MSP430F5326IZXHR [TI]

MSP430F532x Mixed-Signal Microcontrollers;
MSP430F5326IZXHR
型号: MSP430F5326IZXHR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MSP430F532x Mixed-Signal Microcontrollers

微控制器
文件: 总127页 (文件大小:3953K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326,MSP430F5325, MSP430F5324
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
MSP430F532x Mixed-Signal Microcontrollers  
– 32-kHz watch crystals (XT1)  
– High-frequency crystals up to 32 MHz (XT2)  
16-bit timer TA0, Timer_A with five capture/  
compare registers  
16-bit timer TA1, Timer_A with three capture/  
compare registers  
16-bit timer TA2, Timer_A with three capture/  
compare registers  
16-bit timer TB0, Timer_B with seven capture/  
compare shadow registers  
Two universal serial communication interfaces  
(USCIs)  
– USCI_A0 and USCI_A1 each support:  
1 Features  
Low supply voltage range:  
3.6 V down to 1.8 V  
Ultra-low power consumption  
– Active mode (AM):  
all system clocks active  
290 µA/MHz at 8 MHz, 3 V, flash program  
execution (typical)  
150 µA/MHz at 8 MHz, 3 V, RAM program  
execution (typical)  
– Standby mode (LPM3):  
real-time clock (RTC) with crystal, watchdog,  
and supply supervisor operational, full RAM  
retention, fast wakeup:  
1.9 µA at 2.2 V, 2.1 µA at 3 V (typical)  
low-power oscillator (VLO), general-purpose  
counter, watchdog, and supply supervisor  
operational, full RAM retention, fast wakeup:  
1.4 µA at 3 V (typical)  
Enhanced UART supports automatic baud-  
rate detection  
IrDA encoder and decoder  
Synchronous SPI  
– USCI_B0 and USCI_B1 each support:  
I2C  
– Off mode (LPM4):  
Synchronous SPI  
full RAM retention, supply supervisor  
operational, fast wakeup:  
1.1 µA at 3 V (typical)  
Integrated 3.3-V power system  
12-bit analog-to-digital converter (ADC) with  
internal reference, sample-and-hold, and autoscan  
feature  
– Shutdown mode (LPM4.5):  
0.18 µA at 3 V (typical)  
Wake up from standby mode in 3.5 µs (typical)  
16-bit RISC architecture, extended memory, up to  
25-MHz system clock  
Flexible power-management system  
– Fully integrated LDO with programmable  
regulated core supply voltage  
– Supply voltage supervision, monitoring, and  
brownout  
Comparator  
Hardware multiplier supports 32-bit operations  
Serial onboard programming, no external  
programming voltage needed  
3-channel internal DMA  
Basic timer with RTC feature  
Device Comparison summarizes the available  
family members  
2 Applications  
Unified clock system  
– FLL control loop for frequency stabilization  
– Low-power low-frequency internal clock source  
(VLO)  
Analog and Digital Sensor Systems  
Data Loggers  
General-Purpose Applications  
– Low-frequency trimmed internal reference  
source (REFO)  
3 Description  
The TI MSP430family of ultra-low-power microcontrollers consists of several devices featuring different sets of  
peripherals targeted for various applications. The architecture, combined with extensive low-power modes is  
optimized to achieve extended battery life in portable measurement applications. The device features a powerful  
16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The  
digitally controlled oscillator (DCO) allows the devices to wake up from low-power modes to active mode in  
3.5 µs (typical).  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
The MSP430F5329, MSP430F5327, and MSP430F5325 are microcontroller configurations with an integrated  
3.3-V LDO, four 16-bit timers, a high-performance 12-bit ADC, two USCIs, a hardware multiplier, DMA, an RTC  
module with alarm capabilities, and 63 I/O pins.  
The MSP430F5328, MSP430F5326, and MSP430F5324 include all of these peripherals but have 47 I/O pins.  
Typical applications include analog and digital sensor systems, data loggers, and various general-purpose  
applications.  
For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide.  
Device Information  
PART NUMBER(1)  
MSP430F5329IPN  
PACKAGE  
BODY SIZE(2)  
12 mm × 12 mm  
9 mm × 9 mm  
5 mm × 5 mm  
5 mm × 5 mm  
LQFP (80)  
MSP430F5328IRGC  
MSP430F5328IZXH  
MSP430F5328IZQE(3)  
VQFN (64)  
nFBGA (80)  
MicroStar JuniorBGA (80)  
(1) For the most current part, package, and ordering information, see the Package Option Addendum  
in Section 11, or see the TI website at www.ti.com.  
(2) The sizes shown here are approximations. For the package dimensions with tolerances, see the  
Mechanical Data in Section 11.  
(3) All orderable part numbers in the ZQE (MicroStar Junior BGA) package have been changed to a  
status of Last Time Buy. Visit the Product life cycle page for details on this status.  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
4 Functional Block Diagrams  
Figure 4-1 shows the functional block diagram for the F5329, F5327, and F5325 devices in the PN package.  
PA  
PB  
PC  
PD  
LDOO LDOI  
XIN XOUT  
DVCC DVSS VCORE AVCC AVSS  
RST/NMI  
PU.0,  
PU.1  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
XT2IN  
SYS  
ACLK  
Power  
Management  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
and Wakeup  
I/O Ports  
P3, P4  
2×8 I/Os  
I/O Ports  
P5, P6  
2×8 I/Os  
I/O Ports  
P7, P8  
1×8 I/Os  
1×3 I/Os  
Unified  
Clock  
System  
Watchdog  
128KB  
96KB  
64KB  
32KB  
8KB+2KB  
6KB+2KB  
4KB+2KB  
XT2OUT  
PU Port  
LDO  
SMCLK  
Port Map  
Control  
(P4)  
LDO  
SVM, SVS  
Brownout  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
PD  
1×11 I/Os  
Flash  
RAM  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(L: 8+2)  
ADC12_A  
USCI0,1  
TA2  
TB0  
12 Bit  
200 ksps  
TA0  
TA1  
USCI_Ax:  
UART,  
IrDA, SPI  
JTAG,  
SBW  
Interface  
REF  
COMP_B  
RTC_A  
MPY32  
CRC16  
Timer_A  
5 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_B  
7 CC  
Registers  
12 Channels  
16 Channels  
(14 ext, 2 int)  
Autoscan  
USCI_Bx:  
SPI, I2C  
Functional Block Diagram – MSP430F5329IPN, MSP430F5327IPN, MSP430F5325IPN  
Figure 4-1 shows the functional block diagram for the F5328, F5326, and F5324 devices in the ZXH, ZQE, or  
RGC package.  
PA  
PB  
PC  
LDOO LDOI  
XIN XOUT  
DVCC DVSS VCORE AVCC AVSS  
RST/NMI  
PU.0,  
PU.1  
P1.x P2.x P3.x P4.x P5.x P6.x  
XT2IN  
SYS  
ACLK  
Power  
Management  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
& Wakeup  
I/O Ports  
P3, P4  
1×5 I/Os  
1×8 I/Os  
I/O Ports  
P5, P6  
1×6 I/Os  
1×8 I/Os  
Unified  
Clock  
System  
Watchdog  
128KB  
96KB  
64KB  
32KB  
8KB+2KB  
6KB+2KB  
4KB+2KB  
XT2OUT  
PU Port  
LDO  
SMCLK  
Port Map  
Control  
(P4)  
LDO  
SVM/SVS  
Brownout  
MCLK  
PA  
1×16 I/Os  
PB  
1×13 I/Os  
PC  
1×14 I/Os  
Flash  
RAM  
MAB  
MDB  
CPUXV2  
and  
Working  
Registers  
DMA  
3 Channel  
EEM  
(L: 8+2)  
ADC12_A  
USCI0,1  
TA2  
TB0  
12 Bit  
200 ksps  
TA0  
TA1  
USCI_Ax:  
UART,  
IrDA, SPI  
JTAG,  
SBW  
Interface  
REF  
COMP_B  
RTC_A  
MPY32  
CRC16  
Timer_A  
5 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
Timer_B  
7 CC  
Registers  
8 Channels  
12 Channels  
(10 ext, 2 int)  
Autoscan  
USCI_Bx:  
SPI, I2C  
Functional Block Diagram – MSP430F5328IRGC, MSP430F5326IRGC, MSP430F5324IRGC,  
MSP430F5328IZXH, MSP430F5326IZXH, MSP430F5324IZXH, MSP430F5328IZQE, MSP430F5326IZQE,  
MSP430F5324IZQE  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Functional Block Diagrams............................................ 3  
5 Revision History.............................................................. 5  
6 Device Comparison.........................................................7  
6.1 Related Products........................................................ 7  
7 Terminal Configuration and Functions..........................8  
7.1 Pin Diagrams.............................................................. 8  
7.2 Signal Descriptions................................................... 11  
8 Specifications................................................................ 17  
8.1 Absolute Maximum Ratings...................................... 17  
8.2 ESD Ratings............................................................. 17  
8.3 Recommended Operating Conditions.......................18  
8.4 Active Mode Supply Current Into VCC Excluding  
8.23 PMM, SVM High Side............................................. 32  
8.24 PMM, SVS Low Side...............................................33  
8.25 PMM, SVM Low Side..............................................33  
8.26 Wake-up Times From Low-Power Modes and  
Reset...........................................................................34  
8.27 Timer_A...................................................................34  
8.28 Timer_B...................................................................34  
8.29 USCI (UART Mode) Clock Frequency.................... 35  
8.30 USCI (UART Mode)................................................ 35  
8.31 USCI (SPI Master Mode) Clock Frequency............ 35  
8.32 USCI (SPI Master Mode)........................................ 35  
8.33 USCI (SPI Slave Mode).......................................... 37  
8.34 USCI (I2C Mode).....................................................39  
8.35 12-Bit ADC, Power Supply and Input Range  
Conditions................................................................... 40  
8.36 12-Bit ADC, Timing Parameters..............................40  
8.37 12-Bit ADC, Linearity Parameters Using an  
External Current.......................................................... 18  
8.5 Low-Power Mode Supply Currents (Into VCC  
)
Excluding External Current..........................................20  
8.6 Thermal Resistance Characteristics......................... 21  
8.7 Schmitt-Trigger Inputs – General-Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to  
P4.7) (P5.0 to P5.7, P6.0 to P6.7, P7.0 to P7.7,  
External Reference Voltage or AVCC as  
Reference Voltage.......................................................41  
8.38 12-Bit ADC, Linearity Parameters Using the  
Internal Reference Voltage..........................................41  
8.39 12-Bit ADC, Temperature Sensor and Built-In  
P8.0 to P8.2, PJ.0 to PJ.3, RST/NMI)......................... 21  
8.8 Inputs – Ports P1 and P2 (P1.0 to P1.7, P2.0 to  
P2.7)............................................................................21  
8.9 Leakage Current – General-Purpose I/O (P1.0 to  
P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.7)  
(P5.0 to P5.7, P6.0 to P6.7, P7.0 to P7.7, P8.0 to  
P8.2, PJ.0 to PJ.3, RST/NMI)......................................22  
8.10 Outputs – General-Purpose I/O (Full Drive  
Strength) (P1.0 to P1.7, P2.0 to P2.7, P3.0 to  
P3.7, P4.0 to P4.7) (P5.0 to P5.7, P6.0 to P6.7,  
P7.0 to P7.7, P8.0 to P8.2, PJ.0 to PJ.3).................... 22  
8.11 Outputs – General-Purpose I/O (Reduced Drive  
Strength) (P1.0 to P1.7, P2.0 to P2.7, P3.0 to  
VMID ............................................................................42  
8.40 REF, External Reference........................................ 43  
8.41 REF, Built-In Reference.......................................... 44  
8.42 Comparator B..........................................................45  
8.43 Ports PU.0 and PU.1...............................................45  
8.44 LDO-PWR (LDO Power System)............................47  
8.45 Flash Memory......................................................... 48  
8.46 JTAG and Spy-Bi-Wire Interface.............................48  
9 Detailed Description......................................................49  
9.1 CPU ......................................................................... 49  
9.2 Operating Modes...................................................... 50  
9.3 Interrupt Vector Addresses....................................... 51  
9.4 Memory Organization................................................52  
9.5 Bootloader (BSL)...................................................... 53  
9.6 JTAG Operation........................................................ 53  
9.7 Flash Memory .......................................................... 54  
9.8 RAM .........................................................................54  
9.9 Peripherals................................................................54  
9.10 Input/Output Diagrams............................................78  
9.11 Device Descriptors................................................101  
10 Device and Documentation Support........................104  
10.1 Getting Started and Next Steps............................ 104  
10.2 Device Nomenclature............................................104  
10.3 Tools and Software............................................... 106  
10.4 Documentation Support........................................ 108  
10.5 Related Links........................................................ 109  
10.6 Support Resources............................................... 110  
10.7 Trademarks........................................................... 110  
10.8 Electrostatic Discharge Caution............................110  
10.9 Export Control Notice............................................110  
10.10 Glossary..............................................................110  
11 Mechanical, Packaging, and Orderable  
P3.7, P4.0 to P4.7) (P5.0 to P5.7, P6.0 to P6.7,  
P7.0 to P7.7, P8.0 to P8.2, PJ.0 to PJ.3).................... 22  
8.12 Output Frequency – General-Purpose I/O (P1.0  
to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.7)  
(P5.0 to P5.7, P6.0 to P6.7, P7.0 to P7.7, P8.0 to  
P8.2, PJ.0 to PJ.3)...................................................... 23  
8.13 Typical Characteristics – Outputs, Reduced  
Drive Strength (PxDS.y = 0)........................................24  
8.14 Typical Characteristics – Outputs, Full Drive  
Strength (PxDS.y = 1)................................................. 25  
8.15 Crystal Oscillator, XT1, Low-Frequency Mode........26  
8.16 Crystal Oscillator, XT2............................................ 27  
8.17 Internal Very-Low-Power Low-Frequency  
Oscillator (VLO)...........................................................28  
8.18 Internal Reference, Low-Frequency Oscillator  
(REFO)........................................................................28  
8.19 DCO Frequency......................................................29  
8.20 PMM, Brownout Reset (BOR).................................30  
8.21 PMM, Core Voltage.................................................30  
8.22 PMM, SVS High Side..............................................31  
Information...................................................................111  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
5 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from revision F to revision G  
Changes from September 24, 2019 to September 11, 2020  
Page  
Updated the numbering for sections, tables, figures, and cross-references throughout the document..............1  
Added nFBGA package (ZXH) information throughout document......................................................................1  
Added note about status change for all orderable part numbers in the ZQE package in Device Information ... 1  
Changed the MAX value of the IERASE and IMERASE, IBANK parameters in Section 8.45, Flash Memory ......... 48  
Changes from revision E to revision F  
Changes from September 26, 2018 to September 23, 2019  
Page  
Added the note "TI recommends connecting the exposed thermal pad to VSS" to Figure 7-2, 64-Pin RGC  
Package (Top View) – MSP430F5328IRGC, MSP430F5326IRGC, MSP430F5324IRGC ................................8  
Added a row for the QFN thermal pad to Section 7.2, Signal Descriptions ..................................................... 11  
Changes from revision D to revision E  
Changes from February 27, 2013 to September 25, 2018  
Page  
Changes throughout to document structure and organization, including addition of section numbering............1  
Added Section 2, Applications ...........................................................................................................................1  
Added Device Information table..........................................................................................................................1  
Added Section 4 and moved all functional block diagrams to it..........................................................................3  
Added Section 6.1, Related Products ................................................................................................................7  
Added signal names to the ZQE pinout..............................................................................................................8  
Added "Port U is supplied by the LDOO rail" to the PU.0 and PU.1 descriptions in Section 7.2, Signal  
Descriptions ..................................................................................................................................................... 11  
Added note to RST/NMI/SBWTDIO pin............................................................................................................ 11  
Added typical conditions statements at the beginning of Section 8, Specifications .........................................17  
Added Section 8.2, ESD Ratings .....................................................................................................................17  
Added note to CVCORE ..................................................................................................................................... 18  
Moved Section 8.6, Thermal Resistance Characteristics ................................................................................ 21  
Added note to RPull .......................................................................................................................................... 21  
Changed the TYP value of the CL,eff parameter with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to 1  
pF in Section 8.15, Crystal Oscillator, XT1, Low-Frequency Mode ................................................................. 26  
Changed the MIN value of the V(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 8.20, PMM,  
Brownout Reset (BOR) ....................................................................................................................................30  
Updated notes (1) and (2) and added note (3) in Section 8.26, Wake-up Times From Low-Power Modes and  
Reset ............................................................................................................................................................... 34  
Removed ADC12DIV from the formula for the TYP value in the second row of the tCONVERT parameter in  
Section 8.36, 12-Bit ADC, Timing Parameters, because ADC12CLK is after division..................................... 40  
For the tEN_CMP parameter in Section 8.42, Comparator_B: Changed the Test Condition of the first row from  
"CBPWRMD = 00, 01, 10" to "CBPWRMD = 00, 01"; Added a second row with Test Conditions of  
"CBPWRMD = 10" and MAX value of 100 µs...................................................................................................45  
Changed all instances of "bootstrap loader" to "bootloader" throughout document ........................................ 53  
Corrected spelling of NMIIFG in Table 9-8, System Module Interrupt Vector Registers ..................................57  
Changed Table 9-56, Port PU.0, PU.1 Functions ............................................................................................ 98  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Added Section 10, Device and Documentation Support, and moved Device Nomenclature, ESD Caution, and  
Trademarks sections to it................................................................................................................................104  
Replaced former Tools Support section with Section 10.3, Tools and Software ............................................106  
Added Section 11, Mechanical, Packaging, and Orderable Information ........................................................ 111  
Changes from initial release to revision D  
REVISION  
DESCRIPTION  
Section 7.2, Changed ACLK description (added dividers up to 32)  
Table 9-6, Corrected typo in PM_ANALOG note  
Table 9-8, Changed SYSRSTIV interrupt event at 1Ch to Reserved  
Section 9.9.1, Changed description of the number of I/Os in each port for the different package options  
Section 8.3, Added test conditions for typical characteristics  
SLAS678D  
February 2013  
Section 8.3, Added note regarding interaction between minimum VCC and SVS  
Section 8.19, Added note (1)  
Section 8.37, Changed note regarding decoupling capacitors on VREF+ and VREF- pins  
Section 8.39, Changed tSENSOR(sample) MIN value to 100 µs, Changed note (2)  
Section 8.45, Changed values of IERASE and IMERASE  
Table 9-45, Table 9-46, Corrected notes regarding USCI CLK functions taking precedence over USCI STE functions  
SLAS678C  
November 2011  
Added Section 9.11  
SLAS678B  
October 2011  
Production Data release  
Updated Product Preview release  
Product Preview release  
SLAS678A  
August 2011  
SLAS678  
August 2010  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
6 Device Comparison  
Table 6-1 summarizes the available family members.  
Table 6-1. Device Comparison  
USCI  
CHANNEL A:  
UART, IrDA,  
SPI  
FLASH  
(KB)  
SRAM  
(KB)  
ADC12_A  
(Ch)  
Comp_B  
(Ch)  
PACKAGE  
DEVICE(1)  
Timer_A(2) Timer_B(3)  
I/O  
(4)  
CHANNEL B:  
SPI, I2C  
MSP430F5329  
MSP430F5328  
MSP430F5327  
MSP430F5326  
MSP430F5325  
MSP430F5324  
128  
128  
96  
10  
10  
8
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
7
7
7
7
7
7
2
2
2
2
2
2
2
2
2
2
2
2
14 ext, 2 int  
10 ext, 2 int  
14 ext, 2 int  
10 ext, 2 int  
14 ext, 2 int  
10 ext, 2 int  
12  
8
63  
47  
63  
47  
63  
47  
80 PN  
64 RGC,  
80 ZXH,  
80 ZQE  
12  
8
80 PN  
64 RGC,  
80 ZXH,  
80 ZQE  
96  
8
64  
6
12  
8
80 PN  
64 RGC,  
80 ZXH,  
80 ZQE  
64  
6
(1) For the most current package and ordering information, see the Package Option Addendum in Section 11, or see the TI website at  
www.ti.com.  
(2) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and  
PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
(3) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and  
PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
(4) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/  
packaging.  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
Products for TI microcontrollers  
TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a  
broad range of applications.  
Products for MSP430 ultra-low-power microcontrollers  
One platform. One ecosystem. Endless possibilities.  
Companion products for MSP430F5329  
Review products that are frequently purchased or used in conjunction with this product.  
Reference designs  
Find reference designs leveraging the best in TI technology – from analog and power management to embedded  
processors.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
7 Terminal Configuration and Functions  
7.1 Pin Diagrams  
Figure 7-1 shows the pinout for the F5329, F5327, and F5325 devices in the 80-pin PN package.  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P7.7/TB0CLK/MCLK  
P7.6/TB0.4  
P6.4/CB4/A4  
P6.5/CB5/A5  
2
3
P7.5/TB0.3  
P6.6/CB6/A6  
4
P7.4/TB0.2  
P6.7/CB7/A7  
P7.0/CB8/A12  
P7.1/CB9/A13  
5
P5.7/TB0.1  
6
P5.6/TB0.0  
P4.7/PM_NONE  
P4.6/PM_NONE  
P7.2/CB10/A14  
P7.3/CB11/A15  
P5.0/A8/VREF+/VeREF+  
P5.1/A9/VREF−/VeREF−  
AVCC1  
7
8
P4.5/PM_UCA1RXD/PM_UCA1SOMI  
P4.4/PM_UCA1TXD/PM_UCA1SIMO  
DVCC2  
9
MSP430F5329IPN  
MSP430F5327IPN  
MSP430F5325IPN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DVSS2  
P5.4/XIN  
P5.5/XOUT  
AVSS1  
P4.3/PM_UCB1CLK/PM_UCA1STE  
P4.2/PM_UCB1SOMI/PM_UCB1SCL  
P4.1/PM_UCB1SIMO/PM_UCB1SDA  
P4.0/PM_UCB1STE/PM_UCA1CLK  
P3.7/TB0OUTH/SVMOUT  
P3.6/TB0.6  
P8.0  
P8.1  
P8.2  
DVCC1  
DVSS1  
VCORE  
P3.5/TB0.5  
P3.4/UCA0RXD/UCA0SOMI  
A0.3  
A0.4  
A1.0  
P1.4/T  
P1.5/T  
P1.7/T  
A2CLK/SMCLK  
A1CLK/CBOUT  
P2.2/T  
P1.6/T  
Figure 7-1. 80-Pin PN Package (Top View) – MSP430F5329IPN, MSP430F5327IPN, MSP430F5325IPN  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Figure 7-2 shows the pinout for the F5328, F5326, and F5324 devices in the 64-pin RGC package.  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P4.7/PM_NONE  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P6.0/CB0/A0  
P6.1/CB1/A1  
P4.6/PM_NONE  
2
3
P4.5/PM_UCA1RXD/PM_UCA1SOMI  
P4.4/PM_UCA1TXD/PM_UCA1SIMO  
P4.3/PM_UCB1CLK/PM_UCA1STE  
P4.2/PM_UCB1SOMI/PM_UCB1SCL  
P4.1/PM_UCB1SIMO/PM_UCB1SDA  
P4.0/PM_UCB1STE/PM_UCA1CLK  
DVCC2  
P6.2/CB2/A2  
4
P6.3/CB3/A3  
P6.4/CB4/A4  
5
P6.5/CB5/A5  
6
P6.6/CB6/A6  
7
MSP430F5328IRGC  
MSP430F5326IRGC  
MSP430F5324IRGC  
P6.7/CB7/A7  
8
P5.0/A8/VREF+/VeREF+  
P5.1/A9/VREF−/VeREF−  
AVCC1  
9
DVSS2  
10  
11  
12  
13  
14  
15  
16  
P3.4/UCA0RXD/UCA0SOMI  
P3.3/UCA0TXD/UCA0SIMO  
P3.2/UCB0CLK/UCA0STE  
P3.1/UCB0SOMI/UCB0SCL  
P3.0/UCB0SIMO/UCB0SDA  
P2.7/UCB0STE/UCA0CLK  
P5.4/XIN  
P5.5/XOUT  
AVSS1  
DVCC1  
DVSS1  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
A1.1  
A0.3  
A0.4  
A1.0  
A1.2  
P2.0/T  
P1.4/T  
P1.5/T  
P1.7/T  
P2.1/T  
A2CLK/SMCLK  
A1CLK/CBOUT  
P2.2/T  
P1.6/T  
TI recommends connecting the exposed thermal pad to VSS  
.
Figure 7-2. 64-Pin RGC Package (Top View) – MSP430F5328IRGC, MSP430F5326IRGC,  
MSP430F5324IRGC  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Figure 7-3 shows the pinout for the F5328, F5326, and F5324 devices in the 80-pin ZXH or ZQE package. This  
figure shows the default signal name for each pin; see Section 7.2 for additional signals.  
P6.0  
A1  
RST  
A2  
PJ.2  
A3  
TEST AVSS2 LDOO LDOI  
PU.1  
A8  
PU.0  
A9  
A4  
A5  
A6  
A7  
P6.2  
B1  
P6.1  
B2  
PJ.3  
B3  
P5.3  
B4  
P5.2  
B5  
NC  
B6  
NC  
B7  
VSSU VSSU  
B8  
B9  
P6.4  
C1  
P6.3  
C2  
PJ.1  
C4  
PJ.0 Reserved P4.7  
C5 C6  
C7  
P4.6  
C8  
P4.5  
C9  
P6.6  
D1  
P6.5  
D2  
P6.7 Reserved Reserved Reserved P4.4  
D3 D4 D7  
D5 D6  
P4.3  
D8  
P4.2  
D9  
P5.0  
E1  
P5.1 Reserved Reserved Reserved Reserved P4.1  
E2 E3 E4 E7  
E5 E6  
P4.0 DVCC2  
E8 E9  
P5.4 AVCC1 Reserved Reserved Reserved Reserved Reserved Reserved DVSS2  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
P5.5 AVSS1 Reserved P1.3  
P1.6  
G5  
P2.1  
G6  
P3.4  
G7  
P3.2  
G8  
P3.3  
G9  
G1  
DVCC1 P1.0  
H1 H2  
G2  
G3  
G4  
P1.1  
H3  
P1.4  
H4  
P1.7  
H5  
P2.3  
H6  
P2.7  
H7  
P3.0  
H8  
P3.1  
H9  
DVSS1 VCORE P1.2  
J1 J2 J3  
P1.5  
J4  
P2.0  
J5  
P2.2  
J6  
P2.4  
J7  
P2.5  
J8  
P2.6  
J9  
Figure 7-3. 80-Pin ZXH or ZQE Package (Top View) – MSP430F5328IZXH, MSP430F5326IZXH,  
MSP430F5324IZXH, MSP430F5328IZQE, MSP430F5326IZQE, MSP430F5324IZQE  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
7.2 Signal Descriptions  
Table 7-1 describes the signals for all device variants and package options.  
Table 7-1. Signal Descriptions  
TERMINAL  
NO.  
I/O(1)  
DESCRIPTION  
NAME  
ZXH,  
ZQE  
PN  
RGC  
General-purpose digital I/O  
Comparator_B input CB4  
Analog input A4 for ADC  
P6.4/CB4/A4  
1
5
C1  
D2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
Comparator_B input CB5  
Analog input A5 for ADC  
P6.5/CB5/A5  
P6.6/CB6/A6  
P6.7/CB7/A7  
P7.0/CB8/A12  
P7.1/CB9/A13  
2
3
4
5
6
6
7
General-purpose digital I/O  
Comparator_B input CB6  
Analog input A6 for ADC  
D1  
General-purpose digital I/O  
Comparator_B input CB7  
Analog input A7 for ADC  
8
D3  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
Comparator_B input CB8 (not available on F5328, F5326, F5324 devices)  
Analog input A12 for ADC (not available on F5328, F5326, F5324 devices)  
N/A  
N/A  
N/A  
N/A  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
Comparator_B input CB9 (not available on F5328, F5326, F5324 devices)  
Analog input A13 for ADC (not available on F5328, F5326, F5324 devices)  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
Comparator_B input CB10 (not available on F5328, F5326, F5324  
devices)  
P7.2/CB10/A14  
7
8
9
N/A  
N/A  
9
N/A  
N/A  
E1  
I/O  
I/O  
I/O  
Analog input A14 for ADC (not available on F5328, F5326, F5324 devices)  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
Comparator_B input CB11 (not available on F5328, F5326, F5324 devices)  
Analog input A15 for ADC (not available on F5328, F5326, F5324 devices)  
P7.3/CB11/A15  
General-purpose digital I/O  
Analog input A8 for ADC  
P5.0/A8/VREF+/VeREF+  
Output of reference voltage to the ADC  
Input for an external reference voltage to the ADC  
General-purpose digital I/O  
Analog input A9 for ADC  
P5.1/A9/VREF-/VeREF-  
10  
10  
E2  
I/O  
I/O  
Negative terminal for the ADC reference voltage for both sources, the internal  
reference voltage, or an external applied reference voltage  
AVCC1  
11  
12  
11  
12  
F2  
F1  
Analog power supply  
General-purpose digital I/O  
Input terminal for crystal oscillator XT1  
P5.4/XIN  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.  
I/O(1)  
DESCRIPTION  
NAME  
ZXH,  
ZQE  
PN  
RGC  
General-purpose digital I/O  
P5.5/XOUT  
13  
13  
G1  
I/O  
Output terminal of crystal oscillator XT1  
AVSS1  
P8.0  
14  
15  
16  
17  
18  
19  
14  
N/A  
N/A  
N/A  
15  
G2  
N/A  
N/A  
N/A  
H1  
Analog ground supply  
I/O  
I/O  
I/O  
General-purpose digital I/O  
General-purpose digital I/O  
General-purpose digital I/O  
Digital power supply  
P8.1  
P8.2  
DVCC1  
DVSS1  
16  
J1  
Digital ground supply  
Regulated core power supply output (internal use only, no external current  
loading)  
VCORE(2)  
20  
17  
18  
J2  
General-purpose digital I/O with port interrupt  
TA0 clock signal TA0CLK input  
P1.0/TA0CLK/ACLK  
21  
H2  
I/O  
I/O  
I/O  
ACLK output (divided by 1, 2, 4, 8, 16, or 32)  
General-purpose digital I/O with port interrupt  
TA0 CCR0 capture: CCI0A input, compare: Out0 output  
BSL transmit output  
P1.1/TA0.0  
P1.2/TA0.1  
22  
23  
19  
20  
H3  
J3  
General-purpose digital I/O with port interrupt  
TA0 CCR1 capture: CCI1A input, compare: Out1 output  
BSL receive input  
General-purpose digital I/O with port interrupt  
P1.3/TA0.2  
P1.4/TA0.3  
P1.5/TA0.4  
24  
25  
26  
21  
22  
23  
G4  
H4  
J4  
I/O  
I/O  
I/O  
TA0 CCR2 capture: CCI2A input, compare: Out2 output  
General-purpose digital I/O with port interrupt  
TA0 CCR3 capture: CCI3A input compare: Out3 output  
General-purpose digital I/O with port interrupt  
TA0 CCR4 capture: CCI4A input, compare: Out4 output  
General-purpose digital I/O with port interrupt  
TA1 clock signal TA1CLK input  
Comparator_B output  
P1.6/TA1CLK/CBOUT  
27  
24  
G5  
I/O  
General-purpose digital I/O with port interrupt  
P1.7/TA1.0  
28  
29  
30  
31  
32  
33  
25  
26  
27  
28  
29  
30  
H5  
J5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TA1 CCR0 capture: CCI0A input, compare: Out0 output  
General-purpose digital I/O with port interrupt  
P2.0/TA1.1  
TA1 CCR1 capture: CCI1A input, compare: Out1 output  
General-purpose digital I/O with port interrupt  
P2.1/TA1.2  
G6  
J6  
TA1 CCR2 capture: CCI2A input, compare: Out2 output  
General-purpose digital I/O with port interrupt  
TA2 clock signal TA2CLK input ; SMCLK output  
P2.2/TA2CLK/SMCLK  
P2.3/TA2.0  
General-purpose digital I/O with port interrupt  
H6  
J7  
TA2 CCR0 capture: CCI0A input, compare: Out0 output  
General-purpose digital I/O with port interrupt  
P2.4/TA2.1  
TA2 CCR1 capture: CCI1A input, compare: Out1 output  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.  
I/O(1)  
DESCRIPTION  
NAME  
ZXH,  
ZQE  
PN  
RGC  
General-purpose digital I/O with port interrupt  
P2.5/TA2.2  
34  
31  
J8  
I/O  
I/O  
TA2 CCR2 capture: CCI2A input, compare: Out2 output  
General-purpose digital I/O with port interrupt  
RTC clock output for calibration  
DMA external trigger input  
P2.6/RTCCLK/DMAE0  
35  
36  
32  
33  
J9  
General-purpose digital I/O with port interrupt  
Slave transmit enable – USCI_B0 SPI mode  
Clock signal input – USCI_A0 SPI slave mode  
Clock signal output – USCI_A0 SPI master mode  
P2.7/UCB0STE/  
UCA0CLK  
H7  
I/O  
General-purpose digital I/O  
P3.0/UCB0SIMO/  
UCB0SDA  
Slave in, master out – USCI_B0 SPI mode  
I2C data – USCI_B0 I2C mode  
37  
38  
34  
35  
H8  
H9  
I/O  
I/O  
General-purpose digital I/O  
P3.1/UCB0SOMI/  
UCB0SCL  
Slave out, master in – USCI_B0 SPI mode  
I2C clock – USCI_B0 I2C mode  
General-purpose digital I/O  
Clock signal input – USCI_B0 SPI slave mode  
Clock signal output – USCI_B0 SPI master mode  
Slave transmit enable – USCI_A0 SPI mode  
P3.2/UCB0CLK/  
UCA0STE  
39  
36  
G8  
I/O  
General-purpose digital I/O  
P3.3/UCA0TXD/  
UCA0SIMO  
Transmit data – USCI_A0 UART mode  
Slave in, master out – USCI_A0 SPI mode  
40  
41  
37  
38  
G9  
G7  
I/O  
I/O  
General-purpose digital I/O  
P3.4/UCA0RXD/  
UCA0SOMI  
Receive data – USCI_A0 UART mode  
Slave out, master in – USCI_A0 SPI mode  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
TB0 CCR5 capture: CCI5A input, compare: Out5 output  
P3.5/TB0.5  
P3.6/TB0.6  
42  
43  
N/A  
N/A  
N/A  
N/A  
I/O  
I/O  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
TB0 CCR6 capture: CCI6A input, compare: Out6 output  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
Switch all PWM outputs high-impedance input – TB0 (not available on F5328,  
F5326, F5324 devices)  
P3.7/TB0OUTH/  
SVMOUT  
44  
45  
N/A  
41  
N/A  
E8  
I/O  
I/O  
SVM output (not available on F5328, F5326, F5324 devices)  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
P4.0/PM_UCB1STE/  
PM_UCA1CLK  
Default mapping: Slave transmit enable – USCI_B1 SPI mode  
Default mapping: Clock signal input – USCI_A1 SPI slave mode  
Default mapping: Clock signal output – USCI_A1 SPI master mode  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.  
I/O(1)  
DESCRIPTION  
NAME  
ZXH,  
ZQE  
PN  
RGC  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
P4.1/PM_UCB1SIMO/  
PM_UCB1SDA  
46  
42  
E7  
D9  
I/O  
Default mapping: Slave in, master out – USCI_B1 SPI mode  
Default mapping: I2C data – USCI_B1 I2C mode  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
P4.2/PM_UCB1SOMI/  
PM_UCB1SCL  
47  
48  
43  
44  
I/O  
I/O  
Default mapping: Slave out, master in – USCI_B1 SPI mode  
Default mapping: I2C clock – USCI_B1 I2C mode  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
P4.3/PM_UCB1CLK/  
PM_UCA1STE  
Default mapping: Clock signal input – USCI_B1 SPI slave mode  
Default mapping: Clock signal output – USCI_B1 SPI master mode  
Default mapping: Slave transmit enable – USCI_A1 SPI mode  
D8  
DVSS2  
DVCC2  
49  
50  
39  
40  
F9  
E9  
Digital ground supply  
Digital power supply  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
P4.4/PM_UCA1TXD/  
PM_UCA1SIMO  
51  
52  
45  
46  
D7  
C9  
I/O  
I/O  
Default mapping: Transmit data – USCI_A1 UART mode  
Default mapping: Slave in, master out – USCI_A1 SPI mode  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
P4.5/PM_UCA1RXD/  
PM_UCA1SOMI  
Default mapping: Receive data – USCI_A1 UART mode  
Default mapping: Slave out, master in – USCI_A1 SPI mode  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
P4.6/PM_NONE  
P4.7/PM_NONE  
P5.6/TB0.0  
53  
54  
55  
56  
57  
58  
59  
47  
C8  
C7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Default mapping: no secondary function.  
General-purpose digital I/O with reconfigurable port mapping secondary  
function  
48  
Default mapping: no secondary function.  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
TB0 CCR0 capture: CCI0A input, compare: Out0 output (not available on  
F5328, F5326, F5324 devices)  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
P5.7/TB0.1  
TB0 CCR1 capture: CCI1A input, compare: Out1 output (not available on  
F5328, F5326, F5324 devices)  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
P7.4/TB0.2  
TB0 CCR2 capture: CCI2A input, compare: Out2 output (not available on  
F5328, F5326, F5324 devices)  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
P7.5/TB0.3  
TB0 CCR3 capture: CCI3A input, compare: Out3 output (not available on  
F5328, F5326, F5324 devices)  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
P7.6/TB0.4  
TB0 CCR4 capture: CCI4A input, compare: Out4 output (not available on  
F5328, F5326, F5324 devices)  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
PN  
NO.  
I/O(1)  
DESCRIPTION  
NAME  
ZXH,  
ZQE  
RGC  
General-purpose digital I/O (not available on F5328, F5326, F5324 devices)  
TB0 clock signal TBCLK input (not available on F5328, F5326, F5324  
devices)  
P7.7/TB0CLK/MCLK  
60  
N/A  
N/A  
I/O  
MCLK output (not available on F5328, F5326, F5324 devices)  
Port U ground supply  
VSSU  
PU.0  
NC  
61  
62  
63  
64  
49  
50  
51  
52  
B8, B9  
A9  
General-purpose digital I/O, controlled by PU control register, Port U is  
supplied by the LDOO rail  
I/O  
I/O  
I/O  
B7  
No connect  
General-purpose digital I/O, controlled by PU control register, Port U is  
supplied by the LDOO rail  
PU.1  
A8  
LDOI  
LDOO  
NC  
65  
66  
67  
68  
53  
54  
55  
56  
A7  
A6  
B6  
A5  
LDO input  
LDO output  
No connect  
AVSS2  
Analog ground supply  
General-purpose digital I/O  
Input terminal for crystal oscillator XT2  
P5.2/XT2IN  
69  
70  
71  
72  
73  
74  
75  
57  
58  
59  
60  
61  
62  
63  
B5  
B4  
A4  
C5  
C4  
A3  
B3  
I/O  
I/O  
I
General-purpose digital I/O  
P5.3/XT2OUT  
TEST/SBWTCK(3)  
PJ.0/TDO(4)  
Output terminal of crystal oscillator XT2  
Test mode pin – Selects four wire JTAG operation.  
Spy-Bi-Wire input clock when Spy-Bi-Wire operation activated  
General-purpose digital I/O  
JTAG test data output port  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
PJ.1/TDI/TCLK(4)  
PJ.2/TMS(4)  
JTAG test data input or test clock input  
General-purpose digital I/O  
JTAG test mode select  
General-purpose digital I/O  
JTAG test clock  
PJ.3/TCK(4)  
Reset input active low(5)  
RST/NMI/SBWTDIO(3)  
P6.0/CB0/A0  
76  
77  
78  
79  
64  
1
A2  
A1  
B2  
B1  
I/O  
I/O  
I/O  
I/O  
Nonmaskable interrupt input  
Spy-Bi-Wire data input/output when Spy-Bi-Wire operation activated.  
General-purpose digital I/O  
Comparator_B input CB0  
Analog input A0 for ADC  
General-purpose digital I/O  
Comparator_B input CB1  
Analog input A1 for ADC  
P6.1/CB1/A1  
2
General-purpose digital I/O  
Comparator_B input CB2  
Analog input A2 for ADC  
P6.2/CB2/A2  
3
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 7-1. Signal Descriptions (continued)  
TERMINAL  
NO.  
I/O(1)  
DESCRIPTION  
NAME  
ZXH,  
ZQE  
PN  
RGC  
General-purpose digital I/O  
Comparator_B input CB3  
Analog input A3 for ADC  
P6.3/CB3/A3  
80  
4
C2  
I/O  
C6,  
D4,  
D5,  
D6, E3,  
Reserved  
N/A  
N/A E4, E5,  
E6, F3,  
Reserved. Connect to ground.  
F4, F5,  
F6, F7,  
F8, G3  
The package thermal pad must be soldered to the printed circuit board for  
Thermal pad  
Pad  
thermal and mechanical performance. TI recommends connection to VSS  
.
(1) I = input, O = output, N/A = not available  
(2) VCORE is for internal use only. No external current loading is possible. VCORE should be connected only to the recommended  
capacitor value, CVCORE  
.
(3) See Section 9.5 and Section 9.6 for use with BSL and JTAG functions, respectively.  
(4) See Section 9.6 for use with JTAG function.  
(5) When this pin is configured as reset, the internal pullup resistor is enabled by default.  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8 Specifications  
All graphs in this section are for typical conditions, unless otherwise noted.  
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
4.1  
UNIT  
V
Voltage applied at VCC to VSS  
–0.3  
–0.3  
Voltage applied to any pin (excluding VCORE, LDOI)(2)  
VCC + 0.3  
±2  
V
Diode current at any device pin  
mA  
°C  
(3)  
Storage temperature, Tstg  
–55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
8.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.3 Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
PMMCOREVx = 0  
1.8  
2.0  
2.2  
2.4  
0
3.6  
PMMCOREVx = 0, 1  
3.6  
V
3.6  
Supply voltage during program execution and flash  
VCC  
(1) (2)  
programming (AVCCx = DVCCx = VCC  
)
PMMCOREVx = 0, 1, 2  
PMMCOREVx = 0, 1, 2, 3  
3.6  
V
VSS  
TA  
Supply voltage (AVSSx = DVSSx = VSS  
Operating free-air temperature  
)
–40  
–40  
470  
85  
85  
°C  
°C  
nF  
TJ  
Operating junction temperature  
CVCORE  
Recommended capacitor at VCORE(3)  
CDVCC  
CVCORE  
/
Capacitor ratio of DVCC to VCORE  
10  
0
PMMCOREVx = 0,  
1.8 V ≤ VCC ≤ 3.6 V  
(default condition)  
8.0  
PMMCOREVx = 1,  
2.0 V ≤ VCC ≤ 3.6 V  
Processor frequency (maximum MCLK frequency)(4)  
(see Figure 8-1)  
0
0
0
12.0  
20.0  
25.0  
fSYSTEM  
MHz  
PMMCOREVx = 2,  
2.2 V ≤ VCC ≤ 3.6 V  
PMMCOREVx = 3,  
2.4 V ≤ VCC ≤ 3.6 V  
(1) TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Section 8.22  
for the exact values and further details.  
(3) A capacitor tolerance of ±20% or better is required.  
(4) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
25  
3
20  
2, 3  
2
12  
8
1, 2  
1, 2, 3  
1
0
0, 1  
0, 1, 2  
0, 1, 2, 3  
0
1.8  
2.0  
2.2  
2.4  
3.6  
Supply Voltage - V  
NOTE: The numbers within the fields denote the supported PMMCOREVx settings.  
Figure 8-1. Maximum System Frequency  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.4 Active Mode Supply Current Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3)  
FREQUENCY (fDCO = fMCLK = fSMCLK  
8 MHz 12 MHz 20 MHz  
TYP MAX TYP MAX  
)
EXECUTION  
MEMORY  
PARAMETER  
VCC  
PMMCOREVx  
1 MHz  
25 MHz  
TYP  
UNIT  
TYP  
MAX  
TYP  
MAX  
MAX  
11.0  
6.2  
0
1
2
3
0
1
2
3
0.36  
0.40  
0.44  
0.46  
0.20  
0.22  
0.24  
0.26  
0.47  
2.32  
2.65  
2.90  
3.10  
1.20  
1.35  
1.50  
1.60  
2.60  
4.0  
4.3  
4.6  
4.4  
2.2  
IAM, Flash  
Flash  
3 V  
mA  
7.1  
7.6  
7.7  
4.2  
10.1  
5.3  
0.24  
1.30  
2.0  
2.2  
2.4  
IAM, RAM  
RAM  
3 V  
mA  
3.7  
3.9  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external  
load capacitance are chosen to closely match the required 12.5 pF.  
(3) Characterized with program executing typical data processing. LDO disabled (LDOEN = 0).  
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
TEMPERATURE (TA)  
PARAMETER  
VCC  
PMMCOREVx  
–40°C  
TYP MAX  
73  
25°C  
TYP  
60°C  
TYP MAX  
80  
85°C  
TYP  
UNIT  
MAX  
85  
MAX  
97  
2.2 V  
3 V  
0
3
0
3
0
1
2
0
1
2
3
0
1
2
3
0
1
2
3
77  
83  
85  
95  
ILPM0,1MHz Low-power mode 0(3) (4)  
µA  
µA  
79  
92  
88  
105  
17  
2.2 V  
3 V  
6.5  
6.5  
7.0  
1.90  
2.00  
2.15  
2.1  
2.3  
2.4  
2.5  
1.4  
1.4  
1.5  
1.6  
1.1  
1.2  
1.2  
1.3  
0.18  
12  
10  
11  
ILPM2  
Low-power mode 2(5) (4)  
7.0  
13  
11  
12  
18  
1.60  
1.65  
1.75  
1.8  
2.6  
5.6  
5.9  
6.1  
5.8  
6.1  
6.3  
6.4  
4.9  
5.2  
5.3  
5.4  
4.8  
5.1  
5.2  
5.3  
0.5  
2.2 V  
2.7  
2.9  
Low-power mode 3,  
crystal mode(6) (4)  
ILPM3,XT1LF  
2.9  
2.8  
8.3  
µA  
µA  
1.9  
2.9  
3 V  
2.0  
3.0  
2.0  
3.9  
2.7  
3.1  
9.3  
7.4  
1.1  
1.9  
1.1  
2.0  
Low-power mode 3,  
VLO mode(7) (4)  
ILPM3,VLO  
3 V  
1.2  
2.1  
1.3  
3.0  
1.5  
2.2  
8.5  
7.3  
0.9  
1.8  
1.1  
2.0  
ILPM4  
Low-power mode 4(8) (4)  
Low-power mode 4.5(9)  
3 V  
3 V  
µA  
µA  
1.2  
2.1  
1.3  
1.6  
2.2  
8.1  
1.0  
ILPM4.5  
0.15  
0.35  
0.26  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external  
load capacitance are chosen to closely match the required 12.5 pF.  
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz  
LDO disabled (LDOEN = 0).  
(4) Current for brownout, high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML)  
disabled. High-side monitor (SVMH) disabled. RAM retention enabled.  
(5) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCO setting  
= 1-MHz operation, DCO bias generator enabled.)  
LDO disabled (LDOEN = 0).  
(6) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
LDO disabled (LDOEN = 0).  
(7) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz  
LDO disabled (LDOEN = 0).  
(8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
LDO disabled (LDOEN = 0).  
(9) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.6 Thermal Resistance Characteristics  
THERMAL METRIC  
VALUE  
70  
UNIT  
LQFP (PN)  
VQFN (RGC)  
BGA (ZQE)  
LQFP (PN)  
VQFN (RGC)  
BGA (ZQE)  
LQFP (PN)  
VQFN (RGC)  
BGA (ZQE)  
LQFP (PN)  
VQFN (RGC)  
BGA (ZQE)  
Low-K board (JESD51-3)  
55  
84  
JA  
Junction-to-ambient thermal resistance, still air  
°C/W  
45  
High-K board (JESD51-7)  
25  
46  
12  
JC Junction-to-case thermal resistance  
12  
°C/W  
°C/W  
30  
22  
JB  
Junction-to-board thermal resistance  
6
20  
8.7 Schmitt-Trigger Inputs – General-Purpose I/O  
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.7)  
(P5.0 to P5.7, P6.0 to P6.7, P7.0 to P7.7, P8.0 to P8.2, PJ.0 to PJ.3, RST/NMI)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.80  
1.50  
0.45  
0.75  
0.3  
TYP  
MAX UNIT  
1.40  
V
2.10  
VIT+ Positive-going input threshold voltage  
1.8 V  
3 V  
1.00  
V
1.65  
VIT– Negative-going input threshold voltage  
1.8 V  
3 V  
0.8  
V
1.0  
Vhys Input voltage hysteresis (VIT+ – VIT–  
)
0.4  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull Pullup or pulldown resistor(2)  
20  
35  
5
50  
kΩ  
pF  
CI  
Input capacitance  
VIN = VSS or VCC  
(1) Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).  
(2) Also applies to the RST pin when pullup or pulldown resistor is enabled.  
8.8 Inputs – Ports P1 and P2 (P1.0 to P1.7, P2.0 to P2.7)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
t(int) External interrupt timing(2)  
External trigger pulse duration to set interrupt flag  
2.2 V, 3 V  
20  
ns  
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.  
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It might be set by trigger signals  
shorter than t(int)  
.
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.9 Leakage Current – General-Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.7) (P5.0 to  
P5.7, P6.0 to P6.7, P7.0 to P7.7, P8.0 to P8.2, PJ.0 to PJ.3, RST/NMI)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See (1) (2)  
VCC  
MIN  
MAX UNIT  
Ilkg(Px.x) High-impedance leakage current  
1.8 V, 3 V  
±50 nA  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
8.10 Outputs – General-Purpose I/O (Full Drive Strength) (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to  
P4.7) (P5.0 to P5.7, P6.0 to P6.7, P7.0 to P7.7, P8.0 to P8.2, PJ.0 to PJ.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see  
Section 8.14)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –10 mA(2)  
I(OHmax) = –5 mA(1)  
I(OHmax) = –15 mA(2)  
I(OLmax) = 3 mA(1)  
I(OLmax) = 10 mA(2)  
I(OLmax) = 5 mA(1)  
I(OLmax) = 15 mA(2)  
VCC  
VOH High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
8.11 Outputs – General-Purpose I/O (Reduced Drive Strength) (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7,  
P4.0 to P4.7) (P5.0 to P5.7, P6.0 to P6.7, P7.0 to P7.7, P8.0 to P8.2, PJ.0 to PJ.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see  
Section 8.13)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(2)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –3 mA(3)  
I(OHmax) = –2 mA(2)  
I(OHmax) = –6 mA(3)  
I(OLmax) = 1 mA(2)  
I(OLmax) = 3 mA(3)  
I(OLmax) = 2 mA(2)  
I(OLmax) = 6 mA(3)  
VCC  
VOH High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL Low-level output voltage  
V
(1) Selecting reduced drive strength may reduce EMI.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage  
drop specified.  
(3) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.12 Output Frequency – General-Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.7) (P5.0  
to P5.7, P6.0 to P6.7, P7.0 to P7.7, P8.0 to P8.2, PJ.0 to PJ.3)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
VCC = 1.8 V, PMMCOREVx = 0  
16  
(1) (2)  
fPx.y  
Port output frequency (with load)  
MHz  
25  
VCC = 3 V, PMMCOREVx = 3  
VCC = 1.8 V, PMMCOREVx = 0  
VCC = 3 V, PMMCOREVx = 3  
16  
ACLK, SMCLK, MCLK,  
CL = 20 pF(2)  
fPort_CLK Clock output frequency  
MHz  
25  
(1) A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full  
drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS  
.
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.13 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
25.0  
20.0  
15.0  
10.0  
5.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
TA = 25°C  
TA = 85°C  
VCC = 3.0 V  
Px.y  
VCC = 1.8 V  
Px.y  
TA = 25°C  
TA = 85°C  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
Figure 8-3. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 8-2. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0.0  
0.0  
VCC = 1.8 V  
VCC = 3.0 V  
Px.y  
Px.y  
−1.0  
−5.0  
−2.0  
−3.0  
−4.0  
−10.0  
TA = 85°C  
−5.0  
−15.0  
TA = 85°C  
−6.0  
TA = 25°C  
−20.0  
TA = 25°C  
−7.0  
−8.0  
−25.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
Figure 8-4. Typical High-Level Output Current vs  
High-Level Output Voltage  
Figure 8-5. Typical High-Level Output Current vs  
High-Level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.14 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
60.0  
24  
20  
16  
12  
8
TA = 25°C  
TA = 85°C  
VCC = 1.8 V  
Px.y  
VCC = 3.0 V  
Px.y  
55.0  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
TA = 25°C  
TA = 85°C  
4
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
Figure 8-6. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
Figure 8-7. Typical Low-Level Output Current vs  
Low-Level Output Voltage  
0.0  
0
VCC = 1.8 V  
Px.y  
VCC = 3.0 V  
−5.0  
Px.y  
−10.0  
−15.0  
−20.0  
−25.0  
−30.0  
−35.0  
−40.0  
−4  
−8  
−12  
−45.0  
TA = 85°C  
−16  
TA = 85°C  
−50.0  
−55.0  
TA = 25°C  
−60.0  
TA = 25°C  
−20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
Figure 8-8. Typical High-Level Output Current vs  
High-Level Output Voltage  
Figure 8-9. Typical High-Level Output Current vs  
High-Level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.15 Crystal Oscillator, XT1, Low-Frequency Mode  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
TA = 25°C  
0.075  
Differential XT1 oscillator crystal  
ΔIDVCC.LF current consumption from lowest  
drive setting, LF mode  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 2,  
TA = 25°C  
3 V  
0.170  
µA  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C  
0.290  
XT1 oscillator crystal frequency,  
LF mode  
fXT1,LF0  
XTS = 0, XT1BYPASS = 0  
32768  
Hz  
XT1 oscillator logic-level square-  
fXT1,LF,SW  
XTS = 0, XT1BYPASS = 1(2) (3)  
10 32.768  
210  
50 kHz  
wave input frequency, LF mode  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
fXT1,LF = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
OALF  
kΩ  
LF crystals(4)  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,LF = 32768 Hz, CL,eff = 12 pF  
300  
XTS = 0, XCAPx = 0(6)  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
Integrated effective load  
CL,eff  
pF  
capacitance, LF mode(5)  
8.5  
12.0  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30%  
10  
70%  
Oscillator fault frequency,  
fFault,LF  
XTS = 0(8)  
10000  
Hz  
ms  
LF mode(7)  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TA = 25°C, CL,eff = 6 pF  
1000  
500  
tSTART,LF  
Start-up time, LF mode  
3 V  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C, CL,eff = 12 pF  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square-wave with parametrics defined  
in the Schmitt-Trigger Inputs section of this data sheet.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For XT1DRIVEx = 0, CL,eff ≤ 6 pF  
For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF  
For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF  
For XT1DRIVEx = 3, CL,eff ≥ 6 pF  
(5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the  
effective load capacitance should always match the specification of the used crystal.  
(6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX specifications might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
8.16 Crystal Oscillator, XT2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C  
200  
fOSC = 12 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 1,  
TA = 25°C  
260  
325  
450  
XT2 oscillator crystal current  
consumption  
IDVCC.XT2  
3 V  
µA  
fOSC = 20 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 2,  
TA = 25°C  
fOSC = 32 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 3,  
TA = 25°C  
XT2 oscillator crystal frequency,  
mode 0  
fXT2,HF0  
fXT2,HF1  
fXT2,HF2  
fXT2,HF3  
XT2DRIVEx = 0, XT2BYPASS = 0(3)  
XT2DRIVEx = 1, XT2BYPASS = 0(3)  
XT2DRIVEx = 2, XT2BYPASS = 0(3)  
XT2DRIVEx = 3, XT2BYPASS = 0(3)  
4
8
8
MHz  
XT2 oscillator crystal frequency,  
mode 1  
16 MHz  
24 MHz  
32 MHz  
XT2 oscillator crystal frequency,  
mode 2  
16  
24  
XT2 oscillator crystal frequency,  
mode 3  
XT2 oscillator logic-level square-  
wave input frequency, bypass  
mode  
fXT2,HF,SW  
XT2BYPASS = 1(4) (3)  
0.7  
32 MHz  
XT2DRIVEx = 0, XT2BYPASS = 0,  
fXT2,HF0 = 6 MHz, CL,eff = 15 pF  
450  
320  
200  
200  
XT2DRIVEx = 1, XT2BYPASS = 0,  
fXT2,HF1 = 12 MHz, CL,eff = 15 pF  
Oscillation allowance for  
HF crystals(5)  
OAHF  
XT2DRIVEx = 2, XT2BYPASS = 0,  
fXT2,HF2 = 20 MHz, CL,eff = 15 pF  
XT2DRIVEx = 3, XT2BYPASS = 0,  
fXT2,HF3 = 32 MHz, CL,eff = 15 pF  
fOSC = 6 MHz,  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C, CL,eff = 15 pF  
0.5  
0.3  
tSTART,HF  
Start-up time  
3 V  
ms  
pF  
fOSC = 20 MHz,  
XT2BYPASS = 0, XT2DRIVEx = 2,  
TA = 25°C, CL,eff = 15 pF  
Integrated effective load  
CL,eff  
1
capacitance, HF mode(6) (1)  
Duty cycle, HF mode  
Measured at ACLK, fXT2,HF2 = 20 MHz  
XT2BYPASS = 1(8)  
40%  
30  
50%  
60%  
300 kHz  
fFault,HF  
Oscillator fault frequency(7)  
(1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. In general, an effective load capacitance  
of up to 18 pF can be supported.  
(2) To improve EMI on the XT2 oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.  
Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(3) This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device  
operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.  
(4) When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square-wave with parametrics defined  
in the Schmitt-Trigger Inputs section of this data sheet.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the  
effective load capacitance should always match the specification of the used crystal.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies between the MIN and MAX specifications might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
8.17 Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
9.4  
0.5  
4
MAX UNIT  
14 kHz  
%/°C  
fVLO  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
dfVLO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
Duty cycle  
%/V  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
8.18 Internal Reference, Low-Frequency Oscillator (REFO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
IREFO  
REFO oscillator current consumption TA = 25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
3
µA  
REFO frequency calibrated  
Measured at ACLK  
32768  
Hz  
fREFO  
Full temperature range  
TA = 25°C  
±3.5%  
±1.5%  
%/°C  
%/V  
REFO absolute tolerance calibrated  
dfREFO/dT  
REFO frequency temperature drift  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
40%/60% duty cycle  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
0.01  
1.0  
dfREFO/dVCC REFO frequency supply voltage drift  
Duty cycle  
40%  
50%  
25  
60%  
tSTART  
REFO start-up time  
µs  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.19 DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
DCO frequency (0, 0)(1)  
DCO frequency (0, 31)(1)  
DCO frequency (1, 0)(1)  
DCO frequency (1, 31)(1)  
DCO frequency (2, 0)(1)  
DCO frequency (2, 31)(1)  
DCO frequency (3, 0)(1)  
DCO frequency (3, 31)(1)  
DCO frequency (4, 0)(1)  
DCO frequency (4, 31)(1)  
DCO frequency (5, 0)(1)  
DCO frequency (5, 31)(1)  
DCO frequency (6, 0)(1)  
DCO frequency (6, 31)(1)  
DCO frequency (7, 0)(1)  
DCO frequency (7, 31)(1)  
TEST CONDITIONS  
DCORSELx = 0, DCOx = 0, MODx = 0  
DCORSELx = 0, DCOx = 31, MODx = 0  
DCORSELx = 1, DCOx = 0, MODx = 0  
DCORSELx = 1, DCOx = 31, MODx = 0  
DCORSELx = 2, DCOx = 0, MODx = 0  
DCORSELx = 2, DCOx = 31, MODx = 0  
DCORSELx = 3, DCOx = 0, MODx = 0  
DCORSELx = 3, DCOx = 31, MODx = 0  
DCORSELx = 4, DCOx = 0, MODx = 0  
DCORSELx = 4, DCOx = 31, MODx = 0  
DCORSELx = 5, DCOx = 0, MODx = 0  
DCORSELx = 5, DCOx = 31, MODx = 0  
DCORSELx = 6, DCOx = 0, MODx = 0  
DCORSELx = 6, DCOx = 31, MODx = 0  
DCORSELx = 7, DCOx = 0, MODx = 0  
DCORSELx = 7, DCOx = 31, MODx = 0  
MIN  
0.07  
0.70  
0.15  
1.47  
0.32  
3.17  
0.64  
6.07  
1.3  
TYP  
MAX  
0.20  
1.70  
0.36  
3.45  
0.75  
7.38  
1.51  
14.0  
3.2  
UNIT  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fDCO(0,0)  
fDCO(0,31)  
fDCO(1,0)  
fDCO(1,31)  
fDCO(2,0)  
fDCO(2,31)  
fDCO(3,0)  
fDCO(3,31)  
fDCO(4,0)  
fDCO(4,31)  
fDCO(5,0)  
fDCO(5,31)  
fDCO(6,0)  
fDCO(6,31)  
fDCO(7,0)  
fDCO(7,31)  
12.3  
2.5  
28.2  
6.0  
23.7  
4.6  
54.1  
10.7  
88.0  
19.6  
135  
39.0  
8.5  
60  
Frequency step between range DCORSEL  
and DCORSEL + 1  
SDCORSEL  
SDCO  
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)  
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)  
1.2  
2.3  
ratio  
ratio  
Frequency step between tap DCO and  
DCO + 1  
1.02  
40%  
1.12  
60%  
Duty cycle  
Measured at SMCLK  
fDCO = 1 MHz  
50%  
0.1  
dfDCO/dT  
DCO frequency temperature drift(2)  
DCO frequency voltage drift(3)  
%/°C  
%/V  
dfDCO/dVCC  
fDCO = 1 MHz  
1.9  
(1) When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the  
range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,  
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31  
(DCOx = 31). This ensures that the target DCO frequency resides within the range selected. If the actual fDCO frequency for the  
selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its  
minimum or maximum tap setting.  
(2) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(3) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
100  
VCC = 3.0 V  
TA = 25°C  
10  
DCOx = 31  
1
DCOx = 0  
0.1  
0
1
2
3
4
5
6
7
DCORSEL  
Figure 8-10. Typical DCO Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.20 PMM, Brownout Reset (BOR)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s  
MIN  
TYP  
MAX UNIT  
V(DVCC_BOR_IT–)  
V(DVCC_BOR_IT+)  
V(DVCC_BOR_hys)  
tRESET  
BORH on voltage, DVCC falling level  
BORH off voltage, DVCC rising level  
BORH hysteresis  
1.45  
1.50  
250  
V
V
0.80  
50  
2
1.30  
mV  
µs  
Pulse duration required at RST/NMI pin to accept a reset  
8.21 PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
2.4 V ≤ DVCC ≤ 3.6 V  
2.2 V ≤ DVCC ≤ 3.6 V  
2.0 V ≤ DVCC ≤ 3.6 V  
1.8 V ≤ DVCC ≤ 3.6 V  
2.4 V ≤ DVCC ≤ 3.6 V  
2.2 V ≤ DVCC ≤ 3.6 V  
2.0 V ≤ DVCC ≤ 3.6 V  
1.8 V ≤ DVCC ≤ 3.6 V  
MIN  
TYP  
1.90  
1.80  
1.60  
1.40  
1.94  
1.84  
1.64  
1.44  
MAX UNIT  
VCORE3(AM)  
VCORE2(AM)  
VCORE1(AM)  
VCORE0(AM)  
Core voltage, active mode, PMMCOREV = 3  
Core voltage, active mode, PMMCOREV = 2  
Core voltage, active mode, PMMCOREV = 1  
Core voltage, active mode, PMMCOREV = 0  
V
V
V
V
V
V
V
V
VCORE3(LPM) Core voltage, low-current mode, PMMCOREV = 3  
VCORE2(LPM) Core voltage, low-current mode, PMMCOREV = 2  
VCORE1(LPM) Core voltage, low-current mode, PMMCOREV = 1  
VCORE0(LPM) Core voltage, low-current mode, PMMCOREV = 0  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.22 PMM, SVS High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSHE = 0, DVCC = 3.6 V  
0
nA  
I(SVSH)  
SVS current consumption  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1  
SVSHE = 1, SVSHRVL = 0  
200  
1.5  
µA  
1.57  
1.79  
1.98  
2.10  
1.62  
1.88  
2.07  
2.20  
2.32  
2.52  
2.90  
2.90  
1.68  
1.88  
2.08  
2.18  
1.74  
1.94  
2.14  
2.30  
2.40  
2.70  
3.10  
3.10  
1.78  
SVSHE = 1, SVSHRVL = 1  
1.98  
V
V(SVSH_IT–) SVSH on voltage level(1)  
SVSHE = 1, SVSHRVL = 2  
2.21  
SVSHE = 1, SVSHRVL = 3  
2.31  
1.85  
2.07  
2.28  
SVSHE = 1, SVSMHRRL = 0  
SVSHE = 1, SVSMHRRL = 1  
SVSHE = 1, SVSMHRRL = 2  
SVSHE = 1, SVSMHRRL = 3  
SVSHE = 1, SVSMHRRL = 4  
SVSHE = 1, SVSMHRRL = 5  
SVSHE = 1, SVSMHRRL = 6  
SVSHE = 1, SVSMHRRL = 7  
2.42  
V
V(SVSH_IT+) SVSH off voltage level(1)  
2.55  
2.88  
3.23  
3.23  
SVSHE = 1, dVDVCC/dt = 10 mV/µs,  
SVSHFP = 1  
2.5  
20  
tpd(SVSH)  
SVSH propagation delay  
SVSH on or off delay time  
µs  
SVSHE = 1, dVDVCC/dt = 1 mV/µs,  
SVSHFP = 0  
SVSHE = 0 → 1, dVDVCC/dt = 10 mV/µs,  
SVSHFP = 1  
12.5  
100  
t(SVSH)  
µs  
SVSHE = 0 → 1, dVDVCC/dt = 1 mV/µs,  
SVSHFP = 0  
dVDVCC/dt DVCC rise time  
0
1000 V/s  
(1) The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and use.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.23 PMM, SVM High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVMHE = 0, DVCC = 3.6 V  
0
nA  
I(SVMH)  
SVMH current consumption  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1  
SVMHE = 1, SVSMHRRL = 0  
SVMHE = 1, SVSMHRRL = 1  
SVMHE = 1, SVSMHRRL = 2  
SVMHE = 1, SVSMHRRL = 3  
SVMHE = 1, SVSMHRRL = 4  
SVMHE = 1, SVSMHRRL = 5  
SVMHE = 1, SVSMHRRL = 6  
SVMHE = 1, SVSMHRRL = 7  
SVMHE = 1, SVMHOVPE = 1  
200  
1.5  
µA  
1.85  
1.62  
1.88  
2.07  
2.20  
2.32  
2.52  
2.90  
2.90  
1.74  
1.94  
2.14  
2.30  
2.40  
2.70  
3.10  
3.10  
3.75  
2.07  
2.28  
2.42  
V(SVMH)  
SVMH on or off voltage level(1)  
2.55  
2.88  
3.23  
3.23  
V
SVMHE = 1, dVDVCC/dt = 10 mV/µs,  
SVMHFP = 1  
2.5  
20  
tpd(SVMH) SVMH propagation delay  
µs  
µs  
SVMHE = 1, dVDVCC/dt = 1 mV/µs,  
SVMHFP = 0  
SVMHE = 0 → 1, dVDVCC/dt = 10 mV/µs,  
SVMHFP = 1  
12.5  
100  
t(SVMH)  
SVMH on or off delay time  
SVMHE = 0 → 1, dVDVCC/dt = 1 mV/µs,  
SVMHFP = 0  
(1) The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and use.  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.24 PMM, SVS Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVSLE = 0, PMMCOREV = 2  
0
nA  
µA  
µs  
I(SVSL)  
SVSL current consumption  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0  
200  
1.5  
2.5  
20  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
SVSLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
tpd(SVSL) SVSL propagation delay  
12.5  
100  
t(SVSL)  
SVSL on or off delay time  
µs  
8.25 PMM, SVM Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SVMLE = 0, PMMCOREV = 2  
0
nA  
µA  
µs  
I(SVML)  
SVML current consumption  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 0  
200  
1.5  
2.5  
20  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
SVMLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
tpd(SVML) SVML propagation delay  
12.5  
100  
t(SVML)  
SVML on or off delay time  
µs  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.26 Wake-up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fMCLK ≥ 4.0 MHz  
3.5  
7.5  
Wake-up time from LPM2,  
LPM3, or LPM4 to active  
mode(1)  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 1  
tWAKE-UP-FAST  
µs  
9
1.0 MHz < fMCLK  
< 4.0 MHz  
4.5  
Wake-up time from LPM2,  
LPM3 or LPM4 to active  
mode(2) (3)  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 0  
tWAKE-UP-SLOW  
150  
165  
µs  
Wake-up time from LPM4.5 to  
active mode(4)  
tWAKE-UP-LPM5  
tWAKE-UP-RESET  
2
2
3
3
ms  
ms  
Wake-up time from RST or  
BOR event to active mode(4)  
(1) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the  
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in  
full performance mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode  
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx  
Family User's Guide.  
(2) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the  
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in  
normal mode (low current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode  
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx  
Family User's Guide.  
(3) The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by  
the performance mode settings as for LPM2, LPM3, and LPM4.  
(4) This value represents the time from the wake-up event to the reset vector execution.  
8.27 Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TACLK,  
fTA  
Timer_A input clock frequency  
1.8 V, 3 V  
25 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTA,cap Timer_A capture timing  
1.8 V, 3 V  
20  
ns  
8.28 Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TBCLK,  
fTB  
Timer_B input clock frequency  
1.8 V, 3 V  
25 MHz  
Duty cycle = 50% ±10%  
All capture inputs, minimum pulse  
duration required for capture  
tTB,cap  
Timer_B capture timing  
1.8 V, 3 V  
20  
ns  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.29 USCI (UART Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
fBITCLK  
BITCLK clock frequency (equals baud rate in MBaud)  
1
MHz  
8.30 USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
2.2 V  
3 V  
MIN  
MAX UNIT  
50  
600  
ns  
600  
tτ  
UART receive deglitch time(1)  
50  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
8.31 USCI (SPI Master Mode) Clock Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
fUSCI  
USCI input clock frequency  
Internal: SMCLK or ACLK, Duty cycle = 50% ±10%  
fSYSTEM MHz  
8.32 USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 8-11 and Figure 8-12)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
SMCLK or ACLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
PMMCOREV = 0  
1.8 V  
3 V  
55  
38  
30  
25  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
ns  
2.4 V  
3 V  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
1.8 V  
3 V  
0
tHD,MI  
ns  
2.4 V  
3 V  
0
0
1.8 V  
3 V  
20  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 0  
18  
ns  
16  
tVALID,MO SIMO output data valid time(2)  
2.4 V  
3 V  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 3  
15  
1.8 V  
3 V  
–10  
–8  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
tHD,MO  
SIMO output data hold time(3)  
ns  
2.4 V  
3 V  
–10  
–8  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 8-11 and Figure 8-12.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure  
8-11 and Figure 8-12.  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 8-11. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 8-12. SPI Master Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.33 USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 8-13 and Figure 8-14)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
11  
8
MAX UNIT  
PMMCOREV = 0  
tSTE,LEAD STE lead time, STE low to clock  
ns  
2.4 V  
3 V  
7
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
6
1.8 V  
3 V  
3
3
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lag time, Last clock to STE high  
ns  
2.4 V  
3 V  
3
3
1.8 V  
3 V  
66  
50  
ns  
36  
STE access time, STE low to SOMI data out  
2.4 V  
3 V  
30  
30  
1.8 V  
3 V  
23  
ns  
16  
STE disable time, STE high to SOMI high  
impedance  
2.4 V  
3 V  
13  
1.8 V  
3 V  
5
5
2
2
5
5
5
5
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
2.4 V  
3 V  
1.8 V  
3 V  
tHD,SI  
ns  
2.4 V  
3 V  
1.8 V  
3 V  
76  
UCLK edge to SOMI valid,  
CL = 20 pF, PMMCOREV = 0  
60  
ns  
44  
tVALID,SO  
2.4 V  
3 V  
UCLK edge to SOMI valid,  
CL = 20 pF, PMMCOREV = 3  
40  
1.8 V  
3 V  
18  
12  
10  
8
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
tHD,SO  
ns  
2.4 V  
3 V  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 8-13 and Figure 8-14.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure  
8-13 and Figure 8-14.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
SOMI  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 8-13. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 8-14. SPI Slave Mode, CKPH = 1  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.34 USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see  
Figure 8-15)  
PARAMETER  
USCI input clock frequency  
SCL clock frequency  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: UCLK,  
Duty cycle = 50% ±10%  
fUSCI  
fSCL  
fSYSTEM MHz  
2.2 V, 3 V  
2.2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400  
kHz  
µs  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
tHD,STA Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
µs  
tHD,DAT Data hold time  
tSU,DAT Data setup time  
2.2 V, 3 V  
2.2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL ≤ 100 kHz  
fSCL > 100 kHz  
tSU,STO Setup time for STOP  
2.2 V, 3 V  
µs  
ns  
2.2 V  
3 V  
600  
600  
tSP  
Pulse duration of spikes suppressed by input filter  
50  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 8-15. I2C Mode Timing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.35 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
0
TYP  
MAX UNIT  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
AVCC  
Analog supply voltage  
Analog input voltage range(2)  
3.6  
V
V(Ax)  
All ADC12 analog input pins Ax  
fADC12CLK = 5.0 MHz(4)  
AVCC  
155  
V
2.2 V  
3 V  
125  
150  
Operating supply current into  
AVCC terminal(3)  
IADC12_A  
µA  
220  
Only one terminal Ax can be selected at one  
time  
CI  
RI  
Input capacitance  
2.2 V  
20  
25  
pF  
Input MUX ON resistance  
0 V ≤ VAx ≤ AVCC  
10  
200  
1900  
(1) The leakage current is specified by the digital I/O input leakage.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. If the  
reference voltage is supplied by an external source or if the internal reference voltage is used and REFOUT = 1, then decoupling  
capacitors are required (see Section 8.40 and Section 8.41).  
(3) The internal reference supply current is not included in current consumption parameter IADC12_A  
(4) ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0  
.
8.36 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC12 linearity  
parameters using an external reference  
voltage or AVCC as reference(1)  
0.45  
4.8  
5.0  
fADC12CLK  
ADC conversion clock  
For specified performance of ADC12 linearity 2.2 V, 3 V  
parameters using the internal reference(2)  
MHz  
4.0  
0.45  
0.45  
4.2  
2.4  
2.4  
4.8  
For specified performance of ADC12 linearity  
parameters using the internal reference(3)  
2.7  
Internal ADC12  
oscillator(4)  
fADC12OSC  
tCONVERT  
tSample  
ADC12DIV = 0, fADC12CLK = fADC12OSC  
2.2 V, 3 V  
2.2 V, 3 V  
5.4 MHz  
REFON = 0, Internal oscillator,  
ADC12OSC used for ADC conversion clock  
2.4  
3.1  
µs  
Conversion time  
Sampling time  
External fADC12CLK from ACLK, MCLK, or  
SMCLK, ADC12SSEL ≠ 0  
13 ×  
1 / fADC12CLK  
RS = 400 Ω, RI = 1000 Ω, CI = 20 pF,  
τ = (RS + RI) × CI  
2.2 V, 3 V  
1000  
ns  
(5)  
(1) REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0,  
SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the  
specified performance of the ADC12 linearity is ensured with fADC12CLK maximum of 5.0 MHz.  
(2) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1  
(3) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when  
using the ADC12OSC divided by 2.  
(4) The ADC12OSC is sourced directly from MODOSC inside the UCS.  
(5) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB:  
tSample = ln(2n+1) × RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.37 12-Bit ADC, Linearity Parameters Using an External Reference Voltage or AVCC as Reference  
Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error(1)  
Differential linearity error(1)  
Offset error(3)  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
1.4 V ≤ dVREF ≤ 1.6 V(2)  
±2.0  
LSB  
±1.7  
EI  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
1.6 V < dVREF(2)  
(2)  
ED  
EO  
EG  
ET  
±1.0 LSB  
dVREF ≤ 2.2 V(2)  
±1.0  
±1.0  
±1.0  
±1.4  
±1.4  
±2.0  
LSB  
±2.0  
dVREF > 2.2 V(2)  
Gain error(3)  
±2.0 LSB  
(2)  
dVREF ≤ 2.2 V(2)  
dVREF > 2.2 V(2)  
±3.5  
LSB  
±3.5  
Total unadjusted error  
(1) Parameters are derived using the histogram method.  
(2) The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = VR+ – VR-, VR+ < AVCC, VR–  
>
AVSS. Unless otherwise mentioned, dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω and two decoupling  
capacitors, 10 µF and 100 nF, should be connected to VREF+ and VREF- to decouple the dynamic current. See also the MSP430F5xx  
and MSP430F6xx Family User's Guide.  
(3) Parameters are derived using a best fit curve.  
8.38 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
VCC  
MIN  
TYP  
MAX UNIT  
ADC12SR = 0, REFOUT = 1  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
fADC12CLK ≤ 4.0 MHz  
fADC12CLK ≤ 2.7 MHz  
±1.7  
LSB  
±2.5  
Integral linearity  
error(2)  
EI  
2.2 V, 3 V  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
–1.0  
–1.0  
–1.0  
+2.0  
Differential  
ED  
2.2 V, 3 V  
+1.5 LSB  
+2.5  
linearity error(2)  
±1.0  
±1.0  
±1.0  
±2.0  
LSB  
±2.0  
EO  
EG  
ET  
Offset error(3)  
Gain error(3)  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±2.0 LSB  
±1.5%(4) VREF  
±3.5 LSB  
±1.4  
Total unadjusted  
error  
±1.5%(4) VREF  
(1) The internal reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 1. dVREF = VR+ – VR–  
.
(2) Parameters are derived using the histogram method.  
(3) Parameters are derived using a best fit curve.  
(4) The gain error and total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In this  
mode the reference voltage used by the ADC12_A is not available on a pin.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.39 12-Bit ADC, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
680  
680  
2.25  
2.25  
MAX UNIT  
ADC12ON = 1, INCH = 0Ah,  
TA = 0°C  
VSENSOR  
See (2)  
mV  
2.2 V  
3 V  
TCSENSOR  
ADC12ON = 1, INCH = 0Ah  
mV/°C  
µs  
2.2 V  
3 V  
100  
100  
Sample time required if  
channel 10 is selected(3)  
ADC12ON = 1, INCH = 0Ah,  
Error of conversion result ≤ 1 LSB  
tSENSOR(sample)  
AVCC divider at channel 11,  
VAVCC factor  
0.48  
0.5  
0.52  
V
ADC12ON = 1, INCH = 0Bh  
ADC12ON = 1, INCH = 0Bh  
AVCC AVCC AVCC  
VMID  
2.2 V  
3 V  
1.06  
1.44  
1.1  
1.5  
1.14  
1.56  
AVCC divider at channel 11  
V
Sample time required if  
channel 11 is selected(4)  
ADC12ON = 1, INCH = 0Bh,  
Error of conversion result ≤ 1 LSB  
tVMID(sample)  
2.2 V, 3 V  
1000  
ns  
(1) The temperature sensor is provided by the REF module. See the REF module parametric, IREF+, regarding the current consumption of  
the temperature sensor.  
(2) The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor. The TLV structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference  
voltage levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature,°C) + VSENSOR, where TCSENSOR and  
VSENSOR can be computed from the calibration values for higher accuracy. See also the MSP430F5xx and MSP430F6xx Family User's  
Guide.  
(3) The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on)  
(4) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
.
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
-40 -30 -20 -10  
0 10 20 30 40 50 60 70 80  
Ambient Temperature (°C)  
Figure 8-16. Typical Temperature Sensor Voltage  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.40 REF, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.4 AVCC  
1.2  
1.4 AVCC  
MAX UNIT  
Positive external reference voltage  
input  
(2)  
VeREF+  
VeREF+ > VREF–/VeREF–  
V
V
V
Negative external reference voltage  
input  
(3)  
VREF–/VeREF–  
VeREF+ > VREF–/VeREF–  
0
(VeREF+  
Differential external reference  
voltage input  
(4)  
VeREF+ > VREF–/VeREF–  
1.4 V ≤ VeREF+ ≤ VAVCC  
VREF–/VeREF–  
)
,
VeREF– = 0 V, fADC12CLK = 5 MHz,  
ADC12SHTx = 1h,  
Conversion rate 200 ksps  
2.2 V, 3 V  
2.2 V, 3 V  
–26  
26  
1
IVeREF+,  
IVREF-/VeREF–  
Static input current  
µA  
µF  
1.4 V ≤ VeREF+ ≤ VAVCC  
,
VeREF– = 0 V, fADC12CLK = 5 MHz,  
ADC12SHTx = 8h,  
Conversion rate 20 ksps  
–1  
10  
Capacitance at VREF+ or VREF-  
terminal  
(5)  
CVREF+/-  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is  
also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC12_A. See also the MSP430F5xx and MSP430F6xx Family User's Guide.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.41 REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
REFVSEL = {2} for 2.5 V,  
3 V  
2.4625  
2.50 2.5375  
1.98 2.0097  
1.49 1.5124  
REFON = REFOUT = 1, IVREF+= 0 A  
Positive built-in reference voltage REFVSEL = {1} for 2.0 V,  
VREF+  
3 V  
1.9503  
1.4677  
V
V
output  
REFON = REFOUT = 1, IVREF+= 0 A  
REFVSEL = {0} for 1.5 V,  
REFON = REFOUT = 1, IVREF+= 0 A  
2.2 V, 3 V  
REFVSEL = {0} for 1.5 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
2.2  
2.3  
2.8  
AVCC minimum voltage, Positive  
built-in reference active  
AVCC(min)  
ADC12SR = 1(4), REFON = 1, REFOUT = 0,  
REFBURST = 0  
3 V  
3 V  
3 V  
3 V  
70  
0.45  
210  
100  
0.75  
310  
1.7  
µA  
mA  
µA  
ADC12SR = 1(4), REFON = 1, REFOUT = 1,  
REFBURST = 0  
Operating supply current into  
AVCC terminal(2) (3)  
IREF+  
ADC12SR = 0(4), REFON = 1, REFOUT = 0,  
REFBURST = 0  
ADC12SR = 0(4), REFON = 1, REFOUT = 1,  
REFBURST = 0  
0.95  
mA  
REFVSEL = {0, 1, 2},  
Load-current regulation, VREF+ IVREF+ = +10 µA or –1000 µA,  
terminal(5)  
AVCC = AVCC(min) for each reference level,  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1  
IL(VREF+)  
2500 µV/mA  
CVREF+  
TCREF+  
Capacitance at VREF+ terminals REFON = REFOUT = 1  
20  
100  
pF  
IVREF+ = 0 A,  
REFVSEL = {0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
Temperature coefficient of built-in  
30  
50 ppm/ °C  
300 µV/V  
reference(6)  
AVCC = AVCC(min) to AVCC(max)  
Power supply rejection ratio (DC) TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
,
PSRR_DC  
PSRR_AC  
120  
AVCC = AVCC(min) to AVCC(max)  
,
TA = 25°C, f = 1 kHz, ΔVpp = 100 mV,  
REFVSEL = {0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
Power supply rejection ratio (AC)  
6.4  
75  
75  
mV/V  
AVCC = AVCC(min) to AVCC(max)  
,
REFVSEL = {0, 1, 2}, REFOUT = 0,  
REFON = 0 → 1  
Settling time of reference  
voltage(7)  
tSETTLE  
µs  
AVCC = AVCC(min) to AVCC(max)  
CVREF = CVREF(max),  
,
REFVSEL = {0, 1, 2}, REFOUT = 1,  
REFON = 0 → 1  
(1) The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers,  
one smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal and is  
used as the reference for the conversion and uses the larger buffer. When REFOUT = 0, the reference is used only as the reference  
for the conversion and uses the smaller buffer.  
(2) The internal reference current is supplied through the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless  
a conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current  
contribution of the larger buffer without external load.  
(3) The temperature sensor is provided by the REF module. Its current is supplied through the AVCC terminal and is equivalent to IREF+  
with REFON =1 and REFOUT = 0.  
(4) For devices without the ADC12, the parametrics with ADC12SR = 0 are applicable.  
(5) Contribution is due only to the reference and buffer including package. This does not include resistance due to PCB trace and other  
factors.  
(6) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).  
(7) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external  
capacitive load when REFOUT = 1.  
Copyright © 2020 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
8.42 Comparator B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
Supply voltage  
1.8  
3.6  
40  
50  
65  
30  
0.5  
V
1.8 V  
2.2 V  
3 V  
CBPWRMD = 00  
30  
40  
Comparator operating supply  
IAVCC_COMP current into AVCC, Excludes  
reference resistor ladder  
µA  
CBPWRMD = 01  
CBPWRMD = 10  
10  
2.2 V, 3 V  
0.1  
Quiescent current of local reference  
IAVCC_REF  
CBREFACC = 1, CBREFLx = 01  
22  
µA  
V
voltage amplifier into AVCC  
VIC  
Common mode input range  
Input offset voltage  
0
VCC – 1  
±20  
CBPWRMD = 00  
VOFFSET  
CIN  
mV  
CBPWRMD = 01, 10  
±10  
Input capacitance  
5
3
pF  
kΩ  
On (switch closed)  
4
RSIN  
Series input resistance  
Off (switch open)  
30  
MΩ  
CBPWRMD = 00, CBF = 0  
CBPWRMD = 01, CBF = 0  
CBPWRMD = 10, CBF = 0  
450  
600  
50  
ns  
µs  
tPD  
Propagation delay, response time  
Propagation delay with filter active  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 00  
0.35  
0.6  
1.0  
1.8  
0.6  
1.0  
1.8  
3.4  
1
1.0  
1.8  
3.4  
6.5  
2
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 01  
tPD,filter  
µs  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 10  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 11  
CBON = 0 to CBON = 1,  
CBPWRMD = 00, 01  
tEN_CMP  
Comparator enable time  
µs  
CBON = 0 to CBON = 1,  
CBPWRMD = 10  
100  
1.5  
tEN_REF  
Resistor reference enable time  
Reference voltage for a given tap  
CBON = 0 to CBON = 1  
1
µs  
V
VIN ×  
(n + 1)  
/ 32  
VIN = reference into resistor ladder  
(n = 0 to 31)  
VCB_REF  
8.43 Ports PU.0 and PU.1  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see  
Figure 8-17 through Figure 8-19)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
VLDOO = 3.3 V ±10%, IOH = –25 mA,  
See Figure 8-18 for typical characteristics  
VOH  
VOL  
VIH  
VIL  
High-level output voltage  
2.4  
V
VLDOO = 3.3 V ±10%, IOL = 25 mA,  
See Figure 8-17 for typical characteristics  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
0.4  
V
V
V
VLDOO = 3.3 V ±10%,  
See Figure 8-19 for typical characteristics  
2.0  
VLDOO = 3.3 V ±10%,  
See Figure 8-19 for typical characteristics  
0.8  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
90  
VCC = 3.0 V  
TA = 25ºC  
VCC = 3.0 V  
TA = 85ºC  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCC = 1.8 V  
TA = 25ºC  
VCC = 1.8 V  
TA = 85ºC  
0
0.1 0.2 0.3 0.4 0.5  
0.6 0.7 0.8 0.9  
1
1.1 1.2  
VOL – Low-Level Output Voltage – V  
Figure 8-17. Ports PU.0, PU.1 Typical Low-Level Output Current vs Low-Level Output Voltage  
0
-10  
-20  
-30  
VCC = 1.8 V  
TA = 85ºC  
-40  
-50  
VCC = 3.0 V  
TA = 85ºC  
-60  
VCC = 1.8 V  
-70  
TA = 25ºC  
VCC = 3.0 V  
TA = 25ºC  
-80  
-90  
0.5  
1
1.5  
2
2.5  
3
VOH – High-Level Output Voltage – V  
Figure 8-18. Ports PU.0, PU.1 Typical High-Level Output Current vs High-Level Output Voltage  
Copyright © 2020 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
TA = 25°C, 85°C  
VIT+, postive-going input threshold  
VIT–, negative-going input threshold  
1.8  
2.2  
2.6 3  
VLDOO – LDOO Supply Voltage – V  
3.4  
Figure 8-19. Ports PU.0, PU.1 Typical Input Threshold  
8.44 LDO-PWR (LDO Power System)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
3.76  
1.8  
TYP  
MAX UNIT  
VLAUNCH LDO input detection threshold  
3.75  
5.5  
V
V
VLDOI  
VLDO  
LDO input voltage  
LDO output voltage  
3.3  
±9%  
3.6  
V
VLDO_EXT LDOO terminal input voltage with LDO disabled  
LDO disabled  
V
ILDOO  
IDET  
CLDOI  
CLDOO  
Maximum external current from LDOO terminal  
LDO current overload detection(1)  
LDO is on  
20  
mA  
mA  
µF  
nF  
60  
100  
LDOI terminal recommended capacitance  
LDOO terminal recommended capacitance  
4.7  
220  
Within 2%, recommended  
capacitances  
tENABLE  
Settling time VLDO  
2
ms  
(1) A current overload is detected when the total current supplied from the LDO exceeds this value.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
8.45 Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TJ  
MIN  
TYP  
MAX UNIT  
DVCC(PGM/ERASE) Program or erase supply voltage  
1.8  
3.6  
5
V
mA  
IPGM  
Average supply current from DVCC during program  
3
6
6
IERASE  
Average supply current from DVCC during erase  
Average supply current from DVCC during mass erase or bank erase  
Cumulative program time(1)  
15  
15  
16  
mA  
IMERASE, IBANK  
tCPT  
mA  
ms  
Program and erase endurance  
104  
100  
64  
105  
cycles  
years  
µs  
tRetention  
tWord  
Data retention duration  
25°C  
Word or byte program time(2)  
85  
65  
tBlock, 0  
Block program time for first byte or word(2)  
49  
µs  
Block program time for each additional byte or word, except for last byte or  
word(2)  
tBlock, 1–(N–1)  
37  
49  
µs  
tBlock, N  
tErase  
Block program time for last byte or word(2)  
55  
23  
73  
32  
µs  
Erase time for segment, mass erase, and bank erase (when available)(2)  
ms  
MCLK frequency in marginal read mode  
(FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1)  
fMCLK,MGR  
0
1
MHz  
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming  
methods: individual word or byte write and block write modes.  
(2) These values are hardwired into the state machine of the flash controller.  
8.46 JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VCC  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
0
20 MHz  
tSBW,Low  
tSBW, En  
tSBW,Rst  
Spy-Bi-Wire low clock pulse duration  
0.025  
15  
1
µs  
µs  
µs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)(1)  
Spy-Bi-Wire return to normal operation time  
15  
0
100  
5
2.2 V  
3 V  
fTCK  
TCK input frequency, 4-wire JTAG(2)  
Internal pulldown resistance on TEST  
MHz  
kΩ  
0
10  
80  
Rinternal  
2.2 V, 3 V  
45  
60  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2020 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9 Detailed Description  
9.1 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are  
general-purpose registers (see Figure 9-1).  
Peripherals are connected to the CPU using data, address, and control buses. The peripherals can be managed  
with all instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes and  
additional instructions for the expanded address range. Each instruction can operate on word and byte data.  
Program Counter  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Stack Pointer  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
Figure 9-1. Integrated CPU Registers  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.2 Operating Modes  
The MCU has one active mode and six software-selectable low-power modes of operation. An interrupt event  
can wake up the device from any of the low-power modes, service the request, and restore back to the low-  
power mode on return from the interrupt program.  
Software can configure the following operating modes:  
Active mode (AM)  
– All clocks are active  
Low-power mode 0 (LPM0)  
– CPU is disabled  
– ACLK and SMCLK remain active  
– MCLK is disabled  
– FLL loop control remains active  
Low-power mode 1 (LPM1)  
– CPU is disabled  
– FLL loop control is disabled  
– ACLK and SMCLK remain active  
– MCLK is disabled  
Low-power mode 2 (LPM2)  
– CPU is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO remains enabled  
– ACLK remains active  
Low-power mode 3 (LPM3)  
– CPU is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO is disabled  
– ACLK remains active  
Low-power mode 4 (LPM4)  
– CPU is disabled  
– ACLK is disabled  
– MCLK, FLL loop control, and DCOCLK are disabled  
– DC generator of the DCO is disabled  
– Crystal oscillator is stopped  
– Complete data retention  
Low-power mode 4.5 (LPM4.5)  
– Internal regulator disabled  
– No data retention  
– Wake-up input from RST/NMI, P1, and P2  
Copyright © 2020 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.3 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table  
9-1). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 9-1. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up  
External reset  
Watchdog time-out, password  
violation  
WDTIFG, KEYV (SYSRSTIV)(1) (3)  
Reset  
0FFFEh  
63, highest  
Flash memory password violation  
PMM password violation  
System NMI  
PMM  
Vacant memory access  
JTAG mailbox  
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,  
VLRLIFG, VLRHIFG, VMAIFG, JMBINIFG,  
JMBOUTIFG (SYSSNIV)(1)  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
62  
61  
User NMI  
NMI  
Oscillator fault  
NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV)  
(1) (3)  
Flash memory access violation  
Comp_B  
TB0  
Comparator B interrupt flags (CBIV)(1) (2)  
TB0CCR0 CCIFG0 (2)  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
60  
59  
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,  
TB0IFG (TB0IV)(1) (2)  
TB0  
Maskable  
Maskable  
0FFF4h  
0FFF2h  
58  
57  
Watchdog Timer_A interval timer  
mode  
WDTIFG  
USCI_A0 receive or transmit  
USCI_B0 receive or transmit  
ADC12_A  
UCA0RXIFG, UCA0TXIFG (UCA0IV)(1) (2)  
UCB0RXIFG, UCB0TXIFG (UCB0IV)(1) (2)  
ADC12IFG0 to ADC12IFG15 (ADC12IV)(1) (2) (5)  
TA0CCR0 CCIFG0(2)  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF0h  
0FFEEh  
0FFECh  
0FFEAh  
56  
55  
54  
53  
TA0  
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,  
TA0IFG (TA0IV)(1) (2)  
TA0  
Maskable  
0FFE8h  
52  
LDO-PWR  
DMA  
LDOOFFIG, LDOONIFG, LDOOVLIFG  
DMA0IFG, DMA1IFG, DMA2IFG (DMAIV)(1) (2)  
TA1CCR0 CCIFG0(2)  
Maskable  
Maskable  
Maskable  
0FFE6h  
0FFE4h  
0FFE2h  
51  
50  
49  
TA1  
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)(1) (2)  
TA1  
Maskable  
0FFE0h  
48  
I/O port P1  
USCI_A1 receive or transmit  
USCI_B1 receive or transmit  
TA2  
P1IFG.0 to P1IFG.7 (P1IV)(1) (2)  
UCA1RXIFG, UCA1TXIFG (UCA1IV)(1) (2)  
UCB1RXIFG, UCB1TXIFG (UCB1IV)(1) (2)  
TA2CCR0 CCIFG0(2)  
Maskable  
Maskable  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
0FFDAh  
0FFD8h  
47  
46  
45  
44  
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,  
TA2IFG (TA2IV)(1) (2)  
TA2  
Maskable  
Maskable  
Maskable  
0FFD6h  
0FFD4h  
0FFD2h  
43  
42  
41  
I/O port P2  
RTC_A  
P2IFG.0 to P2IFG.7 (P2IV)(1) (2)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RT0PSIFG, RT1PSIFG (RTCIV)(1) (2)  
0FFD0h  
40  
Reserved  
Reserved(4)  
0FF80h  
0, lowest  
(1) Multiple source flags  
(2) Interrupt flags are in the module.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
(3) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it.  
(4) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To  
maintain compatibility with other devices, TI recommends reserving these locations.  
(5) Only on devices with ADC, otherwise reserved.  
9.4 Memory Organization  
Table 9-2 summarizes the memory map for all devices.  
Table 9-2. Memory Organization  
MSP430F5325,  
MSP430F5324  
MSP430F5327,  
MSP430F5326  
MSP430F5329,  
MSP430F5328  
Memory (flash)  
Main: interrupt vector  
64KB  
00FFFFh to 00FF80h  
96KB  
00FFFFh to 00FF80h  
128KB  
00FFFFh to 00FF80h  
Total Size  
Bank D  
Bank C  
Bank B  
Bank A  
Sector 3  
Sector 2  
Sector 1  
Sector 0  
Sector 7  
Info A  
32KB  
0243FFh to 01C400h  
N/A(1)  
N/A  
32KB  
01C3FFh to 014400h  
32KB  
01C3FFh to 014400h  
N/A  
Main: code memory  
32KB  
0143FFh to 00C400h  
32KB  
0143FFh to 00C400h  
32KB  
0143FFh to 00C400h  
32KB  
00C3FFh to 004400h  
32KB  
00C3FFh to 004400h  
32KB  
00C3FFh to 004400h  
2 KB  
N/A  
N/A  
N/A  
0043FFh to 003C00h  
2KB  
2KB  
003BFFh to 003400h  
003BFFh to 003400h  
2KB  
2KB  
2KB  
RAM  
0033FFh to 002C00h  
0033FFh to 002C00h  
0033FFh to 002C00h  
2KB  
2KB  
2KB  
002BFFh to 002400h  
002BFFh to 002400h  
002BFFh to 002400h  
2KB  
2KB  
2KB  
0023FFh to 001C00h  
0023FFh to 001C00h  
0023FFh to 001C00h  
128 B  
0019FFh to 001980h  
128 B  
0019FFh to 001980h  
128 B  
0019FFh to 001980h  
128 B  
00197Fh to 001900h  
128 B  
00197Fh to 001900h  
128 B  
00197Fh to 001900h  
Info B  
Information memory (flash)  
128 B  
0018FFh to 001880h  
128 B  
0018FFh to 001880h  
128 B  
0018FFh to 001880h  
Info C  
128 B  
00187Fh to 001800h  
128 B  
00187Fh to 001800h  
128 B  
00187Fh to 001800h  
Info D  
512 B  
0017FFh to 001600h  
512 B  
0017FFh to 001600h  
512 B  
0017FFh to 001600h  
BSL 3  
512 B  
0015FFh to 001400h  
512 B  
0015FFh to 001400h  
512 B  
0015FFh to 001400h  
BSL 2  
Bootloader (BSL) memory  
(flash)  
512 B  
0013FFh to 001200h  
512 B  
0013FFh to 001200h  
512 B  
0013FFh to 001200h  
BSL 1  
512 B  
0011FFh to 001000h  
512 B  
0011FFh to 001000h  
512 B  
0011FFh to 001000h  
BSL 0  
4KB  
000FFFh to 0h  
4KB  
000FFFh to 0h  
4KB  
000FFFh to 0h  
Peripherals  
Size  
(1) N/A = Not available.  
Copyright © 2020 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.5 Bootloader (BSL)  
The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the  
device memory through the BSL is protected by an user-defined password. Use of the BSL requires four pins  
(see Table 9-3). BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK  
pins. For complete description of the features of the BSL and its implementation, see MSP430™ Flash Devices  
Bootloader (BSL) User's Guide.  
Table 9-3. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.1  
P1.2  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
9.6 JTAG Operation  
9.6.1 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin enables the JTAG signals.  
In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and  
device programmers. Table 9-4 lists the JTAG pin requirements. For further details on interfacing to development  
tools and device programmers, see the MSP430 Hardware Tools User's Guide. For complete description of the  
features of the JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface.  
Table 9-4. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
PJ.3/TCK  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
9.6.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-  
Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 9-5 lists the  
Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device  
programmers, see the MSP430 Hardware Tools User's Guide. For complete description of the features of the  
JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface.  
Table 9-5. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN  
IN, OUT  
VSS  
Ground supply  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.7 Flash Memory  
The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the  
flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually. Segments A to D are also called information memory.  
Segment A can be locked separately.  
9.8 RAM  
The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all  
data are lost. Features of the RAM include:  
RAM has n sectors. The size of a sector can be found in Section 9.4.  
Each sector 0 to n can be complete disabled; however, data retention is lost.  
Each sector 0 to n automatically enters low-power retention mode when possible.  
9.9 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed  
using all instructions. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's  
Guide.  
9.9.1 Digital I/O  
Up to eight 8-bit I/O ports are implemented: for 80-pin PN options, P1, P2, P3, P4, P5, P6, and P7 are complete,  
and P8 is reduced to 3-bit I/O. For 80-pin ZXH or ZQE and 64-pin RGC options, P3 and P5 are reduced to 5-bit  
I/O and 6-bit I/O, respectively, and P7 and P8 are completely removed. Port PJ contains four individual I/O ports,  
common to all devices.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Pullup or pulldown on all ports is programmable.  
Drive strength on all ports is programmable.  
Edge-selectable interrupt and LPM4.5 wake-up input capability is available for all bits of ports P1 and P2.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise (P1 through P8) or word-wise in pairs (PA through PD).  
Copyright © 2020 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.9.2 Port Mapping Controller  
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P4 (see  
Table 9-6). Table 9-7 lists the default settings for all pins that support port mapping.  
Table 9-6. Port Mapping Mnemonics and Functions  
VALUE  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
DVSS  
0
PM_NONE  
None  
PM_CBOUT0  
PM_TB0CLK  
Comparator_B output  
1
2
3
TB0 clock input  
PM_ADC12CLK  
PM_DMAE0  
ADC12CLK  
DMAE0 input  
PM_SVMOUT  
PM_TB0OUTH  
PM_TB0CCR0A  
PM_TB0CCR1A  
PM_TB0CCR2A  
PM_TB0CCR3A  
PM_TB0CCR4A  
PM_TB0CCR5A  
PM_TB0CCR6A  
PM_UCA1RXD  
PM_UCA1SOMI  
PM_UCA1TXD  
PM_UCA1SIMO  
PM_UCA1CLK  
PM_UCB1STE  
PM_UCB1SOMI  
PM_UCB1SCL  
PM_UCB1SIMO  
PM_UCB1SDA  
PM_UCB1CLK  
PM_UCA1STE  
PM_CBOUT1  
PM_MCLK  
SVM output  
TB0 high-impedance input TB0OUTH  
TB0 CCR0 capture input CCI0A  
TB0 CCR1 capture input CCI1A  
TB0 CCR2 capture input CCI2A  
TB0 CCR3 capture input CCI3A  
TB0 CCR4 capture input CCI4A  
TB0 CCR5 capture input CCI5A  
TB0 CCR6 capture input CCI6A  
4
5
TB0 CCR0 compare output Out0  
TB0 CCR1 compare output Out1  
TB0 CCR2 compare output Out2  
TB0 CCR3 compare output Out3  
TB0 CCR4 compare output Out4  
TB0 CCR5 compare output Out5  
TB0 CCR6 compare output Out6  
6
7
8
9
10  
USCI_A1 UART RXD (Direction controlled by USCI – input)  
USCI_A1 SPI slave out master in (direction controlled by USCI)  
USCI_A1 UART TXD (Direction controlled by USCI – output)  
USCI_A1 SPI slave in master out (direction controlled by USCI)  
USCI_A1 clock input/output (direction controlled by USCI)  
USCI_B1 SPI slave transmit enable (direction controlled by USCI)  
USCI_B1 SPI slave out master in (direction controlled by USCI)  
USCI_B1 I2C clock (open drain and direction controlled by USCI)  
USCI_B1 SPI slave in master out (direction controlled by USCI)  
USCI_B1 I2C data (open drain and direction controlled by USCI)  
USCI_B1 clock input/output (direction controlled by USCI)  
USCI_A1 SPI slave transmit enable (direction controlled by USCI)  
11  
12  
13  
14  
15  
16  
17  
18  
None  
None  
None  
Comparator_B output  
MCLK  
19–30  
Reserved  
DVSS  
Disables the output driver and the input Schmitt trigger to prevent parasitic  
cross currents when applying analog signals.  
31 (0FFh)(1)  
PM_ANALOG  
(1) The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are 5 bits wide, and the upper bits are ignored,  
which results in a read value of 31.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-7. Default Mapping  
PIN  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
USCI_B1 SPI slave transmit enable (direction controlled by USCI)  
USCI_A1 clock input/output (direction controlled by USCI)  
P4.0/P4MAP0  
PM_UCB1STE/PM_UCA1CLK  
USCI_B1 SPI slave in master out (direction controlled by USCI)  
USCI_B1 I2C data (open drain and direction controlled by USCI)  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
PM_UCB1SIMO/PM_UCB1SDA  
PM_UCB1SOMI/PM_UCB1SCL  
PM_UCB1CLK/PM_UCA1STE  
PM_UCA1TXD/PM_UCA1SIMO  
PM_UCA1RXD/PM_UCA1SOMI  
USCI_B1 SPI slave out master in (direction controlled by USCI)  
USCI_B1 I2C clock (open drain and direction controlled by USCI)  
USCI_A1 SPI slave transmit enable (direction controlled by USCI)  
USCI_B1 clock input/output (direction controlled by USCI)  
USCI_A1 UART TXD (Direction controlled by USCI - output)  
USCI_A1 SPI slave in master out (direction controlled by USCI)  
USCI_A1 UART RXD (Direction controlled by USCI - input)  
USCI_A1 SPI slave out master in (direction controlled by USCI)  
P4.6/P4MAP6  
P4.7/P4MAP7  
PM_NONE  
PM_NONE  
None  
None  
DVSS  
DVSS  
9.9.3 Oscillator and System Clock  
The clock system in the MSP430F532x family of devices is supported by the Unified Clock System (UCS)  
module that includes support for a 32-kHz watch crystal oscillator (XT1 LF mode only; XT1 HF mode is not  
supported), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency  
oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal  
oscillator XT2. The UCS module is designed to meet the requirements of both low system cost and low power  
consumption. The UCS module features digital frequency-locked loop (FLL) hardware that, in conjunction with a  
digital modulator, stabilizes the DCO frequency to a programmable multiple of the selected FLL reference  
frequency. The internal DCO provides a fast turnon clock source and stabilizes in 3.5 µs (typical). The UCS  
module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the  
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal DCO.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made  
available to ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
same sources made available to ACLK.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.  
9.9.4 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains  
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor  
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is  
implemented to provide the proper internal reset signal to the device during power-on and power-off. The  
SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply  
voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not  
automatically reset). SVS and SVM circuitry are available on the primary supply and core supply.  
9.9.5 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations  
with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed  
and unsigned multiply-and-accumulate operations.  
9.9.6 Real-Time Clock (RTC_A)  
The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated real-  
time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit timers that  
can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Calendar mode  
Copyright © 2020 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
integrates an internal calendar which compensates for months with less than 31 days and includes leap year  
correction. The RTC_A also supports flexible alarm functions and offset-calibration hardware.  
9.9.7 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
9.9.8 System Module (SYS)  
The SYS module handles many of the system functions within the device. These functions include power on  
reset and power up clear handling, NMI source selection and management, reset interrupt vector generators,  
bootloader entry mechanisms, and configuration management (device descriptors). The SYS module also  
includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application.  
Table 9-8 lists the SYS module interrupt vector registers.  
Table 9-8. System Module Interrupt Vector Registers  
INTERRUPT VECTOR REGISTER  
ADDRESS  
INTERRUPT EVENT  
No interrupt pending  
Brownout (BOR)  
RST/NMI (POR)  
PMMSWBOR (BOR)  
Wake up from LPMx.5  
Security violation (BOR)  
SVSL (POR)  
VALUE  
00h  
PRIORITY  
02h  
Highest  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
SVSH (POR)  
SVML_OVP (POR)  
SVMH_OVP (POR)  
PMMSWPOR (POR)  
WDT time-out (PUC)  
WDT password violation (PUC)  
KEYV flash password violation (PUC)  
Reserved  
10h  
SYSRSTIV, System Reset  
019Eh  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
Peripheral area fetch (PUC)  
PMM password violation (PUC)  
Reserved  
20h  
22h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVMLIFG  
02h  
SVMHIFG  
04h  
SVSMLDLYIFG  
06h  
SVSMHDLYIFG  
08h  
SYSSNIV, System NMI  
019Ch  
VMAIFG  
0Ah  
JMBINIFG  
0Ch  
0Eh  
JMBOUTIFG  
SVMLVLRIFG  
10h  
SVMHVLRIFG  
12h  
Reserved  
14h to 1Eh  
00h  
Lowest  
Highest  
No interrupt pending  
NMIIFG  
SYSUNIV, User NMI  
019Ah  
02h  
OFIFG  
04h  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
PRIORITY  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-8. System Module Interrupt Vector Registers (continued)  
INTERRUPT VECTOR REGISTER  
ADDRESS  
INTERRUPT EVENT  
VALUE  
06h  
ACCVIFG  
Reserved  
08h  
Reserved  
0Ah to 1Eh  
Lowest  
9.9.9 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM.  
Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces  
system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move  
data to or from a peripheral. Table 9-9 lists the available DMA triggers.  
Table 9-9. DMA Trigger Assignments  
CHANNEL  
TRIGGER(1)  
0
1
2
0
DMAREQ  
DMAREQ  
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TB0CCR0 CCIFG  
TB0CCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC12IFGx  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC12IFGx  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC12IFGx  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MPY ready  
MPY ready  
MPY ready  
DMA2IFG  
DMA0IFG  
DMA1IFG  
Copyright © 2020 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-9. DMA Trigger Assignments (continued)  
CHANNEL  
TRIGGER(1)  
0
1
2
31  
DMAE0  
DMAE0  
DMAE0  
(1) If a reserved trigger source is selected, no trigger is generated.  
9.9.10 Universal Serial Communication Interface (USCI)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baud-rate detection, and IrDA. Each USCI module contains two portions,  
A and B.  
The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA.  
The USCI_Bn module provides support for SPI (3- or 4-pin) or I2C.  
The MSP430F532x series includes two complete USCI modules (n = 0, 1).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.9.11 TA0  
TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compares. TA0 can support multiple capture/  
compares, PWM outputs, and interval timing (see Table 9-10). TA0 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compares.  
Table 9-10. TA0 Signal Connections  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
MODULE  
BLOCK  
RGC, ZXH,  
PN  
RGC, ZXH, ZQE  
PN  
ZQE  
18, H2-P1.0  
21-P1.0  
TA0CLK  
TACLK  
ACLK  
ACLK  
(internal)  
Timer  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
18, H2-P1.0  
19, H3-P1.1  
21-P1.0  
22-P1.1  
TA0CLK  
TA0.0  
DVSS  
TACLK  
CCI0A  
CCI0B  
GND  
19, H3-P1.1  
20, J3-P1.2  
22-P1.1  
23-P1.2  
CCR0  
CCR1  
TA0  
TA1  
TA0.0  
TA0.1  
DVSS  
DVCC  
TA0.1  
VCC  
20, J3-P1.2  
21, G4-P1.3  
23-P1.2  
24-P1.3  
CCI1A  
CBOUT  
(internal)  
ADC12 (internal) ADC12 (internal)  
ADC12SHSx = {1} ADC12SHSx = {1}  
CCI1B  
DVSS  
DVCC  
TA0.2  
GND  
VCC  
CCI2A  
21, G4-P1.3  
24-P1.3  
ACLK  
(internal)  
CCI2B  
CCR2  
TA2  
TA0.2  
DVSS  
DVCC  
TA0.3  
DVSS  
DVSS  
DVCC  
TA0.4  
DVSS  
DVSS  
DVCC  
GND  
VCC  
22, H4-P1.4  
23, J4-P1.5  
25-P1.4  
26-P1.5  
CCI3A  
CCI3B  
GND  
VCC  
22, H4-P1.4  
23, J4-P1.5  
25-P1.4  
26-P1.5  
CCR3  
CCR4  
TA3  
TA4  
TA0.3  
TA0.4  
CCI4A  
CCI4B  
GND  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.9.12 TA1  
TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compares. TA1 can support multiple capture/  
compares, PWM outputs, and interval timing (see Table 9-11). TA1 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compares.  
Table 9-11. TA1 Signal Connections  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
MODULE  
BLOCK  
RGC, ZXH,  
PN  
RGC, ZXH,  
PN  
ZQE  
ZQE  
24, G5-P1.6  
27-P1.6  
TA1CLK  
TACLK  
ACLK  
ACLK  
(internal)  
Timer  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
24, G5-P1.6  
25, H5-P1.7  
27-P1.6  
28-P1.7  
TA1CLK  
TA1.0  
DVSS  
TACLK  
CCI0A  
CCI0B  
GND  
25, H5-P1.7  
26, J5-P2.0  
28-P1.7  
29-P2.0  
CCR0  
CCR1  
TA0  
TA1  
TA1.0  
TA1.1  
DVSS  
DVCC  
TA1.1  
VCC  
26, J5-P2.0  
27, G6-P2.1  
29-P2.0  
30-P2.1  
CCI1A  
CBOUT  
(internal)  
CCI1B  
DVSS  
DVCC  
TA1.2  
GND  
VCC  
CCI2A  
27, G6-P2.1  
30-P2.1  
ACLK  
(internal)  
CCI2B  
CCR2  
TA2  
TA1.2  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.9.13 TA2  
TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compares. TA2 can support multiple capture/  
compares, PWM outputs, and interval timing (see Table 9-12). TA2 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compares.  
Table 9-12. TA2 Signal Connections  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
MODULE  
BLOCK  
RGC, ZXH,  
PN  
RGC, ZXH,  
PN  
ZQE  
ZQE  
28, J6-P2.2  
31-P2.2  
TA2CLK  
TACLK  
ACLK  
ACLK  
(internal)  
Timer  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
28, J6-P2.2  
29, H6-P2.3  
31-P2.2  
32-P2.3  
TA2CLK  
TA2.0  
DVSS  
TACLK  
CCI0A  
CCI0B  
GND  
29, H6-P2.3  
30, J7-P2.4  
32-P2.3  
33-P2.4  
CCR0  
CCR1  
TA0  
TA1  
TA2.0  
TA2.1  
DVSS  
DVCC  
TA2.1  
VCC  
30, J7-P2.4  
31, J8-P2.5  
33-P2.4  
34-P2.5  
CCI1A  
CBOUT  
(internal)  
CCI1B  
DVSS  
DVCC  
TA2.2  
GND  
VCC  
CCI2A  
31, J8-P2.5  
34-P2.5  
ACLK  
(internal)  
CCI2B  
CCR2  
TA2  
TA2.2  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2020 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.9.14 TB0  
TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compares. TB0 can support multiple capture/  
compares, PWM outputs, and interval timing (see Table 9-13). TB0 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compares.  
Table 9-13. TB0 Signal Connections  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
MODULE  
BLOCK  
RGC, ZXH,  
PN  
RGC, ZXH, ZQE(1)  
PN  
ZQE(1)  
60-P7.7  
TB0CLK  
TBCLK  
ACLK  
ACLK  
(internal)  
Timer  
NA  
NA  
SMCLK  
(internal)  
SMCLK  
60-P7.7  
55-P5.6  
TB0CLK  
TB0.0  
TBCLK  
CCI0A  
55-P5.6  
ADC12 (internal) ADC12 (internal)  
ADC12SHSx = {2} ADC12SHSx = {2}  
55-P5.6  
TB0.0  
CCI0B  
CCR0  
CCR1  
TB0  
TB1  
TB0.0  
TB0.1  
DVSS  
DVCC  
TB0.1  
GND  
VCC  
56-P5.7  
CCI1A  
56-P5.7  
CBOUT  
(internal)  
ADC12 (internal) ADC12 (internal)  
ADC12SHSx = {3} ADC12SHSx = {3}  
CCI1B  
DVSS  
DVCC  
TB0.2  
TB0.2  
DVSS  
DVCC  
TB0.3  
TB0.3  
DVSS  
DVCC  
TB0.4  
TB0.4  
DVSS  
DVCC  
TB0.5  
TB0.5  
DVSS  
DVCC  
TB0.6  
GND  
VCC  
57-P7.4  
57-P7.4  
CCI2A  
CCI2B  
GND  
57-P7.4  
58-P7.5  
59-P7.6  
42-P3.5  
43-P3.6  
CCR2  
CCR3  
CCR4  
CCR5  
TB2  
TB3  
TB4  
TB5  
TB0.2  
TB0.3  
TB0.4  
TB0.5  
VCC  
58-P7.5  
58-P7.5  
CCI3A  
CCI3B  
GND  
VCC  
59-P7.6  
59-P7.6  
CCI4A  
CCI4B  
GND  
VCC  
42-P3.5  
42-P3.5  
CCI5A  
CCI5B  
GND  
VCC  
43-P3.6  
CCI6A  
ACLK  
(internal)  
CCI6B  
CCR6  
TB6  
TB0.6  
DVSS  
DVCC  
GND  
VCC  
(1) Timer functions are selectable through the port mapping controller.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.9.15 Comparator_B  
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,  
battery voltage supervision, and monitoring of external analog signals.  
9.9.16 ADC12_A  
The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR  
core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-  
and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU  
intervention.  
9.9.17 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
9.9.18 REF Voltage Reference  
The reference module (REF) is responsible for generation of all critical reference voltages that can be used by  
the various analog peripherals in the device.  
9.9.19 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The L version of the EEM has the following features:  
Eight hardware triggers or breakpoints on memory access  
Two hardware trigger or breakpoint on CPU write access  
Up to 10 hardware triggers can be combined to form complex triggers or breakpoints  
Two cycle counters  
Sequencer  
State storage  
Clock control on module level  
Copyright © 2020 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.9.20 Peripheral File Map  
Table 9-14 lists the base address and offset range for each module. Table 9-15 through Table 9-43 list all of the  
available registers for each module.  
Table 9-14. Peripherals  
MODULE NAME  
Special Functions (see Table 9-15)  
BASE ADDRESS  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
01C0h  
01E0h  
0200h  
0220h  
0240h  
0260h  
0320h  
0340h  
0380h  
03C0h  
0400h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
05C0h  
05E0h  
0600h  
0620h  
0700h  
08C0h  
0900h  
OFFSET ADDRESS RANGE  
000h to 01Fh  
000h to 010h  
000h to 00Fh  
000h to 007h  
000h to 001h  
000h to 001h  
000h to 01Fh  
000h to 01Fh  
000h to 001h  
000h to 002h  
000h to 007h  
000h to 01Fh  
000h to 00Bh  
000h to 00Bh  
000h to 00Bh  
000h to 01Fh  
000h to 02Eh  
000h to 02Eh  
000h to 02Eh  
000h to 02Eh  
000h to 01Bh  
000h to 02Fh  
000h to 00Fh  
000h to 00Ah  
000h to 00Ah  
000h to 00Ah  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 01Fh  
000h to 03Eh  
000h to 00Fh  
000h to 014h  
PMM (see Table 9-16)  
Flash Control (see Table 9-17)  
CRC16 (see Table 9-18)  
RAM Control (see Table 9-19)  
Watchdog (see Table 9-20)  
UCS (see Table 9-21)  
SYS (see Table 9-22)  
Shared Reference (see Table 9-23)  
Port Mapping Control (see Table 9-24)  
Port Mapping Port P4 (see Table 9-24)  
Port P1, P2 (see Table 9-25)  
Port P3, P4 (see Table 9-26)  
Port P5, P6 (see Table 9-27)  
Port P7, P8 (see Table 9-28)  
Port PJ (see Table 9-29)  
TA0 (see Table 9-30)  
TA1 (see Table 9-31)  
TB0 (see Table 9-32)  
TA2 (see Table 9-33)  
Real-Time Clock (RTC_A) (see Table 9-34)  
32-Bit Hardware Multiplier (see Table 9-35)  
DMA General Control (see Table 9-36)  
DMA Channel 0 (see Table 9-36)  
DMA Channel 1 (see Table 9-36)  
DMA Channel 2 (see Table 9-36)  
USCI_A0 (see Table 9-37)  
USCI_B0 (see Table 9-38)  
USCI_A1 (see Table 9-39)  
USCI_B1 (see Table 9-40)  
ADC12_A (see Table 9-41)  
Comparator_B (see Table 9-42)  
LDO-PWR and Port U configuration (see Table 9-43)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-15. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
SFRIE1  
00h  
02h  
04h  
SFRIFG1  
SFRRPCR  
SFR reset pin control  
Table 9-16. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
PMMCTL1  
SVSMHCTL  
SVSMLCTL  
PMMIFG  
OFFSET  
00h  
PMM control 0  
PMM control 1  
02h  
SVS high-side control  
SVS low-side control  
PMM interrupt flags  
PMM interrupt enable  
PMM power mode 5 control  
04h  
06h  
0Ch  
0Eh  
PMMIE  
PM5CTL0  
10h  
Table 9-17. Flash Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Flash control 1  
Flash control 3  
Flash control 4  
FCTL1  
FCTL3  
04h  
FCTL4  
06h  
Table 9-18. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
CRC data input  
CRC16DI  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
02h  
04h  
06h  
Table 9-19. RAM Control Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
RAM control 0  
RCCTL0  
00h  
Table 9-20. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Watchdog timer control  
WDTCTL  
00h  
Copyright © 2020 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-21. UCS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
UCSCTL0  
UCSCTL1  
UCSCTL2  
UCSCTL3  
UCSCTL4  
UCSCTL5  
UCSCTL6  
UCSCTL7  
UCSCTL8  
OFFSET  
00h  
UCS control 0  
UCS control 1  
UCS control 2  
UCS control 3  
UCS control 4  
UCS control 5  
UCS control 6  
UCS control 7  
UCS control 8  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
Table 9-22. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
System control  
SYSCTL  
Bootloader configuration area  
JTAG mailbox control  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
02h  
06h  
JTAG mailbox input 0  
08h  
JTAG mailbox input 1  
0Ah  
0Ch  
0Eh  
18h  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
1Ah  
1Ch  
1Eh  
SYSSNIV  
SYSRSTIV  
Table 9-23. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Shared reference control  
REFCTL  
00h  
Table 9-24. Port Mapping Registers  
(Base Address of Port Mapping Control: 01C0h, Port P4: 01E0h)  
REGISTER DESCRIPTION  
REGISTER  
PMAPKEYID  
PMAPCTL  
P4MAP0  
P4MAP1  
P4MAP2  
P4MAP3  
P4MAP4  
P4MAP5  
P4MAP6  
P4MAP7  
OFFSET  
00h  
Port mapping key/ID  
Port mapping control  
Port P4.0 mapping  
Port P4.1 mapping  
Port P4.2 mapping  
Port P4.3 mapping  
Port P4.4 mapping  
Port P4.5 mapping  
Port P4.6 mapping  
Port P4.7 mapping  
02h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-25. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
P1DS  
Port P1 direction  
Port P1 resistor enable  
Port P1 drive strength  
Port P1 selection  
P1SEL  
P1IV  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2DS  
Port P2 direction  
Port P2 resistor enable  
Port P2 drive strength  
Port P2 selection  
P2SEL  
P2IV  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
Table 9-26. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P3 input  
P3IN  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
P3DS  
02h  
Port P3 direction  
Port P3 resistor enable  
Port P3 drive strength  
Port P3 selection  
Port P4 input  
04h  
06h  
08h  
P3SEL  
P4IN  
0Ah  
01h  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4DS  
03h  
Port P4 direction  
Port P4 resistor enable  
Port P4 drive strength  
Port P4 selection  
05h  
07h  
09h  
P4SEL  
0Bh  
Copyright © 2020 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-27. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P5 input  
P5IN  
Port P5 output  
P5OUT  
P5DIR  
P5REN  
P5DS  
02h  
Port P5 direction  
Port P5 resistor enable  
Port P5 drive strength  
Port P5 selection  
Port P6 input  
04h  
06h  
08h  
P5SEL  
P6IN  
0Ah  
01h  
Port P6 output  
P6OUT  
P6DIR  
P6REN  
P6DS  
03h  
Port P6 direction  
Port P6 resistor enable  
Port P6 drive strength  
Port P6 selection  
05h  
07h  
09h  
P6SEL  
0Bh  
Table 9-28. Port P7, P8 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port P7 input  
P7IN  
Port P7 output  
P7OUT  
P7DIR  
P7REN  
P7DS  
02h  
Port P7 direction  
Port P7 resistor enable  
Port P7 drive strength  
Port P7 selection  
Port P8 input  
04h  
06h  
08h  
P7SEL  
P8IN  
0Ah  
01h  
Port P8 output  
P8OUT  
P8DIR  
P8REN  
P8DS  
03h  
Port P8 direction  
Port P8 resistor enable  
Port P8 drive strength  
Port P8 selection  
05h  
07h  
09h  
P8SEL  
0Bh  
Table 9-29. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
Port PJ input  
PJIN  
Port PJ output  
PJOUT  
PJDIR  
02h  
Port PJ direction  
Port PJ resistor enable  
Port PJ drive strength  
04h  
PJREN  
PJDS  
06h  
08h  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-30. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA0 control  
TA0CTL  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
TA0 interrupt vector  
TA0IV  
Table 9-31. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
TA1 control  
TA1CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
12h  
14h  
16h  
20h  
TA1 interrupt vector  
TA1IV  
2Eh  
Copyright © 2020 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-32. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
TB0 control  
TB0CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0 interrupt vector  
TB0IV  
Table 9-33. TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
TA2 control  
TA2CTL  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA2 counter  
TA2CCTL0  
TA2CCTL1  
TA2CCTL2  
TA2R  
02h  
04h  
06h  
10h  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2CCR2  
TA2EX0  
12h  
14h  
16h  
20h  
TA2 interrupt vector  
TA2IV  
2Eh  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-34. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
RTC control 0  
RTCCTL0  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
RTC control 1  
RTCCTL1  
RTC control 2  
RTCCTL2  
RTC control 3  
RTCCTL3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTC prescaler 1  
RTCPS1  
RTC interrupt vector word  
RTC seconds/counter 1  
RTC minutes/counter 2  
RTC hours/counter 3  
RTC day of week/counter 4  
RTC days  
RTCIV  
RTCSEC/RTCNT1  
RTCMIN/RTCNT2  
RTCHOUR/RTCNT3  
RTCDOW/RTCNT4  
RTCDAY  
RTC month  
RTCMON  
RTC year low  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTC alarm day of week  
RTC alarm day  
RTCAHOUR  
RTCADOW  
RTCADAY  
Table 9-35. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
16-bit operand 1 – multiply  
MPY  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
RES3  
Copyright © 2020 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-35. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
MPY32 control 0  
MPY32CTL0  
2Ch  
Table 9-36. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)  
REGISTER DESCRIPTION  
REGISTER  
DMA0CTL  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Eh  
DMA channel 0 control  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA module control 0  
DMACTL0  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA module control 1  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
Table 9-37. USCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTL1  
UCA0CTL0  
UCA0BR0  
OFFSET  
00h  
USCI control 1  
USCI control 0  
01h  
USCI baud rate 0  
06h  
USCI baud rate 1  
UCA0BR1  
07h  
USCI modulation control  
USCI status  
UCA0MCTL  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
12h  
13h  
1Ch  
1Dh  
UCA0IFG  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-37. USCI_A0 Registers (Base Address: 05C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
1Eh  
USCI interrupt vector word  
UCA0IV  
Copyright © 2020 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-38. USCI_B0 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTL1  
UCB0CTL0  
UCB0BR0  
UCB0BR1  
UCB0STAT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA  
UCB0I2CSA  
UCB0IE  
OFFSET  
00h  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
12h  
1Ch  
1Dh  
1Eh  
USCI interrupt flags  
UCB0IFG  
USCI interrupt vector word  
UCB0IV  
Table 9-39. USCI_A1 Registers (Base Address: 0600h)  
REGISTER DESCRIPTION  
REGISTER  
UCA1CTL1  
UCA1CTL0  
UCA1BR0  
OFFSET  
00h  
USCI control 1  
USCI control 0  
01h  
USCI baud rate 0  
06h  
USCI baud rate 1  
UCA1BR1  
07h  
USCI modulation control  
USCI status  
UCA1MCTL  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
12h  
13h  
1Ch  
1Dh  
1Eh  
UCA1IFG  
UCA1IV  
Table 9-40. USCI_B1 Registers (Base Address: 0620h)  
REGISTER DESCRIPTION  
REGISTER  
UCB1CTL1  
UCB1CTL0  
UCB1BR0  
UCB1BR1  
UCB1STAT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA  
UCB1I2CSA  
UCB1IE  
OFFSET  
00h  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
12h  
1Ch  
1Dh  
1Eh  
USCI interrupt flags  
UCB1IFG  
USCI interrupt vector word  
UCB1IV  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-41. ADC12_A Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
ADC control 0  
ADC12CTL0  
00h  
02h  
04h  
0Ah  
0Ch  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
ADC control 1  
ADC12CTL1  
ADC control 2  
ADC12CTL2  
ADC interrupt flag  
ADC12IFG  
ADC interrupt enable  
ADC interrupt vector word  
ADC memory control 0  
ADC memory control 1  
ADC memory control 2  
ADC memory control 3  
ADC memory control 4  
ADC memory control 5  
ADC memory control 6  
ADC memory control 7  
ADC memory control 8  
ADC memory control 9  
ADC memory control 10  
ADC memory control 11  
ADC memory control 12  
ADC memory control 13  
ADC memory control 14  
ADC memory control 15  
Conversion memory 0  
Conversion memory 1  
Conversion memory 2  
Conversion memory 3  
Conversion memory 4  
Conversion memory 5  
Conversion memory 6  
Conversion memory 7  
Conversion memory 8  
Conversion memory 9  
Conversion memory 10  
Conversion memory 11  
Conversion memory 12  
Conversion memory 13  
Conversion memory 14  
Conversion memory 15  
ADC12IE  
ADC12IV  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MEM0  
ADC12MEM1  
ADC12MEM2  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
Copyright © 2020 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-42. Comparator_B Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
CBCTL0  
CBCTL1  
CBCTL2  
CBCTL3  
CBINT  
OFFSET  
00h  
Comp_B control 0  
Comp_B control 1  
Comp_B control 2  
Comp_B control 3  
Comp_B interrupt  
02h  
04h  
06h  
0Ch  
Comp_B interrupt vector word  
CBIV  
0Eh  
Table 9-43. LDO and Port U Configuration Registers (Base Address: 0900h)  
REGISTER DESCRIPTION  
REGISTER  
LDOKEYPID  
PUCTL  
OFFSET  
00h  
LDO key/ID  
PU port control  
LDO power control  
04h  
LDOPWRCTL  
08h  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.10 Input/Output Diagrams  
9.10.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger  
Figure 9-2 shows the port diagram. Table 9-44 summarizes the selection of the pin functions.  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P1OUT.x  
0
1
From module  
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
P1.2/TA0.1  
P1.3/TA0.2  
P1.4/TA0.3  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
P1.5/TA0.4  
P1.6/TA1CLK/CBOUT  
P1.7/TA1.0  
EN  
D
To module  
P1IRQ.x  
P1IE.x  
EN  
Q
P1IFG.x  
Set  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
Figure 9-2. Port P1 (P1.0 to P1.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-44. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0 (I/O)  
TA0CLK  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
P1.0/TA0CLK/ACLK  
P1.1/TA0.0  
0
1
2
3
4
5
6
7
0
ACLK  
1
P1.1 (I/O)  
TA0.CCI0A  
TA0.0  
I: 0; O: 1  
0
1
P1.2 (I/O)  
TA0.CCI1A  
TA0.1  
I: 0; O: 1  
P1.2/TA0.1  
0
1
P1.3 (I/O)  
TA0.CCI2A  
TA0.2  
I: 0; O: 1  
P1.3/TA0.2  
0
1
P1.4 (I/O)  
TA0.CCI3A  
TA0.3  
I: 0; O: 1  
P1.4/TA0.3  
0
1
P1.5 (I/O)  
TA0.CCI4A  
TA0.4  
I: 0; O: 1  
P1.5/TA0.4  
0
1
P1.6 (I/O)  
TA1CLK  
I: 0; O: 1  
P1.6/TA1CLK/CBOUT  
P1.7/TA1.0  
0
CBOUT comparator B  
P1.7 (I/O)  
TA1.CCI0A  
TA1.0  
1
I: 0; O: 1  
0
1
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.10.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger  
Figure 9-3 shows the port diagram. Table 9-45 summarizes the selection of the pin functions.  
Pad Logic  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P2OUT.x  
0
1
From module  
P2.0/TA1.1  
P2.1/TA1.2  
P2.2/TA2CLK/SMCLK  
P2.3/TA2.0  
P2.4/TA2.1  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2IN.x  
P2.5/TA2.2  
P2.6/RTCCLK/DMAE0  
P2.7/UB0STE/UCA0CLK  
EN  
D
To module  
To module  
P2IE.x  
EN  
Q
P2IFG.x  
Set  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
Figure 9-3. Port P2 (P2.0 to P2.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-45. Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.0 (I/O)  
TA1.CCI1A  
TA1.1  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
P2.0/TA1.1  
0
1
2
3
4
5
0
1
P2.1 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
P2.1/TA1.2  
0
1
P2.2 (I/O)  
TA2CLK  
I: 0; O: 1  
P2.2/TA2CLK/SMCLK  
P2.3/TA2.0  
0
SMCLK  
1
P2.3 (I/O)  
TA2.CCI0A  
TA2.0  
I: 0; O: 1  
0
1
P2.4 (I/O)  
TA2.CCI1A  
TA2.1  
I: 0; O: 1  
P2.4/TA2.1  
0
1
P2.5 (I/O)  
TA2.CCI2A  
TA2.2  
I: 0; O: 1  
P2.5/TA2.2  
0
1
P2.6 (I/O)  
DMAE0  
I: 0; O: 1  
P2.6/RTCCLK/DMAE0  
6
7
0
RTCCLK  
P2.7 (I/O)  
UCB0STE/UCA0CLK(2) (3)  
1
I: 0; O: 1  
X
P2.7/UCB0STE/UCA0CLK  
(1) X = Don't care  
(2) The pin direction is controlled by the USCI module.  
(3) UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI B0 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.10.3 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger  
Figure 9-4 shows the port diagram. Table 9-46 summarizes the selection of the pin functions.  
Pad Logic  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P3OUT.x  
0
1
From module  
P3.0/UCB0SIMO/UCB0SDA  
P3.1/UCB0SOMI/UCB0SCL  
P3.2/UCB0CLK/UCA0STE  
P3.3/UCA0TXD/UCA0SIMO  
P3.4/UCA0RXD/UCA0SOMI  
P3.5/TB0.5  
P3DS.x  
0: Low drive  
1: High drive  
P3SEL.x  
P3IN.x  
P3.6/TB0.6  
P3.7/TB0OUTH/SVMOUT  
EN  
D
To module  
Figure 9-4. Port P3 (P3.0 to P3.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-46. Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL.x  
P3.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
0
1
1
P3.0/UCB0SIMO/UCB0SDA  
P3.1/UCB0SOMI/UCB0SCL  
P3.2/UCB0CLK/UCA0STE  
P3.3/UCA0TXD/UCA0SIMO  
P3.4/UCA0RXD/UCA0SOMI  
0
1
2
3
4
UCB0SIMO/UCB0SDA(2) (3)  
X
P3.1 (I/O)  
I: 0; O: 1  
UCB0SOMI/UCB0SCL(2) (3)  
P3.2 (I/O)  
X
I: 0; O: 1  
UCB0CLK/UCA0STE(2) (4)  
X
P3.3 (I/O)  
I: 0; O: 1  
UCA0TXD/UCA0SIMO(2)  
P3.4 (I/O)  
X
I: 0; O: 1  
UCA0RXD/UCA0SOMI(2)  
X
P3.5 (I/O)  
I: 0; O: 1  
P3.5/TB0.5(5)  
P3.6/TB0.6(5)  
5
6
7
TB0.CCI5A  
0
TB0.5  
1
P3.6 (I/O)  
I: 0; O: 1  
TB0.CCI6A  
0
TB0.6  
1
P3.7 (I/O)  
I: 0; O: 1  
P3.7/TB0OUTH/SVMOUT(5)  
(1) X = Don't care  
TB0OUTH  
0
1
SVMOUT  
(2) The pin direction is controlled by the USCI module.  
(3) If the I2C functionality is selected, the output drives only the logical 0 to VSS level.  
(4) UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI A0 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
(5) F5329, F5327, F5325 devices only.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.10.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger  
Figure 9-5 shows the port diagram. Table 9-47 summarizes the selection of the pin functions.  
Pad Logic  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
from Port Mapping Control  
P4OUT.x  
0
1
from Port Mapping Control  
P4.0/P4MAP0  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
P4.6/P4MAP6  
P4.7/P4MAP7  
P4DS.x  
0: Low drive  
1: High drive  
P4SEL.x  
P4IN.x  
EN  
D
to Port Mapping Control  
Figure 9-5. Port P4 (P4.0 to P4.7) Diagram  
Table 9-47. Port P4 (P4.0 to P4.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P4.x)  
P4.0/P4MAP0  
P4.1/P4MAP1  
P4.2/P4MAP2  
P4.3/P4MAP3  
P4.4/P4MAP4  
P4.5/P4MAP5  
P4.6/P4MAP6  
P4.7/P4MAP7  
x
0
1
2
3
4
5
6
7
FUNCTION  
P4DIR.x(1)  
P4SEL.x  
P4MAPx  
P4.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
≤ 30  
X
Mapped secondary digital function  
P4.1 (I/O)  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.2 (I/O)  
X
≤ 30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.3 (I/O)  
X
≤ 30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.4 (I/O)  
X
≤ 30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.5 (I/O)  
X
≤ 30  
X
I: 0; O: 1  
Mapped secondary digital function  
P4.6 (I/O)  
X
I: 0; O: 1  
X
≤ 30  
X
Mapped secondary digital function  
P4.7 (I/O)  
≤ 30  
X
I: 0; O: 1  
X
Mapped secondary digital function  
≤ 30  
(1) The direction of some mapped secondary functions are controlled directly by the module. See Table 9-6 for specific direction control  
information of mapped secondary functions.  
Copyright © 2020 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.10.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger  
Figure 9-6 shows the port diagram. Table 9-48 summarizes the selection of the pin functions.  
Pad Logic  
to/from Reference  
to ADC12  
INCHx = x  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
P5OUT.x  
0
1
From module  
P5.0/A8/VREF+/VeREF+  
P5.1/A9/VREF–/VeREF–  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
To module  
Figure 9-6. Port P5 (P5.0 and P5.1) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Table 9-48. Port P5 (P5.0 and P5.1) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
REFOUT  
P5.0 (I/O)(2)  
A8/VeREF+(3)  
A8/VREF+(4)  
P5.1 (I/O)(2)  
A9/VeREF–(5)  
A9/VREF-(6)  
I: 0; O: 1  
0
1
1
0
1
1
X
0
1
X
0
1
P5.0/A8/VREF+/VeREF+  
0
X
X
I: 0; O: 1  
P5.1/A9/VREF-/VeREF–  
1
X
X
(1) X = Don't care  
(2) Default condition  
(3) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A. Channel A8, when  
selected with the INCHx bits, is connected to the VREF+/VeREF+ pin.  
(4) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. The VREF+ reference is available at the pin. Channel A8, when selected with the INCHx bits, is connected to the  
VREF+/VeREF+ pin.  
(5) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A. Channel A9, when selected  
with the INCHx bits, is connected to the VREF-/VeREF- pin.  
(6) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. The VREF- reference is available at the pin. Channel A9, when selected with the INCHx bits, is connected to the  
VREF-/VeREF- pin.  
Copyright © 2020 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.10.6 Port P5 (P5.2) Input/Output With Schmitt Trigger  
Figure 9-7 shows the port diagram. Table 9-49 summarizes the selection of the pin functions.  
Pad Logic  
To XT2  
P5REN.2  
DVSS  
DVCC  
0
1
1
P5DIR.2  
0
1
P5OUT.2  
0
1
Module X OUT  
P5.2/XT2IN  
P5DS.2  
0: Low drive  
1: High drive  
P5SEL.2  
P5IN.2  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 9-7. Port P5 (P5.2) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.10.7 Port P5 (P5.3) Input/Output With Schmitt Trigger  
Figure 9-8 shows the port diagram. Table 9-49 summarizes the selection of the pin functions.  
Pad Logic  
To XT2  
P5REN.3  
DVSS  
DVCC  
0
1
1
P5DIR.3  
0
1
P5OUT.3  
0
1
Module X OUT  
P5.3/XT2OUT  
P5SEL.2  
P5DS.3  
0: Low drive  
1: High drive  
XT2BYPASS  
P5SEL.3  
P5IN.3  
EN  
D
Bus  
Keeper  
Module X IN  
Figure 9-8. Port P5 (P5.3) Diagram  
Table 9-49. Port P5 (P5.2 and P5.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.2  
P5SEL.3  
XT2BYPASS  
P5.2 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
X
X
X
X
0
1
X
0
1
P5.2/XT2IN  
2
XT2IN crystal mode(2)  
XT2IN bypass mode(2)  
P5.3 (I/O)  
X
X
I: 0; O: 1  
P5.3/XT2OUT  
3
XT2OUT crystal mode(3)  
P5.3 (I/O)(3)  
X
X
(1) X = Don't care  
(2) Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal  
mode or bypass mode.  
(3) Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as  
general-purpose I/O.  
Copyright © 2020 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.10.8 Port P5 (P5.4 and P5.5) Input/Output With Schmitt Trigger  
Figure 9-9 and Figure 9-10 show the port schematics. Table 9-50 summarizes the selection of the pin functions.  
Pad Logic  
to XT1  
P5REN.4  
DVSS  
DVCC  
0
1
1
P5DIR.4  
0
1
P5OUT.4  
0
1
Module X OUT  
P5.4/XIN  
P5DS.4  
0: Low drive  
1: High drive  
P5SEL.4  
P5IN.4  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 9-9. Port P5 (P5.4) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
Pad Logic  
to XT1  
P5REN.5  
DVSS  
DVCC  
0
1
1
P5DIR.5  
0
1
P5OUT.5  
0
1
Module X OUT  
P5.5/XOUT  
P5SEL.4  
P5DS.5  
0: Low drive  
1: High drive  
XT1BYPASS  
P5SEL.5  
P5IN.5  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 9-10. Port P5 (P5.5) Diagram  
Table 9-50. Port P5 (P5.4 and P5.5) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.4  
P5SEL.5  
XT1BYPASS  
P5.4 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
X
X
X
X
0
1
X
0
1
P5.4/XIN  
4
XIN crystal mode(2)  
XIN bypass mode(2)  
P5.5 (I/O)  
X
X
I: 0; O: 1  
P5.5/XOUT  
5
XOUT crystal mode(3)  
P5.5 (I/O)(3)  
X
X
(1) X = Don't care  
(2) Setting P5SEL.4 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.4 is configured for crystal  
mode or bypass mode.  
(3) Setting P5SEL.4 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.5 can be used as  
general-purpose I/O.  
Copyright © 2020 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.10.9 Port P5 (P5.6 to P5.7), Input/Output With Schmitt Trigger  
Figure 9-11 shows the port diagram. Table 9-51 summarizes the selection of the pin functions.  
Pad Logic  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
From Module  
P5OUT.x  
0
1
P5DS.x  
0: Low drive  
1: High drive  
P5.6/TB0.0  
P5.7/TB0.1  
P5SEL.x  
P5IN.x  
EN  
D
To module  
Figure 9-11. Port P5 (P5.6 to P5.7) Diagram  
Table 9-51. Port P5 (P5.6 to P5.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
P5.6 (I/O)  
I: 0; O: 1  
0
1
1
1
1
P5.6/TB0.0(1)  
P5.7/TB0.1(1)  
6
7
TB0.CCI0A  
TB0.0  
0
1
0
1
TB0.CCI1A  
TB0.1  
(1) F5329, F5327, F5325 devices only.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.10.10 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger  
Figure 9-12 shows the port diagram. Table 9-52 summarizes the selection of the pin functions.  
Pad Logic  
to ADC12  
INCHx = x  
to Comparator_B  
from Comparator_B  
CBPD.x  
P6REN.x  
P6DIR.x  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
P6OUT.x  
0
1
From module  
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6.6/CB6/A6  
P6.7/CB7/A7  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
Bus  
Keeper  
EN  
D
To module  
Figure 9-12. Port P6 (P6.0 to P6.7) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-52. Port P6 (P6.0 to P6.7) Pin Functions  
CONTROL BITS OR SIGNALS  
FUNCTION  
PIN NAME (P6.x)  
x
P6DIR.x  
P6SEL.x  
CBPD  
P6.0 (I/O)  
A0  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
P6.0/CB0/(A0)  
P6.1/CB1/(A1)  
P6.2/CB2/(A2)  
P6.3/CB3/(A3)  
P6.4/CB4/(A4)  
P6.5/CB5/(A5)  
P6.6/CB6/(A6)  
P6.7/CB7/(A7)  
0
X
X
1
CB0(1)  
P6.1 (I/O)  
A1  
X
I: 0; O: 1  
0
1
2
3
4
5
6
7
X
X
1
CB1(1)  
P6.2 (I/O)  
A2  
X
I: 0; O: 1  
0
X
X
1
CB2(1)  
P6.3 (I/O)  
A3  
X
I: 0; O: 1  
0
X
X
1
CB3(1)  
P6.4 (I/O)  
A4  
X
I: 0; O: 1  
0
X
X
1
CB4(1)  
P6.5 (I/O)  
A5  
X
I: 0; O: 1  
0
X
X
1
CB5(1)  
P6.6 (I/O)  
A6  
X
I: 0; O: 1  
0
X
X
1
CB6(1)  
P6.7 (I/O)  
A7  
X
I: 0; O: 1  
0
X
X
X
1
CB7(1)  
(1) Setting the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input  
buffer for that pin, regardless of the state of the associated CBPD.x bit.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.10.11 Port P7 (P7.0 to P7.3) Input/Output With Schmitt Trigger  
Figure 9-13 shows the port diagram. Table 9-53 summarizes the selection of the pin functions.  
Pad Logic  
to ADC12  
INCHx = x  
to Comparator_B  
from Comparator_B  
CBPD.x  
P7REN.x  
P7DIR.x  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
P7OUT.x  
0
1
From module  
P7.0/CB8/A12  
P7.1/CB9/A13  
P7.2/CB10/A14  
P7.3/CB11/A15  
P7DS.x  
0: Low drive  
1: High drive  
P7SEL.x  
P7IN.x  
Bus  
Keeper  
EN  
D
To module  
Figure 9-13. Port P7 (P7.0 to P7.3) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-53. Port P7 (P7.0 to P7.3) Pin Functions  
CONTROL BITS OR SIGNALS  
FUNCTION  
PIN NAME (P7.x)  
x
P7DIR.x  
P7SEL.x  
CBPD  
P7.0 (I/O) (2)  
A12 (3)  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
X
1
0
X
1
0
X
1
0
X
1
P7.0/CB8/(A12)  
P7.1/CB9/(A13)  
P7.2/CB10/(A14)  
P7.3/CB11/(A15)  
0
X
CB8(1) (2)  
P7.1 (I/O)(2)  
A13 (3)  
X
I: 0; O: 1  
1
2
3
X
CB9(1) (2)  
P7.2 (I/O)(2)  
A14(3)  
X
I: 0; O: 1  
X
CB10(1) (2)  
P7.3 (I/O)(2)  
A15(3)  
X
I: 0; O: 1  
X
X
CB11(1) (2)  
(1) Setting the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input  
buffer for that pin, regardless of the state of the associated CBPD.x bit.  
(2) F5329, F5327, F5325 devices only.  
(3) F5329, F5327, F5325 devices only.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.10.12 Port P7 (P7.4 to P7.7) Input/Output With Schmitt Trigger  
Figure 9-14 shows the port diagram. Table 9-54 summarizes the selection of the pin functions.  
Pad Logic  
P7REN.x  
DVSS  
DVCC  
0
1
1
P7DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
P7OUT.x  
0
1
P7DS.x  
0: Low drive  
1: High drive  
P7.4/TB0.2  
P7.5/TB0.3  
P7.6/TB0.4  
P7.7/TB0CLK/MCLK  
P7SEL.x  
P7IN.x  
EN  
D
To module  
Figure 9-14. Port P7 (P7.4 to P7.7) Diagram  
Table 9-54. Port P7 (P7.4 to P7.7) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.x  
P7.4 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
P7.4/TB0.2(1)  
4
TB0.CCI2A  
TB0.2  
0
1
P7.5 (I/O)  
TB0.CCI3A  
TB0.3  
I: 0; O: 1  
P7.5/TB0.3(1)  
5
6
7
0
1
P7.6 (I/O)  
TB0.CCI4A  
TB0.4  
I: 0; O: 1  
P7.6/TB0.4(1)  
0
1
P7.7 (I/O)  
TB0CLK  
MCLK  
I: 0; O: 1  
P7.7/TB0CLK/MCLK(1)  
0
1
(1) F5329, F5327, F5325 devices only.  
Copyright © 2020 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.10.13 Port P8 (P8.0 to P8.2) Input/Output With Schmitt Trigger  
Figure 9-15 shows the port diagram. Table 9-55 summarizes the selection of the pin functions.  
Pad Logic  
P8REN.x  
DVSS  
DVCC  
0
1
1
P8DIR.x  
0
1
Direction  
0: Input  
1: Output  
from Port Mapping Control  
P8OUT.x  
0
1
from Port Mapping Control  
P8.0  
P8.1  
P8.2  
P8DS.x  
0: Low drive  
1: High drive  
P8SEL.x  
P8IN.x  
EN  
D
to Port Mapping Control  
Figure 9-15. Port P8 (P8.0 to P8.2) Diagram  
Table 9-55. Port P8 (P8.0 to P8.2) Pin Functions  
CONTROL BITS OR SIGNALS  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
P8SEL.x  
P8.0(1)  
P8.1(1)  
P8.2(1)  
0
1
2
P8.0(I/O)  
0
0
0
P8.1(I/O)  
P8.2(I/O)  
(1) F5329, F5327, F5325 devices only.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.10.14 Port U (PU.0 and PU.1)  
Figure 9-16 shows the port diagram. Table 9-56 summarizes the selection of the pin functions.  
LDOO  
VSSU  
Pad Logic  
PUOPE  
PU.0  
PUOUT0  
PUIN0  
PUIPE  
PUIN1  
PUOUT1  
PU.1  
Figure 9-16. Port U (PU.0 and PU.1) Diagram  
Table 9-56. Port U (PU.0 and PU.1) Functions  
PUIPE(1)  
PUOPE  
PUOUT1  
PUOUT0  
PU.1  
PU.0  
PORT U FUNCTION  
0
0
0
0
1
0
1
1
1
1
0
0
0
0
1
1
X
X
0
1
0
1
X
X
Output low  
Output low  
Output high  
Output high  
Input enabled  
Hi-Z  
Output low  
Output high  
Output low  
Output high  
Input enabled  
Hi-Z  
Outputs enabled  
Outputs enabled  
Outputs enabled  
Outputs enabled  
Inputs enabled  
Outputs and inputs disabled  
(1) PU.1 and PU.0 inputs and outputs are supplied from LDOO. LDOO can be generated by the device using the integrated 3.3-V LDO  
when enabled. LDOO can also be supplied externally when the 3.3-V LDO is not being used and is disabled.  
Copyright © 2020 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.10.15 Port J (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output  
Figure 9-17 shows the port diagram. Table 9-57 summarizes the selection of the pin functions.  
Pad Logic  
PJREN.0  
0
1
DVSS  
DVCC  
1
PJDIR.0  
DVCC  
0
1
PJOUT.0  
0
1
From JTAG  
PJ.0/TDO  
PJDS.0  
0: Low drive  
1: High drive  
From JTAG  
PJIN.0  
EN  
D
Figure 9-17. Port PJ (PJ.0) Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
9.10.16 Port J (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output  
Figure 9-18 shows the port diagram. Table 9-57 summarizes the selection of the pin functions.  
Pad Logic  
PJREN.x  
0
1
DVSS  
DVCC  
1
PJDIR.x  
DVSS  
0
1
PJOUT.x  
0
1
From JTAG  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
PJDS.x  
0: Low drive  
1: High drive  
From JTAG  
PJIN.x  
EN  
D
To JTAG  
Figure 9-18. Port PJ (PJ.1 to PJ.3) Diagram  
Table 9-57. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS  
OR SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
I: 0; O: 1  
X
PJ.0 (I/O)(2)  
PJ.0/TDO  
0
1
2
3
TDO(3)  
PJ.1 (I/O)(2)  
TDI/TCLK(3) (4)  
PJ.2 (I/O)(2)  
TMS(3) (4)  
I: 0; O: 1  
X
PJ.1/TDI/TCLK  
PJ.2/TMS  
I: 0; O: 1  
X
PJ.3 (I/O)(2)  
TCK(3) (4)  
I: 0; O: 1  
X
PJ.3/TCK  
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
Copyright © 2020 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
9.11 Device Descriptors  
Table 9-58 lists the complete contents of the device descriptor tag-length-value (TLV) structure for each device  
type.  
Table 9-58. Device Descriptor Table  
VALUE  
SIZE  
(bytes)  
DESCRIPTION(1)  
Info length  
ADDRESS  
F5329  
06h  
F5328  
06h  
F5327  
06h  
F5326  
06h  
F5325  
06h  
F5324  
06h  
01A00h  
01A01h  
01A02h  
01A04h  
01A05h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
01A14h  
01A15h  
01A16h  
01A18h  
1
1
2
1
1
1
1
1
1
4
2
2
2
1
1
2
2
CRC length  
CRC value  
06h  
06h  
06h  
06h  
06h  
06h  
Per unit  
1Bh  
Per unit  
1Ah  
Per unit  
19h  
Per unit  
18h  
Per unit  
17h  
Per unit  
16h  
Info Block  
Device ID  
Device ID  
81h  
81h  
81h  
81h  
81h  
81h  
Hardware revision  
Firmware revision  
Die record tag  
Die record length  
Lot/Wafer ID  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
Per unit  
Per unit  
08h  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
11h  
Per unit  
Per unit  
Per unit  
Per unit  
11h  
Per unit  
Per unit  
Per unit  
Per unit  
11h  
Per unit  
Per unit  
Per unit  
Per unit  
11h  
Per unit  
Per unit  
Per unit  
Per unit  
11h  
Per unit  
Per unit  
Per unit  
Per unit  
11h  
Die Record  
Die X position  
Die Y position  
Test results  
ADC12 calibration tag  
ADC12 calibration length  
ADC gain factor  
ADC offset  
10h  
10h  
10h  
10h  
10h  
10h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
ADC 1.5-V reference  
Temperature sensor 30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
ADC 1.5-V reference  
Temperature sensor 85°C  
ADC12 Calibration  
ADC 2.0-V reference  
Temperature sensor 30°C  
ADC 2.0-V reference  
Temperature sensor 85°C  
ADC 2.5-V reference  
Temperature sensor 30°C  
ADC 2.5-V reference  
Temperature sensor 85°C  
REF calibration tag  
REF calibration length  
01A26h  
01A27h  
01A28h  
01A2Ah  
01A2Ch  
01A2Eh  
01A2Fh  
1
1
2
2
2
1
1
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
REF Calibration  
REF 1.5-V reference factor  
REF 2.0-V reference factor  
REF 2.5-V reference factor  
Peripheral descriptor tag  
Peripheral descriptor length  
Per unit  
Per unit  
Per unit  
02h  
Per unit  
Per unit  
Per unit  
02h  
Per unit  
Per unit  
Per unit  
02h  
Per unit  
Per unit  
Per unit  
02h  
Per unit  
Per unit  
Per unit  
02h  
Per unit  
Per unit  
Per unit  
02h  
62h  
60h  
62h  
60h  
62h  
60h  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
08h  
8Ah  
Memory 1  
Memory 2  
Memory 3  
Memory 4  
2
2
2
2
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
0Ch  
86h  
Peripheral  
Descriptor  
0Eh  
2Fh  
0Eh  
2Fh  
0Eh  
2Eh  
0Eh  
2Eh  
0Eh  
2Dh  
0Eh  
2Dh  
2Ah  
22h  
2Ah  
22h  
22h  
95h  
22h  
95h  
2Ah  
22h  
2Ah  
22h  
Memory 5  
Delimiter  
1
1
1
96h  
00h  
21h  
96h  
00h  
20h  
92h  
00h  
21h  
92h  
00h  
20h  
94h  
00h  
21h  
94h  
00h  
20h  
Peripheral count  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-58. Device Descriptor Table (continued)  
VALUE  
SIZE  
(bytes)  
DESCRIPTION(1)  
ADDRESS  
F5329  
F5328  
F5327  
F5326  
F5325  
00h  
23h  
00h  
23h  
00h  
23h  
00h  
23h  
00h  
23h  
00h  
23h  
MSP430CPUXV2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
00h  
09h  
00h  
09h  
00h  
09h  
00h  
09h  
00h  
09h  
00h  
09h  
JTAG  
SBW  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
00h  
0Fh  
00h  
05h  
00h  
05h  
00h  
05h  
00h  
05h  
00h  
05h  
00h  
05h  
EEM-L  
TI BSL  
SFR  
00h  
FCh  
00h  
FCh  
00h  
FCh  
00h  
FCh  
00h  
FCh  
00h  
FCh  
10h  
41h  
10h  
41h  
10h  
41h  
10h  
41h  
10h  
41h  
10h  
41h  
02h  
30h  
02h  
30h  
02h  
30h  
02h  
30h  
02h  
30h  
02h  
30h  
PMM  
02h  
38h  
02h  
38h  
02h  
38h  
02h  
38h  
02h  
38h  
02h  
38h  
FCTL  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
01h  
3Ch  
CRC16  
CRC16_RB  
RAMCTL  
WDT_A  
UCS  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
3Dh  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
44h  
00h  
40h  
00h  
40h  
00h  
40h  
00h  
40h  
00h  
40h  
00h  
40h  
01h  
48h  
01h  
48h  
01h  
48h  
01h  
48h  
01h  
48h  
01h  
48h  
02h  
42h  
02h  
42h  
02h  
42h  
02h  
42h  
02h  
42h  
02h  
42h  
SYS  
03h  
A0h  
03h  
A0h  
03h  
A0h  
03h  
A0h  
03h  
A0h  
03h  
A0h  
REF  
01h  
10h  
01h  
10h  
01h  
10h  
01h  
10h  
01h  
10h  
01h  
10h  
Port Mapping  
Port 1 and 2  
Port 3 and 4  
Port 5 and 6  
Port 7 and 8  
JTAG  
04h  
51h  
04h  
51h  
04h  
51h  
04h  
51h  
04h  
51h  
04h  
51h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
52h  
02h  
53h  
02h  
53h  
02h  
53h  
02h  
53h  
02h  
53h  
02h  
53h  
02h  
54h  
02h  
54h  
02h  
54h  
N/A  
N/A  
N/A  
0Ch  
5Fh  
0Eh  
5Fh  
0Ch  
5Fh  
0Eh  
5Fh  
0Ch  
5Fh  
0Eh  
5Fh  
02h  
62h  
02h  
62h  
02h  
62h  
02h  
62h  
02h  
62h  
02h  
62h  
TA0  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
TA1  
04h  
67h  
04h  
67h  
04h  
67h  
04h  
67h  
04h  
67h  
04h  
67h  
TB0  
Peripheral  
Descriptor  
(continued)  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
04h  
61h  
TA2  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
0Ah  
68h  
RTC  
02h  
85h  
02h  
85h  
02h  
85h  
02h  
85h  
02h  
85h  
02h  
85h  
MPY32  
DMA-3  
USCI_A/B  
04h  
47h  
04h  
47h  
04h  
47h  
04h  
47h  
04h  
47h  
04h  
47h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
0Ch  
90h  
Copyright © 2020 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
Table 9-58. Device Descriptor Table (continued)  
VALUE  
SIZE  
DESCRIPTION(1)  
ADDRESS  
(bytes)  
F5329  
F5328  
F5327  
F5326  
F5325  
F5324  
04h  
90h  
04h  
90h  
04h  
90h  
04h  
90h  
04h  
90h  
04h  
90h  
USCI_A/B  
2
2
2
2
10h  
D1h  
10h  
D1h  
10h  
D1h  
10h  
D1h  
10h  
D1h  
10h  
D1h  
ADC12_A  
COMP_B  
LDO  
1Ch  
A8h  
1Ch  
A8h  
1Ch  
A8h  
1Ch  
A8h  
1Ch  
A8h  
1Ch  
A8h  
04h  
5Ch  
04h  
5Ch  
04h  
5Ch  
04h  
5Ch  
04h  
5Ch  
04h  
5Ch  
COMP_B  
TB0.CCIFG0  
TB0.CCIFG1..6  
WDTIFG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
A8h  
64h  
65h  
40h  
90h  
91h  
D0h  
60h  
61h  
5Ch  
46h  
62h  
63h  
50h  
92h  
93h  
66h  
67h  
51h  
68h  
00h  
USCI_A0  
USCI_B0  
ADC12_A  
TA0.CCIFG0  
TA0.CCIFG1..4  
LDO-PWR  
DMA  
Interrupts  
TA1.CCIFG0  
TA1.CCIFG1..2  
P1  
USCI_A1  
USCI_B1  
TA1.CCIFG0  
TA1.CCIFG1..2  
P2  
RTC_A  
Delimiter  
(1) NA = Not applicable, blank = unused and reads FFh.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
10 Device and Documentation Support  
10.1 Getting Started and Next Steps  
For an introduction to the MSP430family of devices and the tools and libraries that are available to help with  
your development, visit the MSP430 ultra-low-power sensing & measurement MCUs overview.  
10.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP  
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully  
qualified production devices (MSP).  
XMS – Experimental device that is not necessarily representative of the final device's electrical specifications  
MSP – Fully qualified production device  
XMS devices are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated  
fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.  
TI recommends that these devices not be used in any production system because their expected end-use failure  
rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature  
range, package type, and distribution format. Figure 10-1 provides a legend for reading the complete device  
name.  
Copyright © 2020 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
MSP 430 F 5 438 A I PM T -EP  
Processor Family  
MCU Platform  
Device Type  
Series  
Feature Set  
Optional: Additional Features  
Optional: Tape and Reel  
Packaging  
Optional: Temperature Range  
Optional: Revision  
Processor Family  
CC = Embedded RF Radio  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
PMS = Prototype Device  
MCU Platform  
Device Type  
430 = MSP430 low-power microcontroller platform  
Memory Type  
C = ROM  
F = Flash  
FR = FRAM  
G = Flash  
L = No nonvolatile memory  
Specialized Application  
AFE = Analog front end  
BQ = Contactless power  
CG = ROM medical  
FE = Flash energy meter  
FG = Flash medical  
FW = Flash electronic flow meter  
Series  
1 = Up to 8 MHz  
2 = Up to 16 MHz  
3 = Legacy  
4 = Up to 16 MHz with LCD driver  
5 = Up to 25 MHz  
6 = Up to 25 MHz with LCD driver  
0 = Low-voltage series  
Feature Set  
Various levels of integration within a series  
Updated version of the base part number  
Optional: Revision  
Optional: Temperature Range S = 0°C to 50°C  
C = 0°C to 70°C  
I = –40°C to 85°C  
T = –40°C to 105°C  
Packaging  
http://www.ti.com/packaging  
Optional: Tape and Reel  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
Optional: Additional Features -EP = Enhanced product (–40°C to 105°C)  
-HT = Extreme temperature parts (–55°C to 150°C)  
-Q1 = Automotive Q100 qualified  
Figure 10-1. Device Nomenclature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
10.3 Tools and Software  
All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are  
available from TI and various third parties. See them all at MSP430 ultra-low-power MCUs – Design &  
development.  
Table 10-1 lists the debug features of the MSP430F532x MCUs. See the Code Composer Studio™ IDE for  
MSP430™ MCUs User's Guide for details on the available features.  
Table 10-1. Hardware Debug Features  
BREAK-  
POINTS  
(N)  
RANGE  
BREAK-  
POINTS  
LPMX.5  
DEBUGGING  
SUPPORT  
MSP430  
ARCHITECTURE  
4-WIRE  
JTAG  
2-WIRE  
JTAG  
CLOCK  
CONTROL SEQUENCER  
STATE  
TRACE  
BUFFER  
MSP430Xv2  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
No  
Design Kits and Evaluation Modules  
80-pin Target Development Board for MSP430F5x MCUs  
The MSP-TS430PN80A is a standalone 80-pin ZIF socket target board used to program and debug the MSP430  
MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.  
80-pin Target Development Board and MSP-FET Programmer Bundle for MSP430F5x MCUs  
The MSP-FET is a powerful flash emulation tool to quickly begin application development on the MSP430 MCU.  
It includes USB debugging interface used to program and debug the MSP430 in-system through the JTAG  
interface or the pin saving Spy-Bi-Wire (2-wire JTAG) protocol. The flash memory can be erased and  
programmed in seconds with only a few keystrokes, and since the MSP430 flash is ultra-low power, no external  
power supply is required.  
Software  
MSP430WareSoftware  
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all  
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing  
MSP430 design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This  
library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of  
Code Composer StudioIDE or as a stand-alone package.  
MSP430F532x Code Examples  
C Code examples are available for every MSP device that configures each of the integrated peripherals for  
various application needs.  
MSP Driver Library  
Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easy-  
to-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details  
on each function call and the recognized parameters. Developers can use Driver Library functions to write  
complete projects with minimal overhead.  
MSP EnergyTraceTechnology  
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and  
displays the application's energy profile and helps to optimize it for ultra-low-power consumption.  
ULP (Ultra-Low Power) Advisor  
ULP Advisorsoftware is a tool for guiding developers to write more efficient code to fully utilize the unique  
ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new  
microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every  
last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to  
highlight areas of your code that can be further optimized for lower power.  
Copyright © 2020 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
IEC60730 Software Package  
The IEC60730 MSP430 software package was developed to be useful in assisting customers in complying with  
IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General  
Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters,  
power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer  
applications running on MSP430s to help simplify the customer’s certification efforts of functional safety-  
compliant consumer devices to IEC 60730-1:2010 Class B.  
Fixed Point Math Library for MSP  
The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical  
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and  
MSP432 devices. These routines are typically used in computationally intensive real-time applications where  
optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath  
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably  
lower than equivalent code written using floating-point math.  
Floating Point Math Library for MSP430  
Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB.  
Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you  
up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated  
in both Code Composer Studio and IAR IDEs. Read the user’s guide for an in depth look at the math library and  
relevant benchmarks.  
Development Tools  
Code Composer StudioIntegrated Development Environment for MSP Microcontrollers  
Code Composer Studio is an integrated development environment (IDE) that supports all MSP microcontroller  
devices. Code Composer Studio comprises a suite of embedded software utilities used to develop and debug  
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through  
each step of the application development flow. Familiar utilities and interfaces allow users to get started faster  
than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with  
advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment  
for embedded developers. When using CCS with an MSP MCU, a unique and powerful set of plugins and  
embedded software utilities are made available to fully leverage the MSP microcontroller.  
Command-Line Programmer  
MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET  
programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary  
files (.txt or .hex) files directly to the MSP microcontroller without an IDE.  
MSP MCU Programmer and Debugger  
The MSP-FET is a powerful emulation development tool – often called a debug probe – which allows users to  
quickly begin application development on MSP low-power microcontrollers (MCU). Creating MCU software  
usually requires downloading the resulting binary program to the MSP device for validation and debugging. The  
MSP-FET provides a debug communication pathway between a host computer and the target MSP.  
Furthermore, the MSP-FET also provides a Backchannel UART connection between the computer's USB  
interface and the MSP UART. This affords the MSP programmer a convenient method for communicating serially  
between the MSP and a terminal running on the computer. It also supports loading programs (often called  
firmware) to the MSP target using the BSL (bootloader) through the UART and I2C communication protocols.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
MSP-GANG Production Programmer  
The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight  
identical MSP430 or MSP432 Flash or FRAM devices at the same time. The MSP Gang Programmer connects  
to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow  
the user to fully customize the process. The MSP Gang Programmer is provided with an expansion board, called  
the Gang Splitter, that implements the interconnections between the MSP Gang Programmer and multiple target  
devices. Eight cables are provided that connect the expansion board to eight target devices (through JTAG or  
Spy-Bi-Wire connectors). The programming can be done with a PC or as a stand-alone device. A PC-side  
graphical user interface is also available and is DLL-based.  
10.4 Documentation Support  
The following documents describe the MSP430F532x MCUs. Copies of these documents are available on the  
Internet at www.ti.com.  
Receiving Notification of Document Updates  
To receive notification of documentation updates—including silicon errata—go to the product folder for your  
device on ti.com (for links to the product folders, see Table 10-2). In the upper right corner, click the "Alert me"  
button. This registers you to receive a weekly digest of product information that has changed (if any). For change  
details, check the revision history of any revised document.  
Errata  
MSP430F5329 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of the device.  
MSP430F5328 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of the device.  
MSP430F5327 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of the device.  
MSP430F5326 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of the device.  
MSP430F5325 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of the device.  
MSP430F5324 Device Erratasheet  
Describes the known exceptions to the functional specifications for all silicon revisions of the device.  
User's Guides  
MSP430F5xx and MSP430F6xx Family User's Guide  
Detailed information on the modules and peripherals available in this device family.  
MSP430 Flash Device Bootloader (BSL) User's Guide  
The MSP430 bootloader (BSL) lets users communicate with embedded memory in the MSP430 microcontroller  
during the prototyping phase, final production, and in service. Both the programmable memory (flash memory)  
and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap  
loader programs found in some digital signal processors (DSPs) that automatically load program code (and data)  
from external memory to the internal memory of the DSP.  
Copyright © 2020 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
MSP430 Programming With the JTAG Interface  
This document describes the functions that are required to erase, program, and verify the memory module of the  
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition,  
it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This  
document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG  
interface, which is also referred to as Spy-Bi-Wire (SBW).  
MSP430 Hardware Tools User's Guide  
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the  
program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the  
parallel port interface and the USB interface, are described.  
Application Reports  
MSP430 32-kHz Crystal Oscillators  
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal  
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the  
correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout  
are given. The document also contains detailed information on the possible oscillator tests to ensure stable  
oscillator operation in mass production.  
MSP430 System-Level ESD Considerations  
System-Level ESD has become increasingly demanding with silicon technology scaling towards lower voltages  
and the need for designing cost-effective and ultra-low-power components. This application report addresses  
three different ESD topics to help board designers and OEMs understand and design robust system-level  
designs: (1) Component-level ESD testing and system-level ESD testing, their differences and why component-  
level ESD rating does not ensure system-level robustness. (2) General design guidelines for system-level ESD  
protection at different levels including enclosures, cables, PCB layout, and on-board ESD protection devices. (3)  
Introduction to System Efficient ESD Design (SEED), a co-design methodology of on-board and on-chip ESD  
protection to achieve system-level ESD robustness, with example simulations and test results. A few real-world  
system-level ESD protection design examples and their results are also discussed.  
Advanced Debugging Using the Enhanced Emulation Module (EEM) With CCS v6  
This document describes the benefits of the Enhanced Emulation Module (EEM) advanced debugging features  
that are available in the MSP430 devices and how they can be used with Code Composer Studio (CCS) version  
6 software development tool. The EEM advanced debugging features support both precision analog and full-  
speed digital debugging. The configuration of the debug environment for maximum control and the use of the  
embedded trace capability are described. Some techniques that allow rapid development and design-for-  
testability are demonstrated.  
10.5 Related Links  
Table 10-2 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to sample or buy.  
Table 10-2. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
MSP430F5329  
MSP430F5328  
MSP430F5327  
MSP430F5326  
MSP430F5325  
MSP430F5324  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
www.ti.com  
10.6 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.7 Trademarks  
MSP430, MicroStar Junior, MSP430Ware, Code Composer Studio, EnergyTrace, ULP Advisor, TI  
E2Eare trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
10.8 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.9 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
10.10 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
 
 
 
 
MSP430F5329, MSP430F5328, MSP430F5327, MSP430F5326, MSP430F5325, MSP430F5324  
www.ti.com  
SLAS678G – AUGUST 2010 – REVISED SEPTEMBER 2020  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: MSP430F5329 MSP430F5328 MSP430F5327 MSP430F5326 MSP430F5325  
MSP430F5324  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Sep-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430F5324IRGCR  
MSP430F5324IRGCT  
MSP430F5324IZQE  
ACTIVE  
VQFN  
VQFN  
RGC  
64  
64  
80  
Green (RoHS NIPDAU | NIPDAUAG Level-3-260C-168 HR  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
M430F5324  
ACTIVE  
ACTIVE  
RGC  
Green (RoHS NIPDAU | NIPDAUAG Level-3-260C-168 HR  
& no Sb/Br)  
M430F5324  
M430F5324  
BGA  
ZQE  
490  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
MICROSTAR  
JUNIOR  
MSP430F5324IZQER  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQE  
80  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
M430F5324  
MSP430F5324IZXH  
MSP430F5324IZXHR  
MSP430F5325IPN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
LQFP  
ZXH  
ZXH  
PN  
80  
80  
80  
80  
64  
64  
80  
490  
2500  
119  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
F5324  
Green (RoHS  
& no Sb/Br)  
F5324  
Green (RoHS  
& no Sb/Br)  
M430F5325  
M430F5325  
M430F5326  
M430F5326  
M430F5326  
MSP430F5325IPNR  
MSP430F5326IRGCR  
MSP430F5326IRGCT  
MSP430F5326IZQE  
LQFP  
PN  
1000  
2000  
250  
Green (RoHS  
& no Sb/Br)  
VQFN  
VQFN  
RGC  
RGC  
ZQE  
Green (RoHS NIPDAU | NIPDAUAG Level-3-260C-168 HR  
& no Sb/Br)  
Green (RoHS NIPDAU | NIPDAUAG Level-3-260C-168 HR  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
490  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
MSP430F5326IZQER  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQE  
80  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
M430F5326  
MSP430F5326IZXH  
MSP430F5326IZXHR  
MSP430F5327IPN  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
LQFP  
ZXH  
ZXH  
PN  
80  
80  
80  
490  
2500  
119  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
F5326  
Green (RoHS  
& no Sb/Br)  
F5326  
Green (RoHS  
& no Sb/Br)  
M430F5327  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Sep-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
1000  
2000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430F5327IPNR  
MSP430F5328IRGCR  
MSP430F5328IRGCT  
MSP430F5328IZQE  
ACTIVE  
LQFP  
VQFN  
VQFN  
PN  
80  
64  
64  
80  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
M430F5327  
ACTIVE  
ACTIVE  
ACTIVE  
RGC  
RGC  
ZQE  
Green (RoHS NIPDAU | NIPDAUAG Level-3-260C-168 HR  
& no Sb/Br)  
M430F5328  
M430F5328  
M430F5328  
Green (RoHS NIPDAU | NIPDAUAG Level-3-260C-168 HR  
& no Sb/Br)  
BGA  
490  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
MICROSTAR  
JUNIOR  
MSP430F5328IZQER  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQE  
80  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
M430F5328  
MSP430F5328IZXH  
MSP430F5328IZXHR  
MSP430F5329IPN  
MSP430F5329IPNR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
LQFP  
ZXH  
ZXH  
PN  
80  
80  
80  
80  
490  
2500  
119  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
F5328  
Green (RoHS  
& no Sb/Br)  
F5328  
Green (RoHS  
& no Sb/Br)  
M430F5329  
M430F5329  
LQFP  
PN  
1000  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Sep-2020  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF MSP430F5328 :  
Enhanced Product: MSP430F5328-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Sep-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F5324IRGCR  
MSP430F5324IRGCT  
MSP430F5324IZQER  
VQFN  
VQFN  
RGC  
RGC  
ZQE  
64  
64  
80  
2000  
250  
330.0  
180.0  
330.0  
16.4  
16.4  
12.4  
9.3  
9.3  
5.3  
9.3  
9.3  
5.3  
1.5  
1.5  
1.5  
12.0  
12.0  
8.0  
16.0  
16.0  
12.0  
Q2  
Q2  
Q1  
BGA MI  
CROSTA  
R JUNI  
OR  
2500  
MSP430F5324IZXHR  
MSP430F5325IPNR  
MSP430F5326IRGCR  
MSP430F5326IRGCT  
MSP430F5326IZQER  
NFBGA  
LQFP  
ZXH  
PN  
80  
80  
64  
64  
80  
2500  
1000  
2000  
250  
330.0  
330.0  
330.0  
180.0  
330.0  
12.4  
24.4  
16.4  
16.4  
12.4  
5.3  
15.0  
9.3  
5.3  
15.0  
9.3  
1.5  
2.1  
1.5  
1.5  
1.5  
8.0  
20.0  
12.0  
12.0  
8.0  
12.0  
24.0  
16.0  
16.0  
12.0  
Q1  
Q2  
Q2  
Q2  
Q1  
VQFN  
VQFN  
RGC  
RGC  
ZQE  
9.3  
9.3  
BGA MI  
CROSTA  
R JUNI  
OR  
2500  
5.3  
5.3  
MSP430F5326IZXHR  
MSP430F5327IPNR  
MSP430F5328IRGCR  
MSP430F5328IRGCT  
MSP430F5328IZQER  
NFBGA  
LQFP  
ZXH  
PN  
80  
80  
64  
64  
80  
2500  
1000  
2000  
250  
330.0  
330.0  
330.0  
180.0  
330.0  
12.4  
24.4  
16.4  
16.4  
12.4  
5.3  
15.0  
9.3  
5.3  
15.0  
9.3  
1.5  
2.1  
1.5  
1.5  
1.5  
8.0  
20.0  
12.0  
12.0  
8.0  
12.0  
24.0  
16.0  
16.0  
12.0  
Q1  
Q2  
Q2  
Q2  
Q1  
VQFN  
VQFN  
RGC  
RGC  
ZQE  
9.3  
9.3  
BGA MI  
2500  
5.3  
5.3  
CROSTA  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Sep-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
R JUNI  
OR  
MSP430F5328IZXHR  
MSP430F5329IPNR  
NFBGA  
LQFP  
ZXH  
PN  
80  
80  
2500  
1000  
330.0  
330.0  
12.4  
24.4  
5.3  
5.3  
1.5  
2.1  
8.0  
12.0  
24.0  
Q1  
Q2  
15.0  
15.0  
20.0  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F5324IRGCR  
MSP430F5324IRGCT  
MSP430F5324IZQER  
VQFN  
VQFN  
RGC  
RGC  
ZQE  
64  
64  
80  
2000  
250  
367.0  
210.0  
350.0  
367.0  
185.0  
350.0  
38.0  
35.0  
43.0  
BGA MICROSTAR  
JUNIOR  
2500  
MSP430F5324IZXHR  
MSP430F5325IPNR  
MSP430F5326IRGCR  
MSP430F5326IRGCT  
MSP430F5326IZQER  
NFBGA  
LQFP  
ZXH  
PN  
80  
80  
64  
64  
80  
2500  
1000  
2000  
250  
350.0  
350.0  
367.0  
210.0  
350.0  
350.0  
350.0  
367.0  
185.0  
350.0  
43.0  
43.0  
38.0  
35.0  
43.0  
VQFN  
VQFN  
RGC  
RGC  
ZQE  
BGA MICROSTAR  
JUNIOR  
2500  
MSP430F5326IZXHR  
MSP430F5327IPNR  
MSP430F5328IRGCR  
MSP430F5328IRGCT  
NFBGA  
LQFP  
ZXH  
PN  
80  
80  
64  
64  
2500  
1000  
2000  
250  
350.0  
350.0  
367.0  
210.0  
350.0  
350.0  
367.0  
185.0  
43.0  
43.0  
38.0  
35.0  
VQFN  
VQFN  
RGC  
RGC  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Sep-2020  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430F5328IZQER  
BGA MICROSTAR  
JUNIOR  
ZQE  
80  
2500  
350.0  
350.0  
43.0  
MSP430F5328IZXHR  
MSP430F5329IPNR  
NFBGA  
LQFP  
ZXH  
PN  
80  
80  
2500  
1000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
RGC0064B  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.15  
8.85  
A
B
PIN 1 INDEX AREA  
9.15  
8.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
17  
32  
16  
33  
65  
SYMM  
2X 7.5  
4.25 0.1  
60X  
0.5  
1
48  
0.30  
0.18  
64X  
49  
64  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
64X  
0.05  
4219010/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.25)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.18) TYP  
(8.8)  
65  
SYMM  
(0.695) TYP  
(
0.2) TYP  
VIA  
33  
16  
32  
17  
(0.695) TYP  
(1.18) TYP  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219010/A 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
9X ( 1.19)  
65  
SYMM  
(8.8)  
(1.39)  
33  
16  
17  
32  
(1.39)  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
71% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219010/A 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
ZXH0080A  
NFBGA - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
BALL GRID ARRAY  
5.1  
4.9  
A
B
BALL A1 CORNER  
INDEX AREA  
5.1  
4.9  
0.7  
0.6  
C
1 MAX  
SEATING PLANE  
0.08 C  
BALL TYP  
0.25  
TYP  
0.15  
4 TYP  
SYMM  
J
H
G
F
SYMM  
80X  
4
E
D
C
B
A
TYP  
0.35  
0.25  
0.15  
0.05  
C B  
C
A
0.5 TYP  
1
2
3
4
5
6
7
8
9
0.5 TYP  
4221325/A 01/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis is for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This is a Pb-free solder ball design.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZXH0080A  
NFBGA - 1 mm max height  
BALL GRID ARRAY  
(0.5) TYP  
0.265  
0.235  
80X  
6
7
9
2
3
4
5
8
1
A
B
C
(0.5) TYP  
D
E
F
G
H
J
SYMM  
SYMM  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
0.05 MIN  
METAL  
UNDER  
MASK  
(
0.25)  
METAL  
(
0.25)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221325/A 01/2014  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SBVA017 (www.ti.com/lit/sbva017).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZXH0080A  
NFBGA - 1 mm max height  
BALL GRID ARRAY  
(0.5) TYP  
80X ( 0.25)  
(R0.05) TYP  
5
4
3
6
7
9
2
8
1
A
(0.5)  
TYP  
B
C
METAL  
TYP  
D
E
F
G
H
J
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:20X  
4221325/A 01/2014  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
MECHANICAL DATA  
MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996  
PN (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
60  
M
0,08  
41  
61  
40  
0,13 NOM  
80  
21  
1
20  
Gage Plane  
9,50 TYP  
0,25  
12,20  
SQ  
11,80  
0,05 MIN  
0°7°  
14,20  
SQ  
13,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040135 /B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

MSP430F5326TDF1

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5326TDF2

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5327

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5327IPN

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5327IPNR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5328

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5328-EP

混合信号微控制器,MSP430F5328-EP
TI

MSP430F5328IRGC

MSP430F532x Mixed-Signal Microcontrollers
TI

MSP430F5328IRGCR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5328IRGCT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5328IZQE

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F5328IZQER

MIXED SIGNAL MICROCONTROLLER
TI