MSP430F42X0_07 [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F42X0_07
型号: MSP430F42X0_07
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总63页 (文件大小:1354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
D
D
Low Supply-Voltage Range, 1.8 V to 3.6 V  
D
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by Security  
Fuse  
Ultralow-Power Consumption:  
Active Mode: 250 μA at 1 MHz, 2.2 V  
Standby Mode: 1.1 μA  
Off Mode (RAM Retention): 0.1 μA  
D
D
Integrated LCD Driver With Contrast  
Control for Up to 56 Segments  
D
D
Five Power Saving Modes  
MSP430x42x0 Family Members Include:  
MSP430F4250: 16KB+256B Flash Memory  
256B RAM  
MSP430F4260: 24KB+256B Flash Memory  
256B RAM  
Wake-Up From Standby Mode in Less  
Than 6 μs  
D
D
16-Bit RISC Architecture,  
125-ns Instruction Cycle Time  
16-Bit Sigma-Delta A/D Converter With  
Internal Reference and Five Differential  
Analog Inputs  
MSP430F4270: 32KB+256B Flash Memory  
256B RAM  
D
D
For Complete Module Descriptions, See  
The MSP430x4xx Family User’s Guide,  
Literature Number SLAU056  
D
D
12-Bit D/A Converter  
16-Bit Timer_A With Three  
Capture/Compare Registers  
For Additional Device Information, See The  
MSP430F42x0 Device Erratasheet,  
Literature Number SLAZ022  
D
D
Brownout Detector  
Bootstrap Loader  
description  
The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less  
than 6 μs.  
The MSP430F42x0 is a microcontroller configuration with a 16-bit timer, a high performance 16-bit sigma-delta  
A/D converter, 12-bit D/A converter, 32 I/O pins, and a liquid crystal display driver.  
Typical applications for this device include analog and digital sensor systems, digital motor control, remote  
controls, thermostats, digital timers, hand-held meters, etc.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
PLASTIC 48-PIN SSOP  
(DL)  
PLASTIC 48-PIN QFN  
(RGZ)  
MSP430F4250IDL  
MSP430F4260IDL  
MSP430F4270IDL  
MSP430F4250IRGZ  
MSP430F4260IRGZ  
MSP430F4270IRGZ  
−40°C to 85°C  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range  
from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage  
because very small parametric changes could cause the device not to meet its published specifications. These devices have limited  
built-in ESD protection.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2007, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
pin designation, MSP430F42x0  
DL PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
TDO/TDI  
TDI/TCLK  
TMS  
TCK  
RST/NMI  
DVCC  
P5.4/COM3  
P5.3/COM2  
P5.2/COM1  
COM0  
P2.0/S13  
P2.1/S12  
P2.2/S11  
P2.3/S10  
P2.4/S9  
P2.5/S8  
P2.6/S7  
P2.7/S6  
S5  
DVSS  
XIN  
XOUT  
AVSS  
AVCC  
VREF  
MSP430F42x0IDL  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P6.0/A0+  
P6.1/A0−  
P6.2/A1+  
P6.3/A1−  
P6.4  
P5.7/S4  
P5.6/S3  
P5.5/S2  
P5.0/S1  
P6.5  
P6.6  
P6.7  
P5.1/S0  
LCDCAP/R23  
LCDREF/R13  
P1.0/TA0  
P1.1/TA0/MCLK  
P1.2/TA1/A4−  
P1.3/TA2/A4+  
P1.7/A2+  
P1.6/A2−  
P1.5/TACLK/ACLK/A3+  
P1.4/A3−/DAC0  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
pin designation, MSP430F42x0 (continued)  
RGZ PACKAGE  
(TOP VIEW)  
47 46 45 44 43 42 41 40 39 38  
P2.2/S11  
35 P2.3/S10  
P2.4/S9  
33 P2.5/S8  
P2.6/S7  
31 P2.7/S6  
DVSS  
XIN  
1
2
3
4
5
6
7
8
9
10  
36  
XOUT  
AVSS  
34  
32  
AVCC  
VREF  
MSP430F42x0IRGZ  
S5  
P6.0/A0+  
30  
29  
28  
27  
26  
25  
P5.7/S4  
P5.6/S3  
P5.5/S2  
P5.0/S1  
P5.1/S0  
P6.1/A0−  
P6.2/A1+  
P6.3/A1−  
P6.4 11  
P6.5 12  
14 15 16 17 18 19 20 21 22 23  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
MSP430F42x0 functional block diagram  
DV  
DV  
AV  
AV  
SS  
CC  
SS  
CC  
P4  
P6  
XIN XOUT  
P1  
P2  
P3  
P5  
8
8
8
8
8
8
ACLK  
Oscillator  
FLL+  
Flash  
RAM  
256B  
Port 1  
Port 2  
Port 3  
8 I/O  
Port 4  
8 I/O  
Port 5  
8 I/O  
Port 6  
8 I/O  
SMCLK  
32KB  
24KB  
16KB  
8 I/O  
Interrupt  
Capability  
8 I/O  
Interrupt  
Capability  
MCLK  
8 MHz  
CPU  
MAB  
MDB  
incl. 16  
Registers  
Emulation  
Module  
Watchdog  
Timer+  
WDT+  
Basic  
Timer 1  
DAC12  
LCD_A  
56  
Segments  
Timer_A3  
3 CC Reg  
SD16_A  
16 Bit  
POR/  
Brownout  
12 Bit  
1 Channel  
Voltage Out  
1 Interrupt  
Vector  
1,2,3,4 MUX  
15/16-Bit  
JTAG  
Interface  
f
LCD  
RST/NMI  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
MSP430F42x0 Terminal Functions  
TERMINAL  
DL  
DESCRIPTION  
NAME  
RGZ  
NO.  
I/O  
NO.  
TDO/TDI  
1
43  
44  
45  
46  
47  
48  
1
I/O  
Test data output port. TDO/TDI data output or programming data input terminal  
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.  
Test mode select. TMS is used as an input port for device programming and test.  
Test clock. TCK is the clock input port for device programming and test.  
General-purpose digital I/O / reset input or nonmaskable interrupt input port  
Digital supply voltage, positive terminal  
TDI/TCLK  
TMS  
2
I
I
I
I
3
TCK  
4
RST/NMI  
5
DV  
DV  
6
CC  
SS  
7
Digital supply voltage, negative terminal  
XIN  
8
2
I
Input terminal of crystal oscillator XT1  
XOUT  
9
3
O
Output terminal of crystal oscillator XT1  
AV  
AV  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
4
Analog supply voltage, negative terminal  
SS  
CC  
5
Analog supply voltage, positive terminal  
V
REF  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Analog reference voltage  
P6.0/A0+  
P6.1/A0−  
P6.2/A1+  
P6.3/A1−  
P6.4  
7
General-purpose digital I/O / analog input A0+  
General-purpose digital I/O / analog input A0−  
General-purpose digital I/O / analog input A1+  
General-purpose digital I/O / analog input A1−  
General-purpose digital I/O  
8
9
10  
11  
12  
13  
14  
15  
16  
P6.5  
General-purpose digital I/O  
P6.6  
General-purpose digital I/O  
P6.7  
General-purpose digital I/O  
P1.7/A2+  
P1.6/A2−  
General-purpose digital I/O / analog input A2+  
General-purpose digital I/O / analog input A2−  
General-purpose digital I/O / Timer_A, clock signal TACLK input /  
ACLK output (divided by 1, 2, 4, or 8) / analog input A3+  
P1.5/TACLK/ACLK/A3+  
P1.4/A3−/DAC0  
23  
24  
25  
17  
18  
19  
I/O  
I/O  
I/O  
General-purpose digital I/O / analog input A3− / DAC12 output  
General-purpose digital I/O / Timer_A, Capture: CCI2A, compare: Out2 output /  
analog input A4+  
P1.3/TA2/A4+  
General-purpose digital I/O / Timer_A, Capture: CCI1A, compare: Out1 output /  
analog input A4−  
P1.2/TA1/A4−  
26  
27  
20  
21  
I/O  
I/O  
I/O  
General-purpose digital I/O / Timer_A. Capture: CCI0B / MCLK output. Note: TA0 is only an  
input on this pin / BSL Receive  
P1.1/TA0/MCLK  
General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL  
Transmit  
P1.0/TA0  
28  
29  
22  
23  
LCDREF/R13  
External LCD reference voltage input / input port of third most positive analog LCD level (V4  
or V3)  
LCDCAP/R23  
30  
24  
Capacitor connection for LCD charge pump /  
input port of second most positive analog LCD level (V2)  
P5.1/S0  
P5.0/S1  
P5.5/S2  
P5.6/S3  
P5.7/S4  
S5  
31  
32  
33  
34  
35  
36  
37  
38  
25  
26  
27  
28  
29  
30  
31  
32  
I/O  
I/O  
I/O  
I/O  
I/O  
O
General-purpose digital I/O / LCD segment output 0  
General-purpose digital I/O / LCD segment output 1  
General-purpose digital I/O / LCD segment output 2  
General-purpose digital I/O / LCD segment output 3  
General-purpose digital I/O / LCD segment output 4  
LCD segment output 5  
P2.7/S6  
P2.6/S7  
I/O  
I/O  
General-purpose digital I/O / LCD segment output 6  
General-purpose digital I/O / LCD segment output 7  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
MSP430F42x0 Terminal Functions (Continued)  
TERMINAL  
DL  
DESCRIPTION  
NAME  
RGZ  
NO.  
I/O  
NO.  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
P2.5/S8  
P2.4/S9  
P2.3/S10  
P2.2/S11  
P2.1/S12  
P2.0/S13  
COM0  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
General-purpose digital I/O / LCD segment output 8  
General-purpose digital I/O / LCD segment output 9  
General-purpose digital I/O / LCD segment output 10  
General-purpose digital I/O / LCD segment output 11  
General-purpose digital I/O / LCD segment output 12  
General-purpose digital I/O / LCD segment output 13  
Common output, COM0−3 are used for LCD backplanes.  
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
QFN Pad  
I/O  
I/O  
I/O  
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
NA None NA QFN package pad connection to DV recommended.  
SS  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats; the address modes are listed  
in Table 2.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g. ADD R4,R5  
R4 + R5 −−−> R5  
e.g. CALL  
e.g. JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
F
F
F
F
F
F
F
F
F
R10 —> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV & MEM, & TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5)—> M(6+R6)  
M(EDE) —> M(TONI)  
M(MEM) —> M(TCDAT)  
M(R10) —> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) —> R11  
R10 + 2—> R10  
F
MOV @Rn+,Rm  
Immediate  
F
MOV #X,TONI  
#45 —> M(TONI)  
NOTE: S = source  
D = destination  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
D
CPU is disabled  
ACLK and SMCLK remain active, MCLK is available to modules  
FLL+ loop control remains active  
D
D
Low-power mode 1 (LPM1)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is available to modules  
FLL+ loop control is disabled  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK, FLL+ loop control, and DCOCLK are disabled  
DCO’s dc-generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK, FLL+ loop control, and DCOCLK are disabled  
DCO’s dc-generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4);  
CPU is disabled  
ACLK is disabled  
MCLK, FLL+ loop control, and DCOCLK are disabled  
DCO’s dc-generator is disabled  
Crystal oscillator is stopped  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range 0FFFFh−0FFE0h. The  
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 3. Interrupt Sources, Flags, and Vectors of MSP430F42x0 Configuration  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
PRIORITY  
Power-Up  
External Reset  
Reset  
0FFFEh  
15, highest  
Watchdog  
Flash Memory  
WDTIFG  
KEYV  
PC Out-of-Range (see Note 4)  
(see Note 1)  
NMI  
Oscillator Fault  
Flash Memory Access Violation  
NMIIFG (see Notes 1 and 3)  
OFIFG (see Notes 1 and 3)  
ACCVIFG (see Notes 1 and 3)  
(Non)maskable  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
0FFF8h  
14  
13  
12  
SD16CCTLx SD16OVIFG,  
SD16CCTLx SD16IFG  
(see Notes 1 and 2)  
SD16_A  
Maskable  
Maskable  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
11  
10  
9
Watchdog Timer  
WDTIFG  
8
7
Timer_A3  
Timer_A3  
TACCR0 CCIFG0 (see Note 2)  
Maskable  
Maskable  
6
TACCR1 CCIFG1 and TACCR2 CCIFG2,  
TAIFG (see Notes 1 and 2)  
0FFEAh  
5
I/O Port P1 (Eight Flags)  
DAC12  
P1IFG.0 to P1IFG.7 (see Notes 1 and 2)  
Maskable  
Maskable  
0FFE8h  
0FFE6h  
4
3
DAC12_0IFG  
(see Note 2)  
0FFE4h  
0FFE2h  
0FFE0h  
2
1
I/O Port P2 (Eight Flags)  
Basic Timer1  
P2IFG.0 to P2IFG.7 (see Notes 1 and 2)  
BTIFG  
Maskable  
Maskable  
0, lowest  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module.  
3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot  
disable it.  
4. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h−01FFh) or from  
within unused address ranges (MSP430F4270, MSP430F4260: from 0300h to 0BFFh and from 01100h to 07FFFh,  
MSP430F4250: from 0300h to 0BFFh and from 01100h to 0BFFFh).  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
special function registers  
The MSP430 special function registers(SFR) are located in the lowest address space, and are organized as  
byte mode registers. SFRs should be accessed with byte instructions.  
interrupt enable registers 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
ACCVIE  
NMIIE  
OFIE  
WDTIE  
rw–0  
rw–0  
rw–0  
rw–0  
WDTIE:  
Watchdog-timer interrupt enable. Inactive if watchdog mode is selected.  
Active if watchdog timer is configured as a general-purpose timer.  
OFIE:  
Oscillator-fault-interrupt enable  
Nonmaskable-interrupt enable  
Flash access violation interrupt enable  
NMIIE:  
ACCVIE:  
7
BTIE  
6
5
4
3
2
1
0
Address  
01h  
rw–0  
BTIE:  
Basic timer interrupt enable  
interrupt flag registers 1 and 2  
7
6
5
4
3
2
1
0
Address  
02h  
NMIIFG  
OFIFG  
WDTIFG  
rw–0  
rw–1  
rw–(0)  
WDTIFG:  
Set on watchdog timer overflow (in watchdog mode) or security key violation  
Reset on V power-on or a reset condition at the RST/NMI pin in reset mode  
CC  
OFIFG:  
Flag set on oscillator fault  
Set via RST/NMI pin  
NMIIFG:  
7
6
5
4
3
2
1
0
Address  
03h  
BTIFG  
rw–0  
BTIFG:  
Basic timer flag  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
module enable registers 1 and 2  
7
6
5
5
4
4
3
3
2
2
1
1
0
0
Address  
04h  
7
6
Address  
05h  
Legend: rw:  
Bit Can Be Read and Written  
rw–0,1:  
rw–(0,1):  
Bit Can Be Read and Written. It Is Reset or Set by PUC.  
Bit Can Be Read and Written. It Is Reset or Set by POR.  
SFR Bit Not Present in Device  
memory organization  
MSP430F4250  
MSP430F4260  
24KB  
MSP430F4270  
Memory  
Size  
16KB  
32KB  
Main: interrupt vector  
Main: code memory  
Flash  
Flash  
0FFFFh − 0FFE0h  
0FFFFh − 0C000h  
0FFFFh − 0FFE0h  
0FFFFh − 0A000h  
0FFFFh − 0FFE0h  
0FFFFh − 08000h  
Information memory  
Boot memory  
RAM  
Size  
Flash  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
Size  
ROM  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
1KB  
0FFFh − 0C00h  
Size  
256 Byte  
256 Byte  
256 Byte  
02FFh − 0200h  
02FFh − 0200h  
02FFh − 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
bootstrap loader (BSL)  
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial  
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete  
description of the features of the BSL and its implementation, see the Application report Features of the MSP430  
Bootstrap Loader, Literature Number SLAA089.  
BSL Function  
Data Transmit  
Data Receive  
DL Package Pins  
28 − P1.0  
RGZ Package Pins  
22 − P1.0  
27 − P1.1  
21 − P1.1  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and two segments of information memory (A and B) of 128  
bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A and B can be erased individually, or as a group with segments 0−n.  
Segments A and B are also called information memory.  
D
New devices may have some bytes programmed in the information memory (needed for test during  
manufacturing). The user should perform an erase of the information memory prior to the first use.  
16KB  
24KB  
32KB  
Segment 0  
w/ Interrupt Vectors  
0FFFFh  
0FFFFh  
0FFFFh  
0FE00h  
0FDFFh  
0FE00h  
0FDFFh  
0FE00h  
0FDFFh  
Segment 1  
Segment 2  
0FC00h  
0FBFFh  
0FC00h  
0FBFFh  
0FC00h  
0FBFFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
0FA00h  
0F9FFh  
Main  
Memory  
0C400h  
0C3FFh  
0A400h  
0A3FFh  
08400h  
083FFh  
Segment n-1  
Segment n†  
0C200h  
0C1FFh  
0A200h  
0A1FFh  
08200h  
081FFh  
0C000h  
010FFh  
0A000h  
010FFh  
08000h  
010FFh  
Segment A  
Segment B  
Information  
Memory  
01080h  
0107Fh  
01080h  
0107Fh  
01080h  
0107Fh  
01000h  
01000h  
01000h  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
peripherals  
Peripherals are connected to the CPU through data, address, and control busses and can be handled using  
all instructions. For complete module descriptions, refer to the MSP430x4xx Family User’s Guide, Literature  
Number SLAU056.  
oscillator and system clock  
The clock system in the MSP430F42x0 family of devices is supported by the FLL+ module that includes support  
for a 32768 Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency  
crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and  
low-power consumption. The FLL+ features digital frequency locked loop (FLL) hardware which in conjunction  
with a digital modulator stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency.  
The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 μs. The FLL+ module  
provides the following clock signals:  
D
D
D
D
Auxiliary clock (ACLK), sourced from a 32768 Hz watch crystal or a high frequency crystal.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8.  
brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on  
and power-off. The CPU begins code execution after the brownout circuit releases the device reset. However,  
may not have ramped to V at that time. The user must insure the default FLL+ settings are not  
V
CC  
CC(min)  
changed until V reaches V  
.
CC  
CC(min)  
digital I/O  
There are four 8-bit I/O ports implemented—ports P1, P2, P5 and P6:  
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
Basic Timer1  
The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both  
timers can be read and written by software. The Basic Timer1 can be used to generate periodic interrupts.  
LCD driver with regulated charge pump  
The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A  
controller has dedicated data memory to hold segment drive information. Common and segment signals are  
generated as defined by the mode. Static, 2−MUX, 3−MUX, and 4−MUX LCDs are supported by this peripheral.  
The module can provide a LCD voltage independent of the supply voltage via an integrated charge pump.  
Furthermore it is possible to control the level of the LCD voltage and thus contrast in software.  
watchdog timer  
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Timer_A3 Signal Connections  
Input Pin Number  
DL RGZ  
Output Pin Number  
DL RGZ  
Device Input  
Signal  
Module  
Input Name  
Module  
Block  
Module Output  
Signal  
23 - P1.5 17 - P1.5  
TACLK  
ACLK  
SMCLK  
TACLK  
TA0  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
NA  
TA0  
TA1  
TA2  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
23 - P1.5 17 - P1.5  
28 - P1.0 22 - P1.0  
27 - P1.1 21 - P1.1  
28 - P1.0 22 - P1.0  
26 - P1.2 20 - P1.2  
25 - P1.3 19 - P1.3  
TA0  
DV  
DV  
SS  
CC  
V
CC  
26 - P1.2 20 - P1.2  
26 - P1.2 20 - P1.2  
TA1  
TA1  
CCI1A  
CCI1B  
GND  
DV  
SS  
CC  
DV  
V
CC  
25 - P1.3 19 - P1.3  
TA2  
ACLK (internal)  
CCI2A  
CCI2B  
GND  
DV  
SS  
CC  
DV  
V
CC  
SD16_A  
The SD16_A module supports 16-bit analog-to-digital conversions. The module implements a 16-bit  
sigma-delta core and reference generator. In addition to external analog inputs, an internal V sense and  
CC  
temperature sensor are also available.  
DAC12  
The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 may be used in 8- or 12-bit mode.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Watchdog timer control  
Watchdog  
WDTCTL  
TACCR2  
TACCR1  
TACCR0  
TAR  
0120h  
0176h  
0174h  
0172h  
0170h  
0166h  
0164h  
0162h  
0160h  
012Eh  
012Ch  
012Ah  
0128h  
01C8h  
01C0h  
0100h  
0102h  
0110h  
0112h  
Timer_A3  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_A register  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_A control  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
Timer_A interrupt vector  
Flash control 3  
TAIV  
Flash  
FCTL3  
Flash control 2  
FCTL2  
Flash control 1  
FCTL1  
DAC12  
DAC12_0 data  
DAC12_0DAT  
DAC12_0CTL  
SD16CTL  
SD16CCTL0  
SD16IV  
DAC12_0 control  
SD16_A  
(see also:  
Peripherals with  
Byte Access)  
General Control  
Channel 0 Control  
Interrupt vector word register  
Channel 0 conversion memory  
SD16MEM0  
PERIPHERALS WITH BYTE ACCESS  
SD16_A  
(see also:  
Peripherals with  
Word Access)  
Channel 0 Input Control  
SD16INCTL0  
SD16AE  
0B0h  
0B7h  
Analog Enable  
LCD_A  
LCD Voltage Control 1  
LCD Voltage Control 0  
LCD Voltage Port Control 1  
LCD Voltage Port Control 0  
LCD memory 20  
:
LCDAVCTL1  
LCDAVCTL0  
LCDAPCTL1  
LCDAPCTL0  
LCDM20  
:
0AFh  
0AEh  
0ADh  
0ACh  
0A4h  
:
LCD memory 16  
LCD memory 15  
:
LCDM16  
LCDM15  
:
0A0h  
09Fh  
:
LCD memory 1  
LCDM1  
091h  
090h  
LCD control and mode  
LCDACTL  
FLL+ Clock  
FLL+ Control 1  
FLL_CTL1  
FLL_CTL0  
SCFQCTL  
SCFI1  
054h  
053h  
052h  
051h  
050h  
FLL+ Control 0  
System clock frequency control  
System clock frequency integrator  
System clock frequency integrator  
SCFI0  
Basic Timer1  
BT counter 2  
BT counter 1  
BT control  
BTCNT2  
BTCNT1  
BTCTL  
047h  
046h  
040h  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS (CONTINUED)  
Port P6 selection P6SEL  
Port P6  
Port P5  
Port P2  
037h  
036h  
035h  
034h  
033h  
032h  
031h  
030h  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
005h  
004h  
003h  
002h  
001h  
000h  
Port P6 direction  
P6DIR  
P6OUT  
P6IN  
Port P6 output  
Port P6 input  
Port P5 selection  
Port P5 direction  
P5SEL  
P5DIR  
P5OUT  
P5IN  
Port P5 output  
Port P5 input  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt-edge select  
Port P2 interrupt flag  
Port P2 direction  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P2 output  
Port P2 input  
Port P1  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt-edge select  
Port P1 interrupt flag  
Port P1 direction  
P1SEL  
P1IE  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
Special functions  
SFR module enable 2  
SFR module enable 1  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
ME2  
ME1  
IFG2  
IFG1  
IE2  
IE1  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)†  
Voltage applied at V to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V  
CC  
SS  
Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V + 0.3 V  
CC  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA  
Storage temperature, T : (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
stg  
(programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE: All voltages referenced to V The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage is applied  
SS.  
FB  
to the TDI/TCLK pin when blowing the JTAG fuse.  
recommended operating conditions  
MIN  
NOM  
MAX UNITS  
Supply voltage during program execution (see Note 1),  
1.8  
3.6  
3.6  
V
V
V
CC  
(AV = DV = V  
)
CC  
CC  
CC  
Supply voltage during flash memory programming (see Note 1),  
(AV = DV = V  
2.5  
V
CC  
)
CC  
CC  
CC  
Supply voltage, V (AV = DV = V  
SS  
)
0
0
V
SS  
SS  
SS  
Operating free-air temperature range, T  
−40  
85  
°C  
A
LF selected,  
XTS_FLL=0  
Watch crystal  
Ceramic resonator  
Crystal  
32.768  
kHz  
kHz  
kHz  
XT1 selected,  
XTS_FLL=1  
LFXT1 crystal frequency, f  
(see Note 2)  
(LFXT1)  
450  
8000  
8000  
XT1 selected,  
XTS_FLL=1  
1000  
V
V
= 1.8 V  
= 3.6 V  
DC  
DC  
4.15  
8
CC  
Processor frequency (signal MCLK), f  
MHz  
(System)  
CC  
NOTES: 1. It is recommended to power AV and DV from the same source. A maximum difference of 0.3 V betweeen AV and DV can  
CC  
CC  
CC  
CC  
be tolerated during power up and operation.  
2. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.  
f
(MHz)  
System  
8 MHz  
Supply voltage range,  
MSP430F42x0, during  
program execution  
Supply voltage range, MSP430F42x0,  
during flash memory programming  
4.15 MHz  
1.8  
3
3.6  
2.5  
Supply Voltage − V  
Figure 1. Frequency vs Supply Voltage, typical characteristic  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
supply current into AV + DV excluding external current  
CC  
CC  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
Active mode, (see Note 1)  
V
V
= 2.2 V  
= 3 V  
250  
370  
CC  
f
f
= f  
= 1 MHz,  
(MCLK)  
(SMCLK)  
I
I
I
T = −40°C to 85°C  
A
μA  
(AM)  
= 32,768 Hz  
(ACLK)  
400  
520  
CC  
XTS=0, SELM=(0,1)  
V
V
= 2.2 V  
= 3 V  
55  
95  
70  
CC  
Low-power mode, (LPM0)  
(see Note 1 and Note 4)  
T = −40°C to 85°C  
μA  
μA  
(LPM0)  
(LPM2)  
A
110  
CC  
Low-power mode, (LPM2),  
V
= 2.2 V  
= 3 V  
11  
17  
14  
22  
CC  
CC  
f(MCLK) = f (SMCLK) = 0 MHz,  
f(ACLK) = 32,768 Hz, SCG0 = 0  
(see Note 2 and Note 4)  
T = −40°C to 85°C  
A
V
T = −40°C  
1.0  
1.1  
2.0  
3.5  
1.8  
1.6  
2.5  
4.2  
2.5  
2.5  
3.8  
2.9  
2.9  
4.4  
0.1  
0.1  
0.7  
1.7  
0.1  
0.1  
0.8  
1.9  
2.0  
2.0  
3.0  
6.0  
2.8  
2.7  
3.5  
7.5  
3.5  
3.5  
6.0  
4.0  
4.0  
7.5  
0.5  
0.5  
1.1  
3.0  
0.8  
0.8  
1.2  
3.5  
A
T = 25°C  
A
Low-power mode, (LPM3)  
V
V
= 2.2 V  
CC  
T = 60°C  
A
f
f
= f  
= 0 MHz,  
(MCLK)  
(SMCLK)  
= 32,768 Hz, SCG0 = 1  
(ACLK)  
T = 85°C  
A
Basic Timer1 enabled , ACLK selected  
LCD_A enabled, LCDCPEN = 0:  
I
I
I
μA  
μA  
μA  
(LPM3)  
(LPM3)  
(LPM4)  
T = −40°C  
A
(static mode ; f  
= f  
(ACLK)  
/32)  
T = 25°C  
A
LCD  
= 3 V  
CC  
(see Note 2, Note 3, and Note 4)  
T = 60°C  
A
T = 85°C  
A
T = −40°C  
A
Low-power mode, (LPM3)  
T = 25°C  
A
f
f
= f  
= 0 MHz,  
V
V
= 2.2 V  
= 3 V  
(MCLK)  
(SMCLK)  
CC  
= 32,768 Hz, SCG0 = 1  
(ACLK)  
T = 85°C  
A
Basic Timer1 enabled , ACLK selected  
LCD_A enabled, LCDCPEN = 0:  
T = −40°C  
A
(4-mux mode; f  
= f  
(ACLK)  
/32)  
T = 25°C  
A
LCD  
CC  
(see Note 2, Note 3, and Note 4)  
T = 85°C  
A
T = −40°C  
A
T = 25°C  
A
V
V
= 2.2 V  
CC  
T = 60°C  
A
Low-power mode, (LPM4)  
T = 85°C  
A
f
f
= 0 MHz, f  
= 0 MHz,  
(MCLK)  
(ACLK)  
(SMCLK)  
T = −40°C  
A
= 0 Hz, SCG0 = 1 (see Note 2 and Note 4)  
T = 25°C  
A
= 3 V  
CC  
T = 60°C  
A
T = 85°C  
A
NOTES: 1. Timer_A is clocked by f  
= f = 1 MHz. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
(DCO) CC  
(DCOCLK)  
2. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
CC  
3. The LPM3 currents are characterized with a Micro Crystal CC4V−T1A (9pF) crystal and OSCCAPx=01h.  
4. Current for brownout included.  
Current consumption of active mode versus system frequency  
I
= I  
[1 MHz] × f  
[MHz]  
(AM)  
(AM)  
(System)  
Current consumption of active mode versus supply voltage  
= I + 175 μA/V × (V – 3 V)  
I
(AM)  
(AM) [3 V]  
CC  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SCHMITT-trigger inputs − Ports P1, P2, P5, and P6; RST/NMI; JTAG: TCK, TMS, TDI/TCLK, TDO/TDI  
PARAMETER  
TEST CONDITIONS  
MIN  
1.1  
1.5  
0.4  
0.9  
0.3  
0.5  
TYP  
MAX  
1.55  
1.98  
0.9  
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.2 V  
= 3 V  
V
IT+  
V
IT−  
V
hys  
Positive-going input threshold voltage  
V
= 2.2 V  
= 3 V  
Negative-going input threshold voltage  
V
V
1.3  
= 2.2 V  
= 3 V  
1.1  
Input voltage hysteresis (V − V  
)
IT−  
IT+  
1
inputs Px.x, TAx  
PARAMETER  
TEST CONDITIONS  
V
MIN  
62  
TYP  
MAX  
UNIT  
CC  
2.2 V  
3 V  
Port P1, P2: P1.x to P2.x, external trigger signal  
for the interrupt flag, (see Note 1)  
t
t
f
f
External interrupt timing  
Timer_A capture timing  
ns  
(int)  
50  
2.2 V  
3 V  
62  
TA0, TA1, TA2  
ns  
(cap)  
(TAext)  
50  
2.2 V  
3 V  
8
10  
8
Timer_A clock frequency  
externally applied to pin  
TACLK, INCLK: t = t  
MHz  
MHz  
(H)  
(L)  
2.2 V  
3 V  
Timer_A, clock frequency  
SMCLK or ACLK signal selected  
(TAint)  
10  
NOTES: 1. The external signal sets the interrupt flag every time the minimum t  
parameters are met. It may be set even with trigger signals  
(int)  
shorter than t  
.
(int)  
leakage current − Ports P1, P2, P5, and P6 (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Leakage  
current  
I
Port Px  
V
(Px.y)  
(see Note 2)  
V = 2.2 V/3 V  
CC  
±50  
nA  
lkg(Px.y)  
NOTES: 1. The leakage current is measured with V or V applied to the corresponding pin(s), unless otherwise noted.  
SS  
CC  
2. The port pin must be selected as input.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs − Ports P1, P2, P5, and P6  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
I
I
I
I
= −1.5 mA,  
= −6 mA,  
= −1.5 mA,  
= −6 mA,  
= 1.5 mA,  
= 6 mA,  
V
V
V
V
V
V
V
V
= 2.2 V,  
= 2.2 V,  
= 3 V,  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
V
−0.25  
V
V
V
V
OH(max)  
OH(max)  
OH(max)  
OH(max)  
OL(max)  
OL(max)  
OL(max)  
OL(max)  
OH(max)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
−0.6  
CC  
V
High-level output voltage  
V
OH  
V
CC  
−0.25  
= 3 V,  
V
−0.6  
CC  
= 2.2 V,  
= 2.2 V,  
= 3 V,  
V
SS  
V
SS  
V
SS  
V
SS  
V
+0.25  
SS  
V
+0.6  
SS  
V
OL  
Low-level output voltage  
V
= 1.5 mA,  
= 6 mA,  
V
SS  
+0.25  
= 3 V,  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed ±12 mA to satisfy the maximum  
OL(max),  
2. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed ±48 mA to satisfy the maximum  
OH(max)  
OL(max),  
output frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
MHz  
C = 20 pF,  
I = ±1.5 mA  
L
L
f
f
(x = 1, 2, 5, 6; 0 y 7)  
V
CC  
= 2.2 V / 3 V  
DC  
f
f
(Px.y)  
System  
P1.1/TA0/MCLK  
C = 20 pF  
L
(MCLK)  
System  
f
f
= f  
= f  
40%  
60%  
(MCLK)  
(XT1)  
P1.1/TA0/MCLK,  
t
Duty cycle of output frequency  
C = 20 pF,  
50%−  
15 ns  
50%+  
15 ns  
(Xdc)  
L
50%  
(MCLK)  
(DCOCLK)  
V
CC  
= 2.2 V / 3 V  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs − Ports P1, P2, P5, and P6 (continued)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
P1.0  
= 2.2 V  
V
P1.0  
= 3 V  
CC  
CC  
T
= −40°C  
A
T
= −40°C  
A
T
A
= 25°C  
T
A
= 25°C  
T
A
= 85°C  
T
A
= 85°C  
0
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 2  
Figure 3  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
−5  
0
V
P1.0  
= 2.2 V  
V
P1.0  
= 3 V  
CC  
CC  
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
−10  
−15  
−20  
−25  
T
A
= 85°C  
T = 25°C  
A
T
A
= 85°C  
T
A
= 25°C  
T
A
= −40°C  
T
= −40°C  
A
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 4  
Figure 5  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
wake-up LPM3  
PARAMETER  
PARAMETER  
TEST CONDITIONS  
f = 1 MHz  
MIN  
TYP  
MAX  
UNIT  
6
6
6
f = 2 MHz  
f = 3 MHz  
t
Delay time  
V
CC  
= 2.2 V/3 V  
μs  
d(LPM3)  
RAM  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VRAMh  
CPU halted (see Note 1)  
1.6  
V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution  
should take place during this supply voltage condition.  
LCD_A  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
4.7  
TYP  
MAX UNIT  
Charge pump enabled  
(LCDCPEN = 1; VLCDx > 0000)  
V
Supply Voltage Range  
3.6  
V
CC(LCD)  
Charge pump enabled  
(LCDCPEN = 1; VLCDx > 0000)  
C
I
Capacitor on LCDCAP (see Note 1)  
Average Supply Current (see Note 2)  
μF  
LCD  
V
=3V; LCDCPEN = 1;  
LCD(typ)  
VLCDx= 1000, all segments on  
= f /32  
f
2.2 V  
3.8  
μA  
LCD  
ACLK  
CC(LCD)  
no LCD connected (see Note 3)  
T = 25°C  
A
f
LCD frequency  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
1.1 kHz  
LCD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VLCDx = 0000  
VLCDx = 0001  
VLCDx = 0010  
VLCDx = 0011  
VLCDx = 0100  
VLCDx = 0101  
VLCDx = 0110  
VLCDx = 0111  
VLCDx = 1000  
VLCDx = 1001  
VLCDx = 1010  
VLCDx = 1011  
VLCDx = 1100  
VLCDx = 1101  
VLCDx = 1110  
VLCDx = 1111  
VCC  
2.60  
2.66  
2.72  
2.78  
2.84  
2.90  
2.96  
3.02  
3.08  
3.14  
3.20  
3.26  
3.32  
3.38  
3.44  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
3.60  
10  
V
V
LCD  
= 3V; LCDCPEN = 1;  
R
LCD Driver Output impedance  
2.2 V  
kΩ  
LCD  
VLCDx = 1000, I  
= ±10μA  
LOAD  
NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device.  
2. Refer to the supply current specifications I for additional current specifications with the LCD_A module active.  
(LPM3)  
3. Connecting an actual display will increase the current consumption depending on the size of the LCD.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
POR/brownout reset (BOR) (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
μs  
t
2000  
d(BOR)  
V
dV /dt 3 V/s (see Figure 6)  
CC  
0.7 × V  
(B_IT−)  
V
CC(start)  
Brownout  
(see Note 2)  
V
V
dV /dt 3 V/s (see Figure 6 through Figure 8)  
1.71  
180  
V
(B_IT−)  
CC  
dV /dt 3 V/s (see Figure 6)  
CC  
70  
2
130  
mV  
hys(B_IT−)  
Pulse length needed at RST/NMI pin to accepted reset internally,  
t
μs  
(reset)  
V
CC  
= 2.2 V/3 V  
NOTES: 1. The current consumption of the brownout module is already included in the I current consumption data. The voltage level  
CC  
V
+ V  
is 1.8V.  
(B_IT−)  
hys(B_IT−)  
2. During power up, the CPU begins code execution following a period of t  
after V = V  
+ V . The default  
hys(B_IT−)  
d(BOR)  
CC  
(B_IT−)  
FLL+ settings must not be changed until V V  
, where V  
is the minimum supply voltage for the desired  
CC  
CC(min)  
CC(min)  
operating frequency. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout.  
typical characteristics  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 6. POR/Brownout Reset (BOR) vs Supply Voltage  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
typical characteristics (continued)  
V
t
CC  
pw  
2
3 V  
V
CC  
= 3 V  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − μs  
t
− Pulse Width − μs  
t
pw  
pw  
Figure 7. V  
Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
(CC)min  
V
t
CC  
pw  
2
3 V  
V
CC  
= 3 V  
1.5  
1
Typical Conditions  
V
CC(drop)  
0.5  
0
t = t  
f
r
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − μs  
t
− Pulse Width − μs  
pw  
pw  
Figure 8. V  
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
DCO  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
N
f
=01Eh, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 0,  
= 32.768 kHz  
(DCO)  
Crystal  
f
2.2 V/3 V  
1
MHz  
(DCOCLK)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
2.2 V  
3 V  
0.3  
0.3  
2.5  
2.7  
0.7  
0.8  
5.7  
6.5  
1.2  
1.3  
9
0.65  
0.7  
5.6  
6.1  
1.3  
1.5  
10.8  
12.1  
2
1.25  
1.3  
10.5  
11.3  
2.3  
2.5  
18  
f
f
f
f
f
f
f
f
f
f
FN_8=FN_4=FN_3=FN_2=0 ; DCOPLUS = 1  
FN_8=FN_4=FN_3=FN_2=0; DCOPLUS = 1  
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1  
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1  
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1  
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1  
FN_8=0, FN_4= 1, FN_3= FN_2=x; DCOPLUS = 1  
FN_8=0, FN_4=1, FN_3= FN_2=x; DCOPLUS = 1  
FN_8=1, FN_4=FN_3=FN_2=x; DCOPLUS = 1  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
2.2 V  
3 V  
2.2 V  
3 V  
2.2 V  
3 V  
20  
2.2 V  
3 V  
3
2.2  
15.5  
17.9  
2.8  
3.4  
21.5  
26.6  
4.2  
6.3  
32  
3.5  
25  
2.2 V  
3 V  
10.3  
1.8  
2.1  
13.5  
16  
28.5  
4.2  
5.2  
33  
2.2 V  
3 V  
2.2 V  
3 V  
41  
2.2 V  
3 V  
2.8  
4.2  
21  
6.2  
9.2  
46  
2.2 V  
3 V  
FN_8=1,FN_4=FN_3=FN_2=x; DCOPLUS = 1  
Step size between adjacent DCO taps:  
30  
46  
70  
1 < TAP 20  
TAP = 27  
2.2 V  
3 V  
1.06  
1.07  
–0.2  
–0.2  
1.11  
1.17  
–0.4  
–0.4  
S
n
S = f  
n
/ f (see Figure 10 for taps 21 to 27)  
DCO(Tap n+1) DCO(Tap n)  
–0.3  
–0.3  
Temperature drift, N  
D = 2; DCOPLUS = 0, (see Note 2)  
= 01Eh, FN_8=FN_4=FN_3=FN_2=0  
(DCO)  
D
D
%/_C  
t
Drift with V variation, N  
D = 2; DCOPLUS = 0  
= 01Eh, FN_8=FN_4=FN_3=FN_2=0  
CC  
(DCO)  
0
5
15  
%/V  
V
f
f
(DCO)  
(DCO)  
f
f
5
(DCO3V)  
(DCO20 C)  
1.0  
1.0  
0
1.8  
2.4  
3.0  
3.6  
−40  
−20  
0
20  
40  
60  
85  
V
CC  
− V  
T − °C  
A
Figure 9. DCO Frequency vs Supply Voltage V and vs Ambient Temperature  
CC  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
1.17  
Max  
1.11  
1.07  
1.06  
Min  
1
20  
27  
DCO Tap  
Figure 10. DCO Tap Step Size  
Legend  
Tolerance at Tap 27  
DCO Frequency  
Adjusted by Bits  
9
5
2 to 2 in SCFI1 {N  
}
{DCO}  
Tolerance at Tap 2  
Overlapping DCO Ranges:  
Uninterrupted Frequency Range  
FN_2=0  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=1  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=x  
FN_2=x  
FN_3=x  
FN_4=1  
FN_8=0  
FN_2=x  
FN_3=1  
FN_4=0  
FN_8=0  
FN_3=x  
FN_4=x  
FN_8=1  
Figure 11. Five Overlapping DCO Ranges Controlled by FN_x Bits  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
crystal oscillator, LFXT1 oscillator (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
OSCCAPx = 0h, V = 2.2 V / 3 V  
MIN  
TYP  
0
MAX  
UNIT  
CC  
OSCCAPx = 1h, V = 2.2 V / 3 V  
10  
14  
18  
0
CC  
Integrated input capacitance  
(see Note 4)  
C
C
pF  
XIN  
OSCCAPx = 2h, V = 2.2 V / 3 V  
CC  
OSCCAPx = 3h, V = 2.2 V / 3 V  
CC  
OSCCAPx = 0h, V = 2.2 V / 3 V  
CC  
OSCCAPx = 1h, V = 2.2 V / 3 V  
10  
14  
18  
CC  
Integrated output capacitance  
(see Note 4)  
pF  
V
XOUT  
OSCCAPx = 2h, V = 2.2 V / 3 V  
CC  
OSCCAPx = 3h, V = 2.2 V / 3 V  
CC  
V
V
V
0.2×V  
IL  
SS  
CC  
Input levels at XIN  
V
CC  
= 2.2 V/3 V (see Note 3)  
0.8×V  
V
CC  
IH  
CC  
NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is  
(C x C ) / (C + C ). This is independent of XTS_FLL.  
XIN  
XOUT  
XIN  
XOUT  
2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed.  
Keep as short of a trace as possible between the ’F42x0 and the crystal.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or  
resonator.  
4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SD16_A, power supply and recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
2.5  
TYP  
MAX  
3.6  
UNIT  
Analog supply  
voltage  
AV = DV  
CC  
CC  
AV  
V
CC  
AV = DV = 0V  
SS SS  
SD16BUFx = 00; GAIN: 1,2  
SD16BUFx = 00; GAIN: 4,8,16  
SD16BUFx = 00; GAIN: 32  
3 V  
3 V  
3 V  
650  
950  
1100  
1550  
SD16LP = 0,  
= 1 MHz,  
SD16OSR = 256  
730  
f
SD16  
1050  
Analog supply  
current including  
internal reference  
SD16LP = 1,  
SD16BUFx = 00; GAIN: 1  
SD16BUFx = 00; GAIN: 32  
3 V  
3 V  
620  
700  
930  
f
= 0.5 MHz,  
ISD16  
μA  
SD16  
1060  
SD16OSR = 256  
SD16BUFx = 01; GAIN: 1  
SD16BUFx = 10; GAIN: 1  
SD16BUFx = 11; GAIN: 1  
3 V  
3 V  
3 V  
850  
1130  
1130  
SD16LP = 0,  
f
= 1 MHz,  
SD16  
SD16OSR = 256  
Analog front-end  
input clock  
frequency  
SD16LP = 0 (Low power mode disabled)  
SD16LP = 1 (Low power mode enabled)  
3 V  
3 V  
0.03  
0.03  
1
1.1  
f
MHz  
SD16  
0.5  
SD16_A, input range  
PARAMETER  
TEST CONDITIONS  
Bipolar Mode, SD16UNI = 0  
Unipolar Mode, SD16UNI = 1  
SD16GAINx = 1  
V
MIN  
TYP  
MAX  
UNIT  
mV  
CC  
−V  
/2GAIN  
REF  
+V  
+V  
/2GAIN  
/2GAIN  
REF  
Differential full scale  
input voltage range  
V
ID,FSR  
0
mV  
REF  
±500  
±250  
±125  
±62  
±31  
±15  
200  
75  
SD16GAINx = 2  
Differential input  
voltage range for  
specified  
performance  
(see Note 1)  
SD16GAINx = 4  
V
ID  
SD16REFON=1  
mV  
SD16GAINx = 8  
SD16GAINx = 16  
SD16GAINx = 32  
SD16GAINx = 1  
SD16GAINx = 32  
3 V  
3 V  
f
= 1MHz,  
SD16  
kΩ  
Input impedance  
(one input pin  
SD16BUFx = 00  
= 1MHz,  
Z
I
f
SD16  
to AV  
)
SS  
SD16GAINx = 1  
3 V  
>10  
MΩ  
SD16BUFx = 01  
= 1MHz,  
SD16GAINx = 1  
SD16GAINx = 32  
3 V  
3 V  
300  
100  
400  
150  
f
SD16  
kΩ  
Differential  
Input impedance  
(IN+ to IN−)  
SD16BUFx = 00  
= 1MHz,  
Z
ID  
f
SD16  
SD16GAINx = 1  
3 V  
>10  
MΩ  
SD16BUFx > 00  
SD16BUFx = 00  
SD16BUFx > 00  
SD16BUFx = 00  
SD16BUFx > 00  
AV -0.1V  
SS  
AV  
CC  
Absolute input  
voltage range  
V
V
V
V
I
AV  
AV −1.2V  
CC  
SS  
AV -0.1V  
SS  
AV  
CC  
Common-mode  
input voltage range  
IC  
AV  
AV −1.2V  
CC  
SS  
NOTES: 1. The analog input range depends on the reference voltage applied to V  
. If V  
is sourced externally, the full-scale range  
REF  
REF  
is defined by V  
= +(V  
/2)/GAIN and V  
= −(V /2)/GAIN. The analog input range should not exceed 80% of  
REF  
FSR+  
REF  
FSR−  
V
FSR+  
or V  
.
FSR−  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SD16_A, performance (f  
= 30kHz, SD16REFON = 1, SD16BUFx = 01)  
SD16  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
84  
MAX  
UNIT  
CC  
SD16GAINx = 1,Signal Amplitude = 500mV  
SD16OSRx = 256  
3 V  
3 V  
SD16GAINx = 1,Signal Amplitude = 500mV  
Signal-to-noise +  
distortion ratio  
84  
SINAD  
f
IN  
= 2.8Hz  
dB  
SD16OSRx = 512  
SD16GAINx = 1,Signal Amplitude = 500mV  
SD16OSRx = 1024  
3 V  
3 V  
3 V  
84  
1.00  
15  
Nominal gain  
SD16GAINx = 1; SD16OSRx = 1024  
0.97  
1.02  
Gain temperature  
drift  
dG/dT  
SD16GAINx = 1; SD16OSRx = 1024 (see Note 1)  
ppm/_C  
Gain supply voltage SD16GAINx = 1; SD16OSRx = 1024; V = 2.5V - 3.6V  
CC  
dG/dV  
0.35  
%/V  
CC  
drift  
(see Note 2)  
NOTES: 1. Calculated using the box method: (MAX(−40...85_C) − MIN(−40...85_C))/MIN(−40...85_C)/(85C − (−40_C))  
2. Calculated using the box method: (MAX(2.5...3.6V) − MIN(2.5...3.6V))/MIN(2.5...3.6V)/(3.6V − 2.5V)  
SD16_A, performance (f  
= 1MHz, SD16OSRx = 256, SD16REFON = 1, SD16BUFx = 00)  
SD16  
PARAMETER  
TEST CONDITIONS  
SD16GAINx = 1,Signal Amplitude = 500mV  
SD16GAINx = 2,Signal Amplitude = 250mV  
SD16GAINx = 4,Signal Amplitude = 125mV  
SD16GAINx = 8,Signal Amplitude = 62mV  
SD16GAINx = 16,Signal Amplitude = 31mV  
SD16GAINx = 32,Signal Amplitude = 15mV  
SD16GAINx = 1  
V
MIN  
83.5  
81.5  
76  
TYP  
85  
MAX  
UNIT  
CC  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
84  
79.5  
76.5  
73  
Signal-to-noise +  
distortion ratio  
f
= 50Hz,  
IN  
SINAD  
dB  
100Hz  
73  
69  
62  
69  
0.97  
1.90  
3.76  
7.36  
1.00  
1.96  
3.86  
7.62  
1.02  
2.02  
3.96  
7.84  
SD16GAINx = 2  
SD16GAINx = 4  
G
Nominal gain  
Offset error  
SD16GAINx = 8  
SD16GAINx = 16  
14.56 15.04 15.52  
SD16GAINx = 32  
27.20 28.35 29.76  
SD16GAINx = 1  
±0.2  
±1.5  
E
OS  
%FSR  
SD16GAINx = 32  
Offset error  
temperature  
coefficient  
SD16GAINx = 1  
3 V  
3 V  
±4  
±20  
ppm  
FSR/_C  
dE /dT  
OS  
SD16GAINx = 32  
±20  
±100  
SD16GAINx = 1, Common-mode input signal:  
3 V  
3 V  
3 V  
>90  
>75  
>80  
V
ID  
= 500 mV, f = 50 Hz, 100 Hz  
IN  
Common-mode  
rejection ratio  
CMRR  
dB  
dB  
SD16GAINx = 32, Common-mode input signal:  
= 16 mV, f = 50 Hz, 100 Hz  
V
ID  
IN  
AC power supply  
rejection ratio  
AC PSRR  
SD16GAINx = 1, V = 3 V ± 100 mV, f  
= 50 Hz  
CC  
VCC  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SD16_A, temperature sensor  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
Sensor temperature  
coefficient  
TC  
1.18  
1.32  
1.46 mV/K  
Sensor  
V
Sensor offset voltage  
−100  
435  
355  
320  
100  
515  
435  
400  
mV  
mV  
Offset,sensor  
Temperature sensor voltage at T = 85°C  
3 V  
3 V  
3 V  
475  
395  
360  
A
Sensor output voltage  
(see Note 2)  
Temperature sensor voltage at T = 25°C  
V
Sensor  
A
Temperature sensor voltage at T = 0°C  
A
NOTES: 1. The following formula can be used to calculate the temperature sensor output voltage:  
= TC ( 273 + T [°C] ) + V [mV]  
V
Sensor,typ  
Sensor  
Offset,sensor  
2. Results based on characterization and/or production test, not TC  
or V  
.
Sensor  
Offset,sensor  
SD16_A, built-in voltage reference  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
Internal reference  
voltage  
V
SD16REFON = 1, SD16VMIDON = 0  
SD16REFON = 1, SD16VMIDON = 0  
3 V  
1.14  
1.20  
1.26  
V
REF  
Reference supply  
current  
I
3 V  
3 V  
175  
260  
μA  
REF  
TC  
Temperature coefficient SD16REFON = 1, SD16VMIDON = 0  
18  
50 ppm/K  
nF  
C
V
V
load capacitance  
SD16REFON = 1, SD16VMIDON = 0 (see Note 1)  
100  
REF  
REF  
maximum load  
REF(I)  
I
t
SD16REFON = 1, SD16VMIDON = 0  
3 V  
3 V  
±200  
nA  
ms  
LOAD  
current  
SD16REFON = 0−>1, SD16VMIDON = 0,  
Turn on time  
5
ON  
C
= 100nF  
REF  
DC power supply  
DC PSR  
SD16REFON = 1, SD16VMIDON = 0, V = 2.5 V to 3.6 V  
100  
uV/V  
CC  
rejection, ΔV /ΔV  
REF CC  
NOTES: 1. There is no capacitance required on V . However, a capacitance of at least 100nF is recommended to reduce any reference  
REF  
voltage noise.  
SD16_A, reference output buffer  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
1.2  
MAX  
UNIT  
CC  
Reference buffer output  
voltage  
V
SD16REFON = 1, SD16VMIDON = 1  
3 V  
3 V  
V
REF,BUF  
Reference Supply +  
Reference output buffer  
quiescent current  
I
SD16REFON = 1, SD16VMIDON = 1  
385  
600  
μA  
REF,BUF  
Required load  
capacitance on V  
C
SD16REFON = 1, SD16VMIDON = 1  
SD16REFON = 1, SD16VMIDON = 1  
470  
nF  
mA  
mV  
μs  
REF(O)  
REF  
Maximum load current  
on V  
I
3 V  
3 V  
3 V  
±1  
LOAD,Max  
REF  
Maximum voltage varia-  
tion vs. load current  
|I  
| = 0 to 1mA  
LOAD  
−15  
+15  
SD16REFON = 0−>1; SD16VMIDON = 1;  
= 470nF  
t
Turn on time  
100  
ON  
C
REF  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
SD16_A, external reference input  
PARAMETER  
TEST CONDITIONS  
V
MIN  
1.0  
TYP  
MAX  
1.5  
UNIT  
V
CC  
V
REF(I)  
Input voltage range  
Input current  
SD16REFON = 0  
SD16REFON = 0  
3 V  
3 V  
1.25  
I
50  
nA  
REF(I)  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC, supply specifications  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
AV  
DV  
,
CC =  
CC  
AV  
Analog supply voltage  
2.20  
3.60  
V
CC  
AV = DV =0 V  
SS  
SS  
DAC12AMPx=2, DAC12IR=0,  
DAC12_xDAT=0800h  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
50  
50  
110  
110  
DAC12AMPx=2, DAC12IR=1,  
DAC12_xDAT=0800h, V  
= AV  
= AV  
= AV  
Supply Current  
REF,DAC12  
CC  
CC  
CC  
I
μA  
DD  
(see Notes 1 and 2)  
DAC12AMPx=5, DAC12IR=1,  
DAC12_xDAT=0800h, V  
200  
700  
440  
REF,DAC12  
DAC12AMPx=7, DAC12IR=1,  
1500  
DAC12_xDAT=0800h, V  
REF,DAC12  
Power supply  
DAC12_xDAT = 800h, V  
= 1.2V  
REF,DAC12  
PSRR  
rejection ratio  
2.7V  
70  
dB  
ΔAV = 100mV  
CC  
(see Notes 3 and 4)  
NOTES: 1. No load at the output pin assuming that the control bits for the shared pins are set properly.  
2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input  
specifications.  
3. PSRR = 20*logAV /ΔV  
}.  
CC  
DAC12_xOUT  
4.  
V
REF  
is applied externally. The internal reference is not used.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC, linearity specifications (see Figure 12)  
PARAMETER  
TEST CONDITIONS  
(12-bit Monotonic)  
V = 1.2V  
REF,DAC12  
V
MIN  
TYP  
MAX  
UNIT  
CC  
Resolution  
12  
bits  
Integral nonlinearity  
(see Note 1)  
INL  
2.7V  
2.7V  
±2.0  
±0.4  
±8.0  
±1.0  
LSB  
LSB  
DAC12AMPx = 7, DAC12IR = 1  
V = 1.2V  
REF,DAC12  
Differential nonlinearity  
(see Note 1)  
DNL  
DAC12AMPx = 7, DAC12IR = 1  
Offset voltage w/o  
calibration  
V
= 1.2V  
REF,DAC12  
2.7V  
2.7V  
2.7V  
±20  
DAC12AMPx = 7, DAC12IR = 1  
E
O
(see Notes 1, 2)  
mV  
Offset voltage with  
calibration  
V
= 1.2V  
REF,DAC12  
±2.5  
DAC12AMPx = 7, DAC12IR = 1  
(see Notes 1, 2)  
Offset error  
d
/d  
/d  
E(O)  
T
temperature coefficient  
(see Note 1)  
±30  
μV/C  
E
Gain error (see Note 1)  
V
= 1.2V  
2.7V  
2.7V  
±3.50 % FSR  
G
REF,DAC12  
Gain temperature  
ppm of  
FSR/°C  
d
E(G)  
10  
T
coefficient (see Note 1)  
DAC12AMPx=2  
2.7V  
2.7V  
2.7V  
100  
Time for offset calibration  
(see Note 3)  
DAC12AMPx=3,5  
DAC12AMPx=4,6,7  
32  
6
t
ms  
Offset_Cal  
NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and  
“b” of the first order equation: y = a + b*x. V = E + (1 + E ) * (V /4095) * DAC12_xDAT, DAC12IR = 1.  
DAC12_xOUT  
O
G
REF,DAC12  
2. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON  
3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with  
DAC12AMPx ={0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during  
calibration may effect accuracy and is not recommended.  
DAC V  
OUT  
DAC Output  
V
R+  
R
=
Load  
Ideal transfer  
function  
AV  
CC  
2
Offset Error  
Positive  
Gain Error  
C
= 100pF  
Load  
Negative  
DAC Code  
Figure 12. Linearity Test Load Conditions and Gain/Offset Definition  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC, linearity specifications (continued)  
TYPICAL INL ERROR  
vs  
DIGITAL INPUT DATA  
4
V
CC  
= 2.2 V, V  
= 1.2V  
REF  
DAC12AMPx = 7  
DAC12IR = 1  
3
2
1
0
−1  
−2  
−3  
−4  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4095  
DAC12_xDAT − Digital Code  
TYPICAL DNL ERROR  
vs  
DIGITAL INPUT DATA  
2.0  
1.5  
V
= 2.2 V, V  
= 1.2V  
CC  
REF  
DAC12AMPx = 7  
DAC12IR = 1  
1.0  
0.5  
0.0  
−0.5  
−1.0  
−1.5  
−2.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4095  
DAC12_xDAT − Digital Code  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC, output specifications  
PARAMETER  
TEST CONDITIONS  
No Load, V = AV  
V
CC  
MIN  
TYP  
MAX  
UNIT  
,
CC  
REF,DAC12  
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
2.2V/3V  
2.2V/3V  
2.2V/3V  
0
0.005  
No Load, V  
= AV  
,
REF,DAC12  
CC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
AV −0.05  
AV  
Output voltage  
CC  
CC  
range  
V
O
V
(see Note 1,  
Figure 15)  
R
= 3 kΩ, V  
= AV  
,
Load  
REF,DAC12  
CC  
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
0
0.1  
R
= 3 kΩ, V  
= AV  
,
Load  
REF,DAC12  
CC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
2.2V/3V  
2.2V/3V  
AV −0.13  
AV  
CC  
CC  
Max DAC12  
C
100  
pF  
L(DAC12)  
load capacitance  
2.2V  
3V  
−0.5  
−1.0  
+0.5  
+1.0  
Max DAC12  
load current  
I
mA  
L(DAC12)  
R
= 3 kΩ, V  
< 0.3 V,  
Load  
O/P(DAC12)  
2.2V/3V  
2.2V/3V  
2.2V/3V  
150  
150  
1
250  
250  
4
DAC12AMPx = 2, DAC12_xDAT = 0h  
R
V
= 3 kΩ,  
Output  
Load  
> AV −0.3 V  
R
Ω
Resistance  
(see Figure 15)  
O/P(DAC12)  
CC  
O/P(DAC12)  
DAC12_xDAT = 0FFFh  
= 3 kΩ,  
R
Load  
0.3V V  
AV − 0.3V  
CC  
O/P(DAC12)  
NOTES: 1. Data is valid after the offset calibration of the output amplifier.  
R
O/P(DAC12_x)  
Max  
R
Load  
I
Load  
AV  
CC  
DAC12  
2
C
= 100pF  
O/P(DAC12_x)  
Min  
Load  
0.3  
AV  
−0.3V  
V
CC  
OUT  
AV  
CC  
Figure 15. DAC12_x Output Resistance Tests  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
12-bit DAC, reference input specifications  
PARAMETER  
Reference input  
TEST CONDITIONS  
DAC12IR=0, (see Notes 1 and 2)  
DAC12IR=1, (see Notes 3 and 4)  
DAC12IR=0  
V
MIN  
TYP  
MAX  
UNIT  
CC  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
AV /3 AV +0.2  
CC  
CC  
V
V
REF  
voltage range  
AV  
AV +0.2  
CC  
CC  
20  
40  
MΩ  
kΩ  
Reference input  
resistance  
Ri  
(VREF)  
DAC12IR=1  
48  
56  
NOTES: 1. For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AV ).  
CC  
2. The maximum voltage applied at reference input voltage terminal V  
= [AV − V  
] / [3*(1 + E )].  
E(O) G  
REF  
CC  
3. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AV ).  
CC  
4. The maximum voltage applied at reference input voltage terminal V  
= [AV − V  
] / (1 + E ).  
E(O) G  
REF  
CC  
12-bit DAC, dynamic specifications; V  
= AV , DAC12IR = 1 (see Figure 16 and Figure 17)  
CC  
REF,DAC12  
PARAMETER  
TEST CONDITIONS  
DAC12AMPx=0 {2, 3, 4}  
DAC12AMPx=0 {5, 6}  
DAC12AMPx=0 7  
DAC12AMPx=2  
V
MIN  
TYP  
60  
15  
6
MAX  
120  
30  
UNIT  
CC  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
2.2V/3V  
DAC12_xDAT = 800h,  
DAC12 on-  
Error  
< ±0.5 LSB  
t
t
t
μs  
V(O)  
ON  
time  
(see Note 1,Figure 16)  
12  
100  
40  
15  
5
200  
80  
Settling  
DAC12_xDAT =  
DAC12AMPx=3,5  
DAC12AMPx=4,6,7  
DAC12AMPx=2  
μs  
μs  
S(FS)  
S(C-C)  
time,full-scale 80hF7Fh80h  
30  
DAC12_xDAT =  
Settling time,  
DAC12AMPx=3,5  
DAC12AMPx=4,6,7  
DAC12AMPx=2  
2
3F8h408h3F8h  
code to code  
BF8hC08hBF8h  
1
0.05  
0.35  
1.5  
0.12  
0.7  
2.7  
10  
10  
15  
DAC12_xDAT =  
DAC12AMPx=3,5  
DAC12AMPx=4,6,7  
DAC12AMPx=2  
SR  
Slew Rate  
V/μs  
nV-s  
80hF7Fh80h  
DAC12_xDAT =  
DAC12AMPx=3,5  
DAC12AMPx=4,6,7  
Glitch energy: full-scale  
80hF7Fh80h  
NOTES: 1. R  
and C connected to AV (not AV /2) in Figure 16.  
Load SS CC  
Load  
2. Slew rate applies to output voltage steps 200mV.  
Conversion 1  
Conversion 2  
Conversion 3  
+/− 1/2 LSB  
V
+/− 1/2 LSB  
DAC Output  
OUT  
Glitch  
Energy  
R
= 3 kΩ  
Load  
I
Load  
AV  
CC  
2
C
= 100pF  
Load  
R
O/P(DAC12.x)  
t
t
settleHL  
settleLH  
Figure 16. Settling Time and Glitch Energy Testing  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
Conversion 1  
Conversion 2  
Conversion 3  
90%  
V
OUT  
90%  
10%  
10%  
t
t
SRHL  
SRLH  
Figure 17. Slew Rate Testing  
12-bit DAC, dynamic specifications continued (T = 25°C unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
2.2V/3V  
2.2V/3V  
2.2V/3V  
40  
3-dB bandwidth,  
DAC12AMPx = {5, 6}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
180  
550  
BW  
kHz  
V
DC  
=1.5V, V =0.1V  
AC PP  
−3dB  
(see Figure 18)  
DAC12AMPx = 7, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
NOTES: 1. R  
= 3 kΩ, C  
= 100 pF  
LOAD  
LOAD  
R
= 3 kΩ  
Load  
I
Load  
Ve  
REF+  
AV  
CC  
DAC12_x  
2
DACx  
AC  
DC  
C
= 100pF  
Load  
Figure 18. Test Conditions for 3-dB Bandwidth Specification  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
Flash Memory  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
2.5  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from DV during program  
2.5V/3.6V  
2.5V/3.6V  
2.5V/3.6V  
2.5V/3.6V  
3
PGM  
CC  
Supply current from DV during erase  
3
7
mA  
ERASE  
CPT  
CC  
Cumulative program time  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
see Note 1  
see Note 2  
10  
ms  
200  
ms  
CMErase  
4
5
10  
100  
10  
cycles  
years  
t
T = 25°C  
J
Retention  
t
t
t
t
t
t
Word or byte program time  
35  
30  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
21  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 3  
t
FTG  
6
5297  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64−byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/f ,max = 5297x1/476kHz). To  
FTG  
achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met.  
(A worst case minimum of 19 cycles are required).  
3. These values are hardwired into the Flash Controller’s state machine (t  
= 1/f ).  
FTG  
FTG  
JTAG Interface  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
2.2 V  
3 V  
0
0
5
10  
90  
MHz  
MHz  
kΩ  
f
TCK input frequency  
see Note 1  
TCK  
R
Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2  
may be restricted to meet the timing requirements of the module selected.  
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. f  
TCK  
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.  
JTAG Fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN NOM  
MAX  
UNIT  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TDI/TCLK for fuse-blow: F versions  
Supply current into TDI/TCLK during fuse blow  
Time to blow fuse  
T = 25°C  
A
2.5  
6
V
V
CC(FB)  
7
100  
1
FB  
I
FB  
t
FB  
mA  
ms  
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched  
to bypass mode.  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
input/output schematics  
Port P1 pin schematic: P1.0, P1.1, input/output with Schmitt−trigger  
Pad Logic  
DV  
SS  
DV  
SS  
DV  
SS  
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.0/TA0  
P1.1/TA0/MCLK  
Bus  
P1SEL.x  
Keeper  
EN  
P1IN.x  
EN  
D
Module X IN  
P1IE.x  
EN  
P1IRQ.x  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
P1SEL.x  
P1IES.x  
Select  
Note: x = 0,1  
Port P1 (P1.0, P1.1) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
P1.0/TA0  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
0
P1.0† Input/Output  
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.1† Input/Output  
Timer_A3.CCI0B  
MCLK  
0/1  
0
0
1
1
0
1
1
1
P1.1/TA0/MCLK  
1
0/1  
0
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P1 pin schematic: P1.2, input/output with Schmitt−trigger and analog functions  
INCH=4  
Pad Logic  
0
1
AV  
SS  
A4−  
SD16AE.x  
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1.2/TA1/A4−  
Bus  
P1SEL.x  
Keeper  
EN  
P1IN.x  
EN  
D
Module X IN  
P1IE.x  
EN  
P1IRQ.x  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
P1SEL.x  
P1IES.x  
Select  
Note: x = 2  
Port P1 (P1.2) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
SD16AE.x  
P1.2/TA1/A4−  
2
P1.2† Input/Output  
Timer_A3.CCI1A  
Timer_A3.TA1  
0/1  
0
0
1
1
X
0
0
0
1
1
A4− (see Notes 3, 4)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the SD16AE.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
4. Negative input to SD16_A (A4−) connected to V if corresponding SD16AE.x bit is cleared.  
SS  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P1 pin schematic: P1.3, P1.5, P1.7, input/output with Schmitt−trigger and analog functions  
INCH=y  
Pad Logic  
Ay+  
SD16AE.x  
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.3/TA2/A4+  
P1.5/TACLK/ACLK/A3+  
P1.7/A2+  
Bus  
P1SEL.x  
Keeper  
EN  
P1IN.x  
Module X IN  
P1IRQ.x  
EN  
D
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
P1SEL.x  
P1IES.x  
Select  
Note: x = 3,5,7  
y = 4,3,2  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P1 (P1.3, P1.5, P1.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
SD16AE.x  
P1.3/TA2/A4+  
3
P1.3† Input/Output  
Timer_A3.CCI2A  
Timer_A3.TA2  
0/1  
0
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
1
A4+ (see Note 3)  
P1.5† Input/Output  
X
P1.5/TACLK/ACLK/A3+  
P1.7/A2+  
5
7
0/1  
0
Timer_A3.TACLK/INCLK  
ACLK  
1
A3+ (see Note 3)  
P1.5† Input/Output  
N/A  
X
0/1  
0
DVSS  
1
A2+ (see Note 3)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the SD16AE.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P1 pin schematic: P1.4, input/output with Schmitt−trigger and analog functions  
INCH=3  
A3−  
Pad Logic  
0
1
AV  
SS  
SD16AE.x  
DAC12OPS  
’1’ if DAC12AMPx>0  
P1DIR.x  
P1OUT.x  
0
1
Direction  
0: Input  
1: Output  
0
1
DV  
SS  
P1.4/A3−/DAC0  
Bus  
P1SEL.x  
P1IN.x  
Keeper  
EN  
DAC12OPS  
P1IE.x  
EN  
DAC0  
P1IRQ.x  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
P1SEL.x  
P1IES.x  
Select  
Note: x = 4  
Port P1 (P1.4) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
SD16AE.x  
DAC12OPS  
P1.4/A3−/DAC0  
4
P1.4† Input/Output  
N/A  
0/1  
0
0
1
0
0
0
1
X
0
0
0
0
1
DVSS  
1
1
A3− (see Notes 3, 4)  
DAC0 (see Note 5)  
X
X
X
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the SD16AE.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
4. Negative input to SD16_A (A3−) connected to AV if corresponding SD16AE.x bit is cleared.  
SS  
5. Setting the DAC12OPS bit also disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P1 pin schematic: P1.6, input/output with Schmitt−trigger and analog functions  
INCH=2  
Pad Logic  
0
1
AV  
SS  
A2−  
SD16AE.x  
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
DV  
0
1
SS  
P1.6/A2−  
Bus  
P1SEL.x  
Keeper  
EN  
P1IN.x  
P1IE.x  
EN  
P1IRQ.x  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
P1SEL.x  
P1IES.x  
Select  
Note: x = 6  
Port P1 (P1.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
P1.6/A2−  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
SD16AE.x  
6
P1.6† Input/Output  
N/A  
0/1  
0
0
1
1
X
0
0
0
1
DVSS  
1
A2− (see Notes 3, 4)  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the SD16AE.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
4. Negative input to SD16_A (A2−) connected to AV if corresponding SD16AE.x bit is cleared.  
SS  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P2 pin schematic: P2.0 to P2.7, input/output with Schmitt−trigger, LCD and analog functions  
Pad Logic  
LCDS4/8/12  
Segment Sy  
DV  
SS  
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.x  
DV  
SS  
P2.0/S13  
P2.1/S12  
P2.2/S11  
P2.3/S10  
P2.4/S9  
P2.5/S8  
P2.6/S7  
P2.7/S6  
Bus  
P2SEL.x  
Keeper  
EN  
P2IN.x  
P2IE.x  
EN  
P2IRQ.x  
Q
Set  
P2IFG.x  
Interrupt  
Edge  
P2SEL.x  
P2IES.x  
Select  
Note: x = 0 to 7  
y = 13 to 6  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P2 (P2.0 to P2.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
P2.0/S13  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
LCDS12  
0
P2.0† Input/Output  
0/1  
0
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
N/A  
DVSS  
1
S13  
X
P2.1/S12  
P2.2/S11  
P2.3/S10  
P2.4/S9  
P2.5/S8  
P2.6/S7  
P2.7/S6  
1
2
3
4
5
6
7
P2.1† Input/Output  
0/1  
0
N/A  
DVSS  
1
S12  
X
P2.2† Input/Output  
0/1  
0
N/A  
DVSS  
1
S11  
X
P2.3† Input/Output  
0/1  
0
N/A  
DVSS  
1
S10  
X
P2.4† Input/Output  
0/1  
0
N/A  
DVSS  
1
S9  
X
P2.5† Input/Output  
0/1  
0
N/A  
DVSS  
1
S8  
X
P2.6† Input/Output  
0/1  
0
N/A  
DVSS  
1
S7  
X
P2.7† Input/Output  
0/1  
0
N/A  
DVSS  
S6  
1
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P5 pin schematic: P5.0, P5.1, P5.5 to P5.7, input/output with Schmitt−trigger and LCD  
functions  
Pad Logic  
LCDS0/4  
Segment Sy  
DV  
SS  
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P5OUT.x  
DV  
SS  
P5.0/S1  
P5.1/S0  
P5.5/S2  
P5.6/S3  
P5.7/S4  
Bus  
P5SEL.x  
Keeper  
EN  
P5IN.x  
Note: x = 0,1,5,6,7  
y = 1,0,2,3,4  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P5 (P5.0, P5.1, P5.5, P5.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
P5.0/S1  
X
FUNCTION  
P5DIR.x  
P5SEL.x  
LCDS0  
0
P5.0† Input/Output  
0/1  
0
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
N/A  
DVSS  
1
S1  
X
P5.1/S0  
P5.5/S2  
P5.6/S3  
1
5
6
P5.1† Input/Output  
0/1  
0
N/A  
DVSS  
1
S0  
X
P5.5† Input/Output  
0/1  
0
N/A  
DVSS  
1
S2  
X
P5.6† Input/Output  
0/1  
0
N/A  
DVSS  
S3  
1
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
Port P5 (P5.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
P5.7/S4  
X
FUNCTION  
P5DIR.x  
P5SEL.x  
LCDS4  
7
P5.7† Input/Output  
0/1  
0
0
1
1
X
0
0
0
1
N/A  
DVSS  
S4  
1
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P5 pin schematic: P5.2 to P5.4, input/output with Schmitt−trigger and LCD functions  
Pad Logic  
LCD Signal  
DV  
SS  
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
P5OUT.x  
DV  
0
1
SS  
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
Bus  
P5SEL.x  
Keeper  
EN  
P5IN.x  
Note: x = 2 to 4  
Port P5 (P5.2 to P5.4) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
X
FUNCTION  
P5DIR.x  
P5SEL.x  
P5.2/COM1  
2
P5.2† Input/Output  
COM1  
0/1  
X
0
1
0
1
0
1
P5.3/COM2  
P5.4/COM3  
3
4
P5.3† Input/Output  
COM2  
0/1  
X
P5.4† Input/Output  
COM3  
0/1  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P6 pin schematic: P6.0, P6.2, input/output with Schmitt−trigger and analog functions  
#
INCH=0/1  
Pad Logic  
#
Ay+  
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P6OUT.x  
DV  
SS  
P6.0/A0+  
P6.2/A1+  
Bus  
P6SEL.x  
Keeper  
EN  
P6IN.x  
Note: x = 0,2  
y = 0,1  
#
Signal from or to SD16  
Port P6 (P6.0, P6.2) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
P6.0/A0+  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
0
P6.0† Input/Output  
A0+ (see Note 3)  
P6.2† Input/Output  
A1+ (see Note 3)  
0/1  
X
0
1
0
1
P6.2/A1+  
2
0/1  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P6 pin schematic: P6.1, P6.3, input/output with Schmitt−trigger and analog functions  
#
INCH=0/1  
Pad Logic  
#
Ay−  
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P6OUT.x  
DV  
SS  
P6.1/A0−  
P6.3/A1−  
Bus  
P6SEL.x  
Keeper  
EN  
P6IN.x  
Note: x = 1,3  
y = 0,1  
#
Signal from or to SD16  
Port P6 (P6.1, P6.3) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
P6.1/A0−  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
1
P6.1† Input/Output  
A0− (see Note 3)  
P6.3† Input/Output  
A1− (see Note 3)  
0/1  
X
0
1
0
1
P6.3/A1−  
3
0/1  
X
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Port P6 pin schematic: P6.4 to P6.7, input/output with Schmitt−trigger and analog functions  
Pad Logic  
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P6OUT.x  
DV  
SS  
P6.4  
P6.5  
P6.6  
P6.7  
Bus  
P6SEL.x  
Keeper  
EN  
P6IN.x  
Note: x = 4 to 7  
Port P6 (P6.4 to P6.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
P6.4  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
4
P6.4† Input/Output  
0/1  
0
0
1
1
0
1
1
0
1
1
0
1
1
N/A  
DVSS  
1
P6.5  
P6.6  
P6.7  
5
6
7
P6.5† Input/Output  
0/1  
0
N/A  
DVSS  
1
P6.6† Input/Output  
0/1  
0
N/A  
DVSS  
1
P6.7† Input/Output  
0/1  
0
N/A  
DVSS  
1
Default after reset (PUC/POR)  
NOTES: 1. N/A: Not available or not applicable.  
2. X: Don’t care.  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger or output  
TDO  
Controlled by JTAG  
Controlled by JTAG  
TDO/TDI  
JTAG  
Controlled  
by JTAG  
DV  
CC  
TDI  
Burn and Test  
Fuse  
TDI/TCLK  
CC  
Test  
and  
DV  
TMS  
TCK  
Emulation  
Module  
TMS  
DV  
CC  
TCK  
RST/NMI  
Tau ~ 50 ns  
D
U
S
Brownout  
G
D
U
S
TCK  
G
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity  
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current (I  
) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be  
(TF)  
taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the  
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check  
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the  
fuse check mode has the potential to be activated.  
The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 19). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition). The JTAG pins are terminated internally and therefore do not require external termination.  
Time TMS Goes Low After POR  
TMS  
I
(TF)  
I
TDI/TCLK  
Figure 19. Fuse Check Mode Current  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430F42x0  
MIXED SIGNAL MICROCONTROLLER  
SLAS455D − MARCH 2005 − REVISED APRIL 2007  
Data Sheet Revision History  
Literature  
Number  
Summary  
Updated functional block diagram (page 4)  
Clarified test conditions in recommended operating conditions table (page 17)  
Clarified test conditions in electrical characteristics table (page 18)  
Clarified test conditions in DCO table (page 25)  
SLAS455D  
Changed PSRR to AC PSRR in SD16_A, performance table (page 29)  
Changed PSRR to DC PSR in SD16_A, built-in voltage reference table; corrected typical value from 10 to 100 μV/V  
(page 30)  
NOTE: Page and figure numbers refer to the respective document revision.  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Dec-2009  
PACKAGING INFORMATION  
Orderable Device  
MSP430F4250IDL  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SSOP  
DL  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
25 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
MSP430F4250IDLR  
MSP430F4250IRGZR  
MSP430F4250IRGZT  
MSP430F4260IDL  
SSOP  
VQFN  
VQFN  
SSOP  
SSOP  
VQFN  
VQFN  
SSOP  
SSOP  
VQFN  
VQFN  
DL  
RGZ  
RGZ  
DL  
1000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
MSP430F4260IDLR  
MSP430F4260IRGZR  
MSP430F4260IRGZT  
MSP430F4270IDL  
DL  
1000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RGZ  
RGZ  
DL  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
MSP430F4270IDLR  
MSP430F4270IRGZR  
MSP430F4270IRGZT  
DL  
1000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
RGZ  
RGZ  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Dec-2009  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Oct-2010  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F4250IDLR  
MSP430F4260IDLR  
MSP430F4270IDLR  
SSOP  
SSOP  
SSOP  
DL  
DL  
DL  
48  
48  
48  
1000  
1000  
1000  
330.0  
330.0  
330.0  
32.4  
32.4  
32.4  
11.35 16.2  
11.35 16.2  
11.35 16.2  
3.1  
3.1  
3.1  
16.0  
16.0  
16.0  
32.0  
32.0  
32.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Oct-2010  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F4250IDLR  
MSP430F4260IDLR  
MSP430F4270IDLR  
SSOP  
SSOP  
SSOP  
DL  
DL  
DL  
48  
48  
48  
1000  
1000  
1000  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
49.0  
49.0  
49.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

MSP430F42X0_14

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F42XA

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F42X_11

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F42X_14

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F435

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4351

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F4351IPN

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4351IPNR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4351IPZ

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4351IPZR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F435IPN

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F435IPNR

MIXED SIGNAL MICROCONTROLLER
TI