MSP430F6459TPZR [TI]

HiRel 混合信号微控制器 | PZ | 100 | -40 to 105;
MSP430F6459TPZR
型号: MSP430F6459TPZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HiRel 混合信号微控制器 | PZ | 100 | -40 to 105

时钟 控制器 微控制器 静态存储器 外围集成电路 装置
文件: 总126页 (文件大小:1391K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
MSP430F6459-HIREL 混合信号微控制器  
1 器件概述  
1.1 特性  
1
低频修整内部参照源 (REFO)  
– 32kHz 晶体 (XT1)  
低电源电压范围:  
1.8V 3.6V  
超低功耗  
高达 32MHz 的高频晶振 (XT2)  
工作模式 (AM):  
所有系统时钟均工作:  
• 4 个定时器,分别配有 35 7 个捕捉/比较寄存  
8MHz3V 且闪存程序执行时为 295μA/MHz  
(典型值)  
• 3 个通用串行通信接口 (USCI)  
– USCI_A0USCI_A1 USCI_A2 都支持:  
待机模式 (LPM3):  
看门狗(采用晶振)和电源监控器工作,完全  
具有自动波特率检测功能的增强型通用异步收  
发器 (UART)  
RAM 保持,快速唤醒:  
2.2V 时为 2μA3V 时为 2.2μA(典型值)  
关断、实时时钟 (RTC) 模式 (LPM 3.5):  
关断模式,RTC(采用晶振)工作:  
3V 时为 1.1µA(典型值)  
IrDA 编码器和解码器  
同步串行外设接口 (SPI)  
– USCI_B0USCI_B1 USCI_B2 都支持:  
I2C  
同步串行外设接口 (SPI)  
关断模式 (LPM4.5):  
具有内部共用基准、采样保持、和自动扫描功能的  
12 位模数转换器 (ADC)  
3V 时为 0.45µA(典型值)  
3μs(典型值)内从待机模式唤醒  
• 2 个具有同步功能的 12 位数模转换器 (DAC)  
电压比较器  
• 16 位精简指令集 (RISC) 架构、扩展存储器、高达  
20MHz 的系统时钟  
具有高达 160 段对比度控制的集成 LCD 驱动器  
硬件乘法器支持 32 位运算  
串行板上编程,无需外部编程电压  
• 6 通道内部直接内存访问 (DMA)  
具有电源电压后备开关的 RTC 模块  
灵活的电源管理系统  
内置可编程的低压降稳压器 (LDO)  
电源电压监控、监视、和临时限电  
统一时钟系统  
针对频率稳定的锁频环路 (FLL) 控制环路  
低功率低频内部时钟源 (VLO)  
1.2 应用范围  
模拟和数字传感器系统  
数字电机控制  
遥控  
恒温器  
数字定时器  
手持仪表  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASEC3  
 
 
 
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
1.3 说明  
TI MSP430™系列超低功耗微控制器种类繁多,各成员器件配备不同的外设集以满足各类应用的 需求。  
该架构与五种低功耗模式配合使用,是延长便携式测量应用电池寿命的最优 选择。该器件 具有 一个强大的  
16 位精简指令集 (RISC) 中央处理器 (CPU),使用 16 位寄存器以及常数发生器,以便获得最高编码效率。  
该数控振荡器 (DCO) 可在 3µs(典型值)内从低功率模式唤醒至激活模式。  
MSP430F6459-HIREL 微控制器配有一个集成式 3.3V LDO、四个 16 位定时器、一个高性能 12 ADC、  
三个 USCI、一个硬件乘法器、DMA、具有报警功能的 RTC 模块、一个比较器和多达 74 I/O 引脚。  
这些 器件 的典型应用包括模拟和数字传感器系统、数字电机控制、遥控、恒温器、数字定时器以及手持仪  
表。  
器件信息(1)  
封装  
器件型号  
MSP430F6459-HIREL  
封装尺寸(标称值)(2)  
PZ (100)  
16.0mm x 16.0mm  
(1) 要获得最新的器件、封装和订购信息,请参见封装选项附录9),或者访问德州仪器 (TI) 网站 www.ti.com。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据9中)。  
1.4 功能方框图  
1-1 给出了此器件的功能框图。  
PA  
PB  
PC  
PD  
PU.0  
PU.1  
XIN XOUT  
DVCC DVSS  
AVCC AVSS  
RST/NMI  
LDOO LDOI  
P1.x P2.x P3.x P4.x P5.x P6.x P7.x P8.x  
P9.x  
XT2IN  
64KB  
32KB  
RAM  
I/O Ports  
P1, P2  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P3, P4  
2×8 I/Os  
Interrupt  
Capability  
I/O Ports  
P5, P6  
2×8 I/Os  
I/O Ports  
P7, P8  
1×6 I/Os  
1×8 I/Os  
ACLK  
SMCLK  
SYS  
Power  
Management  
I/O Ports  
P9  
1×8 I/Os  
Unified  
Clock  
System  
USCI0,1,2  
512KB  
384KB  
MID  
PU Port  
LDO  
XT2OUT  
Watchdog  
Ax: UART,  
IrDA, SPI  
Memory  
Integrity  
Detection  
+2KB RAM  
P2 Port  
Mapping  
Controller  
LDO  
SVM, SVS  
Brownout  
Bx: SPI, I2C  
PE  
1×8 I/Os  
Flash  
MCLK  
PA  
1×16 I/Os  
PB  
1×16 I/Os  
PC  
1×16 I/Os  
PD  
1×14 I/Os  
+8B Backup  
RAM  
CPUXV2  
and  
Working  
Registers  
EEM  
(L: 8+2)  
DMA  
ADC12_A  
LCD_B  
TA1 and  
TA2  
RTC_B  
6 Channel  
DAC12_A  
REF  
TA0  
TB0  
12 bit  
200 ksps  
JTAG,  
SBW  
Interface  
160  
Segments  
12 bit  
2 channels  
voltage out  
Comp_B  
MPY32  
CRC16  
2 Timer_A  
each with  
3 CC  
Reference  
1.5 V, 2.0 V,  
2.5 V  
Timer_A  
5 CC  
Registers  
Timer_B  
7 CC  
Registers  
Battery  
Backup  
System  
16 channels  
(12 ext, 4 int)  
Autoscan  
Port PJ  
Registers  
Copyright © 2016, Texas Instruments Incorporated  
1-1. 功能方框图  
2
器件概述  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
内容  
1
器件概.................................................... 1  
6
Detailed Description ................................... 50  
6.1 Overview ............................................ 50  
6.2 CPU ................................................. 50  
6.3 Instruction Set....................................... 51  
6.4 Operating Modes.................................... 52  
6.5 Interrupt Vector Addresses.......................... 53  
6.6 Memory Organization ............................... 55  
6.7 Bootloader (BSL) .................................... 55  
6.8 JTAG Operation ..................................... 57  
6.9 Flash Memory ....................................... 57  
6.10 Memory Integrity Detection (MID)................... 58  
6.11 RAM ................................................. 58  
6.12 Backup RAM ........................................ 59  
6.13 Peripherals .......................................... 59  
6.14 Input/Output Schematics ............................ 86  
6.15 Device Descriptors................................. 109  
Applications, Implementation, and Layout ...... 110  
1.1 特性 ................................................... 1  
1.2 应用范围 .............................................. 1  
1.3 说明 ................................................... 2  
1.4 功能方框图............................................ 2  
修订历史记录............................................... 4  
Device Comparison ..................................... 5  
Terminal Configuration and Functions.............. 6  
4.1 Pin Diagram .......................................... 6  
4.2 Signal Descriptions ................................... 7  
Specifications ........................................... 14  
5.1 Absolute Maximum Ratings......................... 14  
5.2 ESD Ratings ........................................ 14  
5.3 Recommended Operating Conditions............... 14  
2
3
4
5
5.4  
5.5  
5.6  
Active Mode Supply Current Into VCC Excluding  
External Current..................................... 16  
Low-Power Mode Supply Currents (Into VCC  
)
7
8
Excluding External Current.......................... 16  
Low-Power Mode With LCD Supply Currents (Into  
7.1  
Device Connection and Layout Fundamentals .... 110  
7.2  
Peripheral- and Interface-Specific Design  
VCC) Excluding External Current.................... 18  
Information ......................................... 114  
5.7  
5.8  
5.9  
Schmitt-Trigger Inputs – General-Purpose I/O ..... 19  
器件和文档支......................................... 116  
8.1 入门和下一步....................................... 116  
8.2 Device Nomenclature.............................. 116  
8.3 工具和软件 ......................................... 117  
8.4 文档支持 ........................................... 118  
8.5 接收文档更新通.................................. 120  
8.6 Community Resources............................. 120  
8.7 商标 ................................................ 120  
8.8 静电放电警告....................................... 120  
8.9 出口管制提示....................................... 120  
8.10 Glossary............................................ 120  
机械、封装和可订购信息 .............................. 121  
Leakage Current – General-Purpose I/O ........... 19  
Outputs – General-Purpose I/O (Full Drive  
Strength) ............................................ 19  
5.10 Outputs – General-Purpose I/O (Reduced Drive  
Strength) ............................................ 19  
5.11 Thermal Resistance Characteristics for PZ Package  
...................................................... 20  
5.12 Typical Characteristics – Outputs, Reduced Drive  
Strength (PxDS.y = 0)............................... 21  
5.13 Typical Characteristics – Outputs, Full Drive  
Strength (PxDS.y = 1)............................... 22  
5.14 Timing and Switching Characteristics............... 23  
9
版权 © 2016, Texas Instruments Incorporated  
内容  
3
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (July 2016) to Revision A  
Page  
已更改 文档状态至量产数据和完整数据手册 ...................................................................................... 1  
4
修订历史记录  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
3 Device Comparison  
Table 3-1. Device Comparison(1)(2)  
USCI  
CHANNEL  
A:  
UART, IrDA,  
SPI  
CHANNEL  
B:  
FLASH SRAM  
DEVICE  
ADC12_A  
(Ch)  
DAC12_A  
(Ch)  
Comp_B  
(Ch)  
Timer_A(4)  
Timer_B(5)  
I/O  
USB  
LCD  
PACKAGE  
(KB)  
(KB)(3)  
SPI, I2C  
MSP430F6459  
512  
66  
5, 3, 3  
7
3
3
12 ext, 4 int  
2
12  
74  
No  
Yes  
100 PZ  
(1) For the most current device, package, and ordering information, see the Package Option Addendum in 9, or see the TI website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.  
(3) The additional 2KB of USB SRAM that is listed can be used as general-purpose SRAM when USB is not in use.  
(4) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output  
generators, respectively.  
(5) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a  
number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output  
generators, respectively.  
Copyright © 2016, Texas Instruments Incorporated  
Device Comparison  
5
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
4 Terminal Configuration and Functions  
4.1 Pin Diagram  
Figure 4-1 shows the pinout diagram.  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P9.7/S0  
2
P9.6/UCB2SOMI/UCB2SCL/S1  
P9.5/UCB2SIMO/UCB2SDA/S2  
P9.4/UCB2CLK/UCA2STE/S3  
P9.3/UCA2RXD/UCA2SOMI/S4  
P9.2/UCA2TXD/UCA2SIMO/S5  
P9.1/UCB2STE/UCA2CLK/S6  
P9.0/S7  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
P5.0/VREF+/VeREF+  
P5.1/VREF−/VeREF−  
AVCC1  
3
4
5
6
7
8
9
P8.7/S8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P8.6/UCB1SOMI/UCB1SCL/S9  
P8.5/UCB1SIMO/UCB1SDA/S10  
DVCC2  
AVSS1  
XIN  
DVSS2  
XOUT  
P8.4/UCB1CLK/UCA1STE/S11  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.1/UCB1STE/UCA1CLK/S14  
P8.0/TB0CLK/S15  
AVSS2  
P5.6/ADC12CLK/DMAE0  
P2.0/P2MAP0  
P2.1/P2MAP1  
P4.7/TB0OUTH/SVMOUT/S16  
P4.6/TB0.6/S17  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P4.5/TB0.5/S18  
P2.5/P2MAP5  
P4.4/TB0.4/S19  
P2.6/P2MAP6/R03  
P2.7/P2MAP7/LCDREF/R13  
DVCC1  
P4.3/TB0.3/S20  
P4.2/TB0.2/S21  
P4.1/TB0.1/S22  
Figure 4-1. PZ S-PQFP-G100 Package  
6
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
4.2 Signal Descriptions  
Table 4-1 describes the signals for all device variants and package options.  
Table 4-1. Signal Descriptions  
TERMINAL  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
General-purpose digital I/O  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
I/O Comparator_B input CB4  
Analog input A4 – ADC  
General-purpose digital I/O  
2
3
I/O Comparator_B input CB5  
Analog input A5 – ADC  
General-purpose digital I/O  
Comparator_B input CB6  
I/O  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
Analog input A6 – ADC  
DAC12.0 output  
General-purpose digital I/O  
Comparator_B input CB7  
I/O  
4
Analog input A7 – ADC  
DAC12.1 output  
General-purpose digital I/O  
P7.4/CB8/A12  
P7.5/CB9/A13  
5
6
I/O Comparator_B input CB8  
Analog input A12 –ADC  
General-purpose digital I/O  
I/O Comparator_B input CB9  
Analog input A13 – ADC  
General-purpose digital I/O  
Comparator_B input CB10  
I/O  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
7
8
Analog input A14 – ADC  
DAC12.0 output  
General-purpose digital I/O  
Comparator_B input CB11  
I/O  
Analog input A15 – ADC  
DAC12.1 output  
General-purpose digital I/O  
P5.0/VREF+/VeREF+  
P5.1/VREF-/VeREF-  
9
I/O Output of reference voltage to the ADC  
Input for an external reference voltage to the ADC  
General-purpose digital I/O  
10  
I/O  
Negative terminal for the ADC's reference voltage for both sources, the internal  
reference voltage, or an external applied reference voltage  
AVCC1  
AVSS1  
XIN  
11  
12  
13  
14  
15  
Analog power supply  
Analog ground supply  
I
Input terminal for crystal oscillator XT1  
Output terminal of crystal oscillator XT1  
Analog ground supply  
XOUT  
AVSS2  
O
(1) I = input, O = output, N/A = not available on this package offering.  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 4-1. Signal Descriptions (continued)  
TERMINAL  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
General-purpose digital I/O  
P5.6/ADC12CLK/DMAE0  
16  
I/O Conversion clock output ADC  
DMA external trigger input  
General-purpose digital I/O with port interrupt and mappable secondary function  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
17  
18  
19  
20  
21  
22  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave in, master out; USCI_B0 I2C data  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave out, master in; USCI_B0 I2C clock  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in, master out  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_A0 UART receive data; USCI_A0 slave out, master in  
General-purpose digital I/O with port interrupt and mappable secondary function  
P2.6/P2MAP6/R03  
23  
24  
I/O Default mapping: no secondary function  
Input/output port of lowest analog LCD voltage (V5)  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: no secondary function  
P2.7/P2MAP7/LCDREF/R13  
I/O  
External reference voltage input for regulated LCD voltage  
Input/output port of third most positive analog LCD voltage (V3 or V4)  
Digital power supply  
DVCC1  
25  
26  
27  
DVSS1  
VCORE(2)  
Digital ground supply  
Regulated core power supply (internal use only, no external current loading)  
General-purpose digital I/O  
P5.2/R23  
28  
I/O  
Input/output port of second most positive analog LCD voltage (V2)  
LCD capacitor connection  
LCDCAP/R33  
COM0  
29  
30  
I/O  
Input/output port of most positive analog LCD voltage (V1)  
O
LCD common output COM0 for LCD backplane  
General-purpose digital I/O  
P5.3/COM1/S42  
P5.4/COM2/S41  
P5.5/COM3/S40  
31  
32  
33  
I/O LCD common output COM1 for LCD backplane  
LCD segment output S42  
General-purpose digital I/O  
I/O LCD common output COM2 for LCD backplane  
LCD segment output S41  
General-purpose digital I/O  
I/O LCD common output COM3 for LCD backplane  
LCD segment output S40  
(2) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended  
capacitor value, CVCORE  
.
8
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 4-1. Signal Descriptions (continued)  
TERMINAL  
NAME  
I/O(1)  
DESCRIPTION  
General-purpose digital I/O with port interrupt  
NO.  
Timer TA0 clock signal TACLK input  
P1.0/TA0CLK/ACLK/S39  
P1.1/TA0.0/S38  
34  
I/O  
ACLK output (divided by 1, 2, 4, 8, 16, or 32)  
LCD segment output S39  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output  
BSL transmit output  
35  
36  
I/O  
I/O  
LCD segment output S38  
General-purpose digital I/O with port interrupt  
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output  
BSL receive input  
P1.2/TA0.1/S37  
LCD segment output S37  
General-purpose digital I/O with port interrupt  
P1.3/TA0.2/S36  
P1.4/TA0.3/S35  
P1.5/TA0.4/S34  
P1.6/TA0.1/S33  
P1.7/TA0.2/S32  
37  
38  
39  
40  
41  
I/O Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output  
LCD segment output S36  
General-purpose digital I/O with port interrupt  
I/O Timer TA0 CCR3 capture: CCI3A input compare: Out3 output  
LCD segment output S35  
General-purpose digital I/O with port interrupt  
I/O Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output  
LCD segment output S34  
General-purpose digital I/O with port interrupt  
I/O Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output  
LCD segment output S33  
General-purpose digital I/O with port interrupt  
I/O Timer TA0 CCR2 capture: CCI2B input, compare: Out2 output  
LCD segment output S32  
General-purpose digital I/O with port interrupt  
Timer TA1 clock input  
I/O  
P3.0/TA1CLK/CBOUT/S31  
42  
Comparator_B output  
LCD segment output S31  
General-purpose digital I/O with port interrupt  
P3.1/TA1.0/S30  
P3.2/TA1.1/S29  
P3.3/TA1.2/S28  
43  
44  
45  
I/O Timer TA1 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
LCD segment output S30  
General-purpose digital I/O with port interrupt  
I/O Timer TA1 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
LCD segment output S29  
General-purpose digital I/O with port interrupt  
I/O Timer TA1 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
LCD segment output S28  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 4-1. Signal Descriptions (continued)  
TERMINAL  
NAME  
I/O(1)  
DESCRIPTION  
General-purpose digital I/O with port interrupt  
NO.  
Timer TA2 clock input  
SMCLK output  
P3.4/TA2CLK/SMCLK/S27  
46  
I/O  
LCD segment output S27  
General-purpose digital I/O with port interrupt  
P3.5/TA2.0/S26  
P3.6/TA2.1/S25  
P3.7/TA2.2/S24  
P4.0/TB0.0/S23  
P4.1/TB0.1/S22  
P4.2/TB0.2/S21  
P4.3/TB0.3/S20  
P4.4/TB0.4/S19  
P4.5/TB0.5/S18  
P4.6/TB0.6/S17  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
I/O Timer TA2 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
LCD segment output S26  
General-purpose digital I/O with port interrupt  
I/O Timer TA2 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
LCD segment output S25  
General-purpose digital I/O with port interrupt  
I/O Timer TA2 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
LCD segment output S24  
General-purpose digital I/O with port interrupt  
I/O Timer TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output  
LCD segment output S23  
General-purpose digital I/O with port interrupt  
I/O Timer TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output  
LCD segment output S22  
General-purpose digital I/O with port interrupt  
I/O Timer TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output  
LCD segment output S21  
General-purpose digital I/O with port interrupt  
I/O Timer TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output  
LCD segment output S20  
General-purpose digital I/O with port interrupt  
I/O Timer TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output  
LCD segment output S19  
General-purpose digital I/O with port interrupt  
I/O Timer TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output  
LCD segment output S18  
General-purpose digital I/O with port interrupt  
I/O Timer TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output  
LCD segment output S17  
General-purpose digital I/O with port interrupt  
Timer TB0: Switch all PWM outputs high impedance  
P4.7/TB0OUTH/SVMOUT/S16  
P8.0/TB0CLK/S15  
57  
58  
I/O  
SVM output  
LCD segment output S16  
General-purpose digital I/O  
I/O Timer TB0 clock input  
LCD segment output S15  
10  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 4-1. Signal Descriptions (continued)  
TERMINAL  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
General-purpose digital I/O  
USCI_B1 SPI slave transmit enable  
USCI_A1 clock input/output  
P8.1/UCB1STE/UCA1CLK/S14  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.4/UCB1CLK/UCA1STE/S11  
59  
I/O  
LCD segment output S14  
General-purpose digital I/O  
USCI_A1 UART transmit data  
60  
61  
62  
I/O  
I/O  
I/O  
USCI_A1 SPI slave in, master out  
LCD segment output S13  
General-purpose digital I/O  
USCI_A1 UART receive data  
USCI_A1 SPI slave out, master in  
LCD segment output S12  
General-purpose digital I/O  
USCI_B1 clock input/output  
USCI_A1 SPI slave transmit enable  
LCD segment output S11  
Digital ground supply  
DVSS2  
DVCC2  
63  
64  
Digital power supply  
General-purpose digital I/O  
USCI_B1 SPI slave in, master out  
USCI_B1 I2C data  
P8.5/UCB1SIMO/UCB1SDA/S10  
P8.6/UCB1SOMI/UCB1SCL/S9  
65  
66  
I/O  
I/O  
LCD segment output S10  
General-purpose digital I/O  
USCI_B1 SPI slave out, master in  
USCI_B1 I2C clock  
LCD segment output S9  
General-purpose digital I/O  
P8.7/S8  
P9.0/S7  
67  
68  
I/O  
I/O  
LCD segment output S8  
General-purpose digital I/O  
LCD segment output S7  
General-purpose digital I/O  
USCI_B2 SPI slave transmit enable  
USCI_A2 clock input/output  
P9.1/UCB2STE/UCA2CLK/S6  
P9.2/UCA2TXD/UCA2SIMO/S5  
P9.3/UCA2RXD/UCA2SOMI/S4  
69  
70  
71  
I/O  
I/O  
I/O  
LCD segment output S6  
General-purpose digital I/O  
USCI_A2 UART transmit data  
USCI_A2 SPI slave in, master out  
LCD segment output S5  
General-purpose digital I/O  
USCI_A2 UART receive data  
USCI_A2 SPI slave out, master in  
LCD segment output S4  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 4-1. Signal Descriptions (continued)  
TERMINAL  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
General-purpose digital I/O  
USCI_B2 clock input/output  
USCI_A2 SPI slave transmit enable  
P9.4/UCB2CLK/UCA2STE/S3  
P9.5/UCB2SIMO/UCB2SDA/S2  
72  
I/O  
LCD segment output S3  
General-purpose digital I/O  
USCI_B2 SPI slave in, master out  
USCI_B2 I2C data  
73  
I/O  
LCD segment output S2  
General-purpose digital I/O  
USCI_B2 SPI slave out, master in  
USCI_B2 I2C clock  
P9.6/UCB2SOMI/UCB2SCL/S1  
P9.7/S0  
74  
75  
I/O  
I/O  
LCD segment output S1  
General-purpose digital I/O  
LCD segment output S0  
PU ground supply  
VSSU  
PU.0/DP  
NC  
76  
77  
78  
79  
80  
81  
82  
83  
I/O PU control register (Port U is supplied the LDOO rail)  
Not connected  
PU.1/DM  
LDOI  
I/O PU control register (Port U is supplied the LDOO rail)  
LDO input  
LDOO  
NC  
LDO output  
Not connected  
Analog ground supply  
AVSS3  
General-purpose digital I/O  
I/O  
P7.2/XT2IN  
84  
85  
Input terminal for crystal oscillator XT2  
General-purpose digital I/O  
I/O  
P7.3/XT2OUT  
Output terminal of crystal oscillator XT2  
Capacitor for backup subsystem. Do not load this pin externally. For capacitor values,  
see CBAK in Section 5.3.  
VBAK  
VBAT  
86  
87  
Backup supply voltage. If backup voltage is not supplied, connect to DVCC externally.  
General-purpose digital I/O  
P5.7/RTCCLK  
88  
I/O  
RTCCLK output  
DVCC3  
DVSS3  
89  
90  
Digital power supply  
Digital ground supply  
Test mode pin – select digital I/O on JTAG pins  
TEST/SBWTCK  
PJ.0/TDO  
91  
92  
93  
94  
95  
I
Spy-Bi-Wire input clock  
General-purpose digital I/O  
I/O  
I/O  
I/O  
I/O  
Test data output port  
General-purpose digital I/O  
PJ.1/TDI/TCLK  
PJ.2/TMS  
Test data input or test clock input  
General-purpose digital I/O  
Test mode select  
General-purpose digital I/O  
PJ.3/TCK  
Test clock  
12  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 4-1. Signal Descriptions (continued)  
TERMINAL  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
Reset input active low(3)  
RST/NMI/SBWTDIO  
P6.0/CB0/A0  
96  
I/O Nonmaskable interrupt input  
Spy-Bi-Wire data input/output  
General-purpose digital I/O  
97  
98  
99  
I/O Comparator_B input CB0  
Analog input A0 – ADC  
General-purpose digital I/O  
P6.1/CB1/A1  
I/O Comparator_B input CB1  
Analog input A1 – ADC  
General-purpose digital I/O  
P6.2/CB2/A2  
I/O Comparator_B input CB2  
Analog input A2 – ADC  
General-purpose digital I/O  
P6.3/CB3/A3  
Reserved  
100  
N/A  
I/O Comparator_B input CB3  
Analog input A3 – ADC  
Reserved BGA package balls. TI recommends connecting to ground (DVSS, AVSS).  
(3) When this pin is configured as reset, the internal pullup resistor is enabled by default.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Terminal Configuration and Functions  
13  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
4.1  
UNIT  
V
Voltage applied at VCC to VSS  
Voltage applied to any pin (excluding VCORE, VBUS, V18)(2)  
VCC + 0.3  
±2  
V
Diode current at any device pin  
mA  
°C  
Maximum junction temperature, TJ  
–40  
–55  
105  
(3)  
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.  
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
5.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V  
may actually have higher performance.  
5.3 Recommended Operating Conditions  
Typical values are specified at VCC = 3.3 V and TJ = 25°C (unless otherwise noted)  
MIN NOM  
MAX UNIT  
PMMCOREVx = 0  
1.8  
2
3.6  
Supply voltage during program execution and flash  
PMMCOREVx = 0, 1  
PMMCOREVx = 0, 1, 2  
PMMCOREVx = 0, 1, 2, 3  
3.6  
V
VCC  
programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 =  
(1)(2)  
2.2  
2.4  
0
3.6  
DVCC = VCC  
)
3.6  
V
VSS  
Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = VSS)  
VBAT,RTC  
VBAT,MEM  
TJ  
Backup-supply voltage with RTC operational  
Backup-supply voltage with backup memory retained  
Operating junction temperature  
TJ = –40°C to 105°C  
TJ = –40°C to 105°C  
T version  
1.7  
1.2  
–40  
3.6  
3.6  
105  
10  
V
V
°C  
nF  
nF  
CBAK  
Capacitance at pin VBAK  
Capacitor at VCORE(3)  
1
4.7  
CVCORE  
470  
CDVCC  
CVCORE  
/
Capacitor ratio of DVCC to VCORE  
10  
(1) TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Table 5-11 threshold parameters for  
the exact values and further details.  
(3) A capacitor tolerance of ±20% or better is required.  
14  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Recommended Operating Conditions (continued)  
Typical values are specified at VCC = 3.3 V and TJ = 25°C (unless otherwise noted)  
MIN NOM  
MAX UNIT  
PMMCOREVx = 0,  
1.8 V VCC 3.6 V  
(default condition)  
0
8
PMMCOREVx = 1,  
2 V VCC 3.6 V  
Processor frequency (maximum MCLK frequency)(4)(5)  
(see Figure 5-1)  
0
0
0
12  
fSYSTEM  
MHz  
PMMCOREVx = 2,  
2.2 V VCC 3.6 V  
16  
20  
PMMCOREVx = 3,  
2.4 V VCC 3.6 V  
(4) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the  
specified maximum frequency.  
(5) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
25  
20  
3
16  
2, 3  
2
12  
8
1, 2  
1, 2, 3  
1
0
0, 1  
0, 1, 2  
0, 1, 2, 3  
0
1.8  
2.0  
2.2  
2.4  
3.6  
Supply Voltage - V  
NOTE: The numbers within the fields denote the supported PMMCOREVx settings.  
Figure 5-1. Frequency vs Supply Voltage  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
5.4 Active Mode Supply Current Into VCC Excluding External Current  
(2) (3)  
over recommended operating junction temperature (unless otherwise noted)(1)  
FREQUENCY (fDCO = fMCLK = fSMCLK  
8 MHz 12 MHz  
TYP MAX TYP MAX  
)
EXECUTION  
MEMORY  
PARAMETER  
VCC  
PMMCOREVx  
1 MHz  
20 MHz  
UNIT  
TYP  
MAX  
TYP  
MAX  
0
1
2
3
0
1
2
3
0.36  
0.41  
0.46  
0.51  
0.18  
0.20  
0.22  
0.23  
0.45  
2.4  
2.7  
2.9  
3.1  
1.0  
1.2  
1.3  
1.4  
2.7  
4.0  
4.3  
4.5  
4.4  
IAM, Flash  
Flash  
RAM  
3 V  
mA  
7.4  
0.25  
1.3  
1.7  
2.0  
2.2  
1.9  
IAM, RAM  
3 V  
mA  
3.6  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load  
capacitance are chosen to closely match the required 12.5 pF.  
(3) Characterized with program executing typical data processing.  
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.  
5.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)(1)  
(2)  
–40°C  
TYP MAX  
25°C  
TYP MAX  
73 95  
60°C  
TYP MAX  
79  
105°C  
TYP MAX  
101  
PARAMETER  
VCC  
PMMCOREVx  
UNIT  
µA  
2.2 V  
3 V  
0
3
0
3
0
1
2
0
1
2
3
0
1
2
3
69  
79  
135  
155  
40  
ILPM0,1MHz Low-power mode 0(3) (4)  
83  
6.7  
7.1  
2.0  
2.2  
2.4  
2.2  
2.4  
2.6  
2.6  
1.3  
1.5  
1.6  
1.6  
120  
9.0  
9.5  
3.3  
87  
8.0  
8.5  
3.3  
3.6  
3.8  
3.6  
3.8  
4.0  
4.0  
2.7  
2.8  
2.9  
2.9  
116  
22  
2.2 V  
3 V  
6.1  
6.5  
1.5  
1.7  
1.9  
1.8  
1.9  
2.1  
2.1  
1.0  
1.1  
1.1  
1.1  
ILPM2  
Low-power mode 2(5) (4)  
µA  
24  
42  
18  
34  
2.2 V  
8.5  
18.7  
18.3  
18.7  
18.8  
19.4  
17.2  
17.5  
17.6  
18.2  
Low-power mode 3,  
crystal mode(6) (4)  
ILPM3,XT1LF  
3.5  
35  
µA  
µA  
3 V  
4.2  
2.7  
37  
34  
Low-power mode 3,  
VLO mode, Watchdog  
enabled(7) (4)  
ILPM3,VLO,  
WDT  
3 V  
3.2  
35  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance are chosen to closely match the required 9 pF.  
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz  
(4) Current for brownout included. Low-side supervisor and monitors disabled (SVSL, SVML). High-side supervisor and monitor disabled  
(SVSH, SVMH). RAM retention enabled.  
(5) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCO  
setting = 1 MHz operation, DCO bias generator enabled.  
(6) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
(7) Current for watchdog timer clocked by VLO included.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fMCLK = fSMCLK = fDCO = 0 MHz  
16  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Low-Power Mode Supply Currents (Into VCC) Excluding External Current (continued)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)(1) (2)  
–40°C  
TYP MAX  
0.9  
25°C  
TYP MAX  
1.3 2.5  
60°C  
TYP MAX  
2.5  
105°C  
TYP MAX  
17.1 34  
PARAMETER  
VCC  
PMMCOREVx  
UNIT  
0
1
2
3
1.0  
1.0  
1.0  
1.3  
1.4  
1.4  
2.6  
2.7  
2.7  
17.3  
17.5  
18  
ILPM4  
Low-power mode 4(8) (4)  
Low-power mode 3.5  
3 V  
µA  
3.1  
36  
ILPM3.5,RTC, (LPM3.5) current with  
3 V  
3 V  
0.5  
0.6  
1.25  
0.78  
2.3  
µA  
µA  
active RTC into primary  
supply pin DVCC  
VCC  
(9)  
Low-power mode 3.5  
ILPM3.5,RTC, (LPM3.5) current with  
1.3  
active RTC into backup  
VBAT  
supply pin VBAT(10)  
Total Low-power mode  
ILPM3.5,RTC,  
TOT  
3.5 (LPM3.5) current  
3 V  
3 V  
1.0  
0.4  
1.1  
1.2  
0.5  
1.93  
1.21  
3.3  
2.4  
µA  
µA  
with active RTC(11)  
ILPM4.5  
Low-power mode 4.5(12)  
0.45  
0.6  
(8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(9) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active  
(10) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no  
current drawn on VBAK  
(11) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK  
(12) Internal regulator disabled. No data retention.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
5.6 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)(1)(2)  
TEMPERATURE (TJ)  
PARAMETER  
VCC  
PMMCOREVx  
–40°C  
TYP MAX  
2.7  
25°C  
TYP MAX  
3.3 4.8  
60°C  
TYP MAX  
4.7  
105°C  
TYP MAX  
18.3 35  
UNIT  
0
1
2
3
0
1
2
0
1
2
3
Low-power mode 3  
(LPM3) current, LCD 4-  
mux mode, internal  
biasing, charge pump  
disabled(3) (4)  
2.9  
3.0  
3.1  
3.5  
3.7  
3.7  
3.6  
3.7  
4.0  
3.5  
3.7  
3.8  
3.9  
5.0  
5.2  
5.2  
18.7  
19  
ILPM3 LCD,  
int. bias  
3 V  
µA  
5.3  
19.3  
37  
2.2 V  
3 V  
Low-power mode 3  
(LPM3) current, LCD 4-  
mux mode, internal  
biasing, charge pump  
enabled(3) (5)  
ILPM3  
LCD,CP  
µA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance are chosen to closely match the required 9 pF.  
(3) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
Current for brownout included. Low-side supervisor (SVSL) and low-side monitor (SVML) disabled. High-side supervisor (SVSH) and  
high-side monitor (SVMH) disabled. RAM retention enabled.  
(4) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump  
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
(5) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump  
enabled), VLCDx = 1000 (VLCD = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)  
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.  
18  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
5.7 Schmitt-Trigger Inputs – General-Purpose I/O(1)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.80  
1.50  
0.45  
0.75  
0.3  
TYP  
MAX UNIT  
1.40  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
2.10  
1.8 V  
3 V  
1.00  
V
Negative-going input threshold voltage  
1.65  
1.8 V  
3 V  
0.8  
V
Input voltage hysteresis (VIT+ – VIT–  
)
0.4  
1.0  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI  
Pullup or pulldown resistor(2)  
Input capacitance  
20  
35  
5
50  
kΩ  
VIN = VSS or VCC  
pF  
(1) The same parametrics apply to the clock input pin when the crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).  
(2) Also applies to RST pin when pullup or pulldown resistor is enabled.  
5.8 Leakage Current – General-Purpose I/O  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
±50 nA  
(1)(2)  
Ilkg(Px.y)  
High-impedance leakage current  
1.8 V, 3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
5.9 Outputs – General-Purpose I/O (Full Drive Strength)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
I(OHmax) = –10 mA(2)  
I(OHmax) = –5 mA(1)  
I(OHmax) = –15 mA(2)  
I(OLmax) = 3 mA(1)  
I(OLmax) = 10 mA(2)  
I(OLmax) = 5 mA(1)  
I(OLmax) = 15 mA(2)  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
1.8 V  
3 V  
VCC  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
VOL  
Low-level output voltage  
V
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
5.10 Outputs – General-Purpose I/O (Reduced Drive Strength)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –1 mA(2)  
I(OHmax) = –3 mA(3)  
I(OHmax) = –2 mA(2)  
I(OHmax) = –6 mA(3)  
VCC  
MIN  
VCC – 0.25  
VCC – 0.60  
VCC – 0.25  
VCC – 0.60  
MAX UNIT  
VCC  
1.8 V  
VCC  
VOH  
High-level output voltage  
V
VCC  
3 V  
VCC  
(1) Selecting reduced drive strength may reduce EMI.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(3) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Outputs – General-Purpose I/O (Reduced Drive Strength) (continued)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
I(OLmax) = 1 mA(2)  
I(OLmax) = 3 mA(3)  
I(OLmax) = 2 mA(2)  
I(OLmax) = 6 mA(3)  
VCC  
MIN  
MAX UNIT  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
1.8 V  
VOL  
Low-level output voltage  
V
3 V  
5.11 Thermal Resistance Characteristics for PZ Package  
PARAMETER  
PACKAGE  
QFP (PZ)  
VALUE  
122  
83  
UNIT  
°C/W  
°C/W  
°C/W  
θJA  
Junction-to-ambient thermal resistance, still air(1)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
θJC(TOP)  
θJB  
QFP (PZ)  
QFP (PZ)  
98  
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
20  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
5.12 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
25.0  
20.0  
15.0  
10.0  
5.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
TJ = 25°C  
TJ = 25°C  
TJ = 105°C  
TJ = 105°C  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
VCC = 3 V  
VCC = 1.8 V  
Figure 5-2. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
Figure 5-3. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
0.0  
0.0  
−1.0  
−2.0  
−3.0  
−4.0  
−5.0  
−10.0  
TJ = 105°C  
−5.0  
−15.0  
TJ = 105°C  
−6.0  
TJ = 25°C  
−20.0  
TJ = 25°C  
−7.0  
−8.0  
−25.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
VCC = 1.8 V  
VCC = 3 V  
Figure 5-5. Typical High-Level Output Current vs High-Level  
Output Voltage  
Figure 5-4. Typical High-Level Output Current vs High-Level  
Output Voltage  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
5.13 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
60.0  
24  
TJ = 25°C  
55.0  
TJ = 25°C  
50.0  
20  
TJ = 105°C  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
16  
12  
8
TJ = 105°C  
4
0
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOL – Low-Level Output Voltage – V  
VOL – Low-Level Output Voltage – V  
VCC = 1.8 V  
VCC = 3 V  
Figure 5-7. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
Figure 5-6. Typical Low-Level Output Current vs Low-Level  
Output Voltage  
0.0  
−5.0  
0
−10.0  
−15.0  
−20.0  
−25.0  
−30.0  
−35.0  
−40.0  
−4  
−8  
−12  
TJ = 105°C  
−16  
−45.0  
TJ = 105°C  
−50.0  
TJ = 25°C  
−20  
−55.0  
TJ = 25°C  
−60.0  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
VOH – High-Level Output Voltage – V  
VOH – High-Level Output Voltage – V  
VCC = 1.8 V  
VCC = 3 V  
Figure 5-9. Typical High-Level Output Current vs High-Level  
Output Voltage  
Figure 5-8. Typical High-Level Output Current vs High-Level  
Output Voltage  
22  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
5.14 Timing and Switching Characteristics  
5.14.1 Power Supply Sequencing  
TI recommends powering the AVCC and DVCC pins from the same source. At a minimum, during power  
up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed  
the limits specified in the Absolute Maximum Ratings section. Exceeding the specified limits may cause  
malfunction of the device including erroneous writes to RAM and FRAM.  
Table 5-1. PMM, Brownout Reset (BOR)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
| dDVCC/dt | < 3 V/s  
| dDVCC/dt | < 3 V/s  
MIN  
TYP  
MAX UNIT  
V(DVCC_BOR_IT–)  
V(DVCC_BOR_IT+)  
V(DVCC_BOR_hys)  
tRESET  
BORH on voltage, DVCC falling level  
BORH off voltage, DVCC rising level  
BORH hysteresis  
1.45  
1.50  
250  
V
V
0.80  
60  
2
1.30  
mV  
µs  
Pulse duration required at RST/NMI pin to accept a reset  
5.14.2 Clock Specifications  
Table 5-2. Inputs – Ports P1, P2, P3, and P4(1)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Port P1, P2, P3, P4: P1.x to P4.x, External trigger pulse  
duration to set interrupt flag  
t(int)  
External interrupt timing(2)  
2.2 V, 3 V  
20  
ns  
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.  
(2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
Table 5-3. Output Frequency – Ports P1, P2, and P3  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
VCC = 1.8 V,  
PMMCOREVx = 0  
8
Port output frequency  
(with load)  
P3.4/TA2CLK/SMCLK/S27,  
fPx.y  
MHz  
20  
CL = 20 pF, RL = 1 k(1) or 3.2 k(2) (3)  
VCC = 3 V,  
PMMCOREVx = 3  
VCC = 1.8 V,  
PMMCOREVx = 0  
P1.0/TA0CLK/ACLK/S39,  
P3.4/TA2CLK/SMCLK/S27,  
P2.0/P2MAP0 (P2MAP0 = PM_MCLK),  
CL = 20 pF(3)  
8
fPort_CLK  
Clock output frequency  
MHz  
20  
VCC = 3 V,  
PMMCOREVx = 3  
(1) Full drive strength of port: A resistive divider with 2 × 0.5 kbetween VCC and VSS is used as load. The output is connected to the  
center tap of the divider.  
(2) Reduced drive strength of port: A resistive divider with 2 × 1.6 kbetween VCC and VSS is used as load. The output is connected to the  
center tap of the divider.  
(3) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-4. Crystal Oscillator, XT1, Low-Frequency Mode(1)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1, TJ = 25°C  
VCC  
MIN  
TYP  
MAX UNIT  
0.075  
Differential XT1 oscillator  
crystal current consumption fOSC = 32768 Hz, XTS = 0,  
ΔIDVCC,LF  
3 V  
0.170  
0.290  
32768  
µA  
from lowest drive setting,  
LF mode  
XT1BYPASS = 0, XT1DRIVEx = 2, TJ = 25°C  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3, TJ = 25°C  
XT1 oscillator crystal  
frequency, LF mode  
fXT1,LF0  
XTS = 0, XT1BYPASS = 0  
Hz  
XT1 oscillator logic-level  
square-wave input  
(3)  
fXT1,LF,SW  
XTS = 0, XT1BYPASS = 1(2)  
10 32.768  
50 kHz  
frequency, LF mode  
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0,  
fXT1,LF = 32768 Hz, CL,eff = 6 pF, TJ = 25°C  
210  
300  
Oscillation allowance for  
LF crystals(4)  
OALF  
3 V  
kΩ  
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,LF = 32768 Hz, CL,eff = 12 pF, TJ = 25°C  
XTS = 0, XCAPx = 0(6)  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
Integrated effective load  
capacitance, LF mode(5)  
CL,eff  
pF  
8.5  
12.0  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30%  
10  
70%  
Oscillator fault frequency,  
LF mode(7)  
fFault,LF  
XTS = 0(8)  
10000  
Hz  
ms  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TJ = 25°C, CL,eff = 6 pF  
1000  
500  
tSTART,LF  
Start-up time, LF mode  
3 V  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TJ = 25°C, CL,eff = 12 pF  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-trigger Inputs section of this data sheet.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For XT1DRIVEx = 0, CL,eff 6 pF.  
For XT1DRIVEx = 1, 6 pF CL,eff 9 pF.  
For XT1DRIVEx = 2, 6 pF CL,eff 10 pF.  
For XT1DRIVEx = 3, CL,eff 6 pF.  
(5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
24  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 5-5. Crystal Oscillator, XT2  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)(1)  
(2)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 4 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 0, TJ = 25°C  
200  
fOSC = 12 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 1, TJ = 25°C  
260  
325  
450  
XT2 oscillator crystal current  
consumption  
IDVCC,XT2  
3 V  
µA  
fOSC = 20 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 2, TJ = 25°C  
fOSC = 32 MHz, XT2OFF = 0,  
XT2BYPASS = 0, XT2DRIVEx = 3, TJ = 25°C  
XT2 oscillator crystal  
frequency, mode 0  
fXT2,HF0  
fXT2,HF1  
fXT2,HF2  
fXT2,HF3  
XT2DRIVEx = 0, XT2BYPASS = 0(3)  
XT2DRIVEx = 1, XT2BYPASS = 0(3)  
XT2DRIVEx = 2, XT2BYPASS = 0(3)  
XT2DRIVEx = 3, XT2BYPASS = 0(3)  
4
8
8
MHz  
XT2 oscillator crystal  
frequency, mode 1  
16 MHz  
24 MHz  
32 MHz  
XT2 oscillator crystal  
frequency, mode 2  
16  
24  
XT2 oscillator crystal  
frequency, mode 3  
XT2 oscillator logic-level  
square-wave input  
frequency  
fXT2,HF,SW  
XT2BYPASS = 1(4) (3)  
0.7  
32 MHz  
XT2DRIVEx = 0, XT2BYPASS = 0,  
fXT2,HF0 = 6 MHz, CL,eff = 15 pF, TJ = 25°C  
450  
320  
200  
200  
0.5  
XT2DRIVEx = 1, XT2BYPASS = 0,  
fXT2,HF1 = 12 MHz, CL,eff = 15 pF, TJ = 25°C  
Oscillation allowance for  
HF crystals(5)  
OAHF  
3 V  
XT2DRIVEx = 2, XT2BYPASS = 0,  
fXT2,HF2 = 20 MHz, CL,eff = 15 pF, TJ = 25°C  
XT2DRIVEx = 3, XT2BYPASS = 0,  
fXT2,HF3 = 32 MHz, CL,eff = 15 pF, TJ = 25°C  
fOSC = 6 MHz, XT2BYPASS = 0, XT2DRIVEx = 0,  
TJ = 25°C, CL,eff = 15 pF  
tSTART,HF  
Start-up time  
3 V  
ms  
pF  
fOSC = 20 MHz, XT2BYPASS = 0, XT2DRIVEx = 3,  
TJ = 25°C, CL,eff = 15 pF  
0.3  
Integrated effective load  
CL,eff  
1
capacitance, HF mode(6) (1)  
Duty cycle  
Measured at ACLK, fXT2,HF2 = 20 MHz  
40%  
30  
50%  
60%  
300 kHz  
fFault,HF  
Oscillator fault frequency(7) XT2BYPASS = 1(8)  
(1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(2) To improve EMI on the XT2 oscillator the following guidelines should be observed.  
Keep the traces between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.  
Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) When XT2BYPASS is set, the XT2 circuit is automatically powered down.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals.  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-6. Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
9.4  
0.5  
4
MAX UNIT  
14 kHz  
%/°C  
fVLO  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
dfVLO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
Duty cycle  
%/V  
40%  
50%  
60%  
(1) Calculated using the box method: (MAX(–40°C to 105°C) – MIN(–40°C to 105°C)) / MIN(–40°C to 105°C) / (105°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
Table 5-7. Internal Reference, Low-Frequency Oscillator (REFO)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
3
MAX UNIT  
REFO oscillator current  
consumption  
IREFO  
TJ = 25°C  
1.8 V to 3.6 V  
µA  
REFO frequency calibrated  
Measured at ACLK  
Full temperature range  
TJ = 25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
32768  
Hz  
±3.5%  
fREFO  
REFO absolute tolerance  
calibrated  
±1.5%  
dfREFO/dT  
REFO frequency temperature drift Measured at ACLK(1)  
1.8 V to 3.6 V  
0.01  
1.0  
%/°C  
REFO frequency supply voltage  
Measured at ACLK(2)  
drift  
dfREFO/dVCC  
1.8 V to 3.6 V  
%/V  
Duty cycle  
Measured at ACLK  
40%/60% duty cycle  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
40%  
50%  
25  
60%  
µs  
tSTART  
REFO start-up time  
(1) Calculated using the box method: (MAX(–40°C to 105°C) – MIN(–40°C to 105°C)) / MIN(–40°C to 105°C) / (105°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
26  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 5-8. DCO Frequency  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DCORSELx = 0, DCOx = 0, MODx = 0  
DCORSELx = 0, DCOx = 31, MODx = 0  
DCORSELx = 1, DCOx = 0, MODx = 0  
DCORSELx = 1, DCOx = 31, MODx = 0  
DCORSELx = 2, DCOx = 0, MODx = 0  
DCORSELx = 2, DCOx = 31, MODx = 0  
DCORSELx = 3, DCOx = 0, MODx = 0  
DCORSELx = 3, DCOx = 31, MODx = 0  
DCORSELx = 4, DCOx = 0, MODx = 0  
DCORSELx = 4, DCOx = 31, MODx = 0  
DCORSELx = 5, DCOx = 0, MODx = 0  
DCORSELx = 5, DCOx = 31, MODx = 0  
DCORSELx = 6, DCOx = 0, MODx = 0  
DCORSELx = 6, DCOx = 31, MODx = 0  
DCORSELx = 7, DCOx = 0, MODx = 0  
DCORSELx = 7, DCOx = 31, MODx = 0  
MIN  
0.07  
0.70  
0.15  
1.47  
0.32  
3.17  
0.64  
6.07  
1.3  
TYP  
MAX UNIT  
0.20 MHz  
1.70 MHz  
0.36 MHz  
3.45 MHz  
0.75 MHz  
7.38 MHz  
1.51 MHz  
14.0 MHz  
3.2 MHz  
fDCO(0,0)  
fDCO(0,31)  
fDCO(1,0)  
fDCO(1,31)  
fDCO(2,0)  
fDCO(2,31)  
fDCO(3,0)  
fDCO(3,31)  
fDCO(4,0)  
fDCO(4,31)  
fDCO(5,0)  
fDCO(5,31)  
fDCO(6,0)  
fDCO(6,31)  
fDCO(7,0)  
fDCO(7,31)  
DCO frequency (0, 0)(1)  
DCO frequency (0, 31)(1)  
DCO frequency (1, 0)(1)  
DCO frequency (1, 31)(1)  
DCO frequency (2, 0)(1)  
DCO frequency (2, 31)(1)  
DCO frequency (3, 0)(1)  
DCO frequency (3, 31)(1)  
DCO frequency (4, 0)(1)  
DCO frequency (4, 31)(1)  
DCO frequency (5, 0)(1)  
DCO frequency (5, 31)(1)  
DCO frequency (6, 0)(1)  
DCO frequency (6, 31)(1)  
DCO frequency (7, 0)(1)  
DCO frequency (7, 31)(1)  
12.3  
2.5  
28.2 MHz  
6.0 MHz  
23.7  
4.6  
54.1 MHz  
10.7 MHz  
88.0 MHz  
19.6 MHz  
135 MHz  
39.0  
8.5  
60  
Frequency step between range  
DCORSEL and DCORSEL + 1  
SDCORSEL  
SDCO  
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)  
1.2  
2.3 ratio  
Frequency step between tap  
DCO and DCO + 1  
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)  
Measured at SMCLK  
1.02  
40%  
1.12 ratio  
Duty cycle  
50%  
0.1  
60%  
%/°C  
%/V  
dfDCO/dT  
DCO frequency temperature drift fDCO = 1 MHz,  
DCO frequency voltage drift fDCO = 1 MHz  
dfDCO/dVCC  
1.9  
(1) When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the  
range of fDCO(n, 0),MAX fDCO fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,  
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31  
(DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual  
fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the  
selected range is at its minimum or maximum tap setting.  
100  
VCC = 3.0 V  
TA = 25°C  
10  
DCOx = 31  
1
DCOx = 0  
0.1  
0
1
2
3
4
5
6
7
DCORSEL  
Figure 5-10. Typical DCO Frequency  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-9. Wake-Up Times From Low-Power Modes  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 1,  
3
6.5  
f
MCLK 4.0 MHz  
Wake-up time from LPM2, LPM3, or LPM4  
to active mode(1)  
tWAKE-UP-FAST  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 1,  
µs  
4
8.0  
1 MHz < fMCLK < 4.0 MHz  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 0  
Wake-up time from LPM2, LPM3 or LPM4  
to active mode(2)  
tWAKE-UP-SLOW  
150  
165  
Wake-up time from LPM3.5 or LPM4.5 to  
active mode(3)  
tWAKE-UP LPM5  
tWAKE-UP-RESET  
2
2
3
3
ms  
ms  
Wake-up time from RST or BOR event to  
active mode(3)  
(1) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance  
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). Fastest wake-up times are possible with SVSL and SVML in full-  
performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSL and SVML while  
operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx  
and MSP430x6xx Family User's Guide (SLAU208).  
(2) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance  
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). In this case, the SVSL and SVML are in normal mode (low  
current) mode when operating in AM, LPM0, and LPM1. Various options are available for SVSL and SVML while operating in LPM2,  
LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx  
Family User's Guide (SLAU208).  
(3) This value represents the time from the wake-up event to the reset vector execution.  
5.14.3 Peripherals  
Table 5-10. PMM, Core Voltage  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Core voltage, active mode,  
PMMCOREV = 3  
VCORE3(AM)  
VCORE2(AM)  
VCORE1(AM)  
VCORE0(AM)  
VCORE3(LPM)  
VCORE2(LPM)  
VCORE1(LPM)  
VCORE0(LPM)  
2.4 V DVCC 3.6 V, 0 mA I(VCORE) 21 mA  
1.90  
V
Core voltage, active mode,  
PMMCOREV = 2  
2.2 V DVCC 3.6 V, 0 mA I(VCORE) 21 mA  
2 V DVCC 3.6 V, 0 mA I(VCORE) 17 mA  
1.8 V DVCC 3.6 V, 0 mA I(VCORE) 13 mA  
2.4 V DVCC 3.6 V, 0 µA I(VCORE) 30 µA  
2.2 V DVCC 3.6 V, 0 µA I(VCORE) 30 µA  
2 V DVCC 3.6 V, 0 µA I(VCORE) 30 µA  
1.8 V DVCC 3.6 V, 0 µA I(VCORE) 30 µA  
1.80  
1.60  
1.40  
1.94  
1.84  
1.64  
1.44  
V
V
V
V
V
V
V
Core voltage, active mode,  
PMMCOREV = 1  
Core voltage, active mode,  
PMMCOREV = 0  
Core voltage, low-current mode,  
PMMCOREV = 3  
Core voltage, low-current mode,  
PMMCOREV = 2  
Core voltage, low-current mode,  
PMMCOREV = 1  
Core voltage, low-current mode,  
PMMCOREV = 0  
28  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 5-11. PMM, SVS High Side  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVSHE = 0, DVCC = 3.6 V  
MIN  
TYP  
0
MAX UNIT  
nA  
I(SVSH)  
SVS current consumption  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1  
SVSHE = 1, SVSHRVL = 0  
200  
2.0  
µA  
1.59  
1.79  
1.98  
2.10  
1.62  
1.88  
2.07  
2.20  
2.32  
2.56  
2.85  
2.85  
1.64  
1.84  
2.04  
2.16  
1.74  
1.94  
2.14  
2.26  
2.40  
2.70  
3.00  
3.00  
2.5  
1.69  
SVSHE = 1, SVSHRVL = 1  
1.91  
V
V(SVSH_IT–)  
SVSH on voltage level(1)  
SVSHE = 1, SVSHRVL = 2  
2.11  
SVSHE = 1, SVSHRVL = 3  
2.23  
1.81  
2.01  
2.21  
SVSHE = 1, SVSMHRRL = 0  
SVSHE = 1, SVSMHRRL = 1  
SVSHE = 1, SVSMHRRL = 2  
SVSHE = 1, SVSMHRRL = 3  
2.33  
V
V(SVSH_IT+)  
SVSH off voltage level(1)  
SVSHE = 1, SVSMHRRL = 4  
2.48  
SVSHE = 1, SVSMHRRL = 5  
2.84  
3.15  
3.15  
SVSHE = 1, SVSMHRRL = 6  
SVSHE = 1, SVSMHRRL = 7  
SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1  
SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0  
SVSHE = 01, SVSHFP = 1  
tpd(SVSH)  
SVSH propagation delay  
µs  
µs  
20  
12.5  
100  
t(SVSH)  
SVSH on or off delay time  
DVCC rise time  
SVSHE = 01, SVSHFP = 0  
dVDVCC/dt  
0
1000  
V/s  
(1) The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and usage.  
Table 5-12. PMM, SVM High Side  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVMHE = 0, DVCC = 3.6 V  
MIN  
TYP  
0
MAX UNIT  
nA  
I(SVMH)  
SVMH current consumption  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1  
SVMHE = 1, SVSMHRRL = 0  
200  
2.0  
µA  
1.86  
1.65  
1.85  
2.02  
2.18  
2.32  
2.56  
2.85  
2.85  
1.74  
1.94  
2.14  
2.26  
2.40  
2.70  
3.00  
3.00  
3.75  
2.5  
SVMHE = 1, SVSMHRRL = 1  
2.02  
SVMHE = 1, SVSMHRRL = 2  
2.22  
SVMHE = 1, SVSMHRRL = 3  
2.35  
V(SVMH)  
SVMH on or off voltage level(1)  
SVMHE = 1, SVSMHRRL = 4  
2.48  
2.84  
3.15  
3.15  
V
SVMHE = 1, SVSMHRRL = 5  
SVMHE = 1, SVSMHRRL = 6  
SVMHE = 1, SVSMHRRL = 7  
SVMHE = 1, SVMHOVPE = 1  
SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1  
SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0  
SVMHE = 01, SVSMFP = 1  
tpd(SVMH)  
SVMH propagation delay  
SVMH on or off delay time  
µs  
µs  
20  
12.5  
100  
t(SVMH)  
SVMHE = 01, SVMHFP = 0  
(1) The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and usage.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-13. PMM, SVS Low Side  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVSLE = 0, PMMCOREV = 2  
MIN  
TYP  
0
MAX UNIT  
nA  
µA  
µs  
I(SVSL)  
SVSL current consumption  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
SVSLE = 01, SVSLFP = 1  
200  
2.0  
2.5  
20  
tpd(SVSL)  
SVSL propagation delay  
SVSL on or off delay time  
12.5  
100  
t(SVSL)  
µs  
SVSLE = 01, SVSLFP = 0  
Table 5-14. PMM, SVM Low Side  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVMLE = 0, PMMCOREV = 2  
MIN  
TYP  
0
MAX UNIT  
nA  
µA  
µs  
I(SVML)  
SVML current consumption  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 0  
SVMLE = 1, PMMCOREV = 2, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
SVMLE = 01, SVMLFP = 1  
200  
2.0  
2.5  
20  
tpd(SVML)  
SVML propagation delay  
SVML on or off delay time  
12.5  
100  
t(SVML)  
µs  
SVMLE = 01, SVMLFP = 0  
30  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 5-15. Timer_A – Timers TA0, TA1, and TA2  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, ACLK  
fTA  
Timer_A input clock frequency  
External: TACLK  
Duty cycle = 50% ±10%  
1.8 V, 3 V  
20  
MHz  
ns  
All capture inputs, Minimum pulse duration  
required for capture  
tTA,cap  
Timer_A capture timing  
1.8 V, 3 V  
20  
Table 5-16. Timer_B – Timer TB0  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK, ACLK  
fTB  
Timer_B input clock frequency  
External: TBCLK  
Duty cycle = 50% ±10%  
1.8 V, 3 V  
20  
MHz  
ns  
All capture inputs, Minimum pulse duration  
required for capture  
tTB,cap  
Timer_B capture timing  
1.8 V, 3 V  
20  
Table 5-17. Battery Backup  
over operating junction temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TJ = –40°C  
VCC  
MIN  
TYP  
MAX UNIT  
0.43  
0.52  
VBAT = 1.7 V,  
DVCC not connected,  
RTC running  
TJ = 25°C  
TJ = 60°C  
0.58  
TJ = 105°C  
TJ = –40°C  
TJ = 25°C  
0.66  
0.50  
VBAT = 2.2 V,  
DVCC not connected,  
RTC running  
0.59  
Current into VBAT terminal if no  
primary battery is connected  
IVBAT  
µA  
TJ = 60°C  
0.64  
TJ = 105°C  
TJ = –40°C  
TJ = 25°C  
0.72  
0.68  
VBAT = 3 V,  
DVCC not connected,  
RTC running  
0.75  
TJ = 60°C  
0.79  
TJ = 105°C  
General  
0.87  
VSVSH_IT-  
SVSHRL = 0  
SVSHRL = 1  
SVSHRL = 2  
SVSHRL = 3  
1.59  
1.79  
1.98  
2.10  
1.69  
VSWITCH  
Switch-over level (VCC to VBAT) CVCC = 4.7 µF  
1.91  
2.11  
2.23  
V
On-resistance of switch between  
VBAT = 1.8 V  
RON_VBAT  
0 V  
0.35  
1
kΩ  
VBAT and VBAK  
1.8 V  
3 V  
0.6  
1.0  
1.2  
±5%  
±5%  
±5%  
VBAT to ADC input channel 12:  
VBAT divided, VBAT3 VBAT/3  
VBAT3  
V
3.6 V  
tSample,  
VBAT3  
VBAT to ADC: Sampling time  
required if VBAT3 selected  
ADC12ON = 1,  
Error of conversion result 2 LSB  
1000  
2.65  
ns  
V
VCHVx  
Charger end voltage  
CHVx = 2  
CHCx = 1  
CHCx = 2  
CHCx = 3  
2.7  
2.9  
5.2  
RCHARGE  
Charge limiting resistor  
10.2  
20  
kΩ  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-18. USCI (UART Mode)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
fUSCI  
USCI input clock frequency  
External: UCLK  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
tτ  
1
MHz  
ns  
2.2 V  
3 V  
50  
50  
600  
600  
UART receive deglitch time(1)  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
Table 5-19. USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)(1)  
(see Figure 5-11 and )  
PARAMETER  
TEST CONDITIONS  
SMCLK or ACLK,  
Duty cycle = 50% ±10%  
VCC  
MIN  
TYP  
MAX UNIT  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
1.8 V  
3 V  
55  
38  
30  
25  
0
PMMCOREV = 0  
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
ns  
2.4 V  
3 V  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
1.8 V  
3 V  
0
tHD,MI  
ns  
2.4 V  
3 V  
0
0
1.8 V  
3 V  
20  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 0  
18  
ns  
16  
tVALID,MO  
2.4 V  
3 V  
UCLK edge to SIMO valid,  
CL = 20 pF, PMMCOREV = 3  
15  
1.8 V  
3 V  
–10  
–8  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
tHD,MO  
ns  
2.4 V  
3 V  
–10  
–8  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).  
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave) refer to the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-11 and Figure 5-12.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-  
11 and Figure 5-12.  
32  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 5-11. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tHD,MO  
tVALID,MO  
Figure 5-12. SPI Master Mode, CKPH = 1  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-20. USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)(1)  
(see Figure 5-13 and Figure 5-14)  
PARAMETER  
TEST CONDITIONS  
PMMCOREV = 0  
VCC  
1.8 V  
3 V  
MIN  
11  
8
TYP  
MAX UNIT  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE low to clock  
ns  
2.4 V  
3 V  
7
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
PMMCOREV = 0  
PMMCOREV = 3  
6
1.8 V  
3 V  
1
1
STE lag time, last clock to STE high  
ns  
2.4 V  
3 V  
1
1
1.8 V  
3 V  
66  
50  
ns  
36  
STE access time, STE low to SOMI data  
out  
2.4 V  
3 V  
30  
30  
1.8 V  
3 V  
30  
ns  
30  
STE disable time, STE high to SOMI high  
impedance  
2.4 V  
3 V  
30  
1.8 V  
3 V  
5
5
2
2
5
5
5
5
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
2.4 V  
3 V  
1.8 V  
3 V  
tHD,SI  
ns  
2.4 V  
3 V  
1.8 V  
3 V  
76  
UCLK edge to SOMI valid,  
CL = 20 pF, PMMCOREV = 0  
60  
ns  
44  
tVALID,SO  
2.4 V  
3 V  
UCLK edge to SOMI valid,  
CL = 20 pF, PMMCOREV = 3  
40  
1.8 V  
3 V  
12  
12  
12  
12  
CL = 20 pF, PMMCOREV = 0  
CL = 20 pF, PMMCOREV = 3  
tHD,SO  
ns  
2.4 V  
3 V  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).  
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-13 and Figure 5-14.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13  
and Figure 5-14.  
34  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
SOMI  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 5-13. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
Figure 5-14. SPI Slave Mode, CKPH = 1  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-21. USCI (I2C Mode)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted) (see Figure 5-15)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
f
SCL 100 kHz  
fSCL > 100 kHz  
SCL 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
f
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3 V  
2.2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL 100 kHz  
tSU,STO  
Setup time for STOP  
2.2 V, 3 V  
µs  
fSCL > 100 kHz  
2.2 V  
3 V  
600  
ns  
Pulse duration of spikes suppressed by  
input filter  
tSP  
50  
600  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 5-15. I2C Mode Timing  
36  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 5-22. LCD_B Operating Characteristics  
over operating junction temperature range (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNIT  
Supply voltage range, charge  
pump enabled, VLCD 3.6 V  
LCDCPEN = 1, 0000 < VLCDx 1111  
(charge pump enabled, VLCD 3.6 V)  
VCC,LCD_B,CP en,3.6  
VCC,LCD_B,CP en,3.3  
VCC,LCD_B,int. bias  
VCC,LCD_B,ext. bias  
2.2  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
Supply voltage range, charge  
pump enabled, VLCD 3.3 V  
LCDCPEN = 1, 0000 < VLCDx 1100  
(charge pump enabled, VLCD 3.3 V)  
2.0  
2.4  
2.4  
Supply voltage range, internal  
biasing, charge pump disabled  
LCDCPEN = 0, VLCDEXT = 0  
LCDCPEN = 0, VLCDEXT = 0  
Supply voltage range, external  
biasing, charge pump disabled  
Supply voltage range, external  
LCD voltage, internal or  
external biasing, charge pump  
disabled  
VCC,LCD_B,VLCDEXT  
LCDCPEN = 0, VLCDEXT = 1  
LCDCPEN = 0, VLCDEXT = 1  
2.0  
2.4  
3.6  
3.6  
V
V
External LCD voltage at  
LCDCAP/R33, internal or  
external biasing, charge pump  
disabled  
VLCDCAP/R33  
Capacitor on LCDCAP when  
charge pump enabled  
LCDCPEN = 1, VLCDx > 0000 (charge  
pump enabled)  
CLCDCAP  
fFrame  
4.7  
32  
10  
µF  
Hz  
fLCD = 2 × mux × fFRAME with mux = 1  
(static), 2, 3, 4  
LCD frame frequency range  
0
100  
fACLK,in  
CPanel  
ACLK input frequency range  
Panel capacitance  
30  
40  
kHz  
pF  
100-Hz frame frequency  
10000  
VCC  
0.2  
+
VR33  
Analog input voltage at R33  
LCDCPEN = 0, VLCDEXT = 1  
2.4  
V
VR03 + 2/3  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR23,1/3bias  
Analog input voltage at R23  
VR13  
× (VR33  
VR33  
V
VR03  
)
VR03 + 1/3  
× (VR33  
VR03  
Analog input voltage at R13  
with 1/3 biasing  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR13,1/3bias  
VR03  
)
VR23  
V
V
VR03 + 1/2  
× (VR33  
VR03  
Analog input voltage at R13  
with 1/2 biasing  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 1  
VR13,1/2bias  
VR03  
VR33  
)
VR03  
Analog input voltage at R03  
R0EXT = 1  
VSS  
2.4  
V
V
Voltage difference between  
VLCD and R03  
VCC  
0.2  
+
VLCD-VR03  
LCDCPEN = 0, R0EXT = 1  
External LCD reference  
voltage applied at  
LCDREF/R13  
VLCDREF/R13  
VLCDREFx = 01  
0.8  
1.2  
1.5  
V
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
37  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
MAX UNIT  
Table 5-23. LCD_B Electrical Characteristics  
over operating junction temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VLCDx = 0000, VLCDEXT = 0  
LCDCPEN = 1, VLCDx = 0001  
LCDCPEN = 1, VLCDx = 0010  
LCDCPEN = 1, VLCDx = 0011  
LCDCPEN = 1, VLCDx = 0100  
LCDCPEN = 1, VLCDx = 0101  
LCDCPEN = 1, VLCDx = 0110  
LCDCPEN = 1, VLCDx = 0111  
LCDCPEN = 1, VLCDx = 1000  
LCDCPEN = 1, VLCDx = 1001  
LCDCPEN = 1, VLCDx = 1010  
LCDCPEN = 1, VLCDx = 1011  
LCDCPEN = 1, VLCDx = 1100  
LCDCPEN = 1, VLCDx = 1101  
LCDCPEN = 1, VLCDx = 1110  
LCDCPEN = 1, VLCDx = 1111  
VCC  
MIN  
TYP  
VCC  
2.4 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.2 V to 3.6 V  
2.59  
2.66  
2.72  
2.79  
2.85  
2.92  
2.98  
3.05  
3.10  
3.17  
3.24  
3.30  
3.36  
3.42  
3.48  
VLCD  
LCD voltage  
V
3.6  
µA  
Peak supply currents due to  
charge pump activities  
ICC,Peak,CP  
tLCD,CP,on  
ICP,Load  
LCDCPEN = 1, VLCDx = 1111  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
400  
100  
Time to charge CLCD when  
discharged  
CLCD = 4.7 µF, LCDCPEN = 01,  
VLCDx = 1111  
500  
ms  
µA  
kΩ  
kΩ  
Maximum charge pump load  
current  
LCDCPEN = 1, VLCDx = 1111  
50  
LCD driver output impedance,  
segment lines  
LCDCPEN = 1, VLCDx = 1000,  
ILOAD = ±10 µA  
RLCD,Seg  
RLCD,COM  
10  
10  
LCD driver output impedance,  
common lines  
LCDCPEN = 1, VLCDx = 1000,  
ILOAD = ±10 µA  
Table 5-24. 12-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
0
TYP  
MAX UNIT  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
AVCC  
Analog supply voltage  
3.6  
V
V(Ax)  
Analog input voltage range(2) All ADC12 analog input pins Ax  
AVCC  
200  
V
2.2 V  
3 V  
150  
150  
Operating supply current into  
fADC12CLK = 5.0 MHz(4)  
AVCC terminal(3)  
IADC12_A  
µA  
250  
Only one terminal Ax can be selected at one  
time  
CI  
RI  
Input capacitance  
2.2 V  
20  
25  
pF  
Input MUX ON resistance  
0 V VIN V(AVCC)  
10  
200  
1900  
(1) The leakage current is specified by the digital I/O input leakage.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. If the  
reference voltage is supplied by an external source or if the internal voltage is used and REFOUT = 1, then decoupling capacitors are  
required. See Table 5-30 and Table 5-31.  
(3) The internal reference supply current is not included in current consumption parameter IADC12  
.
(4) ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0  
38  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 5-25. 12-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC12 linearity  
parameters using an external reference voltage or  
AVCC as reference(1)  
0.45  
4.8  
5.0  
fADC12CLK  
ADC conversion clock  
For specified performance of ADC12 linearity  
parameters using the internal reference(2)  
2.2 V, 3 V  
MHz  
4.0  
0.45  
0.45  
4.2  
2.4  
2.4  
4.8  
For specified performance of ADC12 linearity  
parameters using the internal reference(3)  
2.7  
Internal ADC12  
oscillator(4)  
fADC12OSC  
tCONVERT  
tSample  
ADC12DIV = 0, fADC12CLK = fADC12OSC  
2.2 V, 3 V  
2.2 V, 3 V  
5.4 MHz  
REFON = 0, Internal oscillator,  
ADC12OSC used for ADC conversion clock  
2.4  
3.1  
µs  
Conversion time  
External fADC12CLK from ACLK, MCLK or SMCLK,  
ADC12SSEL 0  
See  
(5)  
RS = 400 , RI = 200 , CI = 20 pF,  
Sampling time  
2.2 V, 3 V  
1000  
ns  
(6)  
τ = [RS + RI] × CI  
(1) REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0,  
SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the  
specified performance of the ADC12 linearity is ensured with fADC12CLK maximum of 5.0 MHz.  
(2) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1  
(3) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when  
using the ADC12OSC divided by 2.  
(4) The ADC12OSC is sourced directly from MODOSC inside the UCS.  
(5) 13 × ADC12DIV × 1/fADC12CLK  
(6) Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB:  
tSample = ln(2n+1) x (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance  
Table 5-26. 12-Bit ADC, Linearity Parameters Using an External Reference Voltage  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error(1)  
Differential linearity error(1)  
Offset error(3)  
TEST CONDITIONS  
1.4 V dVREF 1.6 V(2)  
VCC  
MIN  
TYP  
MAX UNIT  
±2  
LSB  
±1.7  
EI  
2.2 V, 3 V  
(2)  
1.6 V < dVREF  
(2)  
ED  
EO  
EG  
ET  
See  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
±1 LSB  
dVREF 2.2 V(2)  
dVREF > 2.2 V(2)  
±3  
±1.5  
±1  
±5.6  
LSB  
±3.5  
Gain error(3)  
See  
±2.5 LSB  
(2)  
dVREF 2.2 V(2)  
dVREF > 2.2 V(2)  
±3.5  
±2  
±7.1  
LSB  
±5  
Total unadjusted error  
(1) Parameters are derived using the histogram method.  
(2) The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = VR+ – VR–. VR+ < AVCC. VR– > AVSS.  
Unless otherwise mentioned dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω and two decoupling capacitors, 10  
µF and 100 nF, should be connected to VREF to decouple the dynamic current. See also the MSP430F5xx and MSP430F6xx Family  
User's Guide (SLAU208).  
(3) Parameters are derived using a best fit curve.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-27. 12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error(1)  
Differential linearity error(1)  
Offset error(3)  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
±2.0 LSB  
±1 LSB  
±2 LSB  
±4 LSB  
±5 LSB  
(2)  
(2)  
(2)  
(2)  
(2)  
EI  
See  
See  
See  
See  
See  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
ED  
EO  
EG  
ET  
±1  
±2  
±2  
Gain error(3)  
Total unadjusted error  
(1) Parameters are derived using the histogram method.  
(2) AVCC as reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 0.  
(3) Parameters are derived using a best fit curve.  
Table 5-28. 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
VCC  
MIN  
TYP  
MAX UNIT  
ADC12SR = 0, REFOUT = 1  
f
f
f
f
f
f
f
f
f
f
f
ADC12CLK 4.0 MHz  
±2.0  
LSB  
±2.5  
Integral  
EI  
2.2 V, 3 V  
linearity error(2)  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12SR = 0, REFOUT = 1  
ADC12SR = 0, REFOUT = 0  
ADC12CLK 2.7 MHz  
ADC12CLK 4.0 MHz  
ADC12CLK 2.7 MHz  
ADC12CLK 2.7 MHz  
ADC12CLK 4.0 MHz  
ADC12CLK 2.7 MHz  
ADC12CLK 4.0 MHz  
ADC12CLK 2.7 MHz  
ADC12CLK 4.0 MHz  
ADC12CLK 2.7 MHz  
–1  
–1  
+1.5  
Differential  
ED  
2.2 V, 3 V  
±1 LSB  
+2.5  
linearity error(2)  
±2  
±2  
±1  
±4  
EO  
EG  
ET  
Offset error(3)  
Gain error(3)  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
LSB  
±4  
±2.5 LSB  
±1%(4) VREF  
±5 LSB  
±2  
Total unadjusted  
error  
±1%(4) VREF  
(1) The external reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 1. dVREF = VR+ – VR–  
(2) Parameters are derived using the histogram method.  
.
(3) Parameters are derived using a best fit curve.  
(4) The gain error and the total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In  
this mode, the reference voltage used by the ADC12_A is not available on a pin.  
(1)  
Table 5-29. 12-Bit ADC, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
680  
680  
MAX UNIT  
VSENSOR  
See Figure 5-16(2)  
ADC12ON = 1, INCH = 0Ah, TJ = 0°C  
mV  
2.2 V  
3 V  
30  
30  
tSENSOR(sample Sample time required if channel 10  
)
ADC12ON = 1, INCH = 0Ah,  
Error of conversion result 1 LSB  
µs  
is selected(3)  
2.2 V  
3 V  
1.06  
1.46  
1.1  
1.5  
1.14  
V
ADC12ON = 1, INCH = 0Bh,  
VMID  
AVCC divider at channel 11  
VMID 0.5 × VAVCC  
1.54  
Sample time required if channel 11  
is selected(4)  
ADC12ON = 1, INCH = 0Bh,  
Error of conversion result 1 LSB  
tVMID(sample)  
2.2 V, 3 V  
1000  
ns  
(1) The temperature sensor is provided by the REF module. See the REF module parametric, IREF+, regarding the current consumption of  
the temperature sensor.  
(2) The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor. The TLV structure contains calibration values for 30°C ±3°C and 105°C ±3°C for each of the available reference  
voltage levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature,°C) + VSENSOR, where TCSENSOR and  
VSENSOR can be computed from the calibration values for higher accuracy. See also the MSP430F5xx and MSP430F6xx Family User's  
Guide (SLAU208).  
(3) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
.
(4) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
40  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
-40 -30 -20 -10  
0 10 20 30 40 50 60 70 80  
Ambient Temperature (°C)  
Figure 5-16. Typical Temperature Sensor Voltage  
Table 5-30. REF, External Reference  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
1.4 AVCC  
1.2  
1.4 AVCC  
MAX UNIT  
Positive external reference  
voltage input  
(2)  
VeREF+  
VeREF+ > VREF–/VeREF–  
V
V
V
Negative external reference  
voltage input  
(3)  
(4)  
VREF–/VeREF–  
VeREF+ > VREF–/VeREF–  
VeREF+ > VREF–/VeREF–  
0
(VeREF+  
Differential external reference  
voltage input  
VREF–/VeREF–  
)
1.4 V VeREF+ VAVCC, VeREF– = 0 V,  
fADC12CLK = 5 MHz, ADC12SHTx = 1h,  
Conversion rate 200 ksps  
2.2 V, 3 V  
2.2 V, 3 V  
–32  
32  
IVeREF+  
IVREF–/VeREF–  
,
Static input current  
µA  
µF  
1.4 V VeREF+ VAVCC , VeREF– = 0 V,  
fADC12CLK = 5 MHZ, ADC12SHTx = 8h,  
Conversion rate 20 ksps  
–1.2  
10  
+1.2  
Capacitance at VREF+ or  
VREF- terminal(5)  
CVREF+/-  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
41  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-31. REF, Built-In Reference  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
REFVSEL = {2} for 2.5 V,  
REFON = REFOUT = 1, IVREF+ = 0 A  
3 V  
2.5  
±1%  
Positive built-in  
reference voltage  
output  
REFVSEL = {1} for 2 V,  
REFON = REFOUT = 1, IVREF+ = 0 A  
VREF+  
3 V  
2.0  
1.5  
±1%  
±1%  
V
V
REFVSEL = {0} for 1.5 V,  
REFON = REFOUT = 1, IVREF+ = 0 A  
2.2 V, 3 V  
AVCC minimum  
voltage, Positive  
built-in reference  
active  
REFVSEL = {0} for 1.5 V  
REFVSEL = {1} for 2 V  
REFVSEL = {2} for 2.5 V  
2.2  
2.3  
2.8  
AVCC(min)  
ADC12SR = 1(4)  
REFON = 1, REFOUT = 0, REFBURST = 0  
,
70  
0.45  
210  
100  
0.75  
310  
1.7  
µA  
mA  
µA  
ADC12SR = 1(4)  
REFON = 1, REFOUT = 1, REFBURST = 0  
,
Operating supply  
current into AVCC  
terminal  
IREF+  
3 V  
ADC12SR = 0(4)  
REFON = 1, REFOUT = 0, REFBURST = 0  
,
(2) (3)  
ADC12SR = 0(4)  
,
0.95  
mA  
REFON = 1, REFOUT = 1, REFBURST = 0  
REFVSEL = {0, 1, 2},  
IVREF+ = +10 µA or –1000 µA,  
AVCC = AVCC(min) for each reference level,  
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1  
Load-current  
regulation, VREF+  
terminal(5)  
IL(VREF+)  
1500  
2500 µV/mA  
Capacitance at  
VREF+ terminal  
REFON = REFOUT = 1(6)  
,
0 mA IVREF+ IVREF+(max)  
CVREF+  
2.2 V, 3 V  
20  
100  
pF  
Temperature  
IVREF+ is a constant in the range of  
0 mA IVREF+ –1 mA  
ppm/  
°C  
TCREF+  
coefficient of built-in  
REFOUT = 0 2.2 V, 3 V  
20  
20  
120  
1
reference(7)  
Temperature  
IVREF+ is a constant in the range of  
0 mA IVREF+ –1 mA  
ppm/  
°C  
TCREF+  
coefficient of built-in  
REFOUT = 1 2.2 V, 3 V  
50  
reference(7)  
AVCC = AVCC(min) to AVCC(max), TJ = 25°C,  
REFVSEL = {0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
Power supply  
rejection ratio (DC)  
PSRR_DC  
PSRR_AC  
300 µV/V  
mV/V  
AVCC = AVCC(min) to AVCC(max), TJ = 25°C,  
REFVSEL = {0, 1, 2}, REFON = 1,  
REFOUT = 0 or 1  
Power supply  
rejection ratio (AC)  
AVCC = AVCC(min) to AVCC(max)  
,
REFVSEL = {0, 1, 2}, REFOUT = 0,  
REFON = 0 1  
75  
75  
Settling time of  
tSETTLE  
µs  
reference voltage(8)  
AVCC = AVCC(min) to AVCC(max)  
,
CVREF = CVREF(max), REFVSEL = {0, 1, 2},  
REFOUT = 1, REFON = 0 1  
(1) The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers, one  
smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal and is used  
as the reference for the conversion and uses the larger buffer. When REFOUT = 0, the reference is only used as the reference for the  
conversion and uses the smaller buffer.  
(2) The internal reference current is supplied from the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless a  
conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current  
contribution of the larger buffer without external load.  
(3) The temperature sensor is provided by the REF module. Its current is supplied from the AVCC terminal and is equivalent to IREF+ with  
REFON = 1 and REFOUT = 0.  
(4) For devices without the ADC12, the parametric with ADC12SR = 0 are applicable.  
(5) Contribution only due to the reference and buffer including package. This does not include resistance due to PCB trace or other causes.  
(6) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).  
(7) Calculated using the box method: (MAX(–40°C to 105°C) – MIN(–40°C to 105°C)) / MIN(–40°C to 105°C)/(105°C – (–40°C)).  
(8) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external  
capacitive load when REFOUT = 1.  
42  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 5-32. 12-Bit DAC, Supply Specifications  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC  
Analog supply voltage  
AVCC = DVCC, AVSS = DVSS = 0 V  
2.20  
3.60  
V
DAC12AMPx = 2, DAC12IR = 0, DAC12IOG = 1  
DAC12_xDAT = 0800h  
VeREF+ = VREF+ = 1.5 V  
3 V  
65  
65  
110  
DAC12AMPx = 2, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = VREF+ = AVCC  
110  
300  
Supply current, single  
DAC channel(1)(2)  
IDD  
µA  
DAC12AMPx = 5, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
VeREF+ = VREF+ = AVCC  
2.2 V, 3 V  
250  
750  
DAC12AMPx = 7, DAC12IR = 1,  
DAC12_xDAT = 0800h,  
1000  
VeREF+ = VREF+ = AVCC  
DAC12_xDAT = 800h, VeREF+ = 1.5 V,  
ΔAVCC = 100 mV  
2.2 V  
3 V  
70  
70  
Power supply rejection  
ratio(3)(4)  
PSRR  
dB  
DAC12_xDAT = 800h, VeREF+ = 1.5 V or 2.5 V,  
ΔAVCC = 100 mV  
(1) No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.  
(2) Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Table 5-35.  
(3) PSRR = 20 log (ΔAVCC / ΔVDAC12_xOUT  
)
(4) The internal reference is not used.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-33. 12-Bit DAC, Linearity Specifications  
See Figure 5-17, over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN TYP MAX UNIT  
Resolution  
12-bit monotonic  
12  
bits  
VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1  
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1  
2.2 V  
3 V  
±2  
±2  
±4  
±4  
±1  
±1  
INL  
Integral nonlinearity(1)  
LSB  
2.2 V  
3 V  
±0.4  
±0.4  
DNL  
Differential nonlinearity(1)  
LSB  
VeREF+ = 1.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
2.2 V  
3 V  
±21  
±21  
Without calibration(1) (2)  
VeREF+ = 2.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
EO  
Offset voltage  
mV  
VeREF+ = 1.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
2.2 V  
±1.5  
±1.5  
With calibration(1) (2)  
VeREF+ = 2.5 V,  
DAC12AMPx = 7,  
DAC12IR = 1  
3 V  
Offset error temperature  
coefficient(1)  
dE(O)/dT  
EG  
With calibration  
2.2 V, 3 V  
±10  
10  
µV/°C  
%FSR  
VeREF+ = 1.5 V  
VeREF+ = 2.5 V  
2.2 V  
3 V  
±2.5  
±2.5  
Gain error  
Gain temperature  
coefficient(1)  
ppm of  
FSR/°C  
dE(G)/dT  
2.2 V, 3 V  
DAC12AMPx = 2  
165  
66  
Time for offset  
calibration(3)  
tOffset_Cal  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
2.2 V, 3 V  
ms  
16.5  
(1) Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and “b” of  
the first-order equation: y = a + bx. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1.  
(2) The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON.  
(3) The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx =  
{0, 1}. TI recommends configuring the DAC12 module before initiating calibration. Port activity during calibration may affect accuracy  
and is not recommended.  
DAC VOUT  
DAC Output  
VR+  
RLoad = ¥  
Ideal transfer  
function  
AVCC  
2
Offset Error  
Positive  
Gain Error  
CLoad = 100 pF  
Negative  
DAC Code  
Figure 5-17. Linearity Test Load Conditions and Gain/Offset Definition  
44  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 5-34. 12-Bit DAC, Output Specifications  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
No load, VeREF+ = AVCC, DAC12_xDAT = 0h,  
DAC12IR = 1, DAC12AMPx = 7  
0
0.005  
No load, VeREF+ = AVCC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
,
AVCC  
– 0.05  
AVCC  
Output voltage  
VO  
range(1) (see  
Figure 5-18)  
2.2 V, 3 V  
V
RLoad = 3 k, VeREF+ = AVCC  
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
,
0
0.1  
RLoad = 3 k, VeREF+ = AVCC  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
,
AVCC  
– 0.13  
AVCC  
Maximum DAC12  
load capacitance  
CL(DAC12)  
2.2 V, 3 V  
2.2 V, 3 V  
100  
pF  
DAC12AMPx = 2, DAC12_xDAT = 0FFFh,  
VO/P(DAC12) > AVCC – 0.3  
–1  
Maximum DAC12  
load current  
IL(DAC12)  
mA  
DAC12AMPx = 2, DAC12_xDAT = 0h,  
VO/P(DAC12) < 0.3 V  
1
250  
250  
6
RLoad = 3 k, VO/P(DAC12) < 0.3 V,  
DAC12AMPx = 2, DAC12_xDAT = 0h  
150  
150  
Output resistance  
(see Figure 5-18)  
RLoad = 3 k, VO/P(DAC12) > AVCC – 0.3 V,  
DAC12_xDAT = 0FFFh  
RO/P(DAC12)  
2.2 V, 3 V  
RLoad = 3 k,  
0.3 V VO/P(DAC12) AVCC – 0.3 V  
(1) Data is valid after the offset calibration of the output amplifier.  
RO/P(DAC12_x)  
Max  
RLoad  
ILoad  
AVCC  
DAC12  
2
CLoad = 100 pF  
O/P(DAC12_x)  
Min  
0.3  
AVCC – 0.3 V  
VOUT  
AVCC  
Figure 5-18. DAC12_x Output Resistance Tests  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-35. 12-Bit DAC, Reference Input Specifications  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DAC12IR = 0(1) (2)  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC  
AVCC/3  
+ 0.2  
VeREF+  
Reference input voltage range  
2.2 V, 3 V  
V
AVCC  
DAC12IR = 1(3) (4)  
AVCC  
+ 0.2  
DAC12_0 IR = DAC12_1 IR = 0  
DAC12_0 IR = 1, DAC12_1 IR = 0  
DAC12_0 IR = 0, DAC12_1 IR = 1  
20  
MΩ  
52  
52  
Ri(VREF+)  
Ri(VeREF+)  
,
Reference input resistance  
2.2 V, 3 V  
kΩ  
DAC12_0 IR = DAC12_1 IR = 1,  
26  
DAC12_0 SREFx = DAC12_1 SREFx(5)  
(1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).  
(2) The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / [3 × (1 + EG)].  
(3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).  
(4) The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / (1 + EG).  
(5) When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel  
reducing the reference input resistance.  
Table 5-36. 12-Bit DAC, Dynamic Specifications  
VREF = VCC, DAC12IR = 1 (see Figure 5-19 and Figure 5-20), over recommended ranges of supply voltage and operating  
junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DAC12AMPx = 0 {2, 3, 4}  
VCC  
MIN  
TYP MAX UNIT  
60 120  
DAC12_xDAT = 800h,  
ErrorV(O) < ±0.5 LSB(1)  
(see Figure 5-19)  
tON  
DAC12 on time  
DAC12AMPx = 0 {5, 6}  
DAC12AMPx = 0 7  
DAC12AMPx = 2  
2.2 V, 3 V  
15  
6
30  
12  
µs  
µs  
µs  
100 200  
DAC12_xDAT =  
tS(FS)  
tS(C-C)  
SR  
Settling time, full scale  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
2.2 V, 3 V  
2.2 V, 3 V  
40  
15  
80  
30  
80h F7Fh 80h  
5
DAC12_xDAT =  
Settling time, code to  
code  
3F8h 408h 3F8h,  
BF8h C08h BF8h  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
DAC12AMPx = 2  
2
1
0.05  
0.35  
1.10  
5.20  
DAC12_xDAT =  
Slew rate  
DAC12AMPx = 3, 5  
DAC12AMPx = 4, 6, 7  
2.2 V, 3 V 0.35  
1.50  
V/µs  
nV-s  
80h F7Fh 80h(2)  
DAC12_xDAT =  
Glitch energy  
DAC12AMPx = 7  
2.2 V, 3 V  
35  
800h 7FFh 800h  
(1) RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 5-19.  
(2) Slew rate applies to output voltage steps 200 mV.  
Conversion 1  
Conversion 2  
1/2 LꢀS  
Conversion 3  
VOUT  
DAC Output  
Glitch  
Energy  
RLoad = 3 kW  
ILoad  
AVCC  
2
1/2 LꢀS  
CLoad = 100 pF  
RO/P(DAC12.x)  
tsettleLH  
tsettleHL  
Figure 5-19. Settling Time and Glitch Energy Testing  
46  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Conversion 1  
Conversion 2  
Conversion 3  
VOUT  
90%  
90%  
10%  
10%  
tSRLH  
tSRHL  
Figure 5-20. Slew Rate Testing  
Table 5-37. 12-Bit DAC, Dynamic Specifications (Continued)  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
TJ = 25°C  
40  
3-dB bandwidth,  
VDC = 1.5 V,  
VAC = 0.1 VPP (see  
Figure 5-21)  
DAC12AMPx = {5, 6}, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
TJ = 25°C  
BW–3dB  
2.2 V, 3 V  
180  
550  
kHz  
DAC12AMPx = 7, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
TJ = 25°C  
DAC12_0DAT = 800h, No load,  
DAC12_1DAT = 80h F7Fh, RLoad = 3 k,  
fDAC12_1OUT = 10 kHz at 50/50 duty cycle,  
TJ = 25°C  
–80  
–80  
Channel-to-channel  
crosstalk(1) (see Figure 5-  
22)  
2.2 V, 3 V  
dB  
DAC12_0DAT = 80h F7Fh, RLoad = 3 k,  
DAC12_1DAT = 800h, No load,  
fDAC12_0OUT = 10 kHz at 50/50 duty cycle,  
TJ = 25°C  
(1) RLoad = 3 k, CLoad = 100 pF  
RLoad = 3 kW  
ILoad  
VeREF+  
AVCC  
2
DAC12_x  
DACx  
AC  
DC  
CLoad = 100 pF  
Figure 5-21. Test Conditions for 3-dB Bandwidth Specification  
RLoad  
ILoad  
AVCC  
DAC12_xDAT  
VOUT  
080h  
080h  
F7Fh  
080h  
F7Fh  
DAC12_0  
DAC12_1  
2
DAC0  
CLoad = 100 pF  
RLoad  
VREF+  
VDAC12_yOUT  
ILoad  
VDAC12_xOUT  
AVCC  
2
1/fToggle  
DAC1  
CLoad = 100 pF  
Figure 5-22. Crosstalk Test Conditions  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
47  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 5-38. Comparator_B  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
PARAMETER  
Supply voltage  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VCC  
1.8  
3.6  
40  
50  
65  
30  
0.5  
V
1.8 V  
2.2 V  
CBPWRMD = 00  
30  
40  
Comparator operating supply  
current into AVCC terminal,  
Excludes reference resistor ladder  
IAVCC_COM  
P
3 V  
µA  
CBPWRMD = 01  
CBPWRMD = 10  
2.2 V, 3 V  
2.2 V, 3 V  
10  
0.1  
Quiescent current of local reference CBREFACC = 1,  
voltage amplifier into AVCC terminal CBREFLx = 01  
IAVCC_REF  
VIC  
VOFFSET  
CIN  
22  
µA  
V
Common mode input range  
0
VCC – 1  
±20  
CBPWRMD = 00  
Input offset voltage  
mV  
CBPWRMD = 01, 10  
±10  
Input capacitance  
5
3
pF  
kΩ  
ON, switch closed  
Series input resistance  
4
RSIN  
OFF, switch opened  
50  
MΩ  
CBPWRMD = 00, CBF = 0  
450  
600  
50  
ns  
µs  
tPD  
Propagation delay, response time  
Propagation delay with filter active  
CBPWRMD = 01, CBF = 0  
CBPWRMD = 10, CBF = 0  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 00  
0.35  
0.6  
0.6  
1.0  
1.8  
3.4  
1.0  
1.8  
3.4  
6.5  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 01  
tPD,filter  
µs  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 10  
1.0  
CBPWRMD = 00, CBON = 1,  
CBF = 1, CBFDLY = 11  
1.8  
Comparator enable time, settling  
time  
CBON = 0 to CBON = 1  
CBPWRMD = 00, 01, 10  
tEN_CMP  
tEN_REF  
1
0.3  
2
1.5  
µs  
µs  
Resistor reference enable time  
CBON = 0 to CBON = 1  
VIN ×  
(n +  
0.5)  
VIN ×  
(n + 1) (n + 1.5)  
/ 32 / 32  
VIN ×  
VIN = reference into resistor  
ladder, n = 0 to 31  
VCB_REF  
Reference voltage for a given tap  
V
/ 32  
48  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 5-39. Flash Memory  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
DVCC(PGM/ERASE) Program and erase supply voltage  
1.8  
3.6  
5
V
IPGM  
Average supply current from DVCC during program  
3
6
mA  
mA  
IERASE  
Average supply current from DVCC during erase  
17  
Average supply current from DVCC during mass erase or bank  
erase  
IMERASE, IBANK  
tCPT  
6
17  
16  
mA  
(1)  
Cumulative program time  
See  
ms  
cycles  
years  
µs  
Program and erase endurance  
Data retention duration  
103  
100  
64  
105  
tRetention  
tWord  
TJ = 25°C  
(2)  
Word or byte program time  
Block program time for first byte or word  
See  
85  
65  
(2)  
tBlock, 0  
See  
49  
µs  
Block program time for each additional byte or word, except for last  
byte or word  
(2)  
tBlock, 1–(N–1)  
tBlock, N  
See  
37  
55  
23  
49  
73  
32  
µs  
µs  
(2)  
Block program time for last byte or word  
See  
Erase time for segment, mass erase, and bank erase when  
available  
(2)  
tSeg Erase  
See  
ms  
MCLK frequency in marginal read mode  
(FCTL4.MRG0 = 1 or FCTL4.MRG1 = 1)  
fMCLK,MRG  
0
1
MHz  
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming  
methods: individual word write, individual byte write, and block write modes.  
(2) These values are hardwired into the state machine of the flash controller.  
5.14.4 Emulation and Debug  
Table 5-40. JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V, 3 V  
0
20 MHz  
tSBW,Low  
tSBW, En  
tSBW,Rst  
Spy-Bi-Wire low clock pulse duration  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)(1)  
2.2 V, 3 V  
0.025  
15  
1
µs  
µs  
µs  
2.2 V, 3 V  
Spy-Bi-Wire return to normal operation time  
15  
0
100  
5
2.2 V  
3 V  
fTCK  
TCK input frequency for 4-wire JTAG(2)  
Internal pulldown resistance on TEST  
MHz  
0
10  
80  
Rinternal  
2.2 V, 3 V  
45  
60  
kΩ  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
49  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
The MSP430F6459 is an ultra-low-power microcontroller that consists of several features which include  
different sets of peripherals targeted for various applications. The architecture, combined with five low-  
power modes, is optimized to achieve extended battery life in portable measurement applications.  
The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute  
to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from  
low-power modes to active mode in 3 μs (typical).  
6.2 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and  
constant generator, respectively. The remaining registers are general-purpose registers (see Figure 6-1).  
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all  
instructions.  
For further details, see the CPUX Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU391).  
Program Counter  
PC/R0  
SP/R1  
SR/CG1/R2  
CG2/R3  
R4  
Stack Pointer  
Status Register  
Constant Generator  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
Figure 6-1. CPU Registers  
50  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.3 Instruction Set  
The instruction set consists of the original 51 instructions with three formats and seven address modes  
and additional instructions for the expanded address range. Each instruction can operate on word and  
byte data. Table 6-1 shows examples of the three types of instruction formats; Table 6-2 shows the  
address modes.  
Table 6-1. Instruction Word Formats  
INSTRUCTION WORD FORMAT  
Dual operands, source-destination  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
R4 + R5 R5  
Single operands, destination only  
PC (TOS), R8 PC  
Jump-on-equal bit = 0  
Relative jump, unconditional or conditional  
Table 6-2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S(1)  
+
D(1)  
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
OPERATION  
+
+
+
+
MOV R10,R11  
R10 R11  
Indexed  
+
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM, &TCDAT  
MOV @Rn,Y(Rm)  
MOV 2(R5),6(R6)  
M(2+R5) M(6+R6)  
M(EDE) M(TONI)  
M(MEM) M(TCDAT)  
M(R10) M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
+
+
Indirect  
+
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) R11  
R10 + 2 R10  
Indirect auto-increment  
+
+
MOV @Rn+,Rm  
MOV #X,TONI  
Immediate  
#45 M(TONI)  
(1) S = source, D = destination  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.4 Operating Modes  
The MCUs have one active mode and seven software selectable low-power modes of operation. An  
interrupt event can wake up the device from any of the low-power modes, service the request, and restore  
back to the low-power mode on return from the interrupt program.  
Software can configure the following operating modes:  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
FLL loop control remains active  
Low-power mode 1 (LPM1)  
CPU is disabled  
FLL loop control is disabled  
ACLK and SMCLK remain active, MCLK is disabled  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DC generator of the DCO remains enabled  
ACLK remains active  
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DC generator of the DCO is disabled  
ACLK remains active  
Low-power mode 4 (LPM4)  
CPU is disabled  
ACLK is disabled  
MCLK, FLL loop control, and DCOCLK are disabled  
DC generator of the DCO is disabled  
Crystal oscillator is stopped  
Complete data retention  
Low-power mode 3.5 (LPM3.5)  
Internal regulator disabled  
No data retention  
RTC enabled and clocked by low-frequency oscillator  
Wake-up signal from RST/NMI, RTC_B, P1, P2, P3, and P4  
Low-power mode 4.5 (LPM4.5)  
Internal regulator disabled  
No data retention  
Wake-up signal from RST/NMI, P1, P2, P3, and P4  
52  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.5 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see  
Table 6-3). The vector contains the 16-bit address of the appropriate interrupt-handler instruction  
sequence.  
Table 6-3. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power-Up, External Reset  
Watchdog Time-out, Key Violation  
Flash Memory Key Violation  
(2)  
WDTIFG, KEYV (SYSRSTIV)(1)  
Reset  
0FFFEh  
0FFFCh  
0FFFAh  
63, highest  
System NMI  
PMM  
Vacant Memory Access  
JTAG Mailbox  
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,  
SVMLVLRIFG, SVMHVLRIFG, VMAIFG,  
JMBNIFG, JMBOUTIFG (SYSSNIV)(1)  
(Non)maskable  
(Non)maskable  
62  
61  
User NMI  
NMI  
Oscillator Fault  
NMIIFG, OFIFG, ACCVIFG, BUSIFG  
(SYSUNIV)(1) (2)  
Flash Memory Access Violation  
Comp_B  
Comparator B interrupt flags (CBIV)(1) (3)  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
60  
59  
(3)  
Timer TB0  
TB0CCR0 CCIFG0  
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,  
TB0IFG (TB0IV)(1) (3)  
Timer TB0  
Maskable  
0FFF4h  
58  
Watchdog Interval Timer Mode  
USCI_A0 Receive or Transmit  
USCI_B0 Receive or Transmit  
ADC12_A  
WDTIFG  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFF2h  
0FFF0h  
0FFEEh  
0FFECh  
0FFEAh  
57  
56  
55  
54  
53  
UCA0RXIFG, UCA0TXIFG (UCA0IV)(1) (3)  
UCB0RXIFG, UCB0TXIFG (UCB0IV)(1) (3)  
ADC12IFG0 to ADC12IFG15 (ADC12IV)(1) (3)  
TA0CCR0 CCIFG0(3)  
Timer TA0  
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,  
TA0IFG (TA0IV)(1) (3)  
Timer TA0  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFE8h  
0FFE6h  
0FFE4h  
0FFE2h  
0FFE0h  
52  
51  
50  
49  
48  
(4)  
LDO-PWR  
LDOOFFIG, LDOONIFG, LDOOVLIFG  
DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG,  
DMA4IFG, DMA5IFG (DMAIV)(1) (3)  
DMA  
Timer TA1  
Timer TA1  
TA1CCR0 CCIFG0(3)  
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)(1) (3)  
I/O Port P1  
USCI_A1 Receive or Transmit  
USCI_B1 Receive or Transmit  
I/O Port P2  
P1IFG.0 to P1IFG.7 (P1IV)(1)(3)  
UCA1RXIFG, UCA1TXIFG (UCA1IV)(1) (3)  
UCB1RXIFG, UCB1TXIFG (UCB1IV)(1) (3)  
P2IFG.0 to P2IFG.7 (P2IV)(1) (3)  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0FFDEh  
0FFDCh  
0FFDAh  
0FFD8h  
0FFD6h  
47  
46  
45  
44  
43  
LCD_B(5)  
LCD_B Interrupt Flags (LCDBIV)(1)  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RTC_B  
Maskable  
0FFD4h  
42  
RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV)(1) (3)  
DAC12_A  
Timer TA2  
DAC12_0IFG, DAC12_1IFG(1) (3)  
TA2CCR0 CCIFG0(3)  
Maskable  
Maskable  
0FFD2h  
0FFD0h  
41  
40  
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,  
TA2IFG (TA2IV)(1) (3)  
Timer TA2  
Maskable  
0FFCEh  
39  
I/O Port P3  
I/O Port P4  
P3IFG.0 to P3IFG.7 (P3IV)(1) (3)  
P4IFG.0 to P4IFG.7 (P4IV)(1) (3)  
Maskable  
Maskable  
0FFCCh  
0FFCAh  
38  
37  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.  
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
(3) Interrupt flags are in the module.  
(4) Only on devices with peripheral module LDO-PWR.  
(5) Only on devices with peripheral module LCD_B, otherwise reserved.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
PRIORITY  
Table 6-3. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
USCI_A2 Receive or Transmit  
USCI_B2 Receive or Transmit  
UCA2RXIFG, UCA2TXIFG (UCA2IV)(1) (3)  
UCB2RXIFG, UCB2TXIFG (UCB2IV)(1) (3)  
0FFC8h  
0FFC6h  
0FFC4h  
36  
35  
34  
Reserved  
Reserved(6)  
0FF80h  
0, lowest  
(6) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain  
compatibility with other devices, TI recommends reserving these locations.  
54  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.6 Memory Organization  
Table 6-4 summarizes the memory map.  
Table 6-4. Memory Organization(1)  
DESCRIPTION  
512KB  
Memory (flash)  
Total Size  
Main: interrupt vector  
00FFFFh–00FF80h  
Bank 3  
Bank 2  
128KB  
087FFFh-068000h  
128KB  
067FFFh-48000h  
Main: code memory  
Bank 1  
128KB  
047FFFh-028000h  
Bank 0  
128KB  
027FFFh-008000h  
Total Size  
Sector 3  
Sector 2  
Sector 1  
Sector 0  
1KB  
MID support software (ROM)  
006FFFh-006C00h  
16KB  
0FBFFFh-0F8000h  
16KB  
0F7FFFh-0F4000h  
16KB  
0F3FFFh-0F0000h  
RAM  
16KB  
0063FFh–002400h  
(mirrored at address range  
0FFFFFh-0FC000h)  
Sector 7  
Info A  
Info B  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
Size  
2KB  
RAM  
0023FFh-001C00h  
128 B  
0019FFh–001980h  
128 B  
00197Fh–001900h  
Information memory (flash)  
128 B  
0018FFh–001880h  
128 B  
00187Fh–001800h  
512 B  
0017FFh–001600h  
512 B  
0015FFh–001400h  
Bootloader (BSL) memory (flash)  
512 B  
0013FFh–001200h  
512 B  
0011FFh–001000h  
4KB  
Peripherals  
000FFFh–000000h  
(1) N/A = Not available  
6.7 Bootloader (BSL)  
The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to  
the device memory by the BSL is protected by an user-defined password. For complete description of the  
features of the BSL and its implementation, see MSP430 Programming WIth the Bootloader (BSL)  
(SLAU319).  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.7.1 UART BSL  
MSP4306459 comes preprogrammed with the UART BSL. Use of the UART BSL requires external access  
to six pins (see Table 6-5).  
Table 6-5. UART BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.1  
P1.2  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
56  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.8 JTAG Operation  
6.8.1 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and  
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to  
enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with  
MSP430 development tools and device programmers. Table 6-6 lists the JTAG pin requirements. For  
further details on interfacing to development tools and device programmers, see the MSP430 Hardware  
Tools User's Guide (SLAU278). For a complete description of the features of the BSL and its  
implementation, see the MSP430 Programming With the Bootloader User's Guide (SLAU319).  
Table 6-6. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
6.8.2 Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire  
interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers.  
Table 6-7 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to  
development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278).  
For a complete description of the features of the JTAG interface and its implementation, see MSP430  
Programming Via the JTAG Interface (SLAU320).  
Table 6-7. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
IN  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input and output  
Power supply  
IN, OUT  
VSS  
Ground supply  
6.9 Flash Memory  
The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system  
by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory.  
Features of the flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
128 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are  
also called information memory.  
Segment A can be locked separately.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
For further information, see the Flash Controller Module (Chapter Excerpt From MSP430x5xx Family,  
SLAU208) (SLAU392).  
6.10 Memory Integrity Detection (MID)  
The MID is an add-on to the MSP430 flash memory controller. MID provides additional functionality over  
the regular flash operation methods. Main purpose of the MID function is gaining higher reliability of flash  
content and overall system integrity in harsh environments and application areas requiring such features.  
The on-chip MID ROM contains the factory programmed MID support software. This software package  
provides several software functions that allow to use all MID features.  
The MID functionality can be enabled for different flash memory ranges. These memory ranges are  
selectable by the cw0 parameter of the MID function MidEnable(). Details about address range coverage  
is listed in Table 6-8.  
For further information, see the MID Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU459).  
Table 6-8. Address Range Coverage of cw0 Parameter  
of MidEnable() Function  
BITS OF cw0 PARAMETER  
ADDRESS RANGE  
087FFFh-080000h  
07FFFFh-078000h  
077FFFh-070000h  
06FFFFh-068000h  
067FFFh-060000h  
05FFFFh-058000h  
057FFFh-050000h  
04FFFFh-048000h  
047FFFh-040000h  
03FFFFh-038000h  
037FFFh-030000h  
02FFFFh-028000h  
027FFFh-020000h  
01FFFFh-018000h  
017FFFh-010000h  
00FFFFh-008000h  
cw0.15  
cw0.14  
cw0.13  
cw0.12  
cw0.11  
cw0.10  
cw0.9  
cw0.8  
cw0.7  
cw0.6  
cw0.5  
cw0.4  
cw0.3  
cw0.2  
cw0.1  
cw0.0  
6.11 RAM  
The RAM is made up of n sectors. Each sector can be completely powered down to save leakage;  
however, all data is lost. Features of the RAM include:  
RAM has n sectors. The size of a sector can be found in Section 6.6.  
Each sector 0 to n can be complete disabled; however, data retention is lost.  
Each sector 0 to n automatically enters low-power retention mode when possible.  
For further information, see the RAM Controller Module (Chapter Excerpt From MSP430x5xx Family,  
SLAU208) (SLAU393).  
58  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.12 Backup RAM  
The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during  
operation from a backup supply if the battery backup system module is implemented.  
There are 8 bytes of backup RAM available. It can be word-wise accessed by the control registers  
BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.  
For further information, see the Backup RAM Module (Chapter Excerpt From MSP430x5xx Family,  
SLAU208) (SLAU394).  
6.13 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be  
handled using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx  
Family User's Guide (SLAU208).  
6.13.1 Digital I/O  
There are up to nine 8-bit I/O ports implemented: P1 through P9 are complete and port PJ contains four  
individual I/O ports.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Programmable drive strength on all ports.  
Edge-selectable interrupt input capability for all the eight bits of ports P1, P2, P3, and P4.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PD).  
For further information, see the Digital I/O Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU396).  
6.13.2 Port Mapping Controller  
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2.  
Table 6-9 lists the available mappings, and Table 6-10 lists the default settings.  
For further information, see the Port Mapping Controller Module (Chapter Excerpt From MSP430x5xx  
Family, SLAU208) (SLAU397).  
Table 6-9. Port Mapping Mnemonics and Functions  
VALUE  
PxMAPy MNEMONIC  
PM_NONE  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
0
None  
DVSS  
PM_CBOUT  
Comparator_B output  
1
2
PM_TB0CLK  
Timer TB0 clock input  
PM_ADC12CLK  
PM_DMAE0  
ADC12CLK  
DMAE0 Input  
PM_SVMOUT  
SVM output  
3
Timer TB0 high impedance input  
TB0OUTH  
PM_TB0OUTH  
4
5
6
7
8
9
PM_TB0CCR0B  
PM_TB0CCR1B  
PM_TB0CCR2B  
PM_TB0CCR3B  
PM_TB0CCR4B  
PM_TB0CCR5B  
Timer TB0 CCR0 capture input CCI0B  
Timer TB0 CCR1 capture input CCI1B  
Timer TB0 CCR2 capture input CCI2B  
Timer TB0 CCR3 capture input CCI3B  
Timer TB0 CCR4 capture input CCI4B  
Timer TB0 CCR5 capture input CCI5B  
Timer TB0: TB0.0 compare output Out0  
Timer TB0: TB0.1 compare output Out1  
Timer TB0: TB0.2 compare output Out2  
Timer TB0: TB0.3 compare output Out3  
Timer TB0: TB0.4 compare output Out4  
Timer TB0: TB0.5 compare output Out5  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 6-9. Port Mapping Mnemonics and Functions (continued)  
VALUE  
PxMAPy MNEMONIC  
PM_TB0CCR6B  
PM_UCA0RXD  
PM_UCA0SOMI  
PM_UCA0TXD  
PM_UCA0SIMO  
PM_UCA0CLK  
PM_UCB0STE  
PM_UCB0SOMI  
PM_UCB0SCL  
PM_UCB0SIMO  
PM_UCB0SDA  
PM_UCB0CLK  
PM_UCA0STE  
PM_MCLK  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
Timer TB0: TB0.6 compare output Out6  
10  
Timer TB0 CCR6 capture input CCI6B  
USCI_A0 UART RXD (Direction controlled by USCI - input)  
11  
12  
13  
14  
15  
16  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
USCI_A0 UART TXD (Direction controlled by USCI - output)  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
USCI_A0 clock input/output (direction controlled by USCI)  
USCI_B0 SPI slave transmit enable (direction controlled by USCI - input)  
USCI_B0 SPI slave out master in (direction controlled by USCI)  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
USCI_B0 SPI slave in master out (direction controlled by USCI)  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
USCI_B0 clock input/output (direction controlled by USCI)  
USCI_A0 SPI slave transmit enable (direction controlled by USCI - input)  
17  
18  
MCLK  
Reserved  
Reserved for test purposes. Do not use this setting.  
Reserved for test purposes. Do not use this setting.  
19  
Reserved  
20-30  
Reserved  
None  
DVSS  
Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents  
when applying analog signals.  
31 (0FFh)(1)  
PM_ANALOG  
(1) The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide, and the upper bits are  
ignored, which results in a read out value of 31.  
Table 6-10. Default Mapping  
PIN  
PxMAPy MNEMONIC  
INPUT PIN FUNCTION  
OUTPUT PIN FUNCTION  
PM_UCB0STE,  
PM_UCA0CLK  
USCI_B0 SPI slave transmit enable (direction controlled by USCI - input),  
USCI_A0 clock input/output (direction controlled by USCI)  
P2.0/P2MAP0  
PM_UCB0SIMO,  
PM_UCB0SDA  
USCI_B0 SPI slave in master out (direction controlled by USCI),  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
PM_UCB0SOMI,  
PM_UCB0SCL  
USCI_B0 SPI slave out master in (direction controlled by USCI),  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
PM_UCB0CLK,  
PM_UCA0STE  
USCI_B0 clock input/output (direction controlled by USCI),  
USCI_A0 SPI slave transmit enable (direction controlled by USCI - input)  
PM_UCA0TXD,  
PM_UCA0SIMO  
USCI_A0 UART TXD (direction controlled by USCI - output),  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
PM_UCA0RXD,  
PM_UCA0SOMI  
USCI_A0 UART RXD (direction controlled by USCI - input),  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
P2.6/P2MAP6/ R03  
PM_NONE  
PM_NONE  
DVSS  
DVSS  
P2.7/P2MAP7/LCDREF/R13  
60  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.13.3 Oscillator and System Clock  
The clock system is supported by the Unified Clock System (UCS) module that includes support for a 32-  
kHz watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power  
low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal  
digitally controlled oscillator (DCO), and a high-frequency crystal oscillator (XT2). The UCS module is  
designed to meet the requirements of both low system cost and low power consumption. The UCS module  
features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator,  
stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal  
DCO provides a fast turnon clock source and stabilizes in 3 µs (typical). The UCS module provides the  
following clock signals:  
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the  
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal  
digitally-controlled oscillator DCO.  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources  
available to ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be  
sourced by same sources available to ACLK.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.  
For further information, see the UCS Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU390).  
6.13.4 Power-Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and  
contains programmable output levels to provide for power optimization. The PMM also includes supply  
voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection.  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power-  
on and power-off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable  
level and supports both supply voltage supervision (the device is automatically reset) and supply voltage  
monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary  
supply and core supply.  
For further information, see the PMM Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU388).  
6.13.5 Hardware Multiplier (MPY)  
The multiplication operation is supported by a dedicated peripheral module. The module performs  
operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module supports signed and unsigned  
multiplication as well as signed and unsigned multiply-and-accumulate operations.  
For further information, see the MPY Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU404).  
6.13.6 Real-Time Clock (RTC_B)  
The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds,  
minutes, hours, day of week, day of month, month, and year. Calendar mode integrates an internal  
calendar which compensates for months with less than 31 days and includes leap year correction. The  
RTC_B also supports flexible alarm functions and offset-calibration hardware. The implementation on this  
device supports operation in LPM3.5 mode and operation from a backup supply.  
The application report Using the MSP430 RTC_B Module With Battery Backup Supply (SLAA665)  
describes how to use the RTC_B with battery backup supply functionality to retain the time and keep the  
RTC counting through loss of main power supply, as well as how to handle correct reinitialization when the  
main power supply is restored.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
For further information, see the RTC_B Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU403).  
6.13.7 Watchdog Timer (WDT_A)  
The primary function of the WDT_A module is to perform a controlled system restart after a software  
problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function  
is not needed in an application, the module can be configured as an interval timer and can generate  
interrupts at selected time intervals.  
For further information, see the WDT_A Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU399).  
6.13.8 System Module (SYS)  
The SYS module handles many of the system functions within the device. These include power-on reset  
and power-up clear handling, NMI source selection and management, reset interrupt vector generators  
(see Table 6-11), bootloader entry mechanisms, and configuration management (device descriptors). SYS  
also includes a data exchange mechanism using JTAG called a JTAG mailbox that can be used in the  
application.  
For further information, see the SYS Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU387).  
Table 6-11. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
INTERRUPT EVENT  
WORD ADDRESS  
OFFSET  
PRIORITY  
REGISTER  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
Highest  
RST/NMI (BOR)  
04h  
PMMSWBOR (BOR)  
LPM3.5 or LPM4.5 wakeup (BOR)  
Security violation (BOR)  
SVSL (POR)  
06h  
08h  
0Ah  
0Ch  
0Eh  
SVSH (POR)  
SVML_OVP (POR)  
SVMH_OVP (POR)  
PMMSWPOR (POR)  
WDT time-out (PUC)  
WDT key violation (PUC)  
KEYV flash key violation (PUC)  
Reserved  
10h  
SYSRSTIV, System Reset  
019Eh  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
Peripheral area fetch (PUC)  
PMM key violation (PUC)  
Reserved  
20h  
22h to 3Eh  
Lowest  
62  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 6-11. System Module Interrupt Vector Registers (continued)  
INTERRUPT VECTOR  
REGISTER  
INTERRUPT EVENT  
WORD ADDRESS  
OFFSET  
PRIORITY  
No interrupt pending  
SVMLIFG  
00h  
02h  
Highest  
SVMHIFG  
04h  
DLYLIFG  
06h  
DLYHIFG  
08h  
SYSSNIV, System NMI  
VMAIFG  
019Ch  
0Ah  
JMBINIFG  
0Ch  
JMBOUTIFG  
SVMLVLRIFG  
SVMHVLRIFG  
Reserved  
0Eh  
10h  
12h  
14h to 1Eh  
00h  
Lowest  
Highest  
No interrupt pending  
NMIIFG  
02h  
OFIFG  
04h  
SYSUNIV, User NMI  
019Ah  
0198h  
ACCVIFG  
06h  
BUSIFG  
08h  
Reserved  
0Ah to 1Eh  
00h  
Lowest  
Highest  
No interrupt pending  
02h  
Reserved  
SYSBERRIV, Bus Error  
04h  
MID error  
Reserved  
06h  
08h to 1Eh  
Lowest  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.13.9 DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU  
intervention. For example, the DMA controller can be used to move data from the ADC12_A conversion  
memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA  
controller reduces system power consumption by allowing the CPU to remain in sleep mode, without  
having to awaken to move data to or from a peripheral.  
For further information, see the DMA Controller Module (Chapter Excerpt From MSP430x5xx Family,  
SLAU208) (SLAU395).  
Table 6-12. DMA Trigger Assignments(1)  
CHANNEL  
TRIGGER  
0
1
2
3
4
5
0
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
TA2CCR0 CCIFG  
TA2CCR2 CCIFG  
TBCCR0 CCIFG  
TBCCR2 CCIFG  
Reserved  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
Reserved  
UCA2RXIFG  
UCA2TXIFG  
UCB2RXIFG  
UCB2TXIFG  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
UCA1RXIFG  
UCA1TXIFG  
UCB1RXIFG  
UCB1TXIFG  
ADC12IFGx  
DAC12_0IFG  
DAC12_1IFG  
Reserved  
Reserved  
MPY ready  
DMA5IFG  
DMA0IFG  
DMA1IFG  
DMA2IFG  
DMAE0  
DMA3IFG  
DMA4IFG  
(1) Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not  
cause any DMA trigger event when selected.  
64  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.13.10 Universal Serial Communication Interface (USCI)  
The USCI modules are used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3-pin or 4-pin) and I2C, and asynchronous communication  
protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI  
module contains two portions, A and B.  
The USCI_An module provides support for SPI (3-pin or 4-pin), UART, enhanced UART, or IrDA.  
The USCI_Bn module provides support for SPI (3-pin or 4-pin) or I2C.  
The MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x series includes three complete USCI  
modules (n = 0 to 2).  
For further information, see the following User's Guides:  
USCI UART Module (Chapter Excerpt From MSP430x5xx Family, SLAU208) (SLAU410)  
USCI SPI Module (Chapter Excerpt From MSP430x5xx Family, SLAU208) (SLAU411)  
USCI I2C Module (Chapter Excerpt From MSP430x5xx Family, SLAU208) (SLAU412)  
6.13.11 Timer TA0  
Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers (see Table 6-13).  
TA0 supports multiple capture/compares, PWM outputs, and interval timing. TA0 also has extensive  
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each  
of the capture/compare registers.  
For further information, see the Timer_A Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU400).  
Table 6-13. Timer TA0 Signal Connections  
INPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
OUTPUT PIN  
NUMBER  
MODULE BLOCK  
34-P1.0  
TA0CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
NA  
SMCLK  
TA0CLK  
TA0.0  
DVSS  
34-P1.0  
35-P1.1  
35-P1.1  
CCR0  
CCR1  
TA0  
TA0.0  
DVSS  
DVCC  
VCC  
36-P1.2  
40-P1.6  
TA0.1  
TA0.1  
CCI1A  
CCI1B  
36-P1.2  
40-P1.6  
ADC12_A  
(internal)  
TA1  
TA0.1  
DVSS  
GND  
ADC12SHSx = {1}  
DVCC  
TA0.2  
TA0.2  
DVSS  
DVCC  
TA0.3  
DVSS  
DVSS  
DVCC  
VCC  
CCI2A  
CCI2B  
GND  
37-P1.3  
41-P1.7  
37-P1.3  
41-P1.7  
CCR2  
CCR3  
TA2  
TA3  
TA0.2  
TA0.3  
VCC  
38-P1.4  
CCI3A  
CCI3B  
GND  
38-P1.4  
VCC  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 6-13. Timer TA0 Signal Connections (continued)  
INPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
OUTPUT PIN  
NUMBER  
MODULE BLOCK  
39-P1.5  
TA0.4  
DVSS  
DVSS  
DVCC  
CCI4A  
CCI4B  
GND  
39-P1.5  
CCR4  
TA4  
TA0.4  
VCC  
66  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.13.12 Timer TA1  
Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers (see Table 6-14).  
TA1 supports multiple capture/compares, PWM outputs, and interval timing. TA1 also has extensive  
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each  
of the capture/compare registers.  
For further information, see the Timer_A Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU400).  
Table 6-14. Timer TA1 Signal Connections  
INPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
OUTPUT PIN  
NUMBER  
MODULE BLOCK  
42-P3.0  
TA1CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
NA  
SMCLK  
TA1CLK  
TA1.0  
DVSS  
42-P3.0  
43-P3.1  
43-P3.1  
44-P3.2  
CCR0  
CCR1  
CCR2  
TA0  
TA1.0  
DVSS  
DVCC  
VCC  
44-P3.2  
45-P3.3  
TA1.1  
CCI1A  
DAC12_A  
DAC12_0,  
DAC12_1  
(internal)  
CBOUT (internal)  
CCI1B  
TA1  
TA2  
TA1.1  
TA1.2  
DVSS  
DVCC  
GND  
VCC  
TA1.2  
CCI2A  
CCI2B  
GND  
VCC  
45-P3.3  
ACLK (internal)  
DVSS  
DVCC  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.13.13 Timer TA2  
Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers (see Table 6-15).  
TA2 supports multiple capture/compares, PWM outputs, and interval timing. TA2 also has extensive  
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each  
of the capture/compare registers.  
For further information, see the Timer_A Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU400).  
Table 6-15. Timer TA2 Signal Connections  
INPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
OUTPUT PIN  
NUMBER  
MODULE BLOCK  
46-P3.4  
TA2CLK  
ACLK  
TACLK  
ACLK  
SMCLK  
TACLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
NA  
SMCLK  
TA2CLK  
TA2.0  
46-P3.4  
47-P3.5  
47-P3.5  
48-P3.6  
49-P3.7  
DVSS  
CCR0  
CCR1  
CCR2  
TA0  
TA1  
TA2  
TA2.0  
TA2.1  
TA2.2  
DVSS  
DVCC  
VCC  
48-P3.6  
49-P3.7  
TA2.1  
CCI1A  
CCI1B  
GND  
CBOUT (internal)  
DVSS  
DVCC  
VCC  
TA2.2  
CCI2A  
CCI2B  
GND  
ACLK (internal)  
DVSS  
DVCC  
VCC  
68  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.13.14 Timer TB0  
Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers (see Table 6-16).  
TB0 supports multiple capture/compares, PWM outputs, and interval timing. TB0 also has extensive  
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each  
of the capture/compare registers.  
For further information, see the Timer_B Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU401).  
Table 6-16. Timer TB0 Signal Connections  
INPUT PIN  
NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
SIGNAL  
MODULE  
OUTPUT SIGNAL  
DEVICE OUTPUT  
SIGNAL  
OUTPUT PIN  
NUMBER  
MODULE BLOCK  
58-P8.0  
TB0CLK  
TB0CLK  
P2MAPx(1)  
ACLK  
ACLK  
Timer  
NA  
NA  
SMCLK  
SMCLK  
58-P8.0  
TB0CLK  
TB0CLK  
P2MAPx(1)  
50-P4.0  
P2MAPx(1)  
TB0.0  
TB0.0  
CCI0A  
CCI0B  
50-P4.0  
P2MAPx(1)  
CCR0  
CCR1  
TB0  
TB1  
TB0.0  
TB0.1  
ADC12 (internal)  
ADC12SHSx = {2}  
DVSS  
GND  
DVCC  
TB0.1  
TB0.1  
VCC  
51-P4.1  
P2MAPx(1)  
CCI1A  
CCI1B  
51-P4.1  
P2MAPx(1)  
ADC12 (internal)  
ADC12SHSx = {3}  
DVSS  
GND  
DVCC  
TB0.2  
TB0.2  
VCC  
52-P4.2  
P2MAPx(1)  
CCI2A  
CCI2B  
52-P4.2  
P2MAPx(1)  
DAC12_A  
DAC12_0,  
DAC12_1  
(internal)  
CCR2  
TB2  
TB0.2  
DVSS  
GND  
DVCC  
TB0.3  
TB0.3  
DVSS  
DVCC  
TB0.4  
TB0.4  
DVSS  
DVCC  
TB0.5  
TB0.5  
DVSS  
DVCC  
TB0.6  
TB0.6  
DVSS  
DVCC  
VCC  
CCI3A  
CCI3B  
GND  
53-P4.3  
P2MAPx(1)  
53-P4.3  
P2MAPx(1)  
CCR3  
CCR4  
CCR5  
CCR6  
TB3  
TB4  
TB5  
TB6  
TB0.3  
TB0.4  
TB0.5  
TB0.6  
VCC  
54-P4.4  
P2MAPx(1)  
CCI4A  
CCI4B  
GND  
54-P4.4  
P2MAPx(1)  
VCC  
55-P4.5  
P2MAPx(1)  
CCI5A  
CCI5B  
GND  
55-P4.5  
P2MAPx(1)  
VCC  
56-P4.6  
P2MAPx(1)  
CCI6A  
CCI6B  
GND  
56-P4.6  
P2MAPx(1)  
VCC  
(1) Timer functions are selectable through the port mapping controller.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
69  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.13.15 Comparator_B  
The primary function of the Comparator_B module is to support precision slope analog-to-digital  
conversions, battery voltage supervision, and monitoring of external analog signals.  
For further information, see the COMP_B Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU408).  
6.13.16 ADC12_A  
The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit  
SAR core, sample select control, reference generator, and a 16 word conversion-and-control buffer. The  
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored  
without any CPU intervention.  
For further information, see the ADC12_A Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU406).  
6.13.17 DAC12_A  
The DAC12_A module is a 12-bit, R-ladder, voltage output DAC. The DAC12_A may be used in 8-bit or  
12-bit mode, and may be used in conjunction with the DMA controller. When multiple DAC12_A modules  
are present, they may be grouped together for synchronous operation.  
6.13.18 CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used  
for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
For further information, see the CRC Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU398).  
6.13.19 Voltage Reference (REF) Module  
The REF module is responsible for generation of all critical reference voltages that can be used by the  
various analog peripherals in the device.  
For further information, see the REF Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU405).  
6.13.20 LCD_B  
The LCD_B driver generates the segment and common signals that are required to drive a liquid crystal  
display (LCD). The LCD_B controller has dedicated data memories to hold segment drive information.  
Common and segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux  
LCDs are supported. The module can provide a LCD voltage independent of the supply voltage with its  
integrated charge pump. It is possible to control the level of the LCD voltage, and thus contrast, by  
software. The module also provides an automatic blinking capability for individual segments.  
The LCD_B module is only available on the MSP430F665x and MSP430F645x devices.  
For further information, see the LCD_B Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU409).  
6.13.21 LDO and PU Port  
The integrated 3.3-V power system incorporates an integrated 3.3-V LDO regulator that allows the entire  
MSP430 microcontroller to be powered from nominal 5-V LDOI when it is made available for the system.  
Alternatively, the power system can supply power only to other components within the system, or it can be  
unused altogether.  
70  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
The Port U Pins (PU.0 and PU.1) function as general-purpose high-current I/O pins. These pins can only  
be configured together as either both inputs or both outputs. Port U is supplied by the LDOO rail. If the  
3.3-V LDO is not being used in the system (disabled), the LDOO pin can be supplied externally.  
The LDO-PWR module (LDO and PU Port) is only available on the MSP430F645x and MSP430F535x  
devices.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
71  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.13.22 Embedded Emulation Module (EEM) (L Version)  
The EEM supports real-time in-system debugging. The L version of the EEM has the following features:  
Eight hardware triggers or breakpoints on memory access  
Two hardware triggers or breakpoints on CPU register write access  
Up to ten hardware triggers can be combined to form complex triggers or breakpoints  
Two cycle counters  
Sequencer  
State storage  
Clock control on module level  
For further information, see the EEM Module (Chapter Excerpt From MSP430x5xx Family, SLAU208)  
(SLAU414).  
6.13.23 Peripheral File Map  
Table 6-17 lists the base register address for each available peripheral.  
Table 6-17. Peripherals  
MODULE NAME  
Special Functions (see Table 6-18)  
PMM (see Table 6-19)  
BASE ADDRESS  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
01C0h  
01D0h  
0200h  
0220h  
0240h  
0260h  
0280h  
0320h  
0340h  
0380h  
03C0h  
0400h  
0480h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
0540h  
OFFSET ADDRESS RANGE(1)  
000h-01Fh  
000h-010h  
000h-00Fh  
000h-007h  
000h-001h  
000h-001h  
000h-01Fh  
000h-01Fh  
000h-001h  
000h-003h  
000h-007h  
000h-01Fh  
000h-01Fh  
000h-00Bh  
000h-00Bh  
000h-00Bh  
000h-01Fh  
000h-02Eh  
000h-02Eh  
000h-02Eh  
000h-02Eh  
000h-01Fh  
000h-01Fh  
000h-02Fh  
000h-00Fh  
000h-00Ah  
000h-00Ah  
000h-00Ah  
000h-00Ah  
Flash Control (see Table 6-20)  
CRC16 (see Table 6-21)  
RAM Control (see Table 6-22)  
Watchdog (see Table 6-23)  
UCS (see Table 6-24)  
SYS (see Table 6-25)  
Shared Reference (see Table 6-26)  
Port Mapping Control (see Table 6-27)  
Port Mapping Port P2 (see Table 6-27)  
Port P1, P2 (see Table 6-28)  
Port P3, P4 (see Table 6-29)  
Port P5, P6 (see Table 6-30)  
Port P7, P8 (see Table 6-31)  
Port P9 (see Table 6-32)  
Port PJ (see Table 6-33)  
Timer TA0 (see Table 6-34)  
Timer TA1 (see Table 6-35)  
Timer TB0 (see Table 6-36)  
Timer TA2 (see Table 6-37)  
Battery Backup (see Table 6-38)  
RTC_B (see Table 6-39)  
32-Bit Hardware Multiplier (see Table 6-40)  
DMA General Control (see Table 6-41)  
DMA Channel 0 (see Table 6-41)  
DMA Channel 1 (see Table 6-41)  
DMA Channel 2 (see Table 6-41)  
DMA Channel 3 (see Table 6-41)  
(1) For a detailed description of the individual control register offset addresses, see the MSP430F5xx and MSP430F6xx Family User's  
Guide (SLAU208).  
72  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 6-17. Peripherals (continued)  
MODULE NAME  
BASE ADDRESS  
0550h  
OFFSET ADDRESS RANGE(1)  
000h-00Ah  
DMA Channel 4 (see Table 6-41)  
DMA Channel 5 (see Table 6-41)  
USCI_A0 (see Table 6-42)  
USCI_B0 (see Table 6-43)  
USCI_A1 (see Table 6-44)  
USCI_B1 (see Table 6-45)  
USCI_A2 (see Table 6-46)  
USCI_B2 (see Table 6-47)  
ADC12_A (see Table 6-48)  
DAC12_A (see Table 6-49)  
Comparator_B (see Table 6-50)  
0560h  
000h-00Ah  
05C0h  
05E0h  
000h-01Fh  
000h-01Fh  
0600h  
000h-01Fh  
0620h  
000h-01Fh  
0640h  
000h-01Fh  
0660h  
000h-01Fh  
0700h  
000h-03Fh  
0780h  
000h-01Fh  
08C0h  
0900h  
000h-00Fh  
(2)  
LDO-PWR; LDO and Port U configuration (see Table 6-51)  
000h-014h  
(3)  
LCD_B control (see Table 6-52)  
0A00h  
000h-05Fh  
(2) Only on devices with peripheral module LDO-PWR.  
(3) Only on devices with peripheral module LCD_B.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
73  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 6-18. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
Table 6-19. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
OFFSET  
PMM control 0  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
10h  
PMM control 1  
PMMCTL1  
SVSMHCTL  
SVSMLCTL  
PMMIFG  
SVS high-side control  
SVS low-side control  
PMM interrupt flags  
PMM interrupt enable  
PMM power mode 5 control  
PMMIE  
PM5CTL0  
Table 6-20. Flash Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Flash control 1  
Flash control 3  
Flash control 4  
FCTL1  
FCTL3  
FCTL4  
00h  
04h  
06h  
Table 6-21. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC16DI  
OFFSET  
CRC data input  
CRC result  
00h  
04h  
CRC16INIRES  
Table 6-22. RAM Control Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
RCCTL0  
OFFSET  
OFFSET  
OFFSET  
RAM control 0  
00h  
00h  
Table 6-23. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
WDTCTL  
Watchdog timer control  
Table 6-24. UCS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
UCSCTL0  
UCS control 0  
UCS control 1  
UCS control 2  
UCS control 3  
UCS control 4  
UCS control 5  
UCS control 6  
UCS control 7  
UCS control 8  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
UCSCTL1  
UCSCTL2  
UCSCTL3  
UCSCTL4  
UCSCTL5  
UCSCTL6  
UCSCTL7  
UCSCTL8  
74  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 6-25. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
System control  
SYSCTL  
00h  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
Bootloader configuration area  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
SYSSNIV  
SYSRSTIV  
Table 6-26. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
REFCTL  
OFFSET  
OFFSET  
Shared reference control  
00h  
Table 6-27. Port Mapping Registers  
(Base Address of Port Mapping Control: 01C0h, Port P4: 01D0h)  
REGISTER DESCRIPTION  
REGISTER  
PMAPPWD  
Port mapping password  
Port mapping control  
Port P2.0 mapping  
Port P2.1 mapping  
Port P2.2 mapping  
Port P2.3 mapping  
Port P2.4 mapping  
Port P2.5 mapping  
Port P2.6 mapping  
Port P2.7 mapping  
00h  
02h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
PMAPCTL  
P2MAP0  
P2MAP1  
P2MAP2  
P2MAP3  
P2MAP4  
P2MAP5  
P2MAP6  
P2MAP7  
Table 6-28. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
Port P1 output  
Port P1 direction  
P1OUT  
P1DIR  
P1REN  
P1DS  
P1SEL  
P1IV  
Port P1 pullup/pulldown enable  
Port P1 drive strength  
Port P1 selection  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
Port P2 direction  
Port P2 pullup/pulldown enable  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
75  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 6-28. Port P1, P2 Registers (Base Address: 0200h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P2 drive strength  
Port P2 selection  
P2DS  
P2SEL  
P2IV  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
Table 6-29. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P3 output  
Port P3 direction  
P3OUT  
P3DIR  
P3REN  
P3DS  
P3SEL  
P3IV  
Port P3 pullup/pulldown enable  
Port P3 drive strength  
Port P3 selection  
Port P3 interrupt vector word  
Port P3 interrupt edge select  
Port P3 interrupt enable  
Port P3 interrupt flag  
P3IES  
P3IE  
P3IFG  
P4IN  
Port P4 input  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4DS  
P4SEL  
P4IV  
Port P4 direction  
Port P4 pullup/pulldown enable  
Port P4 drive strength  
Port P4 selection  
Port P4 interrupt vector word  
Port P4 interrupt edge select  
Port P4 interrupt enable  
Port P4 interrupt flag  
P4IES  
P4IE  
P4IFG  
Table 6-30. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P5 output  
P5OUT  
P5DIR  
P5REN  
P5DS  
Port P5 direction  
Port P5 pullup/pulldown enable  
Port P5 drive strength  
Port P5 selection  
P5SEL  
P6IN  
Port P6 input  
Port P6 output  
P6OUT  
P6DIR  
P6REN  
P6DS  
Port P6 direction  
Port P6 pullup/pulldown enable  
Port P6 drive strength  
Port P6 selection  
P6SEL  
76  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 6-31. Port P7, P8 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P7 input  
P7IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P7 output  
Port P7 direction  
P7OUT  
P7DIR  
P7REN  
P7DS  
Port P7 pullup/pulldown enable  
Port P7 drive strength  
Port P7 selection  
P7SEL  
P8IN  
Port P8 input  
Port P8 output  
P8OUT  
P8DIR  
P8REN  
P8DS  
Port P8 direction  
Port P8 pullup/pulldown enable  
Port P8 drive strength  
Port P8 selection  
P8SEL  
Table 6-32. Port P9 Register (Base Address: 0280h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P9 input  
P9IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
Port P9 output  
P9OUT  
P9DIR  
P9REN  
P9DS  
Port P9 direction  
Port P9 pullup/pulldown enable  
Port P9 drive strength  
Port P9 selection  
P9SEL  
Table 6-33. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
08h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
PJDS  
Port PJ direction  
Port PJ pullup/pulldown enable  
Port PJ drive strength  
Table 6-34. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
TA0CTL  
OFFSET  
TA0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
TA0 expansion 0  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
TA0 interrupt vector  
TA0IV  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
77  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 6-35. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
TA1CTL  
OFFSET  
TA1 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA1 expansion 0  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1 interrupt vector  
TA1IV  
Table 6-36. TB0 Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
TB0CTL  
OFFSET  
TB0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
Capture/compare control 5  
Capture/compare control 6  
TB0 counter  
TB0CCTL0  
TB0CCTL1  
TB0CCTL2  
TB0CCTL3  
TB0CCTL4  
TB0CCTL5  
TB0CCTL6  
TB0R  
Capture/compare 0  
TB0CCR0  
TB0CCR1  
TB0CCR2  
TB0CCR3  
TB0CCR4  
TB0CCR5  
TB0CCR6  
TB0EX0  
Capture/compare 1  
Capture/compare 2  
Capture/compare 3  
Capture/compare 4  
Capture/compare 5  
Capture/compare 6  
TB0 expansion 0  
TB0 interrupt vector  
TB0IV  
Table 6-37. TA2 Registers (Base Address: 0400h)  
REGISTER DESCRIPTION  
REGISTER  
TA2CTL  
OFFSET  
TA2 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA2 counter  
TA2CCTL0  
TA2CCTL1  
TA2CCTL2  
TA2R  
Capture/compare 0  
Capture/compare 1  
Capture/compare 2  
TA2 expansion 0  
TA2CCR0  
TA2CCR1  
TA2CCR2  
TA2EX0  
TA2 interrupt vector  
TA2IV  
78  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 6-38. Battery Backup Registers (Base Address: 0480h)  
REGISTER DESCRIPTION  
REGISTER  
BAKMEM0  
OFFSET  
Battery backup memory 0  
Battery backup memory 1  
Battery backup memory 2  
Battery backup memory 3  
Battery backup control  
00h  
02h  
04h  
06h  
1Ch  
1Eh  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKCTL  
Battery charger control  
BAKCHCTL  
Table 6-39. Real-Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
OFFSET  
RTC control 0  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Eh  
RTC control 1  
RTCCTL1  
RTCCTL2  
RTCCTL3  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTC control 2  
RTC control 3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTC prescaler 1  
RTC interrupt vector word  
RTC seconds  
RTCPS1  
RTCIV  
RTCSEC  
RTC minutes  
RTCMIN  
RTC hours  
RTCHOUR  
RTCDOW  
RTCDAY  
RTC day of week  
RTC days  
RTC month  
RTCMON  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTCAHOUR  
RTCADOW  
RTCADAY  
BIN2BCD  
BCD2BIN  
RTC year low  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTC alarm day of week  
RTC alarm days  
Binary-to-BCD conversion  
BCD-to-binary conversion  
Table 6-40. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 – multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
16-bit operand 1 – signed multiply  
16-bit operand 1 – multiply accumulate  
16-bit operand 1 – signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension  
SUMEXT  
MPY32L  
32-bit operand 1 – multiply low word  
32-bit operand 1 – multiply high word  
32-bit operand 1 – signed multiply low word  
32-bit operand 1 – signed multiply high word  
MPY32H  
MPYS32L  
MPYS32H  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
79  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 6-40. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
MAC32L  
OFFSET  
32-bit operand 1 – multiply accumulate low word  
32-bit operand 1 – multiply accumulate high word  
32-bit operand 1 – signed multiply accumulate low word  
32-bit operand 1 – signed multiply accumulate high word  
32-bit operand 2 – low word  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 2 – high word  
OP2H  
32 × 32 result 0 – least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 – most significant word  
MPY32 control 0  
RES3  
MPY32CTL0  
Table 6-41. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA  
Channel 4: 0550h, DMA Channel 5: 0560h)  
REGISTER DESCRIPTION  
DMA general control: DMA module control 0  
REGISTER  
DMACTL0  
OFFSET  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
00h  
DMA general control: DMA module control 1  
DMA general control: DMA module control 2  
DMA general control: DMA module control 3  
DMA general control: DMA module control 4  
DMA general control: DMA interrupt vector  
DMA channel 0 control  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
DMA0CTL  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA channel 1 control  
DMA1CTL  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA channel 2 control  
DMA2CTL  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA channel 3 control  
DMA3CTL  
DMA3SAL  
DMA3SAH  
DMA3DAL  
DMA3DAH  
DMA3SZ  
DMA channel 3 source address low  
DMA channel 3 source address high  
DMA channel 3 destination address low  
DMA channel 3 destination address high  
DMA channel 3 transfer size  
DMA channel 4 control  
DMA4CTL  
80  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 6-41. DMA Registers (Base Address DMA General Control: 0500h,  
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA  
Channel 4: 0550h, DMA Channel 5: 0560h) (continued)  
REGISTER DESCRIPTION  
DMA channel 4 source address low  
REGISTER  
DMA4SAL  
OFFSET  
02h  
04h  
06h  
08h  
0Ah  
00h  
02h  
04h  
06h  
08h  
0Ah  
DMA channel 4 source address high  
DMA channel 4 destination address low  
DMA channel 4 destination address high  
DMA channel 4 transfer size  
DMA4SAH  
DMA4DAL  
DMA4DAH  
DMA4SZ  
DMA channel 5 control  
DMA5CTL  
DMA5SAL  
DMA5SAH  
DMA5DAL  
DMA5DAH  
DMA5SZ  
DMA channel 5 source address low  
DMA channel 5 source address high  
DMA channel 5 destination address low  
DMA channel 5 destination address high  
DMA channel 5 transfer size  
Table 6-42. USCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTL0  
OFFSET  
USCI control 0  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 1  
UCA0CTL1  
UCA0BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA0BR1  
USCI modulation control  
USCI status  
UCA0MCTL  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA0IFG  
UCA0IV  
Table 6-43. USCI_B0 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTL0  
OFFSET  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB0CTL1  
UCB0BR0  
UCB0BR1  
UCB0STAT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA  
UCB0I2CSA  
UCB0IE  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB0IFG  
USCI interrupt vector word  
UCB0IV  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
81  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 6-44. USCI_A1 Registers (Base Address: 0600h)  
REGISTER DESCRIPTION  
REGISTER  
UCA1CTL0  
OFFSET  
USCI control 0  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 1  
UCA1CTL1  
UCA1BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA1BR1  
USCI modulation control  
USCI status  
UCA1MCTL  
UCA1STAT  
UCA1RXBUF  
UCA1TXBUF  
UCA1ABCTL  
UCA1IRTCTL  
UCA1IRRCTL  
UCA1IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA1IFG  
UCA1IV  
Table 6-45. USCI_B1 Registers (Base Address: 0620h)  
REGISTER DESCRIPTION  
REGISTER  
UCB1CTL0  
OFFSET  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB1CTL1  
UCB1BR0  
UCB1BR1  
UCB1STAT  
UCB1RXBUF  
UCB1TXBUF  
UCB1I2COA  
UCB1I2CSA  
UCB1IE  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB1IFG  
USCI interrupt vector word  
UCB1IV  
Table 6-46. USCI_A2 Registers (Base Address: 0640h)  
REGISTER DESCRIPTION  
REGISTER  
UCA2CTL0  
OFFSET  
USCI control 0  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 1  
UCA2CTL1  
UCA2BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA2BR1  
USCI modulation control  
USCI status  
UCA2MCTL  
UCA2STAT  
UCA2RXBUF  
UCA2TXBUF  
UCA2ABCTL  
UCA2IRTCTL  
UCA2IRRCTL  
UCA2IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA2IFG  
UCA2IV  
82  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 6-47. USCI_B2 Registers (Base Address: 0660h)  
REGISTER DESCRIPTION  
REGISTER  
UCB2CTL0  
OFFSET  
USCI synchronous control 0  
USCI synchronous control 1  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB2CTL1  
UCB2BR0  
UCB2BR1  
UCB2STAT  
UCB2RXBUF  
UCB2TXBUF  
UCB2I2COA  
UCB2I2CSA  
UCB2IE  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB2IFG  
USCI interrupt vector word  
UCB2IV  
Table 6-48. ADC12_A Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
ADC12CTL0  
OFFSET  
ADC12 control 0  
00h  
02h  
04h  
0Ah  
0Ch  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
ADC12 control 1  
ADC12CTL1  
ADC12CTL2  
ADC12IFG  
ADC12 control 2  
Interrupt flag  
Interrupt enable  
ADC12IE  
Interrupt vector word  
ADC memory control 0  
ADC memory control 1  
ADC memory control 2  
ADC memory control 3  
ADC memory control 4  
ADC memory control 5  
ADC memory control 6  
ADC memory control 7  
ADC memory control 8  
ADC memory control 9  
ADC memory control 10  
ADC memory control 11  
ADC memory control 12  
ADC memory control 13  
ADC memory control 14  
ADC memory control 15  
Conversion memory 0  
Conversion memory 1  
Conversion memory 2  
Conversion memory 3  
Conversion memory 4  
Conversion memory 5  
Conversion memory 6  
Conversion memory 7  
Conversion memory 8  
Conversion memory 9  
ADC12IV  
ADC12MCTL0  
ADC12MCTL1  
ADC12MCTL2  
ADC12MCTL3  
ADC12MCTL4  
ADC12MCTL5  
ADC12MCTL6  
ADC12MCTL7  
ADC12MCTL8  
ADC12MCTL9  
ADC12MCTL10  
ADC12MCTL11  
ADC12MCTL12  
ADC12MCTL13  
ADC12MCTL14  
ADC12MCTL15  
ADC12MEM0  
ADC12MEM1  
ADC12MEM2  
ADC12MEM3  
ADC12MEM4  
ADC12MEM5  
ADC12MEM6  
ADC12MEM7  
ADC12MEM8  
ADC12MEM9  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
83  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Table 6-48. ADC12_A Registers (Base Address: 0700h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
ADC12MEM10  
OFFSET  
Conversion memory 10  
Conversion memory 11  
Conversion memory 12  
Conversion memory 13  
Conversion memory 14  
Conversion memory 15  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
ADC12MEM11  
ADC12MEM12  
ADC12MEM13  
ADC12MEM14  
ADC12MEM15  
Table 6-49. DAC12_A Registers (Base Address: 0780h)  
REGISTER DESCRIPTION  
REGISTER  
DAC12_0CTL0  
OFFSET  
DAC12_A channel 0 control 0  
DAC12_A channel 0 control 1  
DAC12_A channel 0 data  
00h  
02h  
04h  
06h  
08h  
10h  
12h  
14h  
16h  
18h  
1Eh  
DAC12_0CTL1  
DAC12_0DAT  
DAC12_A channel 0 calibration control  
DAC12_A channel 0 calibration data  
DAC12_A channel 1 control 0  
DAC12_A channel 1 control 1  
DAC12_A channel 1 data  
DAC12_0CALCTL  
DAC12_0CALDAT  
DAC12_1CTL0  
DAC12_1CTL1  
DAC12_1DAT  
DAC12_A channel 1 calibration control  
DAC12_A channel 1 calibration data  
DAC12_A interrupt vector word  
DAC12_1CALCTL  
DAC12_1CALDAT  
DAC12IV  
Table 6-50. Comparator_B Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
CBCTL0  
OFFSET  
Comp_B control 0  
Comp_B control 1  
Comp_B control 2  
Comp_B control 3  
Comp_B interrupt  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
CBCTL1  
CBCTL2  
CBCTL3  
CBINT  
Comp_B interrupt vector word  
CBIV  
Table 6-51. LDO and Port U Configuration Registers (Base Address: 0900h)  
REGISTER DESCRIPTION  
REGISTER  
LDOKEYID  
OFFSET  
LDO key/ID  
00h  
04h  
08h  
PU port control  
LDO power control  
PUCTL  
LDOPWRCTL  
Table 6-52. LCD_B Registers (Base Address: 0A00h)  
REGISTER DESCRIPTION  
REGISTER  
LCDBCTL0  
OFFSET  
LCD_B control 0  
000h  
002h  
004h  
006h  
008h  
00Ah  
00Ch  
00Eh  
LCD_B control 1  
LCDBCTL1  
LCD_B blinking control  
LCD_B memory control  
LCD_B voltage control  
LCD_B port control 0  
LCD_B port control 1  
LCD_B port control 2  
LCDBBLKCTL  
LCDBMEMCTL  
LCDBVCTL  
LCDBPCTL0  
LCDBPCTL1  
LCDBPCTL2  
84  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Table 6-52. LCD_B Registers (Base Address: 0A00h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
LCDBCTL0  
OFFSET  
LCD_B charge pump control  
LCD_B interrupt vector word  
LCD_B memory 1  
LCD_B memory 2  
012h  
01Eh  
020h  
021h  
LCDBIV  
LCDM1  
LCDM2  
LCD_B memory 22  
LCD_B blinking memory 1  
LCD_B blinking memory 2  
LCDM22  
LCDBM1  
LCDBM2  
035h  
040h  
041h  
LCD_B blinking memory 22  
LCDBM22  
055h  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
85  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14 Input/Output Schematics  
6.14.1 Port P1, P1.0 to P1.7, Input/Output With Schmitt Trigger  
Figure 6-2 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
S32...S39  
LCDS32...LCDS39  
P1REN.x  
P1DIR.x  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
P1OUT.x  
0
1
Module X OUT  
P1.0/TA0CLK/ACLK/S39  
P1.1/TA0.0/S38  
P1.2/TA0.1/S37  
P1.3/TA0.2/S36  
P1.4/TA0.3/S35  
P1.5/TA0.4/S34  
P1.6/TA0.1/S33  
P1.7/TA0.2/S32  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
P1IFG.x  
Set  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
Figure 6-2. Port P1 (P1.0 to P1.7) Schematic  
86  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Port P1 (P1.0 to P1.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
LCDS32...39  
P1.0 (I/O)  
Timer TA0.TA0CLK  
ACLK  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
P1.0/TA0CLK/ACLK/  
S39  
0
1
S39  
X
P1.1 (I/O)  
I: 0; O: 1  
Timer TA0.CCI0A capture input  
Timer TA0.0 output  
S38  
0
P1.1/TA0.0/S38  
P1.2/TA0.1/S37  
P1.3/TA0.2/S36  
P1.4/TA0.3/S35  
P1.5/TA0.4/S34  
P1.6/TA0.1/S33  
1
2
3
4
5
6
7
1
X
P1.2 (I/O)  
I: 0; O: 1  
Timer TA0.CCI1A capture input  
Timer TA0.1 output  
S37  
0
1
X
P1.3 (I/O)  
I: 0; O: 1  
Timer TA0.CCI2A capture input  
Timer TA0.2 output  
S36  
0
1
X
P1.4 (I/O)  
I: 0; O: 1  
Timer TA0.CCI3A capture input  
Timer TA0.3 output  
S35  
0
1
X
P1.5 (I/O)  
I: 0; O: 1  
Timer TA0.CCI4A capture input  
Timer TA0.4 output  
S34  
0
1
X
P1.6 (I/O)  
I: 0; O: 1  
Timer TA0.CCI1B capture input  
Timer TA0.1 output  
S33  
0
1
X
P1.7 (I/O)  
I: 0; O: 1  
Timer TA0.CCI2B capture input  
Timer TA0.2 output  
S32  
0
1
P1.7/TA0.2/S32  
X
(1) X = Don't care  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
87  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14.2 Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger  
Figure 6-3 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
To LCD_B  
From LCD_B  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
From Port Mapping  
P2OUT.x  
0
1
From Port Mapping  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2IN.x  
P2.6/P2MAP6/R03  
P2.7/P2MAP7/LCDREF/R13  
From Port Mapping  
EN  
D
To Port Mapping  
P2IRQ.x  
P2IE.x  
EN  
Q
P2IFG.x  
Set  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
Figure 6-3. Port P2 (P2.0 to P2.7) Schematic  
88  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P2.x)  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
x
0
1
2
3
4
5
FUNCTION  
P2DIR.x  
P2SEL.x  
P2MAPx  
P2.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
Mapped secondary digital function  
P2.1 (I/O)  
X
19  
19  
19  
19  
19  
19  
I: 0; O: 1  
Mapped secondary digital function  
P2.2 (I/O)  
X
I: 0; O: 1  
Mapped secondary digital function  
P2.3 (I/O)  
X
I: 0; O: 1  
Mapped secondary digital function  
P2.4 (I/O)  
X
I: 0; O: 1  
Mapped secondary digital function  
P2.5 (I/O  
X
I: 0; O: 1  
Mapped secondary digital function  
P2.6 (I/O)  
X
I: 0; O: 1  
P2.6/P2MAP6/R03  
6
7
Mapped secondary digital function  
R03  
X
19  
X
= 31  
P2.7 (I/O)  
I: 0; O: 1  
P2.7/P2MAP7/  
LCDREF/R13  
Mapped secondary digital function  
LCDREF/R13  
X
X
19  
= 31  
(1) X = Don't care  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
89  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14.3 Port P3, P3.0 to P3.7, Input/Output With Schmitt Trigger  
Figure 6-4 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
S24...S31  
LCDS24...LCDS31  
P3REN.x  
P3DIR.x  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
P3OUT.x  
0
1
Module X OUT  
P3.0/TA1CLK/CBOUT/S31  
P3.1/TA1.0/S30  
P3.2/TA1.1/S29  
P3DS.x  
0: Low drive  
1: High drive  
P3SEL.x  
P3IN.x  
P3.3/TA1.2/S28  
P3.4/TA2CLK/SMCLK/S27  
P3.5/TA2.0/S26  
P3.6/TA2.1/S25  
Bus  
Keeper  
EN  
D
P3.7/TA2.2/S24  
Module X IN  
P3IRQ.x  
P3IE.x  
EN  
Q
P3IFG.x  
Set  
P3SEL.x  
P3IES.x  
Interrupt  
Edge  
Select  
Figure 6-4. Port P3 (P3.0 to P3.7) Schematic  
90  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
P3SEL.x  
LCDS24...31  
P3.0 (I/O)  
Timer TA1.TA1CLK  
CBOUT  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
0
0
1
0
P3.0/TA1CLK/CBOUT/  
S31  
0
1
S31  
X
P3.1 (I/O)  
I: 0; O: 1  
Timer TA1.CCI0A capture input  
0
P3.1/TA1.0/S30  
P3.2/TA1.1/S29  
P3.3/TA1.2/S28  
1
2
3
4
5
6
7
Timer TA1.0 output  
1
S30  
X
P3.2 (I/O)  
I: 0; O: 1  
Timer TA1.CCI1A capture input  
0
Timer TA1.1 output  
1
S29  
X
P3.3 (I/O)  
I: 0; O: 1  
Timer TA1.CCI2A capture input  
0
Timer TA1.2 output  
1
S28  
X
P3.4 (I/O)  
I: 0; O: 1  
Timer TA2.TA2CLK  
0
P3.4/TA2CLK/SMCLK/  
S27  
SMCLK  
1
S27  
X
P3.5 (I/O)  
I: 0; O: 1  
Timer TA2.CCI0A capture input  
Timer TA2.0 output  
S26  
0
P3.5/TA2.0/S26  
P3.6/TA2.1/S25  
1
X
P3.6 (I/O)  
I: 0; O: 1  
Timer TA2.CCI1A capture input  
Timer TA2.1 output  
S25  
0
1
X
P3.7 (I/O)  
I: 0; O: 1  
Timer TA2.CCI2A capture input  
Timer TA2.2 output  
S24  
0
1
P3.7/TA2.2/S24  
X
(1) X = Don't care  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
91  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14.4 Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger  
Figure 6-5 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
S16...S23  
LCDS16...LCDS23  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
0
1
Module X OUT  
P4.0/TB0.0/S23  
P4.1/TB0.1/S22  
P4.2/TB0.2/S21  
P4.3/TB0.3/S20  
P4.4/TB0.4/S19  
P4.5/TB0.5/S18  
P4DS.x  
0: Low drive  
1: High drive  
P4SEL.x  
P4IN.x  
P4.6/TB0.6/S17  
P4.7/TB0OUTH/SVMOUT/S16  
Bus  
Keeper  
EN  
D
Module X IN  
P4IRQ.x  
P4IE.x  
EN  
Q
P4IFG.x  
Set  
P4SEL.x  
P4IES.x  
Interrupt  
Edge  
Select  
Figure 6-5. Port P4 (P4.0 to P4.7) Schematic  
92  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Port P4 (P4.0 to P4.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL.x  
LCDS16...23  
P4.0 (I/O)  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
Timer TB0.CCI0A capture input  
Timer TB0.0 output(2)  
S23  
0
P4.0/TB0.0/S23  
0
1
X
P4.1 (I/O)  
I: 0; O: 1  
Timer TB0.CCI1A capture input  
Timer TB0.1 output(2)  
S22  
0
P4.1/TB0.1/S22  
P4.2/TB0.2/S21  
P4.3/TB0.3/S20  
P4.4/TB0.4/S19  
P4.5/TB0.5/S18  
P4.6/TB0.6/S17  
1
2
3
4
5
6
7
1
X
P4.2 (I/O)  
I: 0; O: 1  
Timer TB0.CCI2A capture input  
Timer TB0.2 output(2)  
S21  
0
1
X
P4.3 (I/O)  
I: 0; O: 1  
Timer TB0.CCI3A capture input  
Timer TB0.3 output(2)  
S20  
0
1
X
P4.4 (I/O)  
I: 0; O: 1  
Timer TB0.CCI4A capture input  
Timer TB0.4 output(2)  
S19  
0
1
X
P4.5 (I/O)  
I: 0; O: 1  
Timer TB0.CCI5A capture input  
Timer TB0.5 output(2)  
S18  
0
1
X
P4.6 (I/O)  
I: 0; O: 1  
Timer TB0.CCI6A capture input  
Timer TB0.6 output(2)  
S17  
0
1
X
P4.7 (I/O)  
I: 0; O: 1  
Timer TB0.TB0OUTH  
SVMOUT  
0
1
P4.7/TB0OUTH/  
SVMOUT/S16  
S16  
X
(1) X = Don't care  
(2) Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Detailed Description  
93  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14.5 Port P5, P5.0 and P5.1, Input/Output With Schmitt Trigger  
Figure 6-6 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
To/From  
Reference  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
P5OUT.x  
0
1
Module X OUT  
P5.0/VREF+/VeREF+  
P5.1/VREF–/VeREF–  
P5DS.x  
0: Low drive  
1: High drive  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 6-6. Port P5 (P5.0 and P5.1) Schematic  
Port P5 (P5.0 and P5.1) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
REFOUT  
P5.0 (I/O)(2)  
VeREF+(3)  
VREF+(4)  
P5.1 (I/O)(2)  
VeREF(5)  
VREF–(6)  
I: 0; O: 1  
0
1
1
0
1
1
X
0
1
X
0
1
P5.0/VREF+/VeREF+  
P5.1/VREF–/VeREF–  
0
X
X
I: 0; O: 1  
1
X
X
(1) X = Don't care  
(2) Default condition  
(3) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A, Comparator_B, or DAC12_A.  
(4) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals. The ADC12_A, VREF+ reference is available at the pin.  
(5) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A, Comparator_B, or DAC12_A.  
(6) Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals. The ADC12_A, VREF– reference is available at the pin.  
94  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.14.6 Port P5, P5.2 to P5.7, Input/Output With Schmitt Trigger  
Figure 6-7 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
S40...S42  
LCDS40...LCDS42  
P5REN.x  
P5DIR.x  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
P5OUT.x  
0
1
Module X OUT  
P5.2/R23  
P5DS.x  
0: Low drive  
1: High drive  
P5.3/COM1/S42  
P5.4/COM2/S41  
P5.5/COM3/S40  
P5.6/ADC12CLK/DMAE0  
P5.7/RTCCLK  
P5SEL.x  
P5IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 6-7. Port P5 (P5.2 to P5.7) Schematic  
Port P5 (P5.2 to P5.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
LCDS40...42  
P5.2 (I/O)  
R23  
I: 0; O: 1  
0
1
0
1
0
0
1
0
0
1
0
0
1
1
0
1
N/A  
N/A  
0
P5.2/R23  
2
X
P5.3 (I/O)  
COM1  
I: 0; O: 1  
P5.3/COM1/S42  
3
4
5
X
X
S42  
X
1
P5.4 (I/O)  
COM2  
I: 0; O: 1  
0
P5.4/COM2/S41  
X
X
S41  
X
1
P5.5 (I/O)  
COM3  
I: 0; O: 1  
0
P5.5/COM3/S40  
X
X
S40  
X
1
P5.6 (I/O)  
ADC12CLK  
DMAE0  
P5.7 (I/O)  
RTCCLK  
I: 0; O: 1  
N/A  
N/A  
N/A  
N/A  
N/A  
P5.6/ADC12CLK/DMAE0  
6
7
1
0
I: 0; O: 1  
1
P5.7/RTCCLK  
(1) X = Don't care  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
95  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14.7 Port P6, P6.0 to P6.7, Input/Output With Schmitt Trigger  
Figure 6-8 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
To ADC12  
INCHx = y  
0
Dvss  
1
2
0 if DAC12AMPx=0  
1 if DAC12AMPx=1  
2 if DAC12AMPx>1  
From DAC12_A  
To Comparator_B  
From Comparator_B  
CBPD.x  
DAC12AMPx>0  
DAC12OPS  
P6REN.x  
DVSS  
DVCC  
0
1
1
P6DIR.x  
P6OUT.x  
P6.0/CB0/A0  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
P6DS.x  
0: Low drive  
1: High drive  
P6SEL.x  
P6IN.x  
P6.6/CB6/A6/DAC0  
P6.7/CB7/A7/DAC1  
Bus  
Keeper  
Figure 6-8. Port P6 (P6.0 to P6.7) Schematic  
96  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Port P6 (P6.0 to P6.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P6.x)  
x
FUNCTION  
P6DIR.x  
P6SEL.x  
CBPD.x  
DAC12OPS  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
X
DAC12AMPx  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
P6.0 (I/O)  
CB0  
A0(2)(3)  
P6.1 (I/O)  
CB1  
A1(2)(3)  
P6.2 (I/O)  
CB2  
A2(2)(3)  
P6.3 (I/O)  
CB3  
A3(2)(3)  
P6.4 (I/O)  
CB4  
A4(2)(3)  
P6.5 (I/O)  
CB5  
A5(2)(3)  
P6.6 (I/O)  
CB6  
I: 0; O: 1  
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
0
X
1
X
0
X
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
X
0
1
X
X
P6.0/CB0/A0  
0
X
X
I: 0; O: 1  
P6.1/CB1/A1  
P6.2/CB2/A2  
P6.3/CB3/A3  
P6.4/CB4/A4  
P6.5/CB5/A5  
1
2
3
4
5
X
X
I: 0; O: 1  
X
X
I: 0; O: 1  
X
X
I: 0; O: 1  
X
X
I: 0; O: 1  
X
X
I: 0; O: 1  
X
X
0
P6.6/CB6/A6/DAC0  
6
7
A6(2)(3)  
X
X
0
DAC0  
X
0
>1  
P6.7 (I/O)  
CB7  
A7(2)(3)  
I: 0; O: 1  
X
0
X
X
X
X
0
P6.7/CB7/A7/DAC1  
(1) X = Don't care  
X
0
DAC1  
0
>1  
(2) Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals.  
(3) The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
97  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14.8 Port P7, P7.2, Input/Output With Schmitt Trigger  
Figure 6-9 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
To XT2  
P7REN.2  
DVSS  
DVCC  
0
1
1
P7DIR.2  
P7OUT.2  
0
1
P7.2/XT2IN  
P7DS.2  
0: Low drive  
1: High drive  
P7SEL.2  
P7IN.2  
Bus  
Keeper  
Figure 6-9. Port P7 (P7.2) Schematic  
98  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.14.9 Port P7, P7.3, Input/Output With Schmitt Trigger  
Figure 6-10 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
To XT2  
P7REN.3  
DVSS  
DVCC  
0
1
1
P7DIR.3  
0
1
P7OUT.3  
P7SEL.2  
P7.3/XT2OUT  
P7DS.3  
0: Low drive  
1: High drive  
XT2BYPASS  
P7SEL.3  
P7IN.3  
Bus  
Keeper  
Figure 6-10. Port P7 (P7.3) Schematic  
Port P7 (P7.2 and P7.3) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.2  
P7SEL.3  
XT2BYPASS  
P7.2 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
0
X
0
1
X
0
1
P7.2/XT2IN  
2
XT2IN crystal mode(2)  
XT2IN bypass mode(2)  
P7.3 (I/O)  
XT2OUT crystal mode(3)  
P7.3 (I/O)(3)  
X
X
I: 0; O: 1  
P7.3/XT2OUT  
3
X
X
X
0
(1) X = Don't care  
(2) Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal  
mode or bypass mode.  
(3) Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as  
general-purpose I/O.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
99  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14.10 Port P7, P7.4 to P7.7, Input/Output With Schmitt Trigger  
Figure 6-11 shows the port schematic. summarizes selection of the pin function.  
0
Pad Logic  
Dvss  
1
2
0 if DAC12AMPx = 0  
1 if DAC12AMPx = 1  
2 if DAC12AMPx > 1  
From DAC12_A  
To ADC12  
INCHx = y  
To Comparator_B  
From Comparator_B  
CBPD.x  
DAC12AMPx>0  
DAC12OPS  
P7REN.x  
DVSS  
DVCC  
0
1
1
P7DIR.x  
P7OUT.x  
P7.4/CB8/A12  
P7.5/CB9/A13  
P7.6/CB10/A14/DAC0  
P7.7/CB11/A15/DAC1  
P7DS.x  
0: Low drive  
1: High drive  
P7SEL.x  
P7IN.x  
Bus  
Keeper  
Figure 6-11. Port P7 (P7.4 to P7.7) Schematic  
100  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Port P7 (P7.4 to P7.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P7.x)  
x
FUNCTION  
P7DIR.x  
P7SEL.x  
CBPD.x  
DAC12OPS  
DAC12AMPx  
P7.4 (I/O)  
I: 0; O: 1  
0
X
1
0
X
1
0
X
1
X
0
1
X
0
1
X
0
1
X
0
1
X
X
0
X
X
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
X
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
P7.4/CB8/A12  
4
Comparator_B input CB8  
A12(2)(3)  
X
X
P7.5 (I/O)  
I: 0; O: 1  
P7.5/CB9/A13  
5
6
7
Comparator_B input CB9  
A13(2)(3)  
X
X
P7.6 (I/O)  
I: 0; O: 1  
Comparator_B input CB10  
A14(2)(3)  
X
X
0
P7.6/CB10/A14/DAC0  
X
X
0
DAC12_A output DAC0  
P7.7 (I/O)  
A15(2)(3)  
X
1
>1  
0
I: 0; O: 1  
X
P7.7/CB11/A15/DAC1  
(1) X = Don't care  
X
X
X
0
DAC12_A output DAC1  
1
>1  
(2) Setting the P7SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals.  
(3) The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
101  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14.11 Port P8, P8.0 to P8.7, Input/Output With Schmitt Trigger  
Figure 6-12 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
S8...S15  
LCDS8...LCDS15  
P8REN.x  
DVSS  
DVCC  
0
1
1
P8DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
0
1
P8OUT.x  
Module X OUT  
P8.0/TB0CLK/S15  
P8DS.x  
0: Low drive  
1: High drive  
P8.1/UCB1STE/UCA1CLK/S14  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.4/UCB1CLK/UCA1STE/S11  
P8.5/UCB1SIMO//UCB1SDA/S10  
P8.6/UCB1SOMI/UCB1SCL/S9  
P8.7/S8  
P8SEL.x  
P8IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 6-12. Port P8 (P8.0 to P8.7) Schematic  
102  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Port P8 (P8.0 to P8.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P9.x)  
x
FUNCTION  
P8DIR.x  
P8SEL.x  
LCDS8...15  
P8.0 (I/O)  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
X
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
P8.0/TB0CLK/S15  
0
Timer TB0.TB0CLK clock input  
0
S15  
X
P8.1 (I/O)  
I: 0; O: 1  
P8.1/UCB1STE/UCA1CLK/S14  
P8.2/UCA1TXD/UCA1SIMO/S13  
P8.3/UCA1RXD/UCA1SOMI/S12  
P8.4/UCB1CLK/UCA1STE/S11  
P8.5/UCB1SIMO/UCB1SDA/S10  
P8.6/UCB1SOMI/UCB1SCL/S9  
1
2
3
4
5
UCB1STE/UCA1CLK  
X
S14  
X
P8.2 (I/O)  
I: 0; O: 1  
UCA1TXD/UCA1SIMO  
X
S13  
X
P8.3 (I/O)  
I: 0; O: 1  
UCA1RXD/UCA1SOMI  
X
S12  
X
P8.4 (I/O)  
I: 0; O: 1  
UCB1CLK/UCA1STE  
X
S11  
X
P8.5 (I/O)  
I: 0; O: 1  
UCB1SIMO/UCB1SDA  
X
S10  
X
P8.6 (I/O)  
I: 0; O: 1  
6
7
UCB1SOMI/UCB1SCL  
X
S9  
X
I: 0; O: 1  
X
P8.7 (I/O)  
S8  
P8.7/S8  
(1) X = Don't care  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
103  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14.12 Port P9, P9.0 to P9.7, Input/Output With Schmitt Trigger  
Figure 6-13 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
S0...S7  
LCDS0...LCDS7  
P9REN.x  
DVSS  
DVCC  
0
1
1
P9DIR.x  
0
1
Direction  
0: Input  
1: Output  
From module  
0
1
P9OUT.x  
Module X OUT  
P9.0/S7  
P9DS.x  
0: Low drive  
1: High drive  
P9.1/UCB2STE/UCA2CLK/S6  
P9.2/UCA2TXD/UCA2SIMO/S5  
P9.3/UCA2RXD/UCA2SOMI/S4  
P9.4/UCB2CLK/UCA2STE/S3  
P9.5/UCB2SIMO//UCB2SDA/S2  
P9.6/UCB2SOMI/UCB2SCL/S1  
P9.7/S0  
P9SEL.x  
P9IN.x  
Bus  
Keeper  
EN  
D
Module X IN  
Figure 6-13. Port P9 (P9.0 to P9.7) Schematic  
104  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Port P9 (P9.0 to P9.7) Pin Functions  
CONTROL BITS OR SIGNALS(1)  
PIN NAME (P9.x)  
x
FUNCTION  
P9DIR.x  
P9SEL.x  
LCDS0...7  
P9.0 (I/O)  
S7  
I: 0; O: 1  
0
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
X
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
P9.0/S7  
0
X
P9.1 (I/O)  
I: 0; O: 1  
P9.1/UCB2STE/UCA2CLK/S6  
1
2
3
4
5
UCB2STE/UCA2CLK  
X
S6  
X
P9.2 (I/O)  
I: 0; O: 1  
P9.2/UCA2TXD/UCA2SIMO/S5  
P9.3/UCA2RXD/UCA2SOMI/S4  
P9.4/UCB2CLK/UCA2STE/S3  
P9.5/UCB2SIMO/UCB2SDA/S2  
P9.6/UCB2SOMI/UCB2SCLK/S1  
UCA2TXD/UCA2SIMO  
X
S5  
X
P9.3 (I/O)  
I: 0; O: 1  
UCA2RXD/UCA2SOMI  
X
S4  
X
P9.4 (I/O)  
I: 0; O: 1  
UCB2CLK/UCA2STE  
X
S3  
X
P9.5 (I/O)  
I: 0; O: 1  
UCB2SIMO/UCB2SDA  
X
S2  
X
P9.6 (I/O)  
I: 0; O: 1  
6
7
UCB2SOMI/UCB2SCLK  
X
S1  
X
I: 0; O: 1  
X
P9.7 (I/O)  
S0  
P9.7/S0  
(1) X = Don't care  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
105  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14.13 Port PU.0, PU.1 Ports  
Figure 6-14 shows the port schematic. Table 6-53 summarizes selection of the pin function.  
LDOO  
VSSU  
Pad Logic  
PUOPE  
PU.0  
PUOUT0  
PUIN0  
PUIPE  
PUIN1  
PUOUT1  
PU.1  
Figure 6-14. Port U (PU.0 and PU.1) Schematic  
Table 6-53. Port PU.0, PU.1 Functions(1)  
PUIPE  
PUOPE  
PUOUT1  
PUOUT0  
PU.1  
PU.0  
PORT U FUNCTION  
0
0
0
0
1
0
1
1
1
1
0
0
0
0
1
1
X
X
0
1
0
1
X
X
Output low  
Output low  
Output high  
Output high  
Input enabled  
Hi-Z  
Output low  
Output high  
Output low  
Output high  
Input enabled  
Hi-Z  
Outputs enabled  
Outputs enabled  
Outputs enabled  
Outputs enabled  
Inputs enabled  
Outputs and inputs disabled  
(1) PU.1 and PU.0 inputs and outputs are supplied from LDOO. LDOO can be generated by the device using the integrated 3.3-V LDO  
when enabled. LDOO can also be supplied externally when the 3.3-V LDO is not being used and is disabled.  
106  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.14.14 Port J, PJ.0 JTAG Pin TDO, Input/Output With Schmitt Trigger or Output  
Figure 6-15 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
PJREN.0  
0
1
DVSS  
DVCC  
1
PJDIR.0  
DVCC  
0
1
PJOUT.0  
0
1
From JTAG  
PJ.0/TDO  
PJDS.0  
0: Low drive  
1: High drive  
From JTAG  
PJIN.0  
EN  
D
Figure 6-15. Port PJ (PJ.0) Schematic  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
107  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.14.15 Port J, PJ.1 to PJ.3 JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt  
Trigger or Output  
Figure 6-16 shows the port schematic. summarizes selection of the pin function.  
Pad Logic  
PJREN.x  
0
1
DVSS  
DVCC  
1
PJDIR.x  
DVSS  
0
1
PJOUT.x  
0
1
From JTAG  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJ.3/TCK  
PJDS.x  
0: Low drive  
1: High drive  
From JTAG  
PJIN.x  
EN  
D
To JTAG  
Figure 6-16. Port PJ (PJ.1 to PJ.3) Schematic  
Port PJ (PJ.0 to PJ.3) Pin Functions  
FUNCTION  
CONTROL BITS OR  
SIGNALS(1)  
PIN NAME (PJ.x)  
x
PJDIR.x  
PJ.0 (I/O)(2)  
TDO(3)  
I: 0; O: 1  
PJ.0/TDO  
0
1
2
3
X
PJ.1 (I/O)(2)  
TDI/TCLK(3) (4)  
PJ.2 (I/O)(2)  
TMS(3) (4)  
PJ.3 (I/O)(2)  
TCK(3) (4)  
I: 0; O: 1  
PJ.1/TDI/TCLK  
PJ.2/TMS  
X
I: 0; O: 1  
X
I: 0; O: 1  
X
PJ.3/TCK  
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.  
108  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
6.15 Device Descriptors  
Table 6-54 lists the contents of the device descriptor tag-length-value (TLV) structure for each device type.  
Table 6-54. Device Descriptor Table(1)  
VALUE  
SIZE  
(bytes)  
DESCRIPTION  
Info length  
ADDRESS  
F6659  
06h  
F6658  
06h  
F6459  
06h  
F6458  
06h  
F5659  
06h  
F5658  
06h  
F5359  
06h  
F5358  
06h  
01A00h  
01A01h  
01A02h  
01A04h  
01A06h  
01A07h  
01A08h  
01A09h  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
01A14h  
01A15h  
01A16h  
01A18h  
1
1
2
2
1
1
1
1
4
2
2
2
1
1
2
2
CRC length  
CRC value  
06h  
06h  
06h  
06h  
06h  
06h  
06h  
06h  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
Info Block  
Device ID  
812Bh  
10h  
812Ch  
10h  
812Dh  
10h  
812Eh  
10h  
8130h  
10h  
8131h  
10h  
8132h  
10h  
8133h  
10h  
Hardware revision  
Firmware revision  
Die record tag  
Die record length  
Lot/wafer ID  
10h  
10h  
10h  
10h  
10h  
10h  
10h  
10h  
08h  
08h  
08h  
08h  
08h  
08h  
08h  
08h  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
Die Record  
Die X position  
Die Y position  
Test results  
ADC12 calibration tag  
ADC12 calibration length  
ADC gain factor  
ADC offset  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
11h  
10h  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
ADC 1.5-V reference  
temperature sensor 30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
ADC 1.5-V reference  
temperature sensor 105°C  
ADC12  
Calibration  
ADC 2.0-V reference  
temperature sensor 30°C  
ADC 2.0-V reference  
temperature sensor 105°C  
ADC 2.5-V reference  
temperature sensor 30°C  
ADC 2.5-V reference  
temperature sensor 105°C  
REF calibration tag  
01A26h  
01A27h  
1
1
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
REF calibration length  
REF 1.5-V  
reference factor  
01A28h  
01A2Ah  
01A2Ch  
2
2
2
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
per unit per unit per unit per unit  
REF Calibration  
REF 2.0-V  
reference factor  
REF 2.5-V  
reference factor  
(1) N/A = Not applicable  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
109  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
7 Applications, Implementation, and Layout  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
7.1 Device Connection and Layout Fundamentals  
This section discusses the recommended guidelines when designing with the MSP430. These guidelines  
are to make sure that the device has proper connections for powering, programming, debugging, and  
optimum analog performance.  
7.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 1-µF plus a 100-nF low-ESR ceramic decoupling capacitor  
to each AVCC and DVCC pin. Higher-value capacitors may be used but can impact supply rail ramp-up  
time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a  
few millimeters). Additionally, separated grounds with a single-point connection are recommend for better  
noise isolation from digital to analog circuits on the board and are especially recommended to achieve  
high analog accuracy.  
DVCC  
Digital  
Power Supply  
Decoupling  
+
DVSS  
1 µF  
100 nF  
AVCC  
Analog  
Power Supply  
Decoupling  
+
AVSS  
1 µF  
100 nF  
Figure 7-1. Power Supply Decoupling  
7.1.2 External Oscillator  
Depending on the device variant (see Table 3-1), the device can support a low-frequency crystal (32 kHz)  
on the LFXT pins, a high-frequency crystal on the HFXT pins, or both. External bypass capacitors for the  
crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the LFXIN and HFXIN input pins that meet the  
specifications of the respective oscillator if the appropriate LFXTBYPASS or HFXTBYPASS mode is  
selected. In this case, the associated LFXOUT and HFXOUT pins can be used for other purposes.  
Figure 7-2 shows a typical connection diagram.  
110  
Applications, Implementation, and Layout  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
LFXIN  
or  
LFXOUT  
or  
HFXIN  
HFXOUT  
CL1  
CL2  
Figure 7-2. Typical Crystal Connection  
See the application report MSP430 32-kHz Crystal Oscillators (SLAA322) for more information on  
selecting, testing, and designing a crystal oscillator with the MSP430 devices.  
7.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or  
MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the  
connections also support the MSP-GANG production programmers, thus providing an easy way to  
program prototype boards, if desired. Figure 7-3 shows the connections between the 14-pin JTAG  
connector and the target device required to support in-system programming and debugging for 4-wire  
JTAG communication. Figure 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are  
identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-  
FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an  
alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the  
target board (that is, a battery or other local power supply) and adjusts the output signals accordingly.  
Figure 7-3 and Figure 7-4 show a jumper block that supports both scenarios of supplying VCC to the  
target board. If this flexibility is not required, the desired VCC connections may be hard-wired to eliminate  
the jumper block. Pins 2 and 4 must not be connected at the same time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User's  
Guide (SLAU278).  
Copyright © 2016, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
111  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
VCC  
Important to connect  
MSP430F6459  
J1 (see Note A)  
J2 (see Note A)  
AVCC/DVCC  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDO/TDI  
TDI  
2
1
3
VCC TARGET  
TDI  
4
TMS  
TCK  
TMS  
6
5
TEST  
8
7
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(see Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,  
make connection J2.  
B. The upper limit for C1 is 2.2 nF when using current TI tools.  
Figure 7-3. Signal Connections for 4-Wire JTAG Communication  
112  
Applications, Implementation, and Layout  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
VCC  
Important to connect  
MSP430F6459  
AVCC/DVCC  
J1 (see Note A)  
J2 (see Note A)  
R1  
47 kΩ  
(See Note B)  
JTAG  
VCC TOOL  
VCC TARGET  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
4
6
TCK  
GND  
8
10  
12  
14  
11  
13  
TEST/SBWTCK  
AVSS/DVSS  
C1  
2.2 nF  
(See Note B)  
Copyright © 2016, Texas Instruments Incorporated  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the  
debug or programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during  
JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with  
the device. The upper limit for C1 is 2.2 nF when using current TI tools.  
Figure 7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
7.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function  
Register (SFR), SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is  
edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the  
external NMI. When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either  
pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not.  
If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an  
external 47-kΩ pullup resistor to the RST/NMI pin with a 2.2-nF pulldown capacitor. The pulldown  
capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or  
in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers.  
See the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) for more information on the  
referenced control registers and bits.  
Copyright © 2016, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
113  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
7.1.5 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See the  
application report MSP430 32-kHz Crystal Oscillators (SLAA322) for recommended layout guidelines.  
Proper bypass capacitors on DVCC, AVCC, and reference pins if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital  
switching signals such as PWM or JTAG signals away from the oscillator circuit.  
Refer to the Circuit Board Layout Techniques design guide (SLOA089) for a detailed discussion of  
PCB layout considerations. This document is written primarily about op amps, but the guidelines are  
generally applicable for all mixed-signal applications.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See the application report MSP430 System-Level ESD Considerations  
(SLAA530) for guidelines.  
7.1.6 Do's and Don'ts  
TI recommends powering the AVCC and DVCC pins from the same source. At a minimum, during power  
up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed  
the limits specified in the Absolute Maximum Ratings section. Exceeding the specified limits may cause  
malfunction of the device including erroneous writes to RAM and FRAM.  
7.2 Peripheral- and Interface-Specific Design Information  
7.2.1 ADC12_B Peripheral  
7.2.1.1 Partial Schematic  
AVSS  
VREF+/VEREF+  
Using an  
External  
Positive  
Reference  
+
4.7 µF  
10 µF  
VEREF-  
Using an  
External  
+
Negative  
Reference  
10 µF  
4.7 µF  
Figure 7-5. ADC12_B Grounding and Noise Considerations  
7.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should  
be followed to eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with  
other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset  
voltages that can add to or subtract from the reference or input voltages of the ADC. The general  
guidelines in Section 7.1.1 combined with the connections shown in Section 7.2.1.1 prevent this.  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital  
switching or switching power supplies can corrupt the conversion result. A noise-free design using  
separate analog and digital ground planes with a single-point connection is recommend to achieve high  
accuracy.  
114  
Applications, Implementation, and Layout  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430F6459-HIREL  
 
 
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
Figure 7-5 shows the recommended decoupling circuit when an external voltage reference is used. The  
internal reference module has a maximum drive current as specified in the Reference module's IO(VREF+)  
specification.  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor is used to buffer the reference pin and filter any low-  
frequency ripple. A bypass capacitor of 4.7 µF is used to filter out any high frequency noise.  
7.2.1.3 Detailed Design Procedure  
For additional design information, see the ADC12_A section in the application report MSP430x5xx and  
MSP430x6xx Family User's Guide (SLAU208).  
7.2.1.4 Layout Guidelines  
Component that are shown in the partial schematic (see Figure 7-5) should be placed as close as possible  
to the respective device pins. Avoid long traces, because they add additional parasitic capacitance,  
inductance, and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM),  
because the high-frequency switching can be coupled into the analog signal.  
If differential mode is used for the ADC12_B, the analog differential input signals must be routed closely  
together to minimize the effect of noise on the resulting signal.  
版权 © 2016, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
115  
提交文档反馈意见  
产品主页链接: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
8 器件和文档支持  
8.1 入门和下一步  
要获得有助于您开发工作的 MSP430™系列器件、工具和库相关信息,请访问 入门 页面。  
8.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
MSP430 MCU devices and support tools. Each MSP430 MCU commercial family member has one of  
three prefixes: MSP, PMS, or XMS (for example, MSP430F5438A). TI recommends two of three possible  
prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of  
product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully  
qualified production devices and tools (with MSP for devices and MSP for tools).  
Device development evolutionary flow:  
XMS – Experimental device that is not necessarily representative of the electrical specifications for the  
final device  
PMS – Final silicon die that conforms to the electrical specifications for the device but has not completed  
quality and reliability verification  
MSP – Fully qualified production device  
Support tool development evolutionary flow:  
MSPX – Development-support product that has not yet completed TI's internal qualification testing.  
MSP – Fully-qualified development-support product  
XMS and PMS devices and MSPX development-support tools are shipped against the following  
disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
MSP devices and MSP development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard  
production devices. TI recommends that these devices not be used in any production system because  
their expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, PZP) and temperature range (for example, T). 8-1 provides a legend for  
reading the complete device name for any family member.  
116  
器件和文档支持  
版权 © 2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
MSP 430 F 5 438 A I ZQW T -EP  
Processor Family  
MCU Platform  
Device Type  
Series  
Feature Set  
Optional: Additional Features  
Optional: Tape and Reel  
Packaging  
Optional: Temperature Range  
Optional: A = Revision  
Processor Family  
CC = Embedded RF Radio  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
PMS = Prototype Device  
MCU Platform  
Device Type  
430 = MSP430 low-power microcontroller platform  
Memory Type  
C = ROM  
F = Flash  
FR = FRAM  
G = Flash or FRAM (Value Line)  
L = No Nonvolatile Memory  
Specialized Application  
AFE = Analog Front End  
BT = Preprogrammed with Bluetooth  
BQ = Contactless Power  
CG = ROM Medical  
FE = Flash Energy Meter  
FG = Flash Medical  
FW = Flash Electronic Flow Meter  
Series  
1 Series = Up to 8 MHz  
2 Series = Up to 16 MHz  
3 Series = Legacy  
5 Series = Up to 25 MHz  
6 Series = Up to 25 MHz with LCD  
0 = Low-Voltage Series  
4 Series = Up to 16 MHz with LCD  
Feature Set  
Various Levels of Integration Within a Series  
N/A  
Optional: A = Revision  
Optional: Temperature Range S = 0°C to 50°C  
C = 0°C to 70°C  
I = –40°C to 85°C  
T = –40°C to 105°C  
Packaging  
http://www.ti.com/packaging  
Optional: Tape and Reel  
T = Small Reel  
R = Large Reel  
No Markings = Tube or Tray  
Optional: Additional Features -EP = Enhanced Product (–40°C to 105°C)  
-HT = Extreme Temperature Parts (–55°C to 150°C)  
-Q1 = Automotive Q100 Qualified  
8-1. Device Nomenclature  
8.3 工具和软件  
全部 MSP430™微控制器均受多种软件和硬件开发工具的支持。工具由 TI 以及多家第三方供应商提供。具  
体信息请访问 www.ti.com/msp430tools。  
8.3.1 硬件 功能  
关于可用特性的详细信息,请参见《适用于 MSP430 Code Composer Studio 用户指南》(文献编  
号:SLAU157) 等。  
4 线制  
JTAG  
2 线制  
JTAG  
断点  
(N)  
状态序列发生  
LPMx.5 调试支  
MSP430 架构  
范围断点  
时钟控制  
跟踪缓冲器  
MSP430Xv2  
8
版权 © 2016, Texas Instruments Incorporated  
器件和文档支持  
117  
提交文档反馈意见  
产品主页链接: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
8.3.2 推荐的硬件选项  
8.3.2.1 目标插座板  
目标插座板可利用 JTAG 轻松实现器件编程和调试。板上还配有用于原型设计的排针引脚。目标插座板可单  
独订购,也可以与 JTAG 编程器和调试器一起作为套件订购。下表列出了兼容的目标板以及支持的封装。  
封装  
目标板和编程器包  
仅目标板  
100 引脚 LQFP (PZ)  
MSP-FET430U100USB  
MSP-TS430PZ100USB  
8.3.2.2 实验板  
实验板和评估套件可用于部分 MSP430 器件。这类套件配有额外的硬件组件和连接功能,可实现全面的系  
统评估和原型设计。有关详情,请访问 www.ti.com/msp430tools。  
8.3.2.3 调试和编程工具  
硬件编程和调试工具可从  
www.ti.com/msp430tools。  
TI  
及其第三方供应商获取。要查看完整的可用工具列表,请访问  
8.3.2.4 生产编程器  
生产编程器可同时对多个器件进行编程,从而加快将固件载入器件的速度。  
部件编号  
PC 端口  
特性  
供应商  
最多可同时对八个器件进行编程。可配合 PC 操作,也可以作为独立软件包  
使用。  
MSP-GANG  
串行端口和 USB  
德州仪器 (TI)  
8.3.3 建议的软件选项  
8.3.3.1 集成开发环境  
软件开发工具由 TI 或第三方供应商提供。另外还提供开源解决方案。  
此器件由 Code Composer Studio™IDE (CCS)。  
8.3.3.2 MSP430Ware  
MSP430Ware 将所有 MSP430 器件的代码示例、数据表以及其他设计资源打包在一起提供给用户。除了提  
供已有 MSP430 设计资源的完备集合之外,MSP430Ware 还包含名为 MSP430 驱动程序库的高级 API。该  
库可简化对 MSP430 硬件的编程。MSP430Ware CCS 组件或独立软件包两种形式提供。  
8.3.3.3 TI-RTOS  
TI-RTOS 是一套适用于 MSP430 微控制器的高级实时操作系统。该器件 支持 优先确定多任务处理、硬件抽  
象、内存管理和实时分析。TI-RTOS 可免费获取且附带全部源代码。  
8.3.3.4 命令行编程器  
MSP430 Flasher 是基于 shell 的开源接口,可使用 JTAG Spy-Bi-Wire (SBW) 通信通过 FET 编程器或  
eZ430™开发工具对 MSP430 微控制器进行编程。MSP430 Flasher 可用于将二进制文件(.txt .hex 文  
件)直接下载到 MSP430 闪存中,而无需使用 IDE。  
8.4 文档支持  
如需接收文档更新通知,请访问 ti.comGPN1GPN2 等)上的器件产品文件夹。点击右上角的提醒我  
(Alert me) 注册后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含  
的修订历史记录。  
以下文档介绍 MSP430F665xMSP430F645xMSP430F565x MSP430F535x 器件。在 www.ti.com 上  
提供这些文档的副本。  
SLAZ491  
MSP430F6459-Hirel 器件勘误表》。描述了针对这款器件的所有芯片修订版本功能技术规  
118  
器件和文档支持  
版权 © 2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
格的已知例外情况。  
SLAU278  
MSP430 硬件工具用户指南》。 本手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬  
件。FET 是针对 MSP430 超低功耗微控制器的程序开发工具。对提供的接口类型,即并行端  
口接口和 USB 接口进行了说明。  
SLAU319  
《使用引导加载程序 (BSL) MSP430 进行编程》。 MSP430 引导加载程序 (BSL) 允许用户  
在原型设计、投产和维护等各阶段与 MSP430 微控制器中的嵌入式存储器进行通信。可编程  
存储器(闪存)和数据存储器 (RAM) 可根据相关要求进行变更。请勿将此引导加载程序与某  
些数字信号处理器 (DSP) 中将程序代码(和数据)从外部存储器自动加载到 DSP 内部存储器  
的引导加载程序相混淆。  
SLAU320  
SLAA322  
通过 JTAG 接口对 MSP430 进行编程。 本文档介绍了使用 JTAG 通信端口擦除、编程和验证  
基于 MSP430 闪存和 FRAM 的微控制器系列的存储器模块所需的功能。此外,它还介绍了如  
何设定所有 MSP430 MCU 提供的 JTAG 来访问安全熔丝。本文档介绍了使用标准四线制  
JTAG 接口和二线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))进行的 MCU 访问。  
MSP430 32kHz 晶体振荡器》。 对于稳定的晶体振荡器,选择合适的晶振、正确的负载电  
路和适当的电路板布局布线至关重要。此应用报告总结了晶体振荡器的功能,介绍了为实现  
MSP430 超低功耗运行而选择正确晶体的参数。此外,还给出了正确电路板布局布线的提示和  
示例。本文档还包含与可能振荡器测试相关的详细信息以确保大批量生产中的稳定振荡器运  
行。  
版权 © 2016, Texas Instruments Incorporated  
器件和文档支持  
119  
提交文档反馈意见  
产品主页链接: MSP430F6459-HIREL  
MSP430F6459-HIREL  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
SLOA089  
SLAA530  
《电路板布局布线技巧》。 运算放大器电路是模拟电路,与数字电路差异较大。在电路板中必  
须通过特殊布线技术将其划分为独立区域。印刷电路板对于高速模拟电路的影响最为显著,但  
本章介绍的常见错误甚至会影响音频电路的性能。本章旨在讨论设计人员的常见错误以及这些  
错误对性能造成的不良影响,并提供避免此类错误的简单措施。  
MSP430 系统级 ESD 注意事项》。 系统级 ESD 对于低电压下的硅晶技术以及经济高效型  
和超低功耗组件的需求日益增加。该应用报告提出了三项不同的 ESD 主题,旨在帮助电路板  
设计人员和 OEM 理解并设计出稳健耐用的系统级设计。  
8.5 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me)  
注册后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史  
记录。  
8.6 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Community  
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At  
e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow  
engineers.  
TI Embedded Processors Wiki  
Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded  
processors from Texas Instruments and to foster innovation and growth of general knowledge about the  
hardware and software surrounding these devices.  
8.7 商标  
MSP430, Code Composer Studio, eZ430, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
8.8 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.9 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过非披露义务的披露方获得的任何产品或技术数据  
(其中包括软件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制  
产品或此项技术的任何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政  
府机构授权的情况下,接收方不得在知情的情况下,以直接或间接的方式将其出口。  
8.10 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
120  
器件和文档支持  
版权 © 2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430F6459-HIREL  
MSP430F6459-HIREL  
www.ti.com.cn  
ZHCSFC2A AUGUST 2016REVISED AUGUST 2016  
9 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知  
且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
机械、封装和可订购信息  
121  
提交文档反馈意见  
产品主页链接: MSP430F6459-HIREL  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430F6459TPZR  
ACTIVE  
LQFP  
PZ  
100  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
F6459TPZ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430F6459TPZR  
LQFP  
PZ  
100  
1000  
330.0  
24.4  
17.0  
17.0  
2.1  
20.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
LQFP PZ 100  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
MSP430F6459TPZR  
1000  
Pack Materials-Page 2  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

MSP430F645X

MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x Mixed-Signal Microcontrollers
TI

MSP430F663

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6630

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6630IPZ

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6630IPZR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6630IZQW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6630IZQWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6630IZQWT

Mixed-Signal Microcontrollers
TI

MSP430F6630ZQWT

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6631

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6631IPZ

MIXED SIGNAL MICROCONTROLLER
TI

MSP430F6631IPZR

MIXED SIGNAL MICROCONTROLLER
TI