DA  
38  
40  
40  
49  
49  
40  
40  
38  
40  
40  
49  
49  
40  
38  
40  
40  
49  
49  
40  
40  
2000  
2500  
250  
367.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
367.0  
185.0  
367.0  
185.0  
367.0  
367.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
45.0  
38.0  
35.0  
35.0  
35.0  
38.0  
35.0  
45.0  
38.0  
35.0  
35.0  
35.0  
38.0  
45.0  
38.0  
35.0  
35.0  
35.0  
38.0  
35.0  
RHA  
RHA  
YFF  
YFF  
RHA  
RHA  
DA  
VQFN  
DSBGA  
DSBGA  
VQFN  
2500  
250  
2500  
250  
VQFN  
TSSOP  
VQFN  
2000  
2500  
250  
RHA  
RHA  
YFF  
YFF  
RHA  
DA  
VQFN  
DSBGA  
DSBGA  
VQFN  
2500  
250  
2500  
2000  
2500  
250  
TSSOP  
VQFN  
RHA  
RHA  
YFF  
YFF  
RHA  
RHA  
VQFN  
DSBGA  
DSBGA  
VQFN  
2500  
250  
2500  
250  
VQFN  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2012  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F2254IDAR  
MSP430F2254IRHAR  
MSP430F2254IRHAT  
MSP430F2254IYFFR  
MSP430F2254IYFFT  
MSP430F2254TRHAR  
MSP430F2254TRHAT  
MSP430F2272IDAR  
MSP430F2272IRHAR  
MSP430F2272IRHAT  
MSP430F2272IYFFR  
MSP430F2272IYFFT  
MSP430F2272TRHAR  
MSP430F2272TRHAT  
MSP430F2274IRHAR  
MSP430F2274IRHAT  
MSP430F2274IYFFR  
MSP430F2274IYFFT  
MSP430F2274TRHAR  
MSP430F2274TRHAT  
TSSOP  
VQFN  
DA  
38  
40  
40  
49  
49  
40  
40  
38  
40  
40  
49  
49  
40  
40  
40  
40  
49  
49  
40  
40  
2000  
2500  
250  
367.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
45.0  
38.0  
35.0  
35.0  
35.0  
38.0  
35.0  
45.0  
38.0  
35.0  
35.0  
35.0  
38.0  
35.0  
38.0  
35.0  
35.0  
35.0  
38.0  
35.0  
RHA  
RHA  
YFF  
YFF  
RHA  
RHA  
DA  
VQFN  
DSBGA  
DSBGA  
VQFN  
2500  
250  
2500  
250  
VQFN  
TSSOP  
VQFN  
2000  
2500  
250  
RHA  
RHA  
YFF  
YFF  
RHA  
RHA  
RHA  
RHA  
YFF  
YFF  
RHA  
RHA  
VQFN  
DSBGA  
DSBGA  
VQFN  
2500  
250  
2500  
250  
VQFN  
VQFN  
2500  
250  
VQFN  
DSBGA  
DSBGA  
VQFN  
2500  
250  
2500  
250  
VQFN  
Pack Materials-Page 4  
D: Max = 3.518 mm, Min =3.458 mm  
E: Max = 3.36 mm, Min = 3.3 mm  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

MSP430F2254TDA

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2254TDAQ1

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2254TDAR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2254TRHA

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2254TRHAR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2254TRHAT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2254TRHATQ1

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2272

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2272-Q1

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F2272IDA

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2272IDAR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F2272IRHA

MIXED SIGNAL MICROCONTROLLER
TI