MSP430F5309IZXH [TI]

具有 24KB 闪存、6KB SRAM、10 位 ADC、比较器、DMA、UART/SPI/I2C 和硬件乘法器的 25MHz MCU | ZXH | 80 | -40 to 85;
MSP430F5309IZXH
型号: MSP430F5309IZXH
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 24KB 闪存、6KB SRAM、10 位 ADC、比较器、DMA、UART/SPI/I2C 和硬件乘法器的 25MHz MCU | ZXH | 80 | -40 to 85

静态存储器 比较器 闪存
文件: 总99页 (文件大小:1242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
MIXED SIGNAL MICROCONTROLLER  
1
FEATURES  
Low Supply-Voltage Range, 1.8 V to 3.6 V  
Unified Clock System  
Ultra-Low Power Consumption  
FLL Control Loop for Frequency  
Stabilization  
Active Mode (AM)  
All System Clocks Active  
Low-Power/Low-Frequency Internal Clock  
Source (VLO)  
195 µA/MHz at 8 MHz, 3 V, Flash  
Program Execution (Typical)  
Low-Frequency Trimmed Internal Reference  
Source (REFO)  
115 µA/MHz at 8 MHz, 3 V, RAM Program  
Execution (Typical)  
32-kHz Watch Crystals (XT1)  
Standby Mode (LPM3)  
High-Frequency Crystals up to 32 MHz  
(XT2)  
Real-Time Clock With Crystal,  
Watchdog, and Supply Supervisor  
Operational, Full RAM Retention, Fast  
Wake-Up:  
16-Bit Timer TA0, Timer_A With Five  
Capture/Compare Registers  
16-Bit Timer TA1, Timer_A With Three  
Capture/Compare Registers  
1.9 µA at 2.2 V, 2.1 µA at 3 V (Typical)  
Low-Power Oscillator (VLO),  
16-Bit Timer TA2, Timer_A With Three  
Capture/Compare Registers  
General-Purpose Counter, Watchdog,  
and Supply Supervisor Operational, Full  
RAM Retention, Fast Wake-Up:  
1.4 µA at 3 V (Typical)  
16-Bit Timer TB0, Timer_B With Seven  
Capture/Compare Shadow Registers  
Two Universal Serial Communication  
Interfaces  
Off Mode (LPM4)  
Full RAM Retention, Supply Supervisor  
Operational, Fast Wake-Up:  
1.1 µA at 3 V (Typical)  
USCI_A0 and USCI_A1 Each Supporting  
Enhanced UART Supporting  
Auto-Baudrate Detection  
Shutdown Mode (LPM4.5)  
0.18 µA at 3 V (Typical)  
IrDA Encoder and Decoder  
Synchronous SPI  
Wake-Up From Standby Mode in Less Than  
5 µs  
USCI_B0 and USCI_B1 Each Supporting  
16-Bit RISC Architecture, Extended Memory,  
Up to 25-MHz System Clock  
I2CTM  
Synchronous SPI  
Flexible Power Management System  
Integrated 3.3-V Power System  
Fully Integrated LDO With Programmable  
Regulated Core Supply Voltage  
10-Bit Analog-to-Digital (A/D) Converter With  
Window Comparator  
Supply Voltage Supervision, Monitoring,  
and Brownout  
Comparator  
Hardware Multiplier Supporting 32-Bit  
Operations  
Serial Onboard Programming, No External  
Programming Voltage Needed  
Three Channel Internal DMA  
Basic Timer With Real-Time Clock Feature  
Family Members are summarized in  
For Complete Module Descriptions, See the  
MSP430x5xx/MSP430x6xx Family User's Guide  
(SLAU208)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
DESCRIPTION  
The Texas Instruments MSP430family of ultra-low-power microcontrollers consists of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes is optimized to achieve extended battery life in portable measurement applications. The device features a  
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 5 µs.  
The MSP430F5310, MSP430F5309, and MSP430F5308 devices are microcontroller configurations with 3.3-V  
LDO, four 16-bit timers, a high-performance 10-bit analog-to-digital converter (ADC), two universal serial  
communication interfaces (USCI), hardware multiplier, DMA, real-time clock module with alarm capabilities and  
31 or 47 I/O pins.  
The MSP430F5304 device is a configuration 3.3-V LDO, four 16-bit timers, a high-performance 10-bit  
analog-to-digital converter (ADC), two universal serial communication interfaces (USCI), hardware multiplier,  
DMA, real-time clock module with alarm capabilities, and 31 I/O pins.  
Typical applications for this device include analog and digital sensor systems, digital motor control, remote  
controls, thermostats, digital timers, hand-held meters, etc.  
Table 1. Family Members  
USCI  
PROGRAM  
MEMORY  
(KB)  
SRAM  
(KB)  
ADC10_A  
(CH)  
Comp_B  
(CH)  
PACKAGE  
TYPE  
(1)  
(2)  
CHANNEL A: CHANNEL B:  
UART/LIN/  
DEVICE  
Timer_A  
5, 3, 3  
Timer_B  
I/O  
SPI/I2C  
IrDA/SPI  
64 RGC,  
80 ZQE  
10 ext / 2 int  
6 ext / 2 int  
10 ext / 2 int  
6 ext / 2 int  
10 ext / 2 int  
6 ext / 2 int  
6 ext / 2 int  
8
4
8
4
8
4
-
47  
31  
47  
31  
47  
31  
31  
MSP430F5310  
MSP430F5309  
32  
24  
6
6
7
7
2
2
2
2
48 PT,  
48 RGZ  
64 RGC,  
80 ZQE  
5, 3, 3  
48 PT,  
48 RGZ,  
64 RGC,  
80 ZQE  
MSP430F5308  
MSP430F5304  
16  
8
6
6
5, 3, 3  
5, 3, 3  
7
7
2
1
2
1
48 PT,  
48 RGZ,  
48 PT,  
48 RGZ  
(1) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM  
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
(2) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM  
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
(1)  
Table 2. Ordering Information  
(2)  
PACKAGED DEVICES  
TA  
PLASTIC 64-PIN VQFN  
(RGC)  
PLASTIC 80-BALL BGA  
(ZQE)  
PLASTIC 48-PIN VQFN  
(RGZ)  
PLASTIC 48-PIN LQFP  
(PT)  
MSP430F5310IRGC  
MSP430F5309IRGC  
MSP430F5308IRGC  
MSP430F5310IZQE  
MSP430F5309IZQE  
MSP430F5308IZQE  
MSP430F5310IRGZ  
MSP430F5309IRGZ  
MSP430F5308IRGZ  
MSP430F5304IRGZ  
MSP430F5310IPT  
MSP430F5309IPT  
MSP430F5308IPT  
MSP430F5304IPT  
40°C to 85°C  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/package.  
2
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Functional Block Diagram MSP430F5310IRGC, MSP430F5309IRGC, MSP430F5308IRG,  
MSP430F5310IZQE, MSP430F5309IZQE, MSP430F5308IZQE  
PA  
PB  
PC  
AVCC AVSS  
XIN XOUT  
DVCC DVSS VCORE  
RST/NMI  
P1.x P2.x P3.x P4.x P5.x P6.x  
XT2IN  
SYS  
REF  
COMP_B  
ADC10_A  
ACLK  
Power  
Management  
I/O Ports  
P1/P2  
2×8 I/Os  
Interrupt  
& Wakeup  
I/O Ports  
P3/P4  
1×5 I/Os  
1×8 I/Os  
I/O Ports  
P5/P6  
1×6 I/Os  
1×8 I/Os  
Unified  
Clock  
System  
32KB  
24KB  
16KB  
Watchdog  
10 Bit  
200 KSPS  
6KB  
XT2OUT  
SMCLK  
Port Map  
Control  
(P4)  
LDO  
SVM/SVS  
Brownout  
12 Channels  
(10 ext/ 2int)  
Window  
RAM  
Flash  
MCLK  
PA  
1×16 I/Os  
PB  
1×13 I/Os  
PC  
1×14 I/Os  
Comparator  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S:3+1)  
USCI0,1  
PU Port  
LDO  
TA0  
TA1  
TA2  
TB0  
JTAG/  
SBW  
Interface  
Ax: UART,  
IrDA, SPI  
RTC_A  
MPY32  
CRC16  
Timer_A  
5 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_B  
7 CC  
Registers  
Bx: SPI, I2C  
PU.0, PU.1  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Pin Designation MSP430F5310IRGC, MSP430F5309IRGC, MSP430F5308IRGC  
RGC PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P4.7/PM_NONE  
P4.6/PM_NONE  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6.6/CB6/A6  
P6.7/CB7/A7  
P5.0/A8/VeREF+  
P5.1/A9/VeREF−  
AVCC1  
2
3
P4.5/PM_UCA1RXD/PM_UCA1SOMI  
P4.4/PM_UCA1TXD/PM_UCA1SIMO  
P4.3/PM_UCB1CLK/PM_UCA1STE  
P4.2/PM_UCB1SOMI/PM_UCB1SCL  
P4.1/PM_UCB1SIMO/PM_UCB1SDA  
P4.0/PM_UCB1STE/PM_UCA1CLK  
DVCC2  
4
5
6
7
MSP430F530xIRGC  
MSP430F5310IRGC  
8
9
DVSS2  
10  
11  
12  
13  
14  
15  
16  
P3.4/UCA0RXD/UCA0SOMI  
P3.3/UCA0TXD/UCA0SIMO  
P3.2/UCB0CLK/UCA0STE  
P3.1/UCB0SOMI/UCB0SCL  
P3.0/UCB0SIMO/UCB0SDA  
P2.7/UCB0STE/UCA0CLK  
P5.4/XIN  
P5.5/XOUT  
AVSS1  
DVCC1  
DVSS1  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Note: Power Pad connection to  
Vss recommended  
A0.3  
A0.4  
A1.0  
A1.2  
A1.1  
P1.4/T  
P1.5/T  
P1.7/T  
P2.1/T  
P2.0/T  
A1CLK/CBOUT  
A2CLK/SMCLK  
P1.6/T  
P2.2/T  
4
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Pin Designation MSP430F5310IZQE, MSP430F5309IZQE, MSP430F5308IZQE  
ZQE PACKAGE  
(TOP VIEW)  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
H1  
J1  
A2  
B2  
C2  
D2  
E2  
F2  
G2  
H2  
J2  
A3  
B3  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
J4  
A5  
B5  
C5  
D5  
E5  
F5  
G5  
H5  
J5  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
H6  
J6  
A7  
B7  
C7  
D7  
E7  
F7  
G7  
H7  
J7  
A8  
B8  
C8  
D8  
E8  
F8  
G8  
H8  
J8  
A9  
B9  
C9  
D9  
E9  
F9  
G9  
H9  
J9  
D3  
E3  
F3  
G3  
H3  
J3  
Functional Block Diagram MSP430F5310IRGZ, MSP430F5309IRGZ, MSP430F5308IRGZ,  
MSP430F5310IPT, MSP430F5309IPT, MSP430F5308IPT  
PA  
PB  
PC  
AVCC AVSS  
XIN XOUT  
DVCC DVSS VCORE  
RST/NMI  
P1.x P2.x P3.x P4.x P5.x P6.x  
XT2IN  
SYS  
REF  
COMP_B  
ADC10_A  
ACLK  
Power  
Management  
I/O Ports  
P1/P2  
I/O Ports  
P4  
1×8 I/Os  
I/O Ports  
P5/P6  
1×6 I/Os  
1×4 I/Os  
Unified  
Clock  
System  
32KB  
24KB  
16KB  
Watchdog  
10 Bit  
200 KSPS  
6KB  
XT2OUT  
1×8 I/Os  
1×1 I/Os  
Interrupt  
& Wakeup  
PA  
SMCLK  
Port Map  
Control  
(P4)  
LDO  
SVM/SVS  
Brownout  
8 Channels  
(6 ext/ 2 int)  
Window  
RAM  
Flash  
MCLK  
PB  
1×8 I/Os  
PC  
1×10 I/Os  
1×9 I/Os  
Comparator  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S:3+1)  
USCI0,1  
PU Port  
LDO  
TA0  
TA1  
TA2  
TB0  
JTAG/  
SBW  
Interface  
Ax: UART,  
IrDA, SPI  
RTC_A  
MPY32  
CRC16  
Timer_A  
5 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_B  
7 CC  
Registers  
Bx: SPI, I2C  
PU.0, PU.1  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Pin Designation MSP430F5310IRGZ, MSP430F5309IRGZ, MSP430F5308IRGZ,  
MSP430F5310IPT, MSP430F5309IPT, MSP430F5308IPT  
RGZ & PT PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P4.7/PM_NONE  
P4.6/PM_NONE  
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P5.0/A8/VeREF+  
P5.1/A9/VeREF-  
AVCC1  
2
3
4
P4.5/PM_UCA1RXD/PM_UCA1SOMI  
P4.4/PM_UCA1TXD/PM_UCA1SIMO  
P4.3/PM_UCB1CLK/PM_UCA1STE  
P4.2/PM_UCB1SOMI/PM_UCB1SCL  
P4.1/PM_UCB1SIMO/PM_UCB1SDA  
P4.0/PM_UCB1STE/PM_UCA1CLK  
DVCC2  
5
6
MSP430F530x  
MSP430F5310  
7
8
P5.4/XIN  
9
P5.5/XOUT  
AVSS1  
10  
11  
12  
DVSS2  
DVCC1  
PJ.3/TCK  
DVSS1  
PJ.2/TMS  
13 14 15 16 17 18 19 20 21 22 23 24  
Note: for RGZ package Power Pad  
connection to Vss recommended  
6
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Functional Block Diagram MSP430F5304IRGZ, MSP430F5304IPT  
PA  
PB  
PC  
AVCC AVSS  
XIN XOUT  
DVCC DVSS VCORE  
RST/NMI  
P1.x P2.x P3.x P4.x P5.x P6.x  
XT2IN  
SYS  
REF  
ADC10_A  
ACLK  
Power  
Management  
I/O Ports  
P1/P2  
I/O Ports  
P4  
1×8 I/Os  
I/O Ports  
P5/P6  
1×6 I/Os  
1×4 I/Os  
Unified  
Clock  
System  
Watchdog  
10 Bit  
200 KSPS  
6KB  
8KB  
XT2OUT  
1×8 I/Os  
1×1 I/Os  
Interrupt  
& Wakeup  
PA  
SMCLK  
Port Map  
Control  
(P4)  
Flash  
LDO  
SVM/SVS  
Brownout  
8 Channels  
(6 int/ 2 ext)  
Window  
RAM  
MCLK  
PB  
1×8 I/Os  
PC  
1×10 I/Os  
1×9 I/Os  
Comparator  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(S:3+1)  
USCI0  
PU Port  
LDO  
TA0  
TA1  
TA2  
TB0  
JTAG/  
SBW  
Interface  
Ax: UART,  
IrDA, SPI  
RTC_A  
MPY32  
CRC16  
Timer_A  
5 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_B  
7 CC  
Registers  
Bx: SPI, I2C  
PU.0, PU.1  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Pin Designation MSP430F5304IRGZ, MSP430F5304IPT  
RGZ & PT PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
1
36  
P4.7/PM_NONE  
P4.6/PM_NONE  
P6.0/A0  
P6.1/A1  
2
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3
4
P6.2/A2  
P4.5/PM_UCA1RXD/PM_UCA1SOMI  
P4.4/PM_UCA1TXD/PM_UCA1SIMO  
P4.3/PM_UCB1CLK/PM_UCA1STE  
P4.2/PM_UCB1SOMI/PM_UCB1SCL  
P4.1/PM_UCB1SIMO/PM_UCB1SDA  
P4.0/PM_UCB1STE/PM_UCA1CLK  
DVCC2  
P6.3/A3  
5
P5.0/A8/VeREF+  
P5.1/A9/VeREF-  
AVCC1  
6
MSP430F5304  
7
8
P5.4/XIN  
9
P5.5/XOUT  
AVSS1  
10  
11  
12  
DVSS2  
DVCC1  
PJ.3/TCK  
DVSS1  
PJ.2/TMS  
13 14 15 16 17 18 19 20 21 22 23 24  
Note: for RGZ package Power Pad  
connection to Vss recommended  
8
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Table 3. Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
(1)  
NAME  
RGZ  
/PT  
RGC  
ZQE  
General-purpose digital I/O  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6.6/CB6/A6  
P6.7/CB7/A7  
5
N/A  
N/A  
N/A  
N/A  
5
C1  
D2  
D1  
D3  
E1  
E2  
I/O Comparator_B input CB4 (not available on RGZ or PT package devices)  
Analog input A4 ADC (not available on RGZ or PT package devices)  
General-purpose digital I/O  
I/O Comparator_B input CB5 (not available on RGZ or PT package devices)  
Analog input A5 ADC (not available on RGZ or PT package devices)  
6
7
General-purpose digital I/O  
I/O Comparator_B input CB6 (not available on RGZ or PT package devices)  
Analog input A6 ADC (not available on RGZ or PT package devices)  
General-purpose digital I/O  
I/O Comparator_B input CB7 (not available on RGZ or PT package devices)  
Analog input A7 ADC (not available on RGZ or PT package devices)  
8
General-purpose digital I/O  
I/O Analog input A8 ADC  
P5.0/A8/VeREF+  
P5.1/A9/VeREF-  
9
Input for an external reference voltage to the ADC  
General-purpose digital I/O  
I/O Analog input A9 ADC  
10  
6
Negative terminal for an externally provided ADC reference  
AVCC1  
11  
12  
7
8
F2  
F1  
Analog power supply  
General-purpose digital I/O  
I/O  
P5.4/XIN  
Input terminal for crystal oscillator XT1  
General-purpose digital I/O  
I/O  
P5.5/XOUT  
13  
9
G1  
Output terminal of crystal oscillator XT1  
AVSS1  
DVCC1  
DVSS1  
14  
15  
16  
10  
11  
12  
G2  
H1  
J1  
Analog ground supply  
Digital power supply  
Digital ground supply  
Regulated core power supply output (internal use only, no external current  
loading)  
(2)  
VCORE  
17  
18  
13  
14  
J2  
General-purpose digital I/O with port interrupt  
TA0 clock signal TA0CLK input ; ACLK output (divided by 1, 2, 4, or 8)  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
H2  
I/O  
General-purpose digital I/O with port interrupt  
I/O TA0 CCR0 capture: CCI0A input, compare: Out0 output  
BSL transmit output  
19  
20  
15  
16  
H3  
J3  
General-purpose digital I/O with port interrupt  
I/O TA0 CCR1 capture: CCI1A input, compare: Out1 output  
BSL receive input  
P1.2/TA0.1  
General-purpose digital I/O with port interrupt  
TA0 CCR2 capture: CCI2A input, compare: Out2 output  
P1.3/TA0.2  
P1.4/TA0.3  
P1.5/TA0.4  
21  
22  
23  
17  
18  
19  
G4  
H4  
J4  
I/O  
General-purpose digital I/O with port interrupt  
TA0 CCR3 capture: CCI3A input compare: Out3 output  
I/O  
General-purpose digital I/O with port interrupt  
TA0 CCR4 capture: CCI4A input, compare: Out4 output  
I/O  
General-purpose digital I/O with port interrupt  
I/O TA1 clock signal TA1CLK input  
Comparator_B output  
P1.6/TA1CLK/CBOUT  
24  
20  
G5  
General-purpose digital I/O with port interrupt  
TA1 CCR0 capture: CCI0A input, compare: Out0 output  
P1.7/TA1.0  
P2.0/TA1.1  
P2.1/TA1.2  
25  
26  
27  
21  
22  
H5  
J5  
I/O  
General-purpose digital I/O with port interrupt  
TA1 CCR1 capture: CCI1A input, compare: Out1 output  
I/O  
General-purpose digital I/O with port interrupt  
TA1 CCR2 capture: CCI2A input, compare: Out2 output  
N/A  
G6  
I/O  
(1) I = input, O = output, N/A = not available  
(2) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended  
capacitor value, CVCORE  
.
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 3. Terminal Functions (continued)  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
(1)  
NAME  
RGZ  
/PT  
RGC  
28  
ZQE  
J6  
General-purpose digital I/O with port interrupt  
TA2 clock signal TA2CLK input ; SMCLK output  
P2.2/TA2CLK/SMCLK  
P2.3/TA2.0  
N/A  
N/A  
N/A  
N/A  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt  
TA2 CCR0 capture: CCI0A input, compare: Out0 output  
29  
H6  
J7  
General-purpose digital I/O with port interrupt  
TA2 CCR1 capture: CCI1A input, compare: Out1 output  
P2.4/TA2.1  
30  
General-purpose digital I/O with port interrupt  
TA2 CCR2 capture: CCI2A input, compare: Out2 output  
P2.5/TA2.2  
31  
J8  
General-purpose digital I/O with port interrupt  
P2.6/RTCCLK/DMAE0  
32  
33  
N/A  
N/A  
J9  
I/O RTC clock output for calibration  
DMA external trigger input  
General-purpose digital I/O  
Slave transmit enable USCI_B0 SPI mode  
Clock signal input USCI_A0 SPI slave mode  
P2.7/UCB0STE/UCA0CLK  
H7  
I/O  
Clock signal output USCI_A0 SPI master mode  
General-purpose digital I/O  
P3.0/UCB0SIMO/UCB0SDA  
P3.1/UCB0SOMI/UCB0SCL  
34  
35  
N/A  
N/A  
H8  
H9  
I/O Slave in, master out USCI_B0 SPI mode  
I2C data USCI_B0 I2C mode  
General-purpose digital I/O  
I/O Slave out, master in USCI_B0 SPI mode  
I2C clock USCI_B0 I2C mode  
General-purpose digital I/O  
Clock signal input USCI_B0 SPI slave mode  
Clock signal output USCI_B0 SPI master mode  
P3.2/UCB0CLK/UCA0STE  
36  
N/A  
G8  
I/O  
Slave transmit enable USCI_A0 SPI mode  
General-purpose digital I/O  
P3.3/UCA0TXD/UCA0SIMO  
P3.4/UCA0RXD/UCA0SOMI  
37  
38  
N/A  
N/A  
G9  
G7  
I/O Transmit data USCI_A0 UART mode  
Slave in, master out USCI_A0 SPI mode  
General-purpose digital I/O  
I/O Receive data USCI_A0 UART mode  
Slave out, master in USCI_A0 SPI mode  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
I/O Default mapping: Slave transmit enable USCI_B1 SPI mode  
Default mapping: Clock signal input USCI_A1 SPI slave mode  
Default mapping: Clock signal output USCI_A1 SPI master mode  
P4.0/PM_UCB1STE/  
PM_UCA1CLK  
41  
29  
E8  
General-purpose digital I/O with reconfigurable port mapping secondary  
P4.1/PM_UCB1SIMO/  
PM_UCB1SDA  
function  
42  
43  
30  
31  
E7  
D9  
I/O  
Default mapping: Slave in, master out USCI_B1 SPI mode  
Default mapping: I2C data USCI_B1 I2C mode  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
Default mapping: Slave out, master in USCI_B1 SPI mode  
P4.2/PM_UCB1SOMI/  
PM_UCB1SCL  
I/O  
Default mapping: I2C clock USCI_B1 I2C mode  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
I/O Default mapping: Clock signal input USCI_B1 SPI slave mode  
Default mapping: Clock signal output USCI_B1 SPI master mode  
Default mapping: Slave transmit enable USCI_A1 SPI mode  
P4.3/PM_UCB1CLK/  
PM_UCA1STE  
44  
32  
D8  
DVSS2  
DVCC2  
39  
40  
27  
28  
F9  
E9  
Digital ground supply  
Digital power supply  
General-purpose digital I/O with reconfigurable port mapping secondary  
P4.4/PM_UCA1TXD/  
PM_UCA1SIMO  
function  
45  
33  
D7  
I/O  
Default mapping: Transmit data USCI_A1 UART mode  
Default mapping: Slave in, master out USCI_A1 SPI mode  
10  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Table 3. Terminal Functions (continued)  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
(1)  
NAME  
RGZ  
/PT  
RGC  
ZQE  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
Default mapping: Receive data USCI_A1 UART mode  
Default mapping: Slave out, master in USCI_A1 SPI mode  
P4.5/PM_UCA1RXD/  
PM_UCA1SOMI  
46  
34  
35  
C9  
I/O  
General-purpose digital I/O with reconfigurable port mapping secondary  
I/O function  
Default mapping: no secondary function.  
P4.6/PM_NONE  
47  
C8  
C7  
General-purpose digital I/O with reconfigurable port mapping secondary  
I/O function  
P4.7/PM_NONE  
VSSU  
48  
49  
36  
37  
Default mapping: no secondary function.  
B8,  
B9  
PU ground supply  
PU.0  
NC  
50  
51  
52  
53  
54  
55  
56  
38  
39  
40  
41  
42  
43  
44  
A9  
B7  
A8  
A7  
A6  
B6  
A5  
I/O General-purpose digital I/O - controlled by PU control register  
I/O No connect.  
PU.1  
LDOI  
LDOO  
NC  
I/O General-purpose digital I/O - controlled by PU control register  
LDO input  
LDO output  
No connect.  
AVSS2  
Analog ground supply  
General-purpose digital I/O  
I/O  
P5.2/XT2IN  
P5.3/XT2OUT  
TEST/SBWTCK  
PJ.0/TDO  
57  
58  
59  
60  
61  
62  
63  
45  
46  
47  
23  
24  
25  
26  
B5  
B4  
A4  
C5  
C4  
A3  
B3  
Input terminal for crystal oscillator XT2  
General-purpose digital I/O  
I/O  
Output terminal of crystal oscillator XT2  
Test mode pin select digital I/O on JTAG pins  
Spy-bi-wire input clock  
I
General-purpose digital I/O  
I/O  
Test data output port  
General-purpose digital I/O  
I/O  
PJ.1/TDI/TCLK  
PJ.2/TMS  
Test data input or test clock input  
General-purpose digital I/O  
Test mode select  
I/O  
General-purpose digital I/O  
Test clock  
PJ.3/TCK  
I/O  
Reset input active low  
I/O Non-maskable interrupt input  
Spy-bi-wire data input/output  
RST/NMI/SBWTDIO  
P6.0/CB0/A0  
64  
1
48  
1
A2  
A1  
B2  
B1  
General-purpose digital I/O  
I/O Comparator_B input CB0 (not available on '5304 device)  
Analog input A0 ADC  
General-purpose digital I/O  
I/O Comparator_B input CB1 (not available on '5304 device)  
Analog input A1 ADC  
P6.1/CB1/A1  
2
2
General-purpose digital I/O  
I/O Comparator_B input CB2 (not available on '5304 device)  
Analog input A2 ADC  
P6.2/CB2/A2  
3
3
General-purpose digital I/O  
P6.3/CB3/A3  
4
4
C2  
I/O Comparator_B input CB3 (not available on '5304 device)  
Analog input A3 ADC  
(3)  
Reserved  
QFN Pad  
N/A N/A  
QFN package pad. Connection to VSS recommended (not available on PT  
package devices)  
Pad Pad N/A  
(3) C6, D4, D5, D6, E3, E4, E5, E6, F3, F4, F5, F6, F7, F8, G3 are reserved and should be connected to ground.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
SHORT-FORM DESCRIPTION  
CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant  
generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all  
instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes and  
additional instructions for the expanded address range. Each instruction can operate on word and byte data.  
Program Counter  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Stack Pointer  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
12  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Operating Modes  
The MSP430 has one active mode and six software selectable low-power modes of operation. An interrupt event  
can wake up the device from any of the low-power modes, service the request, and restore back to the  
low-power mode on return from the interrupt program.  
The following seven operating modes can be configured by software:  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
FLL loop control remains active  
Low-power mode 1 (LPM1)  
CPU is disabled  
FLL loop control is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK and FLL loop control and DCOCLK are disabled  
DCO's dc-generator remains enabled  
ACLK remains active  
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DCO's dc generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DCO's dc generator is disabled  
Crystal oscillator is stopped  
Complete data retention  
Low-power mode 4.5 (LPM4.5)  
Internal regulator disabled  
No data retention  
Wakeup from RST/NMI, P1, and P2.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The  
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 4. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power-Up  
External Reset  
Watchdog Timeout, Password  
Violation  
(1) (2)  
WDTIFG, KEYV (SYSRSTIV)  
Reset  
0FFFEh  
63, highest  
Flash Memory Password Violation  
System NMI  
PMM  
Vacant Memory Access  
JTAG Mailbox  
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,  
VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG,  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
62  
61  
(1)  
JMBOUTIFG (SYSSNIV)  
User NMI  
NMI  
Oscillator Fault  
NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV)  
(1) (2)  
Flash Memory Access Violation  
(1) (3)  
Comp_B  
TB0  
Comparator B interrupt flags (CBIV)  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
60  
59  
(3)  
TB0CCR0 CCIFG0  
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,  
TB0  
Maskable  
Maskable  
0FFF4h  
0FFF2h  
58  
57  
(1) (3)  
TB0IFG (TB0IV)  
Watchdog Timer_A Interval Timer  
Mode  
WDTIFG  
(1) (3)  
USCI_A0 Receive/Transmit  
USCI_B0 Receive/Transmit  
ADC10_A  
UCA0RXIFG, UCA0TXIFG (UCA0IV)  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF0h  
0FFEEh  
0FFECh  
0FFEAh  
56  
55  
54  
53  
(1) (3)  
UCB0RXIFG, UCB0TXIFG (UCAB0IV)  
(1) (3) (4)  
ADC10IFG0  
(3)  
TA0  
TA0CCR0 CCIFG0  
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,  
TA0  
Maskable  
0FFE8h  
52  
(1) (3)  
TA0IFG (TA0IV)  
LDO-PWR  
DMA  
LDOOFFIG, LDOONIFG, LDOOVLIFG  
Maskable  
Maskable  
Maskable  
0FFE6h  
0FFE4h  
0FFE2h  
51  
50  
49  
(1) (3)  
DMA0IFG, DMA1IFG, DMA2IFG (DMAIV)  
(3)  
TA1  
TA1CCR0 CCIFG0  
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,  
TA1  
Maskable  
0FFE0h  
48  
(1) (3)  
TA1IFG (TA1IV)  
(1) (3)  
I/O Port P1  
USCI_A1 Receive/Transmit  
USCI_B1 Receive/Transmit  
TA2  
P1IFG.0 to P1IFG.7 (P1IV)  
Maskable  
Maskable  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
0FFDAh  
0FFD8h  
47  
46  
45  
44  
(1) (3)  
UCA1RXIFG, UCA1TXIFG (UCA1IV)  
(1) (3)  
UCB1RXIFG, UCB1TXIFG (UCB1IV)  
(3)  
TA2CCR0 CCIFG0  
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,  
TA2  
Maskable  
Maskable  
Maskable  
0FFD6h  
0FFD4h  
0FFD2h  
43  
42  
41  
(1) (3)  
TA2IFG (TA2IV)  
(1) (3)  
I/O Port P2  
RTC_A  
P2IFG.0 to P2IFG.7 (P2IV)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
(1) (3)  
RT0PSIFG, RT1PSIFG (RTCIV)  
0FFD0h  
40  
(5)  
Reserved  
Reserved  
0FF80h  
0, lowest  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
(3) Interrupt flags are located in the module.  
(4) Only on devices with ADC, otherwise reserved.  
(5) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain  
compatibility with other devices, it is recommended to reserve these locations.  
14  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Memory Organization  
(1)  
Table 5. Memory Organization  
MSP430F5304  
MSP430F5308  
MSP430F5309  
MSP430F5310  
Memory (flash)  
Total Size  
8 KB  
16 KB  
24 KB  
32 KB  
Main: interrupt vector  
Main: code memory  
00FFFFh00FF80h  
00FFFFh-00E000h  
00FFFFh00FF80h  
00FFFFh-00C000h  
00FFFFh00FF80h  
00FFFFh-00A000h  
00FFFFh00FF80h  
00FFFFh-008000h  
Sector 1  
Sector 0  
Sector 7  
Info A  
2 KB  
0033FFh002C00h  
2 KB  
0033FFh002C00h  
2 KB  
0033FFh002C00h  
2 KB  
0033FFh002C00h  
2 KB  
002BFFh002400h  
2 KB  
002BFFh002400h  
2 KB  
002BFFh002400h  
2 KB  
002BFFh002400h  
RAM  
2 KB  
0023FFh001C00h  
2 KB  
0023FFh001C00h  
2 KB  
0023FFh001C00h  
2 KB  
0023FFh001C00h  
128 B  
128 B  
128 B  
128 B  
0019FFh001980h  
0019FFh001980h  
0019FFh001980h  
0019FFh001980h  
Info B  
128 B  
128 B  
128 B  
128 B  
00197Fh001900h  
00197Fh001900h  
00197Fh001900h  
00197Fh001900h  
Information memory  
(flash)  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
128 B  
0018FFh001880h  
128 B  
0018FFh001880h  
128 B  
0018FFh001880h  
128 B  
0018FFh001880h  
128 B  
00187Fh001800h  
128 B  
00187Fh001800h  
128 B  
00187Fh001800h  
128 B  
00187Fh001800h  
512 B  
0017FFh001600h  
512 B  
0017FFh001600h  
512 B  
0017FFh001600h  
512 B  
0017FFh001600h  
512 B  
0015FFh001400h  
512 B  
0015FFh001400h  
512 B  
0015FFh001400h  
512 B  
0015FFh001400h  
Bootstrap loader (BSL)  
memory (flash)  
512 B  
0013FFh001200h  
512 B  
0013FFh001200h  
512 B  
0013FFh001200h  
512 B  
0013FFh001200h  
512 B  
0011FFh001000h  
512 B  
0011FFh001000h  
512 B  
0011FFh001000h  
512 B  
0011FFh001000h  
4 KB  
000FFFh0h  
4 KB  
000FFFh0h  
4 KB  
000FFFh0h  
4 KB  
000FFFh0h  
Peripherals  
(1) N/A = Not available  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Bootstrap Loader (BSL)  
The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the  
device memory via the BSL is protected by user-defined password. Usage of the UART BSL requires external  
access to the six pins shown in Table 6.For complete description of the features of the BSL and its  
implementation, see MSP430 Programming Via the Bootstrap Loader, literature number SLAU319.  
Table 6. BSL Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.1  
P1.2  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
JTAG Operation  
JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430  
development tools and device programmers. The JTAG pin requirements are shown in Table 7. For further  
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's  
Guide, literature number SLAU278.  
Table 7. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input/TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface.  
Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire  
interface pin requirements are shown in Table 8. For further details on interfacing to development tools and  
device programmers, see the MSP430 Hardware Tools User's Guide, literature number SLAU278.  
Table 8. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
IN  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN, OUT  
VSS  
Ground supply  
16  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
 
 
 
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Flash Memory  
The flash memory can be programmed via the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the  
flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also  
called information memory.  
Segment A can be locked separately.  
RAM Memory  
The RAM memory is made up of n sectors. Each sector can be completely powered down to save leakage,  
however all data is lost. Features of the RAM memory include:  
RAM memory has n sectors. The size of a sector can be found in the Memory Organization section.  
Each sector 0 to n can be completely disabled, however data retention is lost.  
Each sector 0 to n automatically enters low power retention mode when possible.  
Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x5xx/MSP430x6xx Family User's Guide,  
literature number SLAU208.  
Digital I/O  
There are up to six 8-bit I/O ports implemented: For 64 pin options, P1, P2, P4, and P6 are complete, P5 is  
reduced to 6-bit I/O, and P3 is reduced to 5-bit I/O. For 48 pin options, P6 is reduced to 4-bit I/O, P2 is reduced  
to 1-bit I/O, and P3 is completely removed. Port PJ contains four individual I/O ports, common to all devices.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Pullup or pulldown on all ports is programmable.  
Drive strength on all ports is programmable.  
Edge-selectable interrupt and LPM4.5 wakeup input capability is available for all bits of ports P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise (P1 through P6) or word-wise in pairs (PA through PC).  
Port Mapping Controller  
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P4.  
Table 9. Port Mapping, Mnemonics and Functions  
Value  
PxMAPy Mnemonic  
PM_NONE  
Input Pin Function  
Output Pin Function  
DVSS  
0
None  
PM_CBOUT0  
PM_TB0CLK  
-
Comparator_B output  
1
2
TB0 clock input  
PM_ADC10CLK  
PM_DMAE0  
-
ADC10CLK  
SVM output  
DMAE0 input  
-
PM_SVMOUT  
3
TB0 high impedance input  
TB0OUTH  
PM_TB0OUTH  
4
5
6
PM_TB0CCR0A  
PM_TB0CCR1A  
PM_TB0CCR2A  
TB0 CCR0 capture input CCI0A  
TB0 CCR1 capture input CCI1A  
TB0 CCR2 capture input CCI2A  
TB0 CCR0 compare output Out0  
TB0 CCR1 compare output Out1  
TB0 CCR2 compare output Out2  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
 
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 9. Port Mapping, Mnemonics and Functions (continued)  
Value  
PxMAPy Mnemonic  
PM_TB0CCR3A  
PM_TB0CCR4A  
PM_TB0CCR5A  
PM_TB0CCR6A  
PM_UCA1RXD  
PM_UCA1SOMI  
PM_UCA1TXD  
PM_UCA1SIMO  
PM_UCA1CLK  
PM_UCB1STE  
PM_UCB1SOMI  
PM_UCB1SCL  
PM_UCB1SIMO  
PM_UCB1SDA  
PM_UCB1CLK  
PM_UCA1STE  
PM_CBOUT1  
Input Pin Function  
Output Pin Function  
7
8
TB0 CCR3 capture input CCI3A  
TB0 CCR4 capture input CCI4A  
TB0 CCR5 capture input CCI5A  
TB0 CCR6 capture input CCI6A  
TB0 CCR3 compare output Out3  
TB0 CCR4 compare output Out4  
TB0 CCR5 compare output Out5  
TB0 CCR6 compare output Out6  
9
10  
USCI_A1 UART RXD (Direction controlled by USCI - input)  
USCI_A1 SPI slave out master in (direction controlled by USCI)  
USCI_A1 UART TXD (Direction controlled by USCI - output)  
USCI_A1 SPI slave in master out (direction controlled by USCI)  
USCI_A1 clock input/output (direction controlled by USCI)  
USCI_B1 SPI slave transmit enable (direction controlled by USCI)  
USCI_B1 SPI slave out master in (direction controlled by USCI)  
USCI_B1 I2C clock (open drain and direction controlled by USCI)  
USCI_B1 SPI slave in master out (direction controlled by USCI)  
USCI_B1 I2C data (open drain and direction controlled by USCI)  
USCI_B1 clock input/output (direction controlled by USCI)  
USCI_A1 SPI slave transmit enable (direction controlled by USCI)  
11  
12  
13  
14  
15  
16  
17  
18  
19  
None  
None  
None  
Comparator_B output  
MCLK  
PM_MCLK  
PM_RTCCLK  
RTCCLK output  
PM_UCA0RXD  
PM_UCA0SOMI  
PM_UCA0TXD  
PM_UCA0SIMO  
PM_UCA0CLK  
PM_UCB0STE  
PM_UCB0SOMI  
PM_UCB0SCL  
PM_UCB0SIMO  
PM_UCB0SDA  
PM_UCB0CLK  
PM_UCA0STE  
Reserved  
USCI_A0 UART RXD (Direction controlled by USCI - input)  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
USCI_A0 UART TXD (Direction controlled by USCI - output)  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
USCI_A0 clock input/output (direction controlled by USCI)  
USCI_B0 SPI slave transmit enable (direction controlled by USCI)  
USCI_B0 SPI slave out master in (direction controlled by USCI)  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
USCI_B0 SPI slave in master out (direction controlled by USCI)  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
USCI_B0 clock input/output (direction controlled by USCI)  
USCI_A0 SPI slave transmit enable (direction controlled by USCI)  
20  
21  
22  
23  
24  
25  
26 - 30  
None  
DVSS  
Disables the output driver as well as the input Schmitt-trigger to prevent  
parasitic cross currents when applying analog signals.  
(1)  
31 (0FFh)  
PM_ANALOG  
(1) The value of the PMPAP_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are  
ignored resulting in a read out value of 31.  
18  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Table 10. Default Mapping  
Pin  
PxMAPy Mnemonic  
Input Pin Function  
Output Pin Function  
USCI_B1 SPI slave transmit enable (direction controlled by USCI)  
USCI_A1 clock input/output (direction controlled by USCI)  
P4.0/P4MAP0  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
PM_UCB1STE/PM_UCA1CLK  
USCI_B1 SPI slave in master out (direction controlled by USCI)  
USCI_B1 I2C data (open drain and direction controlled by USCI)  
PM_UCB1SIMO/PM_UCB1SDA  
PM_UCB1SOMI/PM_UCB1SCL  
PM_UCB1CLK/PM_UCA1STE  
PM_UCA1TXD/PM_UCA1SIMO  
PM_UCA1RXD/PM_UCA1SOMI  
USCI_B1 SPI slave out master in (direction controlled by USCI)  
USCI_B1 I2C clock (open drain and direction controlled by USCI)  
USCI_A1 SPI slave transmit enable (direction controlled by USCI)  
USCI_B1 clock input/output (direction controlled by USCI)  
USCI_A1 UART TXD (Direction controlled by USCI - output)  
USCI_A1 SPI slave in master out (direction controlled by USCI)  
USCI_A1 UART RXD (Direction controlled by USCI - input)  
USCI_A1 SPI slave out master in (direction controlled by USCI)  
P4.6/P4MAP6  
P4.7/P4MAP7  
PM_NONE  
PM_NONE  
None  
None  
DVSS  
DVSS  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Oscillator and System Clock  
The clock system in the MSP430F530x family of devices is supported by the Unified Clock System (UCS)  
module that includes support for a 32-kHz watch crystal oscillator (XT1 LF mode; XT1 HF mode not supported),  
an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO),  
an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT2. The UCS  
module is designed to meet the requirements of both low system cost and low power consumption. The UCS  
module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator,  
stabilizes the DCO frequency to a programmable multiple of the selected FLL reference frequency. The internal  
DCO provides a fast turn-on clock source and stabilizes in less than 5 µs. The UCS module provides the  
following clock signals:  
Auxiliary clock (ACLK), sourced from a 32 kHz watch crystal (XT1), a high-frequency crystal (XT2), the  
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally  
controlled oscillator (DCO).  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made  
available to ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
same sources made available to ACLK.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.  
Power Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains  
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor  
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is  
implemented to provide the proper internal reset signal to the device during power-on and power-off. The  
SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply  
voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not  
automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.  
Hardware Multiplier  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations with  
32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication  
as well as signed and unsigned multiply and accumulate operations.  
Real-Time Clock (RTC_A)  
The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated  
real-time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit timers  
that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Calendar  
mode integrates an internal calendar which compensates for months with less than 31 days and includes leap  
year correction. The RTC_A also supports flexible alarm functions and offset-calibration hardware.  
Watchdog Timer (WDT_A)  
The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
20  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
System Module (SYS)  
The SYS module handles many of the system functions within the device. These include power-on reset and  
power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootstrap  
loader entry mechanisms, as well as configuration management (device descriptors). It also includes a data  
exchange mechanism via JTAG called a JTAG mailbox that can be used in the application.  
Table 11. System Module Interrupt Vector Registers  
INTERRUPT VECTOR REGISTER  
SYSRSTIV , System Reset  
ADDRESS  
INTERRUPT EVENT  
No interrupt pending  
Brownout (BOR)  
RST/NMI (POR)  
PMMSWBOR (BOR)  
Wakeup from LPMx.5  
Security violation (BOR)  
SVSL (POR)  
VALUE  
00h  
PRIORITY  
019Eh  
02h  
Highest  
04h  
06h  
08h  
0Ah  
0Ch  
SVSH (POR)  
0Eh  
SVML_OVP (POR)  
SVMH_OVP (POR)  
PMMSWPOR (POR)  
WDT timeout (PUC)  
WDT password violation (PUC)  
KEYV flash password violation (PUC)  
FLL unlock (PUC)  
Peripheral area fetch (PUC)  
PMM password violation (PUC)  
Reserved  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h to 3Eh  
00h  
Lowest  
Highest  
SYSSNIV , System NMI  
019Ch  
No interrupt pending  
SVMLIFG  
02h  
SVMHIFG  
04h  
SVSMLDLYIFG  
SVSMHDLYIFG  
VMAIFG  
06h  
08h  
0Ah  
JMBINIFG  
0Ch  
JMBOUTIFG  
0Eh  
SVMLVLRIFG  
10h  
SVMHVLRIFG  
12h  
Reserved  
14h to 1Eh  
00h  
Lowest  
Highest  
SYSUNIV, User NMI  
019Ah  
No interrupt pending  
NMIFG  
02h  
OFIFG  
04h  
ACCVIFG  
06h  
Reserved  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention. For  
example, the DMA controller can be used to move data from the ADC10_A conversion register to RAM. Using  
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system  
power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or  
from a peripheral.  
(1)  
Table 12. DMA Trigger Assignments  
Channel  
Trigger  
0
1
2
0
DMAREQ  
DMAREQ  
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
(2)  
(2)  
(2)  
ADC10IFG0  
ADC10IFG0  
ADC10IFG0  
Reserved  
Reserved  
reserved  
reserved  
MPY ready  
DMA2IFG  
DMAE0  
Reserved  
Reserved  
reserved  
reserved  
MPY ready  
DMA0IFG  
DMAE0  
Reserved  
Reserved  
reserved  
reserved  
MPY ready  
DMA1IFG  
DMAE0  
(1) If a reserved trigger source is selected, no Trigger1 is generated.  
(2) Only on devices with ADC. Reserved on devices without ADC.  
22  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Universal Serial Communication Interface (USCI)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions,  
A and B.  
The USCI_An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, or IrDA.  
The USCI_Bn module provides support for SPI (3 pin or 4 pin) or I2C.  
The MSP430F53xx series includes one or two complete USCI modules.  
TA0  
TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. It can support multiple  
capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may  
be generated from the counter on overflow conditions and from each of the capture/compare registers.  
Table 13. TA0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
RGC/ZQE RGZ, PT  
MODULE  
BLOCK  
RGC/ZQE  
RGZ, PT  
18/H2-P1.0  
14-P1.0  
TA0CLK  
TACLK  
ACLK  
(internal)  
ACLK  
Timer  
CCR0  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
18/H2-P1.0  
19/H3-P1.1  
14-P1.0  
15-P1.1  
TA0CLK  
TA0.0  
DVSS  
TACLK  
CCI0A  
CCI0B  
GND  
19/H3-P1.1  
20/J3-P1.2  
15-P1.1  
16-P1.2  
TA0  
TA0.0  
DVSS  
DVCC  
VCC  
20/J3-P1.2  
16-P1.2  
17-P1.3  
TA0.1  
CCI1A  
ADC10 (internal) ADC10 (internal)  
(1)  
(1)  
CBOUT  
(internal)  
CCI1B  
ADC10SHSx =  
{1}  
ADC10SHSx =  
{1}  
CCR1  
CCR2  
TA1  
TA2  
TA0.1  
TA0.2  
DVSS  
DVCC  
TA0.2  
GND  
VCC  
21/G4-P1.3  
CCI2A  
21/G4-P1.3  
17-P1.3  
ACLK  
(internal)  
CCI2B  
DVSS  
DVCC  
TA0.3  
DVSS  
DVSS  
DVCC  
TA0.4  
DVSS  
DVSS  
DVCC  
GND  
VCC  
22/H4-P1.4  
23/J4-P1.5  
18-P1.4  
19-P1.5  
CCI3A  
CCI3B  
GND  
VCC  
22/H4-P1.4  
23/J4-P1.5  
18-P1.4  
19-P1.5  
CCR3  
CCR4  
TA3  
TA4  
TA0.3  
TA0.4  
CCI4A  
CCI4B  
GND  
VCC  
(1) Only on devices with ADC.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
TA1  
TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. It can support multiple  
capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may  
be generated from the counter on overflow conditions and from each of the capture/compare registers.  
Table 14. TA1 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
RGC/ZQE  
RGZ, PT  
RGC/ZQE  
RGZ, PT  
24/G5-P1.6  
20-P1.6  
TA1CLK  
TACLK  
ACLK  
(internal)  
ACLK  
Timer  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
24/G5-P1.6  
25/H5-P1.7  
20-P1.6  
21-P1.7  
TA1CLK  
TA1.0  
DVSS  
TACLK  
CCI0A  
CCI0B  
GND  
25/H5-P1.7  
26/J5-P2.0  
21-P1.7  
22-P2.0  
CCR0  
CCR1  
TA0  
TA1  
TA1.0  
TA1.1  
DVSS  
DVCC  
VCC  
26/J5-P2.0  
27/G6-P2.1  
22-P2.0  
TA1.1  
CCI1A  
CBOUT  
(internal)  
CCI1B  
DVSS  
DVCC  
TA1.2  
GND  
VCC  
CCI2A  
27/G6-P2.1  
ACLK  
(internal)  
CCI2B  
CCR2  
TA2  
TA1.2  
DVSS  
DVCC  
GND  
VCC  
24  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
TA2  
TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. It can support multiple  
capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may  
be generated from the counter on overflow conditions and from each of the capture/compare registers.  
Table 15. TA2 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
RGC/ZQE  
RGZ, PT  
RGC/ZQE  
RGZ, PT  
28/J6-P2.2  
TA2CLK  
TACLK  
ACLK  
(internal)  
ACLK  
Timer  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
28/J6-P2.2  
29/H6-P2.3  
TA2CLK  
TA2.0  
DVSS  
TACLK  
CCI0A  
CCI0B  
GND  
29/H6-P2.3  
30/J7-P2.4  
CCR0  
CCR1  
TA0  
TA1  
TA2.0  
TA2.1  
DVSS  
DVCC  
VCC  
30/J7-P2.4  
31/J8-P2.5  
TA2.1  
CCI1A  
CBOUT  
(internal)  
CCI1B  
DVSS  
DVCC  
TA2.2  
GND  
VCC  
CCI2A  
31/J8-P2.5  
ACLK  
(internal)  
CCI2B  
CCR2  
TA2  
TA2.2  
DVSS  
DVCC  
GND  
VCC  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
TB0  
TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. It can support multiple  
capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may  
be generated from the counter on overflow conditions and from each of the capture/compare registers.  
Table 16. TB0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
(1)  
(1)  
(1)  
(1)  
RGC/ZQE  
RGZ, PT  
RGC/ZQE  
RGZ, PT  
TB0CLK  
TBCLK  
ACLK  
(internal)  
ACLK  
Timer  
CCR0  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
TBCLK  
TB0CLK  
ADC10 (internal) ADC10 (internal)  
(2)  
(2)  
TB0.0  
CCI0A  
ADC10SHSx =  
{2}  
ADC10SHSx =  
{2}  
TB0  
TB0.0  
TB0.0  
DVSS  
DVCC  
CCI0B  
GND  
VCC  
ADC10 (internal) ADC10 (internal)  
TB0.1  
CCI1A  
ADC10SHSx =  
{3}  
ADC10SHSx =  
{3}  
CBOUT  
(internal)  
CCR1  
TB1  
TB0.1  
CCI1B  
DVSS  
DVCC  
TB0.2  
TB0.2  
DVSS  
DVCC  
TB0.3  
TB0.3  
DVSS  
DVCC  
TB0.4  
TB0.4  
DVSS  
DVCC  
TB0.5  
TB0.5  
DVSS  
DVCC  
TB0.6  
GND  
VCC  
CCI2A  
CCI2B  
GND  
CCR2  
CCR3  
CCR4  
CCR5  
TB2  
TB3  
TB4  
TB5  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
VCC  
CCI3A  
CCI3B  
GND  
VCC  
CCI4A  
CCI4B  
GND  
VCC  
CCI5A  
CCI5B  
GND  
VCC  
CCI6A  
ACLK  
(internal)  
CCI6B  
CCR6  
TB6  
TB0.6  
DVSS  
DVCC  
GND  
VCC  
(1) Timer functions selectable via the port mapping controller.  
(2) Only on devices with ADC.  
26  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Comparator_B  
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,  
battery voltage supervision, and monitoring of external analog signals.  
ADC10_A  
The ADC10_A module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator and a conversion result buffer. A window comparator with a  
lower and upper limit allows CPU independent result monitoring with three window comparator interrupt flags.  
CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
REF Voltage Reference  
The reference module (REF) is responsible for generation of all critical reference voltages that can be used by  
the various analog peripherals in the device.  
LDO and Port U  
The integrated 3.3V power system incorporates an integrated 3.3V LDO regulator that allows the entire MSP430  
microcontroller to be powered from nominal 5V LDOI when it is made available for the system. Alternatively, the  
power system can supply power only to other components within the system, or it can be unused altogether. The  
Port U Pins (PU.0/PU.1) function as general-purpose high-current I/O pins. These pins can only be configured  
together as either both inputs or bout outputs. Port U is supplied by the LDOO rail. If the 3.3V LDO is not being  
used in the system (disabled), the LDOO pin can be supplied externally.  
Embedded Emulation Module (EEM) (S Version)  
The Embedded Emulation Module (EEM) supports real-time in-system debugging. The S version of the EEM  
implemented on all devices has the following features:  
Three hardware triggers/breakpoints on memory access  
One hardware trigger/breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers/breakpoints  
One cycle counter  
Clock control on module level  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Peripheral File Map  
Table 17. Peripherals  
OFFSET ADDRESS  
RANGE  
MODULE NAME  
BASE ADDRESS  
Special Functions (see Table 18)  
PMM (see Table 19)  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
01C0h  
01E0h  
0200h  
0220h  
0240h  
0320h  
0340h  
0380h  
03C0h  
0400h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
05C0h  
05E0h  
0600h  
0620h  
0740h  
08C0h  
0900h  
000h - 01Fh  
000h - 01Fh  
000h - 00Fh  
000h - 007h  
000h - 001h  
000h - 001h  
000h - 01Fh  
000h - 01Fh  
000h - 001h  
000h - 002h  
000h - 007h  
000h - 01Fh  
000h - 00Bh  
000h - 00Bh  
000h - 01Fh  
000h - 02Eh  
000h - 02Eh  
000h - 02Eh  
000h - 02Eh  
000h - 01Bh  
000h - 02Fh  
000h - 00Fh  
000h - 00Ah  
000h - 00Ah  
000h - 00Ah  
000h - 01Fh  
000h - 01Fh  
000h - 01Fh  
000h - 01Fh  
000h - 01Fh  
000h - 00Fh  
000h - 014h  
Flash Control (see Table 20)  
CRC16 (see Table 21)  
RAM Control (see Table 22)  
Watchdog (see Table 23)  
UCS (see Table 24)  
SYS (see Table 25)  
Shared Reference (see Table 26)  
Port Mapping Control (see Table 27)  
Port Mapping Port P4 (see Table 27)  
Port P1/P2 (see Table 28)  
Port P3/P4 (see Table 29)  
Port P5/P6 (see Table 30)  
Port PJ (see Table 31)  
TA0 (see Table 32)  
TA1 (see Table 33)  
TB0 (see Table 34)  
TA2 (see Table 35)  
Real-Time Clock (RTC_A) (see Table 36)  
32-bit Hardware Multiplier (see Table 37)  
DMA General Control (see Table 38)  
DMA Channel 0 (see Table 38)  
DMA Channel 1 (see Table 38)  
DMA Channel 2 (see Table 38)  
USCI_A0 (see Table 39)  
USCI_B0 (see Table 40)  
USCI_A1 (see Table 41)  
USCI_B1 (see Table 42)  
ADC10_A (see Table 43)  
Comparator_B (see Table 44)  
LDO-PWR and Port U configuration (see Table 45)  
28  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Table 18. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
Table 19. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
OFFSET  
PMM Control 0  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
10h  
PMM control 1  
PMMCTL1  
SVSMHCTL  
SVSMLCTL  
PMMIFG  
SVS high side control  
SVS low side control  
PMM interrupt flags  
PMM interrupt enable  
PMM Power mode 5 control  
PMMIE  
PMM5CTL  
Table 20. Flash Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Flash control 1  
Flash control 3  
Flash control 4  
FCTL1  
FCTL3  
FCTL4  
00h  
04h  
06h  
Table 21. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC16DI  
OFFSET  
CRC data input  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
Table 22. RAM Control Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
RCCTL0  
OFFSET  
OFFSET  
OFFSET  
RAM control 0  
00h  
00h  
Table 23. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
WDTCTL  
Watchdog timer control  
Table 24. UCS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
UCSCTL0  
UCS control 0  
UCS control 1  
UCS control 2  
UCS control 3  
UCS control 4  
UCS control 5  
UCS control 6  
UCS control 7  
UCS control 8  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
UCSCTL1  
UCSCTL2  
UCSCTL3  
UCSCTL4  
UCSCTL5  
UCSCTL6  
UCSCTL7  
UCSCTL8  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 25. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
SYSCTL  
OFFSET  
System control  
00h  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
Bootstrap loader configuration area  
JTAG mailbox control  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus Error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
SYSSNIV  
SYSRSTIV  
Table 26. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
REFCTL  
OFFSET  
OFFSET  
Shared reference control  
00h  
Table 27. Port Mapping Registers  
(Base Address of Port Mapping Control: 01C0h, Port P4: 01E0h)  
REGISTER DESCRIPTION  
REGISTER  
PMAPPWD  
Port mapping password register  
Port mapping control register  
Port P4.0 mapping register  
Port P4.1 mapping register  
Port P4.2 mapping register  
Port P4.3 mapping register  
Port P4.4 mapping register  
Port P4.5 mapping register  
Port P4.6 mapping register  
Port P4.7 mapping register  
00h  
02h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
PMAPCTL  
P4MAP0  
P4MAP1  
P4MAP2  
P4MAP3  
P4MAP4  
P4MAP5  
P4MAP6  
P4MAP7  
30  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Table 28. Port P1/P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
Port P1 direction  
P1OUT  
P1DIR  
P1REN  
P1DS  
P1SEL  
P1IV  
Port P1 pullup/pulldown enable  
Port P1 drive strength  
Port P1 selection  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 input  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2DS  
P2SEL  
P2IV  
Port P2 direction  
Port P2 pullup/pulldown enable  
Port P2 drive strength  
Port P2 selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
Table 29. Port P3/P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
P3DS  
Port P3 direction  
Port P3 pullup/pulldown enable  
Port P3 drive strength  
Port P3 selection  
P3SEL  
P4IN  
Port P4 input  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4DS  
Port P4 direction  
Port P4 pullup/pulldown enable  
Port P4 drive strength  
Port P4 selection  
P4SEL  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 30. Port P5/P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P5 output  
Port P5 direction  
P5OUT  
P5DIR  
P5REN  
P5DS  
Port P5 pullup/pulldown enable  
Port P5 drive strength  
Port P5 selection  
P5SEL  
P6IN  
Port P6 input  
Port P6 output  
P6OUT  
P6DIR  
P6REN  
P6DS  
Port P6 direction  
Port P6 pullup/pulldown enable  
Port P6 drive strength  
Port P6 selection  
P6SEL  
Table 31. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
08h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
PJDS  
Port PJ direction  
Port PJ pullup/pulldown enable  
Port PJ drive strength  
Table 32. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
TA0CTL  
OFFSET  
TA0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter register  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Capture/compare register 3  
Capture/compare register 4  
TA0 expansion register 0  
TA0 interrupt vector  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
TA0IV  
32  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Table 33. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA1 control  
TA1CTL  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter register  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA1 expansion register 0  
TA1 interrupt vector  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1IV  
Table 34. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
TB0CTL  
OFFSET  
TB0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 register  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Capture/compare register 3  
Capture/compare register 4  
Capture/compare register 5  
Capture/compare register 6  
TB0 expansion register 0  
TB0 interrupt vector  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
TB0IV  
Table 35. TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
TA2CTL  
OFFSET  
TA2 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA2 counter register  
TA2CCTL0  
TA2CCTL1  
TA2CCTL2  
TA2R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA2 expansion register 0  
TA2 interrupt vector  
TA2CCR0  
TA2CCR1  
TA2CCR2  
TA2EX0  
TA2IV  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 36. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
OFFSET  
RTC control 0  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
RTC control 1  
RTCCTL1  
RTC control 2  
RTCCTL2  
RTC control 3  
RTCCTL3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTC prescaler 1  
RTC interrupt vector word  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTCPS1  
RTCIV  
RTC seconds/counter register 1  
RTC minutes/counter register 2  
RTC hours/counter register 3  
RTC day of week/counter register 4  
RTC days  
RTCSEC/RTCNT1  
RTCMIN/RTCNT2  
RTCHOUR/RTCNT3  
RTCDOW/RTCNT4  
RTCDAY  
RTC month  
RTCMON  
RTC year low  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTCAHOUR  
RTCADOW  
RTCADAY  
RTC alarm day of week  
RTC alarm days  
34  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Table 37. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 signed multiply  
16-bit operand 1 multiply accumulate  
16-bit operand 1 signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension register  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 multiply low word  
32-bit operand 1 multiply high word  
32-bit operand 1 signed multiply low word  
32-bit operand 1 signed multiply high word  
32-bit operand 1 multiply accumulate low word  
32-bit operand 1 multiply accumulate high word  
32-bit operand 1 signed multiply accumulate low word  
32-bit operand 1 signed multiply accumulate high word  
32-bit operand 2 low word  
32-bit operand 2 high word  
OP2H  
32 × 32 result 0 least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 most significant word  
MPY32 control register 0  
RES3  
MPY32CTL0  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 38. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)  
REGISTER DESCRIPTION  
REGISTER  
DMA0CTL  
OFFSET  
DMA channel 0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA module control 0  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA module control 1  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
Table 39. USCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTL1  
OFFSET  
USCI control 0  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 1  
UCA0CTL0  
UCA0BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA0BR1  
USCI modulation control  
USCI status  
UCA0MCTL  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA0IFG  
UCA0IV  
36  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Table 40. USCI_B0 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
UCB0CTL1  
UCB0CTL0  
UCB0BR0  
UCB0BR1  
UCB0STAT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA  
UCB0I2CSA  
UCB0IE  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB0IFG  
USCI interrupt vector word  
UCB0IV  
Table 41. USCI_A1 Registers (Base Address: 0600h)  
REGISTER DESCRIPTION  
REGISTER  
UCA1CTL1  
OFFSET  
USCI control 0  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 1  
UCA1CTL0  
UCA1BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA1BR1  
USCI modulation control  
USCI status  
UCA1MCTL  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA1IFG  
UCA1IV  
Table 42. USCI_B1 Registers (Base Address: 0620h)  
REGISTER DESCRIPTION  
REGISTER  
UCB1CTL1  
OFFSET  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB1CTL0  
UCB1BR0  
UCB1BR1  
UCB1STAT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA  
UCB1I2CSA  
UCB1IE  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB1IFG  
USCI interrupt vector word  
UCB1IV  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 43. ADC10_A Registers (Base Address: 0740h)  
REGISTER DESCRIPTION  
REGISTER  
ADC10CTL0  
OFFSET  
ADC10_A Control register 0  
ADC10_A Control register 1  
ADC10_A Control register 2  
00h  
02h  
04h  
06h  
08h  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC10CTL1  
ADC10CTL2  
ADC10LO  
ADC10_A Window Comparator Low Threshold  
ADC10_A Window Comparator High Threshold  
ADC10_A Memory Control Register 0  
ADC10_A Conversion Memory Register  
ADC10_A Interrupt Enable  
ADC10HI  
ADC10MCTL0  
ADC10MEM0  
ADC10IE  
ADC10_A Interrupt Flags  
ADC10IGH  
ADC10IV  
ADC10_A Interrupt Vector Word  
Table 44. Comparator_B Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
CBCTL0  
OFFSET  
Comp_B control register 0  
Comp_B control register 1  
Comp_B control register 2  
Comp_B control register 3  
Comp_B interrupt register  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
CBCTL1  
CBCTL2  
CBCTL3  
CBINT  
Comp_B interrupt vector word  
CBIV  
Table 45. LDO and Port U Configuration Registers (Base Address: 0900h)  
REGISTER DESCRIPTION  
REGISTER  
LDOKEYPID  
OFFSET  
LDO key/ID register  
PU port control  
00h  
04h  
08h  
PUCTL  
LDO power control  
LDOPWRCTL  
38  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
(1)  
Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
Voltage applied at VCC to VSS  
0.3 V to 4.1 V  
0.3 V to VCC + 0.3 V  
±2 mA  
(2)  
Voltage applied to any pin (excluding VCORE, LDOI)  
Diode current at any device pin  
(3)  
Storage temperature range, Tstg  
55°C to 150°C  
95°C  
Maximum junction temperature, TJ  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
(1)  
Thermal Packaging Characteristics  
PARAMETER  
VALUE  
30  
UNIT  
VQFN (RGC)  
VQFN (RGZ)  
LQFP (PT)  
28.6  
62.8  
55.5  
15.6  
14.4  
18.2  
21.2  
1.6  
(2)  
θJA  
Junction-to-ambient thermal resistance, still air  
°C/W  
BGA (ZQE)  
VQFN (RGC)  
VQFN (RGZ)  
LQFP (PT)  
(3)  
θJC(TOP)  
θJC(BOTTOM)  
θJB  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
BGA (ZQE)  
VQFN (RGC)  
VQFN (RGZ)  
LQFP (PT)  
1.6  
(4)  
Junction-to-case (bottom) thermal resistance  
N/A  
N/A  
8.9  
BGA (ZQE)  
VQFN (RGC)  
VQFN (RGZ)  
LQFP (PT)  
5.5  
(5)  
Junction-to-board thermal resistance  
28.3  
19.3  
BGA (ZQE)  
(1) N/A = not applicable  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case(top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard  
test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-case(bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(5) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
MAX UNIT  
Recommended Operating Conditions  
MIN NOM  
PMMCOREVx = 0  
1.8  
2.0  
2.2  
2.4  
0
3.6  
3.6  
3.6  
3.6  
V
V
PMMCOREVx = 0, 1  
PMMCOREVx = 0, 1, 2  
PMMCOREVx = 0, 1, 2, 3  
Supply voltage during program execution and flash  
VCC  
(1)  
programming(AVCC = DVCC1/2 = DVCC  
)
V
V
VSS  
TA  
Supply voltage (AVSS = DVSS1/2 = DVSS  
Operating free-air temperature  
Operating junction temperature  
Capacitor at VCORE  
)
V
I version  
I version  
40  
-40  
470  
85  
85  
°C  
°C  
nF  
TJ  
CVCORE  
CDVCC  
CVCORE  
/
Capacitor ratio of DVCC to VCORE  
10  
PMMCOREVx = 0,  
1.8 V VCC 3.6 V  
(default condition)  
0
8.0  
PMMCOREVx = 1,  
2.0 V VCC 3.6 V  
Processor frequency (maximum MCLK frequency) (2) (see  
Figure 1)  
0
0
0
12.0  
20.0  
25.0  
fSYSTEM  
MHz  
PMMCOREVx = 2,  
2.2 V VCC 3.6 V  
PMMCOREVx = 3,  
2.4 V VCC 3.6 V  
(1) It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) Modules may have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet.  
25  
3
20  
2, 3  
2
12  
8
1, 2  
1, 2, 3  
1
0
0, 1  
0, 1, 2  
0, 1, 2, 3  
0
1.8  
2.0  
2.2  
2.4  
3.6  
Supply Voltage - V  
The numbers within the fields denote the supported PMMCOREVx settings.  
Figure 1. Maximum System Frequency  
40  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
 
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Electrical Characteristics  
Active Mode Supply Current Into VCC Excluding External Current  
(1) (2) (3)  
over recommended operating free-air temperature (unless otherwise noted)  
FREQUENCY (fDCO = fMCLK = fSMCLK  
)
EXECUTION  
MEMORY  
PARAMETER  
VCC  
PMMCOREVx  
1 MHz  
8 MHz 12 MHz 20 MHz  
25 MHz  
UNIT  
TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX  
0
1
2
3
0
1
2
3
0.25 0.27 1.55 1.68  
0.28  
0.30  
0.32  
1.74  
1.91  
2.09  
2.58 2.78  
2.84  
IAM, Flash  
Flash  
RAM  
3 V  
mA  
4.68 5.06  
5.13  
3.10  
6.0  
3.9  
6.5  
4.3  
0.17 0.19 0.91 1.00  
0.19  
0.20  
0.21  
1.03  
1.16  
1.24  
1.54 1.67  
1.73  
IAM, RAM  
3 V  
mA  
2.84 3.11  
3.1  
1.87  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load  
capacitance are chosen to closely match the required 12.5 pF.  
(3) Characterized with program executing typical data processing. LDO disabled (LDOEN = 0).  
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1) (2)  
-40°C  
TYP MAX  
25°C  
TYP MAX  
77 85  
60°C  
TYP MAX  
80  
85°C  
TYP MAX  
80  
PARAMETER  
VCC  
PMMCOREVx  
UNIT  
2.2 V  
3 V  
0
3
0
3
0
1
2
0
1
2
3
0
1
2
3
0
1
2
3
73  
79  
97  
105  
11  
(3) (4)  
(5) (4)  
Low-power mode 0  
Low-power mode 2  
µA  
µA  
LPM0,1MHz  
83  
6.5  
92  
8
88  
7.5  
7.9  
2.6  
2.7  
2.9  
2.8  
2.9  
3.0  
3.1  
1.9  
2.0  
2.1  
2.2  
1.8  
2.0  
2.1  
2.2  
0.26  
95  
8
2.2 V  
3 V  
6.5  
7.0  
1.60  
1.65  
1.75  
1.8  
1.9  
2.0  
2.0  
1.1  
1.1  
1.2  
1.3  
0.9  
1.1  
1.2  
1.3  
0.15  
ILPM2  
7.0  
9
8.9  
3.4  
3.6  
3.8  
3.6  
3.8  
4.0  
4.0  
2.7  
2.8  
2.9  
3.0  
2.5  
2.6  
2.7  
2.8  
0.45  
13  
1.90  
2.00  
2.15  
2.1  
2.2 V  
Low-power mode 3,  
crystal mode  
ILPM3,XT1LF  
2.6  
6.0  
µA  
µA  
(6) (4)  
2.3  
3 V  
2.4  
2.5  
3.0  
1.8  
6.5  
5.0  
1.3  
1.4  
Low-power mode 3,  
VLO mode(7)(4)  
ILPM3,VLO  
3 V  
1.5  
1.5  
2.0  
1.5  
5.5  
4.8  
1.1  
1.2  
ILPM4  
Low-power mode 4(8)(4)  
Low-power mode 4.5(9)  
3 V  
3 V  
µA  
µA  
1.2  
1.3  
1.6  
5.0  
0.8  
ILPM4.5  
0.18  
0.35  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load  
capacitance are chosen to closely match the required 12.5 pF.  
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz  
LDO disabled (LDOEN = 0).  
(4) Current for brownout, high side supervisor (SVSH) normal mode included. Low side supervisor and monitors disabled (SVSL, SVML).  
High side monitor disabled (SVMH). RAM retention enabled.  
(5) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1  
MHz operation, DCO bias generator enabled.  
LDO disabled (LDOEN = 0)  
(6) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
LDO disabled (LDOEN = 0)  
(7) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz  
LDO disabled (LDOEN = 0)  
(8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4); fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
LDO disabled (LDOEN = 0)  
(9) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5); fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
42  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
(1)  
Schmitt-Trigger Inputs General Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.80  
1.50  
0.45  
0.75  
0.3  
TYP  
MAX UNIT  
1.40  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
2.10  
1.8 V  
3 V  
1.00  
V
Negative-going input threshold voltage  
1.65  
1.8 V  
3 V  
0.85  
V
Input voltage hysteresis (VIT+ VIT–  
)
0.4  
1.0  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI  
Pullup/pulldown resistor  
Input capacitance  
20  
35  
5
50  
kΩ  
VIN = VSS or VCC  
pF  
(1) Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).  
(1)  
Inputs Ports P1 and P2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Port P1, P2: P1.x to P2.x, External trigger pulse width to  
set interrupt flag  
(2)  
t(int)  
External interrupt timing  
2.2 V/3 V  
20  
ns  
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.  
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set by trigger signals shorter  
than t(int)  
.
Leakage Current General Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
(1) (2)  
VCC  
MIN  
MAX UNIT  
±50 nA  
Ilkg(Px.x)  
High-impedance leakage current  
1.8 V/3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
Outputs General Purpose I/O (Full Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
CC 0.25  
CC 0.60  
CC 0.25  
CC 0.60  
MAX UNIT  
(1)  
I(OHmax) = 3 mA  
V
V
V
V
VCC  
1.8 V  
(2)  
I(OHmax) = 10 mA  
VCC  
VOH  
High-level output voltage  
V
(1)  
I(OHmax) = 5 mA  
VCC  
3 V  
1.8 V  
3 V  
(2)  
I(OHmax) = 15 mA  
VCC  
(1)  
I(OLmax) = 3 mA  
VSS VSS + 0.25  
(2)  
I(OLmax) = 10 mA  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
Low-level output voltage  
V
OL  
(1)  
I(OLmax) = 5 mA  
I(OLmax) = 15 mA  
(2)  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Outputs General Purpose I/O (Reduced Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
CC 0.25  
CC 0.60  
CC 0.25  
CC 0.60  
MAX UNIT  
(2)  
I(OHmax) = 1 mA  
V
V
V
V
VCC  
1.8 V  
(3)  
(2)  
(3)  
I(OHmax) = 3 mA  
I(OHmax) = 2 mA  
I(OHmax) = 6 mA  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
(2)  
I(OLmax) = 1 mA  
I(OLmax) = 3 mA  
I(OLmax) = 2 mA  
I(OLmax) = 6 mA  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
(3)  
VOL  
Low-level output voltage  
V
(2)  
(3)  
(1) Selecting reduced drive strength may reduce EMI.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(3) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Output Frequency General Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
(1)(2)  
V
CC  
= 1.8 V  
16  
PMMCOREVx = 0  
Port output frequency  
(with load)  
fPx.y  
MHz  
25  
VCC = 3 V  
PMMCOREVx = 3  
VCC = 1.8 V  
PMMCOREVx = 0  
ACLK  
SMCLK  
MCLK  
16  
fPort_CLK  
Clock output frequency  
MHz  
25  
VCC = 3 V  
PMMCOREVx = 3  
(2)  
CL = 20 pF  
(1) A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full  
drive strength, R1 = 550 . For reduced drive strength, R1 = 1.6 k. CL = 20 pF is connected to the output to VSS  
.
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
44  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Typical Characteristics Outputs, Reduced Drive Strength (PxDS.y = 0)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
25.0  
20.0  
15.0  
10.0  
5.0  
TA = 25°C  
VCC = 3.0 V  
VCC = 1.8 V  
Px.y  
Px.y  
TA = 25°C  
TA = 85°C  
TA = 85°C  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
Figure 2.  
Figure 3.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-6.0  
-7.0  
-8.0  
0.0  
-5.0  
VCC = 1.8 V  
Px.y  
VCC = 3.0 V  
Px.y  
-10.0  
-15.0  
-20.0  
-25.0  
TA = 85°C  
TA = 25°C  
TA = 85°C  
TA = 25°C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
Figure 4.  
Figure 5.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
MAX UNIT  
(1)  
Crystal Oscillator, XT1, Low-Frequency Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
TA = 25°C  
0.075  
Differential XT1 oscillator crystal  
fOSC = 32768 Hz, XTS = 0,  
ΔIDVCC.LF  
current consumption from lowest XT1BYPASS = 0, XT1DRIVEx = 2,  
3 V  
0.170  
µA  
drive setting, LF mode  
TA = 25°C  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C  
0.290  
XT1 oscillator crystal frequency,  
LF mode  
fXT1,LF0  
XTS = 0, XT1BYPASS = 0  
32768  
Hz  
XT1 oscillator logic-level  
square-wave input frequency,  
LF mode  
(2) (3)  
fXT1,LF,SW  
XTS = 0, XT1BYPASS = 1  
10 32.768  
210  
50 kHz  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
fXT1,LF = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
OALF  
kΩ  
(4)  
LF crystals  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,LF = 32768 Hz, CL,eff = 12 pF  
300  
(6)  
XTS = 0, XCAPx = 0  
2
5.5  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
Integrated effective load  
capacitance, LF mode  
CL,eff  
pF  
(5)  
8.5  
12.0  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle LF mode  
30  
10  
70  
%
Oscillator fault frequency,  
(8)  
fFault,LF  
XTS = 0  
10000  
Hz  
(7)  
LF mode  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TA = 25°C,  
1000  
500  
CL,eff = 6 pF  
tSTART,LF  
Startup time, LF mode  
3 V  
ms  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C,  
CL,eff = 12 pF  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-trigger Inputs section of this datasheet.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
(a) For XT1DRIVEx = 0, CL,ef f 6 pF.  
(b) For XT1DRIVEx = 1, 6 pF CL,ef f 9 pF.  
(c) For XT1DRIVEx = 2, 6 pF CL,ef f 10 pF.  
(d) For XT1DRIVEx = 3, CL,ef f 6 pF.  
(5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
46  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Crystal Oscillator, XT2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1) (2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 0, TA = 25°C  
200  
fOSC = 12 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 1, TA = 25°C  
260  
325  
450  
XT2 oscillator crystal current  
consumption  
IDVCC.XT2  
3 V  
µA  
fOSC = 20 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 2, TA = 25°C  
fOSC = 32 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 3, TA = 25°C  
XT2 oscillator crystal  
frequency, mode 0  
(3)  
fXT2,HF0  
fXT2,HF1  
fXT2,HF2  
fXT2,HF3  
XT2DRIVEx = 0, XT2BYPASS = 0  
4
8
8
MHz  
XT2 oscillator crystal  
frequency, mode 1  
(3)  
XT2DRIVEx = 1, XT2BYPASS = 0  
16 MHz  
24 MHz  
32 MHz  
XT2 oscillator crystal  
frequency, mode 2  
(3)  
XT2DRIVEx = 2, XT2BYPASS = 0  
16  
24  
XT2 oscillator crystal  
frequency, mode 3  
(3)  
XT2DRIVEx = 3, XT2BYPASS = 0  
XT2 oscillator logic-level  
fXT2,HF,SW square-wave input frequency,  
bypass mode  
(4) (3)  
XT2BYPASS = 1  
0.7  
32 MHz  
XT2DRIVEx = 0, XT2BYPASS = 0,  
fXT2,HF0 = 6 MHz, CL,eff = 15 pF  
450  
320  
200  
200  
XT2DRIVEx = 1, XT2BYPASS = 0,  
fXT2,HF1 = 12 MHz, CL,eff = 15 pF  
Oscillation allowance for  
HF crystals  
OAHF  
(5)  
XT2DRIVEx = 2, XT2BYPASS = 0,  
fXT2,HF2 = 20 MHz, CL,eff = 15 pF  
XT2DRIVEx = 3, XT2BYPASS = 0,  
fXT2,HF3 = 32 MHz, CL,eff = 15 pF  
fOSC = 6 MHz,  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C, CL,eff = 15 pF  
0.5  
0.3  
tSTART,HF  
Startup time  
3 V  
ms  
pF  
fOSC = 20 MHz  
XT2BYPASS = 0, XT2DRIVEx = 2,  
TA = 25°C, CL,eff = 15 pF  
Integrated effective load  
capacitance, HF mode  
CL,eff  
1
(6) (1)  
Duty cycle  
Measured at ACLK, fXT2,HF2 = 20 MHz  
40  
30  
50  
60  
%
(7)  
(8)  
fFault,HF  
Oscillator fault frequency  
XT2BYPASS = 1  
300 kHz  
(1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(2) To improve EMI on the XT2 oscillator the following guidelines should be observed.  
(a) Keep the traces between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.  
(d) Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(3) This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device  
operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.  
(4) When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined  
in the Schmitt-trigger Inputs section of this datasheet.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
9.4  
0.5  
4
MAX UNIT  
14 kHz  
%/°C  
fVLO  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
(1)  
(2)  
dfVLO/dT  
Measured at ACLK  
Measured at ACLK  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
Duty cycle  
%/V  
40  
50  
60  
%
(1) Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 to 3.6 V) MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V 1.8 V)  
Internal Reference, Low-Frequency Oscillator (REFO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
3
MAX UNIT  
IREFO  
REFO oscillator current consumption TA = 25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
µA  
REFO frequency calibrated  
Measured at ACLK  
32768  
Hz  
fREFO  
Full temperature range  
±3.5  
%
REFO absolute tolerance calibrated  
REFO frequency temperature drift  
TA = 25°C  
±1.5  
(1)  
dfREFO/dT  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
0.01  
1.0  
50  
%/°C  
(2)  
dfREFO/dVCC  
REFO frequency supply voltage drift Measured at ACLK  
%/V  
Duty cycle  
Measured at ACLK  
40%/60% duty cycle  
40  
60  
%
tSTART  
REFO startup time  
25  
µs  
(1) Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 to 3.6 V) MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V 1.8 V)  
48  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DCORSELx = 0, DCOx = 0, MODx = 0  
DCORSELx = 0, DCOx = 31, MODx = 0  
DCORSELx = 1, DCOx = 0, MODx = 0  
DCORSELx = 1, DCOx = 31, MODx = 0  
DCORSELx = 2, DCOx = 0, MODx = 0  
DCORSELx = 2, DCOx = 31, MODx = 0  
DCORSELx = 3, DCOx = 0, MODx = 0  
DCORSELx = 3, DCOx = 31, MODx = 0  
DCORSELx = 4, DCOx = 0, MODx = 0  
DCORSELx = 4, DCOx = 31, MODx = 0  
DCORSELx = 5, DCOx = 0, MODx = 0  
DCORSELx = 5, DCOx = 31, MODx = 0  
DCORSELx = 6, DCOx = 0, MODx = 0  
DCORSELx = 6, DCOx = 31, MODx = 0  
DCORSELx = 7, DCOx = 0, MODx = 0  
DCORSELx = 7, DCOx = 31, MODx = 0  
MIN  
0.07  
0.70  
0.15  
1.47  
0.32  
3.17  
0.64  
6.07  
1.3  
TYP  
MAX UNIT  
0.20 MHz  
1.70 MHz  
0.36 MHz  
3.45 MHz  
0.75 MHz  
7.38 MHz  
1.51 MHz  
14.0 MHz  
3.2 MHz  
fDCO(0,0)  
fDCO(0,31)  
fDCO(1,0)  
fDCO(1,31)  
fDCO(2,0)  
fDCO(2,31)  
fDCO(3,0)  
fDCO(3,31)  
fDCO(4,0)  
fDCO(4,31)  
fDCO(5,0)  
fDCO(5,31)  
fDCO(6,0)  
fDCO(6,31)  
fDCO(7,0)  
fDCO(7,31)  
DCO frequency (0, 0)  
DCO frequency (0, 31)  
DCO frequency (1, 0)  
DCO frequency (1, 31)  
DCO frequency (2, 0)  
DCO frequency (2, 31)  
DCO frequency (3, 0)  
DCO frequency (3, 31)  
DCO frequency (4, 0)  
DCO frequency (4, 31)  
DCO frequency (5, 0)  
DCO frequency (5, 31)  
DCO frequency (6, 0)  
DCO frequency (6, 31)  
DCO frequency (7, 0)  
DCO frequency (7, 31)  
12.3  
2.5  
28.2 MHz  
6.0 MHz  
23.7  
4.6  
54.1 MHz  
10.7 MHz  
88.0 MHz  
19.6 MHz  
135 MHz  
39.0  
8.5  
60  
Frequency step between range  
DCORSEL and DCORSEL + 1  
SDCORSEL  
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)  
1.2  
2.3 ratio  
Frequency step between tap  
DCO and DCO + 1  
SDCO  
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)  
Measured at SMCLK  
1.02  
40  
1.12 ratio  
Duty cycle  
dfDCO/dT  
dfDCO/dVCC  
50  
0.1  
1.9  
60  
%
DCO frequency temperature drift  
fDCO = 1 MHz,  
%/°C  
%/V  
(1)  
(2)  
DCO frequency voltage drift  
fDCO = 1 MHz  
(1) Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C (40°C))  
(2) Calculated using the box method: (MAX(1.8 to 3.6 V) MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V 1.8 V)  
Typical DCO Frequency, VCC = 3.0 V,TA = 25°C  
100  
10  
DCOx = 31  
1
DCOx = 0  
0.1  
0
1
2
3
4
5
6
7
DCORSEL  
Figure 6. Typical DCO frequency  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
MAX UNIT  
PMM, Brown-Out Reset (BOR)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s  
MIN  
TYP  
BORH on voltage,  
DVCC falling level  
V(DVCC_BOR_IT)  
1.45  
1.50  
V
V
BORH off voltage,  
DVCC rising level  
V(DVCC_BOR_IT+)  
V(DVCC_BOR_hys)  
0.80  
60  
1.30  
BORH hysteresis  
250 mV  
Pulse length required at  
RST/NMI pin to accept a  
reset  
tRESET  
2
µs  
PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Core voltage, active mode,  
PMMCOREV = 3  
VCORE3(AM)  
VCORE2(AM)  
VCORE1(AM)  
VCORE0(AM)  
VCORE3(LPM)  
VCORE2(LPM)  
VCORE1(LPM)  
VCORE0(LPM)  
2.4 V DVCC 3.6 V  
1.90  
V
Core voltage, active mode,  
PMMCOREV = 2  
2.2 V DVCC 3.6 V  
2.0 V DVCC 3.6 V  
1.8 V DVCC 3.6 V  
2.4 V DVCC 3.6 V  
2.2 V DVCC 3.6 V  
2.0 V DVCC 3.6 V  
1.8 V DVCC 3.6 V  
1.80  
1.60  
1.40  
1.94  
1.84  
1.64  
1.44  
V
V
V
V
V
V
V
Core voltage, active mode,  
PMMCOREV = 1  
Core voltage, active mode,  
PMMCOREV = 0  
Core voltage, low-current mode,  
PMMCOREV = 3  
Core voltage, low-current mode,  
PMMCOREV = 2  
Core voltage, low-current mode,  
PMMCOREV = 1  
Core voltage, low-current mode,  
PMMCOREV = 0  
50  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
PMM, SVS High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVSHE = 0, DVCC = 3.6 V  
MIN  
TYP  
0
MAX UNIT  
nA  
I(SVSH)  
SVS current consumption SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1  
200  
1.5  
µA  
SVSHE = 1, SVSHRVL = 0  
1.57  
1.79  
1.98  
2.10  
1.62  
1.88  
2.07  
2.20  
2.32  
2.52  
2.90  
2.90  
1.68  
1.88  
2.08  
2.18  
1.74  
1.94  
2.14  
2.30  
2.40  
2.70  
3.10  
3.10  
1.78  
SVSHE = 1, SVSHRVL = 1  
1.98  
V
(1)  
V(SVSH_IT)  
SVSH on voltage level  
SVSHE = 1, SVSHRVL = 2  
SVSHE = 1, SVSHRVL = 3  
SVSHE = 1, SVSMHRRL = 0  
SVSHE = 1, SVSMHRRL = 1  
SVSHE = 1, SVSMHRRL = 2  
2.21  
2.31  
1.85  
2.07  
2.28  
SVSHE = 1, SVSMHRRL = 3  
2.42  
V
(1)  
V(SVSH_IT+)  
SVSH off voltage level  
SVSHE = 1, SVSMHRRL = 4  
SVSHE = 1, SVSMHRRL = 5  
SVSHE = 1, SVSMHRRL = 6  
SVSHE = 1, SVSMHRRL = 7  
SVSHE = 1, dVDVCC/dt = 10 mV/µs,  
2.55  
2.88  
3.23  
3.23  
2.5  
20  
SVSHFP = 1  
tpd(SVSH)  
SVSH propagation delay  
µs  
µs  
SVSHE = 1, dVDVCC/dt = 1 mV/µs,  
SVSHFP = 0  
SVSHE = 0 1  
SVSHFP = 1  
12.5  
100  
t(SVSH)  
SVSH on/off delay time  
SVSHE = 0 1  
SVSHFP = 0  
dVDVCC/dt  
DVCC rise time  
0
1000  
V/s  
(1) The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430x5xx/MSP430x6xx Family User's Guide (SLAU208) on recommended settings and usage.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
PMM, SVM High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVMHE = 0, DVCC = 3.6 V  
MIN  
TYP  
0
MAX UNIT  
nA  
I(SVMH)  
SVMH current consumption  
SVMHE= 1, DVCC = 3.6 V, SVMHFP = 0  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1  
SVMHE = 1, SVSMHRRL = 0  
SVMHE = 1, SVSMHRRL = 1  
SVMHE = 1, SVSMHRRL = 2  
SVMHE = 1, SVSMHRRL = 3  
SVMHE = 1, SVSMHRRL = 4  
SVMHE = 1, SVSMHRRL = 5  
SVMHE = 1, SVSMHRRL = 6  
SVMHE = 1, SVSMHRRL = 7  
SVMHE = 1, SVMHOVPE = 1  
200  
1.5  
µA  
1.85  
1.62  
1.88  
2.07  
2.20  
2.32  
2.52  
2.90  
2.90  
1.74  
1.94  
2.14  
2.30  
2.40  
2.70  
3.10  
3.10  
3.75  
2.07  
2.28  
2.42  
(1)  
V(SVMH)  
SVMH on/off voltage level  
2.55  
2.88  
3.23  
3.23  
V
SVMHE = 1, dVDVCC/dt = 10 mV/µs,  
SVMHFP = 1  
2.5  
20  
tpd(SVMH)  
SVMH propagation delay  
SVMH on/off delay time  
µs  
µs  
SVMHE = 1, dVDVCC/dt = 1 mV/µs,  
SVMHFP = 0  
SVMHE = 0 1  
SVMHFP = 1  
12.5  
100  
t(SVMH)  
SVMHE = 0 1  
SVMHFP = 0  
(1) The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430x5xx/MSP430x6xx Family User's Guide (SLAU208) on recommended settings and usage.  
PMM, SVS Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVSLE = 0, PMMCOREV = 2  
MIN  
TYP  
0
MAX UNIT  
nA  
I(SVSL)  
SVSL current consumption  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1  
200  
2.0  
µA  
SVSLE = 1, dVCORE/dt = 10 mV/µs,  
SVSLFP = 1  
2.5  
20  
tpd(SVSL)  
SVSL propagation delay  
SVSL on/off delay time  
µs  
µs  
SVSLE = 1, dVCORE/dt = 1 mV/µs,  
SVSLFP = 0  
SVSLE = 0 1  
SVSLFP = 1  
12.5  
100  
t(SVSL)  
SVSLE = 0 1  
SVSLFP = 0  
PMM, SVM Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVMLE = 0, PMMCOREV = 2  
MIN  
TYP  
0
MAX UNIT  
nA  
µA  
µs  
I(SVML)  
SVML current consumption  
SVMLE= 1, PMMCOREV = 2, SVMLFP = 0  
SVMLE= 1, PMMCOREV = 2, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
SVMLE = 0 1, SVMLFP = 1  
200  
1.5  
2.5  
20  
tpd(SVML)  
SVML propagation delay  
SVML on/off delay time  
12.5  
100  
t(SVML)  
µs  
SVMLE = 0 1, SVMLFP = 0  
52  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Wake-Up from Low Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Wake-up time from LPM2,  
LPM3, or LPM4 to active  
mode  
PMMCOREV = SVSMLRRL = n,  
where n = 0, 1, 2, or 3,  
SVSLFP = 1  
f
MCLK 4.0 MHz  
MCLK < 4.0 MHz  
5
tWAKE-UP-FAST  
µs  
(1)  
f
6
Wake-up time from LPM2,  
LPM3 or LPM4 to active  
mode  
PMMCOREV = SVSMLRRL = n,  
where n = 0, 1, 2, or 3,  
SVSLFP = 0  
tWAKE-UP-SLOW  
150  
165  
µs  
(2)  
Wake-up time from LPM4.5  
to active mode  
tWAKE-UP-LPM5  
tWAKE-UP-RESET  
2
2
3
3
ms  
ms  
(3)  
Wake-up time from RST or  
BOR event to active mode  
(3)  
(1) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance  
mode of the low side supervisor (SVSL) and low side monitor (SVML). Fastest wakeup times are possible with SVSLand SVML in full  
performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while  
operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the  
MSP430x5xx/MSP430x6xx Family User's Guide (SLAU208).  
(2) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance  
mode of the low side supervisor (SVSL) and low side monitor (SVML). In this case, the SVSLand SVML are in normal mode (low current)  
mode when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while operating in LPM2, LPM3, and  
LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx/MSP430x6xx Family User's  
Guide (SLAU208).  
(3) This value represents the time from the wakeup event to the reset vector execution.  
Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
fTA  
Timer_A input clock frequency  
External: TACLK  
1.8 V/3 V  
25 MHz  
Duty cycle = 50% ± 10%  
All capture inputs.  
tTA,cap  
Timer_A capture timing  
Minimum pulse width required for  
capture.  
1.8 V/3 V  
20  
ns  
Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
fTB  
Timer_B input clock frequency  
External: TBCLK  
1.8 V/3 V  
25 MHz  
Duty cycle = 50% ± 10%  
All capture inputs.  
tTB,cap  
Timer_B capture timing  
Minimum pulse width required for  
capture.  
1.8 V/3 V  
20  
ns  
USCI (UART Mode) - recommended operating conditions  
PARAMETER  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
1
MHz  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
MAX UNIT  
USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
50  
TYP  
600  
ns  
(1)  
tτ  
UART receive deglitch time  
50  
600  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
USCI (SPI Master Mode) - recommended operating conditions  
PARAMETER  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
Duty cycle = 50% ± 10%  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(see Note (1), Figure 7 and Figure 8)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
SMCLK, ACLK  
Duty cycle = 50% ± 10%  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
1.8 V  
3 V  
55  
38  
30  
25  
0
PMMCOREV = 0  
ns  
ns  
ns  
ns  
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time  
SIMO output data hold time  
2.4 V  
3 V  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
1.8 V  
3 V  
0
tHD,MI  
2.4 V  
3 V  
0
0
1.8 V  
3 V  
20  
ns  
18  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 0  
(2)  
tVALID,MO  
2.4 V  
3 V  
16  
ns  
15  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 3  
1.8 V  
3 V  
-10  
-8  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
ns  
ns  
(3)  
tHD,MO  
2.4 V  
3 V  
-10  
-8  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).  
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. Refer to the timing  
diagrams in Figure 7 and Figure 8.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. Refer to the timing diagrams in  
Figure 7 and Figure 8.  
54  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
tHD,MO  
tVALID,MO  
SIMO  
Figure 7. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
tHD,MO  
tVALID,MO  
SIMO  
Figure 8. SPI Master Mode, CKPH = 1  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
 
 
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(see Note (1), Figure 9 and Figure 10)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
11  
8
TYP  
MAX UNIT  
PMMCOREV = 0  
ns  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE low to clock  
2.4 V  
3 V  
7
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
ns  
ns  
ns  
6
1.8 V  
3 V  
3
3
STE lag time, Last clock to STE high  
2.4 V  
3 V  
3
3
1.8 V  
3 V  
66  
ns  
50  
STE access time, STE low to SOMI data out  
2.4 V  
3 V  
36  
ns  
30  
1.8 V  
3 V  
30  
ns  
23  
STE disable time, STE high to SOMI high  
impedance  
2.4 V  
3 V  
16  
ns  
13  
1.8 V  
3 V  
5
5
2
2
5
5
5
5
ns  
ns  
ns  
SIMO input data setup time  
SIMO input data hold time  
2.4 V  
3 V  
1.8 V  
3 V  
tHD,SI  
2.4 V  
3 V  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF  
PMMCOREV = 0  
1.8 V  
76  
ns  
3 V  
2.4 V  
3 V  
60  
(2)  
tVALID,SO  
SOMI output data valid time  
UCLK edge to SOMI valid,  
CL = 20 pF  
PMMCOREV = 3  
44  
ns  
40  
1.8 V  
3 V  
18  
12  
10  
8
CL = 20 pF  
PMMCOREV = 0  
ns  
ns  
(3)  
tHD,SO  
SOMI output data hold time  
2.4 V  
3 V  
CL = 20 pF  
PMMCOREV = 3  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).  
For the master's parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. Refer to the timing  
diagrams in Figure 7 and Figure 8.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. Refer to the timing diagrams in  
Figure 7 and Figure 8.  
56  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
tSTE,LAG  
www.ti.com  
tSTE,LEAD  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 9. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 10. SPI Slave Mode, CKPH = 1  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 11)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
fSCL  
SCL clock frequency  
2.2 V/3 V  
2.2 V/3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
f
f
f
f
SCL 100 kHz  
SCL > 100 kHz  
SCL 100 kHz  
SCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
µs  
tSU,STA  
Setup time for a repeated START  
2.2 V/3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V/3 V  
2.2 V/3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL 100 kHz  
SCL > 100 kHz  
tSU,STO  
Setup time for STOP  
2.2 V/3 V  
µs  
f
2.2 V  
3 V  
600  
ns  
tSP  
Pulse width of spikes suppressed by input filter  
50  
600  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 11. I2C Mode Timing  
58  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
 
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
10-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
AVCC  
V(Ax)  
Analog supply voltage  
1.8  
3.6  
V
V
All ADC10_A pins: P1.0 to P1.5 and P3.6 and  
P3.7 terminals  
(2)  
Analog input voltage range  
0
AVCC  
100  
fADC10CLK = 5 MHz, ADC10ON = 1, REFON =  
0,  
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,  
ADC10SREF = 00  
2.2 V  
3 V  
60  
75  
Operating supply current into  
AVCC terminal. REF module  
and reference buffer off.  
µA  
µA  
µA  
µA  
110  
fADC10CLK = 5 MHz, ADC10ON = 1, REFON =  
1,  
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,  
ADC10SREF = 01  
Operating supply current into  
AVCC terminal. REF module  
on, reference buffer on.  
3 V  
3 V  
113  
105  
150  
IADC10_A  
fADC10CLK = 5 MHz, ADC10ON = 1, REFON =  
0,  
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,  
ADC10SREF = 10, VEREF = 2.5 V  
Operating supply current into  
AVCC terminal. REF module  
off, reference buffer on.  
140  
110  
fADC10CLK = 5 MHz, ADC10ON = 1, REFON =  
0,  
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,  
ADC10SREF = 11, VEREF = 2.5 V  
Operating supply current into  
AVCC terminal. REF module  
off, reference buffer off.  
3 V  
70  
Only one terminal Ax can be selected at one  
time from the pad to the ADC10_A capacitor  
array including wiring and pad.  
CI  
RI  
Input capacitance  
2.2 V  
3.5  
pF  
AVCC > 2.0V, 0 V VAx AVCC  
36  
96  
Input MUX ON resistance  
kΩ  
1.8V < AVCC < 2.0V, 0 V VAx AVCC  
(1) The leakage current is defined in the leakage current table with P6.x/Ax parameter.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VRfor valid conversion results. The external  
reference voltage requires decoupling capacitors. See ()  
.
10-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC10_A linearity  
parameters  
fADC10CLK  
fADC10OSC  
2.2 V/3 V  
0.45  
5
5.5 MHz  
Internal ADC10_A  
oscillator  
ADC10DIV = 0, fADC10CLK = fADC10OSC  
2.2 V/3 V  
2.2 V/3 V  
4.2  
2.4  
4.8  
5.4 MHz  
(1)  
REFON = 0, Internal oscillator, 12 ADC10CLK  
cycles, 10-bit mode  
3.0  
fADC10OSC = 4 MHz to 5 MHz  
tCONVERT  
Conversion time  
µs  
External fADC10CLK from ACLK, MCLK or SMCLK,  
(2)  
ADC10SSEL 0  
Turn on settling time of  
the ADC  
(3)  
tADC10ON  
tSample  
See  
100  
ns  
(4)  
RS = 1000 , RI = 96 k, CI = 3.5 pF  
1.8 V  
3 V  
3
1
µs  
µs  
Sampling time  
(4)  
RS = 1000 , RI = 36 k, CI = 3.5 pF  
(1) The ADC10OSC is sourced directly from MODOSC inside the UCS.  
(2) 12 × ADC10DIV × 1/fADC10CLK  
(3) The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
(4) Approximately eight Tau (τ) are needed to get an error of less than ±0.5 LSB  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
MAX UNIT  
10-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
1.4 V (VeREF+ VeREF)min 1.6 V  
1.6 V < (VeREF+ VeREF)min VAVCC  
VCC  
MIN  
TYP  
±1.0  
LSB  
±1.0  
Integral  
linearity error  
EI  
2.2 V/3 V  
Differential  
linearity error  
(VeREF+ VeREF)min (VeREF+ VeREF),  
CVREF+ = 20 pF  
ED  
EO  
EG  
ET  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
±1.0 LSB  
±1.0 LSB  
±1.0 LSB  
±2.0 LSB  
(VeREF+ VeREF)min (VeREF+ VeREF),  
Internal impedance of source RS < 100 , CVeREF+ = 20 pF  
Offset error  
Gain error  
(VeREF+ VeREF)min (VeREF+ VeREF),  
CVREF+ = 20 pF  
Total unadjusted  
error  
(VeREF+ VeREF)min (VeREF+ VeREF),  
CVREF+ = 20 pF  
±1.0  
REF, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Positive external  
reference voltage input  
(2)  
VeREF+  
V
V
V
eREF+ > VeREF–  
1.4  
AVCC  
1.2  
V
V
V
Negative external  
reference voltage input  
(3)  
VeREF–  
eREF+ > VeREF–  
0
(VeREF+  
Differential external  
reference voltage input  
(4)  
eREF+ > VeREF–  
1.4  
AVCC  
VeREF–  
)
1.4 V VeREF+ VAVCC, VeREF= 0 V,  
fADC10CLK = 5 MHz, ADC10SHTx = 0x0001,  
Conversion rate 200 ksps  
±8.5  
±26  
±1  
IVeREF+  
IVeREF–  
Static input current  
2.2 V/3 V  
µA  
1.4 V VeREF+ VAVCC, VeREF= 0 V,  
fADC10CLK = 5 MHZ, ADC10SHTX = 0x1000,  
Conversion rate 20 ksps  
Capacitance at VeREF+/-  
terminal  
(5)  
CVREF+/-  
10  
µF  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VeREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC10_A. See also the MSP430x5xx/MSP430x6xx Family User's Guide (SLAU208).  
60  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
REFVSEL = {2} for 2.5 V  
REFON = 1  
3 V  
2.51 ±1.5%  
1.99 ±1.5%  
1.5 ±1.5%  
Positive built-in reference  
voltage  
REFVSEL = {1} for 2.0 V  
REFON = 1  
VREF+  
3 V  
V
V
REFVSEL = {0} for 1.5 V  
REFON = 1  
2.2 V/ 3 V  
REFVSEL = {0} for 1.5 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
2.2  
2.2  
2.7  
AVCC minimum voltage,  
Positive built-in reference  
active  
AVCC(min)  
fADC10CLK = 5.0 MHz  
REFON = 1, REFBURST = 0,  
REFVSEL = {2} for 2.5 V  
3 V  
3 V  
3 V  
18  
24  
21  
µA  
µA  
µA  
fADC10CLK = 5.0 MHz  
REFON = 1, REFBURST = 0,  
REFVSEL = {1} for 2.0 V  
Operating supply current  
into AVCC terminal  
IREF+  
15.5  
(2)  
fADC10CLK = 5.0 MHz  
REFON = 1, REFBURST = 0,  
REFVSEL = {0} for 1.5V  
13.5  
30  
21  
50  
Temperature coefficient of  
built-in reference  
IVREF+ = 0 A  
REFVSEL = (0, 1, 2}, REFON = 1  
ppm/  
°C  
TCREF+  
ISENSOR  
(3)  
2.2 V  
3 V  
20  
20  
22  
22  
Operating supply current  
REFON = 0, INCH = 0Ah,  
ADC10ON = N A, TA = 30°C  
µA  
mV  
V
(4)  
into AVCC terminal  
2.2 V  
3 V  
770  
770  
1.1  
1.5  
ADC10ON = 1, INCH = 0Ah,  
TA = 30°C  
(5)  
VSENSOR  
See  
2.2 V  
3 V  
1.06  
1.46  
1.14  
1.54  
ADC10ON = 1, INCH = 0Bh,  
VMID is ~0.5 × VAVCC  
VMID  
tSENSOR(sample)  
tVMID(sample)  
AVCC divider at channel 11  
Sample time required if  
ADC10ON = 1, INCH = 0Ah,  
Error of conversion result 1 LSB  
30  
1
µs  
µs  
(6)  
channel 10 is selected  
Sample time required if  
channel 11 is selected  
ADC10ON = 1, INCH = 0Bh,  
Error of conversion result 1 LSB  
(7)  
AVCC = AVCC (min) - AVCC(max)  
TA = 25 °C  
REFVSEL = (0, 1, 2}, REFON = 1  
Power supply rejection ratio  
(dc)  
PSRR_DC  
120  
µV/V  
AVCC = AVCC (min) - AVCC(max)  
Power supply rejection ratio TA = 25 °C  
PSRR_AC  
tSETTLE  
6.4  
75  
mV/V  
(ac)  
f = 1 kHz, ΔVpp = 100 mV  
REFVSEL = (0, 1, 2}, REFON = 1  
Settling time of reference  
voltage  
AVCC = AVCC (min) - AVCC(max)  
REFVSEL = (0, 1, 2}, REFON = 0 1  
µs  
(8)  
(1) The leakage current is defined in the leakage current table with P6.x/Ax parameter.  
(2) The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.  
(3) Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(-40 to 85°C)/(85°C (40°C)).  
(4) The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is  
high). When REFON = 1, ISENSOR is already included in IREF+  
.
(5) The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended in order to minimize the offset error  
of the built-in temperature sensor.  
(6) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
(7) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
(8) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
.
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Comparator B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
Supply voltage  
1.8  
3.6  
40  
50  
65  
17  
0.5  
V
1.8 V  
2.2 V  
Comparator operating  
supply current into AVCC  
Excludes reference  
resistor ladder.  
CBPWRMD = 00, CBON = 1, CBRSx = 00  
30  
40  
.
IAVCC_COMP  
3 V  
µA  
CBPWRMD = 01, CBON = 1, CBRSx = 00  
CBPWRMD = 10, CBON = 1, CBRSx = 00  
2.2/3 V  
2.2/3 V  
10  
0.1  
CBREFACC = 0, CBREFLx = 01,  
CBRSx = 10, REFON = 0, CBON = 0  
Quiescent current of  
2.2/3 V  
2.2/3 V  
10  
17  
22  
µA  
µA  
V
resistor ladder into AVCC  
Including REF module  
current.  
.
IAVCC_REF  
CBREFACC = 1, CBREFLx = 01,  
CBRSx = 10, REFON = 0, CBON = 0  
Common mode input  
range  
VIC  
VOFFSET  
CIN  
0
VCC-1  
CBPWRMD = 00  
±20  
±10  
mV  
mV  
pF  
kΩ  
MΩ  
ns  
Input offset voltage  
Input capacitance  
CBPWRMD = 01, 10  
5
3
ON - switch closed  
4
RSIN  
Series input resistance  
OFF - switch opened  
50  
CBPWRMD = 00, CBF = 0  
CBPWRMD = 01, CBF = 0  
CBPWRMD = 10, CBF = 0  
450  
600  
50  
Propagation delay,  
response time  
tPD  
ns  
µs  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 00  
0.35  
0.6  
1.0  
1.8  
0.6  
1.0  
1.8  
3.4  
1
1.0  
1.8  
3.4  
6.5  
2
µs  
µs  
µs  
µs  
µs  
µs  
µs  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 01  
Propagation delay with  
filter active  
tPD,filter  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 10  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 11  
CBON = 0 to CBON = 1  
CBPWRMD = 00, 01  
tEN_CMP  
Comparator enable time  
CBON = 0 to CBON = 1  
CBPWRMD = 10  
1.5  
Resistor reference enable  
time  
tEN_REF  
CBON = 0 to CBON = 1  
1
1.5  
VIN ×  
(n+0.5)  
/32  
VIN ×  
(n+1) (n+1.5)  
/32 /32  
VIN ×  
Reference voltage for a  
given tap  
VIN = reference into resistor ladder.  
n = 0 to 31  
VCB_REF  
V
62  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Ports PU.0 and PU.1  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VLDOO = 3.3 V ± 10%, IOH = -25 mA.  
Refer to Figure 13 for typical  
characteristics.  
VOH  
VOL  
VIH  
VIL  
High-level output voltage  
2.4  
V
VLDOO = 3.3 V ± 10%, IOL = 25 mA.  
Refer to Figure 12 for typical  
characteristics.  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
0.4  
0.8  
V
V
V
VLDOO = 3.3 V ± 10%  
Refer to Figure 14 for typical  
characteristics.  
2.0  
VLDOO = 3.3 V ± 10%  
Refer to Figure 14 for typical  
characteristics.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VCC = 3.0 V  
TA = 25 ºC  
VCC = 3.0 V  
TA = 85 ºC  
VCC = 1.8 V  
TA = 25 ºC  
VCC = 1.8 V  
TA = 85 ºC  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
VOL - Low-Level Output Voltage - V  
Figure 12. Ports PU.0, PU.1 Typical Low-Level Output Characteristics  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
0
-10  
-20  
-30  
VCC = 1.8 V  
TA = 85 ºC  
-40  
-50  
VCC = 3.0 V  
-60  
TA = 85 ºC  
VCC = 1.8 V  
-70  
TA = 25 ºC  
VCC = 3.0 V  
TA = 25 ºC  
-80  
-90  
0.5  
1
1.5  
2
2.5  
3
VOH - High-Level Output Voltage - V  
Figure 13. Ports PU.0, PU.1 Typical High-Level Output Characteristics  
TYPICAL PU.0, PU.1 INPUT THRESHOLD  
2.0  
TA = 25 °C, 85 °C  
1.8  
VIT+, postive-going input threshold  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIT-, negative-going input threshold  
1.8  
2.2  
2.6  
3
3.4  
- V  
LDOO Supply Voltage, VLDOO  
Figure 14. Ports PU.0, PU.1 Typical Input Threshold Characteristics  
64  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
LDO-PWR (LDO Power System)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VLAUNCH  
VLDOI  
LDO input detection threshold  
LDO input voltage  
3.75  
5.5  
V
V
V
3.76  
VLDO  
LDO output voltage  
3.3  
±9%  
LDOO terminal input voltage with  
LDO disabled.  
VLDO_EXT  
ILDOO  
LDO disabled.  
1.8  
60  
3.6  
20  
V
Maximum external current from  
LDOO terminal.  
LDO is on.  
mA  
mA  
µF  
nF  
LDO current overload detection  
IDET  
100  
(1)  
LDOI terminal recommended  
capacitance  
CLDOI  
4.7  
LDOO terminal recommended  
capacitance  
CLDOO  
tENABLE  
220  
Within 2%. Recommended  
capacitances.  
Settling time VLDO  
.
2
ms  
(1) A current overload will be detected when the total current supplied from the LDO exceeds this value.  
Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
DVCC(PGM/ERASE) Program and erase supply voltage  
1.8  
3.6  
200  
5
V
ns  
tREADMARGIN  
IPGM  
Read access time during margin mode  
Supply current from DVCC during program  
Supply current from DVCC during erase  
Supply current from DVCC during mass erase or bank erase  
Cumulative program time  
3
2
mA  
mA  
mA  
ms  
IERASE  
6.5  
2.5  
16  
IMERASE, IBANK  
tCPT  
(1)  
See  
Program/erase endurance  
104  
100  
64  
105  
cycles  
years  
µs  
tRetention  
tWord  
Data retention duration  
TJ = 25°C  
(2)  
Word or byte program time  
See  
85  
65  
(2)  
tBlock, 0  
Block program time for first byte or word  
See  
49  
µs  
Block program time for each additional byte or word, except for last  
byte or word  
(2)  
tBlock, 1(N1)  
tBlock, N  
See  
37  
55  
23  
49  
73  
32  
µs  
µs  
(2)  
Block program time for last byte or word  
See  
Erase time for segment, mass erase, and bank erase when  
available.  
(2)  
tErase  
See  
ms  
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
(2) These values are hardwired into the flash controller's state machine.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V/3 V  
0
20 MHz  
tSBW,Low  
Spy-Bi-Wire low clock pulse length  
2.2 V/3 V  
0.025  
15  
µs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
edge)  
tSBW, En  
tSBW,Rst  
2.2 V/3 V  
1
µs  
(1)  
Spy-Bi-Wire return to normal operation time  
15  
0
100  
5
µs  
2.2 V  
3 V  
MHz  
(2)  
fTCK  
TCK input frequency - 4-wire JTAG  
0
10 MHz  
80 kΩ  
Rinternal  
Internal pulldown resistance on TEST  
2.2 V/3 V  
45  
60  
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
66  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
INPUT/OUTPUT SCHEMATICS  
Port P1, P1.0 to P1.7, Input/Output With Schmitt Trigger  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P1OUT.x  
0
1
From module  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3/TA0.2  
P1.4/TA0.3  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
P1.5/TA0.4  
P1.6/TA1CLK/CBOUT  
P1.7/TA1.0  
EN  
D
To module  
P1IRQ.x  
P1IE.x  
EN  
Q
P1IFG.x  
Set  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 46. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0/TA0CLK/ACLK  
0
P1.0 (I/O)  
TA0CLK  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
ACLK  
1
P1.1/TA0.0  
1
2
3
4
5
6
7
P1.1 (I/O)  
TA0.CCI0A  
TA0.0  
I: 0; O: 1  
0
1
P1.2/TA0.1  
P1.2 (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
0
1
P1.3/TA0.2  
P1.3 (I/O)  
TA0.CCI2A  
TA0.2  
I: 0; O: 1  
0
1
P1.4/TA0.3  
P1.4 (I/O)  
TA0.CCI3A  
TA0.3  
I: 0; O: 1  
0
1
P1.5/TA0.4  
P1.5 (I/O)  
TA0.CCI4A  
TA0.4  
I: 0; O: 1  
0
1
P1.6/TA1CLK/CBOUT  
P1.7/TA1.0  
P1.6 (I/O)  
TA1CLK  
I: 0; O: 1  
0
CBOUT comparator B  
P1.7 (I/O)  
TA1.CCI0A  
TA1.0  
1
I: 0; O: 1  
0
1
68  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger  
Pad Logic  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P2OUT.x  
0
1
From module  
P2.0/TA1.1  
P2.1/TA1.2  
P2.2/TA2CLK/SMCLK  
P2.3/TA2.0  
P2.4/TA2.1  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2IN.x  
P2.5/TA2.2  
P2.6/RTCCLK/DMAE0  
P2.7/UB0STE/UCA0CLK  
EN  
D
To module  
To module  
P2IE.x  
EN  
Q
P2IFG.x  
Set  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 47. Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
P2.0/TA1.1  
x
FUNCTION  
P2DIR.x  
P2SEL.x  
0
P2.0 (I/O)  
TA1.CCI1A  
TA1.1  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
1
P2.1/TA1.2  
1
2
3
4
5
6
7
P2.1 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
0
1
P2.2/TA2CLK/SMCLK  
P2.3/TA2.0  
P2.2 (I/O)  
TA2CLK  
I: 0; O: 1  
0
SMCLK  
1
P2.3 (I/O)  
TA2.CCI0A  
TA2.0  
I: 0; O: 1  
0
1
P2.4/TA2.1  
P2.4 (I/O)  
TA2.CCI1A  
TA2.1  
I: 0; O: 1  
0
1
P2.5/TA2.2  
P2.5 (I/O)  
TA2.CCI2A  
TA2.2  
I: 0; O: 1  
0
1
P2.6/RTCCLK/DMAE0  
P2.6 (I/O)  
DMAE0  
I: 0; O: 1  
0
RTCCLK  
P2.7 (I/O)  
UCB0STE/UCA0CLK(2) (3)  
1
I: 0; O: 1  
X
P2.7/UCB0STE/UCA0CLK  
(1) X = Don't care  
(2) The pin direction is controlled by the USCI module.  
(3) UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI A0/B0 is forced  
to 3-wire SPI mode if 4-wire SPI mode is selected.  
70  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Port P3, P3.0 to P3.4, Input/Output With Schmitt Trigger  
Pad Logic  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P3OUT.x  
0
1
From module  
P3.0/UCB0SIMO/UCB0SDA  
P3.1/UCB0SOMI/UCB0SCL  
P3.2/UCB0CLK/UCA0STE  
P3.3/UCA0TXD/UCA0SIMO  
P3.4/UCA0RXD/UCA0SOMI  
P3DS.x  
0: Low drive  
1: High drive  
P3SEL.x  
P3IN.x  
EN  
D
To module  
Table 48. Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL.x  
P3.0/UCB0SIMO/UCB0SDA  
0
1
2
3
4
P3.0 (I/O)  
UCB0SIMO/UCB0SDA(2) (3)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
X
P3.1/UCB0SOMI/UCB0SCL  
P3.2/UCB0CLK/UCA0STE  
P3.3/UCA0TXD/UCA0SIMO  
P3.4/UCA0RXD/UCA0SOMI  
P3.1 (I/O)  
I: 0; O: 1  
UCB0SOMI/UCB0SCL(2) (3)  
P3.2 (I/O)  
UCB0CLK/UCA0STE(2) (4)  
X
I: 0; O: 1  
X
I: 0; O: 1  
X
P3.3 (I/O)  
UCA0TXD/UCA0SIMO(2)  
P3.4 (I/O)  
UCA0RXD/UCA0SOMI(2)  
I: 0; O: 1  
X
(1) X = Don't care  
(2) The pin direction is controlled by the USCI module.  
(3) If the I2C functionality is selected, the output drives only the logical 0 to VSS level.  
(4) UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI A0/B0 is forced  
to 3-wire SPI mode if 4-wire SPI mode is selected.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger  
Pad Logic  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
from Port Mapping Control  
P4OUT.x  
0
1
from Port Mapping Control  
P4.0/P4MAP0  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
P4.6/P4MAP6  
P4.7/P4MAP7  
P4DS.x  
0: Low drive  
1: High drive  
P4SEL.x  
P4IN.x  
EN  
D
to Port Mapping Control  
72  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Table 49. Port P4 (P4.0 to P4.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x(1)  
P4SEL.x  
P4MAPx  
P4.0/P4MAP0  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
P4.6/P4MAP6  
P4.7/P4MAP7  
0
P4.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
30  
X
Mapped secondary digital function  
P4.1 (I/O)  
X
1
2
3
4
5
6
7
I: 0; O: 1  
Mapped secondary digital function  
P4.2 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.3 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.4 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.5 (I/O)  
X
30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.6 (I/O)  
X
I: 0; O: 1  
X
30  
X
Mapped secondary digital function  
P4.7 (I/O)  
30  
X
I: 0; O: 1  
X
Mapped secondary digital function  
30  
(1) The direction of some mapped secondary functions are controlled directly by the module. See Table 9 for specific direction control  
information of mapped secondary functions.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Port P5, P5.0 and P5.1, Input/Output With Schmitt Trigger  
Pad Logic  
to/from Reference  
to ADC10  
INCHx = x  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
P5OUT.x  
0
1
From module  
P5.0/(A8/VeREF+)  
P5.1/(A9/VeREF–)  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
To module  
Table 50. Port P5 (P5.0 and P5.1) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
I: 0; O: 1  
X
P5SEL.x  
P5.0/A8/VeREF+(2)  
0
P5.0 (I/O)(3)  
A8/VeREF+(4)  
P5.1 (I/O)(3)  
A9/VeREF(6)  
0
1
0
1
P5.1/A9/VeREF(5)  
1
I: 0; O: 1  
X
(1) X = Don't care  
(2) VeREF+ available on devices with ADC10_A.  
(3) Default condition  
(4) Setting the P5SEL.0 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC10_A when available.  
(5) VeREF- available on devices with ADC10_A.  
(6) Setting the P5SEL.1 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC10_A when available.  
74  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Port P5, P5.2, Input/Output With Schmitt Trigger  
Pad Logic  
To XT2  
P5REN.2  
DVSS  
DVCC  
0
1
1
P5DIR.2  
0
1
P5OUT.2  
0
1
Module X OUT  
P5.2/XT2IN  
P5DS.2  
0: Low drive  
1: High drive  
P5SEL.2  
P5IN.2  
Bus  
Keeper  
EN  
D
Module X IN  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Port P5, P5.3, Input/Output With Schmitt Trigger  
Pad Logic  
To XT2  
P5REN.3  
DVSS  
DVCC  
0
1
1
P5DIR.3  
0
1
P5OUT.3  
0
1
Module X OUT  
P5.3/XT2OUT  
P5DS.3  
0: Low drive  
1: High drive  
P5SEL.3  
P5IN.3  
Bus  
Keeper  
EN  
D
Module X IN  
Table 51. Port P5 (P5.2, P5.3) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.2  
P5SEL.3  
XT2BYPASS  
P5.2/XT2IN  
2
P5.2 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
X
X
X
X
0
1
X
0
1
XT2IN crystal mode(2)  
XT2IN bypass mode(2)  
P5.3 (I/O)  
XT2OUT crystal mode(3)  
P5.3 (I/O)(3)  
X
X
P5.3/XT2OUT  
3
I: 0; O: 1  
X
X
(1) X = Don't care  
(2) Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal  
mode or bypass mode.  
(3) Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as  
general-purpose I/O.  
76  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Port P5, P5.4 and P5.5 Input/Output With Schmitt Trigger  
Pad Logic  
to XT1  
P5REN.4  
DVSS  
DVCC  
0
1
1
P5DIR.4  
0
1
P5OUT.4  
0
1
Module X OUT  
P5.4/XIN  
P5DS.4  
0: Low drive  
1: High drive  
P5SEL.4  
P5IN.4  
Bus  
Keeper  
EN  
D
Module X IN  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Pad Logic  
to XT1  
P5REN.5  
DVSS  
DVCC  
0
1
1
P5DIR.5  
0
1
P5OUT.5  
0
1
Module X OUT  
P5.5/XOUT  
P5DS.5  
0: Low drive  
1: High drive  
P5SEL.5  
XT1BYPASS  
P5IN.5  
Bus  
Keeper  
EN  
D
Module X IN  
Table 52. Port P5 (P5.4 and P5.5) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P7.x)  
P5.4/XIN  
x
FUNCTION  
P5DIR.x  
P5SEL.4  
P5SEL.5  
XT1BYPASS  
4
P5.4 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
X
X
X
X
0
1
X
0
1
XIN crystal mode(2)  
XIN bypass mode(2)  
P5.5 (I/O)  
XOUT crystal mode(3)  
P5.5 (I/O)(3)  
X
X
P5.5/XOUT  
5
I: 0; O: 1  
X
X
(1) X = Don't care  
(2) Setting P5SEL.4 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.4 is configured for crystal  
mode or bypass mode.  
(3) Setting P5SEL.4 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.5 can be used as  
general-purpose I/O.  
78  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Port P6, P6.0 to P6.7, Input/Output With Schmitt Trigger  
Pad Logic  
to ADC10  
INCHx = x  
to Comparator_B  
from Comparator_B  
CBPD.x  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
P6OUT.x  
0
1
From module  
P6.0/CB0/(A0)  
P6.1/CB1/(A1)  
P6.2/CB2/(A2)  
P6.3/CB3/(A3)  
P6.4/CB4/(A4)  
P6.5/CB5/(A5)  
P6.6/CB6/(A6)  
P6.7/CB7/(A7)  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
Bus  
Keeper  
EN  
D
To module  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 53. Port P6 (P6.0 to P6.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P6.x)  
P6.0/CB0/(A0)  
x
FUNCTION  
P6DIR.x  
P6SEL.x  
CBPD  
0
0
P6.0 (I/O)  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
A0 (only on devices with ADC)  
CB0(1)  
X
X
1
X
P6.1/CB1/(A1)  
P6.2/CB2/(A2)  
P6.3/CB3/(A3)  
P6.4/CB4/(A4)  
P6.5/CB5/(A5)  
P6.6/CB6/(A6)  
P6.7/CB7/(A7)  
1
2
3
4
5
6
7
P6.1 (I/O)  
I: 0; O: 1  
0
A1 (only on devices with ADC)  
CB1(1)  
X
X
1
X
P6.2 (I/O)  
I: 0; O: 1  
0
A2 (only on devices with ADC)  
CB2(1)  
X
X
1
X
P6.3 (I/O)  
I: 0; O: 1  
0
A3 (only on devices with ADC)  
CB3(1)  
X
X
1
X
P6.4 (I/O)  
I: 0; O: 1  
0
A4 (only on devices with ADC)  
CB4(1)  
X
X
1
X
P6.5 (I/O)  
I: 0; O: 1  
0
A5 (only on devices with ADC)  
CB5(1)  
X
X
1
X
P6.6 (I/O)  
I: 0; O: 1  
0
A6 (only on devices with ADC)  
CB6(1)  
X
X
1
X
P6.7 (I/O)  
I: 0; O: 1  
0
A7 (only on devices with ADC)  
CB7(1)  
X
X
X
1
(1) Setting the CBPD.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input  
buffer for that pin, regardless of the state of the associated CBPD.x bit.  
80  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Port PU.0, PU.1 Ports  
LDOO  
VSSU  
Pad Logic  
PUOPE  
PU.0  
PUOUT0  
PUIN0  
PUIPE  
PUIN1  
PUOUT1  
PU.1  
Table 54. Port PU.0, PU.1 Output Functions(1)  
CONTROL BITS  
PIN NAME  
PUOPE  
PUOUT1  
PUOUT0  
PU.1/DM  
Output disabled  
Output low  
PU.0/DP  
Output disabled  
Output low  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Output low  
Output high  
Output low  
Output high  
Output high  
Output high  
(1) PU.1 and PU.0 inputs and outputs are supplied from LDOO. LDOO can be generated by the device  
using the integrated 3.3-V LDO when enabled. LDOO can also be supplied externally when the 3.3-V  
LDO is not being used and is disabled.  
Table 55. Port PU.0, PU.1 Input Functions(1)  
CONTROL BITS  
PIN NAME  
PUIPE  
PU.1/DM  
PU.0/DP  
0
1
Input disabled  
Input enabled  
Input disabled  
Input enabled  
(1) PU.1 and PU.0 inputs and outputs are supplied from LDOO. LDOO  
can be generated by the device using the integrated 3.3-V LDO  
when enabled. LDOO can also be supplied externally when the  
3.3-V LDO is not being used and is disabled.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Port J, J.0 JTAG Pin TDO, Input/Output With Schmitt Trigger or Output  
Pad Logic  
PJREN.0  
0
1
DVSS  
DVCC  
1
PJDIR.0  
DVCC  
0
1
PJOUT.0  
0
1
From JTAG  
PJ.0/TDO  
PJDS.0  
0: Low drive  
1: High drive  
From JTAG  
PJIN.0  
EN  
D
Port J, J.1 to J.3 JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output  
Pad Logic  
PJREN.x  
0
1
DVSS  
DVCC  
1
PJDIR.x  
DVSS  
0
1
PJOUT.x  
0
1
From JTAG  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
PJDS.x  
0: Low drive  
1: High drive  
From JTAG  
PJIN.x  
EN  
D
To JTAG  
82  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Table 56. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS/  
SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJ.0/TDO  
0
PJ.0 (I/O)(2)  
TDO(3)  
I: 0; O: 1  
X
PJ.1/TDI/TCLK  
PJ.2/TMS  
1
2
3
PJ.1 (I/O)(2)  
TDI/TCLK(3) (4)  
PJ.2 (I/O)(2)  
TMS(3) (4)  
PJ.3 (I/O)(2)  
TCK(3) (4)  
I: 0; O: 1  
X
I: 0; O: 1  
X
PJ.3/TCK  
I: 0; O: 1  
X
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
DEVICE DESCRIPTORS  
Table 57 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type.  
(1)  
Table 57. Device Descriptor Table  
'F5308  
RGC  
'F5308  
RGZ  
'F5309  
RGC  
'F5309  
RGZ  
'F5310  
RGC  
'F5310  
RGZ  
'F5304  
SIZE  
(bytes)  
DESCRIPTION  
ADDRESS  
VALUE  
06h  
VALUE  
06h  
VALUE  
06h  
VALUE  
06h  
VALUE  
06h  
VALUE  
06h  
VALUE  
06h  
Info Block  
Info length  
CRC length  
01A00h  
01A01h  
01A02h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
1
1
2
1
1
1
1
1
1
4
2
2
2
06h  
06h  
06h  
06h  
06h  
06h  
06h  
CRC value  
per unit  
12h  
per unit  
13h  
per unit  
13h  
per unit  
14h  
per unit  
14h  
per unit  
15h  
per unit  
15h  
Device ID  
Device ID  
81h  
81h  
81h  
81h  
81h  
81h  
81h  
Hardware revision  
Firmware revision  
Die Record Tag  
Die Record length  
Lot/Wafer ID  
Die X position  
Die Y position  
Test results  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
Die Record  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC10  
Calibration  
ADC10 Calibration Tag  
01A14h  
1
13h  
13h  
13h  
13h  
13h  
13h  
13h  
ADC10 Calibration length  
ADC Gain Factor  
ADC Offset  
01A15h  
01A16h  
01A18h  
1
2
2
10h  
10h  
10h  
10h  
10h  
10h  
10h  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC 1.5-V Reference  
Temp. Sensor 30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC 1.5-V Reference  
Temp. Sensor 85°C  
ADC 2.0-V Reference  
Temp. Sensor 30°C  
ADC 2.0-V Reference  
Temp. Sensor 85°C  
ADC 2.5-V Reference  
Temp. Sensor 30°C  
ADC 2.5-V Reference  
Temp. Sensor 85°C  
REF  
Calibration  
REF Calibration Tag  
01A26h  
01A27h  
01A28h  
1
1
2
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
REF Calibration length  
REF 1.5-V Reference  
Factor  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
REF 2.0-V Reference  
Factor  
01A2Ah  
01A2Ch  
01A2Eh  
01A2Fh  
2
2
1
1
2
2
2
2
per unit  
per unit  
02h  
per unit  
per unit  
02h  
per unit  
per unit  
02h  
per unit  
per unit  
02h  
per unit  
per unit  
02h  
per unit  
per unit  
02h  
per unit  
per unit  
02h  
REF 2.5-V Reference  
Factor  
Peripheral  
Descriptor  
Peripheral Descriptor Tag  
Peripheral Descriptor  
Length  
5Ch  
60h  
60h  
61h  
61h  
60h  
60h  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
Memory 1  
Memory 2  
Memory 3  
Memory 4  
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
0Eh  
2Dh  
0Eh  
2Dh  
0Eh  
2Dh  
0Eh  
2Dh  
0Eh  
2Dh  
0Eh  
2Dh  
0Eh  
2Dh  
2Ah  
70h  
2Ah  
60h  
2Ah  
60h  
2Ah  
50h  
2Ah  
50h  
2Ah  
40h  
2Ah  
40h  
(1) N/A = Not applicable  
84 Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
 
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
Table 57. Device Descriptor Table (1) (continued)  
'F5308  
RGC  
'F5308  
RGZ  
'F5309  
RGC  
'F5309  
RGZ  
'F5310  
RGC  
'F5310  
RGZ  
'F5304  
VALUE  
8Eh  
SIZE  
(bytes)  
DESCRIPTION  
ADDRESS  
VALUE  
VALUE  
VALUE  
VALUE  
VALUE  
VALUE  
91h  
8Eh  
91h  
8Eh  
Memory 5  
2/1  
90h  
90h  
92h  
92h  
delimiter  
1
1
00h  
1Eh  
00h  
20h  
00h  
20h  
00h  
20h  
00h  
20h  
00h  
20h  
00h  
20h  
Peripheral count  
00h  
23h  
00h  
23h  
00h  
23h  
00h  
23h  
00h  
23h  
00h  
23h  
00h  
23h  
MSP430CPUXV2  
JTAG  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
00h  
09h  
00h  
09h  
00h  
09h  
00h  
09h  
00h  
09h  
00h  
09h  
00h  
09h  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
SBW  
00h  
03h  
00h  
03h  
00h  
03h  
00h  
03h  
00h  
03h  
00h  
03h  
00h  
03h  
EEM-S  
TI BSL  
SFR  
00h  
FCh  
00h  
FCh  
00h  
FCh  
00h  
FCh  
00h  
FCh  
00h  
FCh  
00h  
FCh  
10h  
41h  
10h  
41h  
10h  
41h  
10h  
41h  
10h  
41h  
10h  
41h  
10h  
41h  
02h  
30h  
02h  
30h  
02h  
30h  
02h  
30h  
02h  
30h  
02h  
30h  
02h  
30h  
PMM  
02h  
38h  
02h  
38h  
02h  
38h  
02h  
38h  
02h  
38h  
02h  
38h  
02h  
38h  
FCTL  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
CRC16  
CRC16_RB  
RAMCTL  
WDT_A  
UCS  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
40h  
00h  
40h  
00h  
40h  
00h  
40h  
00h  
40h  
00h  
40h  
00h  
40h  
01h  
48h  
01h  
48h  
01h  
48h  
01h  
48h  
01h  
48h  
01h  
48h  
01h  
48h  
02h  
42h  
02h  
42h  
02h  
42h  
02h  
42h  
02h  
42h  
02h  
42h  
02h  
42h  
SYS  
03h  
A0h  
03h  
A0h  
03h  
A0h  
03h  
A0h  
03h  
A0h  
03h  
A0h  
03h  
A0h  
REF  
01h  
10h  
01h  
10h  
01h  
10h  
01h  
10h  
01h  
10h  
01h  
10h  
01h  
10h  
Port Mapping  
Port 1/2  
Port 3/4  
Port 5/6  
JTAG  
04h  
51h  
04h  
51h  
04h  
51h  
04h  
51h  
04h  
51h  
04h  
51h  
04h  
51h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
53h  
02h  
53h  
02h  
53h  
02h  
53h  
02h  
53h  
02h  
53h  
02h  
53h  
0Eh  
5Fh  
0Eh  
5Fh  
0Eh  
5Fh  
0Eh  
5Fh  
0Eh  
5Fh  
0Eh  
5Fh  
0Eh  
5Fh  
02h  
62h  
02h  
62h  
02h  
62h  
02h  
62h  
02h  
62h  
02h  
62h  
02h  
62h  
TA0  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
TA1  
04h  
67h  
04h  
67h  
04h  
67h  
04h  
67h  
04h  
67h  
04h  
67h  
04h  
67h  
TB0  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
TA2  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
RTC  
02h  
85h  
02h  
85h  
02h  
85h  
02h  
85h  
02h  
85h  
02h  
85h  
02h  
85h  
MPY32  
DMA-3  
USCI_A/B  
04h  
47h  
04h  
47h  
04h  
47h  
04h  
47h  
04h  
47h  
04h  
47h  
04h  
47h  
10h  
90h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
MSP430F530x, MSP430F5310  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
www.ti.com  
Table 57. Device Descriptor Table (1) (continued)  
'F5308  
RGC  
'F5308  
RGZ  
'F5309  
RGC  
'F5309  
RGZ  
'F5310  
RGC  
'F5310  
RGZ  
'F5304  
VALUE  
N/A  
SIZE  
(bytes)  
DESCRIPTION  
ADDRESS  
VALUE  
VALUE  
VALUE  
VALUE  
VALUE  
VALUE  
04h  
90h  
04h  
90h  
04h  
90h  
04h  
90h  
04h  
90h  
04h  
90h  
USCI_A/B  
ADC10_A  
COMP_B  
LDO  
2
2
2
2
14h  
D3h  
14h  
D3h  
14h  
D3h  
14h  
D3h  
14h  
D3h  
14h  
D3h  
14h  
D3h  
18h  
A8h  
18h  
A8h  
18h  
A8h  
18h  
A8h  
18h  
A8h  
18h  
A8h  
N/A  
1Ch  
5Ch  
04h  
5Ch  
04h  
5Ch  
04h  
5Ch  
04h  
5Ch  
04h  
5Ch  
04h  
5Ch  
Interrupts  
COMP_B  
TB0.CCIFG0  
TB0.CCIFG1..6  
WDTIFG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
01h  
64h  
65h  
40h  
01h  
01h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
USCI_A0  
USCI_B0  
ADC10_A  
TA0.CCIFG0  
TA0.CCIFG1..4  
LDO-PWR  
DMA  
TA1.CCIFG0  
TA1.CCIFG1..2  
P1  
USCI_A1  
USCI_B1  
TA1.CCIFG0  
TA1.CCIFG1..2  
P2  
RTC_A  
delimiter  
86  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
 
MSP430F530x, MSP430F5310  
www.ti.com  
SLAS677B SEPTEMBER 2010REVISED MARCH 2011  
REVISION HISTORY  
REVISION  
COMMENTS  
SLAS677  
Product Preview release  
Production Data release  
Released BGA package  
SLAS677A  
Corrected VCB_REF min and max values by swapping them as they were backward  
Added IUSB_LDO and IVBUS_DETECT to USB-PWR table  
SLAS677B  
Added QFN thermal pad connection to pinout drawing and terminal function table  
Added LDO and Port U description  
Updated pin diagrams to show A8 and A9 muxed with P5.0/VeREF+ and P5.1/VeREF- pins, respectively  
Updated tEN_REF typ value; changed from 0.3 to 1  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Mar-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430F5304IPT  
MSP430F5304IPTR  
MSP430F5304IRGZR  
MSP430F5304IRGZT  
MSP430F5308IPT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
LQFP  
LQFP  
VQFN  
VQFN  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
VQFN  
PT  
PT  
48  
48  
48  
48  
48  
48  
64  
64  
48  
48  
80  
250  
1000  
2500  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
RGZ  
RGZ  
PT  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
MSP430F5308IPTR  
MSP430F5308IRGCR  
MSP430F5308IRGCT  
MSP430F5308IRGZR  
MSP430F5308IRGZT  
MSP430F5308IZQE  
PT  
1000  
2000  
250  
Green (RoHS  
& no Sb/Br)  
RGC  
RGC  
RGZ  
RGZ  
ZQE  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2500  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
360  
Green (RoHS  
& no Sb/Br)  
MSP430F5308IZQER  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQE  
80  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
MSP430F5309IPT  
MSP430F5309IPTR  
MSP430F5309IRGCR  
MSP430F5309IRGCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
VQFN  
VQFN  
PT  
PT  
48  
48  
64  
64  
250  
1000  
2000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
RGC  
RGC  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Mar-2011  
Status (1)  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430F5309IRGZR  
MSP430F5309IRGZT  
MSP430F5309IZQE  
VQFN  
VQFN  
RGZ  
RGZ  
ZQE  
48  
48  
80  
2500  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
PREVIEW  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
BGA  
360  
Green (RoHS  
& no Sb/Br)  
MICROSTAR  
JUNIOR  
MSP430F5309IZQER  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQE  
80  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
MSP430F5310IPT  
MSP430F5310IPTR  
MSP430F5310IRGCR  
MSP430F5310IRGCT  
MSP430F5310IRGZR  
MSP430F5310IRGZT  
MSP430F5310IZQE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
VQFN  
VQFN  
VQFN  
VQFN  
PT  
48  
48  
64  
64  
48  
48  
80  
250  
1000  
2000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
PT  
Green (RoHS  
& no Sb/Br)  
RGC  
RGC  
RGZ  
RGZ  
ZQE  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2500  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
360  
Green (RoHS  
& no Sb/Br)  
MSP430F5310IZQER  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQE  
80  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Mar-2011  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
MECHANICAL DATA  
MTQF003A – OCTOBER 1994 – REVISED DECEMBER 1996  
PT (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
M
0,08  
0,50  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
6,80  
Gage Plane  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,10  
1,60 MAX  
4040052/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. This may also be a thermally enhanced plastic package with leads conected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

MSP430F5309IZXHR

具有 24KB 闪存、6KB SRAM、10 位 ADC、比较器、DMA、UART/SPI/I2C 和硬件乘法器的 25MHz MCU | ZXH | 80 | -40 to 85
TI

MSP430F530X

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F530X_12

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5310

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5310IPT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5310IPTR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5310IRGC

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5310IRGCR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5310IRGCT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5310IRGZ

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5310IRGZR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5310IRGZT

MIXED SIGNAL MICROCONTROLLER
TI