MSP430F6438IPZR [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430F6438IPZR
型号: MSP430F6438IPZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总106页 (文件大小:951K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
MIXED SIGNAL MICROCONTROLLER  
1
FEATURES  
2
Low Supply Voltage Range: 1.8 V to 3.6 V  
Four 16-Bit Timer With 3, 5, or 7  
Capture/Compare Registers  
Ultralow Power Consumption  
Two Universal Serial Communication  
Interfaces  
Active Mode (AM):  
All System Clocks Active:  
270 µA/MHz at 8 MHz, 3.0 V, Flash Program  
Execution (Typical)  
USCI_A0 and USCI_A1 Each Support:  
Enhanced UART Supports Auto-  
Baudrate Detection  
Standby Mode (LPM3):  
Watchdog With Crystal, and Supply  
Supervisor Operational, Full RAM  
Retention, Fast Wake-Up:  
IrDA Encoder and Decoder  
Synchronous SPI  
USCI_B0 and USCI_B1 Each Support:  
1.8 µA at 2.2 V, 2.1 µA at 3.0 V (Typical)  
I2CTM  
Shutdown RTC Mode (LPM3.5):  
Shutdown Mode, Active Real-Time Clock  
With Crystal:  
Synchronous SPI  
Integrated 3.3-V Power System  
1.1 µA at 3.0 V (Typical)  
12-Bit Analog-to-Digital (A/D) Converter With  
Internal Shared Reference, Sample-and-Hold,  
and Autoscan Feature  
Shutdown Mode (LPM4.5):  
0.3 µA at 3.0 V (Typical)  
Wake-Up From Standby Mode in 3 µs (Typical)  
Dual 12-Bit Digital-to-Analog (D/A) Converters  
With Synchronization  
16-Bit RISC Architecture, Extended Memory,  
up to 20-MHz System Clock  
Voltage Comparator  
Flexible Power Management System  
Integrated LCD Driver With Contrast Control  
for up to 160 Segments  
Fully Integrated LDO With Programmable  
Regulated Core Supply Voltage  
Hardware Multiplier Supporting 32-Bit  
Operations  
Supply Voltage Supervision, Monitoring,  
and Brownout  
Serial Onboard Programming, No External  
Programming Voltage Needed  
Unified Clock System  
Six-Channel Internal DMA  
FLL Control Loop for Frequency  
Stabilization  
Real-Time Clock Module With Supply Voltage  
Backup Switch  
Low-Power Low-Frequency Internal Clock  
Source (VLO)  
Family Members are Summarized in Table 1  
Low-Frequency Trimmed Internal Reference  
Source (REFO)  
For Complete Module Descriptions, See the  
MSP430x5xx and MSP430x6xx Family User's  
Guide (SLAU208)  
32-kHz Crystals (XT1)  
High-Frequency Crystals Up to 32 MHz  
(XT2)  
DESCRIPTION  
The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features a  
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.  
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in 3 µs (typical).  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
The MSP430F643x series are microcontroller configurations with an integrated 3.3-V LDO, a high-performance  
12-bit analog-to-digital (A/D) converter, comparator, two universal serial communication interfaces (USCI),  
hardware multiplier, DMA, four 16-bit timers, real-time clock module with alarm capabilities, LCD driver, and up to  
74 I/O pins.  
Typical applications for this device include analog and digital sensor systems, digital motor control, remote  
controls, thermostats, digital timers, hand-held meters, etc.  
Family members available are summarized in Table 1.  
Table 1. Family Members  
USCI  
Flash  
(KB)  
SRAM  
(KB)  
ADC12_A DAC12_A Comp_B  
Package  
Type  
Timer_A(1) Timer_B(2)  
I/O  
Channel A: Channel B:  
UART,  
IrDA, SPI  
Device  
(Ch)  
(Ch)  
(Ch)  
SPI, I2C  
12 ext,  
4 int  
100 PZ,  
113 ZQW  
MSP430F6438  
MSP430F6436  
MSP430F6435  
MSP430F6433  
256  
128  
256  
128  
18  
18  
18  
10  
5, 3, 3  
5, 3, 3  
5, 3, 3  
5, 3, 3  
7
7
7
7
2
2
2
2
2
2
2
2
2
2
-
12  
12  
12  
12  
74  
74  
74  
74  
12 ext,  
4 int  
100 PZ,  
113 ZQW  
12 ext,  
4 int  
100 PZ,  
113 ZQW  
12 ext,  
4 int  
100 PZ,  
113 ZQW  
-
(1) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM  
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
(2) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM  
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first  
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.  
Table 2. Ordering Information(1)  
PACKAGED DEVICES(2)  
TA  
PLASTIC 100-PIN TQFP (PZ)  
MSP430F6438IPZ  
PLASTIC 113-BALL BGA (ZQW)  
MSP430F6438IZQW  
MSP430F6436IPZ  
MSP430F6436IZQW  
–40°C to 85°C  
MSP430F6435IPZ  
MSP430F6435IZQW  
MSP430F6433IPZ  
MSP430F6433IZQW  
(1) For the most current package and ordering information, see the Package Option Addendum at the end  
of this document, or see the TI web site at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design  
guidelines are available at www.ti.com/package.  
2
Copyright © 2010–2012, Texas Instruments Incorporated  
 
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Functional Block Diagram, MSP430F6438, MSP430F6436  
PA  
PB  
PC  
PD  
PU.0  
PU.1  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
LDOO LDOI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
XT2IN  
I/O Ports  
P1/P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3/P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5/P6  
2×8 I/Os  
I/O Ports  
P7/P8  
1×6 I/Os  
1×8 I/Os  
ACLK  
SYS  
Power  
Management  
I/O Ports  
P9  
1×8 I/Os  
Unified  
Clock  
System  
USCI0,1  
18KB  
RAM  
256KB  
128KB  
PU Port  
LDO  
XT2OUT  
Watchdog  
SMCLK  
Ax: UART,  
IrDA, SPI  
P2 Port  
Mapping  
Controller  
LDO  
SVM/SVS  
Brownout  
+8B Backup  
RAM  
Flash  
PE  
1×8 I/Os  
Bx: SPI, I2C  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
PD  
1×14 I/Os  
CPUXV2  
and  
Working  
Registers  
EEM  
(L: 8+2)  
DMA  
ADC12_A  
LCD_B  
TA1 and  
TA2  
RTC_B  
6 Channel  
DAC12_A  
REF  
TA0  
TB0  
12 Bit  
200 KSPS  
JTAG/  
SBW  
Interface/  
160  
Segments  
12 bit  
2 channels  
voltage out  
Comp_B  
MPY32  
CRC16  
2 Timer_A  
each with  
3 CC  
Reference  
1.5V, 2.0V,  
2.5V  
Timer_A  
5 CC  
Registers  
Timer_B  
7 CC  
Registers  
Battery  
Backup  
System  
16 Channels  
(12 ext/4 int)  
Autoscan  
Port PJ  
Registers  
Functional Block Diagram, MSP430F6435, MSP430F6433  
PA  
PB  
PC  
PD  
PU.0  
PU.1  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
LDOO LDOI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
XT2IN  
I/O Ports  
P1/P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3/P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5/P6  
2×8 I/Os  
I/O Ports  
P7/P8  
1×6 I/Os  
1×8 I/Os  
ACLK  
Power  
Management  
SYS  
I/O Ports  
P9  
1×8 I/Os  
Unified  
Clock  
System  
USCI0,1  
18KB/  
10KB  
RAM  
256KB  
128KB  
PU Port  
LDO  
XT2OUT  
Watchdog  
SMCLK  
Ax: UART,  
IrDA, SPI  
LDO  
SVM/SVS  
Brownout  
P2 Port  
Mapping  
Controller  
+8B Backup  
RAM  
PE  
1×8 I/Os  
Flash  
Bx: SPI, I2C  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
PD  
1×14 I/Os  
CPUXV2  
and  
Working  
Registers  
EEM  
(L: 8+2)  
DMA  
ADC12_A  
LCD_B  
TA1 and  
TA2  
RTC_B  
6 Channel  
REF  
TA0  
TB0  
12 Bit  
200 KSPS  
JTAG/  
SBW  
Interface/  
160  
Segments  
Comp_B  
MPY32  
CRC16  
2 Timer_A  
each with  
3 CC  
Reference  
1.5V, 2.0V,  
2.5V  
Timer_A  
5 CC  
Registers  
Timer_B  
7 CC  
Registers  
Battery  
Backup  
System  
16 Channels  
(12 ext/4 int)  
Autoscan  
Port PJ  
Registers  
Copyright © 2010–2012, Texas Instruments Incorporated  
3
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Pin Designation, MSP430F6438IPZ, MSP430F6436IPZ  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7/S0  
P9.6/S1  
P9.5/S2  
P9.4/S3  
P9.3/S4  
P9.2/S5  
P9.1/S6  
P9.0/S7  
P8.7/S8  
2
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
P5.0/VREF+/VeREF+  
P5.1/VREF−/VeREF−  
AVCC1  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL/S9  
P8.5/UCB1SIMO/UCB1SDA/S10  
DVCC2  
MSP430F6438  
MSP430F6436  
AVSS1  
XIN  
PZ PACKAGE  
(TOP VIEW)  
DVSS2  
XOUT  
P8.4/UCB1CLK/UCA1STE/S11  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.1/UCB1STE/UCA1CLK/S14  
P8.0/TB0CLK/S15  
AVSS2  
P5.6/ADC12CLK/DMAE0  
P2.0/P2MAP0  
P2.1/P2MAP1  
P4.7/TB0OUTH/SVMOUT/S16  
P4.6/TB0.6/S17  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P4.5/TB0.5/S18  
P2.5/P2MAP5  
P4.4/TB0.4/S19  
P2.6/P2MAP6/R03  
P2.7/P2MAP7/LCDREF/R13  
DVCC1  
P4.3/TB0.3/S20  
P4.2/TB0.2/S21  
P4.1/TB0.1/S22  
CAUTION: LCDCAP/R33 must be connected to DVSS if not used.  
4
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Pin Designation, MSP430F6435IPZ, MSP430F6433IPZ  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6.6/CB6/A6  
P6.7/CB7/A7  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14  
P7.7/CB11/A15  
P5.0/VREF+/VeREF+  
P5.1/VREF−/VeREF−  
AVCC1  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7/S0  
2
P9.6/S1  
3
P9.5/S2  
4
P9.4/S3  
5
P9.3/S4  
6
P9.2/S5  
7
P9.1/S6  
8
P9.0/S7  
9
P8.7/S8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL/S9  
P8.5/UCB1SIMO/UCB1SDA/S10  
DVCC2  
MSP430F6435  
MSP430F6433  
AVSS1  
XIN  
PZ PACKAGE  
(TOP VIEW)  
DVSS2  
XOUT  
P8.4/UCB1CLK/UCA1STE/S11  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.1/UCB1STE/UCA1CLK/S14  
P8.0/TB0CLK/S15  
P4.7/TB0OUTH/SVMOUT/S16  
P4.6/TB0.6/S17  
P4.5/TB0.5/S18  
P4.4/TB0.4/S19  
P4.3/TB0.3/S20  
P4.2/TB0.2/S21  
P4.1/TB0.1/S22  
AVSS2  
P5.6/ADC12CLK/DMAE0  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2.6/P2MAP6/R03  
P2.7/P2MAP7/LCDREF/R13  
DVCC1  
CAUTION: LCDCAP/R33 must be connected to DVSS if not used.  
Copyright © 2010–2012, Texas Instruments Incorporated  
5
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Pin Designation, MSP430F6438IZQW, MSP430F6436IZQW, MSP430F6435IZQW,  
MSP430F6433IZQW  
ZQW PACKAGE  
(TOP VIEW)  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
H1  
J1  
A2  
B2  
C2  
D2  
E2  
F2  
G2  
H2  
J2  
A3  
B3  
C3  
A4  
B4  
A5  
B5  
A6  
B6  
A7  
B7  
A8  
B8  
A9  
B9  
A10  
B10  
A11  
B11  
C11  
D11  
E11  
F11  
G11  
H11  
J11  
A12  
B12  
C12  
D12  
E12  
F12  
G12  
H12  
J12  
D4  
E4  
F4  
G4  
H4  
J4  
D5  
E5  
F5  
G5  
H5  
J5  
D6  
E6  
D7  
E7  
D8  
E8  
F8  
G8  
H8  
J8  
D9  
E9  
F9  
G9  
H9  
J9  
H6  
J6  
H7  
J7  
K1  
L1  
K2  
L2  
K11  
L11  
M11  
K12  
L12  
M12  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
NOTE: For terminal assignments, see Table 3  
6
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 3. Terminal Functions  
TERMINAL  
NAME  
NO.  
I/O(1)  
DESCRIPTION  
PZ ZQW  
General-purpose digital I/O  
Comparator_B input CB4  
Analog input A4 – ADC  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
2
A1  
B2  
I/O  
I/O  
General-purpose digital I/O  
Comparator_B input CB5  
Analog input A5 – ADC  
General-purpose digital I/O  
Comparator_B input CB6  
Analog input A6 – ADC  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
3
4
B1  
C2  
I/O  
I/O  
DAC12.0 output (not available on '6435, '6433 devices)  
General-purpose digital I/O  
Comparator_B input CB7  
Analog input A7 – ADC  
DAC12.1 output (not available on '6435, '6433 devices)  
General-purpose digital I/O  
Comparator_B input CB8  
Analog input A12 –ADC  
P7.4/CB8/A12  
P7.5/CB9/A13  
5
6
C1  
C3  
I/O  
I/O  
General-purpose digital I/O  
Comparator_B input CB9  
Analog input A13 – ADC  
General-purpose digital I/O  
Comparator_B input CB10  
P7.6/CB10/A14/DAC0  
7
D2  
D1  
I/O  
I/O  
Analog input A14 – ADC  
DAC12.0 output (not available on '6435, '6433 devices)  
General-purpose digital I/O  
Comparator_B input CB11  
P7.7/CB11/A15/DAC1  
P5.0/VREF+/VeREF+  
8
9
Analog input A15 – ADC  
DAC12.1 output (not available on '6435, '6433 devices)  
General-purpose digital I/O  
D4  
E4  
I/O  
I/O  
Output of reference voltage to the ADC  
Input for an external reference voltage to the ADC  
General-purpose digital I/O  
P5.1/VREF-/VeREF-  
AVCC1  
10  
11  
Negative terminal for the ADC's reference voltage for both sources, the internal  
reference voltage, or an external applied reference voltage  
E1,  
E2  
Analog power supply  
AVSS1  
XIN  
12  
13  
14  
15  
F2  
F1  
G1  
G2  
Analog ground supply  
I
Input terminal for crystal oscillator XT1  
Output terminal of crystal oscillator XT1  
Analog ground supply  
XOUT  
AVSS2  
O
General-purpose digital I/O  
Conversion clock output ADC  
DMA external trigger input  
P5.6/ADC12CLK/DMAE0  
P2.0/P2MAP0  
16  
17  
H1  
G4  
I/O  
I/O  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output  
(1) I = input, O = output, N/A = not available on this package offering  
Copyright © 2010–2012, Texas Instruments Incorporated  
7
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Table 3. Terminal Functions (continued)  
TERMINAL  
NAME  
NO.  
I/O(1)  
DESCRIPTION  
PZ ZQW  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave in/master out; USCI_B0 I2C data  
P2.1/P2MAP1  
18  
19  
20  
21  
22  
H2  
J1  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave out/master in; USCI_B0 I2C clock  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable  
H4  
J2  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in/master out  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_A0 UART receive data; USCI_A0 slave out/master in  
K1  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: no secondary function  
P2.6/P2MAP6/R03  
23  
24  
K2  
L2  
I/O  
I/O  
Input/output port of lowest analog LCD voltage (V5)  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: no secondary function  
P2.7/P2MAP7/LCDREF/R13  
External reference voltage input for regulated LCD voltage  
Input/output port of third most positive analog LCD voltage (V3 or V4)  
DVCC1  
25  
26  
27  
L1  
M1  
M2  
Digital power supply  
DVSS1  
VCORE(2)  
Digital ground supply  
Regulated core power supply (internal use only, no external current loading)  
General-purpose digital I/O  
P5.2/R23  
28  
L3  
I/O  
Input/output port of second most positive analog LCD voltage (V2)  
LCD capacitor connection  
LCDCAP/R33  
COM0  
29  
30  
31  
M3  
J4  
I/O  
O
Input/output port of most positive analog LCD voltage (V1)  
CAUTION: LCDCAP/R33 must be connected to DVSS if not used.  
LCD common output COM0 for LCD backplane  
General-purpose digital I/O  
P5.3/COM1/S42  
L4  
I/O  
LCD common output COM1 for LCD backplane  
LCD segment output S42  
General-purpose digital I/O  
P5.4/COM2/S41  
P5.5/COM3/S40  
32  
33  
M4  
J5  
I/O  
I/O  
LCD common output COM2 for LCD backplane  
LCD segment output S41  
General-purpose digital I/O  
LCD common output COM3 for LCD backplane  
LCD segment output S40  
General-purpose digital I/O with port interrupt  
Timer TA0 clock signal TACLK input  
ACLK output (divided by 1, 2, 4, 8, 16, or 32)  
LCD segment output S39  
P1.0/TA0CLK/ACLK/S39  
P1.1/TA0.0/S38  
34  
35  
L5  
I/O  
I/O  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output  
BSL transmit output  
M5  
LCD segment output S38  
(2) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended  
capacitor value, CVCORE  
.
8
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 3. Terminal Functions (continued)  
TERMINAL  
NAME  
NO.  
I/O(1)  
DESCRIPTION  
PZ ZQW  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output  
BSL receive input  
P1.2/TA0.1/S37  
36  
J6  
I/O  
LCD segment output S37  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output S36  
P1.3/TA0.2/S36  
P1.4/TA0.3/S35  
P1.5/TA0.4/S34  
P1.6/TA0.1/S33  
P1.7/TA0.2/S32  
37  
38  
39  
40  
41  
H6  
M6  
L6  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR3 capture: CCI3A input compare: Out3 output  
LCD segment output S35  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output  
LCD segment output S34  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output  
LCD segment output S33  
J7  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR2 capture: CCI2B input, compare: Out2 output  
LCD segment output S32  
M7  
General-purpose digital I/O with port interrupt  
Timer TA1 clock input  
P3.0/TA1CLK/CBOUT/S31  
42  
L7  
I/O  
Comparator_B output  
LCD segment output S31  
General-purpose digital I/O with port interrupt  
Timer TA1 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
LCD segment output S30  
P3.1/TA1.0/S30  
P3.2/TA1.1/S29  
P3.3/TA1.2/S28  
43  
44  
45  
H7  
M8  
L8  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt  
Timer TA1 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
LCD segment output S29  
General-purpose digital I/O with port interrupt  
Timer TA1 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
LCD segment output S28  
General-purpose digital I/O with port interrupt  
Timer TA2 clock input  
P3.4/TA2CLK/SMCLK/S27  
46  
J8  
I/O  
SMCLK output  
LCD segment output S27  
General-purpose digital I/O with port interrupt  
Timer TA2 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
LCD segment output S26  
P3.5/TA2.0/S26  
P3.6/TA2.1/S25  
P3.7/TA2.2/S24  
47  
48  
49  
M9  
L9  
I/O  
I/O  
I/O  
General-purpose digital I/O with port interrupt  
Timer TA2 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
LCD segment output S25  
General-purpose digital I/O with port interrupt  
Timer TA2 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
LCD segment output S24  
M10  
Copyright © 2010–2012, Texas Instruments Incorporated  
9
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Table 3. Terminal Functions (continued)  
TERMINAL  
NAME  
NO.  
I/O(1)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DESCRIPTION  
PZ ZQW  
General-purpose digital I/O with port interrupt  
P4.0/TB0.0/S23  
50  
51  
52  
53  
54  
55  
56  
J9  
Timer TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
LCD segment output S23  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
LCD segment output S22  
P4.1/TB0.1/S22  
P4.2/TB0.2/S21  
P4.3/TB0.3/S20  
P4.4/TB0.4/S19  
P4.5/TB0.5/S18  
P4.6/TB0.6/S17  
M11  
L10  
M12  
L12  
L11  
K11  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
LCD segment output S21  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output  
LCD segment output S20  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output  
LCD segment output S19  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output  
LCD segment output S18  
General-purpose digital I/O with port interrupt  
Timer TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output  
LCD segment output S17  
General-purpose digital I/O with port interrupt  
Timer TB0: Switch all PWM outputs high impedance  
SVM output  
P4.7/TB0OUTH/SVMOUT/S16  
57  
K12  
I/O  
LCD segment output S16  
General-purpose digital I/O  
Timer TB0 clock input  
P8.0/TB0CLK/S15  
58  
59  
60  
61  
62  
J11  
J12  
I/O  
I/O  
I/O  
I/O  
I/O  
LCD segment output S15  
General-purpose digital I/O  
P8.1/UCB1STE/UCA1CLK/S14  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.4/UCB1CLK/UCA1STE/S11  
USCI_B1 SPI slave transmit enable; USCI_A1 clock input/output  
LCD segment output S14  
General-purpose digital I/O  
H11  
H12  
G11  
USCI_A1 UART transmit data; USCI_A1 SPI slave in/master out  
LCD segment output S13  
General-purpose digital I/O  
USCI_A1 UART receive data; USCI_A1 SPI slave out/master in  
LCD segment output S12  
General-purpose digital I/O  
USCI_B1 clock input/output; USCI_A1 SPI slave transmit enable  
LCD segment output S11  
DVSS2  
DVCC2  
63  
64  
G12  
F12  
Digital ground supply  
Digital power supply  
General-purpose digital I/O  
P8.5/UCB1SIMO/UCB1SDA/S10  
65  
F11  
I/O  
USCI_B1 SPI slave in/master out; USCI_B1 I2C data  
LCD segment output S10  
10  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 3. Terminal Functions (continued)  
TERMINAL  
NAME  
NO.  
I/O(1)  
DESCRIPTION  
PZ ZQW  
General-purpose digital I/O  
P8.6/UCB1SOMI/UCB1SCL/S9  
66  
G9  
I/O  
USCI_B1 SPI slave out/master in; USCI_B1 I2C clock  
LCD segment output S9  
General-purpose digital I/O  
LCD segment output S8  
P8.7/S8  
P9.0/S7  
P9.1/S6  
P9.2/S5  
P9.3/S4  
P9.4/S3  
P9.5/S2  
P9.6/S1  
P9.7/S0  
67  
68  
69  
70  
71  
72  
73  
74  
75  
E12  
E11  
F9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
LCD segment output S7  
General-purpose digital I/O  
LCD segment output S6  
General-purpose digital I/O  
LCD segment output S5  
D12  
D11  
E9  
General-purpose digital I/O  
LCD segment output S4  
General-purpose digital I/O  
LCD segment output S3  
General-purpose digital I/O  
LCD segment output S2  
C12  
C11  
D9  
General-purpose digital I/O  
LCD segment output S1  
General-purpose digital I/O  
LCD segment output S0  
B11  
and  
B12  
VSSU  
76  
PU ground supply  
PU.0  
NC  
77  
78  
79  
80  
81  
82  
83  
A12  
B10  
A11  
A10  
A9  
I/O General-purpose digital I/O - controlled by PU control register  
No connect.  
PU.1  
LDOI  
LDOO  
NC  
I/O General-purpose digital I/O - controlled by PU control register  
LDO input  
LDO output  
B9  
No connect.  
AVSS3  
A8  
Analog ground supply  
General-purpose digital I/O  
I/O  
P7.2/XT2IN  
84  
85  
B8  
B7  
Input terminal for crystal oscillator XT2  
General-purpose digital I/O  
I/O  
P7.3/XT2OUT  
Output terminal of crystal oscillator XT2  
Capacitor for backup subsystem. Do not load this pin externally. For capacitor  
values, see CBAK in Recommended Operating Conditions.  
VBAK  
VBAT  
86  
87  
A7  
D8  
Backup or secondary supply voltage. If backup voltage is not supplied, connect to  
DVCC externally.  
General-purpose digital I/O  
I/O  
P5.7/RTCCLK  
88  
D7  
RTCCLK output  
DVCC3  
DVSS3  
89  
90  
A6  
A5  
Digital power supply  
Digital ground supply  
Test mode pin; selects digital I/O on JTAG pins  
I
TEST/SBWTCK  
91  
B6  
Spy-bi-wire input clock  
Copyright © 2010–2012, Texas Instruments Incorporated  
11  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Table 3. Terminal Functions (continued)  
TERMINAL  
NAME  
NO.  
I/O(1)  
DESCRIPTION  
PZ ZQW  
General-purpose digital I/O  
Test data output port  
PJ.0/TDO  
92  
93  
94  
95  
B5  
A4  
E7  
D6  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O  
PJ.1/TDI/TCLK  
PJ.2/TMS  
Test data input or test clock input  
General-purpose digital I/O  
Test mode select  
General-purpose digital I/O  
Test clock  
PJ.3/TCK  
Reset input (active low)  
RST/NMI/SBWTDIO  
P6.0/CB0/A0  
96  
97  
A3  
B4  
B3  
A2  
D5  
I/O  
I/O  
I/O  
I/O  
I/O  
Non-maskable interrupt input  
Spy-bi-wire data input/output  
General-purpose digital I/O  
Comparator_B input CB0  
Analog input A0 – ADC  
General-purpose digital I/O  
Comparator_B input CB1  
Analog input A1 – ADC  
P6.1/CB1/A1  
98  
General-purpose digital I/O  
Comparator_B input CB2  
Analog input A2 – ADC  
P6.2/CB2/A2  
99  
General-purpose digital I/O  
Comparator_B input CB3  
Analog input A3 – ADC  
P6.3/CB3/A3  
100  
E5,  
E6,  
E8,  
F4,  
F5,  
F8,  
G5,  
G8,  
H5,  
H8,  
H9  
Reserved  
N/A  
Reserved. It is recommended to connect to ground (DVSS, AVSS).  
12  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
SHORT-FORM DESCRIPTION  
Program Counter  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
CPU  
The MSP430 CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions, are  
performed as register operations in conjunction with  
seven addressing modes for source operand and four  
addressing modes for destination operand.  
Stack Pointer  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that provide  
reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the  
CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and  
constant generator, respectively. The remaining  
registers are general-purpose registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled with  
all instructions.  
R10  
R11  
R12  
Instruction Set  
R13  
The instruction set consists of the original 51  
instructions with three formats and seven address  
modes and additional instructions for the expanded  
address range. Each instruction can operate on word  
and byte data. Table 4 shows examples of the three  
types of instruction formats; Table 5 shows the  
address modes.  
R14  
R15  
Table 4. Instruction Word Formats  
INSTRUCTION WORD FORMAT  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
R4 + R5 R5  
PC (TOS), R8 PC  
Jump-on-equal bit = 0  
Table 5. Address Mode Descriptions  
ADDRESS MODE  
Register  
S(1)  
+
D(1)  
+
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
OPERATION  
MOV R10,R11  
R10 R11  
Indexed  
+
+
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM, &TCDAT  
MOV @Rn,Y(Rm)  
MOV 2(R5),6(R6)  
M(2+R5) M(6+R6)  
M(EDE) M(TONI)  
M(MEM) M(TCDAT)  
M(R10) M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
+
+
+
+
Indirect  
+
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) R11  
R10 + 2 R10  
Indirect auto-increment  
Immediate  
+
+
MOV @Rn+,Rm  
MOV #X,TONI  
#45 M(TONI)  
(1) S = source, D = destination  
Copyright © 2010–2012, Texas Instruments Incorporated  
13  
 
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Operating Modes  
The MSP430 has one active mode and seven software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the low-power modes, service the request, and restore back to the  
low-power mode on return from the interrupt program.  
The following seven operating modes can be configured by software:  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
FLL loop control remains active  
Low-power mode 1 (LPM1)  
CPU is disabled  
FLL loop control is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DCO's dc generator remains enabled  
ACLK remains active  
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DCO's dc generator is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DCO's dc generator is disabled  
Crystal oscillator is stopped  
Complete data retention  
Low-power mode 3.5 (LPM3.5)  
Internal regulator disabled  
No data retention  
RTC enabled and clocked by low-frequency oscillator  
Wakeup from RST/NMI, RTC_B, P1, P2, P3, and P4  
Low-power mode 4.5 (LPM4.5)  
Internal regulator disabled  
No data retention  
Wakeup from RST/NMI, RTC_B, P1, P2, P3, and P4  
14  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The  
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 6. Interrupt Sources, Flags, and Vectors of MSP430F643x Configurations  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power-Up, External Reset  
Watchdog Timeout, Key Violation  
Flash Memory Key Violation  
WDTIFG, KEYV (SYSRSTIV)(1)(2)  
Reset  
0FFFEh  
0FFFCh  
0FFFAh  
63, highest  
System NMI  
PMM  
Vacant Memory Access  
JTAG Mailbox  
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,  
VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG,  
JMBOUTIFG (SYSSNIV)(1)  
(Non)maskable  
(Non)maskable  
62  
61  
User NMI  
NMI  
Oscillator Fault  
NMIIFG, OFIFG, ACCVIFG, BUSIFG  
(SYSUNIV)(1)(2)  
Flash Memory Access Violation  
Comp_B  
Comparator B interrupt flags (CBIV)(1)(3)  
TB0CCR0 CCIFG0(3)  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
60  
59  
Timer TB0  
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,  
TB0IFG (TBIV)(1) (3)  
Timer TB0  
Maskable  
0FFF4h  
58  
Watchdog Interval Timer Mode  
USCI_A0 Receive or Transmit  
USCI_B0 Receive or Transmit  
ADC12_A  
WDTIFG  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
0FFEAh  
57  
56  
55  
54  
53  
UCA0RXIFG, UCA0TXIFG (UCA0IV)(1)(3)  
UCB0RXIFG, UCB0TXIFG (UCB0IV)(1)(3)  
ADC12IFG0 to ADC12IFG15 (ADC12IV)(1)(3)  
TA0CCR0 CCIFG0(3)  
Timer TA0  
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,  
TA0IFG (TA0IV)(1)(3)  
Timer TA0  
LDO-PWR  
DMA  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
52  
51  
50  
49  
48  
LDOOFFIG, LDOONIFG, LDOOVLIFG  
DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG,  
DMA4IFG, DMA5IFG (DMAIV)(1)(3)  
Timer TA1  
Timer TA1  
TA1CCR0 CCIFG0(3)  
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)(1)(3)  
I/O Port P1  
USCI_A1 Receive or Transmit  
USCI_B1 Receive or Transmit  
I/O Port P2  
P1IFG.0 to P1IFG.7 (P1IV)(1) (3)  
UCA1RXIFG, UCA1TXIFG (UCA1IV)(1)(3)  
UCB1RXIFG, UCB1TXIFG (UCB1IV)(1)(3)  
P2IFG.0 to P2IFG.7 (P2IV)(1) (3)  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
0FFDAh  
0FFD8h  
0FFD6h  
47  
46  
45  
44  
43  
LCD_B  
LCD_B Interrupt Flags (LCDBIV)(1)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RTC_B  
Maskable  
0FFD4h  
42  
RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV)(1)(3)  
DAC12_A(4)  
Timer TA2  
DAC12_0IFG, DAC12_1IFG(1)(3)  
TA2CCR0 CCIFG0(3)  
Maskable  
Maskable  
0FFD2h  
0FFD0h  
41  
40  
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,  
TA2IFG (TA2IV)(1)(3)  
Timer TA2  
Maskable  
0FFCEh  
39  
I/O Port P3  
I/O Port P4  
P3IFG.0 to P3IFG.7 (P3IV)(1)(3)  
P4IFG.0 to P4IFG.7 (P4IV)(1)(3)  
Maskable  
Maskable  
0FFCCh  
0FFCAh  
38  
37  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
(3) Interrupt flags are located in the module.  
(4) Only on devices with peripheral module DAC12_A, otherwise reserved.  
Copyright © 2010–2012, Texas Instruments Incorporated  
15  
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Table 6. Interrupt Sources, Flags, and Vectors of MSP430F643x Configurations (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
0FFC8h  
36  
Reserved  
Reserved(5)  
0FF80h  
0, lowest  
(5) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain  
compatability with other devices, it is recommended to reserve these locations.  
Memory Organization  
Table 7. Memory Organization(1) (2)  
MSP430F6438  
MSP430F6435  
MSP430F6433  
MSP430F6436  
Memory (flash)  
Main: interrupt vector  
Total Size  
Bank 3  
Bank 2  
Bank 1  
Bank 0  
Sector 3  
Sector 2  
Sector 1  
Sector 0  
Sector 7  
Info A  
128KB  
00FFFFh–00FF80h  
128KB  
00FFFFh–00FF80h  
256KB  
00FFFFh–00FF80h  
N/A  
N/A  
64 KB  
047FFF-038000h  
N/A  
N/A  
64 KB  
037FFF-028000h  
Main: code memory  
64 KB  
027FFF-018000h  
64 KB  
027FFF-018000h  
64 KB  
027FFF-018000h  
64 KB  
017FFF-008000h  
64 KB  
017FFF-008000h  
64 KB  
017FFF-008000h  
N/A  
4 KB  
0063FFh–005400h  
4 KB  
0063FFh–005400h  
N/A  
4 KB  
0053FFh–004400h  
4 KB  
0053FFh–004400h  
RAM  
RAM  
4 KB  
0043FFh–003400h  
4 KB  
0043FFh–003400h  
4 KB  
0043FFh–003400h  
4 KB  
0033FFh–002400h  
4 KB  
0033FFh–002400h  
4 KB  
0033FFh–002400h  
2KB  
2KB  
2KB  
0023FFh-001C00h  
0023FFh-001C00h  
0023FFh-001C00h  
128 B  
128 B  
128 B  
0019FFh–001980h  
0019FFh–001980h  
0019FFh–001980h  
Info B  
128 B  
128 B  
128 B  
00197Fh–001900h  
00197Fh–001900h  
00197Fh–001900h  
Information memory  
(flash)  
Info C  
128 B  
128 B  
128 B  
0018FFh–001880h  
0018FFh–001880h  
0018FFh–001880h  
Info D  
128 B  
128 B  
128 B  
00187Fh–001800h  
00187Fh–001800h  
00187Fh–001800h  
BSL 3  
512 B  
512 B  
512 B  
0017FFh–001600h  
0017FFh–001600h  
0017FFh–001600h  
BSL 2  
512 B  
512 B  
512 B  
0015FFh–001400h  
0015FFh–001400h  
0015FFh–001400h  
Bootstrap loader (BSL)  
memory (flash)  
BSL 1  
512 B  
512 B  
512 B  
0013FFh–001200h  
0013FFh–001200h  
0013FFh–001200h  
BSL 0  
512 B  
512 B  
512 B  
0011FFh–001000h  
0011FFh–001000h  
0011FFh–001000h  
Size  
4KB  
4KB  
4KB  
Peripherals  
000FFFh–000000h  
000FFFh–000000h  
000FFFh–000000h  
(1) N/A = Not available.  
(2) Backup RAM is accessed via the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.  
16  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Bootstrap Loader (BSL)  
The BSL enables users to program the flash memory or RAM using a UART serial interfaces. Access to the  
device memory via the BSL is protected by an user-defined password. Use of the BSL requires external access  
to the six pins shown in Table 8. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and  
TEST/SBWTCK pins. For complete description of the features of the BSL and its implementation, see MSP430  
Programming Via the Bootstrap Loader (BSL) (SLAU319).  
Table 8. UART BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.1  
P1.2  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
JTAG Operation  
JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430  
development tools and device programmers. The JTAG pin requirements are shown in Table 9. For further  
details on interfacing to development tools and device programmers, see the MSP430(tm) Hardware Tools  
User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its  
implementation, see MSP430 Programming Via the JTAG Interface (SLAU320).  
Table 9. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-  
Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire  
interface pin requirements are shown in Table 10. For further details on interfacing to development tools and  
device programmers, see the MSP430(tm) Hardware Tools User's Guide (SLAU278). For a complete description  
of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface  
(SLAU320).  
Table 10. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
IN  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN, OUT  
Copyright © 2010–2012, Texas Instruments Incorporated  
17  
 
 
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Table 10. Spy-Bi-Wire Pin Requirements and Functions (continued)  
DEVICE SIGNAL  
DIRECTION  
FUNCTION  
VSS  
Ground supply  
Flash Memory  
The flash memory can be programmed via the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the  
flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also  
called information memory.  
Segment A can be locked separately.  
RAM Memory  
The RAM memory is made up of n sectors. Each sector can be completely powered down to save leakage,  
however all data is lost. Features of the RAM memory include:  
RAM memory has n sectors. The size of a sector can be found in Memory Organization.  
Each sector 0 to n can be complete disabled, however data retention is lost.  
Each sector 0 to n automatically enters low power retention mode when possible.  
Backup RAM Memory  
The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during  
operation from a backup supply if the Battery Backup System module is implemented.  
There are 8 bytes of Backup RAM available on MSP430F643x. It can be wordwise accessed via the control  
registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.  
Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide  
(SLAU208).  
Digital I/O  
There are up to nine 8-bit I/O ports implemented: P1 through P9 are complete, and port PJ contains four  
individual I/O ports.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Programmable drive strength on all ports.  
Edge-selectable interrupt input capability for all the eight bits of ports P1, P2, P3, and P4.  
Read/write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PD).  
Port Mapping Controller  
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2.  
Table 11. Port Mapping, Mnemonics and Functions  
VALUE  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
0
PM_NONE  
None  
DVSS  
18  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 11. Port Mapping, Mnemonics and Functions (continued)  
VALUE  
PxMAPy MNEMONIC  
PM_CBOUT  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
-
Comparator_B output  
1
PM_TB0CLK  
Timer TB0 clock input  
-
PM_ADC12CLK  
PM_DMAE0  
-
ADC12CLK  
-
2
3
DMAE0 Input  
-
PM_SVMOUT  
SVM output  
Timer TB0 high impedance input  
TB0OUTH  
PM_TB0OUTH  
-
4
5
PM_TB0CCR0B  
PM_TB0CCR1B  
PM_TB0CCR2B  
PM_TB0CCR3B  
PM_TB0CCR4B  
PM_TB0CCR5B  
PM_TB0CCR6B  
PM_UCA0RXD  
PM_UCA0SOMI  
PM_UCA0TXD  
PM_UCA0SIMO  
PM_UCA0CLK  
PM_UCB0STE  
PM_UCB0SOMI  
PM_UCB0SCL  
PM_UCB0SIMO  
PM_UCB0SDA  
PM_UCB0CLK  
PM_UCA0STE  
PM_MCLK  
Timer TB0 CCR0 capture input CCI0B  
Timer TB0 CCR1 capture input CCI1B  
Timer TB0 CCR2 capture input CCI2B  
Timer TB0 CCR3 capture input CCI3B  
Timer TB0 CCR4 capture input CCI4B  
Timer TB0 CCR5 capture input CCI5B  
Timer TB0 CCR6 capture input CCI6B  
Timer TB0: TB0.0 compare output Out0  
Timer TB0: TB0.1 compare output Out1  
Timer TB0: TB0.2 compare output Out2  
Timer TB0: TB0.3 compare output Out3  
Timer TB0: TB0.4 compare output Out4  
Timer TB0: TB0.5 compare output Out5  
Timer TB0: TB0.6 compare output Out6  
6
7
8
9
10  
USCI_A0 UART RXD (Direction controlled by USCI - input)  
11  
12  
13  
14  
15  
16  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
USCI_A0 UART TXD (Direction controlled by USCI - output)  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
USCI_A0 clock input/output (direction controlled by USCI)  
USCI_B0 SPI slave transmit enable (direction controlled by USCI - input)  
USCI_B0 SPI slave out master in (direction controlled by USCI)  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
USCI_B0 SPI slave in master out (direction controlled by USCI)  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
USCI_B0 clock input/output (direction controlled by USCI)  
USCI_A0 SPI slave transmit enable (direction controlled by USCI - input)  
17  
18  
-
MCLK  
Reserved  
Reserved for test purposes. Do not use this setting.  
Reserved for test purposes. Do not use this setting.  
19  
Reserved  
20-30  
Reserved  
None  
DVSS  
Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents  
when applying analog signals.  
31 (0FFh)(1)  
PM_ANALOG  
(1) The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored,  
which results in a read out value of 31.  
Table 12. Default Mapping  
PxMAPy  
MNEMONIC  
PIN  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
PM_UCB0STE,  
PM_UCA0CLK  
USCI_B0 SPI slave transmit enable (direction controlled by USCI - input),  
USCI_A0 clock input/output (direction controlled by USCI)  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
PM_UCB0SIMO,  
PM_UCB0SDA  
USCI_B0 SPI slave in master out (direction controlled by USCI),  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
PM_UCB0SOMI,  
PM_UCB0SCL  
USCI_B0 SPI slave out master in (direction controlled by USCI),  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
PM_UCB0CLK,  
PM_UCA0STE  
USCI_B0 clock input/output (direction controlled by USCI),  
USCI_A0 SPI slave transmit enable (direction controlled by USCI - input)  
PM_UCA0TXD,  
PM_UCA0SIMO  
USCI_A0 UART TXD (direction controlled by USCI - output),  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
PM_UCA0RXD,  
PM_UCA0SOMI  
USCI_A0 UART RXD (direction controlled by USCI - input),  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
Copyright © 2010–2012, Texas Instruments Incorporated  
19  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Table 12. Default Mapping (continued)  
PxMAPy  
MNEMONIC  
PIN  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
P2.6/P2MAP6/R03  
PM_NONE  
PM_NONE  
-
-
DVSS  
DVSS  
P2.7/P2MAP7/LCDREF/R13  
Oscillator and System Clock  
The clock system in the MSP430F643x family of devices is supported by the Unified Clock System (UCS)  
module that includes support for a 32-kHz watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not  
supported), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency  
oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal  
oscillator XT2. The UCS module is designed to meet the requirements of both low system cost and low power  
consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a  
digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The  
internal DCO provides a fast turn-on clock source and stabilizes in 3 µs (typical). The UCS module provides the  
following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the  
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally-  
controlled oscillator DCO.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to  
ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
same sources available to ACLK.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.  
Power Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains  
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor  
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is  
implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS  
and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply  
voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not  
automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.  
Hardware Multiplier  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations with  
32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication  
as well as signed and unsigned multiply and accumulate operations.  
Real-Time Clock (RTC_B)  
The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes,  
hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which  
compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports  
flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in  
LPM3.5 mode and operation from a backup supply.  
Watchdog Timer (WDT_A)  
The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a  
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog  
function is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
20  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
System Module (SYS)  
The SYS module handles many of the system functions within the device. These include power-on reset and  
power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootstrap  
loader entry mechanisms, and configuration management (device descriptors). SYS also includes a data  
exchange mechanism via JTAG called a JTAG mailbox that can be used in the application.  
Table 13. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
INTERRUPT EVENT  
WORD ADDRESS  
OFFSET  
PRIORITY  
REGISTER  
No interrupt pending  
Brownout (BOR)  
RST/NMI (BOR)  
DoBOR (BOR)  
LPM3.5 or LPM4.5 wakeup (BOR)  
Security violation (BOR)  
SVSL (POR)  
00h  
02h  
Highest  
04h  
06h  
08h  
0Ah  
0Ch  
SVSH (POR)  
0Eh  
SVML_OVP (POR)  
SVMH_OVP (POR)  
DoPOR (POR)  
WDT timeout (PUC)  
WDT key violation (PUC)  
KEYV flash key violation (PUC)  
Reserved  
10h  
SYSRSTIV, System Reset  
019Eh  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
Peripheral area fetch (PUC)  
PMM key violation (PUC)  
Reserved  
1Eh  
20h  
22h to 3Eh  
00h  
Lowest  
Highest  
No interrupt pending  
SVMLIFG  
02h  
SVMHIFG  
04h  
DLYLIFG  
06h  
DLYHIFG  
08h  
SYSSNIV, System NMI  
VMAIFG  
019Ch  
0Ah  
JMBINIFG  
0Ch  
JMBOUTIFG  
0Eh  
SVMLVLRIFG  
10h  
SVMHVLRIFG  
Reserved  
12h  
14h to 1Eh  
00h  
Lowest  
Highest  
No interrupt pending  
NMIFG  
02h  
SYSUNIV, User NMI  
OFIFG  
019Ah  
04h  
ACCVIFG  
06h  
Reserved  
08h to 1Eh  
Lowest  
Copyright © 2010–2012, Texas Instruments Incorporated  
21  
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention. For  
example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM. Using  
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system  
power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or  
from a peripheral.  
Table 14. DMA Trigger Assignments(1)  
Channel  
Trigger  
0
1
2
3
4
5
0
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TBCCR0 CCIFG  
TBCCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC12IFGx  
DAC12_0IFG(2)  
DAC12_1IFG(2)  
Reserved  
Reserved  
MPY ready  
DMA5IFG  
DMA0IFG  
DMA1IFG  
DMA2IFG  
DMAE0  
DMA3IFG  
DMA4IFG  
(1) Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers will not  
cause any DMA trigger event when selected.  
(2) Only on devices with peripheral module DAC12_A. Reserved on devices without DAC.  
Universal Serial Communication Interface (USCI)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions,  
A and B.  
22  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
The USCI_An module provides support for SPI (3 or 4 pin), UART, enhanced UART, or IrDA.  
The USCI_Bn module provides support for SPI (3 or 4 pin) or I2C.  
The MSP430F643x series includes two complete USCI modules (n = 0 to 1).  
Timer TA0  
Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. It can support multiple  
capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may  
be generated from the counter on overflow conditions and from each of the capture/compare registers.  
Table 15. Timer TA0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZQW  
PZ  
ZQW  
34-P1.0  
L5-P1.0  
TA0CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
SMCLK  
TA0CLK  
TA0.0  
DVSS  
34-P1.0  
35-P1.1  
L5-P1.0  
M5-P1.1  
35-P1.1  
M5-P1.1  
TA0  
TA0.0  
DVSS  
DVCC  
VCC  
36-P1.2  
40-P1.6  
J6-P1.2  
J7-P1.6  
TA0.1  
TA0.1  
CCI1A  
CCI1B  
36-P1.2  
40-P1.6  
J6-P1.2  
J7-P1.6  
CCR1  
TA1  
TA0.1  
ADC12_A (internal)  
ADC12SHSx = {1}  
DVSS  
GND  
DVCC  
TA0.2  
TA0.2  
DVSS  
DVCC  
TA0.3  
DVSS  
DVSS  
DVCC  
TA0.4  
DVSS  
DVSS  
DVCC  
VCC  
CCI2A  
CCI2B  
GND  
37-P1.3  
41-P1.7  
H6-P1.3  
M7-P1.7  
37-P1.3  
41-P1.7  
H6-P1.3  
M7-P1.7  
CCR2  
CCR3  
CCR4  
TA2  
TA3  
TA4  
TA0.2  
TA0.3  
TA0.4  
VCC  
38-P1.4  
39-P1.5  
M6-P1.4  
L6-P1.5  
CCI3A  
CCI3B  
GND  
38-P1.4  
39-P1.5  
M6-P1.4  
VCC  
CCI4A  
CCI4B  
GND  
L6-P1.5  
VCC  
Copyright © 2010–2012, Texas Instruments Incorporated  
23  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Timer TA1  
Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. It supports multiple  
capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may  
be generated from the counter on overflow conditions and from each of the capture/compare registers.  
Table 16. Timer TA1 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZQW  
PZ  
ZQW  
42-P3.0  
L7-P3.0  
TA1CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
SMCLK  
TA1CLK  
TA1.0  
DVSS  
42-P3.0  
43-P3.1  
L7-P3.0  
H7-P3.1  
43-P3.1  
44-P3.2  
H7-P3.1  
M8-P3.2  
TA0  
TA1.0  
DVSS  
DVCC  
VCC  
44-P3.2  
45-P3.3  
M8-P3.2  
L8-P3.3  
TA1.1  
CCI1A  
DAC12_A(1)  
DAC12_0, DAC12_1  
(internal)  
CBOUT  
(internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA1.1  
TA1.2  
DVSS  
DVCC  
TA1.2  
GND  
VCC  
CCI2A  
45-P3.3  
L8-P3.3  
ACLK  
(internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
(1) Only on devices with peripheral module DAC12_A.  
24  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Timer TA2  
Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. It supports multiple  
capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may  
be generated from the counter on overflow conditions and from each of the capture/compare registers.  
Table 17. Timer TA2 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZQW  
PZ  
ZQW  
46-P3.4  
J8-P3.4  
TA2CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
CCR0  
NA  
NA  
SMCLK  
TA2CLK  
TA2.0  
DVSS  
46-P3.4  
47-P3.5  
J8-P3.4  
M9-P3.5  
47-P3.5  
48-P3.6  
M9-P3.5  
L9-P3.6  
TA0  
TA2.0  
DVSS  
DVCC  
VCC  
48-P3.6  
49-P3.7  
L9-P3.6  
TA2.1  
CCI1A  
CBOUT  
(internal)  
CCI1B  
CCR1  
CCR2  
TA1  
TA2  
TA2.1  
TA2.2  
DVSS  
DVCC  
TA2.2  
GND  
VCC  
M10-P3.7  
CCI2A  
49-P3.7  
M10-P3.7  
ACLK  
(internal)  
CCI2B  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2010–2012, Texas Instruments Incorporated  
25  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Timer TB0  
Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. It supports multiple  
capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may  
be generated from the counter on overflow conditions and from each of the capture/compare registers.  
Table 18. Timer TB0 Signal Connections  
INPUT PIN NUMBER  
DEVICE  
INPUT  
SIGNAL  
MODULE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
DEVICE  
OUTPUT  
SIGNAL  
OUTPUT PIN NUMBER  
MODULE  
BLOCK  
PZ  
ZQW  
PZ  
ZQW  
58-P8.0  
J11-P8.0  
TB0CLK  
TB0CLK  
P2MAPx(1)  
P2MAPx(1)  
ACLK  
ACLK  
Timer  
NA  
NA  
SMCLK  
SMCLK  
58-P8.0  
J11-P8.0  
TB0CLK  
TB0CLK  
P2MAPx(1)  
P2MAPx(1)  
50-P4.0  
P2MAPx(1)  
J9-P4.0  
P2MAPx(1)  
TB0.0  
TB0.0  
CCI0A  
CCI0B  
50-P4.0  
P2MAPx(1)  
J9-P4.0  
P2MAPx(1)  
CCR0  
CCR1  
TB0  
TB1  
TB0.0  
TB0.1  
ADC12 (internal)  
ADC12SHSx = {2}  
DVSS  
GND  
DVCC  
TB0.1  
TB0.1  
VCC  
51-P4.1  
P2MAPx(1)  
M11-P4.1  
P2MAPx(1)  
CCI1A  
CCI1B  
51-P4.1  
P2MAPx(1)  
M11-P4.1  
P2MAPx(1)  
ADC12 (internal)  
ADC12SHSx = {3}  
DVSS  
GND  
DVCC  
TB0.2  
TB0.2  
VCC  
52-P4.2  
P2MAPx(1)  
L10-P4.2  
P2MAPx(1)  
CCI2A  
CCI2B  
52-P4.2  
P2MAPx(1)  
L10-P4.2  
P2MAPx(1)  
DAC12_A(2)  
DAC12_0, DAC12_1  
(internal)  
CCR2  
TB2  
TB0.2  
DVSS  
GND  
DVCC  
TB0.3  
TB0.3  
DVSS  
DVCC  
TB0.4  
TB0.4  
DVSS  
DVCC  
TB0.5  
TB0.5  
DVSS  
DVCC  
TB0.6  
TB0.6  
DVSS  
DVCC  
VCC  
CCI3A  
CCI3B  
GND  
53-P4.3  
P2MAPx(1)  
M12-P4.3  
P2MAPx(1)  
53-P4.3  
P2MAPx(1)  
M12-P4.3  
P2MAPx(1)  
CCR3  
CCR4  
CCR5  
CCR6  
TB3  
TB4  
TB5  
TB6  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
VCC  
54-P4.4  
P2MAPx(1)  
L12-P4.4  
P2MAPx(1)  
CCI4A  
CCI4B  
GND  
54-P4.4  
P2MAPx(1)  
L12-P4.4  
P2MAPx(1)  
VCC  
55-P4.5  
P2MAPx(1)  
L11-P4.5  
P2MAPx(1)  
CCI5A  
CCI5B  
GND  
55-P4.5  
P2MAPx(1)  
L11-P4.5  
P2MAPx(1)  
VCC  
56-P4.6  
P2MAPx(1)  
K11-P4.6  
P2MAPx(1)  
CCI6A  
CCI6B  
GND  
56-P4.6  
P2MAPx(1)  
K11-P4.6  
P2MAPx(1)  
VCC  
(1) Timer functions selectable via the port mapping controller.  
(2) Only on devices with peripheral module DAC12_A.  
26  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Comparator_B  
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,  
battery voltage supervision, and monitoring of external analog signals.  
ADC12_A  
The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR  
core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-  
and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU  
intervention.  
DAC12_A  
The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A may be used in 8-bit or 12-bit  
mode, and may be used in conjunction with the DMA controller. When multiple DAC12_A modules are present,  
they may be grouped together for synchronous operation.  
CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
REF Voltage Reference  
The reference module (REF) is responsible for generation of all critical reference voltages that can be used by  
the various analog peripherals in the device.  
LCD_B  
The LCD_B driver generates the segment and common signals that are required to drive a liquid crystal display  
(LCD). The LCD_B controller has dedicated data memories to hold segment drive information. Common and  
segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux LCDs are supported.  
The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is  
possible to control the level of the LCD voltage, and thus contrast, by software. The module also provides an  
automatic blinking capability for individual segments.  
LDO and PU Port  
The integrated 3.3-V power system incorporates an integrated 3.3-V LDO regulator that allows the entire  
MSP430 microcontroller to be powered from nominal 5-V LDOI when it is made available for the system.  
Alternatively, the power system can supply power only to other components within the system, or it can be  
unused altogether.  
The Port U Pins (PU.0/PU.1) function as general-purpose high-current I/O pins. These pins can only be  
configured together as either both inputs or both outputs. Port U is supplied by the LDOO rail. If the 3.3-V LDO is  
not being used in the system (disabled), the LDOO pin can be supplied externally.  
Embedded Emulation Module (EEM)  
The Embedded Emulation Module (EEM) supports real-time in-system debugging. The L version of the EEM  
implemented on these devices has the following features:  
Eight hardware triggers/breakpoints on memory access  
Two hardware triggers/breakpoints on CPU register write access  
Up to ten hardware triggers can be combined to form complex triggers/breakpoints  
Two cycle counters  
Sequencer  
State storage  
Clock control on module level  
Copyright © 2010–2012, Texas Instruments Incorporated  
27  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Peripheral File Map  
Table 19. Peripherals  
MODULE NAME  
Special Functions (see Table 20)  
PMM (see Table 21)  
BASE ADDRESS  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
01C0h  
01D0h  
0200h  
0220h  
0240h  
0260h  
0280h  
0320h  
0340h  
0380h  
03C0h  
0400h  
0480h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
0540h  
0550h  
0560h  
05C0h  
05E0h  
0600h  
0620h  
0700h  
0780h  
08C0h  
0900h  
0A00h  
OFFSET ADDRESS RANGE(1)  
000h - 01Fh  
000h - 00Fh  
000h - 00Fh  
000h - 007h  
000h - 001h  
000h - 001h  
000h - 01Fh  
000h - 01Fh  
000h - 001h  
000h - 003h  
000h - 007h  
000h - 01Fh  
000h - 01Fh  
000h - 00Bh  
000h - 00Bh  
000h - 00Bh  
000h - 01Fh  
000h - 02Eh  
000h - 02Eh  
000h - 02Eh  
000h - 02Eh  
000h - 01Fh  
000h - 01Fh  
000h - 02Fh  
000h - 00Fh  
000h - 00Ah  
000h - 00Ah  
000h - 00Ah  
000h - 00Ah  
000h - 00Ah  
000h - 00Ah  
000h - 01Fh  
000h - 01Fh  
000h - 01Fh  
000h - 01Fh  
000h - 03Fh  
000h - 01Fh  
000h - 00Fh  
000h - 014h  
000h - 05Fh  
Flash Control (see Table 22)  
CRC16 (see Table 23)  
RAM Control (see Table 24)  
Watchdog (see Table 25)  
UCS (see Table 26)  
SYS (see Table 27)  
Shared Reference (see Table 28)  
Port Mapping Control (see Table 29)  
Port Mapping Port P2 (see Table 29)  
Port P1/P2 (see Table 30)  
Port P3/P4 (see Table 31)  
Port P5/P6 (see Table 32)  
Port P7/P8 (see Table 33)  
Port P9 (see Table 34)  
Port PJ (see Table 35)  
Timer TA0 (see Table 36)  
Timer TA1 (see Table 37)  
Timer TB0 (see Table 38)  
Timer TA2 (see Table 39)  
Battery Backup (see Table 40)  
RTC_B (see Table 41)  
32-bit Hardware Multiplier (see Table 42)  
DMA General Control (see Table 43)  
DMA Channel 0 (see Table 43)  
DMA Channel 1 (see Table 43)  
DMA Channel 2 (see Table 43)  
DMA Channel 3 (see Table 43)  
DMA Channel 4 (see Table 43)  
DMA Channel 5 (see Table 43)  
USCI_A0 (see Table 44)  
USCI_B0 (see Table 45)  
USCI_A1 (see Table 46)  
USCI_B1 (see Table 47)  
ADC12_A (see Table 48)  
DAC12_A (see Table 49)  
Comparator_B (see Table 50)  
LDO and Port U configuration (see Table 51)  
LCD_B control (see Table 52)  
(1) For a detailed description of the individual control register offset addresses, see the MSP430x5xx and MSP430x6xx Family User's Guide  
(SLAU208).  
28  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 20. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
Table 21. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
OFFSET  
PMM Control 0  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
PMM control 1  
PMMCTL1  
SVSMHCTL  
SVSMLCTL  
PMMIFG  
SVS high side control  
SVS low side control  
PMM interrupt flags  
PMM interrupt enable  
PMMIE  
Table 22. Flash Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Flash control 1  
Flash control 3  
Flash control 4  
FCTL1  
FCTL3  
FCTL4  
00h  
04h  
06h  
Table 23. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC16DI  
OFFSET  
CRC data input  
CRC result  
00h  
04h  
CRC16INIRES  
Table 24. RAM Control Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
RCCTL0  
OFFSET  
OFFSET  
OFFSET  
RAM control 0  
00h  
00h  
Table 25. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
WDTCTL  
Watchdog timer control  
Table 26. UCS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
UCSCTL0  
UCS control 0  
UCS control 1  
UCS control 2  
UCS control 3  
UCS control 4  
UCS control 5  
UCS control 6  
UCS control 7  
UCS control 8  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
UCSCTL1  
UCSCTL2  
UCSCTL3  
UCSCTL4  
UCSCTL5  
UCSCTL6  
UCSCTL7  
UCSCTL8  
Copyright © 2010–2012, Texas Instruments Incorporated  
29  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Table 27. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
SYSCTL  
OFFSET  
System control  
00h  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
Bootstrap loader configuration area  
JTAG mailbox control  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus Error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
SYSSNIV  
SYSRSTIV  
Table 28. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
REFCTL  
OFFSET  
OFFSET  
Shared reference control  
00h  
Table 29. Port Mapping Registers  
(Base Address of Port Mapping Control: 01C0h, Port P2: 01D0h)  
REGISTER DESCRIPTION  
REGISTER  
PMAPPWD  
Port mapping password register  
Port mapping control register  
Port P2.0 mapping register  
Port P2.1 mapping register  
Port P2.2 mapping register  
Port P2.3 mapping register  
Port P2.4 mapping register  
Port P2.5 mapping register  
Port P2.6 mapping register  
Port P2.7 mapping register  
00h  
02h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
PMAPCTL  
P2MAP0  
P2MAP1  
P2MAP2  
P2MAP3  
P2MAP4  
P2MAP5  
P2MAP6  
P2MAP7  
Table 30. Port P1/P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
P1DS  
P1SEL  
P1IV  
Port P1 direction  
Port P1 pullup/pulldown enable  
Port P1 drive strength  
Port P1 selection  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2DS  
Port P2 direction  
Port P2 pullup/pulldown enable  
Port P2 drive strength  
30  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 30. Port P1/P2 Registers (Base Address: 0200h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P2 selection  
P2SEL  
P2IV  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
Table 31. Port P3/P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P3 output  
Port P3 direction  
P3OUT  
P3DIR  
P3REN  
P3DS  
P3SEL  
P3IV  
Port P3 pullup/pulldown enable  
Port P3 drive strength  
Port P3 selection  
Port P3 interrupt vector word  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
P3IES  
P3IE  
P3IFG  
P4IN  
Port P4 input  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4DS  
P4SEL  
P4IV  
Port P4 direction  
Port P4 pullup/pulldown enable  
Port P4 drive strength  
Port P4 selection  
Port P4 interrupt vector word  
Port P4 interrupt edge select  
Port P4 interrupt enable  
Port P4 interrupt flag  
P4IES  
P4IE  
P4IFG  
Table 32. Port P5/P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P5 output  
P5OUT  
P5DIR  
P5REN  
P5DS  
Port P5 direction  
Port P5 pullup/pulldown enable  
Port P5 drive strength  
Port P5 selection  
P5SEL  
P6IN  
Port P6 input  
Port P6 output  
P6OUT  
P6DIR  
P6REN  
P6DS  
Port P6 direction  
Port P6 pullup/pulldown enable  
Port P6 drive strength  
Port P6 selection  
P6SEL  
Copyright © 2010–2012, Texas Instruments Incorporated  
31  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Table 33. Port P7/P8 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P7 input  
P7IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P7 output  
P7OUT  
P7DIR  
P7REN  
P7DS  
Port P7 direction  
Port P7 pullup/pulldown enable  
Port P7 drive strength  
Port P7 selection  
P7SEL  
P8IN  
Port P8 input  
Port P8 output  
P8OUT  
P8DIR  
P8REN  
P8DS  
Port P8 direction  
Port P8 pullup/pulldown enable  
Port P8 drive strength  
Port P8 selection  
P8SEL  
Table 34. Port P9 Register (Base Address: 0280h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P9 input  
P9IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
Port P9 output  
P9OUT  
P9DIR  
P9REN  
P9DS  
Port P9 direction  
Port P9 pullup/pulldown enable  
Port P9 drive strength  
Port P9 selection  
P9SEL  
Table 35. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
08h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
PJDS  
Port PJ direction  
Port PJ pullup/pulldown enable  
Port PJ drive strength  
Table 36. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
TA0CTL  
OFFSET  
TA0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter register  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Capture/compare register 3  
Capture/compare register 4  
TA0 expansion register 0  
TA0 interrupt vector  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
TA0IV  
32  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 37. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
TA1 control  
TA1CTL  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter register  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA1 expansion register 0  
TA1 interrupt vector  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1IV  
Table 38. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
TB0CTL  
OFFSET  
TB0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 register  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Capture/compare register 3  
Capture/compare register 4  
Capture/compare register 5  
Capture/compare register 6  
TB0 expansion register 0  
TB0 interrupt vector  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
TB0IV  
Table 39. TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
TA2CTL  
OFFSET  
TA2 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA2 counter register  
TA2CCTL0  
TA2CCTL1  
TA2CCTL2  
TA2R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA2 expansion register 0  
TA2 interrupt vector  
TA2CCR0  
TA2CCR1  
TA2CCR2  
TA2EX0  
TA2IV  
Copyright © 2010–2012, Texas Instruments Incorporated  
33  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Table 40. Battery Backup Registers (Base Address: 0480h)  
REGISTER DESCRIPTION  
REGISTER  
BAKMEM0  
OFFSET  
Battery Backup Memory 0  
Battery Backup Memory 1  
Battery Backup Memory 2  
Battery Backup Memory 3  
Battery Backup Control  
Battery Charger Control  
00h  
02h  
04h  
06h  
1Ch  
1Eh  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKCTL  
BAKCHCTL  
Table 41. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
OFFSET  
RTC control register 0  
RTC control register 1  
RTC control register 2  
RTC control register 3  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Eh  
RTCCTL1  
RTCCTL2  
RTCCTL3  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTC prescaler 0 control register  
RTC prescaler 1 control register  
RTC prescaler 0  
RTC prescaler 1  
RTCPS1  
RTC interrupt vector word  
RTC seconds  
RTCIV  
RTCSEC  
RTC minutes  
RTCMIN  
RTC hours  
RTCHOUR  
RTCDOW  
RTCDAY  
RTC day of week  
RTC days  
RTC month  
RTCMON  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTCAHOUR  
RTCADOW  
RTCADAY  
BIN2BCD  
BCD2BIN  
RTC year low  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTC alarm day of week  
RTC alarm days  
Binary-to-BCD conversion register  
BCD-to-binary conversion register  
Table 42. 32-bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension register  
SUMEXT  
MPY32L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
MPY32H  
MPYS32L  
MPYS32H  
34  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 42. 32-bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
MAC32L  
OFFSET  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control register 0  
RES3  
MPY32CTL0  
Table 43. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA  
Channel 4: 0550h, DMA Channel 5: 0560h)  
REGISTER DESCRIPTION  
DMA General Control: DMA module control 0  
REGISTER  
DMACTL0  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
DMA General Control: DMA module control 1  
DMA General Control: DMA module control 2  
DMA General Control: DMA module control 3  
DMA General Control: DMA module control 4  
DMA General Control: DMA interrupt vector  
DMA Channel 0 control  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA0CTL  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA Channel 0 source address low  
DMA Channel 0 source address high  
DMA Channel 0 destination address low  
DMA Channel 0 destination address high  
DMA Channel 0 transfer size  
DMA Channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA Channel 1 source address low  
DMA Channel 1 source address high  
DMA Channel 1 destination address low  
DMA Channel 1 destination address high  
DMA Channel 1 transfer size  
DMA Channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA Channel 2 source address low  
DMA Channel 2 source address high  
DMA Channel 2 destination address low  
DMA Channel 2 destination address high  
DMA Channel 2 transfer size  
DMA Channel 3 control  
DMA3CTL  
DMA3SAL  
DMA3SAH  
DMA3DAL  
DMA3DAH  
DMA3SZ  
DMA Channel 3 source address low  
DMA Channel 3 source address high  
DMA Channel 3 destination address low  
DMA Channel 3 destination address high  
DMA Channel 3 transfer size  
DMA Channel 4 control  
DMA4CTL  
DMA4SAL  
DMA Channel 4 source address low  
Copyright © 2010–2012, Texas Instruments Incorporated  
35  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Table 43. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA  
Channel 4: 0550h, DMA Channel 5: 0560h) (continued)  
REGISTER DESCRIPTION  
DMA Channel 4 source address high  
REGISTER  
DMA4SAH  
OFFSET  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
DMA Channel 4 destination address low  
DMA Channel 4 destination address high  
DMA Channel 4 transfer size  
DMA4DAL  
DMA4DAH  
DMA4SZ  
DMA Channel 5 control  
DMA5CTL  
DMA5SAL  
DMA5SAH  
DMA5DAL  
DMA5DAH  
DMA5SZ  
DMA Channel 5 source address low  
DMA Channel 5 source address high  
DMA Channel 5 destination address low  
DMA Channel 5 destination address high  
DMA Channel 5 transfer size  
Table 44. USCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTL0  
OFFSET  
USCI control 0  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 1  
UCA0CTL1  
UCA0BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA0BR1  
USCI modulation control  
USCI status  
UCA0MCTL  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA0IFG  
UCA0IV  
Table 45. USCI_B0 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTL0  
OFFSET  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB0CTL1  
UCB0BR0  
UCB0BR1  
UCB0STAT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA  
UCB0I2CSA  
UCB0IE  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB0IFG  
USCI interrupt vector word  
UCB0IV  
36  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 46. USCI_A1 Registers (Base Address: 0600h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
USCI control 0  
UCA1CTL0  
UCA1CTL1  
UCA1BR0  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 1  
USCI baud rate 0  
USCI baud rate 1  
UCA1BR1  
USCI modulation control  
USCI status  
UCA1MCTL  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA1IFG  
UCA1IV  
Table 47. USCI_B1 Registers (Base Address: 0620h)  
REGISTER DESCRIPTION  
REGISTER  
UCB1CTL0  
OFFSET  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB1CTL1  
UCB1BR0  
UCB1BR1  
UCB1STAT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA  
UCB1I2CSA  
UCB1IE  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB1IFG  
USCI interrupt vector word  
UCB1IV  
Table 48. ADC12_A Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
ADC12CTL0  
OFFSET  
Control register 0  
00h  
02h  
04h  
0Ah  
0Ch  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
Control register 1  
ADC12CTL1  
ADC12CTL2  
ADC12IFG  
Control register 2  
Interrupt-flag register  
Interrupt-enable register  
ADC12IE  
Interrupt-vector-word register  
ADC memory-control register 0  
ADC memory-control register 1  
ADC memory-control register 2  
ADC memory-control register 3  
ADC memory-control register 4  
ADC memory-control register 5  
ADC memory-control register 6  
ADC memory-control register 7  
ADC memory-control register 8  
ADC12IV  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
Copyright © 2010–2012, Texas Instruments Incorporated  
37  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Table 48. ADC12_A Registers (Base Address: 0700h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
ADC12MCTL9  
OFFSET  
ADC memory-control register 9  
ADC memory-control register 10  
ADC memory-control register 11  
ADC memory-control register 12  
ADC memory-control register 13  
ADC memory-control register 14  
ADC memory-control register 15  
Conversion memory 0  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MEM0  
ADC12MEM1  
ADC12MEM2  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
ADC12MEM10  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
Conversion memory 1  
Conversion memory 2  
Conversion memory 3  
Conversion memory 4  
Conversion memory 5  
Conversion memory 6  
Conversion memory 7  
Conversion memory 8  
Conversion memory 9  
Conversion memory 10  
Conversion memory 11  
Conversion memory 12  
Conversion memory 13  
Conversion memory 14  
Conversion memory 15  
Table 49. DAC12_A Registers (Base Address: 0780h)  
REGISTER DESCRIPTION  
REGISTER  
DAC12_0CTL0  
OFFSET  
DAC12_A channel 0 control register 0  
DAC12_A channel 0 control register 1  
DAC12_A channel 0 data register  
00h  
02h  
04h  
06h  
08h  
10h  
12h  
14h  
16h  
18h  
1Eh  
DAC12_0CTL1  
DAC12_0DAT  
DAC12_A channel 0 calibration control register  
DAC12_A channel 0 calibration data register  
DAC12_A channel 1 control register 0  
DAC12_A channel 1 control register 1  
DAC12_A channel 1 data register  
DAC12_0CALCTL  
DAC12_0CALDAT  
DAC12_1CTL0  
DAC12_1CTL1  
DAC12_1DAT  
DAC12_A channel 1 calibration control register  
DAC12_A channel 1 calibration data register  
DAC12_A interrupt vector word  
DAC12_1CALCTL  
DAC12_1CALDAT  
DAC12IV  
Table 50. Comparator_B Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
CBCTL0  
OFFSET  
Comp_B control register 0  
Comp_B control register 1  
Comp_B control register 2  
Comp_B control register 3  
Comp_B interrupt register  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
CBCTL1  
CBCTL2  
CBCTL3  
CBINT  
Comp_B interrupt vector word  
CBIV  
38  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 51. LDO and Port U Configuration Registers (Base Address: 0900h)  
REGISTER DESCRIPTION  
REGISTER  
LDOKEYID  
OFFSET  
LDO key/ID register  
PU port control  
00h  
04h  
08h  
PUCTL  
LDO power control  
LDOPWRCTL  
Table 52. LCD_B Registers (Base Address: 0A00h)  
REGISTER DESCRIPTION  
REGISTER  
LCDBCTL0  
OFFSET  
LCD_B control register 0  
LCD_B control register 1  
LCD_B blinking control register  
LCD_B memory control register  
LCD_B voltage control register  
LCD_B port control register 0  
LCD_B port control register 1  
LCD_B port control register 2  
LCD_B charge pump control register  
LCD_B interrupt vector word  
LCD_B memory 1  
000h  
002h  
004h  
006h  
008h  
00Ah  
00Ch  
00Eh  
012h  
01Eh  
020h  
021h  
LCDBCTL1  
LCDBBLKCTL  
LCDBMEMCTL  
LCDBVCTL  
LCDBPCTL0  
LCDBPCTL1  
LCDBPCTL2  
LCDBCTL0  
LCDBIV  
LCDM1  
LCD_B memory 2  
LCDM2  
LCD_B memory 22  
LCDM22  
LCDBM1  
LCDBM2  
035h  
040h  
041h  
LCD_B blinking memory 1  
LCD_B blinking memory 2  
LCD_B blinking memory 22  
LCDBM22  
055h  
Copyright © 2010–2012, Texas Instruments Incorporated  
39  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
Voltage applied at VCC to VSS  
–0.3 V to 4.1 V  
–0.3 V to VCC + 0.3 V  
±2 mA  
Voltage applied to any pin (excluding VCORE, VBUS, V18)(2)  
Diode current at any device pin  
(3)  
Storage temperature range, Tstg  
–55°C to 150°C  
95°C  
Maximum junction temperature, TJ  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external dc loading or voltage should be applied.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
PMMCOREVx = 0  
1.8  
2.0  
2.2  
2.4  
3.6  
Supply voltage during program execution and flash  
PMMCOREVx = 0, 1  
PMMCOREVx = 0, 1, 2  
PMMCOREVx = 0, 1, 2, 3  
3.6  
V
VCC  
programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 =  
(1)(2)  
3.6  
DVCC = VCC  
)
3.6  
Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 =  
DVSS2 = DVSS3 = VSS  
VSS  
0
V
)
TA = 0°C to 85°C  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
I version  
1.55  
1.70  
1.20  
–40  
3.6  
V
VBAT,RTC  
Backup-supply voltage with RTC operational  
3.6  
VBAT,MEM  
TA  
Backup-supply voltage with backup memory retained.  
Operating free-air temperature  
Operating junction temperature  
Capacitance at pin VBAK  
3.6  
85  
85  
10  
V
°C  
°C  
nF  
nF  
TJ  
I version  
–40  
CBAK  
CVCORE  
CDVCC  
CVCORE  
1
4.7  
Capacitor at VCORE  
470  
/
Capacitor ratio of DVCC to VCORE  
10  
0
PMMCOREVx = 0,  
1.8 V VCC 3.6 V  
(default condition)  
8.0  
PMMCOREVx = 1,  
2 V VCC 3.6 V  
Processor frequency (maximum MCLK frequency)(3)(4)  
(see Figure 1)  
0
0
0
12.0  
16.0  
20.0  
fSYSTEM  
MHz  
PMMCOREVx = 2,  
2.2 V VCC 3.6 V  
PMMCOREVx = 3,  
2.4 V VCC 3.6 V  
(1) It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the PMM, SVS High Side threshold  
parameters for the exact values and further details.  
(3) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the  
specified maximum frequency.  
(4) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
40  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
25  
20  
16  
12  
8
3
2, 3  
2
1, 2  
1, 2, 3  
1
0
0, 1  
0, 1, 2  
0, 1, 2, 3  
0
1.8  
2.0  
2.2  
2.4  
3.6  
Supply Voltage - V  
The numbers within the fields denote the supported PMMCOREVx settings.  
Figure 1. Frequency vs Supply Voltage  
Copyright © 2010–2012, Texas Instruments Incorporated  
41  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Electrical Characteristics  
Active Mode Supply Current Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1)(2)(3)  
FREQUENCY (fDCO = fMCLK = fSMCLK  
8 MHz 12 MHz  
TYP MAX TYP MAX  
)
EXECUTION  
MEMORY  
PARAMETER  
VCC  
PMMCOREVx  
1 MHz  
TYP MAX  
0.32  
20 MHz  
TYP MAX  
UNIT  
0
1
2
3
0
1
2
3
0.36  
2.1  
2.4  
2.5  
2.7  
1.0  
1.2  
1.3  
1.4  
2.4  
0.36  
0.37  
0.39  
0.18  
0.20  
0.22  
0.23  
3.6  
3.8  
4.0  
4.0  
IAM, Flash  
Flash  
RAM  
3 V  
mA  
mA  
6.6  
3.6  
0.21  
1.2  
1.7  
2.0  
2.1  
1.9  
IAM, RAM  
3 V  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load  
capacitance are chosen to closely match the required 12.5 pF.  
(3) Characterized with program executing typical data processing. LDO disabled (LDOEN = 0).  
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.  
42  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
-40°C  
TYP MAX  
25°C  
TYP MAX  
75 87  
60°C  
TYP MAX  
81  
85°C  
TYP MAX  
85 99  
PARAMETER  
VCC  
PMMCOREVx  
UNIT  
µA  
2.2 V  
3 V  
0
3
0
3
0
1
2
0
1
2
3
0
1
2
3
0
1
2
3
71  
78  
ILPM0,1MHz Low-power mode 0(3)(4)  
83  
6.7  
7.0  
1.8  
1.9  
2.0  
2.1  
2.1  
2.2  
2.2  
1.2  
1.2  
1.3  
1.3  
1.1  
1.1  
1.2  
1.2  
98  
9.9  
11  
89  
9.0  
10  
94  
11  
108  
16  
2.2 V  
3 V  
6.3  
6.6  
1.6  
1.6  
1.7  
1.9  
1.9  
2.0  
2.0  
0.9  
0.9  
1.0  
1.0  
0.9  
0.9  
1.0  
1.0  
ILPM2  
Low-power mode 2(5)(4)  
µA  
12  
18  
2.4  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.4  
4.0  
4.1  
4.2  
4.3  
3.9  
4.0  
4.1  
4.2  
6.5  
6.6  
6.7  
6.8  
7.0  
7.1  
7.3  
5.9  
6.0  
6.1  
6.3  
5.8  
5.9  
6.1  
6.2  
10.5  
2.2 V  
Low-power mode 3,  
crystal mode(6)(4)  
ILPM3,XT1LF  
2.7  
10.8  
µA  
µA  
3 V  
2.9  
1.9  
12.6  
10.3  
Low-power mode 3,  
VLO mode, Watchdog  
enabled(7)(4)  
ILPM3,  
VLO,WDT  
3 V  
2.2  
1.8  
11.3  
10  
ILPM4  
Low-power mode 4(8)(4)  
3 V  
3 V  
µA  
µA  
2.1  
11  
Low-power mode 3.5  
(LPM3.5) current with  
active RTC into primary  
ILPM3.5,  
RTC,VCC  
0.5  
0.8  
1.4  
(9)  
supply pin DVCC  
Low-power mode 3.5  
(LPM3.5) current with  
active RTC into backup  
supply pin VBAT(10)  
ILPM3.5,  
RTC,VBAT  
3 V  
3 V  
0.6  
1.1  
0.8  
1.6  
1.4  
2.8  
µA  
µA  
Total low-power mode  
3.5 (LPM3.5) current  
with active RTC(11)  
ILPM3.5,  
RTC,TOT  
1.0  
1.3  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance are chosen to closely match the required 9 pF.  
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz  
LDO disabled (LDOEN = 0).  
(4) Current for brownout included. Low side supervisor and monitors disabled (SVSL, SVML). High side supervisor and monitor disabled  
(SVSH, SVMH). RAM retention enabled.  
(5) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO  
setting = 1 MHz operation, DCO bias generator enabled.  
LDO disabled (LDOEN = 0).  
(6) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
LDO disabled (LDOEN = 0).  
(7) Current for watchdog timer clocked by VLO included.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = fMCLK = fSMCLK = fDCO = 0 MHz  
LDO disabled (LDOEN = 0).  
(8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4); fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
LDO disabled (LDOEN = 0).  
(9) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active  
(10) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no  
current drawn on VBAK  
(11) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK  
Copyright © 2010–2012, Texas Instruments Incorporated  
43  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Low-Power Mode Supply Currents (Into VCC) Excluding External Current (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
-40°C  
TYP MAX  
25°C  
TYP MAX  
60°C  
TYP MAX  
85°C  
TYP MAX  
PARAMETER  
VCC  
PMMCOREVx  
UNIT  
Low-power mode 4.5  
(LPM4.5)(12)  
ILPM4.5  
3 V  
0.2  
0.3  
0.6  
0.7  
0.9  
1.4  
µA  
(12) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5); fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(2)  
Temperature (TA)  
PARAMETER  
VCC  
PMMCOREVx  
-40°C  
TYP MAX  
2.3  
25°C  
TYP MAX  
2.7 3.1  
60°C  
TYP MAX  
5.4  
85°C  
TYP MAX  
7.4  
UNIT  
0
1
2
3
0
1
2
3
0
1
2
0
1
2
3
11.5  
Low-power mode 3  
(LPM3) current, LCD 4-  
mux mode, external  
biasing(3) (4)  
ILPM3,  
LCD,  
ext. bias  
2.3  
2.4  
2.4  
2.7  
2.7  
2.8  
2.8  
2.7  
2.8  
2.8  
3.2  
3.2  
3.3  
3.3  
3.8  
3.9  
4.0  
4.0  
4.1  
4.2  
4.2  
5.6  
5.8  
5.9  
5.9  
6.1  
6.2  
6.4  
7.5  
7.7  
7.9  
7.9  
8.1  
8.3  
8.4  
3 V  
µA  
3.5  
3.8  
13.2  
12.2  
Low-power mode 3  
(LPM3) current, LCD 4-  
mux mode, internal  
biasing, charge pump  
disabled(3)(5)  
ILPM3,  
LCD,  
int. bias  
3 V  
2.2 V  
3 V  
µA  
µA  
µA  
4.9  
13.7  
Low-power mode 3  
(LPM3) current, LCD 4-  
mux mode, internal  
biasing, charge pump  
enabled(3)(6)  
ILPM3  
LCD,CP  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance are chosen to closely match the required 9 pF.  
(3) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
Current for brownout included. Low side supervisor and monitors disabled (SVSL, SVML). High side supervisor and monitor disabled  
(SVSH, SVMH). RAM retention enabled.  
(4) LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz/32/4 = 256 Hz)  
Current through external resistors not included (voltage levels are supplied by test equipment).  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(5) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz/32/4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(6) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump  
enabled), VLCDx = 1000 (VLCD = 3 V, typ.), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz/32/4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
Schmitt-Trigger Inputs – General Purpose I/O(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.80  
1.50  
TYP  
MAX UNIT  
1.40  
V
VIT+  
Positive-going input threshold voltage  
2.10  
(1) Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).  
44  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Schmitt-Trigger Inputs – General Purpose I/O(1) (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.45  
0.75  
0.3  
TYP  
MAX UNIT  
1.00  
V
VIT–  
Negative-going input threshold voltage  
1.65  
1.8 V  
3 V  
0.8  
V
Vhys  
Input voltage hysteresis (VIT+ – VIT–)  
0.4  
1.0  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI  
Pullup or pulldown resistor  
Input capacitance  
20  
35  
5
50  
kΩ  
VIN = VSS or VCC  
pF  
Inputs – Ports P1, P2, P3, and P4(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Port P1, P2, P3, P4: P1.x to P4.x,  
External trigger pulse duration to set interrupt flag  
t(int)  
External interrupt timing(2)  
2.2 V, 3 V  
20  
ns  
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.  
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
Leakage Current – General Purpose I/O  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
±50 nA  
(1)(2)  
Ilkg(Px.x)  
High-impedance leakage current  
1.8 V, 3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
Outputs – General Purpose I/O (Full Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –10 mA(2)  
I(OHmax) = –5 mA(1)  
I(OHmax) = –15 mA(2)  
I(OLmax) = 3 mA(1)  
I(OLmax) = 10 mA(2)  
I(OLmax) = 5 mA(1)  
I(OLmax) = 15 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Copyright © 2010–2012, Texas Instruments Incorporated  
45  
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Outputs – General Purpose I/O (Reduced Drive Strength)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(2)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –3 mA(3)  
I(OHmax) = –2 mA(2)  
I(OHmax) = –6 mA(3)  
I(OLmax) = 1 mA(2)  
I(OLmax) = 3 mA(3)  
I(OLmax) = 2 mA(2)  
I(OLmax) = 6 mA(3)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) Selecting reduced drive strength may reduce EMI.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(3) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Output Frequency – Ports P1, P2, and P3  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
VCC = 1.8 V  
PMMCOREVx = 0  
8
Port output frequency  
(with load)  
P3.4/TA2CLK/SMCLK/S27  
fPx.y  
MHz  
20  
CL = 20 pF, RL = 1 k(1) or 3.2 k(2)(3)  
VCC = 3 V  
PMMCOREVx = 3  
VCC = 1.8 V  
PMMCOREVx = 0  
P1.0/TA0CLK/ACLK/S39  
P3.4/TA2CLK/SMCLK/S27  
P2.0/P2MAP0 (P2MAP0 = PM_MCLK )  
CL = 20 pF(3)  
8
fPort_CLK  
Clock output frequency  
MHz  
20  
VCC = 3 V  
PMMCOREVx = 3  
(1) Full drive strength of port: A resistive divider with 2 × 0.5 kbetween VCC and VSS is used as load. The output is connected to the  
center tap of the divider.  
(2) Reduced drive strength of port: A resistive divider with 2 × 1.6 kbetween VCC and VSS is used as load. The output is connected to the  
center tap of the divider.  
(3) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
46  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
25.0  
20.0  
15.0  
10.0  
5.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VCC = 3.0 V  
P3.2  
VCC = 1.8 V  
P3.2  
TA = 25°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
Figure 2.  
Figure 3.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−1.0  
−2.0  
−3.0  
−4.0  
−5.0  
−6.0  
−7.0  
−8.0  
0.0  
−5.0  
VCC = 1.8 V  
P3.2  
VCC = 3.0 V  
P3.2  
−10.0  
−15.0  
−20.0  
−25.0  
TA = 85°C  
TA = 25°C  
TA = 85°C  
TA = 25°C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
Figure 4.  
Figure 5.  
Copyright © 2010–2012, Texas Instruments Incorporated  
47  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
60.0  
55.0  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
24  
20  
16  
12  
8
VCC = 1.8 V  
P3.2  
VCC = 3.0 V  
P3.2  
TA = 25°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
4
0
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
Figure 6.  
Figure 7.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
0.0  
−5.0  
VCC = 1.8 V  
P3.2  
VCC = 3.0 V  
P3.2  
−10.0  
−15.0  
−20.0  
−25.0  
−30.0  
−35.0  
−40.0  
−45.0  
−50.0  
−55.0  
−60.0  
−4  
−8  
−12  
−16  
−20  
TA = 85°C  
TA = 25°C  
TA = 85°C  
TA = 25°C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
Figure 8.  
Figure 9.  
48  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Crystal Oscillator, XT1, Low-Frequency Mode(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
TA = 25°C  
0.075  
Differential XT1 oscillator crystal  
fOSC = 32768 Hz, XTS = 0,  
ΔIDVCC,LF  
current consumption from lowest XT1BYPASS = 0, XT1DRIVEx = 2,  
3 V  
0.170  
µA  
drive setting, LF mode  
TA = 25°C  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C  
0.290  
XT1 oscillator crystal frequency,  
LF mode  
fXT1,LF0  
XTS = 0, XT1BYPASS = 0  
32768  
Hz  
XT1 oscillator logic-level square-  
wave input frequency, LF mode  
fXT1,LF,SW  
XTS = 0, XT1BYPASS = 1(2) (3)  
10 32.768  
210  
50 kHz  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
fXT1,LF = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(4)  
OALF  
kΩ  
XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,LF = 32768 Hz, CL,eff = 12 pF  
300  
XTS = 0, XCAPx = 0(6)  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
2
5.5  
Integrated effective load  
capacitance, LF mode(5)  
CL,eff  
pF  
8.5  
12.0  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30  
10  
70  
%
Oscillator fault frequency,  
LF mode(7)  
fFault,LF  
XTS = 0(8)  
10000  
Hz  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TA = 25°C,  
1000  
500  
CL,eff = 6 pF  
tSTART,LF  
Startup time, LF mode  
3 V  
ms  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C,  
CL,eff = 12 pF  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(2) When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-trigger Inputs section of this datasheet.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
(a) For XT1DRIVEx = 0, CL,eff 6 pF.  
(b) For XT1DRIVEx = 1, 6 pF CL,eff 9 pF.  
(c) For XT1DRIVEx = 2, 6 pF CL,eff 10 pF.  
(d) For XT1DRIVEx = 3, CL,ef f 6 pF.  
(5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
Copyright © 2010–2012, Texas Instruments Incorporated  
49  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
Crystal Oscillator, XT2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
fOSC = 4 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C  
200  
fOSC = 12 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 1,  
TA = 25°C  
260  
325  
450  
XT2 oscillator crystal current  
consumption  
IDVCC,XT2  
3 V  
µA  
fOSC = 20 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 2,  
TA = 25°C  
fOSC = 32 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 3,  
TA = 25°C  
XT2 oscillator crystal frequency,  
mode 0  
fXT2,HF0  
fXT2,HF1  
fXT2,HF2  
fXT2,HF3  
fXT2,HF,SW  
XT2DRIVEx = 0, XT2BYPASS = 0(3)  
XT2DRIVEx = 1, XT2BYPASS = 0(3)  
XT2DRIVEx = 2, XT2BYPASS = 0(3)  
XT2DRIVEx = 3, XT2BYPASS = 0(3)  
XT2BYPASS = 1(4) (3)  
4
8
8
MHz  
XT2 oscillator crystal frequency,  
mode 1  
16 MHz  
24 MHz  
32 MHz  
32 MHz  
XT2 oscillator crystal frequency,  
mode 2  
16  
24  
0.7  
XT2 oscillator crystal frequency,  
mode 3  
XT2 oscillator logic-level square-  
wave input frequency  
XT2DRIVEx = 0, XT2BYPASS = 0,  
fXT2,HF0 = 6 MHz, CL,eff = 15 pF  
450  
320  
200  
200  
XT2DRIVEx = 1, XT2BYPASS = 0,  
fXT2,HF1 = 12 MHz, CL,eff = 15 pF  
Oscillation allowance for  
HF crystals(5)  
OAHF  
XT2DRIVEx = 2, XT2BYPASS = 0,  
fXT2,HF2 = 20 MHz, CL,eff = 15 pF  
XT2DRIVEx = 3, XT2BYPASS = 0,  
fXT2,HF3 = 32 MHz, CL,eff = 15 pF  
fOSC = 6 MHz  
XT2BYPASS = 0, XT2DRIVEx = 0,  
TA = 25°C, CL,eff = 15 pF  
0.5  
0.3  
tSTART,HF  
Startup time  
3 V  
ms  
pF  
fOSC = 20 MHz  
XT2BYPASS = 0, XT2DRIVEx = 3,  
TA = 25°C, CL,eff = 15 pF  
Integrated effective load  
CL,eff  
1
capacitance, HF mode(6) (1)  
Duty cycle  
Oscillator fault frequency(7)  
Measured at ACLK, fXT2,HF2 = 20 MHz  
XT2BYPASS = 1(8)  
40  
30  
50  
60  
%
fFault,HF  
300 kHz  
(1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(2) To improve EMI on the XT2 oscillator the following guidelines should be observed.  
(a) Keep the traces between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.  
(d) Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) When XT2BYPASS is set, the XT2 circuit is automatically powered down.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
50  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
9.4  
0.5  
4
MAX UNIT  
14 kHz  
%/°C  
fVLO  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
dfVLO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
Duty cycle  
%/V  
40  
50  
60  
%
(1) Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V)  
Internal Reference, Low-Frequency Oscillator (REFO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
3
MAX UNIT  
REFO oscillator current  
consumption  
IREFO  
TA = 25°C  
1.8 V to 3.6 V  
µA  
Hz  
REFO frequency calibrated  
Measured at ACLK  
Full temperature range  
TA = 25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
32768  
fREFO  
±3.5  
±1.5  
%
%
REFO absolute tolerance  
calibrated  
dfREFO/dT  
REFO frequency temperature drift Measured at ACLK(1)  
1.8 V to 3.6 V  
0.01  
1.0  
%/°C  
REFO frequency supply voltage  
Measured at ACLK(2)  
drift  
dfREFO/dVCC  
1.8 V to 3.6 V  
%/V  
Duty cycle  
Measured at ACLK  
40%/60% duty cycle  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
40  
50  
25  
60  
%
tSTART  
REFO startup time  
µs  
(1) Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V)  
Copyright © 2010–2012, Texas Instruments Incorporated  
51  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DCORSELx = 0, DCOx = 0, MODx = 0  
DCORSELx = 0, DCOx = 31, MODx = 0  
DCORSELx = 1, DCOx = 0, MODx = 0  
DCORSELx = 1, DCOx = 31, MODx = 0  
DCORSELx = 2, DCOx = 0, MODx = 0  
DCORSELx = 2, DCOx = 31, MODx = 0  
DCORSELx = 3, DCOx = 0, MODx = 0  
DCORSELx = 3, DCOx = 31, MODx = 0  
DCORSELx = 4, DCOx = 0, MODx = 0  
DCORSELx = 4, DCOx = 31, MODx = 0  
DCORSELx = 5, DCOx = 0, MODx = 0  
DCORSELx = 5, DCOx = 31, MODx = 0  
DCORSELx = 6, DCOx = 0, MODx = 0  
DCORSELx = 6, DCOx = 31, MODx = 0  
DCORSELx = 7, DCOx = 0, MODx = 0  
DCORSELx = 7, DCOx = 31, MODx = 0  
MIN  
0.07  
0.70  
0.15  
1.47  
0.32  
3.17  
0.64  
6.07  
1.3  
TYP  
MAX UNIT  
0.20 MHz  
1.70 MHz  
0.36 MHz  
3.45 MHz  
0.75 MHz  
7.38 MHz  
1.51 MHz  
14.0 MHz  
3.2 MHz  
fDCO(0,0)  
fDCO(0,31)  
fDCO(1,0)  
fDCO(1,31)  
fDCO(2,0)  
fDCO(2,31)  
fDCO(3,0)  
fDCO(3,31)  
fDCO(4,0)  
fDCO(4,31)  
fDCO(5,0)  
fDCO(5,31)  
fDCO(6,0)  
fDCO(6,31)  
fDCO(7,0)  
fDCO(7,31)  
DCO frequency (0, 0)  
DCO frequency (0, 31)  
DCO frequency (1, 0)  
DCO frequency (1, 31)  
DCO frequency (2, 0)  
DCO frequency (2, 31)  
DCO frequency (3, 0)  
DCO frequency (3, 31)  
DCO frequency (4, 0)  
DCO frequency (4, 31)  
DCO frequency (5, 0)  
DCO frequency (5, 31)  
DCO frequency (6, 0)  
DCO frequency (6, 31)  
DCO frequency (7, 0)  
DCO frequency (7, 31)  
12.3  
2.5  
28.2 MHz  
6.0 MHz  
23.7  
4.6  
54.1 MHz  
10.7 MHz  
88.0 MHz  
19.6 MHz  
135 MHz  
39.0  
8.5  
60  
Frequency step between range  
DCORSEL and DCORSEL + 1  
SDCORSEL  
SDCO  
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)  
1.2  
2.3 ratio  
Frequency step between tap  
DCO and DCO + 1  
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)  
Measured at SMCLK  
1.02  
40  
1.12 ratio  
Duty cycle  
50  
0.1  
1.9  
60  
%
dfDCO/dT  
DCO frequency temperature drift fDCO = 1 MHz,  
%/°C  
%/V  
dfDCO/dVCC  
DCO frequency voltage drift  
fDCO = 1 MHz  
Typical DCO Frequency, VCC = 3.0 V,TA = 25°C  
100  
10  
DCOx = 31  
1
DCOx = 0  
0.1  
0
1
2
3
4
5
6
7
DCORSEL  
Figure 10. Typical DCO frequency  
52  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
PMM, Brown-Out Reset (BOR)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s  
MIN  
TYP  
MAX UNIT  
BORH on voltage,  
DVCC falling level  
V(DVCC_BOR_IT–)  
V(DVCC_BOR_IT+)  
1.45  
V
BORH off voltage,  
DVCC rising level  
0.80  
60  
1.30  
1.50  
250  
V
V(DVCC_BOR_hys) BORH hysteresis  
Pulse length required at  
mV  
tRESET  
RST/NMI pin to accept a  
reset  
2
µs  
PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Core voltage, active  
mode, PMMCOREV = 3  
VCORE3(AM)  
VCORE2(AM)  
VCORE1(AM)  
VCORE0(AM)  
VCORE3(LPM)  
VCORE2(LPM)  
VCORE1(LPM)  
VCORE0(LPM)  
2.4 V DVCC 3.6 V, 0 mA I(VCORE) 21 mA  
1.90  
V
Core voltage, active  
mode, PMMCOREV = 2  
2.2 V DVCC 3.6 V, 0 mA I(VCORE) 21 mA  
2 V DVCC 3.6 V, 0 mA I(VCORE) 17 mA  
1.8 V DVCC 3.6 V, 0 mA I(VCORE) 13 mA  
2.4 V DVCC 3.6 V, 0 µA I(VCORE) 30 µA  
2.2 V DVCC 3.6 V, 0 µA I(VCORE) 30 µA  
2 V DVCC 3.6 V, 0 µA I(VCORE) 30 µA  
1.8 V DVCC 3.6 V, 0 µA I(VCORE) 30 µA  
1.80  
1.60  
1.40  
1.94  
1.84  
1.64  
1.44  
V
V
V
V
V
V
V
Core voltage, active  
mode, PMMCOREV = 1  
Core voltage, active  
mode, PMMCOREV = 0  
Core voltage, low-current  
mode, PMMCOREV = 3  
Core voltage, low-current  
mode, PMMCOREV = 2  
Core voltage, low-current  
mode, PMMCOREV = 1  
Core voltage, low-current  
mode, PMMCOREV = 0  
PMM, SVS High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVSHE = 0, DVCC = 3.6 V  
MIN  
TYP  
0
MAX UNIT  
nA  
nA  
I(SVSH)  
SVS current consumption  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1  
SVSHE = 1, SVSHRVL = 0  
200  
2.0  
µA  
1.59  
1.79  
1.98  
2.10  
1.62  
1.88  
2.07  
2.20  
2.32  
2.56  
2.85  
2.85  
1.64  
1.84  
2.04  
2.16  
1.74  
1.94  
2.14  
2.26  
2.40  
2.70  
3.00  
3.00  
1.69  
SVSHE = 1, SVSHRVL = 1  
1.91  
V
V(SVSH_IT–)  
SVSH on voltage level(1)  
SVSHE = 1, SVSHRVL = 2  
2.11  
SVSHE = 1, SVSHRVL = 3  
2.23  
1.81  
2.01  
2.21  
SVSHE = 1, SVSMHRRL = 0  
SVSHE = 1, SVSMHRRL = 1  
SVSHE = 1, SVSMHRRL = 2  
SVSHE = 1, SVSMHRRL = 3  
SVSHE = 1, SVSMHRRL = 4  
SVSHE = 1, SVSMHRRL = 5  
SVSHE = 1, SVSMHRRL = 6  
SVSHE = 1, SVSMHRRL = 7  
2.33  
V
V(SVSH_IT+)  
SVSH off voltage level(1)  
2.48  
2.84  
3.15  
3.15  
(1) The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and usage.  
Copyright © 2010–2012, Texas Instruments Incorporated  
53  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
PMM, SVS High Side (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1  
SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0  
SVSHE = 01, SVSHFP = 1  
MIN  
TYP  
2.5  
MAX UNIT  
tpd(SVSH)  
SVSH propagation delay  
µs  
20  
12.5  
100  
t(SVSH)  
SVSH on/off delay time  
DVCC rise time  
µs  
SVSHE = 01, SVSHFP = 0  
dVDVCC/dt  
0
1000  
V/s  
PMM, SVM High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVMHE = 0, DVCC = 3.6 V  
MIN  
TYP  
0
MAX UNIT  
nA  
I(SVMH)  
SVMH current consumption  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1  
SVMHE = 1, SVSMHRRL = 0  
200  
2.0  
nA  
µA  
1.65  
1.85  
2.02  
2.18  
2.32  
2.56  
2.85  
2.85  
1.74  
1.94  
2.14  
2.26  
2.40  
2.70  
3.00  
3.00  
3.75  
2.5  
1.86  
SVMHE = 1, SVSMHRRL = 1  
2.02  
SVMHE = 1, SVSMHRRL = 2  
2.22  
SVMHE = 1, SVSMHRRL = 3  
2.35  
V(SVMH)  
SVMH on or off voltage level(1)  
SVMHE = 1, SVSMHRRL = 4  
2.48  
2.84  
3.15  
3.15  
V
SVMHE = 1, SVSMHRRL = 5  
SVMHE = 1, SVSMHRRL = 6  
SVMHE = 1, SVSMHRRL = 7  
SVMHE = 1, SVMHOVPE = 1  
SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1  
SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0  
SVMHE = 01, SVSMFP = 1  
µs  
µs  
µs  
µs  
tpd(SVMH)  
SVMH propagation delay  
SVMH on or off delay time  
20  
12.5  
100  
t(SVMH)  
SVMHE = 01, SVMHFP = 0  
(1) The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and usage.  
PMM, SVS Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVSLE = 0, PMMCOREV = 2  
MIN  
TYP  
0
MAX UNIT  
nA  
nA  
µA  
I(SVSL)  
SVSL current consumption  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
SVSLE = 01, SVSLFP = 1  
200  
2.0  
2.5  
20  
tpd(SVSL)  
SVSL propagation delay  
SVSL on/off delay time  
µs  
µs  
12.5  
100  
t(SVSL)  
SVSLE = 01, SVSLFP = 0  
PMM, SVM Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVMLE = 0, PMMCOREV = 2  
MIN  
TYP  
0
MAX UNIT  
nA  
nA  
µA  
I(SVML)  
SVML current consumption  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 0  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 1  
200  
2.0  
54  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
PMM, SVM Low Side (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
SVMLE = 01, SVMLFP = 1  
MIN  
TYP  
2.5  
MAX UNIT  
tpd(SVML)  
SVML propagation delay  
µs  
20  
12.5  
100  
t(SVML)  
SVML on/off delay time  
µs  
SVMLE = 01, SVMLFP = 0  
Wake-Up From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
f
MCLK 4 MHz  
3
6.5  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 1  
Wake-up time from LPM2,  
LPM3, or LPM4 to active  
mode(1)  
tWAKE-UP-FAST  
µs  
1 MHz < fMCLK  
4 MHz  
<
4
8.0  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 0  
Wake-up time from LPM2,  
LPM3 or LPM4 to active  
mode(2)  
tWAKE-UP-SLOW  
150  
165  
µs  
Wake-up time from LPM3.5 or  
LPM4.5 to active mode(3)  
tWAKE-UP-LPM5  
tWAKE-UP-RESET  
2
2
3
3
ms  
ms  
Wake-up time from RST or  
BOR event to active mode(3)  
(1) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance  
mode of the low-side supervisor (SVSL) and low side monitor (SVML). Fastest wakeup times are possible with SVSLand SVML in full  
performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while  
operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx  
and MSP430x6xx Family User's Guide (SLAU208).  
(2) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance  
mode of the low-side supervisor (SVSL) and low side monitor (SVML). In this case, the SVSLand SVML are in normal mode (low current)  
mode when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while operating in LPM2, LPM3, and  
LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's  
Guide (SLAU208).  
(3) This value represents the time from the wakeup event to the reset vector execution.  
Timer_A, Timers TA0, TA1, and TA2  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
fTA  
Timer_A input clock frequency  
External: TACLK  
1.8 V, 3 V  
20 MHz  
Duty cycle = 50% ± 10%  
All capture inputs,  
tTA,cap  
Timer_A capture timing  
Minimum pulse duration required for  
capture  
1.8 V, 3 V  
20  
ns  
Timer_B, Timer TB0  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
fTB  
Timer_B input clock frequency  
External: TBCLK  
1.8 V, 3 V  
20 MHz  
Duty cycle = 50% ± 10%  
All capture inputs,  
tTB,cap  
Timer_B capture timing  
Minimum pulse duration required for  
capture  
1.8 V, 3 V  
20  
ns  
Copyright © 2010–2012, Texas Instruments Incorporated  
55  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Battery Backup  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
0.43  
MAX UNIT  
TA = -40°C  
VBAT = 1.7 V,  
DVCC not connected,  
RTC running  
TA = 25°C  
TA = 60°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 60°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 60°C  
TA = 85°C  
General  
0.52  
µA  
0.58  
0.64  
0.50  
Current into VBAT terminal in VBAT = 2.2 V,  
0.59  
IVBAT  
case no primary battery is  
connected.  
DVCC not connected,  
RTC running  
µA  
0.64  
0.71  
0.68  
VBAT = 3 V,  
DVCC not connected,  
RTC running  
0.75  
µA  
0.79  
0.86  
VSVSH_IT-  
SVSHRL = 0  
SVSHRL = 1  
SVSHRL = 2  
SVSHRL = 3  
1.59  
1.79  
1.98  
2.10  
1.69  
Switch-over level (VCC to  
VBAT)  
VSWITCH  
CVCC = 4.7 µF  
1.91  
2.11  
2.23  
1
V
On-resistance of switch  
between VBAT and VBAK  
0.35  
RON_VBAT  
VBAT = 1.8 V  
0 V  
kΩ  
VBAT to ADC input channel  
12:  
VBAT divide,  
1.8 V  
3 V  
0.6  
1.0  
1.2  
±5%  
±5%  
±5%  
VBAT3  
V
3.6 V  
VBAT3 VBAT /3  
tSample,VBA VBAT to ADC: Sampling time ADC12ON = 1,  
1000  
2.65  
ns  
V
required if VBAT3 selected  
Error of conversion result 1 LSB  
T3  
VCHVx  
Charger end voltage  
CHVx = 2  
2.7  
2.9  
5
CHCx = 1  
CHCx = 2  
CHCx = 3  
RCHARGE  
Charge limiting resistor  
10  
20  
kΩ  
USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
fUSCI  
USCI input clock frequency  
External: UCLK  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
tτ  
1
MHz  
ns  
2.2 V  
3 V  
50  
50  
600  
600  
UART receive deglitch time(1)  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
56  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 11 and )  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
SMCLK, ACLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
PMMCOREV = 0  
1.8 V  
3 V  
55  
38  
30  
25  
0
ns  
ns  
ns  
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
2.4 V  
3 V  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
1.8 V  
3 V  
0
tHD,MI  
2.4 V  
3 V  
0
ns  
0
UCLK edge to SIMO valid,  
CL = 20 pF,  
PMMCOREV = 0  
1.8 V  
20  
ns  
3 V  
18  
tVALID,MO  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
2.4 V  
3 V  
16  
ns  
15  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 3  
1.8 V  
3 V  
-10  
-8  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
ns  
ns  
tHD,MO  
2.4 V  
3 V  
-10  
-8  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).  
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 11 and .  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in  
Figure 11 and .  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
tHD,MO  
tVALID,MO  
SIMO  
Figure 11. SPI Master Mode, CKPH = 0  
Copyright © 2010–2012, Texas Instruments Incorporated  
57  
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
tHD,MO  
tVALID,MO  
SIMO  
Figure 12. SPI Master Mode, CKPH = 1  
58  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(see Figure 13 and Figure 14)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
11  
8
TYP  
MAX UNIT  
PMMCOREV = 0  
ns  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE low to clock  
2.4 V  
3 V  
7
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
ns  
ns  
ns  
6
1.8 V  
3 V  
3
3
STE lag time, Last clock to STE high  
2.4 V  
3 V  
3
3
1.8 V  
3 V  
66  
ns  
50  
STE access time, STE low to SOMI data out  
2.4 V  
3 V  
36  
ns  
30  
1.8 V  
3 V  
30  
ns  
23  
STE disable time, STE high to SOMI high  
impedance  
2.4 V  
3 V  
16  
ns  
13  
1.8 V  
3 V  
5
5
2
2
5
5
5
5
ns  
ns  
ns  
SIMO input data setup time  
SIMO input data hold time  
2.4 V  
3 V  
1.8 V  
3 V  
tHD,SI  
2.4 V  
3 V  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF,  
PMMCOREV = 0  
1.8 V  
76  
ns  
3 V  
2.4 V  
3 V  
60  
tVALID,SO  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
UCLK edge to SOMI valid,  
CL = 20 pF,  
PMMCOREV = 3  
44  
ns  
40  
1.8 V  
3 V  
18  
12  
10  
8
CL = 20 pF,  
PMMCOREV = 0  
ns  
ns  
tHD,SO  
2.4 V  
3 V  
CL = 20 pF,  
PMMCOREV = 3  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).  
For the master's parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 13 and Figure 14.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 13  
and Figure 14.  
Copyright © 2010–2012, Texas Instruments Incorporated  
59  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 13. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 14. SPI Slave Mode, CKPH = 1  
60  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 15)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
f
SCL 100 kHz  
fSCL > 100 kHz  
SCL 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
f
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3 V  
2.2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL 100 kHz  
tSU,STO  
Setup time for STOP  
2.2 V, 3 V  
µs  
fSCL > 100 kHz  
2.2 V  
3 V  
600  
ns  
tSP  
Pulse width of spikes suppressed by input filter  
50  
600  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 15. I2C Mode Timing  
Copyright © 2010–2012, Texas Instruments Incorporated  
61  
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
LCD_B, Recommended Operating Conditions  
PARAMETER  
CONDITIONS  
MIN  
NOM  
VCC,LCD_B,  
CP en,3.6  
Supply voltage range, charge pump  
enabled, VLCD 3.6 V  
LCDCPEN = 1, 0000 < VLCDx 1111  
(charge pump enabled, VLCD 3.6 V)  
2.2  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
VCC,LCD_B,  
CP en,3.3  
Supply voltage range, charge pump  
enabled, VLCD 3.3 V  
LCDCPEN = 1, 0000 < VLCDx 1100  
(charge pump enabled, VLCD 3.3 V)  
2.0  
2.4  
2.4  
Supply voltage range, internal biasing,  
charge pump disabled  
VCC,LCD_B, int. bias  
LCDCPEN = 0, VLCDEXT = 0  
LCDCPEN = 0, VLCDEXT = 0  
VCC,LCD_B,  
ext. bias  
Supply voltage range, external biasing,  
charge pump disabled  
Supply voltage range, external LCD  
voltage, internal or external biasing,  
charge pump disabled  
VCC,LCD_B,  
VLCDEXT  
LCDCPEN = 0, VLCDEXT = 1  
LCDCPEN = 0, VLCDEXT = 1  
2.0  
3.6  
3.6  
V
V
External LCD voltage at LCDCAP/R33,  
internal or external biasing, charge  
pump disabled  
VLCDCAP/R33  
2.4  
4.7  
Capacitor on LCDCAP when charge  
pump enabled  
LCDCPEN = 1, VLCDx > 0000  
(charge pump enabled)  
CLCDCAP  
fFrame  
4.7  
32  
10  
µF  
Hz  
fLCD = 2 × mux × fFRAME  
(mux = 1 (static), 2, 3, 4)  
LCD frame frequency range  
0
100  
fACLK,in  
CPanel  
ACLK input frequency range  
Panel capacitance  
30  
40 kHz  
100-Hz frame frequency  
10000  
VCC  
pF  
+
VR33  
Analog input voltage at R33  
Analog input voltage at R23  
LCDCPEN = 0, VLCDEXT = 1  
2.4  
VR13  
VR03  
V
0.2  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR03 + 2/3 ×  
VR23,1/3bias  
VR13,1/3bias  
VR13,1/2bias  
VR03  
VR33  
V
V
(VR33-VR03  
VR03 + 1/3 ×  
(VR33-VR03  
VR03 + 1/2 ×  
)
Analog input voltage at R13 with 1/3  
biasing  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR23  
VR33  
)
Analog input voltage at R13 with 1/2  
biasing  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 1  
VR03  
VSS  
2.4  
V
V
V
(VR33-VR03  
)
Analog input voltage at R03  
R0EXT = 1  
Voltage difference between VLCD and  
R03  
VCC+0  
.2  
VLCD-VR03  
LCDCPEN = 0, R0EXT = 1  
External LCD reference voltage applied  
at LCDREF/R13  
VLCDREF/R13  
VLCDREFx = 01  
0.8  
1.2  
1.5  
V
62  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
LCD_B, Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
VCC  
2.60  
2.66  
2.72  
2.79  
2.85  
2.92  
2.98  
3.05  
3.10  
3.17  
3.24  
3.30  
3.36  
3.42  
3.48  
400  
MAX  
UNIT  
V
VLCD  
LCD voltage  
VLCDx = 0000, VLCDEXT = 0  
LCDCPEN = 1, VLCDx = 0001  
LCDCPEN = 1, VLCDx = 0010  
LCDCPEN = 1, VLCDx = 0011  
LCDCPEN = 1, VLCDx = 0100  
LCDCPEN = 1, VLCDx = 0101  
LCDCPEN = 1, VLCDx = 0110  
LCDCPEN = 1, VLCDx = 0111  
LCDCPEN = 1, VLCDx = 1000  
LCDCPEN = 1, VLCDx = 1001  
LCDCPEN = 1, VLCDx = 1010  
LCDCPEN = 1, VLCDx = 1011  
LCDCPEN = 1, VLCDx = 1100  
LCDCPEN = 1, VLCDx = 1101  
LCDCPEN = 1, VLCDx = 1110  
LCDCPEN = 1, VLCDx = 1111  
LCDCPEN = 1, VLCDx = 1111  
2.4 V - 3.6 V  
2 V - 3.6 V  
2 V - 3.6 V  
2 V - 3.6 V  
2 V - 3.6 V  
2 V - 3.6 V  
2 V - 3.6 V  
2 V - 3.6 V  
2 V - 3.6 V  
2 V - 3.6 V  
2 V - 3.6 V  
2 V - 3.6 V  
2 V - 3.6 V  
2.2 V - 3.6 V  
2.2 V - 3.6 V  
2.2 V - 3.6 V  
2.2 V  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3.6  
V
ICC,Peak,CP Peak supply currents due to  
charge pump activities  
µA  
tLCD,CP,on  
Time to charge CLCD when  
discharged  
CLCD = 4.7 µF,  
LCDCPEN = 01,  
VLCDx = 1111  
2.2 V  
100  
500  
ms  
ICP,Load  
Maximum charge pump load  
current  
LCDCPEN = 1, VLCDx = 1111  
2.2 V  
2.2 V  
2.2 V  
50  
µA  
kΩ  
kΩ  
RLCD,Seg  
RLCD,COM  
LCD driver output impedance, LCDCPEN = 1, VLCDx = 1000,  
segment lines ILOAD = ±10 µA  
10  
10  
LCD driver output impedance, LCDCPEN = 1, VLCDx = 1000,  
common lines ILOAD = ±10 µA  
12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
0
TYP  
MAX UNIT  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
AVCC  
Analog supply voltage  
3.6  
V
V(Ax)  
Analog input voltage range(2) All ADC12 analog input pins Ax  
AVCC  
200  
V
2.2 V  
3 V  
150  
150  
Operating supply current into  
fADC12CLK = 5 MHz(4)  
AVCC terminal(3)  
IADC12_A  
µA  
250  
Only one terminal Ax can be selected at one  
time  
CI  
RI  
Input capacitance  
2.2 V  
20  
25  
pF  
Input MUX ON resistance  
0 V VIN V(AVCC)  
10  
200  
1900  
(1) The leakage current is specified by the digital I/O input leakage.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. If the  
reference voltage is supplied by an external source or if the internal voltage is used and REFOUT = 1, then decoupling capacitors are  
required. See REF, External Reference and REF, Built-In Reference.  
(3) The internal reference supply current is not included in current consumption parameter IADC12  
(4) ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0  
.
Copyright © 2010–2012, Texas Instruments Incorporated  
63  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC12 linearity  
parameters using an external reference voltage or  
AVCC as reference(1)  
0.45  
4.8  
5.0  
fADC12CLK  
ADC conversion clock  
For specified performance of ADC12 linearity  
parameters using the internal reference(2)  
2.2 V, 3 V  
MHz  
4.0  
0.45  
0.45  
4.2  
2.4  
2.4  
4.8  
For specified performance of ADC12 linearity  
parameters using the internal reference(3)  
2.7  
Internal ADC12  
oscillator(4)  
fADC12OSC  
tCONVERT  
tSample  
ADC12DIV = 0, fADC12CLK = fADC12OSC  
2.2 V, 3 V  
2.2 V, 3 V  
5.4 MHz  
REFON = 0, Internal oscillator,  
ADC12OSC used for ADC conversion clock  
2.4  
3.1  
µs  
Conversion time  
External fADC12CLK from ACLK, MCLK or SMCLK,  
ADC12SSEL 0  
(5)  
RS = 400 , RI = 200 , CI = 20 pF,  
τ = [RS + RI] × CI(6)  
Sampling time  
2.2 V, 3 V  
1000  
ns  
(1) REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0,  
SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the  
specified performance of the ADC12 linearity is ensured with fADC12CLK maximum of 5 MHz.  
(2) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1  
(3) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when  
using the ADC12OSC divided by 2.  
(4) The ADC12OSC is sourced directly from MODOSC inside the UCS.  
(5) 13 × ADC12DIV × 1/fADC12CLK  
(6) Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB:  
tSample = ln(2n+1) x (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance  
12-Bit ADC, Linearity Parameters Using an External Reference Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
1.4 V dVREF 1.6 V(2)  
VCC  
MIN  
TYP  
MAX UNIT  
±2  
LSB  
±1.7  
Integral  
EI  
2.2 V, 3 V  
linearity error(1)  
(2)  
1.6 V < dVREF  
Differential  
(2)  
ED  
2.2 V, 3 V  
±1 LSB  
linearity error(1)  
dVREF 2.2 V(2)  
dVREF > 2.2 V(2)  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±3  
±1.5  
±1  
±5.6  
LSB  
±3.5  
EO  
EG  
ET  
Offset error(3)  
Gain error(3)  
(2)  
±2.5 LSB  
dVREF 2.2 V(2)  
dVREF > 2.2 V(2)  
±3.5  
±2  
±7.1  
LSB  
±5  
Total unadjusted  
error  
(1) Parameters are derived using the histogram method.  
(2) The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = VR+ - VR-. VR+ < AVCC. VR-> AVSS.  
Unless otherwise mentioned, dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω, and two decoupling capacitors,  
10 µF and 100 nF, should be connected to VREF+/VREF- to decouple the dynamic current. See also the MSP430F5xx and  
MSP430F6xx Family User's Guide (SLAU208).  
(3) Parameters are derived using a best fit curve.  
12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error(1)  
Differential linearity error(1)  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
±1.7 LSB  
±1 LSB  
(2)  
(2)  
EI  
See  
See  
2.2 V, 3 V  
2.2 V, 3 V  
ED  
(1) Parameters are derived using the histogram method.  
(2) AVCC as reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 0.  
64  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Offset error(3)  
Gain error(3)  
TEST CONDITIONS  
VCC  
MIN  
TYP  
±1  
MAX UNIT  
±2 LSB  
±4 LSB  
±5 LSB  
(2)  
(2)  
(2)  
EO  
EG  
ET  
See  
See  
See  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±2  
Total unadjusted error  
±2  
(3) Parameters are derived using a best fit curve.  
12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
VCC  
MIN  
TYP  
MAX UNIT  
ADC12SR = 0, REFOUT = 1  
f
f
f
f
f
f
f
f
f
f
f
ADC12CLK 4.0 MHz  
±1.7  
LSB  
±2.5  
Integral  
EI  
2.2 V, 3 V  
linearity error(2)  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12CLK 2.7 MHz  
ADC12CLK 4.0 MHz  
ADC12CLK 2.7 MHz  
ADC12CLK 2.7 MHz  
ADC12CLK 4.0 MHz  
ADC12CLK 2.7 MHz  
ADC12CLK 4.0 MHz  
ADC12CLK 2.7 MHz  
ADC12CLK 4.0 MHz  
ADC12CLK 2.7 MHz  
-1  
-1  
+1.5  
Differential  
ED  
2.2 V, 3 V  
±1 LSB  
+2.5  
linearity error(2)  
±2  
±2  
±1  
±4  
EO  
EG  
ET  
Offset error(3)  
Gain error(3)  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
LSB  
±4  
±2.5 LSB  
±1%(4) VREF  
±5 LSB  
±2  
Total unadjusted  
error  
±1%(4) VREF  
(1) The external reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 1. dVREF = VR+ - VR-  
.
(2) Parameters are derived using the histogram method.  
(3) Parameters are derived using a best fit curve.  
(4) The gain error and the total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In  
this mode the reference voltage used by the ADC12_A is not available on a pin.  
12-Bit ADC, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
680  
680  
2.25  
2.25  
MAX UNIT  
ADC12ON = 1, INCH = 0Ah,  
TA = 0°C  
(1)  
VSENSOR  
See  
mV  
2.2 V  
3 V  
TCSENSOR  
ADC12ON = 1, INCH = 0Ah  
mV/°C  
µs  
2.2 V  
3 V  
100  
100  
Sample time required if  
ADC12ON = 1, INCH = 0Ah,  
Error of conversion result 1 LSB  
tSENSOR(sample)  
channel 10 is selected(2)(3)  
2.2 V  
3 V  
1.06  
1.46  
1.1  
1.5  
1.14  
V
ADC12ON = 1, INCH = 0Bh,  
VMID is approximately 0.5 × VAVCC  
VMID  
AVCC divider at channel 11  
1.54  
Sample time required if  
channel 11 is selected(4)  
ADC12ON = 1, INCH = 0Bh,  
Error of conversion result 1 LSB  
tVMID(sample)  
2.2 V, 3 V  
1000  
ns  
(1) The temperature sensor is provided by the REF module. See the REF module parametric, IREF+, regarding the current consumption of  
the temperature sensor.  
(2) The temperature sensor offset can be significant. A single-point calibration is recommended to minimize the offset error of the built-in  
temperature sensor. The TLV structure contains calibration values for 30°C ± 3°C and 85°C ± 3°C for each of the available reference  
voltage levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature,°C) + VSENSOR, where TCSENSOR and  
VSENSOR can be computed from the calibration values for higher accuracy. See also the MSP430F5xx and MSP430F6xx Family User's  
Guide (SLAU208).  
(3) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
.
(4) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
Copyright © 2010–2012, Texas Instruments Incorporated  
65  
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
-40 -30 -20 -10  
0 10 20 30 40 50 60 70 80  
Ambient Temperature - ˚C  
Figure 16. Typical Temperature Sensor Voltage  
REF, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Positive external  
reference voltage input  
(2)  
VeREF+  
VeREF+ > VREF–/VeREF–  
1.4  
AVCC  
1.2  
V
V
V
Negative external  
reference voltage input  
(3)  
(4)  
VREF–/VeREF–  
VeREF+ > VREF–/VeREF–  
VeREF+ > VREF–/VeREF–  
0
VeREF+  
VREF–/VeREF–  
Differential external  
reference voltage input  
1.4  
AVCC  
1.4 V VeREF+ VAVCC , VeREF– = 0 V,  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
Conversion rate 200 ksps  
2.2 V, 3 V  
2.2 V, 3 V  
-26  
26  
µA  
IVeREF+  
IVREF–/VeREF–  
,
Static input current  
1.4 V VeREF+ VAVCC , VeREF– = 0 V,  
fADC12CLK = 5 MHZ, ADC12SHTx = 8h,  
Conversion rate 20 ksps  
-1.2  
10  
+1.2  
µA  
µF  
Capacitance at VREF+/-  
terminal(5)  
CVREF+/-  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).  
66  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
REFVSEL = {2} for 2.5 V,  
REFON = REFOUT = 1 ,  
IVREF+ = 0 A  
3 V  
2.5  
±1%  
REFVSEL = {1} for 2 V,  
REFON = REFOUT = 1,  
IVREF+ = 0 A  
Positive built-in reference  
voltage output  
VREF+  
3 V  
2.0  
1.5  
±1%  
±1%  
V
REFVSEL = {0} for 1.5 V,  
REFON = REFOUT = 1,  
IVREF+ = 0 A  
2.2 V, 3 V  
REFVSEL = {0} for 1.5 V  
2.2  
2.3  
2.8  
AVCC minimum voltage,  
AVCC(min)  
Positive built-in reference REFVSEL = {1} for 2 V  
V
active  
REFVSEL = {2} for 2.5 V  
ADC12SR = 1(4), REFON = 1, REFOUT = 0,  
REFBURST = 0  
ADC12SR = 1(4), REFON = 1, REFOUT = 1,  
REFBURST = 0  
ADC12SR = 0(4), REFON = 1, REFOUT = 0,  
REFBURST = 0  
3 V  
3 V  
3 V  
3 V  
70  
0.45  
210  
100  
0.75  
310  
1.7  
µA  
mA  
µA  
Operating supply current  
into AVCC terminal  
IREF+  
(2) (3)  
ADC12SR = 0(4), REFON = 1, REFOUT = 1,  
REFBURST = 0  
0.95  
mA  
REFVSEL = {0, 1, 2}  
Load-current regulation, IVREF+ = +10 µA / -1000 µA  
IL(VREF+)  
1500  
2500 µV/mA  
VREF+ terminal(5)  
AVCC = AVCC(min) for each reference level,  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1  
(6)  
Capacitance at VREF+  
terminal  
REFON = REFOUT = 1,  
CVREF+  
TCREF+  
TCREF+  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
20  
100  
50  
pF  
0 mA IVREF+ IVREF+(max)  
Temperature coefficient  
of built-in reference(7)  
IVREF+ is a constant in the range  
REFOUT = 0  
ppm/  
°C  
20  
20  
of 0 mA IVREF+ –1 mA  
Temperature coefficient  
of built-in reference(7)  
IVREF+ is a constant in the range  
REFOUT = 1  
ppm/  
°C  
of 0 mA IVREF+ –1 mA  
AVCC = AVCC(min) - AVCC(max)  
TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
,
Power supply rejection  
ratio (dc)  
PSRR_DC  
PSRR_AC  
120  
1
300 µV/V  
mV/V  
AVCC = AVCC(min) - AVCC(max)  
TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
,
Power supply rejection  
ratio (ac)  
(1) The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers, one  
smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal, as well as,  
used as the reference for the conversion and utilizes the larger buffer. When REFOUT = 0, the reference is only used as the reference  
for the conversion and utilizes the smaller buffer.  
(2) The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a  
conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current  
contribution of the larger buffer without external load.  
(3) The temperature sensor is provided by the REF module. Its current is supplied via terminal AVCC and is equivalent to IREF+ with  
REFON = 1 and REFOUT = 0.  
(4) For devices without the ADC12, the parametric with ADC12SR = 0 are applicable.  
(5) Contribution only due to the reference and buffer including package. This does not include resistance due to PCB traces or other  
external factors.  
(6) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).  
(7) Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C)/(85°C – (–40°C)).  
Copyright © 2010–2012, Texas Instruments Incorporated  
67  
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
REF, Built-In Reference (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC = AVCC(min) - AVCC(max)  
,
REFVSEL = {0, 1, 2}, REFOUT = 0,  
REFON = 0 1  
75  
Settling time of reference  
voltage(8)  
tSETTLE  
µs  
AVCC = AVCC(min) - AVCC(max)  
,
CVREF = CVREF(max),  
REFVSEL = {0, 1, 2}, REFOUT = 1,  
75  
REFON = 0 1  
(8) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external  
capacitive load when REFOUT = 1.  
12-Bit DAC, Supply Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC Analog supply voltage  
AVCC = DVCC, AVSS = DVSS = 0 V  
2.20  
3.60  
V
DAC12AMPx = 2, DAC12IR = 0,  
DAC12IOG = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = VREF+ = 1.5 V  
3 V  
65  
110  
DAC12AMPx = 2, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = VREF+ = AVCC  
125  
250  
165  
350  
IDD  
Supply current, single DAC channel(1) (2)  
µA  
DAC12AMPx = 5, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
2.2 V, 3 V  
VeREF+ = VREF+ = AVCC  
DAC12AMPx = 7, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = VREF+ = AVCC  
750  
70  
1100  
DAC12_xDAT = 800h,  
VeREF+ = 1.5 V, ΔAVCC = 100 mV  
2.2 V  
3 V  
PSRR Power supply rejection ratio(3) (4)  
dB  
DAC12_xDAT = 800h,  
VeREF+ = 1.5 V or 2.5 V,  
ΔAVCC = 100 mV  
70  
(1) No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.  
(2) Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications.  
(3) PSRR = 20 log (ΔAVCC / ΔVDAC12_xOUT  
)
(4) The internal reference is not used.  
12-Bit DAC, Linearity Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 17)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Resolution  
12-bit monotonic  
12  
bits  
VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1  
2.2 V  
3 V  
±2  
±2  
±4(2)  
LSB  
±4  
±1(2)  
LSB  
±1  
Integral  
INL  
nonlinearity(1)  
2.2 V  
3 V  
±0.4  
±0.4  
Differential  
DNL  
nonlinearity(1)  
(1) Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of  
the first-order equation: y = a + bx. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1.  
(2) This parameter is not production tested.  
68  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
12-Bit DAC, Linearity Specifications (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 17)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VeREF+ = 1.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
2.2 V  
±21(2)  
Without calibration(1) (3)  
VeREF+ = 2.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
3 V  
2.2 V  
±21  
mV  
EO  
Offset voltage  
VeREF+ = 1.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
±1.5(2)  
With calibration(1) (3)  
With calibration  
VeREF+ = 2.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
3 V  
±1.5  
Offset error  
temperature  
coefficient(1)  
dE(O)/dT  
2.2 V, 3 V  
±10  
10  
µV/°C  
VeREF+ = 1.5 V  
VeREF+ = 2.5 V  
2.2 V  
3 V  
±2.5  
EG  
Gain error  
%FSR  
±2.5  
ppm  
of  
FSR/  
°C  
Gain temperature  
coefficient(1)  
dE(G)/dT  
2.2 V, 3 V  
2.2 V, 3 V  
DAC12AMPx = 2  
165  
Time for offset  
calibration(4)  
tOffset_Cal  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
66  
ms  
16.5  
(3) The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON  
(4) The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx =  
{0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may effect  
accuracy and is not recommended.  
DAC VOUT  
DAC Output  
VR+  
RLoad = ¥  
Ideal transfer  
function  
AVCC  
2
Offset Error  
Positive  
Gain Error  
CLoad = 100 pF  
Negative  
DAC Code  
Figure 17. Linearity Test Load Conditions and Gain/Offset Definition  
Copyright © 2010–2012, Texas Instruments Incorporated  
69  
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
12-Bit DAC, Output Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
No load, VeREF+ = AVCC  
,
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
0
0.005  
No load, VeREF+ = AVCC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
,
AVCC  
AVCC  
0.05  
Output voltage  
VO  
range(1) (see  
Figure 18)  
2.2 V, 3 V  
V
RLoad = 3 k, VeREF+ = AVCC  
,
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
0
0.1  
RLoad = 3 k, VeREF+ = AVCC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
,
AVCC  
AVCC  
0.13  
Maximum DAC12  
load capacitance  
CL(DAC12)  
2.2 V, 3 V  
2.2 V, 3 V  
100  
pF  
DAC12AMPx = 2, DAC12xDAT = 0FFFh,  
VO/P(DAC12) > AVCC – 0.3  
–1  
Maximum DAC12  
load current  
IL(DAC12)  
mA  
DAC12AMPx = 2, DAC12xDAT = 0h,  
VO/P(DAC12) < 0.3 V  
1
250  
250  
6
RLoad = 3 k, VO/P(DAC12) < 0.3 V,  
DAC12AMPx = 2, DAC12_xDAT = 0h  
150  
150  
Output resistance RLoad = 3 k, VO/P(DAC12) > AVCC – 0.3 V,  
(see Figure 18)  
RO/P(DAC12)  
2.2 V, 3 V  
DAC12_xDAT = 0FFFh  
RLoad = 3 k,  
0.3 V VO/P(DAC12) AVCC – 0.3 V  
(1) Data is valid after the offset calibration of the output amplifier.  
RO/P(DAC12_x)  
Max  
RLoad  
ILoad  
AVCC  
DAC12  
2
CLoad = 100 pF  
O/P(DAC12_x)  
Min  
0.3  
AVCC – 0.3 V  
VOUT  
AVCC  
Figure 18. DAC12_x Output Resistance Tests  
70  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
12-Bit DAC, Reference Input Specifications  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DAC12IR = 0(1) (2)  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC AVCC  
/ 3  
+ 0.2  
Reference input voltage  
range  
VeREF+  
2.2 V, 3 V  
V
AVCC  
+ 0.2  
DAC12IR = 1(3) (4)  
AVCC  
DAC12_0 IR = DAC12_1 IR = 0  
DAC12_0 IR = 1, DAC12_1 IR = 0  
DAC12_0 IR = 0, DAC12_1 IR = 1  
20  
MΩ  
48  
48  
Ri(VREF+)  
Ri(VeREF+)  
,
Reference input resistance(5)  
2.2 V, 3 V  
kΩ  
DAC12_0 IR = DAC12_1 IR = 1,  
24  
DAC12_0 SREFx = DAC12_1 SREFx(6)  
(1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).  
(2) The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / [3 × (1 + EG)].  
(3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).  
(4) The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / (1 + EG).  
(5) This impedance depends on tradeoff in power savings. Current devices have 48 kfor each channel when divide is enabled. Can be  
increased if performance can be maintained.  
(6) When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel  
reducing the reference input resistance.  
12-Bit DAC, Dynamic Specifications  
VREF = VCC, DAC12IR = 1 (see Figure 19 and Figure 20), over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DAC12AMPx = 0 {2, 3, 4}  
VCC  
MIN  
TYP  
60  
MAX UNIT  
120  
DAC12_xDAT = 800h,  
ErrorV(O) < ±0.5 LSB(1)  
(see Figure 19)  
tON  
DAC12 on time  
DAC12AMPx = 0 {5, 6}  
DAC12AMPx = 0 7  
DAC12AMPx = 2  
2.2 V, 3 V  
15  
30  
12  
µs  
µs  
µs  
6
100  
40  
200  
80  
DAC12_xDAT =  
tS(FS)  
tS(C-C)  
SR  
Settling time, full scale  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
2.2 V, 3 V  
2.2 V, 3 V  
80h F7Fh 80h  
15  
30  
5
DAC12_xDAT =  
Settling time, code to  
code  
3F8h 408h 3F8h,  
BF8h C08h BF8h  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
2
1
0.05  
0.35  
1.50  
0.35  
1.10  
5.20  
DAC12_xDAT =  
Slew rate  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
2.2 V, 3 V  
2.2 V, 3 V  
V/µs  
nV-s  
80h F7Fh 80h(2)  
DAC12_xDAT =  
Glitch energy  
DAC12AMPx = 7  
35  
800h 7FFh 800h  
(1) RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 19.  
(2) Slew rate applies to output voltage steps 200 mV.  
Conversion 1  
Conversion 2  
1/2 LꢀS  
Conversion 3  
VOUT  
DAC Output  
RLoad = 3 kW  
ILoad  
Glitch  
Energy  
AVCC  
2
1/2 LꢀS  
CLoad = 100 pF  
RO/P(DAC12.x)  
tsettleLH  
tsettleHL  
Figure 19. Settling Time and Glitch Energy Testing  
Copyright © 2010–2012, Texas Instruments Incorporated  
71  
 
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Conversion 1  
Conversion 2  
Conversion 3  
VOUT  
90%  
90%  
10%  
10%  
tSRLH  
tSRHL  
Figure 20. Slew Rate Testing  
12-Bit DAC, Dynamic Specifications (Continued)  
over recommended ranges of supply voltage and TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
40  
3-dB bandwidth,  
VDC = 1.5 V,  
VAC = 0.1 VPP  
(see Figure 21)  
DAC12AMPx = {5, 6}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
BW–3dB  
2.2 V, 3 V  
180  
550  
kHz  
DAC12AMPx = 7, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
DAC12_0DAT = 800h, No load,  
DAC12_1DAT = 80h F7Fh, RLoad = 3 k,  
fDAC12_0OUT = 10 kHz at 50/50 duty cycle  
–80  
–80  
Channel-to-channel  
crosstalk(1) (see  
Figure 22)  
2.2 V, 3 V  
dB  
DAC12_0DAT = 80h F7Fh, RLoad = 3 k,  
DAC12_1DAT = 800h, No load,  
fDAC12_0OUT = 10 kHz at 50/50 duty cycle  
(1) RLoad = 3 k, CLoad = 100 pF  
RLoad = 3 kW  
ILoad  
VeREF+  
AVCC  
2
DAC12_x  
DACx  
AC  
DC  
CLoad = 100 pF  
Figure 21. Test Conditions for 3-dB Bandwidth Specification  
RLoad  
ILoad  
AVCC  
DAC12_xDAT  
VOUT  
080h  
7F7h  
080h  
7F7h  
080h  
DAC12_0  
DAC12_1  
2
DAC0  
CLoad = 100 pF  
RLoad  
VREF+  
VDAC12_yOUT  
ILoad  
VDAC12_xOUT  
AVCC  
2
fToggle  
DAC1  
CLoad = 100 pF  
Figure 22. Crosstalk Test Conditions  
72  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
 
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Comparator_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
Supply voltage  
1.8  
3.6  
40  
50  
65  
30  
0.5  
V
1.8 V  
2.2 V  
Comparator operating supply  
current into AVCC terminal,  
Excludes reference resistor  
ladder  
CBPWRMD = 00  
30  
40  
IAVCC_COMP  
3 V  
µA  
CBPWRMD = 01  
CBPWRMD = 10  
2.2 V, 3 V  
2.2 V, 3 V  
10  
0.1  
Quiescent current of local  
reference voltage amplifier  
into AVCC terminal  
IAVCC_REF  
CBREFACC = 1, CBREFLx = 01  
22  
µA  
VIC  
Common mode input range  
0
VCC - 1  
±20  
V
CBPWRMD = 00  
VOFFSET  
CIN  
Input offset voltage  
mV  
CBPWRMD = 01, 10  
±10  
Input capacitance  
5
3
pF  
kΩ  
MΩ  
ns  
ON - switch closed  
4
RSIN  
Series input resistance  
OFF - switch opened  
50  
CBPWRMD = 00, CBF = 0  
CBPWRMD = 01, CBF = 0  
CBPWRMD = 10, CBF = 0  
450  
600  
50  
Propagation delay, response  
time  
tPD  
ns  
µs  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 00  
0.35  
0.6  
1.0  
1.8  
0.6  
1.0  
1.8  
3.4  
1
1.0  
1.8  
3.4  
6.5  
2
µs  
µs  
µs  
µs  
µs  
µs  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 01  
Propagation delay with filter  
active  
tPD,filter  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 10  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 11  
Comparator enable time,  
settling time  
CBON = 0 to CBON = 1  
CBPWRMD = 00, 01, 10  
tEN_CMP  
tEN_REF  
Resistor reference enable  
time  
CBON = 0 to CBON = 1  
0.3  
1.5  
VIN × VIN ×  
(n+0.5) (n+1)  
VIN ×  
(n+1.5)  
/ 32  
Reference voltage for a given VIN = reference into resistor ladder,  
tap n = 0 to 31  
VCB_REF  
V
/ 32  
/ 32  
Copyright © 2010–2012, Texas Instruments Incorporated  
73  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Ports PU.0 and PU.1  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VLDOO = 3.3 V ± 10%, IOH = -25 mA,  
See Figure 24 for typical characteristics  
VOH  
VOL  
VIH  
VIL  
High-level output voltage  
2.4  
V
VLDOO = 3.3 V ± 10%, IOL = 25 mA,  
See Figure 23 for typical characteristics  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
0.4  
0.8  
V
V
V
VLDOO = 3.3 V ± 10%,  
See Figure 25 for typical characteristics  
2.0  
VLDOO = 3.3 V ± 10%,  
See Figure 25 for typical characteristics  
74  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCC = 3.0 V  
TA = 25 ºC  
VCC = 3.0 V  
TA = 85 ºC  
VCC = 1.8 V  
TA = 25 ºC  
VCC = 1.8 V  
TA = 85 ºC  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
VOL - Low-Level Output Voltage - V  
Figure 23. Ports PU.0, PU.1 Typical Low-Level Output Characteristics  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
0
-10  
-20  
-30  
VCC = 1.8 V  
TA = 85 ºC  
-40  
-50  
VCC = 3.0 V  
-60  
TA = 85 ºC  
VCC = 1.8 V  
-70  
TA = 25 ºC  
VCC = 3.0 V  
TA = 25 ºC  
-80  
-90  
0.5  
1
1.5  
2
2.5  
3
VOH - High-Level Output Voltage - V  
Figure 24. Ports PU.0, PU.1 Typical High-Level Output Characteristics  
TYPICAL PU.0, PU.1 INPUT THRESHOLD  
2.0  
TA = 25 °C, 85 °C  
1.8  
VIT+, postive-going input threshold  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIT- , negative-going input threshold  
1.8  
2.2  
2.6  
3
3.4  
- V  
LDOO Supply Voltage, VLDOO  
Figure 25. Ports PU.0, PU.1 Typical Input Threshold Characteristics  
Copyright © 2010–2012, Texas Instruments Incorporated  
75  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
MAX UNIT  
LDO-PWR (LDO Power System)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
LDO input detection threshold  
LDO input voltage  
TEST CONDITIONS  
VCC  
MIN  
TYP  
VLAUNCH  
VLDOI  
3.75  
5.5  
V
V
V
Normal operation  
3.76  
VLDO  
LDO output voltage  
3.3  
±9%  
LDOO terminal input voltage with LDO  
disabled  
VLDO_EXT  
LDO disabled  
1.8  
60  
3.6  
V
ILDOO  
IDET  
Maximum external current from LDOO terminal LDO is on  
LDO current overload detection(1)  
20  
mA  
mA  
µF  
100  
CLDOI  
CLDOO  
LDOI terminal recommended capacitance  
LDOO terminal recommended capacitance  
4.7  
220  
nF  
Within 2%,  
recommended capacitances  
tENABLE  
Settling time VLDO  
2
ms  
(1) A current overload is detected when the total current supplied from the LDO exceeds this value.  
Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
DVCC(PGM/ERASE) Program and erase supply voltage  
1.8  
3.6  
5
V
IPGM  
Average supply current from DVCC during program  
3
mA  
mA  
IERASE  
Average supply current from DVCC during erase  
2.5  
Average supply current from DVCC during mass erase or bank  
erase  
IMERASE, IBANK  
tCPT  
2
mA  
(1)  
Cumulative program time  
See  
16  
ms  
cycles  
years  
µs  
Program and erase endurance  
Data retention duration  
104  
100  
64  
105  
tRetention  
tWord  
TJ = 25°C  
(2)  
Word or byte program time  
Block program time for first byte or word  
See  
85  
65  
(2)  
tBlock, 0  
See  
49  
µs  
Block program time for each additional byte or word, except for last  
byte or word  
(2)  
tBlock, 1–(N–1)  
tBlock, N  
See  
37  
55  
23  
49  
73  
32  
µs  
µs  
(2)  
Block program time for last byte or word  
See  
Erase time for segment, mass erase, and bank erase when  
available  
(2)  
tSeg Erase  
See  
ms  
MCLK frequency in marginal read mode  
(FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1)  
fMCLK,MGR  
0
1
MHz  
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming  
methods: individual word or byte write and block write modes.  
(2) These values are hardwired into the flash controller's state machine.  
JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V, 3 V  
0
20 MHz  
tSBW,Low  
Spy-Bi-Wire low clock pulse duration  
2.2 V, 3 V  
0.025  
15  
µs  
µs  
µs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
edge)(1)  
tSBW, En  
tSBW,Rst  
2.2 V, 3 V  
1
Spy-Bi-Wire return to normal operation time  
15  
100  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
76  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
JTAG and Spy-Bi-Wire Interface (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
2.2 V  
0
0
5
MHz  
10 MHz  
80 kΩ  
fTCK  
TCK input frequency (4-wire JTAG)(2)  
Internal pulldown resistance on TEST  
3 V  
Rinternal  
2.2 V, 3 V  
45  
60  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2010–2012, Texas Instruments Incorporated  
77  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
INPUT/OUTPUT SCHEMATICS  
Port P1, P1.0 to P1.7, Input/Output With Schmitt Trigger  
Pad Logic  
S32...S39  
LCDS32...LCDS39  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1.0/TA0CLK/ACLK/S39  
P1.1/TA0.0/S38  
P1.2/TA0.1/S37  
P1.3/TA0.2/S36  
P1.4/TA0.3/S35  
P1.5/TA0.4/S34  
P1.6/TA0.1/S33  
P1.7/TA0.2/S32  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
P1IFG.x  
Set  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
78  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 53. Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
LCDS32...39  
P1.0/TA0CLK/ACLK/  
S39  
0
P1.0 (I/O)  
Timer TA0.TA0CLK  
ACLK  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
1
S39  
X
P1.1/TA0.0/S38  
P1.2/TA0.1/S37  
P1.3/TA0.2/S36  
P1.4/TA0.3/S35  
P1.5/TA0.4/S34  
P1.6/TA0.1/S33  
P1.7/TA0.2/S32  
1
2
3
4
5
6
7
P1.1 (I/O)  
I: 0; O: 1  
Timer TA0.CCI0A capture input  
Timer TA0.0 output  
S38  
0
1
X
P1.2 (I/O)  
I: 0; O: 1  
Timer TA0.CCI1A capture input  
Timer TA0.1 output  
S37  
0
1
X
P1.3 (I/O)  
I: 0; O: 1  
Timer TA0.CCI2A capture input  
Timer TA0.2 output  
S36  
0
1
X
P1.4 (I/O)  
I: 0; O: 1  
Timer TA0.CCI3A capture input  
Timer TA0.3 output  
S35  
0
1
X
P1.5 (I/O)  
I: 0; O: 1  
Timer TA0.CCI4A capture input  
Timer TA0.4 output  
S34  
0
1
X
P1.6 (I/O)  
I: 0; O: 1  
Timer TA0.CCI1B capture input  
Timer TA0.1 output  
S33  
0
1
X
P1.7 (I/O)  
I: 0; O: 1  
Timer TA0.CCI2B capture input  
Timer TA0.2 output  
S32  
0
1
X
(1) X = Don't care  
Copyright © 2010–2012, Texas Instruments Incorporated  
79  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger  
Pad Logic  
to LCD_B  
from LCD_B  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
From Port Mapping  
P2OUT.x  
0
1
From Port Mapping  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2IN.x  
P2.6/P2MAP6/R03  
P2.7/P2MAP7/LCDREF/R13  
From Port Mapping  
EN  
D
To Port Mapping  
P2IE.x  
EN  
P2IRQ.x  
Q
P2IFG.x  
Set  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
80  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 54. Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL.x  
P2MAPx  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2.6/P2MAP6/R03  
0
P2.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
Mapped secondary digital function  
P2.1 (I/O)  
X
19  
19  
19  
19  
19  
19  
1
2
3
4
5
6
I: 0; O: 1  
Mapped secondary digital function  
P2.2 (I/O)  
X
I: 0; O: 1  
Mapped secondary digital function  
P2.3 (I/O)  
X
I: 0; O: 1  
Mapped secondary digital function  
P2.4 (I/O)  
X
I: 0; O: 1  
Mapped secondary digital function  
P2.5 (I/O  
X
I: 0; O: 1  
Mapped secondary digital function  
P2.6 (I/O)  
X
I: 0; O: 1  
Mapped secondary digital function  
R03  
X
19  
X
= 31  
P2.7/P2MAP7/  
LCDREF/R13  
7
P2.7 (I/O)  
I: 0; O: 1  
Mapped secondary digital function  
LCDREF/R13  
X
X
19  
= 31  
(1) X = Don't care  
Copyright © 2010–2012, Texas Instruments Incorporated  
81  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Port P3, P3.0 to P3.7, Input/Output With Schmitt Trigger  
Pad Logic  
S24...S31  
LCDS24...LCDS31  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
P3OUT.x  
0
1
Module X OUT  
P3.0/TA1CLK/CBOUT/S31  
P3.1/TA1.0/S30  
P3.2/TA1.1/S29  
P3DS.x  
0: Low drive  
1: High drive  
P3SEL.x  
P3IN.x  
P3.3/TA1.2/S28  
P3.4/TA2CLK/SMCLK/S27  
P3.5/TA2.0/S26  
P3.6/TA2.1/S25  
Bus  
Keeper  
EN  
D
P3.7/TA2.2/S24  
Module X IN  
P3IRQ.x  
P3IE.x  
EN  
Q
P3IFG.x  
Set  
P3SEL.x  
P3IES.x  
Interrupt  
Edge  
Select  
82  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 55. Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL.x  
LCDS24...31  
P3.0/TA1CLK/CBOUT/  
S31  
0
P3.0 (I/O)  
Timer TA1.TA1CLK  
CBOUT  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
0
0
1
0
1
S31  
X
P3.1/TA1.0/S30  
P3.2/TA1.1/S29  
P3.3/TA1.2/S28  
1
2
3
4
5
6
7
P3.1 (I/O)  
I: 0; O: 1  
Timer TA1.CCI0A capture input  
0
Timer TA1.0 output  
1
S30  
X
P3.2 (I/O)  
I: 0; O: 1  
Timer TA1.CCI1A capture input  
0
Timer TA1.1 output  
1
S29  
X
P3.3 (I/O)  
I: 0; O: 1  
Timer TA1.CCI2A capture input  
0
Timer TA1.2 output  
1
S28  
X
P3.4/TA2CLK/SMCLK/  
S27  
P3.4 (I/O)  
I: 0; O: 1  
Timer TA2.TA2CLK  
0
SMCLK  
1
S27  
X
P3.5/TA2.0/S26  
P3.6/TA2.1/S25  
P3.7/TA2.2/S24  
P3.5 (I/O)  
I: 0; O: 1  
Timer TA2.CCI0A capture input  
Timer TA2.0 output  
S26  
0
1
X
P3.6 (I/O)  
I: 0; O: 1  
Timer TA2.CCI1A capture input  
Timer TA2.1 output  
S25  
0
1
X
P3.7 (I/O)  
I: 0; O: 1  
Timer TA2.CCI2A capture input  
Timer TA2.2 output  
S24  
0
1
X
(1) X = Don't care  
Copyright © 2010–2012, Texas Instruments Incorporated  
83  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger  
Pad Logic  
S16...S23  
LCDS16...LCDS23  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
0
1
Module X OUT  
P4.0/TB0.0/S23  
P4.1/TB0.1/S22  
P4.2/TB0.2/S21  
P4.3/TB0.3/S20  
P4.4/TB0.4/S19  
P4.5/TB0.5/S18  
P4.6/TB0.6/S17  
P4DS.x  
0: Low drive  
1: High drive  
P4SEL.x  
P4IN.x  
Bus  
Keeper  
EN  
D
P4.7/TB0OUTH/SVMOUT/S16  
Module X IN  
P4IRQ.x  
P4IE.x  
EN  
Q
P4IFG.x  
Set  
P4SEL.x  
P4IES.x  
Interrupt  
Edge  
Select  
84  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 56. Port P4 (P4.0 to P4.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL.x  
LCDS16...23  
P4.0/TB0.0/S23  
P4.1/TB0.1/S22  
P4.2/TB0.2/S21  
P4.3/TB0.3/S20  
P4.4/TB0.4/S19  
P4.5/TB0.5/S18  
P4.6/TB0.6/S17  
0
P4.0 (I/O)  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
Timer TB0.CCI0A capture input  
Timer TB0.0 output(2)  
S23  
0
1
X
1
2
3
4
5
6
7
P4.1 (I/O)  
I: 0; O: 1  
Timer TB0.CCI1A capture input  
Timer TB0.1 output(2)  
S22  
0
1
X
P4.2 (I/O)  
I: 0; O: 1  
Timer TB0.CCI2A capture input  
Timer TB0.2 output(2)  
S21  
0
1
X
P4.3 (I/O)  
I: 0; O: 1  
Timer TB0.CCI3A capture input  
Timer TB0.3 output(2)  
S20  
0
1
X
P4.4 (I/O)  
I: 0; O: 1  
Timer TB0.CCI4A capture input  
Timer TB0.4 output(2)  
S19  
0
1
X
P4.5 (I/O)  
I: 0; O: 1  
Timer TB0.CCI5A capture input  
Timer TB0.5 output(2)  
S18  
0
1
X
P4.6 (I/O)  
I: 0; O: 1  
Timer TB0.CCI6A capture input  
Timer TB0.6 output(2)  
S17  
0
1
X
P4.7/TB0OUTH/  
SVMOUT/S16  
P4.7 (I/O)  
I: 0; O: 1  
Timer TB0.TB0OUTH  
SVMOUT  
0
1
S16  
X
(1) X = Don't care  
(2) Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance.  
Copyright © 2010–2012, Texas Instruments Incorporated  
85  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Port P5, P5.0 and P5.1, Input/Output With Schmitt Trigger  
Pad Logic  
To/From  
Reference  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
P5OUT.x  
0
1
Module X OUT  
P5.0/VREF+/VeREF+  
P5.1/VREF–/VeREF–  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Table 57. Port P5 (P5.0 and P5.1) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
REFOUT  
P5.0/VREF+/VeREF+  
0
P5.0 (I/O)(2)  
VeREF+(3)  
VREF+(4)  
P5.1 (I/O)(2)  
VeREF(5)  
VREF–(6)  
I: 0; O: 1  
0
1
1
0
1
1
X
0
1
X
0
1
X
X
P5.1/VREF–/VeREF–  
1
I: 0; O: 1  
X
X
(1) X = Don't care  
(2) Default condition  
(3) Setting the P5SEL.0 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A, Comparator_B, or  
DAC12_A.  
(4) Setting the P5SEL.0 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. The ADC12_A, VREF+ reference is available at the pin.  
(5) Setting the P5SEL.1 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A, Comparator_B, or  
DAC12_A.  
(6) Setting the P5SEL.1 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals. The ADC12_A, VREF– reference is available at the pin.  
86  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Port P5, P5.2 to P5.7, Input/Output With Schmitt Trigger  
Pad Logic  
S40...S42  
LCDS40...LCDS42  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
P5OUT.x  
0
1
Module X OUT  
P5.2/R23  
P5DS.x  
0: Low drive  
1: High drive  
P5.3/COM1/S42  
P5.4/COM2/S41  
P5.5/COM3/S40  
P5.6/ADC12CLK/DMAE0  
P5.7/RTCCLK  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Table 58. Port P5 (P5.2 to P5.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
LCDS40...42  
P5.2/R23  
2
P5.2 (I/O)  
R23  
I: 0; O: 1  
0
1
0
1
0
0
1
0
0
1
0
0
1
1
0
1
na  
na  
0
X
P5.3/COM1/S42  
3
4
5
6
7
P5.3 (I/O)  
COM1  
I: 0; O: 1  
X
X
S42  
X
1
P5.4/COM2/S41  
P5.4 (I/O)  
COM2  
I: 0; O: 1  
0
X
X
S41  
X
1
P5.5/COM3/S40  
P5.5 (I/O)  
COM3  
I: 0; O: 1  
0
X
X
S40  
X
1
P5.6/ADC12CLK/DMAE0  
P5.6 (I/O)  
ADC12CLK  
DMAE0  
P5.7 (I/O)  
RTCCLK  
I: 0; O: 1  
na  
na  
na  
na  
na  
1
0
I: 0; O: 1  
1
P5.7/RTCCLK  
(1) X = Don't care  
Copyright © 2010–2012, Texas Instruments Incorporated  
87  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Port P6, P6.0 to P6.7, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC12  
INCHx = y  
0
Dvss  
1
2
0 if DAC12AMPx=0  
1 if DAC12AMPx=1  
2 if DAC12AMPx>1  
From DAC12_A  
To Comparator_B  
From Comparator_B  
CBPD.x  
DAC12AMPx>0  
DAC12OPS  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
P6OUT.x  
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
Bus  
Keeper  
88  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 59. Port P6 (P6.0 to P6.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL.x  
CBPD.x  
DAC12OPS  
DAC12AMPx  
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6.6/CB6/A6/DAC0  
0
P6.0 (I/O)  
CB0  
A0(2) (3)  
P6.1 (I/O)  
CB1  
A1(2) (3)  
P6.2 (I/O)  
CB2  
A2(2) (3)  
P6.3 (I/O)  
CB3  
A3(2) (3)  
P6.4 (I/O)  
CB4  
A4(2) (3)  
P6.5 (I/O)  
CB5  
A5(4) (2) (3)  
P6.6 (I/O)  
CB6  
I: 0; O: 1  
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
X
0
X
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
X
0
1
X
X
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
X
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
0
X
X
1
2
3
4
5
6
I: 0; O: 1  
X
X
I: 0; O: 1  
X
X
I: 0; O: 1  
X
X
I: 0; O: 1  
X
X
I: 0; O: 1  
X
X
I: 0; O: 1  
X
X
0
A6(2) (3)  
X
X
0
DAC0  
X
0
>1  
0
P6.7/CB7/A7/DAC1  
7
P6.7 (I/O)  
CB7  
A7(2) (3)  
I: 0; O: 1  
X
X
X
X
X
0
X
0
DAC1  
0
>1  
(1) X = Don't care  
(2) Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals.  
(3) The ADC12_A channel Ax is connected internally to AVSS if not selected via the respective INCHx bits.  
(4) X = Don't care  
Copyright © 2010–2012, Texas Instruments Incorporated  
89  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Port P7, P7.2, Input/Output With Schmitt Trigger  
Pad Logic  
To XT2  
P7REN.2  
DVSS  
DVCC  
0
1
1
P7DIR.2  
P7OUT.2  
0
1
P7.2/XT2IN  
P7DS.2  
0: Low drive  
1: High drive  
P7SEL.2  
P7IN.2  
Bus  
Keeper  
90  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Port P7, P7.3, Input/Output With Schmitt Trigger  
Pad Logic  
To XT2  
P7REN.3  
DVSS  
DVCC  
0
1
1
P7DIR.3  
P7OUT.3  
0
1
P7.3/XT2OUT  
P7DS.3  
0: Low drive  
1: High drive  
P7SEL.3  
P7IN.3  
Bus  
Keeper  
Table 60. Port P7 (P7.2 and P7.3) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.2  
P7SEL.3  
XT2BYPASS  
P7.2/XT2IN  
2
P7.2 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
X
X
X
X
0
1
X
0
1
XT2IN crystal mode(2)  
XT2IN bypass mode(2)  
P7.3 (I/O)  
XT2OUT crystal mode(3)  
P7.3 (I/O)(3)  
X
X
P7.3/XT2OUT  
3
I: 0; O: 1  
X
X
(1) X = Don't care  
(2) Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal  
mode or bypass mode.  
(3) Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as  
general-purpose I/O.  
Copyright © 2010–2012, Texas Instruments Incorporated  
91  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Port P7, P7.4 to P7.7, Input/Output With Schmitt Trigger  
0
Pad Logic  
Dvss  
1
2
0 if DAC12AMPx=0  
1 if DAC12AMPx=1  
2 if DAC12AMPx>1  
From DAC12_A  
To ADC12  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
DAC12AMPx>0  
DAC12OPS  
P7REN.x  
DVSS  
DVCC  
0
1
1
P7DIR.x  
P7OUT.x  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
P7DS.x  
0: Low drive  
1: High drive  
P7SEL.x  
P7IN.x  
Bus  
Keeper  
92  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 61. Port P7 (P7.4 to P7.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.x  
CBPD.x  
DAC12OPS  
DAC12AMPx  
P7.4/CB8/A12  
4
P7.4 (I/O)  
I: 0; O: 1  
0
X
1
0
X
1
0
X
1
X
0
X
1
X
0
1
X
0
1
X
0
1
X
X
0
1
X
X
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
X
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
0
Comparator_B input CB8  
A12(2) (3)  
X
X
P7.5/CB9/A13  
5
6
P7.5 (I/O)  
I: 0; O: 1  
Comparator_B input CB9  
A13(2) (3)  
X
X
P7.6/CB10/A14/DAC0  
P7.6 (I/O)  
I: 0; O: 1  
Comparator_B input CB10  
A14(2) (3)  
X
X
0
X
X
0
DAC12_A output DAC0  
P7.7 (I/O)  
X
1
>1  
0
P7.7/CB11/A15/DAC1  
7
I: 0; O: 1  
X
Comparator_B input CB11  
A15(2) (3)  
X
X
X
X
0
X
0
DAC12_A output DAC1  
1
>1  
(1) X = Don't care  
(2) Setting the P7SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying  
analog signals.  
(3) The ADC12_A channel Ax is connected internally to AVSS if not selected via the respective INCHx bits.  
Copyright © 2010–2012, Texas Instruments Incorporated  
93  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Port P8, P8.0 to P8.7, Input/Output With Schmitt Trigger  
Pad Logic  
S8...S15  
LCDS8...LCDS15  
P8REN.x  
DVSS  
DVCC  
0
1
1
P8DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
0
1
P8OUT.x  
Module X OUT  
P8.0/TB0CLK/S15  
P8DS.x  
0: Low drive  
1: High drive  
P8.1/UCB1STE/UCA1CLK/S14  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.4/UCB1CLK/UCA1STE/S11  
P8.5/UCB1SIMO//UCB1SDA/S10  
P8.6/UCB1SOMI/UCB1SCL/S9  
P8.7/S8  
P8SEL.x  
P8IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
94  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 62. Port P8 (P8.0 to P8.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P9.x)  
x
FUNCTION  
P8DIR.x  
P8SEL.x  
LCDS8...16  
P8.0/TB0CLK/S15  
0
P8.0 (I/O)  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
X
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
Timer TB0.TB0CLK clock input  
0
S15  
X
P8.1/UCB1STE/UCA1CLK/S14  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.4/UCB1CLK/UCA1STE/S11  
P8.5/UCB1SIMO/UCB1SDA/S10  
P8.6/UCB1SOMI/UCB1SCL/S9  
1
2
3
4
5
6
7
P8.1 (I/O)  
I: 0; O: 1  
UCB1STE/UCA1CLK  
X
S14  
X
P8.2 (I/O)  
I: 0; O: 1  
UCA1TXD/UCA1SIMO  
X
S13  
X
P8.3 (I/O)  
I: 0; O: 1  
UCA1RXD/UCA1SOMI  
X
S12  
X
P8.4 (I/O)  
I: 0; O: 1  
UCB1CLK/UCA1STE  
X
S11  
X
P8.5 (I/O)  
I: 0; O: 1  
UCB1SIMO/UCB1SDA  
X
S10  
X
P8.6 (I/O)  
I: 0; O: 1  
UCB1SOMI/UCB1SCL  
X
S9  
X
I: 0; O: 1  
X
P8.7/S8  
P8.7 (I/O)  
S8  
(1) X = Don't care  
Copyright © 2010–2012, Texas Instruments Incorporated  
95  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Port P9, P9.0 to P9.7, Input/Output With Schmitt Trigger  
Pad Logic  
S0...S7  
LCDS0...LCDS7  
P9REN.x  
0
1
DVSS  
DVCC  
1
Direction  
0: Input  
1: Output  
P9DIR.x  
P9OUT.x  
P9.0/S7  
P9DS.x  
0: Low drive  
1: High drive  
P9.1/S6  
P9.2/S5  
P9.3/S4  
P9.4/S3  
P9.5/S2  
P9.6/S1  
P9.7/S0  
P9IN.x  
Bus  
Keeper  
Table 63. Port P9 (P9.0 to P9.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P9.x)  
P9.0/S7  
x
FUNCTION  
P9DIR.x  
P9SEL.x  
LCDS0...7  
0
P9.0 (I/O)  
S7  
I: 0; O: 1  
0
X
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
P9.1/S6  
P9.2/S5  
P9.3/S4  
P9.4/S3  
P9.5/S2  
P9.6/S1  
P9.7/S0  
1
2
3
4
5
6
7
P9.1 (I/O)  
S6  
I: 0; O: 1  
X
X
0
P9.2 (I/O)  
S5  
I: 0; O: 1  
X
X
0
P9.3 (I/O)  
S4  
I: 0; O: 1  
X
X
0
P9.4 (I/O)  
S3  
I: 0; O: 1  
X
X
0
P9.5 (I/O)  
S2  
I: 0; O: 1  
X
I: 0; O: 1  
X
X
0
P9.6 (I/O)  
S1  
X
0
P9.7 (I/O)  
S0  
I: 0; O: 1  
X
X
(1) X = Don't care  
96  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Port PU.0, PU.1 Ports  
LDOO  
VSSU  
Pad Logic  
PUOPE  
PU.0  
PUOUT0  
PUIN0  
PUIPE  
PUIN1  
PUOUT1  
PU.1  
Table 64. Port PU.0, PU.1 Output Functions  
CONTROL BITS  
PIN NAME  
FUNCTION  
PUSEL  
PUDIR  
PUOUT1  
PUOUT0  
PU.1  
PU.0  
0
0
0
0
0
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Hi-Z  
0
Hi-Z  
0
Outputs off  
Outputs enabled  
Outputs enabled  
Outputs enabled  
Outputs enabled  
0
1
1
0
1
1
Copyright © 2010–2012, Texas Instruments Incorporated  
97  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
Port J, J.0 JTAG pin TDO, Input/Output With Schmitt Trigger or Output  
Pad Logic  
PJREN.0  
0
1
DVSS  
DVCC  
1
PJDIR.0  
DVCC  
0
1
PJOUT.0  
0
1
From JTAG  
PJ.0/TDO  
PJDS.0  
0: Low drive  
1: High drive  
From JTAG  
PJIN.0  
EN  
D
Port J, J.1 to J.3 JTAG pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output  
Pad Logic  
PJREN.x  
0
1
DVSS  
DVCC  
1
PJDIR.x  
DVSS  
0
1
PJOUT.x  
0
1
From JTAG  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
PJDS.x  
0: Low drive  
1: High drive  
From JTAG  
PJIN.x  
EN  
D
To JTAG  
98  
Copyright © 2010–2012, Texas Instruments Incorporated  
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
Table 65. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS/  
SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJ.0/TDO  
0
PJ.0 (I/O)(2)  
TDO(3)  
I: 0; O: 1  
X
PJ.1/TDI/TCLK  
PJ.2/TMS  
1
2
3
PJ.1 (I/O)(2)  
TDI/TCLK(3) (4)  
PJ.2 (I/O)(2)  
TMS(3) (4)  
PJ.3 (I/O)(2)  
TCK(3) (4)  
I: 0; O: 1  
X
I: 0; O: 1  
X
PJ.3/TCK  
I: 0; O: 1  
X
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
Copyright © 2010–2012, Texas Instruments Incorporated  
99  
MSP430F643x  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
www.ti.com  
DEVICE DESCRIPTORS  
Table 66 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type.  
Table 66. MSP430F643x Device Descriptor Table(1)  
F6438  
Value  
06h  
F6436  
Value  
06h  
F6435  
Value  
06h  
F6433  
Value  
06h  
Size  
bytes  
Description  
Address  
Info Block  
Info length  
CRC length  
01A00h  
01A01h  
01A02h  
01A04h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
01A14h  
01A15h  
01A16h  
01A18h  
1
1
2
2
1
1
1
1
4
2
2
2
1
1
2
2
06h  
06h  
06h  
06h  
CRC value  
per unit  
8124h  
per unit  
per unit  
08h  
per unit  
8122h  
per unit  
per unit  
08h  
per unit  
8121h  
per unit  
per unit  
08h  
per unit  
811Fh  
per unit  
per unit  
08h  
Device ID  
Hardware revision  
Firmware revision  
Die Record Tag  
Die Record length  
Lot/Wafer ID  
Die Record  
0Ah  
0Ah  
0Ah  
0Ah  
per unit  
per unit  
per unit  
per unit  
11h  
per unit  
per unit  
per unit  
per unit  
11h  
per unit  
per unit  
per unit  
per unit  
11h  
per unit  
per unit  
per unit  
per unit  
11h  
Die X position  
Die Y position  
Test results  
ADC12 Calibration  
ADC12 Calibration Tag  
ADC12 Calibration length  
ADC Gain Factor  
ADC Offset  
10h  
10h  
10h  
10h  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC 1.5-V Reference  
Temp. Sensor 30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC 1.5-V Reference  
Temp. Sensor 85°C  
ADC 2.0-V Reference  
Temp. Sensor 30°C  
ADC 2.0-V Reference  
Temp. Sensor 85°C  
ADC 2.5-V Reference  
Temp. Sensor 30°C  
ADC 2.5-V Reference  
Temp. Sensor 85°C  
(1) NA = Not applicable  
100  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
MSP430F643x  
www.ti.com  
SLAS720B AUGUST 2010REVISED AUGUST 2012  
REVISION HISTORY  
REVISION  
COMMENTS  
SLAS720  
Product Preview release  
Production Data release  
SLAS720A  
Changed ACLK description in Terminal Functions.  
Changed typos to Interrupt Flag names on Timer TA2 rows in Table 6.  
Changed notes on REF, Built-In Reference.  
Changed SYSRSTIV, System Reset offset 1Ch to Reserved in Table 13.  
Corrected names of SVMLVLRIFG and SVMHVLRIFG bits in Table 13.  
SLAS720B  
Changed tSENSOR(sample) MIN to 100 µs in 12-Bit ADC, Temperature Sensor and Built-In VMID.  
Changed note (2) in 12-Bit ADC, Temperature Sensor and Built-In VMID.  
Editorial changes throughout.  
Copyright © 2010–2012, Texas Instruments Incorporated  
101  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Mar-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430F6433IPZ  
MSP430F6433IPZR  
MSP430F6433IZQWR  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
113  
90  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
1000  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
Green (RoHS  
& no Sb/Br)  
MSP430F6433IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
MSP430F6435IPZ  
MSP430F6435IPZR  
MSP430F6435IZQWR  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
PZ  
PZ  
100  
100  
113  
90  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
LQFP  
1000  
2500  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
Green (RoHS  
& no Sb/Br)  
MSP430F6435IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
MSP430F6436IPZ  
MSP430F6436IPZR  
MSP430F6436IZQWR  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
PZ  
PZ  
100  
100  
113  
90  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
LQFP  
1000  
2500  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
Green (RoHS  
& no Sb/Br)  
MSP430F6436IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
MSP430F6438IPZ  
MSP430F6438IPZR  
ACTIVE  
ACTIVE  
LQFP  
PZ  
PZ  
100  
100  
90  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
LQFP  
1000  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Mar-2012  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430F6438IZQWR  
MSP430F6438IZQWT  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

MSP430F6438IZCA

MSP430F643x Mixed-Signal Microcontrollers
TI

MSP430F6438IZCAR

MSP430F643x Mixed-Signal Microcontrollers
TI

MSP430F6438IZQW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6438IZQWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6438IZQWT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6438_V01

MSP430F643x Mixed-Signal Microcontrollers
TI

MSP430F6458

MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x Mixed-Signal Microcontrollers
TI

MSP430F6458IPZ

MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x Mixed-Signal Microcontrollers
TI

MSP430F6459

MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x Mixed-Signal Microcontrollers
TI

MSP430F6459-HIREL

HiRel 混合信号微控制器
TI

MSP430F6459IPZ

MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x Mixed-Signal Microcontrollers
TI

MSP430F6459IPZR

MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x Mixed-Signal Microcontrollers
TI