MSP430F46161IPZ [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F46161IPZ
型号: MSP430F46161IPZ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总92页 (文件大小:1366K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
SLAS675 − OCTOBER 2009  
D
D
Low Supply Voltage Range: 1.8 V to 3.6 V  
D
D
Universal Serial Communication Interface  
− Enhanced UART Supporting  
Auto-Baudrate Detection  
Ultralow-Power Consumption:  
− Active Mode: 400 µA at 1 MHz, 2.2 V  
− Standby Mode: 1.3 µA  
− Off Mode (RAM Retention): 0.22 µA  
Five Power-Saving Modes  
− IrDA Encoder and Decoder  
− Synchronous SPI  
TM  
− I2C  
D
D
Serial Onboard Programming,  
Programmable Code Protection by Security  
Fuse  
Wake-Up From Standby Mode in Less  
Than 6 µs  
16-Bit RISC Architecture, Extended  
Memory, 125-ns Instruction Cycle Time  
D
D
D
Brownout Detector  
Family Members Include:  
− MSP430x4616, MSP430x46161 :  
D
D
Three Channel Internal DMA  
12-Bit A/D Converter With Internal  
Reference, Sample-and-Hold and Autoscan  
Feature (MSP430x461x only)  
92KB+256B Flash or ROM Memory  
4KB RAM  
− MSP430x4617, MSP430x46171 :  
D
D
16-Bit Timer_A With Three  
Capture/Compare Registers  
92KB+256B Flash or ROM Memory,  
8KB RAM  
− MSP430x4618, MSP430x46181 :  
16-Bit Timer_B With Seven  
Capture/Compare-With-Shadow Registers  
116KB+256B Flash or ROM Memory,  
8KB RAM  
D
D
On-Chip Comparator  
− MSP430x4619, MSP430x46191 :  
Supply Voltage Supervisor/Monitor With  
Programmable Level Detection  
120KB+256B Flash or ROM Memory,  
4KB RAM  
D
D
Basic Timer With Real Time Clock Feature  
D
For Complete Module Descriptions, Refer  
to the MSP430x4xx Family User’s Guide  
Integrated LCD Driver up to 160 Segments  
With Regulated Charge Pump  
The MSP430F461x1 devices are identical to the MSP430F461x  
devices, with the exception that the ADC12 module is not  
implemented.  
D
Serial Communication Interface (USART1),  
Select Asynchronous UART or  
Synchronous SPI by Software  
description  
The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes, is optimized to achieve extended battery life in portable measurement applications. The devices feature  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less  
than 6 µs.  
The MSP430x461x(1) series are microcontroller configurations with two 16-bit timers, a high-performance  
12-bit A/D converter (MSP430x461x only), one universal serial communication interface (USCI), one universal  
synchronous/asynchronous communication interface (USART), DMA, 80 I/O pins, and a liquid crystal display  
(LCD) driver with regulated charge pump.  
Typical applications for this device include portable medical applications and e-meter applications.  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range  
from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage  
because very small parametric changes could cause the device not to meet its published specifications. These devices have limited  
built-in ESD protection.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2009, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
{
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PLASTIC 100-PIN TQFP (PZ)  
}
T
A
MSP430F4616IPZ  
MSP430F46161IPZ  
MSP430F46171IPZ  
MSP430F46181IPZ  
MSP430F46191IPZ  
MSP430F4617IPZ  
MSP430F4618IPZ  
MSP430F4619IPZ  
−40°C to 85°C  
For the most current package and ordering information, see the Package Option  
Addendum at the end of this document, or see the TI web site at www.ti.com.  
Package drawings, thermal data, and symbolization are available at  
www.ti.com/packaging.  
DEVELOPMENT TOOL SUPPORT  
All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging  
and programming through easy to use development tools. Recommended hardware options include the  
following:  
D
Debugging and Programming Interface  
MSP-FET430UIF (USB)  
MSP-FET430PIF (Parallel Port)  
D
D
D
Debugging and Programming Interface with Target Board  
MSP-FET430U100  
Stand-Alone Target Board  
MSP-TS430PZ100  
Production Programmer  
MSP-GANG430  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
pin designation, MSP430x461xIPZ  
1
2
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DV  
P2.4/UCA0TXD  
P2.5/UCA0RXD  
P2.6/CAOUT  
P2.7/ADC12CLK/DMAE0  
P3.0/UCB0STE  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK  
P3.4/TB3  
CC1  
P6.3/A3  
P6.4/A4  
P6.5/A5  
3
4
5
P6.6/A6  
P6.7/A7/SVSIN  
VREF+  
6
7
8
XIN  
XOUT  
VeREF+  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P3.5/TB4  
VREF−/VeREF−  
P5.1/S0/A12  
P5.0/S1/A13  
P10.7/S2/A14  
P10.6/S3/A15  
P10.5/S4  
P10.4/S5  
P10.3/S6  
P10.2/S7  
P10.1/S8  
P10.0/S9  
P9.7/S10  
P9.6/S11  
P3.6/TB5  
P3.7/TB6  
P4.0/UTXD1  
MSP430x4616IPZ  
MSP430x4617IPZ  
MSP430x4618IPZ  
MSP430x4619IPZ  
P4.1/URXD1  
DV  
DV  
SS2  
CC2  
LCDCAP/R33  
P5.7/R23  
P5.6/LCDREF/R13  
P5.5/R03  
P5.4/COM3  
P5.3/COM2  
P5.2/COM1  
COM0  
P9.5/S12  
P9.4/S13  
P4.2/STE1/S39  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
pin designation, MSP430x461x1IPZ  
1
2
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DV  
P2.4/UCA0TXD  
P2.5/UCA0RXD  
P2.6/CAOUT  
CC1  
P6.3  
P6.4  
P6.5  
3
4
P2.7/DMAE0  
5
P6.6  
P3.0/UCB0STE  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK  
P3.4/TB3  
6
P6.7/SVSIN  
Reserved  
XIN  
7
8
XOUT  
DV  
DV  
P5.1/S0  
P5.0/S1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P3.5/TB4  
SS  
P3.6/TB5  
P3.7/TB6  
P4.0/UTXD1  
SS  
MSP430x46161IPZ  
MSP430x46171IPZ  
MSP430x46181IPZ  
MSP430x46191IPZ  
P10.7/S2  
P10.6/S3  
P10.5/S4  
P10.4/S5  
P10.3/S6  
P10.2/S7  
P10.1/S8  
P10.0/S9  
P9.7/S10  
P9.6/S11  
P9.5/S12  
P9.4/S13  
P4.1/URXD1  
DV  
DV  
SS2  
CC2  
LCDCAP/R33  
P5.7/R23  
P5.6/LCDREF/R13  
P5.5/R03  
P5.4/COM3  
P5.3/COM2  
P5.2/COM1  
COM0  
P4.2/STE1/S39  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
MSP430x461x functional block diagram  
XIN/ XOUT/  
XT2IN XT2OUT  
P3. x/P4.x  
P5. x/P6.x  
P7.x/P8.x  
P9.x/P10.x  
DVCC1/2 DVSS1/2  
AVCC  
AVSS  
P1.x/P2.x  
2x8  
2
2
4x8  
4x8/2x16  
Flash(F)  
ROM(C)  
ACLK  
RAM  
Ports  
P3/P4  
P5/P6  
Ports  
P7/P8  
P9/P10  
Oscillators  
FLL+  
ADC12  
12Bit  
Ports P1/P2  
4kB  
8kB  
8kB  
4kB  
Comparator  
_A  
SMCLK  
120kB  
116kB  
92kB  
2x8 I/O  
Interrupt  
capability  
12  
Channels  
4x8 I/O  
4x8/2x16 I/O  
MCLK  
92kB  
MAB  
8MHz  
CPUX  
DMA  
Controller  
incl. 16  
Registers  
3 Channels  
MDB  
Enhanced  
Emulation  
(F only)  
Hardware  
Multiplier  
Timer_B7  
USCI_A0:  
UART,  
LCD_A  
USART1  
Brownout  
Protection  
Watchdog  
WDT+  
Timer_A3  
Basic Timer  
&
RealTime  
Clock  
7 CC  
Registers,  
Shadow  
Reg  
IrDA, SPI  
MPY,  
MPYS,  
MAC,  
160  
Segments  
1, 2,3,4 Mux  
UART, SPI  
JTAG  
Interface  
3 CC  
Registers  
USCI_B0:  
SPI, I2C  
SVS/SVM  
15/16Bit  
MACS  
RST/NMI  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
MSP430x461x1 functional block diagram  
XIN/ XOUT/  
XT2IN XT2OUT  
P3. x/P4.x  
P5. x/P6.x  
P7.x/P8.x  
P9.x/P10.x  
DVCC1/2 DVSS1/2  
AVCC  
AVSS  
P1.x/P2.x  
2x8  
2
2
4x8  
4x8/2x16  
Flash(F)  
ROM(C)  
ACLK  
RAM  
Ports  
P3/P4  
P5/P6  
Ports  
P7/P8  
P9/P10  
Oscillators  
FLL+  
Ports P1/P2  
4kB  
8kB  
8kB  
4kB  
Comparator  
_A  
SMCLK  
120kB  
116kB  
92kB  
2x8 I/O  
Interrupt  
capability  
4x8 I/O  
4x8/2x16 I/O  
MCLK  
92kB  
MAB  
8MHz  
CPUX  
DMA  
Controller  
incl. 16  
Registers  
3 Channels  
MDB  
Enhanced  
Emulation  
(F only)  
Hardware  
Multiplier  
Timer_B7  
USCI_A0:  
UART,  
LCD_A  
USART1  
Brownout  
Protection  
Watchdog  
WDT+  
Timer_A3  
Basic Timer  
&
RealTime  
Clock  
7 CC  
Registers,  
Shadow  
Reg  
IrDA, SPI  
MPY,  
MPYS,  
MAC,  
160  
Segments  
1, 2,3,4 Mux  
UART, SPI  
JTAG  
Interface  
3 CC  
Registers  
USCI_B0:  
SPI, I2C  
SVS/SVM  
15/16Bit  
MACS  
RST/NMI  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
MSP430x461x Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
Digital supply voltage, positive terminal  
NO.  
1
DV  
CC1  
P6.3/A3  
P6.4/A4  
P6.5/A5  
P6.6/A6  
2
I/O General-purpose digital I/O / analog input a3—12-bit ADC  
I/O General-purpose digital I/O / analog input a4—12-bit ADC  
I/O General-purpose digital I/O / analog input a5—12-bit ADC  
I/O General-purpose digital I/O / analog input a6—12-bit ADC  
3
4
5
General-purpose digital I/O / analog input a7—12-bit ADC / analog input to brownout,  
supply voltage supervisor  
P6.7/A7/SVSIN  
6
I/O  
V
7
8
O
I
Output of positive terminal of the reference voltage in the ADC  
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Output terminal of crystal oscillator XT1  
REF+  
XIN  
XOUT  
9
O
Ve  
REF+  
10  
I/O Input for an external reference voltage to the ADC  
Negative terminal for the ADC reference voltage for both sources, the internal reference  
voltage, or an external applied reference voltage  
V
REF−  
/Ve  
11  
I
REF−  
P5.1/S0/A12 (see Note 1)  
P5.0/S1/A13 (see Note 1)  
P10.7/S2/A14 (see Note 1)  
P10.6/S3/A15 (see Note 1)  
P10.5/S4  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
I/O General-purpose digital I/O / LCD segment output 0 / analog input a12 − 12−bit ADC  
I/O General-purpose digital I/O / LCD segment output 1 / analog input a13 − 12−bit ADC  
I/O General-purpose digital I/O / LCD segment output 2 / analog input a14 − 12−bit ADC  
I/O General-purpose digital I/O / LCD segment output 3 / analog input a15 − 12−bit ADC  
I/O General-purpose digital I/O / LCD segment output 4  
P10.4/S5  
I/O General-purpose digital I/O / LCD segment output 5  
P10.3/S6  
I/O General-purpose digital I/O / LCD segment output 6  
P10.2/S7  
I/O General-purpose digital I/O / LCD segment output 7  
P10.1/S8  
I/O General-purpose digital I/O / LCD segment output 8  
P10.0/S9  
I/O General-purpose digital I/O / LCD segment output 9  
P9.7/S10  
I/O General-purpose digital I/O / LCD segment output 10  
I/O General-purpose digital I/O / LCD segment output 11  
I/O General-purpose digital I/O / LCD segment output 12  
I/O General-purpose digital I/O / LCD segment output 13  
I/O General-purpose digital I/O / LCD segment output 14  
I/O General-purpose digital I/O / LCD segment output 15  
I/O General-purpose digital I/O / LCD segment output 16  
I/O General-purpose digital I/O / LCD segment output 17  
I/O General-purpose digital I/O / LCD segment output 18  
I/O General-purpose digital I/O / LCD segment output 19  
I/O General-purpose digital I/O / LCD segment output 20  
I/O General-purpose digital I/O / LCD segment output 21  
I/O General-purpose digital I/O / LCD segment output 22  
P9.6/S11  
P9.5/S12  
P9.4/S13  
P9.3/S14  
P9.2/S15  
P9.1/S16  
P9.0/S17  
P8.7/S18  
P8.6/S19  
P8.5/S20  
P8.4/S21  
P8.3/S22  
NOTE 1: Segments S0 through S3 are disabled when the LCD charge pump feature is enabled (LCDCPEN = 1) and cannot be used together  
with the LCD charge pump. In addition, when using segments S0 through S3 with an external LCD voltage supply, V  
AV  
.
LCD  
CC  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
Terminal Functions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
35  
36  
37  
38  
39  
40  
41  
P8.2/S23  
P8.1/S24  
P8.0/S25  
P7.7/S26  
P7.6/S27  
P7.5/S28  
P7.4/S29  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / LCD segment output 23  
General-purpose digital I/O / LCD segment output 24  
General-purpose digital I/O / LCD segment output 25  
General-purpose digital I/O / LCD segment output 26  
General-purpose digital I/O / LCD segment output 27  
General-purpose digital I/O / LCD segment output 28  
General-purpose digital I/O / LCD segment output 29  
General-purpose digital I/O / external clock input − USCI_A0/UART or SPI mode, clock output  
− USCI_A0/SPI mode / LCD segment 30  
P7.3/UCA0CLK/S30  
42  
I/O  
P7.2/UCA0SOMI/S31  
P7.1/UCA0SIMO/S32  
43  
44  
I/O  
I/O  
General-purpose digital I/O / slave out/master in of USCI_A0/SPI mode / LCD segment output 31  
General-purpose digital I/O / slave in/master out of USCI_A0/SPI mode / LCD segment output 32  
General-purpose digital I/O / slave transmit enable—USCI_A0/SPI mode / LCD segment  
output 33  
P7.0/UCA0STE/S33  
P4.7/UCA0RXD/S34  
P4.6/UCA0TXD/S35  
P4.5/UCLK1/S36  
45  
46  
47  
48  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / receive data in − USCI_A0/UART or IrDA mode / LCD segment  
output 34  
General-purpose digital I/O / transmit data out − USCI_A0/UART or IrDA mode / LCD segment  
output 35  
General-purpose digital I/O / external clock input − USART1/UART or SPI mode, clock output  
− USART1/SPI MODE / LCD segment output 36  
P4.4/SOMI1/S37  
P4.3/SIMO1/S38  
49  
50  
I/O  
I/O  
General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37  
General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38  
General-purpose digital I/O / slave transmit enable—USART1/SPI mode / LCD segment  
output 39  
P4.2/STE1/S39  
51  
I/O  
COM0  
52  
53  
54  
55  
56  
O
COM0−3 are used for LCD backplanes.  
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
P5.5/R03  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
General-purpose digital I/O / Input port of lowest analog LCD level (V5)  
General-purpose digital I/O / External reference voltage input for regulated LCD voltage / Input  
port of third most positive analog LCD level (V4 or V3)  
P5.6/LCDREF/R13  
57  
I/O  
P5.7/R23  
58  
59  
60  
61  
62  
63  
I/O  
I
General-purpose digital I/O / Input port of second most positive analog LCD level (V2)  
LCD capacitor connection / Input/output port of most positive analog LCD level (V1)  
Digital supply voltage, positive terminal  
LCDCAP/R33  
DV  
DV  
CC2  
SS2  
Digital supply voltage, negative terminal  
P4.1/URXD1  
P4.0/UTXD1  
I/O  
I/O  
General-purpose digital I/O / receive data in—USART1/UART mode  
General-purpose digital I/O / transmit data out—USART1/UART mode  
General-purpose digital I/O / Timer_B7 CCR6. Capture: CCI6A/CCI6B input, compare: Out6  
output  
P3.7/TB6  
P3.6/TB5  
P3.5/TB4  
64  
65  
66  
I/O  
I/O  
I/O  
General-purpose digital I/O / Timer_B7 CCR5. Capture: CCI5A/CCI5B input, compare: Out5  
output  
General-purpose digital I/O / Timer_B7 CCR4. Capture: CCI4A/CCI4B input, compare: Out4  
output  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
Terminal Functions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
P3.4/TB3  
67  
I/O General-purpose digital I/O / Timer_B7 CCR3. Capture: CCI3A/CCI3B input, compare: Out3 output  
General-purpose digital I/O / external clock input—USCI_B0/UART or SPI mode, clock  
output—USCI_B0/SPI mode  
P3.3/UCB0CLK  
68  
69  
I/O  
P3.2/UCB0SOMI/  
UCB0SCL  
General-purpose digital I/O / slave out/master in of USCI_B0/SPI mode /I2C clock—USCI_B0/I2C  
mode  
I/O  
P3.1/UCB0SIMO/  
UCB0SDA  
General-purpose digital I/O / slave in/master out of USCI_B0/SPI mode, I2C data—USCI_B0/I2C  
mode  
70  
71  
72  
I/O  
P3.0/UCB0STE  
I/O General-purpose digital I/O / slave transmit enable—USCI_B0/SPI mode  
P2.7/ADC12CLK/  
DMAE0  
I/O General-purpose digital I/O / conversion clock—12-bit ADC / DMA Channel 0 external trigger  
P2.6/CAOUT  
P2.5/UCA0RXD  
P2.4/UCA0TXD  
P2.3/TB2  
73  
74  
75  
76  
77  
78  
79  
80  
81  
I/O General-purpose digital I/O / Comparator_A output  
I/O General-purpose digital I/O / receive data in—USCI_A0/UART or IrDA mode  
I/O General-purpose digital I/O / transmit data out—USCI_A0/UART or IrDA mode  
I/O General-purpose digital I/O / Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output  
I/O General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output  
I/O General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output  
I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output  
I/O General-purpose digital I/O / Comparator_A input  
P2.2/TB1  
P2.1/TB0  
P2.0/TA2  
P1.7/CA1  
P1.6/CA0  
I/O General-purpose digital I/O / Comparator_A input  
General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4,  
or 8)  
P1.5/TACLK/ACLK  
P1.4/TBCLK/SMCLK  
P1.3/TBOUTH/SVSOUT  
P1.2/TA1  
82  
83  
84  
85  
86  
I/O  
I/O General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK output  
General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B7 TB0  
to TB6 / SVS: output of SVS comparator  
I/O  
I/O General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output  
General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output.  
Note: TA0 is only an input on this pin / BSL receive  
P1.1/TA0/MCLK  
I/O  
P1.0/TA0  
XT2OUT  
XT2IN  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit  
O
I
Output terminal of crystal oscillator XT2  
Input port for crystal oscillator XT2. Only standard crystals can be connected.  
TDO/TDI  
TDI/TCLK  
TMS  
I/O Test data output port. TDO/TDI data output or programming data input terminal  
I
I
I
I
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.  
Test mode select. TMS is used as an input port for device programming and test.  
Test clock. TCK is the clock input port for device programming and test.  
Reset input or nonmaskable interrupt input port  
TCK  
RST/NMI  
P6.0/A0  
P6.1/A1  
P6.2/A2  
I/O General-purpose digital I/O / analog input a0—12-bit ADC  
I/O General-purpose digital I/O / analog input a1—12-bit ADC  
I/O General-purpose digital I/O / analog input a2—12-bit ADC  
AV  
Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1  
Digital supply voltage, negative terminal  
SS  
DV  
SS1  
Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1;  
AV  
100  
CC  
must not power up prior to DV  
/DV  
.
CC1  
CC2  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
MSP430x461x1 Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
Digital supply voltage, positive terminal  
NO.  
1
DV  
CC1  
P6.3  
2
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
I/O General-purpose digital I/O  
P6.4  
3
P6.5  
4
P6.6  
5
P6.7/SVSIN  
Reserved  
XIN  
6
I/O General-purpose digital I/O / analog input to brownout, supply voltage supervisor  
7
O
I
Reserved, do not connect externally  
8
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Output terminal of crystal oscillator XT1  
XOUT  
9
O
DV  
DV  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
I/O Connect to DV  
SS  
SS  
SS  
SS  
I
Connect to DV  
P5.1/S0 (see Note 2)  
P5.0/S1 (see Note 2)  
P10.7/S2 (see Note 2)  
P10.6/S3 (see Note 2)  
P10.5/S4  
I/O General-purpose digital I/O / LCD segment output 0  
I/O General-purpose digital I/O / LCD segment output 1  
I/O General-purpose digital I/O / LCD segment output 2  
I/O General-purpose digital I/O / LCD segment output 3  
I/O General-purpose digital I/O / LCD segment output 4  
I/O General-purpose digital I/O / LCD segment output 5  
I/O General-purpose digital I/O / LCD segment output 6  
I/O General-purpose digital I/O / LCD segment output 7  
I/O General-purpose digital I/O / LCD segment output 8  
I/O General-purpose digital I/O / LCD segment output 9  
I/O General-purpose digital I/O / LCD segment output 10  
I/O General-purpose digital I/O / LCD segment output 11  
I/O General-purpose digital I/O / LCD segment output 12  
I/O General-purpose digital I/O / LCD segment output 13  
I/O General-purpose digital I/O / LCD segment output 14  
I/O General-purpose digital I/O / LCD segment output 15  
I/O General-purpose digital I/O / LCD segment output 16  
I/O General-purpose digital I/O / LCD segment output 17  
I/O General-purpose digital I/O / LCD segment output 18  
I/O General-purpose digital I/O / LCD segment output 19  
I/O General-purpose digital I/O / LCD segment output 20  
I/O General-purpose digital I/O / LCD segment output 21  
I/O General-purpose digital I/O / LCD segment output 22  
P10.4/S5  
P10.3/S6  
P10.2/S7  
P10.1/S8  
P10.0/S9  
P9.7/S10  
P9.6/S11  
P9.5/S12  
P9.4/S13  
P9.3/S14  
P9.2/S15  
P9.1/S16  
P9.0/S17  
P8.7/S18  
P8.6/S19  
P8.5/S20  
P8.4/S21  
P8.3/S22  
NOTE 2: Segments S0 through S3 are disabled when the LCD charge pump feature is enabled (LCDCPEN = 1) and cannot be used together  
with the LCD charge pump. In addition, when using segments S0 through S3 with an external LCD voltage supply, V  
AV  
.
LCD  
CC  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
Terminal Functions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
35  
36  
37  
38  
39  
40  
41  
P8.2/S23  
P8.1/S24  
P8.0/S25  
P7.7/S26  
P7.6/S27  
P7.5/S28  
P7.4/S29  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / LCD segment output 23  
General-purpose digital I/O / LCD segment output 24  
General-purpose digital I/O / LCD segment output 25  
General-purpose digital I/O / LCD segment output 26  
General-purpose digital I/O / LCD segment output 27  
General-purpose digital I/O / LCD segment output 28  
General-purpose digital I/O / LCD segment output 29  
General-purpose digital I/O / external clock input − USCI_A0/UART or SPI mode, clock output  
− USCI_A0/SPI mode / LCD segment 30  
P7.3/UCA0CLK/S30  
42  
I/O  
P7.2/UCA0SOMI/S31  
P7.1/UCA0SIMO/S32  
43  
44  
I/O  
I/O  
General-purpose digital I/O / slave out/master in of USCI_A0/SPI mode / LCD segment output 31  
General-purpose digital I/O / slave in/master out of USCI_A0/SPI mode / LCD segment output 32  
General-purpose digital I/O / slave transmit enable—USCI_A0/SPI mode / LCD segment  
output 33  
P7.0/UCA0STE/S33  
P4.7/UCA0RXD/S34  
P4.6/UCA0TXD/S35  
P4.5/UCLK1/S36  
45  
46  
47  
48  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / receive data in − USCI_A0/UART or IrDA mode / LCD segment  
output 34  
General-purpose digital I/O / transmit data out − USCI_A0/UART or IrDA mode / LCD segment  
output 35  
General-purpose digital I/O / external clock input − USART1/UART or SPI mode, clock output  
− USART1/SPI MODE / LCD segment output 36  
P4.4/SOMI1/S37  
P4.3/SIMO1/S38  
49  
50  
I/O  
I/O  
General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37  
General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38  
General-purpose digital I/O / slave transmit enable—USART1/SPI mode / LCD segment  
output 39  
P4.2/STE1/S39  
51  
I/O  
COM0  
52  
53  
54  
55  
56  
O
COM0−3 are used for LCD backplanes.  
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
P5.5/R03  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes.  
General-purpose digital I/O / Input port of lowest analog LCD level (V5)  
General-purpose digital I/O / External reference voltage input for regulated LCD voltage / Input  
port of third most positive analog LCD level (V4 or V3)  
P5.6/LCDREF/R13  
57  
I/O  
P5.7/R23  
58  
59  
60  
61  
62  
63  
I/O  
I
General-purpose digital I/O / Input port of second most positive analog LCD level (V2)  
LCD capacitor connection / Input/output port of most positive analog LCD level (V1)  
Digital supply voltage, positive terminal  
LCDCAP/R33  
DV  
DV  
CC2  
SS2  
Digital supply voltage, negative terminal  
P4.1/URXD1  
P4.0/UTXD1  
I/O  
I/O  
General-purpose digital I/O / receive data in—USART1/UART mode  
General-purpose digital I/O / transmit data out—USART1/UART mode  
General-purpose digital I/O / Timer_B7 CCR6. Capture: CCI6A/CCI6B input, compare: Out6  
output  
P3.7/TB6  
P3.6/TB5  
P3.5/TB4  
64  
65  
66  
I/O  
I/O  
I/O  
General-purpose digital I/O / Timer_B7 CCR5. Capture: CCI5A/CCI5B input, compare: Out5  
output  
General-purpose digital I/O / Timer_B7 CCR4. Capture: CCI4A/CCI4B input, compare: Out4  
output  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
Terminal Functions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
P3.4/TB3  
67  
I/O General-purpose digital I/O / Timer_B7 CCR3. Capture: CCI3A/CCI3B input, compare: Out3 output  
General-purpose digital I/O / external clock input—USCI_B0/UART or SPI mode, clock  
output—USCI_B0/SPI mode  
P3.3/UCB0CLK  
68  
69  
I/O  
P3.2/UCB0SOMI/  
UCB0SCL  
General-purpose digital I/O / slave out/master in of USCI_B0/SPI mode /I2C clock—USCI_B0/I2C  
mode  
I/O  
P3.1/UCB0SIMO/  
UCB0SDA  
General-purpose digital I/O / slave in/master out of USCI_B0/SPI mode, I2C data—USCI_B0/I2C  
mode  
70  
71  
72  
I/O  
P3.0/UCB0STE  
I/O General-purpose digital I/O / slave transmit enable—USCI_B0/SPI mode  
P2.7/ADC12CLK/  
DMAE0  
I/O General-purpose digital I/O / conversion clock—12-bit ADC / DMA Channel 0 external trigger  
P2.6/CAOUT  
P2.5/UCA0RXD  
P2.4/UCA0TXD  
P2.3/TB2  
73  
74  
75  
76  
77  
78  
79  
80  
81  
I/O General-purpose digital I/O / Comparator_A output  
I/O General-purpose digital I/O / receive data in—USCI_A0/UART or IrDA mode  
I/O General-purpose digital I/O / transmit data out—USCI_A0/UART or IrDA mode  
I/O General-purpose digital I/O / Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output  
I/O General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output  
I/O General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output  
I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output  
I/O General-purpose digital I/O / Comparator_A input  
P2.2/TB1  
P2.1/TB0  
P2.0/TA2  
P1.7/CA1  
P1.6/CA0  
I/O General-purpose digital I/O / Comparator_A input  
General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4,  
or 8)  
P1.5/TACLK/ACLK  
P1.4/TBCLK/SMCLK  
P1.3/TBOUTH/SVSOUT  
P1.2/TA1  
82  
83  
84  
85  
86  
I/O  
I/O General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK output  
General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B7 TB0  
to TB6 / SVS: output of SVS comparator  
I/O  
I/O General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output  
General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output.  
Note: TA0 is only an input on this pin / BSL receive  
P1.1/TA0/MCLK  
I/O  
P1.0/TA0  
XT2OUT  
XT2IN  
TDO/TDI  
TDI/TCLK  
TMS  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit  
O
I
Output terminal of crystal oscillator XT2  
Input port for crystal oscillator XT2. Only standard crystals can be connected.  
I/O Test data output port. TDO/TDI data output or programming data input terminal  
I
I
I
I
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.  
Test mode select. TMS is used as an input port for device programming and test.  
Test clock. TCK is the clock input port for device programming and test.  
Reset input or nonmaskable interrupt input port  
TCK  
RST/NMI  
P6.0  
I/O General-purpose digital I/O  
P6.1  
I/O General-purpose digital I/O  
P6.2  
I/O General-purpose digital I/O  
AV  
Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1  
Digital supply voltage, negative terminal  
SS  
DV  
SS1  
Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1;  
AV  
100  
CC  
must not power up prior to DV  
/DV  
.
CC1  
CC2  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
short-form description  
CPU  
The MSP430 CPU has a 16-bit RISC architecture that is  
highly transparent to the application. All operations, other  
than program-flow instructions, are performed as register  
operations in conjunction with seven addressing modes for  
source operand and four addressing modes for destination  
operand.  
Program Counter  
Stack Pointer  
PC/R0  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
The CPU is integrated with 16 registers that provide  
reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
Four of the registers, R0 to R3, are dedicated as program  
counter, stack pointer, status register, and constant  
generator respectively. The remaining registers are  
general-purpose registers.  
R6  
R7  
Peripherals are connected to the CPU using data, address,  
and control buses, and can be handled with all instructions.  
R8  
R9  
The MSP430x461x(1) device family uses the MSP430X  
CPU and is completely backward compatible with the  
MSP430 CPU. For a complete description of the MSP430X  
CPU, see the MSP430x4xx Family User’s Guide.  
R10  
R11  
instruction set  
The instruction set consists of the original 51 instructions  
with three formats and seven address modes and additional  
instructions for the expanded address range. Each  
instruction can operate on word and byte data. Table 1  
shows examples of the three types of instruction formats;  
Table 2 shows the address modes.  
R12  
R13  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g., ADD R4,R5  
R4 + R5 −−−> R5  
e.g., CALL  
e.g., JNE  
R8  
PC −−>(TOS), R8−−> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
F
F
F
F
F
F
F
F
F
R10 —> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV & MEM, & TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5)—> M(6+R6)  
M(EDE) —> M(TONI)  
M(MEM) —> M(TCDAT)  
M(R10) —> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) —> R11  
R10 + 2—> R10  
F
MOV @Rn+,Rm  
Immediate  
F
MOV #X,TONI  
#45 —> M(TONI)  
NOTE: S = source  
D = destination  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
operating modes  
The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request, and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
D
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
FLL+ loop control remains active  
D
D
Low-power mode 1 (LPM1)  
CPU is disabled  
FLL+ loop control is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK, FLL+ loop control and DCOCLK are disabled  
DCO’s dc generator remains enabled  
ACLK remains active  
D
D
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK, FLL+ loop control, and DCOCLK are disabled  
DCO’s dc generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK, FLL+ loop control, and DCOCLK are disabled  
DCO’s dc generator is disabled  
Crystal oscillator is stopped  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
interrupt vector addresses  
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FFC0h. The  
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 3. Interrupt Sources, Flags, and Vectors  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
PRIORITY  
Power-Up  
External Reset  
Watchdog  
WDTIFG  
KEYV  
(see Note 1 and 5)  
Reset  
0FFFEh  
31, highest  
Flash Memory  
NMI  
Oscillator Fault  
Flash Memory Access Violation  
NMIIFG (see Notes 1 and 3)  
OFIFG (see Notes 1 and 3)  
ACCVIFG (see Notes 1, 2, and 5)  
(Non)maskable  
(Non)maskable  
(Non)maskable  
0FFFCh  
30  
Timer_B7  
TBCCR0 CCIFG0 (see Note 2)  
Maskable  
0FFFAh  
0FFF8h  
29  
28  
TBCCR1 CCIFG1 ... TBCCR6 CCIFG6,  
TBIFG (see Notes 1 and 2)  
Timer_B7  
Maskable  
Comparator_A  
Watchdog Timer+  
CAIFG  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF6h  
0FFF4h  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
27  
26  
25  
24  
23  
22  
WDTIFG  
USCI_A0/USCI_B0 Receive  
USCI_A0/USCI_B0 Transmit  
ADC12 (see Note 6)  
Timer_A3  
UCA0RXIFG, UCB0RXIFG (see Note 1)  
UCA0TXIFG, UCB0TXIFG (see Note 1)  
ADC12IFG (see Notes 1 and 2)  
TACCR0 CCIFG0 (see Note 2)  
TACCR1 CCIFG1 and TACCR2 CCIFG2,  
TAIFG (see Notes 1 and 2)  
Timer_A3  
Maskable  
0FFEAh  
21  
I/O Port P1 (Eight Flags)  
USART1 Receive  
USART1 Transmit  
I/O Port P2 (Eight Flags)  
Basic Timer1/RTC  
DMA  
P1IFG.0 to P1IFG.7 (see Notes 1 and 2)  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
0FFDEh  
20  
19  
18  
17  
16  
15  
URXIFG1  
UTXIFG1  
P2IFG.0 to P2IFG.7 (see Notes 1 and 2)  
BTIFG  
DMA0IFG, DMA1IFG, DMA2IFG  
(see Notes 1 and 2)  
Reserved  
Reserved  
Reserved  
Maskable  
0FFDCh  
0FFDAh  
...  
14  
13  
...  
Reserved (see Note 4)  
0FFC0h  
0, lowest  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module.  
3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh).  
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
4. The interrupt vectors at addresses 0FFDAh to 0FFC0h are not used in this device and can be used for regular program code if  
necessary.  
5. Access and key violations, KEYV and ACCVIFG, only applicable to F devices.  
6. ADC12 is not implemented in MSP430x461x1 devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
special function registers (SFRs)  
The MSP430 SFRs are located in the lowest address space and are organized as byte mode registers. SFRs  
should be accessed with byte instructions.  
interrupt enable 1 and 2  
7
6
5
4
3
2
1
0
Address  
0h  
ACCVIE  
NMIIE  
OFIE  
WDTIE  
rw–0  
rw–0  
rw–0  
rw–0  
WDTIE  
Watchdog-timer interrupt enable. Inactive if watchdog mode is selected.  
Active if watchdog timer is configured as a general-purpose timer.  
OFIE  
Oscillator-fault-interrupt enable  
Nonmaskable-interrupt enable  
Flash access violation interrupt enable  
NMIIE  
ACCVIE  
7
6
5
4
3
2
1
0
Address  
01h  
BTIE  
UTXIE1  
URXIE1  
UCB0TXIE  
UCB0RXIE  
UCA0TXIE UCA0RXIE  
rw–0 rw–0  
rw–0  
rw–0  
rw–0  
rw–0  
rw–0  
UCA0RXIE  
UCA0TXIE  
UCB0RXIE  
UCB0TXIE  
URXIE1  
USCI_A0 receive-interrupt enable  
USCI_A0 transmit-interrupt enable  
USCI_B0 receive-interrupt enable  
USCI_B0 transmit-interrupt enable  
USART1 UART and SPI receive-interrupt enable  
USART1 UART and SPI transmit-interrupt enable  
Basic timer interrupt enable  
UTXIE1  
BTIE  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
interrupt flag register 1 and 2  
7
6
5
4
3
2
1
0
Address  
02h  
NMIIFG  
OFIFG  
WDTIFG  
rw–0  
rw–1  
rw–(0)  
WDTIFG:  
Set on watchdog timer overflow (in watchdog mode) or security key violation  
Reset on V power-on or a reset condition at the RST/NMI pin in reset mode  
CC  
OFIFG:  
Flag set on oscillator fault  
Set via RST/NMI pin  
NMIIFG:  
7
6
5
4
3
2
1
0
Address  
03h  
UCB0TXIFG UCB0RXIFG UCA0TXIFG UCA0RXIFG  
rw–0 rw–0  
UTXIFG1  
URXIFG1  
BTIFG  
rw–0  
rw–0  
rw–0  
rw–1  
rw–0  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
URXIFG0:  
UTXIFG0:  
USCI_A0 receive-interrupt flag  
USCI_A0 transmit-interrupt flag  
USCI_B0 receive-interrupt flag  
USCI_B0 transmit-interrupt flag  
USART1: UART and SPI receive flag  
USART1: UART and SPI transmit flag  
Basic timer flag  
BTIFG:  
module enable registers 1 and 2  
7
6
5
4
4
3
3
2
2
1
1
0
0
Address  
04h  
7
6
5
Address  
05h  
UTXE1  
URXE1  
USPIE1  
rw–0  
rw–0  
URXE1:  
USART1: UART mode receive enable  
USART1: UART mode transmit enable  
UTXE1:  
USPIE1:  
USART1: SPI mode transmit and receive enable  
Legend  
rw:  
Bit can be read and written.  
rw-0,1:  
rw-(0,1):  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
memory organization  
MSP430F4616  
MSP430F46161  
MSP430F4617  
MSP430F46171  
MSP430F4618  
MSP430F46181  
MSP430F4619  
MSP430F46191  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
92KB  
0FFFFh − 0FFC0h  
018FFFh − 002100h  
92KB  
0FFFFh − 0FFC0h  
019FFFh − 003100h  
116KB  
0FFFFh − 0FFC0h  
01FFFFh − 003100h  
120KB  
0FFFFh − 0FFC0h  
01FFFFh − 002100h  
RAM (Total)  
Size  
Size  
Size  
4KB  
8KB  
8KB  
4KB  
020FFh − 01100h  
030FFh − 01100h  
030FFh − 01100h  
020FFh − 01100h  
Extended  
2KB  
6KB  
6KB  
2KB  
020FFh − 01900h  
030FFh − 01900h  
030FFh − 01900h  
020FFh − 01900h  
Mirrored  
2KB  
2KB  
2KB  
2KB  
018FFh − 01100h  
018FFh − 01100h  
018FFh − 01100h  
018FFh − 01100h  
Information memory  
Boot memory  
Size  
Flash  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
256 Byte  
010FFh − 01000h  
Size  
1KB  
1KB  
1KB  
1KB  
ROM  
0FFFh − 0C00h  
0FFFh − 0C00h  
0FFFh − 0C00h  
0FFFh − 0C00h  
RAM  
Size  
2KB  
2KB  
2KB  
2KB  
(mirrored at  
018FFh − 01100h)  
09FFh − 0200h  
09FFh − 0200h  
09FFh − 0200h  
09FFh − 0200h  
Peripherals  
16 bit  
8 bit  
8-bit SFR  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
01FFh − 0100h  
0FFh − 010h  
0Fh − 00h  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
bootstrap loader (BSL)  
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access  
to the MSP430 memory via the BSL is protected by user-defined password. A bootstrap loader security key is  
provided at address 0FFBEh to disable the BSL completely or to disable the erasure of the flash if an invalid  
password is supplied. The BSL is optional for ROM-based devices. For complete description of the features of  
the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature  
number SLAA089.  
BSLKEY  
00000h  
DESCRIPTION  
Erasure of flash disabled if an invalid password is supplied  
BSL disabled  
0AA55h  
any other value  
BSL enabled  
BSL FUNCTION  
PZ PACKAGE PINS  
87/A7 − P1.0  
Data Transmit  
Data Receive  
86/E7 − P1.1  
flash memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and two segments of information memory (A and B) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A and B can be erased individually, or as a group with segments 0 to n.  
Segments A and B are also called information memory.  
D
New devices may have some bytes programmed in the information memory (needed for test during  
manufacturing). The user should perform an erase of the information memory prior to the first use.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number  
SLAU056.  
DMA controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using  
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system  
power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to  
or from a peripheral.  
oscillator and system clock  
The clock system in the MSP430x461x(1) family of devices is supported by the FLL+ module, which includes  
support for a 32768-Hz watch crystal oscillator, an internal digitally controlled oscillator (DCO), and a high  
frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system  
cost and low power consumption. The FLL+ features digital frequency locked loop (FLL) hardware that, in  
conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch  
crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The  
FLL+ module provides the following clock signals:  
D
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal  
Main clock (MCLK), the system clock used by the CPU  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8  
brownout, supply voltage supervisor  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on  
and power-off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user  
selectable level and supports both supply voltage supervision (the device is automatically reset) and supply  
voltage monitoring (SVM, the device is not automatically reset).  
The CPU begins code execution after the brownout circuit releases the device reset. However, V may not  
CC  
have ramped to V  
at that time. The user must insure the default FLL+ settings are not changed until V  
CC(min)  
CC  
reaches V  
. If desired, the SVS circuit can be used to determine when V reaches V  
.
CC(min)  
CC  
CC(min)  
digital I/O  
There are ten 8-bit I/O ports implemented—ports P1 through P10:  
D
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
Ports P7/P8 and P9/P10 can be accessed word-wise as ports PA and PB respectively.  
Basic Timer1 and Real-Time Clock (RTC)  
The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both  
timers can be read and written by software. Basic Timer1 is extended to provide an integrated real-time clock  
(RTC). An internal calendar compensates for months with less than 31 days and includes leap-year correction.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
LCD_A drive with regulated charge pump  
The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A  
controller has dedicated data memory to hold segment drive information. Common and segment signals are  
generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral.  
The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump.  
Furthermore it is possible to control the level of the LCD voltage and, thus, contrast by software.  
watchdog timer (WDT+)  
The primary function of the WDT+ module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
universal serial communication interface (USCI)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART,  
enhanced UART with automatic baudrate detection, and IrDA.  
The USCI_A0 module provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA.  
The USCI_B0 module provides support for SPI (3 or 4 pin) and I2C.  
USART1  
The hardware universal synchronous/asynchronous receive transmit (USART) peripheral module is used for  
serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART  
communication protocols, using double-buffered transmit and receive channels.  
hardware multiplier  
The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16,  
16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication,  
as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed  
immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are  
required.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
Timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
TIMER_A3 SIGNAL CONNECTIONS  
INPUT PIN  
NUMBER  
OUTPUT PIN  
NUMBER  
MODULE  
OUTPUT  
SIGNAL  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE  
BLOCK  
PZ  
PZ  
82/B9 - P1.5  
TACLK  
ACLK  
SMCLK  
TACLK  
TA0  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
NA  
TA0  
TA1  
TA2  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
82/B9 - P1.5  
87/A7 - P1.0  
86/E7 - P1.1  
87/A7 - P1.0  
TA0  
DV  
SS  
CC  
DV  
V
CC  
85/D7 - P1.2  
79/A10 - P2.0  
TA1  
CAOUT (internal)  
CCI1A  
CCI1B  
GND  
85/D7 - P1.2  
ADC12 (internal)  
DV  
SS  
CC  
DV  
V
CC  
TA2  
ACLK (internal)  
CCI2A  
CCI2B  
GND  
79/A10 - P2.0  
DV  
SS  
CC  
DV  
V
CC  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
Timer_B7  
Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
TIMER_B7 SIGNAL CONNECTIONS  
MODULE  
OUTPUT  
SIGNAL  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
PZ  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE  
BLOCK  
PZ  
83/B8 - P1.4  
TBCLK  
ACLK  
SMCLK  
TBCLK  
TB0  
TBCLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
NA  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
83/B8 - P1.4  
78/D8 - P2.1  
78/D8 - P2.1  
78/D8 - P2.1  
TB0  
ADC12 (internal)  
TB0  
TB1  
TB2  
TB3  
TB4  
TB5  
TB6  
DV  
DV  
SS  
CC  
V
CC  
77/E8 - P2.2  
77/E8 - P2.2  
TB1  
TB1  
CCI1A  
CCI1B  
GND  
77/E8 - P2.2  
ADC12 (internal)  
DV  
SS  
CC  
DV  
V
CC  
76/A11 - P2.3  
76/A11 - P2.3  
TB2  
TB2  
CCI2A  
CCI2B  
GND  
76/A11 - P2.3  
67/E12 - P3.4  
66/G9 - P3.5  
65/F11 - P3.6  
64/F12 - P3.7  
DV  
DV  
SS  
CC  
V
CC  
67/E12 - P3.4  
67/E12 - P3.4  
TB3  
TB3  
CCI3A  
CCI3B  
GND  
DV  
DV  
SS  
CC  
V
CC  
66/G9 - P3.5  
66/G9 - P3.5  
TB4  
TB4  
CCI4A  
CCI4B  
GND  
DV  
DV  
SS  
CC  
V
CC  
65/F11 - P3.6  
65/F11 - P3.6  
TB5  
TB5  
CCI5A  
CCI5B  
GND  
DV  
DV  
SS  
CC  
V
CC  
64/F12 - P3.7  
TB6  
ACLK (internal)  
CCI6A  
CCI6B  
GND  
DV  
SS  
CC  
DV  
V
CC  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
Comparator_A  
The primary function of the comparator_A module is to support precision slope analog-to-digital conversions,  
battery-voltage supervision, and monitoring of external analog signals.  
ADC12 (MSP430x461x Only)  
The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR  
core, sample select control, reference generator and a 16 word conversion-and-control buffer. The  
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without  
any CPU intervention.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Watchdog timer control  
Watchdog+  
Timer_B7  
WDTCTL  
TBCCR6  
TBCCR5  
TBCCR4  
TBCCR3  
TBCCR2  
TBCCR1  
TBCCR0  
TBR  
0120h  
019Eh  
019Ch  
019Ah  
0198h  
0196h  
0194h  
0192h  
0190h  
018Eh  
018Ch  
018Ah  
0188h  
0186h  
0184h  
0182h  
0180h  
011Eh  
0176h  
0174h  
0172h  
0170h  
0166h  
0164h  
0162h  
0160h  
012Eh  
013Eh  
013Ch  
013Ah  
0138h  
0136h  
0134h  
0132h  
0130h  
012Ch  
012Ah  
0128h  
Capture/compare register 6  
Capture/compare register 5  
Capture/compare register 4  
Capture/compare register 3  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_B register  
Capture/compare control 6  
Capture/compare control 5  
Capture/compare control 4  
Capture/compare control 3  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_B control  
TBCCTL6  
TBCCTL5  
TBCCTL4  
TBCCTL3  
TBCCTL2  
TBCCTL1  
TBCCTL0  
TBCTL  
Timer_B interrupt vector  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_A register  
TBIV  
Timer_A3  
TACCR2  
TACCR1  
TACCR0  
TAR  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_A control  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
Timer_A interrupt vector  
Sum extend  
TAIV  
Hardware  
Multiplier  
SUMEXT  
RESHI  
Result high word  
Result low word  
RESLO  
OP2  
Second operand  
Multiply signed + accumulate/operand1  
Multiply + accumulate/operand1  
Multiply signed/operand1  
Multiply unsigned/operand1  
Flash control 3  
MACS  
MAC  
MPYS  
MPY  
Flash  
(F devices only)  
FCTL3  
Flash control 2  
FCTL2  
Flash control 1  
FCTL1  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
peripheral file map (continued)  
PERIPHERALS WITH WORD ACCESS (CONTINUED)  
DMA  
DMA module control 0  
DMACTL0  
DMACTL1  
DMAIV  
0122h  
0124h  
0126h  
01D0h  
01D2h  
01D6h  
01DAh  
01DCh  
01DEh  
01E2h  
01E6h  
01E8h  
01EAh  
01EEh  
01F2h  
DMA module control 1  
DMA interrupt vector  
DMA Channel 0  
DMA channel 0 control  
DMA0CTL  
DMA0SA  
DMA0DA  
DMA0SZ  
DMA1CTL  
DMA1SA  
DMA1DA  
DMA1SZ  
DMA2CTL  
DMA2SA  
DMA2DA  
DMA2SZ  
DMA channel 0 source address  
DMA channel 0 destination address  
DMA channel 0 transfer size  
DMA channel 1 control  
DMA Channel 1  
DMA Channel 2  
DMA channel 1 source address  
DMA channel 1 destination address  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA channel 2 source address  
DMA channel 2 destination address  
DMA channel 2 transfer size  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
peripheral file map (continued)  
PERIPHERALS WITH WORD ACCESS (CONTINUED)  
Conversion memory 15  
ADC12  
ADC12MEM15 015Eh  
ADC12MEM14 015Ch  
ADC12MEM13 015Ah  
ADC12MEM12 0158h  
ADC12MEM11 0156h  
ADC12MEM10 0154h  
Conversion memory 14  
Conversion memory 13  
Conversion memory 12  
Conversion memory 11  
Conversion memory 10  
Conversion memory 9  
Conversion memory 8  
Conversion memory 7  
Conversion memory 6  
Conversion memory 5  
Conversion memory 4  
Conversion memory 3  
Conversion memory 2  
Conversion memory 1  
Conversion memory 0  
Interrupt-vector-word register  
Inerrupt-enable register  
Inerrupt-flag register  
Control register 1  
See also Peripherals  
With Byte Access  
(MSP430x461x only)  
ADC12MEM9  
ADC12MEM8  
ADC12MEM7  
ADC12MEM6  
ADC12MEM5  
ADC12MEM4  
ADC12MEM3  
ADC12MEM2  
ADC12MEM1  
ADC12MEM0  
ADC12IV  
0152h  
0150h  
014Eh  
014Ch  
014Ah  
0148h  
0146h  
0144h  
0142h  
0140h  
01A8h  
01A6h  
01A4h  
01A2h  
01A0h  
03Eh  
ADC12IE  
ADC12IFG  
ADC12CTL1  
ADC12CTL0  
PASEL  
Control register 0  
Port PA  
Port PB  
Port PA selection  
Port PA direction  
PADIR  
03Ch  
Port PA output  
PAOUT  
03Ah  
Port PA input  
PAIN  
038h  
Port PB selection  
PBSEL  
00Eh  
Port PB direction  
PBDIR  
00Ch  
Port PB output  
PBOUT  
00Ah  
Port PB input  
PBIN  
008h  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS  
LCD_A  
LCD Voltage Control 1  
LCD Voltage Control 0  
LCD Voltage Port Control 1  
LCD Voltage Port Control 0  
LCD memory 20  
:
LCDAVCTL1  
LCDAVCTL0  
LCDAPCTL1  
LCDAPCTL0  
LCDM20  
:
0AFh  
0AEh  
0ADh  
0ACh  
0A4h  
:
LCD memory 16  
LCD memory 15  
:
LCDM16  
LCDM15  
:
0A0h  
09Fh  
:
LCD memory 1  
LCDM1  
091h  
090h  
LCD control and mode  
LCDCTL  
ADC12  
ADC memory-control register 15  
ADC memory-control register 14  
ADC memory-control register 13  
ADC memory-control register 12  
ADC memory-control register 11  
ADC memory-control register 10  
ADC memory-control register 9  
ADC memory-control register 8  
ADC memory-control register 7  
ADC memory-control register 6  
ADC memory-control register 5  
ADC memory-control register 4  
ADC memory-control register 3  
ADC memory-control register 2  
ADC memory-control register 1  
ADC memory-control register 0  
Transmit buffer  
ADC12MCTL15 08Fh  
ADC12MCTL14 08Eh  
ADC12MCTL13 08Dh  
ADC12MCTL12 08Ch  
ADC12MCTL11 08Bh  
ADC12MCTL10 08Ah  
(Memory control  
registers require byte  
access)  
(MSP430x461x only)  
ADC12MCTL9  
ADC12MCTL8  
ADC12MCTL7  
ADC12MCTL6  
ADC12MCTL5  
ADC12MCTL4  
ADC12MCTL3  
ADC12MCTL2  
ADC12MCTL1  
ADC12MCTL0  
U1TXBUF  
089h  
088h  
087h  
086h  
085h  
084h  
083h  
082h  
081h  
080h  
07Fh  
07Eh  
07Dh  
07Ch  
07Bh  
07Ah  
079h  
078h  
USART1  
Receive buffer  
U1RXBUF  
Baud rate  
U1BR1  
Baud rate  
U1BR0  
Modulation control  
U1MCTL  
Receive control  
U1RCTL  
Transmit control  
U1TCTL  
USART control  
U1CTL  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS (CONTINUED)  
USCI  
USCI I2C Slave Address  
USCI I2C Own Address  
USCI Synchronous Transmit Buffer  
USCI Synchronous Receive Buffer  
USCI Synchronous Status  
USCI I2C Interrupt Enable  
USCI Synchronous Bit Rate 1  
USCI Synchronous Bit Rate 0  
USCI Synchronous Control 1  
USCI Synchronous Control 0  
USCI Transmit Buffer  
UCBI2CSA  
UCBI2COA  
UCBTXBUF  
UCBRXBUF  
UCBSTAT  
UCBI2CIE  
UCBBR1  
011Ah  
0118h  
06Fh  
06Eh  
06Dh  
06Ch  
06Bh  
06Ah  
069h  
068h  
067h  
066h  
065h  
064h  
063h  
062h  
061h  
060h  
05Fh  
05Eh  
05Dh  
05Bh  
05Ah  
059h  
056h  
054h  
053h  
052h  
051h  
050h  
04Fh  
04Eh  
04Dh  
04Ch  
047h  
046h  
045h  
UCBBR0  
UCBCTL1  
UCBCTL0  
UCATXBUF  
UCARXBUF  
UCASTAT  
UCAMCTL  
UCABR1  
USCI Receive Buffer  
USCI Status  
USCI Modulation Control  
USCI Baud Rate 1  
USCI Baud Rate 0  
UCABR0  
USCI Control 1  
UCACTL1  
UCACTL0  
UCAIRRCTL  
UCAIRTCTL  
UCAABCTL  
CAPD  
USCI Control 0  
USCI IrDA Receive Control  
USCI IrDA Transmit Control  
USCI LIN Control  
Comparator_A  
Comparator_A port disable  
Comparator_A control 2  
Comparator_A control 1  
CACTL2  
CACTL1  
BrownOUT, SVS  
FLL+Clock  
SVS control register (Reset by brownout signal) SVSCTL  
FLL+ Control 1  
FLL_CTL1  
FLL_CTL0  
SCFQCTL  
SCFI1  
FLL+ Control 0  
System clock frequency control  
System clock frequency integrator  
System clock frequency integrator  
Real Time Clock Year High Byte  
Real Time Clock Year Low Byte  
Real Time Clock Month  
Real Time Clock Day of Month  
Basic Timer1 Counter 2  
Basic Timer1 Counter 1  
Real Time Counter 4  
SCFI0  
RTC (Basic Timer 1)  
RTCYEARH  
RTCYEARL  
RTCMON  
RTCDAY  
BTCNT2  
BTCNT1  
RTCNT4  
(RTCDOW)  
RTCNT3  
(RTCHOUR)  
RTCNT2  
(RTCMIN)  
RTCNT1  
(RTCSEC)  
RTCCTL  
BTCTL  
(Real Time Clock Day of Week)  
Real Time Counter 3  
044h  
043h  
042h  
(Real Time Clock Hour)  
Real Time Counter 2  
(Real Time Clock Minute)  
Real Time Counter 1  
(Real Time Clock Second)  
Real Time Clock Control  
Basic Timer1 Control  
041h  
040h  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS (CONTINUED)  
Port P10 selection P10SEL  
Port P10  
Port P9  
Port P8  
Port P7  
Port P6  
Port P5  
Port P4  
Port P3  
Port P2  
00Fh  
00Dh  
00Bh  
009h  
00Eh  
00Ch  
00Ah  
008h  
03Fh  
03Dh  
03Bh  
039h  
03Eh  
03Ch  
03Ah  
038h  
037h  
036h  
035h  
034h  
033h  
032h  
031h  
030h  
01Fh  
01Eh  
01Dh  
01Ch  
01Bh  
01Ah  
019h  
018h  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
Port P10 direction  
Port P10 output  
Port P10 input  
P10DIR  
P10OUT  
P10IN  
P9SEL  
P9DIR  
P9OUT  
P9IN  
Port P9 selection  
Port P9 direction  
Port P9 output  
Port P9 input  
Port P8 selection  
Port P8 direction  
Port P8 output  
P8SEL  
P8DIR  
P8OUT  
P8IN  
Port P8 input  
Port P7 selection  
Port P7 direction  
Port P7 output  
P7SEL  
P7DIR  
P7OUT  
P7IN  
Port P7 input  
Port P6 selection  
Port P6 direction  
Port P6 output  
P6SEL  
P6DIR  
P6OUT  
P6IN  
Port P6 input  
Port P5 selection  
Port P5 direction  
Port P5 output  
P5SEL  
P5DIR  
P5OUT  
P5IN  
Port P5 input  
Port P4 selection  
Port P4 direction  
Port P4 output  
P4SEL  
P4DIR  
P4OUT  
P4IN  
Port P4 input  
Port P3 selection  
Port P3 direction  
Port P3 output  
P3SEL  
P3DIR  
P3OUT  
P3IN  
Port P3 input  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt-edge select  
Port P2 interrupt flag  
Port P2 direction  
Port P2 output  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P2 input  
Port P1  
Port P1 selection  
Port P1 interrupt enable  
Port P1 interrupt-edge select  
Port P1 interrupt flag  
Port P1 direction  
Port P1 output  
P1SEL  
P1IE  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 input  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS (CONTINUED)  
Special functions  
SFR module enable 2  
SFR module enable 1  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
ME2  
ME1  
IFG2  
IFG1  
IE2  
005h  
004h  
003h  
002h  
001h  
000h  
IE1  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)†  
Voltage range applied at V to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V  
CC  
SS  
Voltage range applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V + 0.3 V  
CC  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA  
Storage temperature range, T  
:
stg  
Unprogrammed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
Programmed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE: All voltages referenced to V The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage is applied  
SS.  
FB  
to the TDI/TCLK pin when blowing the JTAG fuse.  
recommended operating conditions  
MIN  
NOM  
MAX UNITS  
Supply voltage during program execution (see Note 1),  
MSP430x461x(1)  
MSP430F461x(1)  
1.8  
3.6  
3.6  
V
V
V
CC  
(AV = DV  
= V  
)
CC  
CC1/2  
CC  
Supply voltage during flash memory programming (see Note 1),  
(AV = DV = V  
2.7  
2
V
CC  
)
CC  
CC  
CC1/2  
Supply voltage during program execution,  
SVS enabled and PORON = 1 (see Note 1 and Note 2),  
MSP430x461x(1)  
3.6  
V
V
CC  
(AV = DV  
= V  
)
CC  
CC1/2  
CC  
Supply voltage (see Note 1), V (AV = DV  
= V )  
SS  
0
0
V
SS  
SS  
SS1/2  
Operating free-air temperature range, T  
MSP430x461x(1)  
Watch crystal  
−40  
85  
°C  
A
LF selected, XTS_FLL = 0  
32.768  
LFXT1 crystal frequency, f  
(see Note 2)  
(LFXT1)  
XT1 selected, XTS_FLL = 1 Ceramic resonator  
XT1 selected, XTS_FLL = 1 Crystal  
Ceramic resonator  
450  
1000  
450  
1000  
DC  
8000  
8000  
8000  
8000  
3.0  
kHz  
kHz  
MHz  
XT2 crystal frequency, f  
(XT2)  
Crystal  
V
CC  
V
CC  
V
CC  
= 1.8 V  
= 2.0 V  
= 3.6 V  
DC  
4.6  
Processor frequency (signal MCLK), f  
(System)  
DC  
8.0  
NOTES: 1. It is recommended to power AV and DV from the same source. A maximum difference of 0.3 V between AV and DV can  
CC  
CC  
CC  
CC  
be tolerated during power up and operation.  
2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply  
voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS  
circuitry.  
3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.  
f
(MHz)  
System  
8.0 MHz  
Supply voltage range,  
MSP430x461x(1), during  
program execution  
Supply voltage range, MSP430F461x(1),  
during flash memory programming  
4.6 MHz  
3.0 MHz  
1.8 2.0  
2.7  
3
3.6  
Supply Voltage − V  
Figure 1. Frequency vs Supply Voltage, Typical Characteristic  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
supply current into AV + DV excluding external current  
CC  
CC  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
280  
470  
400  
600  
45  
MAX  
370  
580  
480  
740  
70  
UNIT  
CC  
2.2 V  
3 V  
Active mode (see Note 1 and Note 4)  
C461x(1)  
T = −40°C to 85°C  
A
µA  
f
f
= f  
= 1 MHz,  
(MCLK)  
(SMCLK)  
= 32,768 Hz  
XTS=0, SELM=(0,1)  
(F461x(1): Program executes from flash)  
I
(ACLK)  
(AM)  
2.2 V  
3 V  
F461x(1)  
x461x(1)  
T = −40°C to 85°C  
A
µA  
µA  
2.2 V  
3 V  
Low-power mode (LPM0)  
(see Note 1 and Note 4)  
I
I
T = −40°C to 85°C  
A
(LPM0)  
75  
110  
Low-power mode (LPM2),  
2.2 V  
3 V  
11  
17  
20  
24  
f
f
= f  
= 0 MHz,  
T = −40°C to 85°C  
A
µA  
(MCLK)  
(ACLK)  
(SMCLK)  
(LPM2)  
= 32,768 Hz, SCG0 = 0 (see Note 2 and Note 4)  
T = −40°C  
1.3  
1.3  
2.22  
6.5  
1.9  
1.9  
2.5  
7.5  
1.5  
1.5  
2.8  
7.2  
2.5  
2.5  
3.2  
8.5  
0.13  
0.22  
0.9  
4.3  
0.13  
0.3  
1.1  
5.0  
4.0  
4.0  
A
Low-power mode (LPM3)  
T = 25°C  
A
f
f
= f  
= 0 MHz,  
(MCLK)  
(SMCLK)  
2.2 V  
3 V  
T = 60°C  
A
6.5  
= 32,768 Hz, SCG0 = 1  
(ACLK)  
Basic Timer1 enabled, ACLK selected  
LCD_A enabled, LCDCPEN = 0;  
T = 85°C  
A
15.0  
5.0  
I
I
I
µA  
(LPM3)  
(LPM3)  
(LPM4)  
T = −40°C  
A
(static mode; f  
= f  
(ACLK)  
/32)  
LCD  
T = 25°C  
A
5.0  
(see Note 2 and Note 3 and Note 4)  
T = 60°C  
A
7.5  
T = 85°C  
A
18.0  
5.5  
T = −40°C  
A
Low-power mode (LPM3)  
T = 25°C  
A
5.5  
f
f
= f  
= 0 MHz,  
(MCLK)  
(SMCLK)  
2.2 V  
3 V  
T = 60°C  
A
7.0  
= 32,768 Hz, SCG0 = 1  
(ACLK)  
Basic Timer1 enabled, ACLK selected  
LCD_A enabled, LCDCPEN = 0;  
T = 85°C  
A
17.0  
6.5  
µA  
T = −40°C  
A
(4−mux mode; f  
= f  
(ACLK)  
/32)  
LCD  
T = 25°C  
A
6.5  
(see Note 2 and Note 3 and Note 4)  
T = 60°C  
A
8.0  
T = 85°C  
A
20.0  
1.0  
T = −40°C  
A
T = 25°C  
A
1.0  
2.2 V  
3 V  
T = 60°C  
A
2.5  
Low-power mode (LPM4)  
T = 85°C  
A
12.5  
1.6  
f
f
= 0 MHz, f  
= 0 Hz, SCG0 = 1  
= 0 MHz,  
(MCLK)  
(SMCLK)  
µA  
T = −40°C  
A
(ACLK)  
(see Note 2 and Note 4)  
T = 25°C  
A
1.6  
T = 60°C  
A
3.0  
T = 85°C  
A
15.0  
NOTES: 1. Timer_B is clocked by f  
= f = 1 MHz. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
(DCO) CC  
(DCOCLK)  
2. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
CC  
3. The LPM3 currents are characterized with a Micro Crystal CC4V−T1A (9 pF) crystal and OSCCAPx = 1h.  
4. Current for brownout included.  
Current consumption of active mode versus system frequency, F version:  
I
= I  
[1 MHz] × f  
[MHz]  
(AM)  
(AM)  
(System)  
Current consumption of active mode versus supply voltage, F version:  
= I + 200 µA/V × (V – 3 V)  
I
(AM)  
(AM) [3 V]  
CC  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Schmitt-trigger inputs − Ports P1 to P10, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)  
PARAMETER  
V
MIN  
1.1  
1.5  
0.4  
0.9  
0.3  
0.5  
TYP  
MAX  
1.55  
1.98  
0.9  
UNIT  
CC  
2.2 V  
3 V  
V
IT+  
V
IT−  
V
hys  
Positive-going input threshold voltage  
V
2.2 V  
3 V  
Negative-going input threshold voltage  
V
V
1.3  
2.2 V  
3 V  
1.1  
Input voltage hysteresis (V − V  
)
IT−  
IT+  
1
inputs Px.x, TAx, TBx  
PARAMETER  
TEST CONDITIONS  
V
MIN  
62  
TYP  
MAX  
UNIT  
CC  
2.2 V  
3 V  
Port P1, P2: P1.x to P2.x, external trigger signal  
for the interrupt flag, (see Note 1)  
t
t
External interrupt timing  
ns  
(int)  
50  
TA0, TA1, TA2  
2.2 V  
3 V  
62  
Timer_A, Timer_B capture  
timing  
ns  
(cap)  
TB0, TB1, TB2, TB3, TB4, TB5, TB6  
50  
Timer_A, Timer_B clock  
frequency externally applied  
to pin  
f
f
2.2 V  
3 V  
8
(TAext)  
TACLK, TBCLK, INCLK: t = t  
MHz  
(H)  
(L)  
10  
(TBext)  
f
f
2.2 V  
3 V  
8
(TAint)  
Timer_A, Timer_B clock  
frequency  
SMCLK or ACLK signal selected  
MHz  
10  
(TBint)  
NOTES: 1. The external signal sets the interrupt flag every time the minimum t  
parameters are met. It may be set even with trigger signals  
(int)  
shorter than t  
.
(int)  
leakage current − Ports P1 to P10 (see Note 1)  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
V
(see Note 2)  
(Px.y)  
I
Leakage current  
Port Px  
2.2 V/3 V  
50  
nA  
lkg(Px.y)  
(1 x 10, 0 y 7)  
NOTES: 1. The leakage current is measured with V or V applied to the corresponding pin(s), unless otherwise noted.  
SS  
CC  
2. The port pin must be selected as input.  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs − Ports P1 to P10  
PARAMETER  
TEST CONDITIONS  
= −1.5 mA (see Note 1)  
= −6 mA (see Note 2)  
= −1.5 mA (see Note 1)  
= −6 mA (see Note 2)  
= 1.5 mA (see Note 1)  
= 6 mA (see Note 2)  
= 1.5 mA, (see Note 1)  
= 6 mA (see Note 2)  
V
MIN  
TYP  
MAX  
UNIT  
CC  
I
I
I
I
I
I
I
I
2.2 V  
2.2 V  
3 V  
V
−0.25  
V
CC  
V
CC  
V
CC  
V
CC  
OH(max)  
OH(max)  
OH(max)  
OH(max)  
OL(max)  
OL(max)  
OL(max)  
OL(max)  
CC  
V
−0.6  
CC  
V
OH  
High-level output voltage  
V
V
CC  
−0.25  
3 V  
V
−0.6  
CC  
2.2 V  
2.2 V  
3 V  
V
SS  
V
SS  
V
SS  
V
SS  
V
+0.25  
SS  
V
+0.6  
SS  
V
OL  
Low-level output voltage  
V
V
SS  
+0.25  
3 V  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed 12 mA to satisfy the maximum  
OH(max)  
OL(max),  
2. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed 48 mA to satisfy the maximum  
OH(max)  
OL(max),  
output frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
DC  
DC  
TYP  
MAX  
10  
UNIT  
MHz  
MHz  
V
CC  
CC  
= 2.2 V  
= 3 V  
C = 20 pF,  
I = 1.5 mA  
L
L
f
(1 x 10, 0 y 7)  
(Px.y)  
V
12  
f
f
f
P1.1/TA0/MCLK,  
(MCLK)  
(SMCLK)  
(ACLK)  
V
V
= 2.2 V  
= 3 V  
10  
MHz  
MHz  
CC  
P1.4/TBCLK/SMCLK,  
P1.5/TACLK/ACLK  
C = 20 pF  
L
DC  
40%  
30%  
12  
60%  
70%  
CC  
f
f
f
f
= f  
(LFXT1)  
= f  
(LFXT1)  
= f  
(LFXT1)  
= f  
= f  
(ACLK)  
(ACLK)  
(ACLK)  
(MCLK)  
(XT1)  
P1.5/TACLK/ACLK,  
C = 20 pF  
(LF)  
L
V
CC  
= 2.2 V / 3 V  
50%  
50%  
= f  
40%  
60%  
(XT1)  
(DCOCLK)  
P1.1/TA0/MCLK,  
t
Duty cycle of output frequency  
C = 20 pF,  
(Xdc)  
50%−  
15 ns  
50%+  
15 ns  
L
f
f
f
= f  
(MCLK)  
V
CC  
= 2.2 V / 3 V  
= f  
(XT2)  
40%  
60%  
(SMCLK)  
(SMCLK)  
P1.4/TBCLK/SMCLK,  
C = 20 pF,  
50%−  
15 ns  
50%+  
15 ns  
L
= f  
(DCOCLK)  
50%  
V
CC  
= 2.2 V / 3 V  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
typical characteristics − outputs  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
25.0  
20.0  
15.0  
10.0  
5.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
P2.0  
= 2.2 V  
T
= 25°C  
= 85°C  
V
P2.0  
= 3 V  
CC  
A
CC  
T
= 25°C  
= 85°C  
A
T
A
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output Voltage − V  
V
OL  
− Low-Level Output Voltage − V  
Figure 2  
Figure 3  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−5.0  
0.0  
−10.0  
−20.0  
−30.0  
−40.0  
−50.0  
V
P2.0  
= 2.2 V  
CC  
V
P2.0  
= 3 V  
CC  
−10.0  
−15.0  
−20.0  
−25.0  
T
= 85°C  
A
T
A
= 85°C  
T
A
= 25°C  
T
= 25°C  
A
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output Voltage − V  
V
OH  
− High-Level Output Voltage − V  
Figure 4  
Figure 5  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
wake-up LPM3  
PARAMETER  
TEST CONDITIONS  
f = 1 MHz  
V
MIN  
TYP  
MAX  
UNIT  
CC  
6
6
6
f = 2 MHz  
t
Delay time  
2.2 V/3 V  
µs  
d(LPM3)  
f = 3 MHz  
RAM  
PARAMETER  
TEST CONDITIONS  
CPU halted (see Note 1)  
MIN  
TYP  
MAX  
UNIT  
VRAMh  
1.6  
V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution  
should take place during this supply voltage condition.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
LCD_A  
PARAMETER  
TEST CONDITIONS  
Charge pump enabled  
MIN  
TYP  
MAX  
UNIT  
V
CC  
V
Supply voltage (see Note 2)  
2.2  
3.6  
V
CC(LCD)  
(LCDCPEN = 1; VLCDx > 0000)  
V
=3 V; LCDCPEN = 1,  
LCD(typ)  
VLCDx= 1000; all segments on,  
f
f
/32,  
I
Supply current (see Note 2 )  
2.2 V  
3
µA  
LCD = ACLK  
CC(LCD)  
no LCD connected (see Note 4)  
T = 25°C  
A
Capacitor on LCDCAP  
(see Note 1 and Note 3)  
Charge pump enabled  
(LCDCPEN = 1; VLCDx > 0000)  
C
4.7  
µF  
LCD  
f
LCD frequency  
1.1  
kHz  
LCD  
VLCDx = 0000  
VLCDx = 0001  
VLCDx = 0010  
VLCDx = 0011  
VLCDx = 0100  
VLCDx = 0101  
VLCDx = 0110  
VLCDx = 0111  
VLCDx = 1000  
VLCDx = 1001  
VLCDx = 1010  
VLCDx = 1011  
VLCDx = 1100  
VLCDx = 1101  
VLCDx = 1110  
VLCDx = 1111  
V
CC  
2.60  
2.66  
2.72  
2.78  
2.84  
2.90  
2.96  
3.02  
3.08  
3.14  
3.20  
3.26  
3.32  
3.38  
3.44  
V
LCD voltage (see Note 3)  
V
LCD  
3.60  
10  
V
LCD  
=3 V; CPEN = 1;  
R
LCD driver output impedance  
2.2 V  
kΩ  
LCD  
VLCDx = 1000, I  
= 10 µΑ  
LOAD  
NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device.  
2. Refer to the supply current specifications I for additional current specifications with the LCD_A module active.  
(LPM3)  
3. Segments S0 through S3 are disabled when the LCD charge pump feature is enabled (LCDCPEN = 1) and cannot be used together  
with the LCD charge pump. In addition, when using segments S0 through S3 with an external LCD voltage supply, V  
4. Connecting an actual display will increase the current consumption depending on the size of the LCD.  
AV  
.
LCD  
CC  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Comparator_A (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
25  
MAX  
40  
UNIT  
V
V
= 2.2 V  
= 3 V  
CC  
I
CAON=1, CARSEL=0, CAREF=0  
µA  
(CC)  
45  
30  
60  
50  
CC  
CAON=1, CARSEL=0, CAREF=1/2/3,  
No load at P1.6/CA0 and  
P1.7/CA1  
V
= 2.2 V  
= 3 V  
CC  
CC  
I
µA  
(Refladder/RefDiode)  
V
45  
71  
Voltage @ 0.25 V  
node  
node  
PCA0=1, CARSEL=1, CAREF=1,  
No load at P1.6/CA0 and P1.7/CA1  
CC  
V
V
V
V
= 2.2 V / 3 V  
= 2.2V / 3 V  
0.23  
0.47  
0.24  
0.25  
(Ref025)  
CC  
V
CC  
Voltage @ 0.5 V  
PCA0=1, CARSEL=1, CAREF=2,  
No load at P1.6/CA0 and P1.7/CA1  
CC  
0.48  
0.5  
(Ref050)  
CC  
V
CC  
PCA0=1, CARSEL=1, CAREF=3,  
No load at P1.6/CA0 and P1.7/CA1;  
T = 85°C  
A
V
V
= 2.2 V  
= 3 V  
390  
400  
480  
490  
540  
550  
CC  
V
V
mV  
V
(RefVT)  
CC  
Common-mode input  
voltage range  
CAON=1  
V
CC  
= 2.2 V / 3 V  
0
V
−1  
30  
IC  
CC  
V −V  
p
Offset voltage  
See Note 2  
CAON = 1  
VCC = 2.2 V / 3 V  
−30  
0
mV  
mV  
S
V
hys  
Input hysteresis  
V
= 2.2 V / 3 V  
= 2.2 V  
= 3 V  
0.7  
210  
150  
1.9  
1.4  
300  
240  
3.4  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
160  
80  
T = 25°C,  
A
ns  
µs  
ns  
µs  
Overdrive 10 mV, without filter: CAF = 0  
V
t
(response LH)  
(response HL)  
V
= 2.2 V  
= 3 V  
1.4  
0.9  
130  
80  
T = 25°C  
A
Overdrive 10 mV, with filter: CAF = 1  
V
1.5  
2.6  
V
= 2.2 V  
= 3 V  
210  
150  
1.9  
300  
240  
3.4  
T = 25°C  
A
Overdrive 10 mV, without filter: CAF = 0  
V
t
V
V
= 2.2 V  
= 3 V  
1.4  
0.9  
T = 25°C,  
A
Overdrive 10 mV, with filter: CAF = 1  
1.5  
2.6  
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.  
The two successive measurements are then summed together.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
typical characteristics  
REFERENCE VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
REFERENCE VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
650  
650  
600  
550  
500  
450  
400  
V
CC  
= 3 V  
V
CC  
= 2.2 V  
600  
550  
500  
450  
400  
Typical  
Typical  
−45  
−25  
−5  
15  
35  
55  
75  
95  
−45  
−25  
−5  
15  
35  
55  
75  
95  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 6. V  
vs Temperature  
Figure 7. V  
vs Temperature  
(RefVT)  
(RefVT)  
0 V  
V
CC  
0
1
CAF  
CAON  
To Internal  
Modules  
Low-Pass Filter  
0
1
0
1
+
_
V+  
V−  
CAOUT  
Set CAIFG  
Flag  
τ ≈ 2 µs  
Figure 8. Block Diagram of Comparator_A Module  
V
CAOUT  
Overdrive  
V−  
400 mV  
V+  
t
(response)  
Figure 9. Overdrive Definition  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
POR/brownout reset (BOR) (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.7 × V  
MAX  
UNIT  
µs  
t
2000  
d(BOR)  
V
dV /dt 3 V/s (see Figure 10)  
V
CC(start)  
CC  
(B_IT−)  
Brownout  
V
V
dV /dt 3 V/s (see Figure 10 through Figure 12)  
1.79  
210  
V
(B_IT−)  
CC  
(see Notes 2 and 3)  
dV /dt 3 V/s (see Figure 10)  
CC  
70  
2
130  
mV  
hys(B_IT−)  
Pulse length needed at RST/NMI pin to accepted reset  
t
µs  
(reset)  
internally, V = 2.2 V/3 V  
CC  
NOTES: 1. The current consumption of the brownout module is already included in the I current consumption data.  
CC  
2. The voltage level V  
+ V  
is 1.89V.  
(B_IT−)  
hys(B_IT−)  
3. During power up, the CPU begins code execution following a period of t  
after V = V  
+ V . The default  
hys(B_IT−)  
d(BOR)  
CC  
(B_IT−)  
FLL+ settings must not be changed until V V  
, where V  
is the minimum supply voltage for the desired  
CC  
CC(min)  
CC(min)  
operating frequency. See the MSP430x4xx Family User’s Guide for more information on the brownout/SVS circuit.  
typical characteristics  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage  
V
t
CC  
pw  
2
3 V  
V
CC  
= 3 V  
Typical Conditions  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 11. V  
Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
typical characteristics (continued)  
V
t
CC  
pw  
2
3 V  
V
CC  
= 3 V  
1.5  
1
Typical Conditions  
V
CC(drop)  
0.5  
0
t = t  
f
r
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 12. V  
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
CC(drop)  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
supply voltage supervisor/monitor (SVS) (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
150  
2000  
150  
12  
UNIT  
dV /dt > 30 V/ms (see Figure 13)  
5
CC  
t
µs  
(SVSR)  
dV /dt 30 V/ms  
CC  
t
t
SVS on, switch from VLD = 0 to VLD 0, V = 3 V  
20  
µs  
µs  
V
d(SVSon)  
CC  
VLD 0  
settle  
V
VLD 0, V /dt 3 V/s (see Figure 13)  
1.55  
120  
1.7  
(SVSstart)  
CC  
VLD = 1  
70  
155  
mV  
V
V
/dt 3 V/s (see Figure 13)  
V
V
(SVS_IT−)  
x 0.016  
CC  
(SVS_IT−)  
x 0.001  
VLD = 2 .. 14  
V
hys(SVS_IT−)  
/dt 3 V/s (see Figure 13), external voltage applied  
CC  
VLD = 15  
4.4  
20  
mV  
on A7  
VLD = 1  
VLD = 2  
VLD = 3  
VLD = 4  
VLD = 5  
VLD = 6  
VLD = 7  
VLD = 8  
VLD = 9  
VLD = 10  
VLD = 11  
VLD = 12  
VLD = 13  
VLD = 14  
1.8  
1.9  
2.1  
2.05  
2.23  
2.35  
2.46  
2.58  
2.69  
2.84  
2.97  
3.10  
3.26  
3.39  
1.94  
2.05  
2.14  
2.24  
2.33  
2.46  
2.58  
2.69  
2.83  
2.94  
3.11  
3.24  
3.43  
2.2  
2.3  
2.4  
2.5  
2.65  
2.8  
V
CC  
/dt 3 V/s (see Figure 13)  
V
V
(SVS_IT−)  
2.9  
3.05  
3.2  
3.35  
3.58  
3.5  
3.73  
3.7  
3.96  
V
on A7  
/dt 3 V/s (see Figure 13), external voltage applied  
CC  
VLD = 15  
1.1  
1.2  
10  
1.3  
15  
I
CC(SVS)  
VLD 0, V = 2.2 V/3 V  
µA  
CC  
(see Note 4)  
The recommended operating voltage range is limited to 3.6 V.  
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value somewhere  
t
settle  
between 2 and 15. The overdrive is assumed to be > 50 mV.  
NOTE 4: The current consumption of the SVS module is not included in the I current consumption data.  
CC  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
typical characteristics  
Software Sets VLD>0:  
SVS is Active  
V
CC  
V
hys(SVS_IT−)  
V
(SVS_IT−)  
V
(SVSstart)  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
Brown-  
Out  
Brownout  
Region  
Region  
Brownout  
1
0
t
t
SVS  
d(BOR)  
d(BOR)  
Out  
SVS Circuit is Active From VLD > to V < V(  
CC  
B_IT−)  
1
0
t
t
d(SVSon)  
d(SVSR)  
Set POR  
1
undefined  
0
Figure 13. SVS Reset (SVSR) vs Supply Voltage  
V
CC  
t
pw  
3 V  
2
1.5  
1
Rectangular Drop  
V
CC(drop)  
Triangular Drop  
1 ns  
1 ns  
0.5  
V
t
CC  
pw  
3 V  
0
1
10  
100  
1000  
V
t
− Pulse Width − µs  
pw  
CC(drop)  
t = t  
f
r
t
t
r
f
t − Pulse Width − µs  
Figure 14. V  
With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal  
CC(drop)  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
DCO  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
1
MAX  
UNIT  
CC  
f
N
=01Eh, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 0  
(DCO)  
2.2 V/3 V  
2.2 V  
3 V  
MHz  
(DCOCLK)  
0.3  
0.3  
2.5  
2.7  
0.7  
0.8  
5.7  
6.5  
1.2  
1.3  
9
0.65  
0.7  
5.6  
6.1  
1.3  
1.5  
10.8  
12.1  
2
1.25  
1.3  
10.5  
11.3  
2.3  
2.5  
18  
f
f
f
f
f
f
f
f
f
f
FN_8=FN_4=FN_3=FN_2=0 ; DCOPLUS = 1  
FN_8=FN_4=FN_3=FN_2=0; DCOPLUS = 1  
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1  
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1  
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1  
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1  
FN_8=0, FN_4= 1, FN_3= FN_2=x; DCOPLUS = 1  
FN_8=0, FN_4=1, FN_3= FN_2=x; DCOPLUS = 1  
FN_8=1, FN_4=FN_3=FN_2=x; DCOPLUS = 1  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
(DCO=2)  
2.2 V  
3 V  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
(DCO=2)  
(DCO=27)  
2.2 V  
3 V  
2.2 V  
3 V  
20  
2.2 V  
3 V  
3
2.2  
15.5  
17.9  
2.8  
3.4  
21.5  
26.6  
4.2  
6.3  
32  
3.5  
25  
2.2 V  
3 V  
10.3  
1.8  
2.1  
13.5  
16  
28.5  
4.2  
5.2  
33  
2.2 V  
3 V  
2.2 V  
3 V  
41  
2.2 V  
3 V  
2.8  
4.2  
21  
6.2  
9.2  
46  
2.2 V  
3 V  
FN_8=1,FN_4=FN_3=FN_2=x; DCOPLUS = 1  
Step size between adjacent DCO taps:  
30  
46  
70  
1 < TAP 20  
TAP = 27  
2.2 V  
3 V  
1.06  
1.07  
–0.2  
–0.2  
1.11  
1.17  
–0.4  
–0.4  
S
n
S = f  
n
/ f (see Figure 16 for taps 21 to 27)  
DCO(Tap n+1) DCO(Tap n)  
–0.3  
–0.3  
Temperature drift, N  
D = 2; DCOPLUS = 0  
= 01Eh, FN_8=FN_4=FN_3=FN_2=0  
(DCO)  
D
D
%/_C  
t
Drift with V variation, N  
= 01Eh, FN_8=FN_4=FN_3=FN_2=0  
CC  
(DCO)  
0
5
15  
%/V  
V
D = 2; DCOPLUS = 0  
f
f
(DCO)  
(DCO)  
f
f
5
(DCO3V)  
(DCO20 C)  
1.0  
1.0  
0
1.8  
2.4  
3.0  
3.6  
V
−40  
−20  
0
20  
40  
60  
85  
− V  
T − °C  
A
CC  
Figure 15. DCO Frequency vs Supply Voltage V and vs Ambient Temperature  
CC  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
1.17  
Max  
1.11  
1.07  
1.06  
Min  
1
20  
27  
DCO Tap  
Figure 16. DCO Tap Step Size  
Legend  
Tolerance at Tap 27  
DCO Frequency  
Adjusted by Bits  
9
5
2 to 2 in SCFI1 {N  
}
{DCO}  
Tolerance at Tap 2  
Overlapping DCO Ranges:  
Uninterrupted Frequency Range  
FN_2=0  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=1  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=x  
FN_2=x  
FN_3=x  
FN_4=1  
FN_8=0  
FN_2=x  
FN_3=1  
FN_4=0  
FN_8=0  
FN_3=x  
FN_4=x  
FN_8=1  
Figure 17. Five Overlapping DCO Ranges Controlled by FN_x Bits  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
crystal oscillator, LFXT1 oscillator (see Notes 1 and 2)  
PARAMETER  
TEST CONDITIONS  
OSCCAPx = 0h  
OSCCAPx = 1h  
OSCCAPx = 2h  
OSCCAPx = 3h  
OSCCAPx = 0h  
OSCCAPx = 1h  
OSCCAPx = 2h  
OSCCAPx = 3h  
V
MIN  
TYP  
0
MAX  
UNIT  
CC  
2.2 V / 3 V  
2.2 V / 3 V  
2.2 V / 3 V  
2.2 V / 3 V  
2.2 V / 3 V  
2.2 V / 3 V  
2.2 V / 3 V  
2.2 V / 3 V  
10  
14  
18  
0
C
Integrated input capacitance (see Note 4)  
pF  
XIN  
10  
14  
18  
C
V
Integrated output capacitance (see Note 4)  
Input levels at XIN  
pF  
V
XOUT  
V
SS  
0.2×V  
CC  
IL  
See Note 3  
2.2 V/3 V  
V
IH  
0.8×V  
V
CC  
CC  
NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is  
(C x C ) / (C + C ). This is independent of XTS_FLL.  
XIN  
XOUT  
XIN  
XOUT  
2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed.  
Keep the trace between the MSP430 device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator.  
4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h.  
crystal oscillator, XT2 oscillator (see Note 1)  
PARAMETER  
TEST CONDITIONS  
= 2.2 V/3 V  
MIN  
TYP  
2
MAX  
UNIT  
pF  
pF  
V
C
C
V
Integrated input capacitance  
Integrated output capacitance  
V
V
XT2IN  
CC  
= 2.2 V/3 V  
2
XT2OUT  
CC  
V
SS  
0.2 × V  
CC  
IL  
Input levels at XT2IN  
V
CC  
= 2.2 V/3 V (see Note 2)  
V
IH  
0.8 × V  
V
CC  
V
CC  
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.  
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
USCI (UART mode)  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
f
USCI input clock frequency  
f
MHz  
USCI  
SYSTEM  
Duty Cycle = 50% 10%  
BITCLK clock frequency  
(equals Baudrate in MBaud)  
f
t
2.2V /3 V  
1
MHz  
ns  
BITCLK  
2.2 V  
3 V  
50  
50  
150  
100  
600  
600  
UART receive deglitch time  
(see Note 1)  
τ
NOTE 1: Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
USCI (SPI master mode) (see Figure 18 and Figure 19)  
PARAMETER  
TEST CONDITIONS  
SMCLK, ACLK  
Duty Cycle = 50% 10%  
V
MIN  
TYP  
MAX UNIT  
CC  
f
t
t
t
USCI input clock frequency  
f
MHz  
ns  
USCI  
SYSTEM  
2.2 V  
3 V  
110  
75  
0
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time  
SU,MI  
2.2 V  
3 V  
ns  
HD,MI  
0
2.2 V  
3 V  
30  
20  
UCLK edge to SIMO valid;  
C = 20 pF  
L
ns  
VALID,MO  
USCI (SPI slave mode) (see Figure 20 and Figure 21)  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX UNIT  
STE lead time  
STE low to clock  
t
t
t
t
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
50  
ns  
STE,LEAD  
STE,LAG  
STE,ACC  
STE,DIS  
STE lag time  
Last clock to STE high  
10  
ns  
ns  
ns  
STE access time  
STE low to SOMI data out  
50  
50  
STE disable time  
STE high to SOMI high impedance  
2.2 V  
3 V  
20  
15  
10  
10  
t
t
t
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time  
ns  
SU,SI  
2.2 V  
3 V  
ns  
HD,SI  
2.2 V  
3 V  
75  
50  
110  
UCLK edge to SOMI valid;  
C = 20 pF  
L
ns  
VALID,SO  
75  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLOW/HIGH tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tVALID,MO  
Figure 18. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tVALID,MO  
Figure 19. SPI Master Mode, CKPH = 1  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH tLOW/HIGH  
tSU,SIMO  
tHD,SIMO  
SIMO  
SOMI  
tACC  
tVALID,SOMI  
tDIS  
Figure 20. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL=0  
CKPL=1  
UCLK  
tLOW/HIGH tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tACC  
tVALID,SO  
tDIS  
Figure 21. SPI Slave Mode, CKPH = 1  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
USCI (I2C mode) (see Figure 22)  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX UNIT  
MHz  
Internal: SMCLK, ACLK  
External: UCLK  
f
USCI input clock frequency  
f
SYSTEM  
USCI  
Duty Cycle = 50% 10%  
f
t
SCL clock frequency  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
SCL  
f
f
f
f
100kHz  
> 100kHz  
100kHz  
> 100kHz  
SCL  
SCL  
SCL  
SCL  
Hold time (repeated) START  
µs  
HD,STA  
t
Set−up time for a repeated START  
µs  
SU,STA  
t
t
t
Data hold time  
ns  
HD,DAT  
SU,DAT  
SU,STO  
Data set−up time  
Set−up time for STOP  
250  
4.0  
50  
ns  
µs  
150  
100  
600  
Pulse width of spikes suppressed by  
input filter  
t
SP  
ns  
3 V  
50  
600  
tHD  
tSU  
tHD  
tBUF  
,STA  
,STA  
,STA  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU ,DAT  
tSU  
,STO  
tHD  
,DAT  
Figure 22. I2C Mode Timing  
USART1 (see Note 1)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
200  
150  
TYP MAX  
UNIT  
CC  
SYNC = 0, UART mode 2.2 V  
SYNC = 0, UART mode 3 V  
430  
280  
800  
500  
t
τ
( )  
USART1 deglitch time  
ns  
NOTE 1: The signal applied to the USART1 receive signal/terminal (URXD1) should meet the timing requirements of t to ensure that the URXS  
(τ  
)
flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t . The operating conditions to  
(τ  
)
set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the  
URXD1 line.  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, power supply and input range conditions (see Note 1)  
PARAMETER  
TEST CONDITIONS  
AV and DV are connected together,  
MIN TYP  
MAX  
UNIT  
CC  
CC  
AV  
Analog supply voltage  
AV and DV are connected together,  
2.2  
3.6  
V
CC  
SS  
SS  
V
(AVSS)  
= V  
= 0 V  
(DVSS)  
All external Ax terminals. Analog inputs  
selected in ADC12MCTLx register and P6Sel.x=1,  
Analog input voltage  
range (see Note 2)  
V
0
V
AVCC  
V
(P6.x/Ax)  
V
(AVSS)  
V V  
Ax (AVCC)  
Operating supply current  
f
= 5.0 MHz,  
V
V
= 2.2 V  
= 3 V  
0.65  
0.8  
1.3  
1.6  
ADC12CLK  
CC  
into AV terminal  
ADC12ON = 1, REFON = 0,  
SHT0=0, SHT1=0, ADC12DIV=0  
I
mA  
mA  
CC  
ADC12  
REF+  
(see Note 3)  
CC  
f
= 5.0 MHz,  
ADC12CLK  
ADC12ON = 0,  
REFON = 1, REF2_5V = 1  
V
= 3 V  
0.5  
0.8  
CC  
Operating supply current  
I
into AV terminal  
CC  
f
= 5.0 MHz,  
V
V
= 2.2 V  
= 3 V  
0.5  
0.5  
0.8  
0.8  
ADC12CLK  
CC  
(see Note 4)  
ADC12ON = 0,  
REFON = 1, REF2_5V = 0  
mA  
CC  
Only one terminal can be selected  
at one time, Ax  
C
R
Input capacitance  
V
V
= 2.2 V  
= 3 V  
40  
pF  
I
I
CC  
Input MUX ON resistance 0V V V  
2000  
Ax  
AVCC  
CC  
NOTES: 1. The leakage current is defined in the leakage current table with Ax parameter.  
2. The analog input voltage range must be within the selected reference voltage range V to V for valid conversion results.  
R+  
R−  
3. The internal reference supply current is not included in current consumption parameter I  
.
ADC12  
4. The internal reference current is supplied via terminal AV . Consumption is independent of the ADC12ON control bit, unless a  
CC  
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.  
12-bit ADC, external reference (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
Positive external  
reference voltage input  
V
V
> V  
> V  
> V  
/V  
(see Note 2)  
(see Note 3)  
(see Note 4)  
1.4  
V
V
eREF+  
eREF+  
REF− eREF−  
AVCC  
Negative external  
reference voltage input  
V
V
V
eREF+  
/V  
REF− eREF−  
0
1.2  
V
V
REF− / eREF−  
(V  
Differential external  
reference voltage input  
eREF+  
V
eREF+  
/V  
1.4  
V
AVCC  
REF− eREF−  
V
V
)
REF−/ eREF−  
I
Input leakage current  
Input leakage current  
0V V  
V  
V
V
= 2.2 V/3 V  
= 2.2 V/3 V  
1
1
µA  
µA  
VeREF+  
eREF+  
AVCC  
CC  
I
0V V  
V  
VREF−/VeREF−  
eREF− AVCC  
CC  
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C , is also  
I
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, built-in reference  
PARAMETER  
TEST CONDITIONS  
REF2_5V = 1 for 2.5 V,  
max I I  
V
MIN TYP  
MAX  
UNIT  
CC  
3 V  
2.4  
1.44  
2.2  
2.5  
1.5  
2.6  
Positive built-in  
reference voltage  
output  
I
min  
VREF+ VREF+  
VREF+  
V
REF+  
V
REF2_5V = 0 for 1.5 V,  
max I I  
2.2 V/3 V  
1.56  
I
min  
VREF+  
VREF+ VREF+  
REF2_5V = 0, I max I  
VREF+ VREF+  
AV minimum  
CC  
I min  
VREF+  
voltage, Positive  
built-in reference  
active  
AV  
V
CC(min)  
REF2_5V = 1, I  
min I  
min I  
−0.5mA  
−1mA  
2.8  
2.9  
VREF+  
VREF+  
REF2_5V = 1, I  
VREF+  
VREF+  
2.2 V  
3 V  
0.01  
0.01  
−0.5  
−1  
Load current out of  
I
mA  
VREF+  
V
REF+  
terminal  
I
= 500 µA +/− 100 µA,  
2.2 V  
3 V  
2
2
VREF+  
Analog input voltage ~0.75 V;  
REF2_5V = 0  
LSB  
Load-current  
regulation V  
terminal  
I
REF+  
L(VREF)+  
I
= 500 µA 100 µA,  
VREF+  
Analog input voltage ~1.25 V,  
REF2_5V = 1  
3 V  
2
LSB  
Load current  
regulation V  
terminal  
I
C
=100 µA 900 µA,  
=5 µF, ax ~0.5 x V ,  
REF+  
VREF+  
I
3 V  
20  
ns  
REF+  
VREF+  
DL(VREF) +  
Error of conversion result 1 LSB  
Capacitance at pin  
REFON =1,  
C
2.2 V/3 V  
2.2 V/3 V  
5
10  
µF  
VREF+  
V
REF+  
(see Note 1)  
0 mA I  
I  
max  
VREF+  
VREF+  
Temperature  
coefficient of built-in  
reference  
I
is a constant in the range of  
VREF+  
T
REF+  
100 ppm/°C  
0 mA I  
1 mA  
VREF+  
Settle time of internal  
reference voltage  
(see Figure 23 and  
Note 2)  
I
V
= 0.5 mA, C  
= 10 µF,  
VREF+  
VREF+  
17  
ms  
t
REFON  
= 1.5 V, V  
= 2.2 V  
REF+  
AVCC  
NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses  
two capacitors between pins V  
and AV and V  
/V  
and AV : 10 µF tantalum and 100 nF ceramic.  
REF+  
SS  
REF− eREF−  
SS  
2. The condition is that the error in a conversion started after t  
capacitive load.  
is less than 0.5 LSB. The settling time depends on the external  
REFON  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
C
VREF+  
100 µF  
t
.66 x C  
[ms] with C  
in µF  
REFON  
VREF+  
VREF+  
10 µF  
1 µF  
0
10 ms  
1 ms  
100 ms  
t
REFON  
Figure 23. Typical Settling Time of Internal Reference t  
vs External Capacitor on V  
+
REF  
REFON  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
DV  
DV  
From  
Power  
Supply  
CC1/2  
+
SS1/2  
10 µF 100 nF  
AV  
CC  
SS  
+
MSP430FG461x  
AV  
10 µF 100 nF  
Apply External Reference [V  
or Use Internal Reference [V  
]
eREF+  
V
REF+  
or V  
eREF+  
]
REF+  
+
10 µF 100 nF  
Apply  
V
REF  
−/V  
eREF−  
External  
Reference  
+
10 µF 100 nF  
Figure 24. Supply Voltage and Reference Voltage Design V  
V
External Supply  
REF−/ eREF−  
DV  
From  
Power  
Supply  
CC1/2  
SS1/2  
+
DV  
10 µF 100 nF  
AV  
CC  
SS  
+
MSP430FG461x  
AV  
10 µF 100 nF  
Apply External Reference [V  
or Use Internal Reference [V  
]
eREF+  
V
REF+  
or V  
]
eREF+  
REF+  
+
10 µF 100 nF  
Reference Is Internally  
Switched to AV  
V
/V  
REF− eREF−  
SS  
Figure 25. Supply Voltage and Reference Voltage Design V  
V
= AV , Internally Connected  
REF−/ eREF− SS  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, timing parameters  
PARAMETER  
TEST CONDITIONS  
V
CC  
MIN  
TYP  
MAX  
UNIT  
For specified performance of ADC12  
linearity parameters  
f
f
2.2V/3 V  
2.2 V/ 3 V  
2.2 V/ 3 V  
0.45  
5
6.3  
MHz  
ADC12CLK  
Internal ADC12  
oscillator  
ADC12DIV=0,  
3.7  
5
6.3  
MHz  
µs  
ADC12OSC  
f
=f  
ADC12CLK ADC12OSC  
C
5 µF, Internal oscillator,  
VREF+  
2.06  
3.51  
f
= 3.7 MHz to 6.3 MHz  
ADC12OSC  
t
Conversion time  
CONVERT  
External f  
from ACLK,  
13×ADC12DIV×  
ADC12CLK  
µs  
MCLK, or SMCLK, ADC12SSEL 0  
1/f  
ADC12CLK  
Turn on settling time of  
the ADC  
t
t
See Note 1  
100  
ns  
ADC12ON  
R = 400 , R = 1000 ,  
3 V  
1220  
1400  
S
I
Sampling time  
ns  
C = 30 pF, τ = [R + R ] x C ,  
Sample  
I
S
I
I
2.2 V  
(see Note 2)  
NOTES: 1. The condition is that the error in a conversion started after t  
settled.  
is less than 0.5 LSB. The reference and input signal are already  
ADC12ON  
2. Approximately ten Tau (τ) are needed to get an error of less than 0.5 LSB:  
n+1  
t
= ln(2 ) x (R + R ) x C + 800 ns where n = ADC resolution = 12, R = external source resistance.  
Sample  
S
I
I
S
12-bit ADC, linearity parameters  
PARAMETER  
TEST CONDITIONS  
V
MIN TYP  
MAX  
2
UNIT  
CC  
1.4 V (V  
− V  
− V  
/V  
/V  
) min 1.6 V  
eREF+  
REF− eREF−  
E
E
Integral linearity error  
2.2 V/3 V  
2.2 V/3 V  
LSB  
I
1.6 V < (V  
/V  
) min [V  
]
1.7  
eREF+  
REF− eREF−  
AVCC  
Differential linearity  
error  
(V  
C
− V  
)
(V  
− V  
/V  
),  
),  
eREF+  
REF− eREF− min  
eREF+  
REF− eREF−  
1
LSB  
LSB  
D
= 10 µF (tantalum) and 100 nF (ceramic)  
VREF+  
(V  
eREF+  
− V  
/V  
)
(V  
− V /V  
REF− eREF−  
REF− eREF− min  
eREF+  
E
O
Internal impedance of source R < 100 ,  
2.2 V/3 V  
2
4
Offset error  
Gain error  
S
C
= 10 µF (tantalum) and 100 nF (ceramic)  
VREF+  
(V  
C
− V  
/V  
)
(V  
− V /V  
),  
),  
eREF+  
REF− eREF− min  
eREF+  
REF− eREF−  
E
E
2.2 V/3 V  
2.2 V/3 V  
1.1  
2
2
5
LSB  
LSB  
G
= 10 µF (tantalum) and 100 nF (ceramic)  
VREF+  
(V  
C
− V  
/V  
)
(V  
− V /V  
REF− eREF−  
Total unadjusted  
error  
eREF+  
VREF+  
REF− eREF− min  
eREF+  
T
= 10 µF (tantalum) and 100 nF (ceramic)  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit ADC, temperature sensor and built-in V  
MID  
TEST CONDITIONS  
PARAMETER  
V
MIN  
TYP  
MAX  
120  
UNIT  
CC  
2.2 V  
3 V  
40  
60  
Operating supply current into REFON = 0, INCH = 0Ah,  
I
µA  
SENSOR  
AV terminal (see Note 1)  
ADC12ON=NA, T = 25_C  
CC  
A
160  
ADC12ON = 1, INCH = 0Ah,  
T = 0°C  
A
2.2 V/  
3 V  
V
See Note 2  
986  
mV  
SENSOR  
2.2 V/  
3 V  
TC  
ADC12ON = 1, INCH = 0Ah  
3.55 3%  
mV/°C  
SENSOR  
Sample time required if  
channel 10 is selected  
(see Note 3)  
2.2 V  
3 V  
30  
30  
ADC12ON = 1, INCH = 0Ah,  
Error of conversion result 1 LSB  
t
µs  
SENSOR(sample)  
VMID  
2.2 V  
3 V  
NA  
NA  
Current into divider at  
channel 11 (see Note 4)  
I
ADC12ON = 1, INCH = 0Bh  
ADC12ON = 1, INCH = 0Bh,  
µA  
2.2 V  
3 V  
1.1  
1.1 0.04  
V
AV divider at channel 11  
V
MID  
CC  
V
MID  
is ~0.5 x V  
AVCC  
1.5 1.50 0.04  
Sample time required if  
channel 11 is selected  
(see Note 5)  
2.2 V 1400  
3 V 1220  
ADC12ON = 1, INCH = 0Bh,  
Error of conversion result 1 LSB  
t
ns  
VMID(sample)  
NOTES: 1. The sensor current I  
is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal  
SENSOR  
is high). When REFON = 1, I  
is already included in I  
.
SENSOR  
REF+  
2. The temperature sensor offset can be as much as 20_C. A single-point calibration is recommended in order to minimize the offset  
error of the built-in temperature sensor.  
3. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time t  
SENSOR(on)  
4. No additional current is needed. The V  
is used during sampling.  
MID  
5. The on-time t  
is included in the sampling time t ; no additional on time is needed.  
VMID(sample)  
VMID(on)  
56  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
flash memory  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN  
TYP  
MAX  
UNIT  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
2.7  
3.6  
V
f
I
I
257  
476  
5
kHz  
mA  
mA  
FTG  
Supply current from DV during program  
2.7 V/3.6 V  
2.7 V/3.6 V  
3
3
PGM  
CC  
Supply current from DV during erase  
See Note 3  
See Note 4  
See Note 1  
7
ERASE  
CC  
Supply current from DV during global mass  
CC  
I
2.7 V/3.6 V  
6
14  
10  
mA  
GMERASE  
erase  
t
t
Cumulative program time  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
Word or byte program time  
2.7 V/3.6 V  
2.7 V/3.6 V  
ms  
ms  
CPT  
20  
CMErase  
4
5
10  
10  
cycles  
years  
t
t
t
T = 25°C  
J
100  
Retention  
30  
25  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or  
word  
t
18  
Block, 1-63  
See Note 2  
t
FTG  
t
t
t
t
Block program end-sequence wait time  
Mass erase time  
6
10593  
10593  
4819  
Block, End  
Mass Erase  
Global Mass Erase  
Seg Erase  
Global mass erase time  
Segment erase time  
NOTES: 6. The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if the block write  
feature is used.  
2. These values are hardwired into the Flash Controller’s state machine (t  
3. Lower 64-KB or upper 64-KB Flash memory erased.  
4. All Flash memory erased.  
= 1/f ).  
FTG  
FTG  
JTAG interface  
TEST  
CONDITIONS  
PARAMETER  
V
CC  
MIN  
TYP  
MAX  
UNIT  
2.2 V  
3 V  
0
0
5
10  
90  
MHz  
MHz  
kΩ  
f
TCK input frequency  
See Note 1  
TCK  
R
Internal pull-up resistance on TMS, TCK, TDI/TCLK See Note 2  
may be restricted to meet the timing requirements of the module selected.  
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1. f  
TCK  
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.  
JTAG fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TDI/TCLK for fuse-blow: F versions  
Supply current into TDI/TCLK during fuse blow  
Time to blow fuse  
T = 25°C  
A
2.5  
6
V
V
CC(FB)  
7
100  
1
FB  
I
t
mA  
ms  
FB  
FB  
NOTE 1: Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched  
to bypass mode.  
57  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
APPLICATION INFORMATION  
input/output schematics  
port P1, P1.0 to P1.5, input/output with Schmitt trigger  
Pad Logic  
DV  
DV  
SS  
SS  
DV  
SS  
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1.0/TA0  
P1.1/TA0/MCLK  
P1.2/TA1  
P1.3/TBOUTH/SVSOUT  
P1.4/TBCLK/SMCLK  
P1.5/TACLK/ACLK  
Bus  
Keeper  
P1SEL.x  
EN  
P1IN.x  
EN  
D
Module X IN  
P1IE.x  
EN  
P1IRQ.x  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
Note: x = 0,1,2,3,4,5  
58  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P1 (P1.0 to P1.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
P1.0/TA0  
X
FUNCTION  
P1DIR.x  
P1SEL.x  
0
P1.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.1 (I/O)  
0
1
P1.1/TA0/MCLK  
1
2
3
4
5
I: 0; O: 1  
Timer_A3.CCI0B  
MCLK  
0
1
P1.2/TA1  
P1.2 (I/O)  
I: 0; O: 1  
Timer_A3.CCI1A  
Timer_A3.TA1  
P1.3 (I/O)  
0
1
P1.3/TBOUTH/SVSOUT  
P1.4/TBCLK/SMCLK  
P1.5/TACLK/ACLK  
I: 0; O: 1  
Timer_B7.TBOUTH  
SVSOUT  
0
1
P1.4 (I/O)  
I: 0; O: 1  
Timer_B7.TBCLK  
SMCLK  
0
1
P1.5 (I/O)  
I: 0; O: 1  
Timer_A3.TACLK  
ACLK  
0
1
59  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P1, P1.6, P1.7, input/output with Schmitt trigger  
Pad Logic  
DV  
DV  
SS  
SS  
CAPD.x  
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1.6/CA0  
P1.7/CA1  
Bus  
Keeper  
P1SEL.x  
EN  
P1IN.x  
EN  
D
Module X IN  
P2CA0  
P1IE.x  
EN  
P1IRQ.x  
Comp_A  
0
1
Q
CA0  
CA1  
Set  
P1IFG.x  
+
Interrupt  
Edge  
P1SEL.x  
P1IES.x  
0
1
Select  
Note: x = 6,7  
P2CA1  
port P1 (P1.6 and P1.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
CAPD.x  
P1DIR.x  
I: 0; O: 1  
X
P1SEL.x  
P1.6/CA0  
6
P1.6 (I/O)  
CA0  
0
1
0
1
0
X
0
P1.7/CA1  
7
P1.7 (I/O)  
CA1  
I: 0; O: 1  
X
X
NOTE 1: X: Don’t care.  
60  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P2, P2.0 to P2.3, P2.6 to P2.7, input/output with Schmitt trigger  
Pad Logic  
DV  
DV  
SS  
SS  
TBOUTH  
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
P2OUT.x  
0
1
Module X OUT  
P2.0/TA2  
P2.1/TB0  
P2.2/TB1  
P2.3/TB2  
P2.6/CAOUT  
P2.7/ADC12CLK/DMAE0  
Bus  
Keeper  
P2SEL.x  
EN  
P2IN.x  
EN  
D
Module X IN  
P2IE.x  
EN  
P2IRQ.x  
Q
Set  
P2IFG.x  
Interrupt  
Edge  
Select  
P2SEL.x  
P2IES.x  
Note: x = 0,1,2,3,6,7  
61  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P2 (P2.0, P2.1, P2.2, P2.3, P2.6 and P2.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
P2.0/TA2  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
0
P2.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
1
1
Timer_A3.CCI2A  
Timer_A3.TA2  
P2.1 (I/O)  
0
1
P2.1/TB0  
P2.2/TB1  
P2.3/TB3  
1
2
3
I: 0; O: 1  
Timer_B7.CCI0A and Timer_B7.CCI0B  
Timer_B7.TB0 (see Note 1)  
P2.2 (I/O)  
0
1
I: 0; O: 1  
Timer_B7.CCI1A and Timer_B7.CCI1B  
Timer_B7.TB1 (see Note 1)  
P2.3 (I/O)  
0
1
I: 0; O: 1  
Timer_B7.CCI2A and Timer_B7.CCI2B  
Timer_B7.TB3 (see Note 1)  
P2.6 (I/O)  
0
1
P2.6/CAOUT  
6
7
I: 0; O: 1  
CAOUT  
1
P2.7/ADC12CLK/DMAE0  
P2.7 (I/O)  
I: 0; O: 1  
ADC12CLK (MSP430F461x only)  
DMAE0  
1
0
NOTE 1: Setting TBOUTH causes all Timer_B outputs to be set to high impedance.  
62  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P2, P2.4 to P2.5, input/output with Schmitt trigger  
Pad Logic  
DV  
DV  
SS  
SS  
DV  
SS  
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
Direction control  
from Module X  
P2OUT.x  
0
1
Module X OUT  
P2.4/UCA0TXD  
P2.5/UCA0RXD  
Bus  
Keeper  
EN  
P2SEL.x  
P2IN.x  
EN  
D
Module X IN  
P2IE.x  
EN  
P2IRQ.x  
Q
Set  
P2IFG.x  
Interrupt  
Edge  
Select  
P2SEL.x  
P2IES.x  
Note: x = 4,5  
port P2 (P2.4 and P2.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
I: 0; O: 1  
X
P2SEL.x  
P2.4/UCA0TXD  
4
P2.4 (I/O)  
0
1
0
1
USCI_A0.UCA0TXD (see Note 1, 2)  
P2.5 (I/O)  
P2.5/UCA0RXD  
5
I: 0; O: 1  
X
USCI_A0.UCA0RXD (see Note 1, 2)  
NOTES: 1. X: Don’t care.  
2. When in USCI mode, P2.4 is set to output, P2.5 is set to input.  
63  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P3, P3.0 to P3.3, input/output with Schmitt trigger  
Pad Logic  
DV  
DV  
SS  
SS  
DV  
SS  
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
P3OUT.x  
0
1
Module X OUT  
P3.0/UCB0STE  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK  
Bus  
Keeper  
P3SEL.x  
P3IN.x  
EN  
EN  
D
Module X IN  
Note: x = 0,1,2,3  
port P3 (P3.0 to P3.3) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P3.X)  
X
FUNCTION  
P3DIR.x  
I: 0; O: 1  
X
P3SEL.x  
P3.0/UCB0STE  
0
P3.0 (I/O)  
0
1
0
1
0
1
0
1
UCB0STE (see Notes 1, 2)  
P3.1 (I/O)  
P3.1/UCB0SIMO/  
UCB0SDA  
1
2
3
I: 0; O: 1  
X
UCB0SIMO/UCB0SDA (see Notes 1, 2, 3)  
P3.2 (I/O)  
P3.2/UCB0SOMI/  
UCB0SCL  
I: 0; O: 1  
X
UCB0SOMI/UCB0SCL (see Notes 1, 2, 3)  
P3.3 (I/O)  
P3.3/UCB0CLK  
I: 0; O: 1  
X
UCB0CLK (see Notes 1, 2)  
NOTES: 1. X: Don’t care.  
2. The pin direction is controlled by the USCI module.  
3. In case the I2C functionality is selected the output drives only the logical 0 to V level.  
SS  
64  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P3, P3.4 to P3.7, input/output with Schmitt trigger  
Pad Logic  
DV  
DV  
SS  
SS  
TBOUTH  
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
P3OUT.x  
0
1
Module X OUT  
P3.4/TB3  
P3.5/TB4  
Bus  
P3SEL.x  
P3IN.x  
P3.6/TB5  
Keeper  
P3.7/TB6  
EN  
EN  
D
Module X IN  
Note: x = 4,5,6,7  
port P3 (P3.4 to P3.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P3.X)  
X
FUNCTION  
P3DIR.x  
P3SEL.x  
P3.4/TB3  
4
P3.4 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
Timer_B7.CCI3A and Timer_B7.CCI3B  
Timer_B7.TB3 (see Note 1)  
P3.5 (I/O)  
0
1
P3.5/TB4  
P3.6/TB5  
P3.7/TB6  
5
6
7
I: 0; O: 1  
Timer_B7.CCI4A and Timer_B7.CCI4B  
Timer_B7.TB4 (see Note 1)  
P3.6 (I/O)  
0
1
I: 0; O: 1  
Timer_B7.CCI5A and Timer_B7.CCI5B  
Timer_B7.TB5 (see Note 1)  
P3.7 (I/O)  
0
1
I: 0; O: 1  
Timer_B7.CCI6A and Timer_B7.CCI6B  
Timer_B7.TB6 (see Note 1)  
0
1
NOTE 1: Setting TBOUTH causes all Timer_B outputs to be set to high impedance.  
65  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P4, P4.0 to P4.1, input/output with Schmitt trigger  
Pad Logic  
DV  
SS  
DV  
SS  
DV  
SS  
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
Direction control  
from Module X  
0
1
P4OUT.x  
Module X OUT  
P4.1/URXD1  
P4.0/UTXD1  
Bus  
Keeper  
P4SEL.x  
EN  
P4IN.x  
Module X IN  
Note: x = 0,1  
EN  
D
port P4 (P4.0 to P4.1) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P4.X)  
X
FUNCTION  
P4DIR.x  
I: 0; O: 1  
X
P4SEL.x  
P4.0/UTXD1  
0
P4.0 (I/O)  
0
1
0
1
USART1.UTXD1 (see Notes 1, 2)  
P4.1 (I/O)  
P4.1/URXD1  
1
I: 0; O: 1  
X
USART1.URXD1 (see Notes 1, 2)  
NOTES: 1. X: Don’t care.  
2. When in USART1 mode, P4.0 is set to output, P4.1 is set to input.  
66  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P4, P4.2 to P4.7, input/output with Schmitt trigger  
Pad Logic  
LCDS32/36  
Segment Sy  
DV  
SS  
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
Direction control  
from Module X  
0
1
P4OUT.x  
Module X OUT  
P4.7/UCA0RXD/S34  
P4.6/UCA0TXD/S35  
P4.5/UCLK1/S36  
P4.4/SOMI1/S37  
P4.3/SIMO1/S38  
P4.2/STE1/S39  
Bus  
Keeper  
P4SEL.x  
EN  
P4IN.x  
EN  
D
Module X IN  
Note :x = 2,3,4,5,6,7  
= 34,35,36,37,38,39  
y
67  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P4 (P4.2 to P4.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P4.X)  
X
FUNCTION  
P4DIR.x  
P4SEL.x  
LCDS36  
P4.2/STE1/S39  
2
P4.2 (I/O)  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
USART1.STE1  
S39 (see Note 1)  
P4.3 (I/O)  
X
X
P4.3/SIMO/S38  
3
4
5
6
7
I: 0; O: 1  
USART1.SIMO1 (see Notes 1, 2)  
S38 (see Note 1)  
X
X
P4.4/SOMI/S37  
P4.4 (I/O)  
I: 0; O: 1  
USART1.SOMI1 (see Notes 1, 2)  
S37 (see Note 1)  
X
X
P4.5/SOMI/S36  
P4.5 (I/O)  
I: 0; O: 1  
USART1.UCLK1 (see Notes 1, 2)  
S36 (see Note 1)  
X
X
P4.6/UCA0TXD/S35  
P4.7/UCA0RXD/S34  
P4.6 (I/O)  
I: 0; O: 1  
USCI_A0.UCA0TXD (see Notes 1, 3)  
S35 (see Note 1)  
X
X
P4.7 (I/O)  
I: 0; O: 1  
USCI_A0.UCA0RXD (see Notes 1, 3)  
S34 (see Note 1)  
X
X
NOTES: 1. X: Don’t care.  
2. The pin direction is controlled by the USART1 module.  
3. When in USCI mode, P4.6 is set to output, P4.7 is set to input.  
68  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P5, P5.0, input/output with Schmitt trigger  
#
INCH=13  
Pad Logic  
#
A13  
LCDS0  
Segment Sy  
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P5OUT.x  
DV  
SS  
P5.0/S1/A13  
Bus  
Keeper  
P5SEL.x  
P5IN.x  
EN  
Note:x = 0  
y = 1  
# = Signal from or to ADC12  
(MSP430x461x only)  
port P5 (P5.0) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
X
FUNCTION  
P5DIR.x  
P5SEL.x  
INCHx  
LCDS0  
P5.0/S1/A13  
0
P5.0 (I/O) (see Note 1)  
I: 0; O: 1  
0
1
0
1
X
13  
X
0
X
1
1
A13 (MSP430x461x only, see Notes 1, 3)  
S1 enabled (see Note 1)  
X
X
X
S1 disabled (see Note 1)  
X
NOTES: 1. X: Don’t care.  
2. N/A: Not available or not applicable.  
3. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
69  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P5, P5.1, input/output with Schmitt trigger  
#
INCH=12  
Pad Logic  
#
A12  
LCDS0  
Segment Sy  
DVSS  
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P5OUT.x  
DV  
SS  
P5.1/S0/A12  
Bus  
Keeper  
P5SEL.x  
P5IN.x  
EN  
Note:x = 1  
y = 0  
# = Signal from or to ADC12  
(MSP430x461x only)  
port P5 (P5.1) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
X
FUNCTION  
P5DIR.x  
P5SEL.x  
INCHx  
LCDS0  
P5.1/S0/A12  
1
P5.1 (I/O) (see Note 1)  
I: 0; O: 1  
0
1
0
X
12  
X
0
0
1
A12 (MSP430x461x only, see Notes 1, 2)  
S0 enabled (see Note 1)  
X
X
S0 disabled  
(see Note 1)  
X
1
X
1
NOTES: 1. X: Don’t care.  
2. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
70  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P5, P5.2 to P5.4, input/output with Schmitt trigger  
Pad Logic  
LCD Signal  
DV  
SS  
P5DIR.x  
P5OUT.x  
0
1
Direction  
0: Input  
1: Output  
0
1
DV  
SS  
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
Bus  
Keeper  
P5SEL.x  
EN  
P5IN.x  
Note: x = 2,3,4  
port P5 (P5.2 to P5.4) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
X
FUNCTION  
P5DIR.x  
I: 0; O: 1  
X
P5SEL.x  
P5.2/COM1  
2
P5.2 (I/O)  
0
1
0
1
0
1
COM1 (see Note 1)  
P5.3 (I/O)  
P5.3/COM2  
3
4
I: 0; O: 1  
X
COM2 (see Note 1)  
P5.4 (I/O)  
P5.4/COM3  
I: 0; O: 1  
X
COM3 (see Note 1)  
NOTE 1: X: Don’t care.  
71  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P5, P5.5 to P5.7, input/output with Schmitt trigger  
Pad Logic  
LCD Signal  
DV  
SS  
P5DIR.x  
P5OUT.x  
0
1
Direction  
0: Input  
1: Output  
0
1
DV  
SS  
P5.5/R03  
P5.6/LCDREF/R13  
P5.7/R03  
Bus  
Keeper  
P5SEL.x  
EN  
P5IN.x  
Note:x = 5,6,7  
port P5 (P5.5 to P5.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
X
FUNCTION  
P5DIR.x  
I: 0; O: 1  
X
P5SEL.x  
P5.5/R03  
5
P5.5 (I/O)  
0
1
0
1
0
1
R03 (see Note 1)  
P5.6 (I/O)  
P5.6/LCDREF/R13  
P5.7/R03  
6
7
I: 0; O: 1  
X
R13 or LCDREF (see Notes 1, 2)  
P5.7 (I/O)  
I: 0; O: 1  
X
R03 (see Note 1)  
NOTES: 1. X: Don’t care.  
2. External reference for the LCD_A charge pump is applied when VLCDREFx = 01. Otherwise R13 is selected.  
72  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P6, P6.0, P6.2, and P6.4, input/output with Schmitt trigger  
#
INCH=0/2/4  
Pad Logic  
#
Ay  
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
P6.0/A0  
P6.2/A2  
P6.4/A4  
0
1
P6OUT.x  
DV  
SS  
Bus  
Keeper  
P6SEL.x  
EN  
P6IN.x  
Note:x = 0, 2, 4  
y = 0, 1  
# = Signal from or to ADC12  
(MSP430x461x only)  
port P6 (P6.0, P6.2, and P6.4) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
INCHx  
P6.0/A0  
0
P6.0 (I/O) (see Note 1)  
I: 0; O: 1  
0
1
0
1
0
1
X
0
X
2
X
4
A0 (MSP430x461x only, see Notes 1, 3)  
P6.2 (I/O) (see Note 1)  
X
I: 0; O: 1  
X
P6.2/A2  
P6.4/A4  
2
4
A2 (MSP430x461x only, see Notes 1, 3)  
P6.4 (I/O) (see Note 1)  
I: 0; O: 1  
X
A4 (MSP430x461x only, see Notes 1, 3)  
NOTES: 1. X: Don’t care.  
2. N/A: Not available or not applicable.  
3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
73  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P6, P6.1, P6.3, and P6.5 input/output with Schmitt trigger  
#
INCH=1/3/5  
Pad Logic  
#
Ay  
P6DIR.x  
0
1
Direction  
0:Input  
1:Output  
P6.1/A1  
P6.3/A3  
P6.5/A5  
0
1
P6OUT.x  
DV  
SS  
Bus  
Keeper  
P6SEL.x  
P6IN.x  
EN  
Note:x = 1, 3, 5  
y = 0, 1, 2  
# = Signal from or to ADC12  
(MSP430x461x only)  
port P6 (P6.1, P6.3, and P6.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
INCHx  
P6.1/A1  
1
P6.1 (I/O) (see Note 1)  
I: 0; O: 1  
0
1
0
1
0
1
X
1
X
3
X
5
A1 (MSP430x461x only, see Notes 1, 3)  
P6.3 (I/O) (see Note 1)  
X
I: 0; O: 1  
X
P6.3/A3  
P6.5/A5  
3
5
A3 (MSP430x461x only, see Notes 1, 3)  
P6.5 (I/O) (see Note 1)  
I: 0; O: 1  
X
A5 (MSP430x461x only, see Notes 1, 3)  
NOTES: 1. X: Don’t care.  
2. N/A: Not available or not applicable.  
3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
74  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P6, P6.6, input/output with Schmitt trigger  
#
INCH=6  
Pad Logic  
#
A6  
P6DIR.x  
P6OUT.x  
0
1
Direction  
0: Input  
1: Output  
P6.6/A6  
0
1
DV  
SS  
Bus  
Keeper  
P6SEL.x  
P6IN.x  
EN  
Note:x = 6  
# = Signal from or to ADC12  
(MSP430x461 only)  
port P6 (P6.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
P6DIR.x  
I: 0; O: 1  
X
P6SEL.x  
INCHx  
P6.6/A6  
6
P6.6 (I/O) (see Note 1)  
0
1
X
6
A6 (MSP430x461x only, see Notes 1, 2)  
NOTES: 1. X: Don’t care.  
2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
75  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P6, P6.7, input/output with Schmitt trigger  
To SVS Mux  
#
INCH=7  
Pad Logic  
#
A7  
P6DIR.x  
P6OUT.x  
0
1
Direction  
0: Input  
1: Output  
0
1
DV  
SS  
P6.7/A7/SVSIN  
Bus  
Keeper  
P6SEL.x  
VLD =15  
EN  
P6IN.x  
Note:x = 7  
# = Signal from or to ADC12  
(MSP430x461x only)  
port P6 (P6.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
INCHx  
P6.7/A7/SVSIN  
7
P6.7 (I/O) (see Note 1)  
I: 0; O: 1  
0
1
1
X
7
0
A7 (MSP430x461x only, see Notes 1, 2)  
SVSIN (see Notes 1,3)  
X
0
NOTES: 1. X: Don’t care.  
2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
3. Setting VLDx = 15 will also cause the external SVSIN to be used. In this case, the P6SEL.x bit is a do not care.  
76  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P7, P7.0 to P7.3, input/output with Schmitt trigger  
Pad Logic  
LCDS28/32  
Segment Sy  
DV  
SS  
P7DIR.x  
0
1
Direction  
0: Input  
1: Output  
Direction control  
from Module X  
0
1
P7OUT.x  
Module X OUT  
P7.3/UCA0CLK/S30  
P7.2/UCA0SOMI/S31  
P7.1/UCA0SIMO/S32  
P7.0/UCA0STE/S33  
Bus  
Keeper  
P7SEL.x  
P7IN.x  
EN  
EN  
D
Module X IN  
Note:x = 0, 1, 2, 3  
y = 30, 31, 32, 33  
77  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P7 (P7.0 to P7.1) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P7.X)  
X
FUNCTION  
P7DIR.x  
P7SEL.x  
LCDS32  
P7.0/UCA0STE/S33  
0
P7.0 (I/O)  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
0
1
0
0
1
0
0
1
0
0
1
USCI_A0.UCA0STE (see Notes 1, 2)  
S33 (see Note 1)  
X
X
P7.1/UCA0SIMO/S32  
P7.2/UCA0SOMI/S31  
P7.3/UCA0CLK/S30  
1
2
3
P7.1 (I/O)  
I: 0; O: 1  
USCI_A0.UCA0SIMO (see Notes 1, 2)  
S32 (see Note 1)  
X
X
P7.2 (I/O)  
I: 0; O: 1  
USCI_A0.UCA0SOMI (see Notes 1, 3)  
S31 (see Note 1)  
X
X
P7.3 (I/O)  
I: 0; O: 1  
USCI_A0.UCA0CLK (see Notes 1, 3)  
S30 (see Note 1)  
X
X
NOTES: 1. X: Don’t care.  
2. The pin direction is controlled by the USCI module.  
3. The pin direction is controlled by the USCI module.  
78  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P7, P7.4 to P7.7, input/output with Schmitt trigger  
Pad Logic  
LCDS24/28  
Segment Sy  
DV  
SS  
P7DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P7OUT.x  
DV  
SS  
P7.7/S26  
Bus  
Keeper  
P7SEL.x  
P7IN.x  
P7.6/S27  
P7.5/S28  
P7.4/S29  
EN  
Note:x = 4, 5, 6, 7  
y = 26, 27, 28, 29  
port P7 (P7.4 to P7.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P7.X)  
X
FUNCTION  
P7DIR.x  
I: 0; O: 1  
X
P7SEL.x  
LCDS28  
P7.4/S29  
4
P7.4 (I/O)  
0
X
0
0
1
0
1
0
1
0
1
S29 (see Note 1)  
P7.5 (I/O)  
P7.5/S28  
5
6
7
I: 0; O: 1  
X
S28 (see Note 1)  
P7.6 (I/O)  
X
0
P7.6/S27  
I: 0; O: 1  
X
S27 (see Note 1)  
P7.7 (I/O)  
X
0
P7.7/S26  
I: 0; O: 1  
X
S26 (see Note 1)  
X
NOTE 1: X: Don’t care.  
79  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P8, P8.0 to P8.7, input/output with Schmitt trigger  
Pad Logic  
LCDS16/20/24  
Segment Sy  
DV  
SS  
P8DIR.x  
P8OUT.x  
0
1
Direction  
0: Input  
1: Output  
0
1
DV  
SS  
P8.7/S18  
P8.6/S19  
P8.5/S20  
P8.4/S21  
P8.3/S22  
P8.2/S23  
P8.1/S24  
P8.0/S25  
Bus  
Keeper  
P8SEL.x  
P8IN.x  
EN  
Note: x = 0,1,2,3,4,5,6,7  
y= 25,24,23,22,21,20,19,18  
80  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P8 (P8.0 to P8.1) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P8.X)  
X
FUNCTION  
P8DIR.x  
P8SEL.x  
LCDS16  
P8.0/S18  
0
P8.0 (I/O)  
I: 0; O: 1  
0
X
0
0
1
0
1
0
1
0
1
0
1
0
1
S18 (see Note 1)  
P8.0 (I/O)  
X
P8.1/S19  
P8.2/S20  
0
2
3
4
5
I: 0; O: 1  
S19 (see Note 1)  
P8.2 (I/O)  
X
X
0
I: 0; O: 1  
S20 (see Note 1)  
P8.3 (I/O)  
X
X
0
P8.3/S21  
I: 0; O: 1  
S21 (see Note 1)  
P8.4 (I/O)  
X
I: 0; O: 1  
X
X
0
P8.4/S22  
S22 (see Note 1)  
P8.5 (I/O)  
X
0
P8.5/S23  
I: 0; O: 1  
X
S23 (see Note 1)  
X
NOTE 1: X: Don’t care.  
port P8 (P8.6 to P8.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P8.X)  
X
FUNCTION  
P8DIR.x  
P8SEL.x  
LCDS24  
P8.6/S24  
6
P8.6 (I/O)  
I: 0; O: 1  
0
X
0
0
1
0
1
S24 (see Note 1)  
P8.7 (I/O)  
X
I: 0; O: 1  
X
P8.7/S25  
7
S25 (see Note 1)  
X
NOTE 1: X: Don’t care.  
81  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P9, P9.0 to P9.7, input/output with Schmitt trigger  
Pad Logic  
LCDS8/12/16  
Segment Sy  
DV  
SS  
P9DIR.x  
0
1
Direction  
0:Input  
1:Output  
0
1
P9OUT.x  
DV  
SS  
P9.7/S10  
P9.6/S11  
P9.5/S12  
P9.4/S13  
P9.3/S14  
P9.2/S15  
P9.1/S16  
P9.0/S17  
Bus  
Keeper  
P9SEL.x  
P9IN.x  
EN  
Note: x = 0,1,2,3,4,5,6,7  
y= 17,16,15,14,13,12,11,10  
82  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P9 (P9.0 to P9.1) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P9.X)  
X
FUNCTION  
P9DIR.x  
P9SEL.x  
LCDS16  
P9.0/S17  
0
P9.0 (I/O)  
I: 0; O: 1  
0
X
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
S17 (see Note 1)  
P9.1 (I/O)  
X
P9.1/S16  
P9.2/S20  
1
2
3
4
5
6
7
I: 0; O: 1  
S16 (see Note 1)  
P9.2 (I/O)  
X
X
0
I: 0; O: 1  
S15 (see Note 1)  
P9.3 (I/O)  
X
X
0
P9.3/S21  
I: 0; O: 1  
S14 (see Note 1)  
P9.4 (I/O)  
X
X
0
P9.4/S22  
I: 0; O: 1  
S13 (see Note 1)  
P9.5 (I/O)  
X
X
0
P9.5/S23  
I: 0; O: 1  
S12 (see Note 1)  
P9.6 (I/O)  
X
I: 0; O: 1  
X
X
0
P9.6/S24  
S11 (see Note 1)  
P9.7 (I/O)  
X
0
P9.7/S25  
I: 0; O: 1  
X
S10 (see Note 1)  
X
NOTE 1: X: Don’t care.  
83  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P10, P10.0 to P10.5, input/output with Schmitt trigger  
Pad Logic  
LCDS4/8  
Segment Sy  
DV  
SS  
P10DIR.x  
P10OUT.x  
0
1
Direction  
0: Input  
1: Output  
0
1
DV  
SS  
P10.5/S4  
P10.4/S5  
P10.3/S6  
P10.2/S7  
P10.1/S8  
P10.0/S9  
Bus  
Keeper  
P10SEL.x  
P10IN.x  
EN  
Note:x = 0,1,2,3,4,5  
y= 9,8,7,6,5,4  
port P10 (P10.0 to P10.1) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P10.X)  
X
FUNCTION  
P10DIR.x  
P10SEL.x  
LCDS8  
P10.0/S8  
0
P10.0 (I/O)  
I: 0; O: 1  
0
X
0
0
1
0
1
0
1
0
1
0
1
0
1
S8 (see Note 1)  
P10.1 (I/O)  
X
P10.1/S7  
P10.2/S7  
1
2
3
4
5
I: 0; O: 1  
S7 (see Note 1)  
P10.2 (I/O)  
X
X
0
I: 0; O: 1  
S7 (see Note 1)  
P10.3 (I/O)  
X
X
0
P10.3/S6  
I: 0; O: 1  
S6 (see Note 1)  
P10.4 (I/O)  
X
I: 0; O: 1  
X
X
0
P10.4/S5  
S5 (see Note 1)  
P10.5 (I/O)  
X
0
P10.5/S4  
I: 0; O: 1  
X
S4 (see Note 1)  
X
NOTE 1: X: Don’t care.  
84  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P10, P10.6, input/output with Schmitt trigger  
#
INCH=15  
Pad Logic  
#
A15  
LCDS0  
Segment Sy  
P10DIR.x  
P10OUT.x  
0
1
Direction  
0: Input  
1: Output  
0
1
DV  
SS  
P10.6/S3/A15  
Bus  
Keeper  
P10SEL.x  
EN  
P10IN.x  
Note: x = 6  
= 3  
y
# = Signal from or to ADC12  
(MSP430x461x only)  
port P10 (P10.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P10.X)  
X
FUNCTION  
P10DIR.x  
P10SEL.x  
INCHx  
LCDS0  
P10.6/S3/A15  
6
P5.0 (I/O) (see Note 1)  
I: 0; O: 1  
0
1
0
1
X
15  
X
0
0
1
1
A15 (MSP430x461x only, see Notes 1, 3)  
S3 enabled (see Note 1)  
X
X
X
S3 disabled (see Note 1)  
X
NOTES: 1. X: Don’t care.  
2. N/A: Not available or not applicable.  
3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
85  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
port P10, P10.7, input/output with Schmitt trigger  
#
INCH=14  
Pad Logic  
#
A14  
LCDS0  
Segment Sy  
P10DIR.x  
P10OUT.x  
0
1
Direction  
0: Input  
1: Output  
0
1
DV  
SS  
P10.7/S2/A14  
Bus  
Keeper  
P10SEL.x  
P10IN.x  
EN  
Note:x =7  
y = 2  
# = Signal from or to ADC12  
(MSP430x461x only)  
port P10 (P10.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P10.X)  
X
FUNCTION  
P10DIR.x  
P10SEL.x  
INCHx  
LCDS0  
P10.7/S2/A14  
7
P10.7 (I/O) (see Note 1)  
I: 0; O: 1  
0
1
0
1
X
14  
X
0
0
1
1
A14 (MSP430x461x only, see Notes 1, 3)  
S2 enabled (see Note 1)  
X
X
X
S2 disabled (see Note 1)  
X
NOTES: 1. X: Don’t care.  
2. N/A: Not available or not applicable.  
3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
86  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger or output  
TDO  
Controlled by JTAG  
Controlled by JTAG  
TDO/TDI  
JTAG  
Controlled  
by JTAG  
DV  
CC  
TDI  
Burn and Test  
Fuse  
TDI/TCLK  
CC  
Test  
and  
DV  
TMS  
TCK  
Emulation  
Module  
TMS  
DV  
CC  
TCK  
RST/NMI  
Tau ~ 50 ns  
D
U
S
Brownout  
G
D
U
S
TCK  
G
87  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
JTAG fuse check mode  
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity  
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current (I  
) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be  
(TF)  
taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the  
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check  
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the  
fuse check mode has the potential to be activated.  
The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 26). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition). The JTAG pins are terminated internally and therefore do not require external termination.  
Time TMS Goes Low After POR  
TMS  
I
(TF)  
I
TDI/TCLK  
Figure 26. Fuse Check Mode Current  
88  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
MSP430x461x1, MSP430x461x  
MIXED SIGNAL MICROCONTROLLER  
Data Sheet Revision History  
Literature  
Number  
Summary  
SLAS675  
Production Data data sheet release  
NOTE: Page and figure numbers refer to the respective document revision.  
89  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Oct-2009  
PACKAGING INFORMATION  
Orderable Device  
MSP430F46161IPZR  
MSP430F4616IPZR  
MSP430F46171IPZR  
MSP430F4617IPZR  
MSP430F46181IPZR  
MSP430F4618IPZR  
MSP430F46191IPZR  
MSP430F4619IPZR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
LQFP  
PZ  
100  
100  
100  
100  
100  
100  
100  
100  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
PZ  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000  
TBD  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

MSP430F46161IPZR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4616IPZ

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4616IPZR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4617

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F46171

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F46171IPZ

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F46171IPZR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4617IPZ

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4617IPZR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F4618

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F46181

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430F46181IPZ

MIXED SIGNAL MICROCONTROLLER
TI