MSP430FG478IPN [TI]

MIXED SIGNAL MICROCONTROLLER; 混合信号微控制器
MSP430FG478IPN
型号: MSP430FG478IPN
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MIXED SIGNAL MICROCONTROLLER
混合信号微控制器

微控制器
文件: 总91页 (文件大小:1585K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
D
D
Low Supply-Voltage Range: 1.8 V to 3.6 V  
D
Integrated LCD Driver With Contrast  
Control for Up to 128 Segments  
Ultra-Low Power Consumption:  
Active Mode: 262 A at 1 MHz, 2.2 V  
Standby Mode: 1.1 A  
Off Mode (RAM Retention): 0.1 A  
Five Power-Saving Modes  
Wake-Up From Standby Mode in  
Less Than 6 s  
16-Bit RISC Architecture,  
125-ns Instruction Cycle Time  
16-Bit Sigma-Delta Analog-to-Digital (A/D)  
Converter With Internal Reference and Five  
Differential Analog Inputs  
Dual 12-Bit Digital-to-Analog (D/A)  
Converter  
Dual Configurable Operational Amplifiers  
16-Bit Timer_A With Three  
Capture/Compare Registers  
16-Bit Timer_B With Three  
Capture/Compare-With-Shadow Registers  
Two Universal Serial Communication  
Interfaces (USCI)  
USCI_A0  
D
D
D
Brownout Detector  
Basic Timer With Real-Time Clock Feature  
Supply Voltage Supervisor/Monitor With  
Programmable Level Detection  
D
D
D
D
On-Chip Comparator  
Serial Onboard Programming,  
No External Programming Voltage Needed  
Programmable Code Protection by Security  
Fuse  
D
D
D
D
D
Bootstrap Loader  
On-Chip Emulation Module  
D
MSP430FG47x Family Members Include  
MSP430FG477: 32KB+256B Flash Memory  
2KB RAM  
MSP430FG478: 48KB+256B Flash Memory  
2KB RAM  
MSP430FG479: 60KB+256B Flash Memory  
2KB RAM  
D
D
D
D
D
D
Available in 113-Ball BGA (ZQW) and  
80-Pin QFP (PN) Packages (see Available  
Options)  
-- Enhanced UART Supporting  
Auto-Baudrate Detection  
-- IrDA Encoder and Decoder  
-- Synchronous SPI  
USCI_B0  
For Complete Module Descriptions, See the  
MSP430x4xx Family User’s Guide,  
Literature Number SLAU056  
-- I 2C  
-- Synchronous SPI  
description  
The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring  
different sets of peripherals targeted for various applications. The architecture, combined with five low-power  
modes, is optimized to achieve extended battery life in portable measurement applications. The device features  
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less  
than 6 s.  
The MSP430FG47x is a microcontroller configuration with two 16-bit timers, a basic timer with a real-time clock,  
a high performance 16-bit sigma-delta A/D converter, dual 12-bit D/A converters, two configurable operational  
amplifiers, two universal serial communication interface, 48 I/O pins, and a liquid crystal display driver.  
Typical applications for this device include analog and digital sensor systems, digital motor control, remote  
controls, thermostats, digital timers, hand-held meters, etc.  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range  
from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage  
because very small parametric changes could cause the device not to meet its published specifications. These devices have limited  
built-in ESD protection.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2011, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
T
A
PLASTIC 113-BALL BGA (ZQW)  
PLASTIC 80-PIN QFP (PN)  
MSP430FG477IZQW  
MSP430FG478IZQW  
MSP430FG479IZQW  
MSP430FG477IPN  
MSP430FG478IPN  
MSP430FG479IPN  
-- 4 0 C to 85C  
For the most current package and ordering information, see the Package Option Addendum at the end  
of this document, or see the TI web site at www.ti.com.  
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
DEVELOPMENT TOOL SUPPORT  
All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging  
and programming through easy to use development tools. Recommended hardware options include the  
following:  
D
Debugging and Programming Interface  
-- MSP--FET430UIF (USB)  
-- MSP--FET430PIF (Parallel Port)  
Debugging and Programming Interface with Target Board  
-- MSP--FET430U80 (PN package)  
Production Programmer  
D
D
-- MSP--GANG430  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
pin designation, MSP430FG47xIZQW  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
H1  
J1  
A2  
B2  
C2  
D2  
E2  
F2  
G2  
H2  
J2  
A3  
B3  
C3  
A4  
B4  
A5  
B5  
A6  
B6  
A7  
B7  
A8  
B8  
A9  
B9  
A10  
B10  
A11  
B11  
C11  
D11  
E11  
F11  
G11  
H11  
J11  
A12  
B12  
C12  
D12  
E12  
F12  
G12  
H12  
J12  
D4  
E4  
F4  
G4  
H4  
J4  
D5  
E5  
F5  
G5  
H5  
J5  
D6  
E6  
D7  
E7  
D8  
D9  
E9  
F9  
G9  
H9  
J9  
E8  
F8  
G8  
H8  
H6  
J6  
H7  
J7  
J8  
K1  
L1  
K2  
L2  
K11  
L11  
M11  
K12  
L12  
M12  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
Note: For terminal assignments, see the MSP430xG47x Terminal Functions table.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
pin designation, MSP430FG47xIPN  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
DVCC1  
P2.2/TB1  
P2.1/TB0/S0  
P2.0/TA2/S1  
P2.6/CAOUT/S2  
P2.7/S3  
GND  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VREF  
2
P6.7/OA1I2/SVSIN (SW1B)  
P1.0/TA0/OA0RFB  
3
4
P1.1/TA0/MCLK/OA1RFB  
P1.2/TA1/A4-/OA0I3 (SW0C)  
P1.3/TBOUTH/SVSOUT/A4+/OA1I3 (SW1C)  
P1.4/TBCLK/SMCLK/A3-/OA1I0/DAC1  
AVSS  
5
6
7
XIN  
8
XOUT  
9
AVCC  
80-pin  
IPN PACKAGE  
(TOP VIEW)  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P1.5/TACLK/ACLK/A3+  
P1.6/CA0/A2-/OA0I0/DAC0  
P1.7/CA1/A2+  
P4.7/S4  
P4.6/S5  
P4.5/S6  
P4.4/S7  
P4.3/S8  
P4.2/S9  
P4.1/S10  
P4.0/S11  
S12  
P3.7/S31  
P3.6/S30  
P3.5/S29  
P3.4/S28  
P3.3/UCB0CLK/UCA0STE  
P3.2/UCB0SOMI/UCB0SCL/S27  
P3.1/UCB0SIMO/UCB0SDA/S26  
P3.0/UCB0STE/UCA0CLK  
S13  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
functional block diagram  
XIN/  
XOUT/  
P3.x/P4.x  
P1.x/P2.x  
DVCC1/2 DVSS1/2  
AVCC  
AVSS  
XT2IN XT2OUT  
P5.x/P6.x  
2
2
2x8  
4x8  
ACLK  
SD16_A  
with  
Buffer  
1 Channel  
Sigma-  
Delta A/D  
Converter  
DAC12  
12-Bit  
Oscillators  
FLL+  
Ports  
P1/P2  
Ports  
P3/P4  
P5/P6  
Flash  
RAM  
SMCLK  
OA0, OA1  
2 OpAmps  
Comparator  
_A  
60kB  
48kB  
32kB  
2kB  
2kB  
2kB  
2
2x8 I/O  
Interrupt  
capability  
Channels  
Voltage  
Out  
4x8 I/O  
MCLK  
CPU  
64kB  
MAB  
incl. 16  
Registers  
MDB  
Timer_B3  
USCI A0  
UART/  
LIN,  
Brownout  
Protection  
LCD_A  
128  
Segments  
1,2,3,4  
Mux  
Basic  
Timer &  
Real-  
Time  
Clock  
EEM  
Watchdog  
WDT+  
Timer_A3  
3 CC  
Registers,  
Shadow  
Reg  
IrDA, SPI  
3 CC  
Registers  
JTAG  
Interface  
SVS,  
SVM  
15-Bit  
USCI B0  
SPI, I2C  
RST/NMI  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
80  
113  
PIN  
PIN  
AV  
AV  
52  
53  
1
F12  
E12  
A1  
Analog supply voltage, positive terminal.  
Analog supply voltage, negative terminal.  
CC  
SS  
DV  
DV  
DV  
Digital supply voltage, positive terminal. Supplies all digital parts.  
Digital supply voltage, negative terminal. Supplies all digital parts.  
Digital supply voltage, positive terminal. Supplies all digital parts.  
CC1  
79  
80  
A3  
SS1  
CC2  
A2  
B2  
B3  
DV  
78  
Digital supply voltage, negative terminal. Supplies all digital parts.  
SS2  
General-purpose digital I/O pin  
Timer_A, capture: CCI0A input, compare: Out0 output  
Range switch to OA0 output  
P1.0/TA0/  
OA0RFB  
58  
C11  
C12  
D11  
D12  
I/O  
I/O  
I/O  
BSL transmit  
General-purpose digital I/O pin  
Timer_A, capture: CCI0B input, compare: Out0 output  
MCLK signal output  
Range switch to OA1 output  
BSL receive  
P1.1/TA0/MCLK/  
OA1RFB  
57  
56  
55  
General-purpose digital I/O pin  
P1.2/TA1/A4--/  
OA0I3 (SW0C)  
Timer_A, capture: CCI1A input, compare: Out1 output  
SD16 negative analog input A4  
OA0, analog input I3  
General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output  
switch all PWM digital output ports to high impedance -- Timer_B TB0 to TB2  
I/O SVS comparator output  
SD16 positive analog input A4  
OA1, analog input I3  
P1.3/TBOUTH/  
SVSOUT/A4+/  
OA1I3 (SW1C)  
General-purpose digital I/O pin/  
Timer_B, clock signal TBCLK input  
SMCLK signal output  
SD16 negative analog input A3  
OA1, analog input I0  
DAC12.1 output  
P1.4/TBCLK/  
SMCLK/A3--/  
OA1I0/DAC1  
54  
E11  
F11  
I/O  
General-purpose digital I/O pin  
Timer_A, clock signal TACLK input  
ACLK signal output  
SD16 positive analog input A3  
P1.5/TACLK/  
ACLK/A3+  
51  
50  
I/O  
General-purpose digital I/O pin  
Comparator_A input 0  
SD16 negative analog input A2  
OA0, analog input I0  
DAC12.0 output  
P1.6/CA0/A2--/  
OA0I0/DAC0  
G12  
G11  
I/O  
General-purpose digital I/O pin  
I/O Comparator_A input 1  
SD16 positive analog input A2  
P1.7/CA1/A2+  
P2.0/TA2/S1  
P2.1/TB0/S0  
49  
4
General-purpose digital I/O pin  
I/O Timer_A, capture: CCI2A/B input, compare: Out2 output  
LCD segment output 1  
C2  
C3  
General-purpose digital I/O pin  
I/O Timer_B, capture: CCI0A/B input, compare: Out0 output  
LCD segment output 0  
3
C1  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
Terminal Functions (continued)  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
80  
113  
PIN  
PIN  
General-purpose digital I/O pin  
Timer_B, capture: CCI1A/B input, compare: Out1 output  
P2.2/TB1  
2
B1  
B4  
A4  
D4  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O pin  
Timer_B, capture: CCI2A/B input, compare: Out2 output  
P2.3/TB2  
77  
76  
75  
P2.4/UCA0TXD/  
UCA0SIMO  
General-purpose digital I/O pin  
USCIA transmit data output in UART mode, slave data in/master out in SPI mode  
P2.5/UCA0RXD/  
UCA0SOMI  
General-purpose digital I/O pin  
USCI A0 receive data input in UART mode, slave data out/master in in SPI mode  
General-purpose digital I/O pin  
P2.6/CAOUT/S2  
5
D1  
D2  
I/O Comparator_A output  
LCD segment output 2  
General-purpose digital I/O pin  
P2.7/S3  
6
I/O  
LCD segment output 3  
P3.0/UCB0STE/  
UCA0CLK  
General-purpose digital I/O pin  
USCI B0 slave transmit enable/USCI A0 clock input/output  
41  
M12  
L12  
I/O  
General-purpose digital I/O pin  
2
P3.1/UCB0SIMO/  
UCB0SDA/S26  
2
42  
43  
I/O USCI B0 slave in/master out in SPI mode, SDA I C data in I C mode  
LCD segment output 26  
General-purpose digital I/O pin  
I/O USCI B0 slave out/master in in SPI mode, SCL I C clock in I C mode  
LCD segment output 27  
P3.2/UCB0SOMI/  
UCB0SCL/S27  
2
2
K11  
P3.3/UCB0CLK/  
UCA0STE  
General-purpose digital I/O  
USCI B0 clock input/output, USCI A0 slave transmit enable  
44  
45  
46  
47  
48  
18  
17  
16  
15  
14  
13  
12  
11  
K12  
J11  
J12  
H11  
H12  
K2  
I/O  
General-purpose digital I/O pin  
LCD segment output 28  
P3.4/S28  
P3.5/S29  
P3.6/S30  
P3.7/S31  
P4.0/S11  
P4.1/S10  
P4.2/S9  
P4.3/S8  
P4.4/S7  
P4.5/S6  
P4.6/S5  
P4.7/S4  
I/O  
General-purpose digital I/O pin  
LCD segment output 29  
I/O  
General-purpose digital I/O pin  
LCD segment output 30  
I/O  
General-purpose digital I/O pin  
LCD segment output 31  
I/O  
General-purpose digital I/O pin  
LCD segment output 11  
I/O  
General-purpose digital I/O pin  
LCD segment output 10  
K1  
I/O  
General-purpose digital I/O pin  
LCD segment output 9  
J2  
I/O  
General-purpose digital I/O pin  
LCD segment output 8  
J1  
I/O  
General-purpose digital I/O pin  
LCD segment output 7  
H2  
I/O  
General-purpose digital I/O pin  
LCD segment output 6  
H1  
I/O  
General-purpose digital I/O pin  
LCD segment output 5  
G2  
G1  
I/O  
General-purpose digital I/O pin  
LCD segment output 4  
I/O  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
Terminal Functions (continued)  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
COM0  
80  
PIN  
113  
PIN  
33  
L8  
O
Common output, COM0--3 are used for LCD backplanes  
General-purpose digital I/O pin  
LCD segment output 20  
P5.0/S20  
27  
28  
34  
35  
36  
37  
38  
L5  
I/O  
General-purpose digital I/O pin  
LCD segment output 21  
P5.1/S21  
M5  
M8  
L9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose digital I/O pin  
common output, COM0--3 are used for LCD backplanes  
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
LCDCAP/R33  
P5.5/R23  
General-purpose digital I/O pin  
common output, COM0--3 are used for LCD backplanes  
General-purpose digital I/O pin  
common output, COM0--3 are used for LCD backplanes  
M9  
J9  
Capacitor connection for LCD charge pump  
input port of most positive analog LCD level (V4)  
General-purpose digital I/O pin  
input port of the second most positive analog LCD level (V3)  
M10  
L10  
P5.6/LCDREF/  
R13  
General-purpose digital I/O pin  
External LCD reference voltage input  
39  
I/O  
input port of the third most positive analog LCD level (V3 or V2)  
P5.7/R03  
40  
67  
M11  
B8  
I/O General-purpose digital I/O pin  
input port of the fourth most positive analog LCD level (V1)  
General-purpose digital I/O pin  
I/O SD16 positive analog input A0  
OA0, output  
P6.0/A0+/OA0O  
P6.1/A0--/OA0FB  
General-purpose digital I/O pin  
I/O SD16 positive negative input A0  
OA0, analog input feedback  
66  
65  
64  
B9  
A9  
D9  
P6.2/OA0I1  
(SW0A)  
General-purpose digital I/O pin  
OA0, analog input I1  
I/O  
General-purpose digital I/O pin  
I/O SD16 positive analog input A1  
OA1, output  
P6.3/A1+/OA1O  
P6.4/A1--/OA1FB  
General-purpose digital I/O pin  
I/O SD16 positive negative input A1  
OA1, analog input feedback  
63  
A10  
P6.5/OA0I2  
(SW0B)  
General-purpose digital I/O pin  
OA0, analog input I2  
62  
61  
B10  
A11  
I/O  
P6.6/OA1I1  
(SW1A)  
General-purpose digital I/O pin  
OA1, analog input I1  
I/O  
General-purpose digital I/O pin  
I/O OA1, analog input I2  
SVS input  
P6.7/OA1I2/  
SVSIN (SW1B)  
59  
B12  
S12  
S13  
S14  
S15  
S16  
19  
20  
21  
22  
23  
L1  
M1  
M2  
M3  
L3  
O
O
O
O
O
LCD segment output 12  
LCD segment output 13  
LCD segment output 14  
LCD segment output 15  
LCD segment output 16  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
Terminal Functions (continued)  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
80  
113  
PIN  
PIN  
S17  
S18  
S19  
S22  
S23  
S24  
S25  
GND  
XIN  
24  
25  
26  
29  
30  
31  
32  
7
L4  
M4  
J4  
O
O
O
O
O
O
O
LCD segment output 17  
LCD segment output 18  
LCD segment output 19  
LCD segment output 22  
LCD segment output 23  
LCD segment output 24  
LCD segment output 25  
L6  
M6  
L7  
M7  
E2  
E1  
F1  
F2  
Ground. It is used to shield the oscillator. See Note 1.  
8
I
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Output port for crystal oscillator XT1. Standard or watch crystals can be connected.  
Ground. It is used to shield the oscillator. See Note NO TAG.  
XOUT  
GND  
9
O
10  
60  
74  
V
A12  
B5  
O
I
Input for an external reference voltage/internal reference voltage output  
Reset input, nonmaskable interrupt input port, or bootstrap loader start (in flash devices).  
REF  
RST/NMI  
Test clock (JTAG). TCK is the clock input port for device programming test and bootstrap loader  
start.  
TCK  
73  
A5  
I
TDI/TCLK  
TDO/TDI  
TMS  
71  
70  
72  
68  
69  
NA  
A6  
B7  
B6  
A8  
A7  
I
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.  
I/O Test data output port. TDO/TDI data output or programming data input terminal.  
I
O
I
Test mode select. TMS is used as an input port for device programming and test.  
Output terminal of crystal oscillator XT2  
XT2OUT  
XT2IN  
Input port for crystal oscillator XT2  
Reserved  
B11,  
BGA package unused balls. Connection to DV /AV recommended.  
SS SS  
D6, D7,  
D8, E4,  
E5, E6,  
E7, E8,  
E9, F4,  
F5, F8,  
F9, G4,  
G5,G8,  
G9, H4,  
H5, H6,  
H7, H8,  
H9, J5,  
J6, J7,  
J8, L2,  
L11  
NOTE 1: It is recommended to connect GND externally to DVss.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
short-form description  
CPU  
Program Counter  
Stack Pointer  
PC/R0  
The MSP430 CPU has a 16--bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions,  
are performed as register operations in  
conjunction with seven addressing modes for  
source operand and four addressing modes for  
destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that  
provide reduced instruction execution time. The  
register-to-register operation execution time is  
one cycle of the CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register,  
and constant generator, respectively. The  
remaining registers are general-purpose  
registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses, and can be handled  
with all instructions.  
R10  
R11  
instruction set  
R12  
R13  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 1 shows examples of the three types of  
instruction formats, and Table 2 lists the address  
modes.  
R14  
R15  
Table 1. Instruction Word Formats  
Dual operands, source-destination  
Single operands, destination only  
Relative jump, un/conditional  
e.g., ADD R4,R5  
R4 + R5 ------> R5  
e.g., CALL  
e.g., JNE  
R8  
PC ---->(TOS), R8----> PC  
Jump-on-equal bit = 0  
Table 2. Address Mode Descriptions  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
MOV R10,R11  
MOV 2(R5),6(R6)  
OPERATION  
F
F
F
F
F
F
F
F
F
R10 —> R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV & MEM, & TCDAT  
MOV @Rn,Y(Rm)  
M(2+R5)—> M(6+R6)  
M(EDE) —> M(TONI)  
M(MEM) —> M(TCDAT)  
M(R10) —> M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
Indirect  
autoincrement  
M(R10) —> R11  
R10 + 2—> R10  
F
MOV @Rn+,Rm  
Immediate  
F
MOV #X,TONI  
#45 —> M(TONI)  
NOTE: S = source  
D = destination  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
operating modes  
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request, and restore back to  
the low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
D
Active mode (AM)  
-- All clocks are active  
D
Low-power mode 0 (LPM0)  
-- CPU is disabled  
-- ACLK and SMCLK remain active  
-- FLL+ loop control remains active  
Low-power mode 1 (LPM1)  
D
D
-- CPU is disabled  
-- ACLK and SMCLK remain active  
-- FLL+ loop control is disabled  
Low-power mode 2 (LPM2)  
-- CPU is disabled  
-- MCLK, FLL+ loop control, and DCOCLK are disabled  
-- DCO’s dc generator remains enabled  
-- ACLK remains active  
D
D
Low-power mode 3 (LPM3)  
-- CPU is disabled  
-- MCLK, FLL+ loop control, and DCOCLK are disabled  
-- DCO’s dc generator is disabled  
-- ACLK remains active  
Low-power mode 4 (LPM4)  
-- CPU is disabled  
-- ACLK is disabled  
-- MCLK, FLL+ loop control, and DCOCLK are disabled  
-- DCO’s dc generator is disabled  
-- Crystal oscillator is stopped  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
interrupt vector addresses  
The interrupt vectors and the power-up starting address are located in the address range 0xFFFF to 0xFFC0.  
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
If the reset vector (located at address 0xFFFE) contains 0xFFFF (e.g., flash is not programmed) the CPU goes  
into LPM4 immediately after power--up.  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
SYSTEM INTERRUPT  
PRIORITY  
Power-Up  
External Reset  
PORIFG  
RSTIFG  
Reset  
0xFFFE  
15, highest  
Watchdog  
Flash Memory  
WDTIFG  
KEYV  
PC Out--of--Range (see Note 4)  
(see Note 1)  
NMI  
Oscillator Fault  
Flash Memory Access Violation  
NMIIFG (see Notes 1 and 3)  
OFIFG (see Notes 1 and 3)  
ACCVIFG (see Notes 1, 2 and 4)  
(Non)maskable  
(Non)maskable  
(Non)maskable  
0xFFFC  
14  
Timer_B3  
TBCCR0 CCIFG0 (see Note 2)  
Maskable  
0xFFFA  
0xFFF8  
13  
12  
TBCCR1 CCIFG1 ... TBCCR3 CCIFG3,  
TBIFG (see Notes 1 and 2)  
Timer_B3  
Maskable  
Comparator_A  
CAIFG  
Maskable  
Maskable  
Maskable  
0xFFF6  
0xFFF4  
0xFFF2  
11  
10  
9
Watchdog Timer+  
WDTIFG  
USCI_A0/USCI_B0 receive  
USCI_B0 I2C status  
UCA0RXIFG, UCB0RXIFG  
(see Notes 1 and 5)  
USCI_A0/USCI_B0 transmit  
USCI_B0 I2C receive/transmit  
UCA0TXIFG, UCB0TXIFG  
(see Note 1 and 6)  
Maskable  
Maskable  
0xFFF0  
0xFFEE  
8
7
SD16_A  
SD16CCTLx SD16OVIFG, SD16CCTLx SD16IFG  
(see Notes 1 and 2)  
Timer_A3  
Timer_A3  
TACCR0 CCIFG0 (see Note 2)  
Maskable  
Maskable  
0xFFEC  
0xFFEA  
6
5
TACCR1 CCIFG1 and TACCR2 CCIFG2,  
TAIFG (see Notes 1 and 2)  
I/O Port P1 (Eight Flags)  
DAC12  
P1IFG.0 to P1IFG.7 (see Notes 1 and 2)  
DAC12_0IFG, DAC12_1IFG  
Maskable  
Maskable  
Maskable  
Maskable  
Maskable  
0xFFE8  
0xFFE6  
0xFFE4  
0xFFE2  
0xFFE0  
4
3
2
1
I/O Port P2 (Eight Flags)  
Basic Timer1/RTC  
P2IFG.0 to P2IFG.7 (see Notes 1 and 2)  
BTIFG  
0, lowest  
NOTES: 1. Multiple source flags  
2. Interrupt flags are located in the module.  
3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh).  
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.  
4. Access and key violations, KEYV and ACCVIFG.  
5. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.  
6. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
special function registers  
Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits  
not allocated to a functional purpose are not physically present in the device. This arrangement provides simple  
software access.  
interrupt enable 1 and 2  
Address  
00h  
7
6
5
4
3
2
1
0
ACCVIE  
rw--0  
NMIIE  
rw--0  
OFIE  
rw--0  
WDTIE  
rw--0  
WDTIE  
Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog  
timer is configured in interval timer mode.  
OFIE  
Oscillator fault enable  
NMIIE  
ACCVIE  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
Address  
01h  
7
6
5
4
3
2
1
0
BTIE  
rw--0  
UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE  
rw--0 rw--0 rw--0 rw--0  
UCA0RXIE  
UCA0TXIE  
UCB0RXIE  
UCB0TXIE  
BTIE  
USCI_A0 receive interrupt enable  
USCI_A0 transmit interrupt enable  
USCI_B0 receive interrupt enable  
USCI_B0 transmit interrupt enable  
Basic timer interrupt enable  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
interrupt flag register 1 and 2  
Address  
02h  
7
6
5
4
3
2
1
0
NMIIFG  
rw--0  
RSTIFG  
rw--(0)  
PORIFG  
rw--(1)  
OFIFG  
rw--1  
WDTIFG  
rw--(0)  
WDTIFG  
Set on watchdog timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.  
OFIFG  
Flag set on oscillator fault.  
RSTIFG  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset  
on VCC power-up.  
PORIFG  
NMIIFG  
Power-on interrupt flag. Set on VCC power-up.  
Set via RST/NMI pin.  
Address  
03h  
7
6
5
4
3
2
1
0
UCB0  
TXIFG  
UCB0  
RXIFG  
UCA0  
TXIFG  
UCA0  
RXIFG  
BTIFG  
rw--0  
rw--1  
rw--0  
rw--1  
rw--0  
UCA0RXIFG USCI_A0 receive interrupt flag  
UCA0TXIFG USCI_A0 transmit interrupt flag  
UCB0RXIFG USCI_B0 receive interrupt flag  
UCB0TXIFG  
BTIFG  
USCI_B0 transmit interrupt flag  
Basic Timer1 interrupt flag  
Legend  
rw:  
Bit can be read and written.  
rw-0,1:  
rw-(0,1):  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
memory organization  
MSP430FG477  
MSP430FG478  
MSP430FG479  
Memory  
Size  
32KB  
48KB  
60KB  
Main: interrupt vector  
Main: code memory  
Flash  
Flash  
0FFFFh to 0FFE0h  
0FFFFh to 08000h  
0FFFFh to 0FFE0h  
0FFFFh to 04000h  
0FFFFh to 0FFE0h  
0FFFFh to 01100h  
Information memory  
Boot memory  
RAM  
Size  
Flash  
256 Byte  
010FFh to 01000h  
256 Byte  
010FFh to 01000h  
256 Byte  
010FFh to 01000h  
Size  
ROM  
1KB  
0FFFh to 0C00h  
1KB  
0FFFh to 0C00h  
1KB  
0FFFh to 0C00h  
Size  
2KB  
2KB  
2KB  
09FFh to 0200h  
09FFh to 0200h  
09FFh to 0200h  
Peripherals  
16-bit  
8-bit  
8-bit SFR  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
01FFh to 0100h  
0FFh to 010h  
0Fh to 00h  
bootstrap loader (BSL)  
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access  
to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the  
features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap  
Loader, literature number SLAA089.  
BSL FUNCTION  
Data Transmit  
Data Receive  
PN PACKAGE PINS  
58 - P1.0  
ZQW PACKAGE PINS  
C11 - P1.0  
57 - P1.1  
C12 - P1.1  
flash memory (Flash)  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
D
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
64 bytes each. Each segment in main memory is 512 bytes in size.  
D
D
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n.  
Segments A to D are also called information memory.  
D
D
Segment A might contain calibration data. After reset, segment A is protected against programming or  
erasing. It can be unlocked, but care should be taken not to erase this segment if this calibration data is  
required.  
Flash content integrity check with marginal read modes.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number  
SLAU056.  
oscillator and system clock  
The clock system in the MSP430FG47x is supported by the FLL+ module, which includes support for a  
32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and a 8-MHz high-frequency  
crystal oscillator (XT1), plus a 8-MHz high-frequency crystal oscillator (XT2). The FLL+ clock module is  
designed to meet the requirements of both low system cost and low power consumption. The FLL+ features  
digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO  
frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on  
clock source and stabilizes in less than 6 s. The FLL+ module provides the following clock signals:  
D
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal  
Main clock (MCLK), the system clock used by the CPU  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8  
brownout, supply voltage supervisor  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on  
and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user  
selectable level and supports both supply voltage supervision (the device is automatically reset) and supply  
voltage monitoring (SVM, the device is not automatically reset).  
The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not  
have ramped to VCC(min) at that time. The user must ensure the default FLL+ settings are not changed until VCC  
reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min)  
.
digital I/O  
There are six 8-bit I/O ports implemented, ports P1 through P6.  
D
D
D
D
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
watchdog timer (WDT+)  
The primary function of the WDT+ module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
Basic Timer1 and Real-Time Clock  
The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both  
timers can be read and written by software. The Basic Timer1 is extended to provide an integrated real-time  
clock (RTC). An internal calendar compensates for month with less than 31 days and includes leap year  
correction.  
LCD_A driver with regulated charge pump  
The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A  
controller has dedicated data memory to hold segment drive information. Common and segment signals are  
generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral.  
The module can provide a LCD voltage independent of the supply voltage via an integrated charge pump.  
Furthermore, it is possible to control the level of the LCD voltage and, thus, contrast in software.  
Timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
TIMER_A3 SIGNAL CONNECTIONS  
MODULE  
OUTPUT  
SIGNAL  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE  
BLOCK  
PN  
ZQW  
PN  
ZQW  
P1.5 -- 51  
F11  
TACLK  
ACLK  
TACLK  
ACLK  
Timer  
CCR0  
CCR1  
CCR2  
NA  
TA0  
TA1  
TA2  
SMCLK  
TAINCLK  
TA0  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
P1.5 -- 51  
P1.0 -- 58  
P1.1 -- 57  
F11  
C11  
C12  
P1.0 -- 58  
P1.1 -- 57  
C11  
C12  
TA0  
DV  
DV  
SS  
CC  
V
CC  
P1.2 -- 56  
P2.0 -- 4  
D11  
C2  
TA1  
CAOUT (internal)  
CCI1A  
CCI1B  
GND  
P1.2 -- 56  
P2.0 -- 4  
D11  
C2  
DV  
DV  
SS  
CC  
V
CC  
TA2  
ACLK (internal)  
CCI2A  
CCI2B  
GND  
DV  
DV  
SS  
CC  
V
CC  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
Timer_B3  
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
TIMER_B3 SIGNAL CONNECTIONS  
MODULE  
OUTPUT  
SIGNAL  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE  
BLOCK  
PN  
ZQW  
PN  
ZQW  
P1.4 -- 54  
E11  
TBCLK  
ACLK  
TBCLK  
ACLK  
Timer  
NA  
SMCLK  
SMCLK  
INCLK  
P1.4 -- 54  
E11  
TBCLK  
(See Note 1)  
P2.1 -- 3  
P2.1 -- 3  
C1  
C1  
TB0  
TB0  
CCI0A  
CCI0B  
GND  
P2.1 -- 3  
P2.2 -- 2  
P2.3 -- 77  
C1  
B1  
B4  
CCR0  
CCR1  
CCR2  
TB0  
TB1  
TB2  
V
SS  
CC  
V
V
CC  
P2.2 -- 2  
P2.2 -- 2  
B1  
B1  
TB1  
TB1  
CCI1A  
CCI1B  
GND  
V
SS  
CC  
V
V
CC  
P2.3 -- 77  
B4  
TB2  
CCI2A  
CCI2B  
GND  
ACLK (internal)  
V
SS  
V
V
CC  
CC  
NOTE 1: The inversion of TBCLK is done inside the module.  
universal serial communication interfaces (USCIs) (USCI_A0, USCI_B0)  
The USCI module is used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3 pin or 4 pin), I2C, and asynchronous communication protocols such  
as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA.  
USCI_A0 provides support for SPI (3 pin or 4 pin), UART, enhanced UART and IrDA.  
USCI_B0 provides support for SPI (3 pin or 4 pin) and I2C.  
Comparator_A  
The primary function of the comparator_A module is to support precision slope analog-to-digital conversions,  
battery-voltage supervision, and monitoring of external analog signals.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
SD16_A  
The SD16_A module supports 16-bit analog-to-digital conversions. The module implements a 16-bit  
sigma-delta core and a reference generator. In addition to external analog inputs, an internal VCC sense and  
temperature sensor are also available.  
DAC12  
The DAC12 module is a 12-bit R-ladder voltage-output DAC. The DAC12 may be used in 8-bit or 12-bit mode.  
When multiple DAC12 modules are present, they may be grouped together for synchronous operation.  
OA  
The MSP430FG47x has two configurable low-current general-purpose operational amplifiers. Each OA input  
and output terminal is software-selectable and offer a flexible choice of connections for various applications.  
The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.  
OA0 SIGNAL CONNECTIONS  
DEVICE  
INPUT  
SIGNAL  
MODULE  
OUTPUT  
SIGNAL  
INPUT PIN NUMBER  
OUTPUT PIN NUMBER  
MODULE  
INPUT NAME  
MODULE  
BLOCK  
PN  
ZQW  
PN  
ZQW  
P1.6 -- 50  
P6.2 -- 65  
P6.5 -- 62  
P1.2 -- 56  
P1.4 -- 54  
P6.6 -- 61  
P6.7 -- 59  
P1.3 -- 55  
G12  
A9  
OA0I0  
OA0I1  
OA0I2  
OA0I3  
OA1I0  
OA1I1  
OA1I2  
OA1I3  
OAxI0  
OAxI1  
OAxIA  
OAxIB  
OAxI0  
OAxI1  
OAxIA  
OAxIB  
P6.0 -- 67  
B8  
OA0  
OA1  
OA0OUT  
OA1OUT  
OA0O  
OA1O  
B10  
D11  
E11  
A11  
B12  
D12  
P6.4 -- 64  
A10  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
peripheral file map  
PERIPHERALS WITH WORD ACCESS  
Watchdog  
Timer_B3  
Watchdog timer control  
WDTCTL  
0120h  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_B register  
TBCCR2  
TBCCR1  
TBCCR0  
TBR  
0196h  
0194h  
0192h  
0190h  
0186h  
0184h  
0182h  
0180h  
011Eh  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_B control  
TBCCTL2  
TBCCTL1  
TBCCTL0  
TBCTL  
Timer_B interrupt vector  
TBIV  
Timer_A3  
Capture/compare register 2  
Capture/compare register 1  
Capture/compare register 0  
Timer_A register  
TACCR2  
TACCR1  
TACCR0  
TAR  
0176h  
0174h  
0172h  
0170h  
0166h  
0164h  
0162h  
0160h  
012Eh  
Capture/compare control 2  
Capture/compare control 1  
Capture/compare control 0  
Timer_A control  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
Timer_A interrupt vector  
TAIV  
Flash  
Flash control 4  
Flash control 3  
Flash control 2  
Flash control 1  
DAC12_1 data  
DAC12_1 control  
DAC12_0 data  
DAC12_0 control  
FCTL4  
01BEh  
012Ch  
012Ah  
0128h  
01CAh  
01C2h  
01C8h  
01C0h  
FCTL3  
FCTL2  
FCTL1  
DAC12  
DAC12_1DAT  
DAC12_1CTL  
DAC12_0DAT  
DAC12_0CTL  
SD16_A  
(see also:  
Peripherals with  
Byte Access)  
General control  
SD16CTL  
SD16CCTL0  
SD16MEM0  
SD16IV  
0100h  
0102h  
0112h  
0110h  
Channel 0 control  
Channel 0 conversion memory  
Interrupt vector word register  
OA switches  
OA switches  
OA1  
Switch control register 1  
SWCTL_1  
00CEh  
PERIPHERALS WITH BYTE ACCESS  
Switch control register  
Switch control register 1  
SWCTL  
00CFh  
00CEh  
SWCTL1  
Operational amplifier 1 control register 1  
Operational amplifier 1 control register 0  
OA1CTL1  
OA1CTL0  
00C3h  
00C2h  
OA0  
Operational amplifier 0 control register 1  
Operational amplifier 0 control register 0  
OA0CTL1  
OA0CTL0  
00C1h  
00C0h  
SD16_A  
(see also:  
Peripherals with  
Word Access)  
Channel 0 input control  
Analog enable  
SD16INCTL0  
SD16AE  
0B0h  
0B7h  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
peripheral file map (continued)  
LCD_A  
LCD voltage control 1  
LCDAVCTL1  
LCDAVCTL0  
LCDAPCTL1  
LCDAPCTL0  
LCDM20  
:
0AFh  
0AEh  
0ADh  
0ACh  
0A4h  
:
LCD voltage control 0  
LCD voltage port control 1  
LCD voltage port control 0  
LCD memory 20  
:
LCD memory 16  
LCD memory 15  
:
LCDM16  
LCDM15  
:
0A0h  
09Fh  
:
LCD memory 1  
LCD control and mode  
LCDM1  
091h  
090h  
LCDACTL  
USCI A0/B0  
USCI A0 auto baud rate control  
USCI A0 transmit buffer  
USCI A0 receive buffer  
USCI A0 status  
UCA0ABCTL  
UCA0TXBUF  
UCA0RXBUF  
UCA0STAT  
UCA0MCTL  
UCA0BR1  
UCA0BR0  
UCA0CTL1  
UCA0CTL0  
UCA0IRRCTL  
UCA0IRTCTL  
UCB0TXBUF  
UCB0RXBUF  
UCB0STAT  
UCB0CIE  
0x005D  
0x0067  
0x0066  
0x0065  
0x0064  
0x0063  
0x0062  
0x0061  
0x0060  
0x005F  
0x005E  
0x006F  
0x006E  
0x006D  
0x006C  
0x006B  
0x006A  
0x0069  
0x0068  
0x011A  
0x0118  
05Bh  
USCI A0 modulation control  
USCI A0 baud rate control 1  
USCI A0 baud rate control 0  
USCI A0 control 1  
USCI A0 control 0  
USCI A0 IrDA receive control  
USCI A0 IrDA transmit control  
USCI B0 transmit buffer  
USCI B0 receive buffer  
USCI B0 status  
USCI B0 I2C Interrupt enable  
USCI B0 baud rate control 1  
USCI B0 baud rate control 0  
USCI B0 control 1  
UCB0BR1  
UCB0BR0  
UCB0CTL1  
UCB0CTL0  
UCB0SA  
USCI B0 control 0  
USCI B0 I2C slave address  
USCI B0 I2C own address  
Comparator_A port disable  
Comparator_A control2  
Comparator_A control1  
UCB0OA  
Comparator_A  
CAPD  
CACTL2  
05Ah  
CACTL1  
059h  
Brownout, SVS  
FLL+ Clock  
SVS control register (reset by brownout signal) SVSCTL  
056h  
FLL+ control 1  
FLL_CTL1  
FLL_CTL0  
SCFQCTL  
SCFI1  
054h  
FLL+ control 0  
053h  
System clock frequency control  
System clock frequency integrator  
System clock frequency integrator  
052h  
051h  
SCFI0  
050h  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS  
RTC  
(Basic Timer1)  
Real-time clock year high byte  
Real-time clock year low byte  
Real-time clock month  
Real-time clock day of month  
Basic Timer1 counter  
RTCYEARH  
RTCYEARL  
RTCMON  
RTCDAY  
BTCNT2  
04Fh  
04Eh  
04Dh  
04Ch  
047h  
046h  
045h  
Basic Timer1 counter  
BTCNT1  
Real-time counter 4  
RTCNT4  
(Real-time clock day of week)  
Real-time counter 3  
(RTCDOW)  
RTCNT3  
044h  
043h  
042h  
(Real-time clock hour)  
Real-time counter 2  
(RTCHOUR)  
RTCNT2  
(Real-time clock minute)  
Real-time counter 1  
(RTCMIN)  
RTCNT1  
(Real-time clock second)  
Real-time clock control  
Basic Timer1 control  
(RTCSEC)  
RTCCTL  
041h  
040h  
BTCTL  
Port P6  
Port P5  
Port P4  
Port P3  
Port P2  
Port P6 selection  
Port P6 direction  
Port P6 output  
P6SEL  
P6DIR  
P6OUT  
P6IN  
037h  
036h  
035h  
034h  
033h  
032h  
031h  
030h  
01Fh  
01Eh  
01Dh  
01Ch  
01Bh  
01Ah  
019h  
018h  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
Port P6 input  
Port P5 selection  
Port P5 direction  
Port P5 output  
P5SEL  
P5DIR  
P5OUT  
P5IN  
Port P5 input  
Port P4 selection  
Port P4 direction  
Port P4 output  
P4SEL  
P4DIR  
P4OUT  
P4IN  
Port P4 input  
Port P3 selection  
Port P3 direction  
Port P3 output  
P3SEL  
P3DIR  
P3OUT  
P3IN  
Port P3 input  
Port P2 selection  
Port P2 interrupt enable  
Port P2 interrupt-edge select  
Port P2 interrupt flag  
Port P2 direction  
Port P2 output  
P2SEL  
P2IE  
P2IES  
P2IFG  
P2DIR  
P2OUT  
P2IN  
Port P2 input  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
peripheral file map (continued)  
PERIPHERALS WITH BYTE ACCESS (CONTINUED)  
Port P1  
Port P1 selection 2 register  
Port P1 selection  
P1SEL2  
P1SEL  
057h  
026h  
Port P1 interrupt enable  
Port P1 interrupt-edge select  
Port P1 interrupt flag  
Port P1 direction  
P1IE  
025h  
024h  
023h  
022h  
021h  
020h  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
Special functions SFR interrupt flag 2  
SFR interrupt flag 1  
IFG2  
IFG1  
IE2  
003h  
002h  
001h  
000h  
SFR interrupt enable 2  
SFR interrupt enable 1  
IE1  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
absolute maximum ratings over operating free-air temperature (see Note 1)  
Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to 4.1 V  
Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC + 0.3 V  
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA  
Storage temperature, Tstg: (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . --55C to 150C  
(programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . --40C to 85C  
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended  
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
2. All voltages referenced to V . The JTAG fuse-blow voltage, V , is allowed to exceed the absolute maximum rating. The voltage  
SS  
FB  
is applied to the TDI/TCLK pin when blowing the JTAG fuse.  
3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with  
peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.  
recommended operating conditions  
MIN  
NOM  
MAX UNITS  
Supply voltage during program execution,  
(AV = DV = V  
1.8  
3.6  
3.6  
V
V
V
)
CC  
CC  
CC  
CC  
Supply voltage during flash memory programming,  
(AV = DV = V  
2.2  
V
)
CC  
CC  
CC  
CC  
Supply voltage, V (AV = DV = V )  
SS  
0
0
V
SS  
SS  
SS  
Operating free-air temperature range, T  
-- 4 0  
85  
C  
A
LF selected,  
XTS_FLL = 0  
Watch crystal  
Ceramic resonator  
Crystal  
32.768  
kHz  
MHz  
MHz  
XT1 selected,  
XTS_FLL = 1  
LFXT1 crystal frequency, f  
(see Note 1)  
(LFXT1)  
0.45  
1
6
6
XT1 selected,  
XTS_FLL = 1  
Ceramic resonator  
Crystal  
0.45  
1
8
8
XT2 crystal frequency, f  
MHz  
(XT2)  
V
V
= 1.8 V  
= 2.5 V  
dc  
dc  
4.15  
8
CC  
System frequency, MCLK, ACLK, SMCLK , f  
MHz  
(System)  
CC  
NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.  
fSystem (MHz)  
8 MHz  
Supply voltage range,  
MSP430FG47x, during  
program execution  
Supply voltage range, MSP430FG47x,  
during flash memory programming  
4.15 MHz  
1.8  
2.2  
2.5  
3.6  
Supply Voltage - V  
Figure 1. Frequency vs Supply Voltage, Typical Characteristics  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
supply current into AVCC + DVCC excluding external current  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX  
UNIT  
CC  
Active mode (see Note 1)  
2.2 V  
3 V  
262  
295  
f
f
= f  
= 1 MHz,  
(MCLK)  
(SMCLK)  
I
T
A
= --40C to 85C  
A  
(AM)  
= 32,768 Hz  
(ACLK)  
420  
460  
XTS = 0, SELM = (0,1)  
2.2 V  
3 V  
32  
51  
62  
77  
Low-power mode (LPM0)  
(see Note 1)  
I
I
T
= --40C to 85C  
= --40C to 85C  
A  
A  
(LPM0)  
(LPM2)  
A
Low-power mode (LPM2),  
f(MCLK) = f (SMCLK) = 0 MHz,  
f(ACLK) = 32,768 Hz, SCG0 = 0 (see Note 2)  
2.2 V  
3 V  
5
7
9
T
A
13  
T
= --40C  
= 25C  
= 60C  
= 85C  
= --40C  
= 25C  
= 60C  
= 85C  
= --40C  
= 25C  
= 85C  
= --40C  
= 25C  
= 85C  
= --40C  
= 25C  
= 60C  
= 85C  
= --40C  
= 25C  
= 60C  
= 85C  
1.0  
1.0  
1.1  
2.3  
1.2  
1.2  
1.4  
2.7  
1.0  
1.1  
3.5  
1.8  
2.0  
4.2  
0.1  
0.1  
0.7  
1.7  
0.1  
0.1  
0.8  
1.5  
1.8  
1.8  
2.0  
4.0  
2.0  
2.0  
2.2  
4.5  
3.0  
3.2  
6.0  
3.3  
4.0  
7.5  
0.5  
0.5  
1.1  
3.0  
0.8  
0.8  
1.2  
3.5  
A
T
A
Low-power mode (LPM3)  
2.2 V  
3 V  
T
A
f
f
= f  
= 0 MHz,  
(MCLK)  
(SMCLK)  
= 32,768 Hz, SCG0 = 1  
(ACLK)  
T
A
Basic Timer1 enabled , ACLK selected  
LCD_A enabled, LCDCPEN = 0:  
I
I
I
A  
A  
A  
(LPM3)  
(LPM3)  
(LPM4)  
T
A
(static mode , f  
= f  
/32)  
T
A
LCD  
(ACLK)  
(see Note 2 and Note 3)  
T
A
T
A
T
A
Low-power mode (LPM3)  
T
A
f
f
= f  
= 0 MHz,  
(SMCLK)  
2.2 V  
3 V  
(MCLK)  
(ACLK)  
= 32,768 Hz, SCG0 = 1  
T
A
Basic Timer1 enabled , ACLK selected  
LCD_A enabled, LCDCPEN = 0:  
T
A
(4-mux mode, f  
= f  
/32)  
T
A
LCD  
(ACLK)  
(see Note 2 and Note 3)  
T
A
T
A
T
A
2.2 V  
3 V  
T
A
Low-power mode (LPM4)  
T
A
f
f
= 0 MHz, f  
= 0 Hz, SCG0 = 1 (see Note 2)  
= 0 MHz,  
(SMCLK)  
(MCLK)  
(ACLK)  
T
A
T
A
T
A
T
A
NOTES: 1. Timer_A is clocked by f  
= 1 MHz. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
CC  
(DCOCLK)  
2. All inputs are tied to 0 V or to V . Outputs do not source or sink any current.  
CC  
3. The LPM3 currents are characterized with a Micro Crystal CC4V--T1A (9pF) crystal and OSCCAPx = 01h.  
Current consumption of active mode versus system frequency  
I
(AM) = I(AM) [1 MHz] f(System) [MHz]  
Current consumption of active mode versus supply voltage  
(AM) = I(AM) [3 V] + 200 A/V (VCC – 2.2 V)  
I
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
typical characteristics -- LPM4 current  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vcc = 3.6 V  
Vcc = 3.0 V  
Vcc = 2.2 V  
Vcc = 1.8 V  
--40.0 --20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0  
T
A
-- Temperature -- C  
Figure 2. ILPM4 -- LPM4 Current vs Temperature  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Schmitt-trigger inputs -- Ports P1, P2, P3, P4, P5, and P6, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.1  
1.5  
0.4  
0.9  
0.3  
0.5  
MAX  
1.55  
1.98  
0.9  
UNIT  
V
V
V
V
V
V
= 2.2 V  
= 3 V  
CC  
CC  
CC  
CC  
CC  
CC  
V
V
V
Positive-going input threshold voltage  
V
IT+  
IT--  
hys  
= 2.2 V  
= 3 V  
Negative-going input threshold voltage  
V
V
1.3  
= 2.2 V  
= 3 V  
1.1  
Input voltage hysteresis (V  
-- V  
)
IT--  
IT+  
1
inputs Px.y, TAx  
PARAMETER  
TEST CONDITIONS  
V
MIN  
62  
MAX  
UNIT  
CC  
2.2 V  
3 V  
Port P1, P2: P1.x to P2.x, external trigger signal  
for the interrupt flag (see Note 1)  
t
t
f
f
External interrupt timing  
Timer_A capture timing  
ns  
(int)  
50  
2.2 V  
3 V  
62  
TA0, TA1, TA2  
ns  
(cap)  
50  
2.2 V  
3 V  
8
10  
8
Timer_A clock frequency externally  
applied to pin  
TACLK, INCLK: t = t  
(L)  
MHz  
MHz  
(TAext)  
(H)  
2.2 V  
3 V  
Timer_A, clock frequency  
SMCLK or ACLK signal selected  
(TAint)  
10  
NOTES: 1. The external signal sets the interrupt flag every time the minimum t  
parameters are met. It may be set even with trigger signals  
(int)  
shorter than t  
.
(int)  
leakage current -- Ports P1, P2, P3, P4, P5, and P6 (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
Leakage current  
Port Px  
V
(see Note 2)  
V = 2.2 V/3 V  
CC  
50  
nA  
lkg(Px.y)  
(Px.y)  
NOTES: 1. The leakage current is measured with V or V applied to the corresponding pin(s), unless otherwise noted.  
SS  
CC  
2. The port pin must be selected as input.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs -- Ports P1, P2, P3, P4, P5, and P6  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
I
I
I
I
I
-- 1 . 5 m A ,  
-- 6 m A ,  
-- 1 . 5 m A ,  
-- 6 m A ,  
1.5 mA,  
6 mA,  
V
V
V
V
V
V
V
V
2.2 V,  
2.2 V,  
3 V,  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
See Note 1  
See Note 2  
V
--0.25  
V
V
V
V
OH(max) =  
OH(max) =  
OH(max) =  
OH(max) =  
OL(max) =  
OL(max) =  
OL(max) =  
OL(max) =  
CC =  
CC =  
CC =  
CC =  
CC =  
CC =  
CC =  
CC =  
CC  
CC  
CC  
CC  
CC  
V
-- 0 . 6  
CC  
V
V
High-level output voltage  
V
OH  
V
--0.25  
CC  
3 V,  
V
-- 0 . 6  
CC  
2.2 V,  
2.2 V,  
3 V,  
V
V
V
V
V
+0.25  
SS  
SS  
SS  
SS  
SS  
V
+0.6  
SS  
Low-level output voltage  
V
OL  
1.5 mA,  
6 mA,  
V
+0.25  
SS  
3 V,  
V
+0.6  
SS  
NOTES: 1. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed 12 mA to satisfy the maximum  
OH(max)  
OL(max),  
2. The maximum total current, I  
specified voltage drop.  
and I  
for all outputs combined, should not exceed 48 mA to satisfy the maximum  
OH(max)  
OL(max),  
output frequency  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
MHz  
C
= 20 pF,  
= 1.5 mA  
L
f
f
(x = 1, 2, 3, 4, 5, 6, 0 y 7)  
V
2.2 V / 3 V  
DC  
f
f
(Px.y)  
CC =  
System  
I
L
P1.1/TA0/MCLK  
C = 20 pF  
L
(MCLK)  
System  
f
f
= f  
= f  
40%  
60%  
(MCLK)  
(MCLK)  
(XT1)  
P1.1/TA0/MCLK,  
t
Duty cycle of output frequency  
C
V
= 20 pF,  
50%--  
15 ns  
50%+  
15 ns  
(Xdc)  
L
50%  
(DCOCLK)  
= 2.2 V / 3 V  
CC  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
outputs -- Ports P1, P2, P3, P4, P5, and P6 (continued)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
= --40C  
= 25C  
V
P1.0  
= 2.2 V  
V
P1.0  
= 3 V  
CC  
A
CC  
T
= --40C  
A
T
A
T
= 25C  
= 85C  
A
T
= 85C  
A
T
A
0
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
-- Low-Level Output Voltage -- V  
V
-- Low-Level Output Voltage -- V  
OL  
OL  
Figure 3  
Figure 4  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
0.0  
-- 5 . 0  
V
P1.0  
= 2.2 V  
V
P1.0  
= 3 V  
CC  
CC  
-- 5 . 0  
--10.0  
--15.0  
--20.0  
--25.0  
--30.0  
--35.0  
--40.0  
--45.0  
--50.0  
--55.0  
--10.0  
--15.0  
--20.0  
--25.0  
--30.0  
T
A
= 25C  
T
A
= 85C  
T
A
= 85C  
T = 25C  
A
T
A
= --40C  
T
A
= --40C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
-- High-Level Output Voltage -- V  
V
-- High-Level Output Voltage -- V  
OH  
OH  
Figure 5  
Figure 6  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
wake-up LPM3  
PARAMETER  
TEST CONDITIONS  
f = 1 MHz  
MIN  
MAX  
UNIT  
6
6
6
f = 2 MHz  
f = 3 MHz  
t
Delay time  
V
2.2 V/3 V  
CC =  
s  
d(LPM3)  
POR/brownout reset (BOR) (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.7 V  
MAX  
UNIT  
s  
t
2000  
d(BOR)  
V
dV /dt 3 V/s (see Figure 7)  
V
CC(start)  
CC  
(B_IT--)  
Brownout  
V
V
dV /dt 3 V/s (see Figure 7 through Figure 9)  
1.71  
V
(B_IT--)  
CC  
(see Note 2)  
dV /dt 3 V/s (see Figure 7)  
CC  
mV  
hys(B_IT--)  
Pulse length needed at RST/NMI pin to accepted reset internally,  
= 2.2 V/3 V  
t
2
s  
(reset)  
V
CC  
NOTES: 1. The current consumption of the brownout module is already included in the I current consumption data. The voltage level V  
CC  
(B_IT--)  
+ V  
is 1.8V.  
hys(B_IT--)  
2. During power up, the CPU begins code execution following a period of t  
after V = V  
+ V  
. The default  
hys(B_IT--)  
d(BOR)  
CC  
(B_IT--)  
FLL+ settings must not be changed until V V  
, where V  
is the minimum supply voltage for the desired  
CC  
CC(min)  
CC(min)  
operating frequency. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout.  
typical characteristics  
V
CC  
V
hys(B_IT--)  
V
(B_IT--)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 7. POR/Brownout Reset (BOR) vs Supply Voltage  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
typical characteristics (continued)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
CC  
Typical Conditions  
1.5  
1
V
CC(min)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
-- Pulse Width -- s  
t
pw  
-- Pulse Width -- s  
t
pw  
Figure 8. V(CC)min Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(min)  
0.5  
t
f =  
t
r
0
0.001  
1
1000  
t
f
t
r
t
pw  
-- Pulse Width -- s  
t
pw  
-- Pulse Width -- s  
Figure 9. VCC(min) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
SVS (supply voltage supervisor/monitor)  
PARAMETER  
TEST CONDITIONS  
dV /dt > 30 V/ms (see Figure 10)  
MIN  
TYP  
MAX  
150  
2000  
300  
12  
UNIT  
s  
5
CC  
t
(SVSR)  
dV /dt 30 V/ms  
CC  
s  
t
t
SVSON, switch from VLD = 0 to VLD 0, V = 3 V  
150  
s  
d(SVSon)  
settle  
CC  
VLD 0  
s  
V
VLD 0, V /dt 3 V/s (see Figure 10)  
1.55  
120  
1.7  
V
(SVSstart)  
CC  
VLD = 1  
70  
210  
mV  
V
V
/dt 3 V/s (see Figure 10)  
V
V
(SVS_IT--)  
x 0.016  
CC  
(SVS_IT--)  
x 0.001  
VLD = 2 .. 14  
V
hys(SVS_IT-- )  
/dt 3 V/s (see Figure 10), External voltage applied  
CC  
VLD = 15  
4.4  
20  
mV  
on A7  
VLD = 1  
VLD = 2  
VLD = 3  
VLD = 4  
VLD = 5  
VLD = 6  
VLD = 7  
VLD = 8  
VLD = 9  
VLD = 10  
VLD = 11  
VLD = 12  
VLD = 13  
VLD = 14  
1.8  
1.9  
2.1  
2.05  
2.25  
2.37  
2.48  
2.6  
1.94  
2.05  
2.14  
2.24  
2.33  
2.46  
2.58  
2.69  
2.83  
2.94  
3.11  
3.24  
3.43  
2.2  
2.3  
2.4  
2.5  
2.71  
2.86  
3
2.65  
2.8  
V
/dt 3 V/s (see Figure 10 and Figure 11)  
CC  
V
V
(SVS_IT--)  
2.9  
3.13  
3.29  
3.42  
3.05  
3.2  
3.35  
3.5  
3.61  
3.76  
3.7  
3.99  
V
/dt 3 V/s (see Figure 10 and Figure 11), External  
CC  
VLD = 15  
1.1  
1.2  
10  
1.3  
15  
voltage applied on A7  
I
CC(SVS)  
VLD 0, V = 2.2 V/3 V  
A  
CC  
(see Note 1)  
The recommended operating voltage range is limited to 3.6 V.  
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value somewhere  
t
settle  
between 2 and 15. The overdrive is assumed to be > 50 mV.  
NOTE 1: The current consumption of the SVS module is not included in the I current consumption data.  
CC  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
typical characteristics  
Software sets VLD >0:  
SVS is active  
AV  
CC  
V
(SVS_IT--)  
hys(SVS_IT--)  
V
V
(SVSstart)  
V
hys(B_IT--)  
V
(B_IT--)  
V
CC(start)  
Brown-  
out  
Brownout  
Region  
Region  
Brownout  
1
0
t
t
SVS out  
1
d(BOR)  
d(BOR)  
SVS Circuit is Active From VLD > to V < V(  
CC  
B_IT--)  
0
t
t
d(SVSon)  
d(SVSR)  
Set POR  
1
undefined  
0
Figure 10. SVS Reset (SVSR) vs Supply Voltage  
V
CC  
t
pw  
3 V  
2
Rectangular Drop  
V
CC(min)  
1.5  
1
Triangular Drop  
1 ns  
1 ns  
V
t
CC  
pw  
0.5  
0
3 V  
1
10  
100  
1000  
t
pw  
-- Pulse Width -- s  
V
CC(min)  
t
f =  
t
r
t
f
t
r
t -- Pulse Width -- s  
Figure 11. VCC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1)  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
DCO  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX  
UNIT  
CC  
N
= 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2,  
(DCO)  
f
2.2 V/3 V  
1
MHz  
(DCOCLK)  
(DCO2)  
DCOPLUS = 0  
2.2 V  
3 V  
0.3  
0.3  
2.5  
2.7  
0.7  
0.8  
5.7  
6.5  
1.2  
1.3  
9
0.65  
0.7  
5.6  
6.1  
1.3  
1.5  
10.8  
12.1  
2
1.25  
1.3  
10.5  
11.3  
2.3  
2.5  
18  
f
f
f
f
f
f
f
f
f
f
FN_8 = FN_4 = FN_3 = FN_2 = 0 , DCOPLUS = 1  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
2.2 V  
3 V  
FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1 (see Note 1)  
FN_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1  
(DCO27)  
(DCO2)  
2.2 V  
3 V  
2.2 V  
3 V  
FN_8 = FN_4 = FN_3 = 0, FN_2 = 1, DCOPLUS = 1 (see Note 1)  
FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1  
FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1 (see Note 1)  
FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1  
FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1 (see Note 1)  
FN_8 = 1, FN_4 = FN_3 = FN_2 = x, DCOPLUS = 1  
(DCO27)  
(DCO2)  
20  
2.2 V  
3 V  
3
2.2  
15.5  
17.9  
2.8  
3.4  
21.5  
26.6  
4.2  
6.3  
32  
3.5  
25  
2.2 V  
3 V  
(DCO27)  
(DCO2)  
10.3  
1.8  
2.1  
13.5  
16  
28.5  
4.2  
5.2  
33  
2.2 V  
3 V  
2.2 V  
3 V  
(DCO27)  
(DCO2)  
41  
2.2 V  
3 V  
2.8  
4.2  
21  
6.2  
9.2  
46  
2.2 V  
3 V  
FN_8 = 1,FN_4 = FN_3 = FN_2 = x, DCOPLUS = 1 (see Note 1)  
Step size between adjacent DCO taps:  
(DCO27)  
30  
46  
70  
1 < TAP 20  
TAP = 27  
2.2 V  
3 V  
1.06  
1.07  
–0.2  
–0.2  
1.11  
1.17  
–0.4  
–0.4  
S
n
S
= f  
/ f (see Figure 13 for taps 21 to 27)  
DCO(Tap n+1) DCO(Tap n)  
n
–0.3  
–0.3  
Temperature drift, N  
D = 2, DCOPLUS = 0 (see Note 2)  
= 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0  
(DCO)  
D
D
%_C  
t
Drift with V variation, N = 01E0h, FN_8 = FN_4 = FN_3 =  
FN_2 = 0, D = 2, DCOPLUS = 0 (see Note 2)  
CC  
(DCO)  
0
5
15  
%/V  
V
NOTES: 1. Do not exceed the maximum system frequency.  
2. This parameter is not production tested.  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
f
f
(DCO)  
(DCO)  
f
f
(DCO20 C)  
(DCO3V)  
1.0  
1.0  
0
1.8  
2.4  
3.0  
3.6  
-- 4 0  
-- 2 0  
0
20  
40  
60  
85  
V
-- V  
T -- C  
A
CC  
Figure 12. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
1.17  
Max  
1.11  
1.07  
1.06  
Min  
1
20  
27  
DCO Tap  
Figure 13. DCO Tap Step Size  
Legend  
Tolerance at Tap 27  
DCO Frequency  
Adjusted by Bits  
9
5
2
to 2 in SCFI1 {N  
}
{DCO}  
Tolerance at Tap 2  
Overlapping DCO Ranges:  
Uninterrupted Frequency Range  
FN_2=0  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=1  
FN_3=0  
FN_4=0  
FN_8=0  
FN_2=x  
FN_2=x  
FN_3=x  
FN_4=1  
FN_8=0  
FN_2=x  
FN_3=1  
FN_4=0  
FN_8=0  
FN_3=x  
FN_4=x  
FN_8=1  
Figure 14. Five Overlapping DCO Ranges Controlled by FN_x Bits  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
crystal oscillator, LFXT1, low frequency modes (see Note 4)  
PARAMETER  
TEST CONDITIONS  
XTS = 0, LFXT1Sx = 0 or 1  
XTS = 0, LFXT1Sx = 0,  
V
MIN  
TYP  
MAX UNIT  
CC  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
f
1.8 V to 3.6 V  
32,768  
Hz  
LFXT1,LF  
f
C
= 32,768 kHz,  
= 6 pF  
500  
200  
LFXT1,LF  
L,eff  
Oscillation allowance for  
LF crystals  
OA  
kΩ  
LF  
XTS = 0, LFXT1Sx = 0,  
= 32,768 kHz,  
f
LFXT1,LF  
C
L,eff  
= 12 pF  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
8.5  
11  
Integrated effective load  
capacitance, LF mode  
(see Note 1)  
C
L,eff  
pF  
XTS = 0,  
Duty cycle, LF mode  
Measured at P1.5/ACLK,  
2.2 V/3 V  
2.2 V/3 V  
30  
10  
50  
70  
%
f
= 32,768Hz  
LFXT1,LF  
Oscillator fault frequency,  
LF mode (see Note 3)  
XTS = 0, XCAPx = 0.  
LFXT1Sx = 3 (see Note 2)  
f
10,000  
Hz  
Fault,LF  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Measured with logic level input frequency but also applies to operation with crystals.  
3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and  
frequencies in between might set the flag.  
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.  
-- Keep the trace between the device and the crystal as short as possible.  
-- Design a good ground plane around the oscillator pins.  
-- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
-- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
-- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
-- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
-- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other  
documentation. This signal is no longer required for the serial programming adapter.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
crystal oscillator, LFXT1, high frequency modes  
PARAMETER  
TEST CONDITIONS  
Ceramic resonator  
V
MIN  
0.45  
1
TYP  
MAX UNIT  
CC  
f
f
LFXT1 oscillator crystal frequency  
LFXT1 oscillator crystal frequency  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
8
8
MHz  
MHz  
LFXT1  
LFXT1  
Crystal resonator  
Integrated effective load  
capacitance, HF mode  
(see Note 1)  
C
(see Note 2)  
1
pF  
%
L,eff  
Duty cycle  
Measured at P1.5/ACLK,  
2.2 V/3 V  
40  
50  
60  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
crystal oscillator, XT2, high frequency modes  
PARAMETER  
TEST CONDITIONS  
Ceramic resonator  
V
MIN  
0.45  
1
TYP  
MAX UNIT  
CC  
f
f
XT2 oscillator crystal frequency  
XT2 oscillator crystal frequency  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
8
8
MHz  
MHz  
XT2  
XT2  
Crystal resonator  
Integrated effective load  
capacitance, HF mode  
(see Note 1)  
C
(see Note 2)  
1
pF  
%
L,eff  
Duty cycle  
Measured at P1.4/SMCLK,  
2.2 V/3 V  
40  
50  
60  
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup the effective load capacitance should always match the specification of the used crystal.  
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
RAM  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
VRAMh  
CPU halted (see Note 1)  
1.6  
V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution  
should take place during this supply voltage condition.  
LCD_A  
PARAMETER  
TEST CONDITIONS  
V
MIN  
2.2  
4.7  
TYP  
MAX UNIT  
CC  
Charge pump enabled  
(LCDCPEN = 1, VLCDx > 0000)  
V
Supply Voltage Range  
3.6  
V
CC(LCD)  
Charge pump enabled  
(LCDCPEN = 1, VLCDx > 0000)  
C
LCD  
Capacitor on LCDCAP (see Note 1)  
Average Supply Current (see Note 2)  
F  
V
= 3 V, LCDCPEN = 1,  
LCD(typ)  
VLCDx = 1000, All segments on,  
I
f
2.2 V  
3.8  
A  
CC(LCD)  
LCD  
f
=
f
/32, No LCD connected  
A
LCD  
ACLK  
(see Note 3), T = 25C  
LCD frequency  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
LCD voltage  
1.1 kHz  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VLCDx = 0000  
VLCDx = 0001  
VLCDx = 0010  
VLCDx = 0011  
VLCDx = 0100  
VLCDx = 0101  
VLCDx = 0110  
VLCDx = 0111  
VLCDx = 1000  
VLCDx = 1001  
VLCDx = 1010  
VLCDx = 1011  
VLCDx = 1100  
VLCDx = 1101  
VLCDx = 1110  
VLCDx = 1111  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
CC  
2.60  
2.66  
2.72  
2.78  
2.84  
2.90  
2.96  
3.02  
3.08  
3.14  
3.20  
3.26  
3.32  
3.38  
3.44  
3.60  
10  
V
V
3 V, LCDCPEN = 1,  
LCD =  
R
LCD Driver Output impedance  
2.2 V  
k  
LCD  
VLCDx = 1000, I  
10 A  
LOAD =  
NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device.  
2. Refer to the supply current specifications I for additional current specifications with the LCD_A module active.  
(LPM3)  
3. Connecting an actual display will increase the current consumption depending on the size of the LCD.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
Comparator_A (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
25  
MAX  
40  
UNIT  
V
V
= 2.2 V  
= 3 V  
CC  
CC  
I
I
CAON = 1, CARSEL = 0, CAREF = 0  
A  
(CC)  
45  
30  
60  
50  
CAON = 1, CARSEL = 0, CAREF =  
1/2/3,  
No load at P1.6/CA0 and P1.7/CA1  
V
V
= 2.2 V  
= 3 V  
CC  
CC  
A  
(Refladder/RefDiode)  
45  
80  
Voltage @ 0.25 V  
node  
node  
PCA0 = 1, CARSEL = 1, CAREF = 1,  
No load at P1.6/CA0 and P1.7/CA1  
CC  
V
V
V
V
= 2.2 V / 3 V  
= 2.2V / 3 V  
0.23  
0.47  
0.24  
0.25  
(Ref025)  
(Ref050)  
CC  
CC  
V
CC  
Voltage @ 0.5 V  
PCA0 = 1, CARSEL = 1, CAREF = 2,  
No load at P1.6/CA0 and P1.7/CA1  
CC  
0.48  
0.5  
V
CC  
PCA0 = 1, CARSEL = 1, CAREF = 3,  
No load at P1.6/CA0 and P1.7/CA1,  
V
V
= 2.2 V  
= 3 V  
390  
400  
480  
490  
540  
550  
CC  
CC  
See Figure 15 and  
Figure 16  
V
V
mV  
V
(RefVT)  
IC  
T
A =  
85C  
Common-mode input  
voltage range  
CAON = 1  
V
= 2.2 V / 3 V  
0
V
-- 1  
30  
CC  
CC  
V -- V  
Offset voltage  
See Note 2  
CAON = 1  
VCC = 2.2 V / 3 V  
-- 3 0  
0
mV  
mV  
p
S
V
Input hysteresis  
V
= 2.2 V / 3 V  
= 2.2 V  
= 3 V  
0.7  
165  
120  
1.9  
1.4  
300  
240  
2.8  
hys  
CC  
CC  
CC  
CC  
CC  
V
80  
70  
1.4  
0.9  
T
A
= 25C,  
ns  
Overdrive 10 mV, without filter: CAF = 0  
V
t
, see Note 3  
(response LH and HL)  
V
V
= 2.2 V  
= 3 V  
T
A
= 25C  
s  
Overdrive 10 mV, with filter: CAF = 1  
1.5  
2.2  
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I  
specification.  
lkg(Px.x)  
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.  
The two successive measurements are then summed together.  
3. The response time is measured at P1.6/CA0 with an input voltage step and the Comparator_A already enabled (CAON = 1). If CAON  
is set at the same time, a settling time of up to 300ns is added to the response time.  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
typical characteristics  
REFERENCE VOLTAGE  
vs  
REFERENCE VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
650  
600  
550  
500  
450  
400  
650  
600  
550  
500  
450  
400  
V
= 3 V  
CC  
V
= 2.2 V  
CC  
Typical  
Typical  
-- 4 5  
-- 2 5  
-- 5  
1 5  
3 5  
5 5  
7 5  
9 5  
-- 4 5  
-- 2 5  
-- 5  
1 5  
3 5  
5 5  
7 5  
9 5  
T
A
-- Free-Air Temperature -- C  
T
A
-- Free-Air Temperature -- C  
Figure 15. V(RefVT) vs Temperature  
Figure 16. V(RefVT) vs Temperature  
0 V  
V
CC  
CAF  
0
1
CAON  
To Internal  
Modules  
Low-Pass Filter  
0
1
0
1
+
_
V+  
V--  
CAOUT  
Set CAIFG  
Flag  
  2 s  
Figure 17. Block Diagram of Comparator_A Module  
V
CAOUT  
Overdrive  
V--  
400 mV  
V+  
t
(response)  
Figure 18. Overdrive Definition  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SD16_A, power supply and recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
V
MIN  
2.5  
TYP  
MAX  
3.6  
UNIT  
CC  
Analog supply  
voltage  
AV = DV  
CC  
SS  
CC  
SS  
AV  
V
CC  
AV = DV = 0V  
SD16BUFx = 00, GAIN: 1,2  
SD16BUFx = 00, GAIN: 4,8,16  
SD16BUFx = 00, GAIN: 32  
3 V  
3 V  
3 V  
750  
1050  
1150  
1700  
SD16LP = 0,  
= 1 MHz,  
SD16OSR = 256  
830  
f
SD16  
1150  
Analog supply  
current including  
internal reference  
SD16LP = 1,  
SD16BUFx = 00, GAIN: 1  
SD16BUFx = 00, GAIN: 32  
3 V  
3 V  
730  
830  
1030  
1150  
f
= 0.5 MHz,  
SD16  
ISD16  
A  
SD16OSR = 256  
SD16BUFx = 01, GAIN: 1  
SD16BUFx = 10, GAIN: 1  
SD16BUFx = 11, GAIN: 1  
3 V  
3 V  
3 V  
850  
1000  
1130  
SD16LP = 0,  
SD16OSR = 256  
Analog front-end  
input clock  
frequency  
SD16LP = 0 (Low power mode disabled)  
SD16LP = 1 (Low power mode enabled)  
3 V  
3 V  
0.03  
0.03  
1
1.1  
f
MHz  
SD16  
0.5  
SD16_A, input range  
PARAMETER  
TEST CONDITIONS  
SD16BUFx = 00  
V
MIN  
AV -0.1V  
TYP  
MAX  
UNIT  
CC  
AV  
CC  
SS  
Absolute input  
V
V
V
I
voltage range  
SD16BUFx > 00  
AV +0.2V  
SS  
AV -- 1 . 2 V  
CC  
SD16BUFx = 00  
AV -0.1V  
SS  
AV  
CC  
Common-mode  
input voltage range  
V
IC  
SD16BUFx > 00  
AV +0.2V  
SS  
AV -- 1 . 2 V  
CC  
Differential full  
scale input voltage  
range  
Bipolar mode, SD16UNI = 0  
Unipolar mode, SD16UNI = 1  
-- V  
/2GAIN  
0
+V  
+V  
/2GAIN  
/2GAIN  
mV  
mV  
REF  
REF  
REF  
V
ID,FSR  
SD16GAINx = 1  
SD16GAINx = 2  
SD16GAINx = 4  
500  
250  
125  
62  
31  
15  
200  
75  
Differential input  
voltage range for  
specified  
performance  
(see Note 1)  
V
SD16REFON = 1  
SD16GAINx = 8  
mV  
ID  
SD16GAINx = 16  
SD16GAINx = 32  
SD16GAINx = 1  
SD16GAINx = 32  
3 V  
3 V  
f
= 1 MHz,  
SD16  
k  
Input impedance  
(one input pin to  
SD16BUFx = 00  
= 1 MHz,  
Z
I
f
SD16  
AV  
)
SS  
SD16GAINx = 1  
3 V  
10  
M  
SD16BUFx = 01  
SD16GAINx = 1  
SD16GAINx = 32  
3 V  
3 V  
300  
100  
400  
150  
f
= 1 MHz,  
SD16  
k  
Differential input  
impedance (IN+ to  
IN--)  
SD16BUFx = 00  
= 1 MHz,  
Z
ID  
f
SD16  
SD16GAINx = 1  
3 V  
10  
M  
SD16BUFx > 00  
NOTES: 1. The analog input range depends on the reference voltage applied to V  
. If V  
REF  
is sourced externally, the full-scale range is defined  
REF  
by V  
= +(V  
/2)/GAIN and V  
= --(V  
/2)/GAIN. The analog input range should not exceed 80% of V  
or V  
.
FSR+  
REF  
FSR--  
REF  
FSR+  
FSR--  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SD16_A, performance (fSD16 = 30kHz, SD16REFON = 1, SD16BUFx = 01)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
84  
MAX  
UNIT  
CC  
SD16GAINx = 1,Signal Amplitude = 500mV  
SD16OSRx = 256  
3 V  
3 V  
SD16GAINx = 1,Signal Amplitude = 500mV  
SD16OSRx = 512  
Signal-to-noise +  
distortion ratio  
84  
SINAD  
f
= 2.8Hz  
dB  
IN  
SD16GAINx = 1,Signal Amplitude = 500mV  
SD16OSRx = 1024  
3 V  
3 V  
3 V  
84  
1.00  
15  
Nominal gain  
SD16GAINx = 1, SD16OSRx = 1024  
0.97  
1.02  
Gain temperature  
drift  
dG/dT  
SD16GAINx = 1, SD16OSRx = 1024 (see Note 1)  
ppm/_C  
Gain supply voltage SD16GAINx = 1, SD16OSRx = 1024, V = 2.5 V to 3.6 V  
CC  
dG/dV  
0.35  
%/V  
CC  
drift  
(see Note 2)  
NOTES: 1. Calculated using the box method: (MAX(--40...85_C) -- MIN(--40...85_C))/MIN(--40...85_C)/(85C -- (--40_C))  
2. Calculated using the box method: (MAX(2.5...3.6V) -- MIN(2.5...3.6V))/MIN(2.5...3.6V)/(3.6V -- 2.5 V)  
SD16_A, performance (fSD16 = 1MHz, SD16OSRx = 256, SD16REFON = 1, SD16BUFx = 00)  
PARAMETER  
TEST CONDITIONS  
SD16GAINx = 1,Signal Amplitude = 500mV  
SD16GAINx = 2,Signal Amplitude = 250mV  
SD16GAINx = 4,Signal Amplitude = 125mV  
SD16GAINx = 8,Signal Amplitude = 62mV  
SD16GAINx = 16,Signal Amplitude = 31mV  
SD16GAINx = 32,Signal Amplitude = 15mV  
SD16GAINx = 1  
V
MIN  
83.5  
81.5  
76  
TYP  
85  
MAX  
UNIT  
CC  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
84  
79.5  
76.5  
73  
Signal-to-noise +  
distortion ratio  
f
= 50Hz,  
IN  
SINAD  
dB  
100Hz  
73  
69  
62  
69  
0.97  
1.90  
3.76  
7.36  
1.00  
1.96  
3.86  
7.62  
1.02  
2.02  
3.96  
7.84  
SD16GAINx = 2  
SD16GAINx = 4  
G
Nominal gain  
Offset error  
SD16GAINx = 8  
SD16GAINx = 16  
14.56 15.04 15.52  
SD16GAINx = 32  
27.20 28.35 29.76  
SD16GAINx = 1  
0.2  
1.5  
E
%FSR  
OS  
SD16GAINx = 32  
Offset error  
temperature  
coefficient  
SD16GAINx = 1  
3 V  
3 V  
4  
20  
ppm  
FSR/_C  
dE /dT  
OS  
SD16GAINx = 32  
20  
100  
SD16GAINx = 1, Common-mode input signal:  
3 V  
3 V  
3 V  
90  
75  
80  
V
= 500 mV, f = 50 Hz, 100 Hz  
ID  
IN  
Common-mode  
rejection ratio  
CMRR  
PSRR  
dB  
dB  
SD16GAINx = 32, Common-mode input signal:  
= 16 mV, f = 50 Hz, 100 Hz  
V
ID  
IN  
Power supply  
rejection ratio  
SD16GAINx = 1  
NOTES: 1. Calculated using the box method: (MAX(--40...85_C) -- MIN(--40...85_C)) / MIN(--40...85_C) / (85_C -- (--40_C))  
2. Calculated using the ADC output code and the box method:  
(MAX-code(2.5...3.6V) -- MIN-code(2.5...3.6V)) / MIN-code(2.5...3.6V) / (3.6V -- 2.5 V)  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SD16_A, linearity (fSD16 = 1MHz, SD16REFON = 1, SD16BUFx = 00)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
1.5  
MAX  
UNIT  
CC  
SD16OSR = 256, SD16GAINx = 000b,  
Signal Amplitude = 500 mV  
3 V  
3 V  
3 V  
3 V  
LSB  
SD16OSR = 256, SD16GAINx = 101b,  
Signal Amplitude = 15 mV  
6
0.8  
3.5  
INL  
Integral non-linearity  
SD16OSR = 1024, SD16GAINx = 000b,  
Signal Amplitude = 500 mV  
LSB  
SD16OSR = 1024, SD16GAINx = 101b,  
Signal Amplitude = 15 mV  
typical characteristics -- SD16_A SINAD performance over OSR  
100.0  
95.0  
90.0  
85.0  
80.0  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
10.00  
100.00  
OSR  
1000.00  
Figure 19. SINAD performance over OSR, fSD16 = 1MHz, SD16REFON = 1, SD16GAINx = 1  
SD16_A, temperature sensor and built-in VCC sense  
PARAMETER  
Sensor temperature  
TEST CONDITIONS  
V
MIN  
TYP  
MAX  
UNIT  
CC  
TC  
See Note 1  
See Note 1  
1.18  
1.32  
1.46 mV/K  
Sensor  
coefficient  
V
Sensor offset voltage  
--100  
435  
355  
320  
0.08  
100  
515  
435  
400  
0.1  
mV  
Offset,sensor  
Temperature sensor voltage at T = 85C  
3 V  
3 V  
3 V  
475  
395  
360  
1/11  
A
Sensor output voltage  
(see Note 3)  
Temperature sensor voltage at T = 25C  
V
V
mV  
V
A
Sensor  
Temperature sensor voltage at T = 0C (see Note 1)  
A
V
divider at input 5  
f
= 32kHz, SD16OSRx = 256, SD16REFON = 1  
SD16  
CC,Sense  
CC  
NOTES: 1. Not production tested, limits characterized.  
2. The following formula can be used to calculate the temperature sensor output voltage:  
V
= TC  
( 273 + T [C] ) + V  
[mV]  
Sensor,typ  
Sensor  
Offset,sensor  
3. Results based on characterization and/or production test, not TC  
or V  
.
Offset,sensor  
Sensor  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
SD16_A, built-in voltage reference  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX  
UNIT  
CC  
Internal reference  
voltage  
V
SD16REFON = 1, SD16VMIDON = 0  
3 V  
1.14  
1.20  
1.26  
V
REF  
Reference supply  
current  
I
SD16REFON = 1, SD16VMIDON = 0  
3 V  
3 V  
175  
260  
A  
REF  
TC  
Temperature coefficient  
SD16REFON = 1, SD16VMIDON = 0 (see Note 1)  
SD16REFON = 1, SD16VMIDON = 0 (see Note 2)  
18  
50 ppm/K  
nF  
C
V
load capacitance  
100  
REF  
REF  
V
maximum load  
REF(I)  
I
t
SD16REFON = 1, SD16VMIDON = 0  
3 V  
200  
nA  
LOAD  
current  
SD16REFON = 0-->1, SD16VMIDON = 0,  
Turn on time  
3 V  
3 V  
5
ms  
ON  
C
REF  
= 100nF  
PSRR  
Line regulation  
SD16REFON = 1, SD16VMIDON = 0  
100  
uV/V  
NOTES: 1. Calculated using the box method: (MAX(--40...85_C) -- MIN(--40...85_C))/MIN(--40...85_C)/(85C -- (--40_C))  
2. There is no capacitance required on V  
voltage noise.  
. However, a capacitance of at least 100nF is recommended to reduce any reference  
REF  
SD16_A, reference output buffer  
PARAMETER  
TEST CONDITIONS  
SD16REFON = 1, SD16VMIDON = 1  
V
MIN  
TYP  
1.2  
MAX  
UNIT  
CC  
Reference buffer output  
voltage  
V
3 V  
3 V  
V
REF,BUF  
Reference Supply +  
I
Reference output buffer SD16REFON = 1, SD16VMIDON = 1  
quiescent current  
385  
600  
A  
REF,BUF  
Required load  
capacitance on V  
C
SD16REFON = 1, SD16VMIDON = 1  
470  
nF  
mA  
mV  
s  
REF(O)  
REF  
Maximum load current  
on V  
I
SD16REFON = 1, SD16VMIDON = 1  
|I | = 0 to 1mA  
3 V  
3 V  
3 V  
1  
LOAD,Max  
REF  
Maximum voltage  
variation vs load current  
-- 1 5  
+15  
LOAD  
SD16REFON = 0-->1, SD16VMIDON = 1,  
= 470nF  
t
Turn on time  
100  
ON  
C
REF  
SD16_A, external reference input  
PARAMETER  
TEST CONDITIONS  
V
MIN  
1.0  
TYP  
MAX  
1.5  
UNIT  
V
CC  
V
Input voltage range  
Input current  
SD16REFON = 0  
SD16REFON = 0  
3 V  
3 V  
1.25  
REF(I)  
I
50  
nA  
REF(I)  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC, supply specifications  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX  
UNIT  
CC  
AV  
DV  
,
CC  
CC =  
AV  
Analog supply voltage  
2.20  
3.60  
V
CC  
AV = DV  
= 0 V  
SS  
SS  
DAC12AMPx = 2, DAC12IR = 0,  
DAC12_xDAT = 0800h  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.7 V  
50  
50  
110  
110  
DAC12AMPx = 2, DAC12IR = 1,  
DAC12_xDAT = 0800h, V  
AV  
AV  
AV  
Supply current  
REF,DAC12 =  
CC  
CC  
CC  
I
A  
DD  
(see Notes 1 and 2)  
DAC12AMPx = 5, DAC12IR = 1,  
DAC12_xDAT = 0800h, V  
200  
700  
70  
440  
REF,DAC12 =  
DAC12AMPx = 7, DAC12IR = 1,  
DAC12_xDAT = 0800h, V  
1500  
REF,DAC12 =  
Power supply rejection  
ratio (see Notes 3 and 4)  
DAC12_xDAT = 800h, V  
= 1.2 V,  
REF,DAC12  
PSRR  
dB  
AV = 100 mV  
CC  
NOTES: 1. No load at the output pin assuming that the control bits for the shared pins are set properly.  
2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input  
specifications.  
3. PSRR = 20*logAV /V  
}.  
CC  
DAC12_xOUT  
4.  
V
is applied externally. The internal reference is not used.  
REF  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC, linearity specifications (see Figure 20)  
PARAMETER  
Integral nonlinearity  
TEST CONDITIONS  
= 1.2 V or V = 2.5 V  
V
MIN  
TYP  
MAX  
UNIT  
CC  
V
REF,DAC12  
REF,ext  
INL  
2.7 V  
2.7 V  
2.7 V  
2.7 V  
2.0  
8.0  
LSB  
(see Note 1)  
DAC12AMPx = 7, DAC12IR = 1  
= 1.2 V  
V
REF,ext  
-- 1  
0.4  
0.4  
0.4  
+1.3  
1.0  
1.0  
LSB  
LSB  
LSB  
DAC12AMPx = 7, DAC12IR = 1  
= 2.5 V  
Differential nonlinearity  
(see Note 1)  
DNL  
DNL  
V
REF,ext  
DAC12AMPx = 7, DAC12IR = 1  
= 1.2 V  
Differential nonlinearity  
(see Note 1)  
V
REF,DAC12  
DAC12AMPx = 7, DAC12IR = 1  
Offset voltage without  
calibration  
V
= 1.2 V  
REF,DAC12  
2.7 V  
2.7 V  
20  
DAC12AMPx = 7, DAC12IR = 1  
(see Notes 1, 2)  
E
mV  
O
Offset voltage with  
calibration  
V
= 1.2 V  
REF,DAC12  
2.5  
DAC12AMPx = 7, DAC12IR = 1  
(see Notes 1, 2)  
Offset error temperature  
coefficient (see Note 1)  
d
/d  
/d  
2.7 V  
2.7 V  
2.7 V  
30  
V/C  
E(O)  
T
T
E
Gain error (see Note 1)  
V
= 1.2 V  
REF,DAC12  
3.50 % FSR  
G
Gain temperature  
ppm of  
FSR/C  
d
10  
E(G)  
coefficient (see Note 1)  
DAC12AMPx = 2  
2.7 V  
2.7 V  
2.7 V  
100  
Time for offset calibration  
(see Note 3)  
DAC12AMPx = 3,5  
DAC12AMPx = 4,6,7  
32  
6
t
ms  
Offset_Cal  
NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and  
“b” of the first order equation: y = a + b*x. V = E + (1 + E ) * (V /4095) * DAC12_xDAT, DAC12IR = 1.  
DAC12_xOUT  
O
G
REF,DAC12  
2. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON  
3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifieris switched off with DAC12AMPx  
= {0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may  
effect accuracy and is not recommended.  
DAC V  
OUT  
DAC Output  
V
R+  
R
=
Load  
Ideal transfer  
function  
AV  
CC  
2
Offset Error  
Positive  
Gain Error  
DAC Code  
C
= 100pF  
Load  
Negative  
Figure 20. Linearity Test Load Conditions and Gain/Offset Definition  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC, linearity specifications (continued)  
TYPICAL INL ERROR  
vs  
DIGITAL INPUT DATA  
4
V
= 2.2 V, V  
= 1.2 V  
REF  
CC  
DAC12AMPx = 7  
DAC12IR = 1  
3
2
1
0
-- 1  
-- 2  
-- 3  
-- 4  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4095  
DAC12_xDAT -- Digital Code  
TYPICAL DNL ERROR  
vs  
DIGITAL INPUT DATA  
2.0  
1.5  
V
= 2.2 V, V  
= 1.2 V  
REF  
CC  
DAC12AMPx = 7  
DAC12IR = 1  
1.0  
0.5  
0.0  
-- 0 . 5  
-- 1 . 0  
-- 1 . 5  
-- 2 . 0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4095  
DAC12_xDAT -- Digital Code  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
12-bit DAC, output specifications  
PARAMETER  
TEST CONDITIONS  
No Load, V = AV  
V
MIN  
TYP  
MAX  
UNIT  
CC  
,
CC  
REF,DAC12  
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
0
0.005  
No Load, V  
= AV  
,
CC  
REF,DAC12  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
AV --0.05  
AV  
CC  
CC  
Output voltage  
range (see Note 1,  
Figure 23)  
V
V
O
R
Load  
= 3 k, V  
= AV  
,
CC  
REF,DAC12  
DAC12_xDAT = 0h, DAC12IR = 1,  
DAC12AMPx = 7  
0
0.1  
R
Load  
= 3 k, V  
= AV  
,
CC  
REF,DAC12  
DAC12_xDAT = 0FFFh, DAC12IR = 1,  
DAC12AMPx = 7  
2.2 V/3 V  
2.2 V/3 V  
AV --0.13  
AV  
CC  
CC  
Max DAC12 load  
capacitance  
C
100  
pF  
L(DAC12)  
2.2V  
3V  
-- 0 . 5  
-- 1 . 0  
+0.5  
+1.0  
Max DAC12 load  
current  
I
mA  
L(DAC12)  
R
= 3 k, V  
0.3 V,  
O/P(DAC12)  
Load  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
150  
150  
1
250  
250  
4
DAC12AMPx = 2, DAC12_xDAT = 0h  
= 3 k, V AV -- 0 . 3 V  
R
Load  
Output resistance  
(see Figure 23)  
O/P(DAC12)  
CC  
R
O/P(DAC12)  
DAC12_xDAT = 0FFFh  
= 3 k,  
R
Load  
0.3V V  
AV -- 0.3V  
CC  
O/P(DAC12)  
NOTES: 1. Data is valid after the offset calibration of the output amplifier.  
R
O/P(DAC12_x)  
Max  
R
Load  
I
Load  
AV  
CC  
DAC12  
2
C
= 100pF  
O/P(DAC12_x)  
Min  
Load  
0.3  
AV  
--0.3V  
V
CC  
OUT  
AV  
CC  
Figure 23. DAC12_x Output Resistance Tests  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
12-bit DAC, reference input specifications  
PARAMETER  
TEST CONDITIONS  
DAC12IR = 0 (see Notes 1 and 2)  
DAC12IR = 1 (see Notes 3 and 4)  
V
MIN  
TYP  
MAX  
UNIT  
CC  
2.2 V/3 V  
2.2 V/3 V  
AV /3 AV +0.2  
Reference input  
voltage range  
CC  
CC  
V
V
REF  
AV  
AV +0.2  
CC  
CC  
DAC12IR = 0, SD16VMIDON = 1  
(see Note 5)  
2.2 V/3 V  
2.2 V/3 V  
20  
40  
M  
k  
Reference input  
resistance  
Ri  
(VREF)  
DAC12IR = 1, SD16VMIDON = 1  
48  
56  
NOTES: 1. For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AV ).  
CC  
2. The maximum voltage applied at reference input voltage terminal V  
= [AV -- V  
] / [3*(1 + E )].  
E(O) G  
REF  
CC  
3. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AV ).  
CC  
4. The maximum voltage applied at reference input voltage terminal V  
5. Characterized, not production tested  
= [AV -- V  
] / (1 + E ).  
E(O) G  
REF  
CC  
12-bit DAC, dynamic specifications (VREF,DAC12 = AVCC, DAC12IR = 1) (see Figure 24 and Figure 25)  
PARAMETER  
TEST CONDITIONS  
DAC12AMPx = 0 {2, 3, 4}  
V
MIN  
TYP  
60  
15  
6
MAX  
120  
30  
UNIT  
CC  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
DAC12_xDAT = 800h,  
Error < 0.5 LSB  
DAC12  
on-time  
DAC12AMPx = 0 {5, 6}  
DAC12AMPx = 0 7  
DAC12AMPx = 2  
t
t
t
s  
V(O)  
ON  
(see Note 1, Figure 24)  
12  
100  
40  
15  
5
200  
80  
Settling  
DAC12_xDAT =  
DAC12AMPx = 3,5  
DAC12AMPx = 4,6,7  
DAC12AMPx = 2  
s  
s  
S(FS)  
time,full-scale 80hF7Fh80h  
30  
DAC12_xDAT =  
Settling time,  
DAC12AMPx = 3,5  
DAC12AMPx = 4,6,7  
DAC12AMPx = 2  
2
3F8h408h3F8h  
code to code  
S(C-C)  
BF8hC08hBF8h  
1
0.05  
0.35  
1.5  
0.12  
0.7  
2.7  
600  
150  
30  
DAC12_xDAT =  
DAC12AMPx = 3,5  
DAC12AMPx = 4,6,7  
DAC12AMPx = 2  
SR  
Slew Rate  
V/s  
nV-s  
80hF7Fh80h  
DAC12_xDAT =  
DAC12AMPx = 3,5  
DAC12AMPx = 4,6,7  
Glitch energy: full-scale  
80hF7Fh80h  
NOTES: 1.  
R
Load  
and C  
connected to AV (not AV /2) in Figure 24.  
Load SS CC  
2. Slew rate applies to output voltage steps > = 200 mV.  
Conversion 1  
Conversion 2  
Conversion 3  
+/-- 1/2 LSB  
V
+/-- 1/2 LSB  
DAC Output  
OUT  
Glitch  
Energy  
R
= 3 k  
Load  
I
Load  
AV  
CC  
2
C
= 100pF  
Load  
R
O/P(DAC12.x)  
t
t
settleHL  
settleLH  
Figure 24. Settling Time and Glitch Energy Testing  
50  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
Conversion 1  
Conversion 2  
Conversion 3  
V
OUT  
90%  
90%  
10%  
10%  
t
t
SRHL  
SRLH  
Figure 25. Slew Rate Testing  
12-bit DAC, dynamic specifications continued (TA = 25C unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
MAX  
UNIT  
CC  
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1,  
DAC12_xDAT = 800h  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
40  
3-dB bandwidth,  
DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1,  
DAC12_xDAT = 800h  
V
= 1.5 V,  
DC  
180  
550  
BW  
kHz  
--3dB  
V
AC  
= 0.1V  
PP  
(see Figure 26)  
DAC12AMPx = 7, DAC12SREFx = 2,  
DAC12IR = 1, DAC12_xDAT = 800h  
NOTES: 1.  
R
LOAD  
= 3 k, C  
= 100 pF  
LOAD  
R
= 3 k  
Load  
I
Load  
Ve  
REF+  
AV  
CC  
DAC12_x  
2
DACx  
AC  
DC  
C
= 100pF  
Load  
Figure 26. Test Conditions for 3-dB Bandwidth Specification  
51  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
operational amplifier OA, supply specifications  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX  
3.6  
UNIT  
CC  
V
Supply voltage range  
2.2  
V
CC  
Fast Mode  
180  
110  
50  
290  
190  
80  
Medium Mode  
Slow Mode  
I
Supply current (see Note 1)  
Power supply rejection ratio  
2.2 V/3 V  
2.2 V/3 V  
A  
CC  
PSRR  
Non-inverting  
70  
dB  
NOTES: 1. Corresponding pins configured as OA inputs and outputs respectively.  
operational amplifier OA, input/output specification  
PARAMETER  
TEST CONDITIONS  
V
MIN  
-- 0 . 1  
-- 5  
TYP  
MAX  
UNIT  
CC  
V
Input voltage range  
V
-- 1 . 2  
5
V
I/P  
CC  
T
= --40 to +55_C  
0.5  
5  
A
Input leakage current  
(see Notes 1 and 2)  
I
2.2 V/3 V  
nA  
Ikg  
T
A
= +55 to +85_C  
-- 2 0  
20  
Fast Mode  
50  
Medium Mode  
Slow Mode  
Fast Mode  
80  
f
= 1 kHz  
V(I/P)  
140  
30  
V
V
Voltage noise density, I/P  
nV/Hz  
n
Medium Mode  
Slow Mode  
50  
f
= 10 kHz  
V(I/P)  
65  
Offset voltage, I/P  
2.2 V/3 V  
2.2 V/3 V  
10  
mV  
IO  
Offset temperature drift, I/P  
see Note 3  
10  
V/C  
Offset voltage drift  
with supply, I/P  
0.3 V V V -- 1 . 0 V  
IN CC  
2.2 V/3 V  
2.2 V/3 V  
1.5  
mV/V  
V
V   10%, T = 25C  
CC  
A
Fast Mode, I  
--500 A  
--150 A  
+500 A  
+150 A  
V
V
-- 0 . 2  
-- 0 . 1  
V
V
SOURCE  
CC  
CC  
CC  
CC  
V
V
High-level output voltage, O/P  
OH  
OL  
Slow Mode, I  
SOURCE  
SOURCE  
Fast Mode, I  
V
V
0.2  
0.1  
SS  
SS  
Low-level output voltage, O/P  
Common-mode rejection ratio  
2.2 V/3 V  
2.2 V/3 V  
V
Slow Mode, I  
Noninverting  
SOURCE  
CMRR  
70  
dB  
NOTES: 1. ESD damage can degrade input current leakage.  
2. The input bias current is overridden by the input leakage current.  
3. Calculated using the box method  
4. Specification valid for voltage-follower OAx configuration  
52  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
operational amplifier OA, dynamic specifications  
PARAMETER  
TEST CONDITIONS  
Fast Mode  
V
MIN  
TYP  
1.2  
MAX  
UNIT  
CC  
Medium Mode  
Slow Mode  
0.8  
0.3  
100  
60  
SR  
Slew rate  
V/s  
Open-loop voltage gain  
Phase margin  
dB  
deg  
dB  
m
C
C
= 50 pF  
= 50 pF  
L
Gain margin  
20  
L
Noninverting, Fast Mode,  
= 47 k, C = 50 pF  
2.2  
1.4  
R
L
L
Noninverting, Medium Mode,  
= 300 k, C = 50pF  
Gain-bandwidth product  
(see Figure 27 and Figure 28)  
GBW  
2.2 V/3 V  
MHz  
R
L
L
Non-inverting, Slow Mode,  
0.5  
10  
R
L
= 300 k, C = 50pF  
L
t
t
Enable time on  
Enable time off  
t
, Noninverting, Gain = 1  
on  
2.2 V/3 V  
2.2 V/3 V  
20  
s  
s  
en(on)  
en(off)  
1
TYPICAL PHASE vs FREQUENCY  
TYPICAL OPEN-LOOP GAIN vs FREQUENCY  
0
-- 5 0  
140  
120  
100  
80  
Fast Mode  
Fast Mode  
60  
--100  
--150  
--200  
--250  
40  
Medium Mode  
20  
Medium Mode  
Slow Mode  
0
Slow Mode  
-- 2 0  
-- 4 0  
-- 6 0  
-- 8 0  
1
10  
100  
1000  
10000  
100000  
1
10  
100  
1000  
10000  
100000  
Input Frequency -- kHz  
Input Frequency -- kHz  
Figure 27  
Figure 28  
53  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted) (continued)  
switches between OA terminals and pins  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX  
3.6  
UNIT  
CC  
V
Supply voltage range  
--  
2.2  
V
CC  
T
= --40C to 55C  
= 55C to 85C  
1  
10  
50  
100  
A
Input leakage current  
(see Note 1)  
I
I
nA  
lkg  
IN  
T
A
Input current  
Input switched to ON  
= 100 A  
0
A  
k  
R
On resistance  
I
1
ON  
IN  
NOTES: 1. ESD damage can degrade input current leakage.  
typical characteristics  
RON vs VCOM  
RON vs VCOM  
3000.0  
1700.0  
1600.0  
1500.0  
1400.0  
1300.0  
1200.0  
1100.0  
1000.0  
900.0  
2750.0  
Typical  
V
= 3V  
CC  
Typical  
T
= 25C  
A
2500.0  
2250.0  
2000.0  
1750.0  
1500.0  
1250.0  
1000.0  
750.0  
V
= 2.2 V  
CC  
V
= 2.7 V  
CC  
V
= 3 V  
CC  
V
= 3.6 V  
CC  
T
= 85C  
= 25C  
A
T
A
T
A
= --40C  
500.0  
800.0  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6  
V
-- Common Mode Input Voltage (V)  
V
-- Common Mode Input Voltage (V)  
COM  
COM  
Figure 29  
Figure 30  
54  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended operating free-air temperature (unless otherwise  
noted)  
Timer_A  
PARAMETER  
TEST CONDITIONS  
Internal: SMCLK, ACLK,  
External: TACLK, INCLK,  
V
MIN  
MAX UNIT  
CC  
2.2 V  
3 V  
8
f
t
Timer_A clock frequency  
Timer_A, capture timing  
MHz  
10  
TA  
Duty cycle = 50% 10%  
TA0, TA1, TA2  
2.2 V/3 V  
20  
ns  
TA,cap  
Timer_B  
PARAMETER  
TEST CONDITIONS  
V
MIN  
MAX UNIT  
CC  
Internal: SMCLK, ACLK,  
External: TBCLK,  
Duty cycle = 50% 10%  
2.2 V  
3 V  
8
f
Timer_B clock frequency  
Timer_B, capture timing  
MHz  
10  
TB  
t
TB0, TB1, TB2  
2.2 V/3 V  
20  
ns  
TB,cap  
55  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
USCI (UART mode)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
Internal: SMCLK, ACLK  
External: UCLK  
Duty cycle = 50% 10%  
f
USCI input clock frequency  
f
MHz  
MHz  
USCI  
SYSTEM  
Maximum BITCLK clock frequency  
(equals baudrate in MBaud) (see  
Note 1)  
fmax,  
2.2V /3 V  
2
BITCLK  
2.2 V  
3 V  
50  
50  
150  
100  
ns  
ns  
UART receive deglitch time  
(see Note NO TAG)  
t
NOTES: 1. The DCO wake-up time must be considered in LPM3/4 for baudrates above 1 MHz.  
2. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed.  
USCI (SPI master mode) (see Figure 31 and Figure 32)  
PARAMETER  
TEST CONDITIONS  
SMCLK, ACLKm  
Duty cycle = 50% 10%  
V
MIN  
MAX UNIT  
CC  
f
t
t
t
USCI input clock frequency  
f
MHz  
USCI  
SYSTEM  
2.2 V  
3 V  
110  
75  
0
ns  
ns  
ns  
ns  
ns  
ns  
SOMI input data setup time  
SOMI input data hold time  
SU,MI  
2.2 V  
3 V  
HD,MI  
0
2.2 V  
3 V  
30  
20  
SIMO output data valid time  
UCLK edge to SIMO valid, C = 20 pF  
L
VALID,MO  
1
NOTE: fUCxCLK  
=
with tLOHI max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).  
2tLOHI  
For the slave’s parameters t  
and t  
refer to the SPI parameters of the attached slave.  
VALID,SO(Slave)  
SU,SI(Slave)  
USCI (SPI slave mode) (see Figure 33 and Figure 34)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
CC  
STE lead time  
STE low to clock  
t
t
t
t
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
50  
ns  
STE,LEAD  
STE,LAG  
STE,ACC  
STE,DIS  
STE lag time  
Last clock to STE high  
10  
ns  
ns  
ns  
STE access time  
STE low to SOMI data out  
50  
50  
STE disable time  
STE high to SOMI high impedance  
2.2 V  
3 V  
20  
15  
10  
10  
ns  
ns  
ns  
ns  
t
t
t
SIMO input data setup time  
SIMO input data hold time  
SU,SI  
2.2 V  
3 V  
HD,SI  
2.2 V  
3 V  
75  
50  
110  
75  
ns  
ns  
UCLK edge to SOMI valid,  
= 20 pF  
SOMI output data valid time  
VALID,SO  
C
L
1
NOTE: fUCxCLK  
=
with tLOHI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).  
2tLOHI  
For the master’s parameters t  
and t  
refer to the SPI parameters of the attached master.  
VALID,MO(Master)  
SU,MI(Master)  
56  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
t
LO/HI  
LO/HI  
SU,MI  
t
HD,MI  
SOMI  
SIMO  
t
VALID,MO  
Figure 31. SPI Master Mode, CKPH = 0  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
LO/HI  
LO/HI  
t
HD,MI  
t
SU,MI  
SOMI  
SIMO  
t
VALID,MO  
Figure 32. SPI Master Mode, CKPH = 1  
57  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
t
t
STE,LAG  
STE,LEAD  
STE  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
t
LO/HI  
LO/HI  
SU,SI  
t
HD,SI  
SIMO  
SOMI  
t
t
t
STE,DIS  
STE,ACC  
VALID,SO  
Figure 33. SPI Slave Mode, CKPH = 0  
t
t
STE,LAG  
STE,LEAD  
STE  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
LO/HI  
LO/HI  
t
HD,SI  
t
SU,SI  
SIMO  
SOMI  
t
t
t
STE,DIS  
STE,ACC  
VALID,SO  
Figure 34. SPI Slave Mode, CKPH = 1  
58  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
USCI (I2C mode) (see Figure 35)  
PARAMETER  
TEST CONDITIONS  
V
MIN  
TYP  
MAX UNIT  
MHz  
CC  
Internal: SMCLK, ACLK  
External: UCLK  
f
USCI input clock frequency  
f
SYSTEM  
USCI  
Duty cycle = 50% 10%  
f
t
SCL clock frequency  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V/3 V  
2.2 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
SCL  
f
f
f
f
100kHz  
> 100kHz  
100kHz  
> 100kHz  
s  
s  
s  
s  
ns  
ns  
s  
SCL  
SCL  
SCL  
SCL  
Hold time (repeated) START  
HD,STA  
t
Setup time for a repeated START  
SU,STA  
t
t
t
Data hold time  
HD,DAT  
SU,DAT  
SU,STO  
Data setup time  
Setup time for STOP  
250  
4.0  
50  
150  
100  
600  
600  
ns  
ns  
Pulse width of spikes suppressed by  
input filter  
t
SP  
3 V  
50  
t
t
t
SU,STA HD,STA  
HD,STA  
SDA  
SCL  
1/f  
t
SP  
SCL  
t
t
SU,STO  
SU,DAT  
t
HD,DAT  
Figure 35. I2C Mode Timing  
59  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
flash memory  
TEST  
CONDITIONS  
PARAMETER  
V
MIN  
TYP  
MAX  
UNIT  
CC  
V
CC(PGM/  
ERASE)  
Program and Erase supply voltage  
Flash Timing Generator frequency  
2.2  
3.6  
V
f
I
I
t
t
257  
476  
5
kHz  
mA  
FTG  
Supply current from DV during program  
2.5 V/3.6V  
2.5 V/3.6V  
2.5 V/3.6V  
2.5 V/3.6V  
3
3
PGM  
CC  
Supply current from DV during erase  
CC  
7
mA  
ERASE  
CPT  
Cumulative program time  
Cumulative mass erase time  
Program/Erase endurance  
Data retention duration  
see Note 1  
see Note 2  
10  
ms  
200  
ms  
CMErase  
4
5
10  
10  
cycles  
years  
t
T = 25C  
J
100  
Retention  
t
t
t
t
t
t
Word or byte program time  
35  
30  
Word  
st  
Block program time for 1 byte or word  
Block, 0  
Block program time for each additional byte or word  
Block program end-sequence wait time  
Mass erase time  
21  
Block, 1-63  
Block, End  
Mass Erase  
Seg Erase  
see Note 3  
t
FTG  
6
5297  
4819  
Segment erase time  
NOTES: 1. The cumulative program time must not be exceeded when writingto a64--byte flashblock. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/f ,max = 5297x1/476kHz). To  
FTG  
achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met.  
(A worst case minimum of 19 cycles are required).  
3. These values are hardwired into the Flash Controller’s state machine (t  
= 1/f  
).  
FTG  
FTG  
JTAG interface  
TEST  
CONDITIONS  
PARAMETER  
V
MIN  
TYP  
MAX  
UNIT  
CC  
2.2 V  
3 V  
0
0
5
10  
90  
MHz  
MHz  
k  
f
TCK input frequency  
See Note 1  
TCK  
R
Internal pull-up resistance on TMS, TCK, TDI/TCLK See Note 2  
may be restricted to meet the timing requirements of the module selected.  
2.2 V/ 3 V  
25  
60  
Internal  
NOTES: 1.  
f
TCK  
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.  
JTAG fuse (see Note 1)  
TEST  
CONDITIONS  
PARAMETER  
V
MIN  
MAX  
UNIT  
CC  
V
V
Supply voltage during fuse-blow condition  
Voltage level on TDI/TCLK for fuse-blow: F versions  
Supply current into TDI/TCLK during fuse blow  
Time to blow fuse  
T
A
= 25C  
2.5  
6
V
V
CC(FB)  
FB  
7
100  
1
I
t
mA  
ms  
FB  
FB  
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched  
to bypass mode.  
60  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.0, input/output with Schmitt trigger  
CAPD.0  
P1DIR.0  
0
1
Direction  
0: Input  
1: Output  
Pad Logic  
P1SEL2.0  
Module X OUT  
0
1
1
0
P1OUT.0  
P1SEL.0  
P1.0/TA0/OA0RFB  
Bus  
Keeper  
EN  
P1IN.0  
EN  
Module X IN  
P1IRQ.0  
D
P1IE.0  
EN  
Set  
Q
SWCTL1.SWCTL8  
P1IFG.0  
OA0  
P1SEL.0  
P1IES.0  
Interrupt  
Edge Select  
Port P1 (P1.0) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
CAPD.x  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
P1.0/TA0/OA0RFB  
0
P1.x (I/O)  
0
0
0
x
I: 0, O: 1  
0
1
1
1
0
0
0
1
Timer_A3.CCI0A  
Timer_A3.TA0  
OA0RFB  
0
1
x
61  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.1, input/output with Schmitt trigger  
CAPD.1  
Direction  
0: Input  
1: Output  
Pad Logic  
P1DIR.1  
0
1
P1SEL2.1  
Module X OUT  
0
1
1
0
MCLK  
P1OUT.1  
P1.1/TA0/MCLK/  
OA1RFB  
Bus  
Keeper  
EN  
P1SEL.1  
P1IN.1  
EN  
Module X IN  
P1IRQ.1  
D
P1IE.1  
EN  
Set  
Q
SWCTL1.SWCTL12  
P1IFG.1  
OA1  
P1SEL.1  
P1IES.1  
Interrupt  
Edge Select  
Port P1 (P1.1) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
CAPD.x  
P1DIR.x  
P1SEL.x  
P1SEL2.x  
P1.1/TA0/MCLK  
OA1RFB  
1
P1.x (I/O)  
0
0
0
x
0
I: 0, O: 1  
0
1
1
1
1
0
0
0
1
1
Timer_A3.CCI0A  
Timer_A3.TA0  
OA1RFB  
0
1
0
1
MCLK  
62  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.2 input/output with Schmitt trigger  
INCH  
Pad Logic  
1
A4-  
DVSS  
0
SD16AE.2  
CAPD.2  
0
1
P1DIR.2  
Direction  
0: Input  
1: Output  
0
1
P1OUT.2  
Module X OUT  
P1.2/TA1/A4-/OA0I3  
Bus  
Keeper  
EN  
P1SEL.2  
P1IN.2  
EN  
D
Module X IN  
P1IRQ.2  
P1IE.2  
EN  
Set  
Q
OA0  
P1IFG.2  
P1SEL.2  
P1IES.2  
Interrupt  
Edge Select  
Port P1 (P1.2) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1SEL2.x = 0 P1SEL2.x = 0  
CAPD.x  
P1DIR.x  
P1SEL.x  
OAN (OA0)  
SD16AE.x  
P1.2/TA1/A4--/OA0I3  
2
P1.x (I/O)  
0
0
0
x
x
I: 0, O: 1  
0
1
1
x
x
xx  
xx  
xx  
xx  
10  
0
0
0
1
1
Timer_A3.CCI1A  
Timer_A3.TA1  
A4--  
0
1
x
x
OA0I3  
NOTES: 1. x: Don’t care.  
63  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.3, input/output with Schmitt trigger  
INCH =4  
A4+  
Pad Logic  
SD16AE.3  
CAPD.3  
0
1
P1DIR.3  
Direction  
0: Input  
1: Output  
0
1
P1OUT.3  
Module X OUT  
P1.3/TBOUTH/  
SVSOUT/A4+/OA1I3  
Bus  
Keeper  
EN  
P1SEL.3  
P1IN.3  
EN  
D
Module X IN  
P1IRQ.3  
P1IE.3  
EN  
Set  
Q
OA1  
P1IFG.3  
P1SEL.3  
P1IES.3  
Interrupt  
Edge Select  
Port P1 (P1.3) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1SEL2.x = 0 P1SEL2.x = 0  
CAPD.x  
P1DIR.x  
P1SEL.x  
OAN (OA1)  
SD16AE.x  
P1.3/TBOUTH/  
SVSOUT/A4+/OA1I3  
3
P1.x (I/O)  
0
0
0
x
x
I: 0, O: 1  
0
1
1
x
x
xx  
xx  
xx  
xx  
10  
0
0
0
1
1
TBOUTH  
SVSOUT  
A4+  
0
1
x
x
OA1I3  
NOTES: 1. x: Don’t care.  
64  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.4, input/output with Schmitt trigger  
Pad Logic  
DAC12_1OUT  
DAC12OPS  
INCH=3  
1
A3-  
0
DVSS  
SD16AE.4  
CAPD.4  
P1DIR.4  
0
1
Direction  
0: Input  
1: Output  
P1OUT.4  
0
1
Module X OUT  
P1.4/TBCLK/  
SMCLK/A3-/  
OA1I0/DAC1  
Bus  
Keeper  
EN  
P1SEL.4  
P1IN.4  
EN  
D
Module X IN  
P1IRQ.4  
P1IE.4  
EN  
Set  
Q
OA1  
P1IFG.4  
P1SEL.4  
P1IES.4  
Interrupt  
Edge Select  
Port P1 (P1.4) pin functions  
CONTROL BITS / SIGNALS  
P1SEL2.x = 0 P1SEL2.x = 0  
P1SEL2.x = 0  
DAC12OPS  
(DAC12_1)  
PIN NAME (P1.X)  
X
FUNCTION  
CAPD.x  
P1DIR.x  
P1SEL.x  
SD16AE.x  
OAP (OA1)  
P1.4TBCLK/SMCLK/  
A3--/OA1I0/DAC1  
4
P1.x (I/O)  
I: 0, O: 1  
0
1
1
x
x
x
0
0
0
1
1
x
xx  
xx  
xx  
xx  
00  
xx  
0
0
0
0
0
1
TBCLK  
SMCLK  
A3--  
0
1
x
x
x
OA1I0  
DAC1  
NOTES: 1. x: Don’t care.  
65  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.5, input/output with Schmitt trigger  
INCH =3  
Pad Logic  
Ax+  
SD16AE.5  
CAPD.5  
0
1
P1DIR.5  
Direction  
0: Input  
1: Output  
0
1
P1OUT.5  
Module X OUT  
P1.5/TACLK/ACLK/A3+  
Bus  
Keeper  
EN  
P1SEL.5  
P1IN.5  
EN  
D
Module X IN  
P1IRQ.5  
P1IE.5  
EN  
Set  
Q
P1IFG.5  
P1SEL.5  
P1IES.5  
Interrupt  
Edge Select  
Port P1 (P1.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1SEL2.x = 0  
SD16AE.x  
CAPD.x  
P1DIR.x  
P1SEL.x  
P1.5/TACLK/ACLK/  
A3+  
5
P1.x (I/O)  
0
0
0
x
I: 0, O: 1  
0
1
1
x
0
0
0
1
TACLK  
ACLK  
A3+  
0
1
x
NOTES: 1. x: Don’t care.  
66  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.6, input/output with Schmitt trigger  
Pad Logic  
To Comparator_A  
From Comparator_A  
CAPD.6  
DAC12_0OUT  
DAC12OPS  
1
A2-  
DVSS  
0
INCH=2  
SD16AE.6  
P1DIR.6  
0
1
Direction  
0: Input  
1: Output  
P1OUT.6  
0/1  
0
1
P1.6/CA0/A2-/  
OA0I0/DAC0  
Bus  
Keeper  
EN  
P1SEL.6  
P1IN.6  
EN  
D
Module X IN  
P1IRQ.6  
P1IE.6  
EN  
Set  
Q
OA0  
P1IFG.6  
P1SEL.6  
P1IES.6  
Interrupt  
Edge Select  
67  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
Port P1 (P1.6) pin functions  
CONTROL BITS / SIGNALS  
P1SEL2.x = 0  
DAC12OPS  
(DAC12_0)  
PIN NAME (P1.X)  
X
FUNCTION  
P1SEL2.x = 0  
CAPD.x  
P1SEL2.x = 0 P1SEL2.x = 0  
P1DIR.x  
P1SEL.x  
SD16AE.x  
OAP (OA0)  
P1.6/CA0/A2--/OA0I0/  
DAC0  
6
P1.x (I/O)  
CA0  
I: 0, O: 1  
0
x
x
x
x
0
0
x
1
x
x
xx  
xx  
xx  
00  
xx  
0
x
x
x
1
x
x
x
x
1 or selected  
A2--  
x
x
x
OA0I0  
DAC0  
NOTES: 1. x: Don’t care.  
68  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P1 pin schematic: P1.7, input/output with Schmitt trigger  
Pad Logic  
To Comparator_A  
From Comparator_A  
CAPD.7  
SD16AE.7  
INCH=2  
A2+  
P1DIR.7  
0
1
Direction  
0: Input  
1: Output  
P1OUT.7  
0/1  
0
1
P1.7/CA1/A2+  
Bus  
Keeper  
EN  
P1SEL.7  
P1IN.7  
EN  
D
Module X IN  
P1IRQ.7  
P1IE.7  
EN  
Set  
Q
P1IFG.7  
P1SEL.7  
P1IES.7  
Interrupt  
Edge Select  
Port P1 (P1.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P1.X)  
X
FUNCTION  
P1SEL2.x = 0  
P1SEL.x  
P1SEL2.x = 0  
SD16AE.x  
P1DIR.x  
CAPD.x  
P1.7/CA1/A2+  
7
P1.x (I/O)  
CA1  
I: 0, O: 1  
0
x
x
0
0
x
1
x
x
1 or selected  
x
A2+  
NOTES: 1. x: Don’t care.  
69  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P2 pin schematic: P2.0 to P2.1, input/output with Schmitt trigger  
Pad Logic  
LCDS0  
Segment Sx  
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
P2OUT.x  
0
1
Module X OUT  
P2.0/TA2/S1  
P2.1/TB0/S0  
Bus  
Keeper  
EN  
P2SEL.x  
P2IN.x  
EN  
Module X IN  
P2IRQ.x  
D
P2IE.x  
EN  
Set  
Q
P2IFG.x  
P2SEL.x  
P2IES.x  
Interrupt  
Edge Select  
Port P2 (P2.0 to P2.1) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
LCDS0  
P2.0/TA2/S1  
0
P2.x (I/O)  
I: 0, O: 1  
0
1
1
x
0
1
1
x
0
0
0
1
0
0
0
1
Timer_A3.CCI2A  
Timer_A3.TA2  
S1  
0
1
x
P2.1/TB0/S0  
1
P2.x (I/O)  
I: 0, O: 1  
Timer_B3.CCI0A  
Timer_B3.TB0  
S0  
0
1
x
NOTES: 1. x: Don’t care.  
70  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P2 pin schematic: P2.2 to P2.3, input/output with Schmitt trigger  
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
Pad Logic  
Module X OUT  
P2OUT.x  
0
1
P2.2/TB1  
P2.3/TB2  
P2SEL.x  
P2IN.x  
EN  
Module X IN  
P2IRQ.x  
D
P2IE.x  
EN  
Set  
Q
P2IFG.x  
P2SEL.x  
P2IES.x  
Interrupt  
Edge Select  
Port P2 (P2.2 to P2.3) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.2/TB1  
2
P2.x (I/O)  
I: 0, O: 1  
0
1
1
0
1
1
Timer_B3.CCI1A  
Timer_B3.TB1  
P2.x (I/O)  
0
1
P2.3/TB2  
3
I: 0, O: 1  
Timer_B3.CCI2A  
TimerB3.TB2  
0
1
71  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P2 pin schematic: P2.4 and P2.5, input/output with Schmitt trigger  
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
Pad Logic  
Module  
direction  
P2OUT.x  
0
1
Module X OUT  
P2.4/UCA0TXD/UCA0SIMO  
P2.5/UCA0RXD/UCA0SOMI  
P2SEL.x  
P2IN.x  
EN  
Module X IN  
P2IRQ.x  
D
P2IE.x  
EN  
Set  
Q
P2IFG.x  
P2SEL.x  
P2IES.x  
Interrupt  
Edge Select  
Port P2 (P2.4 and P2.5) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
P2.4/UCA0TXD/  
UCA0SIMO  
4
P2.x (I/O)  
I: 0, O: 1  
0
1
0
1
UCA0TXD/UCA0SIMO (see Notes 2)  
P2.x (I/O)  
x
I: 0, O: 1  
x
P2.5/UCA0RXD/  
UCA0SOMI  
5
UCA0RXD/UCA0SOMI (see Notes 2)  
NOTES: 1. x: Don’t care.  
2. The pin direction is controlled by the USCI module.  
72  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P2 pin schematic: P2.6 and P2.7, inpututput with Schmitt trigger  
LCDS0  
Pad Logic  
Segment Sy  
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
P2OUT.x  
0/1  
0
1
P2.6/CAOUT/S2  
P2.7/S3  
Bus  
Keeper  
EN  
P2SEL.x  
P2IN.x  
P2IE.x  
EN  
Set  
P2IRQ.x  
Q
P2IFG.x  
P2SEL.x  
P2IES.x  
Interrupt  
Edge Select  
Port P2 (P2.6 and P2.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P2.X)  
X
FUNCTION  
P2DIR.x  
P2SEL.x  
LCDS0  
P2.6/CAOUT/S2  
6
P2.x (I/O)  
CAOUT  
S2  
I: 0, O: 1  
0
1
x
0
1
x
0
0
1
0
0
1
1
x
P2.7/S3  
7
P2.x (I/O)  
I: 0, O: 1  
V
1
x
ss  
S3  
NOTES: 1. x: Don’t care.  
73  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P3 pin schematic: P3.0 and P3.3, input/output with Schmitt trigger  
Pad Logic  
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
Module  
direction  
P3OUT.x  
0
1
Module X OUT  
P3.0/UCB0STE/UCA0CLK  
P3.3/UCB0CLK/UCA0STE  
P3SEL.x  
P3IN.x  
EN  
D
Module X IN  
Port P3 (P3.0 and P3.3) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P3.X)  
X
FUNCTION  
P3DIR.x  
P3SEL.x  
P3.0/UCB0STE/  
UCA0CLK  
0
P3.x (I/O)  
I: 0, O: 1  
0
1
0
1
UCB0STE/UCA0CLK (see Note 2)  
P3.x (I/O)  
x
I: 0, O: 1  
x
P3.3/UCB0CLK/  
UCA0STE  
3
UCB0CLK/UCA0STE (see Note 2)  
NOTES: 1. x: Don’t care.  
2. The pin direction is controlled by the USCI module.  
74  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P3 pin schematic: P3.1 and P3.2, input/output with Schmitt trigger  
Pad Logic  
LCDS24  
Segment Sy  
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
Module  
direction  
P3OUT.x  
0
1
Module X OUT  
P3.1/UCB0SIMO/UCB0SDA/S26  
P3.2/UCB0SOMI/UCB0SCL/S27  
Bus  
Keeper  
EN  
P3SEL.x  
P3IN.x  
EN  
D
Module X IN  
Port P3 (P3.1 and P3.2) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P3.X)  
X
FUNCTION  
P3DIR.x  
P3SEL.x  
LCDS24  
P3.1/UCB0SIMO/  
UCB0SDA/S26  
1
P3.x (I/O)  
I: 0, O: 1  
0
1
x
0
1
x
0
0
1
0
0
1
UCB0SIMO/UCB0SDA (see Notes 2 and 3)  
x
S26  
x
P3.2/UCB00SOMI/  
UCB0SCL/S27  
2
P3.x (I/O)  
I: 0, O: 1  
UCB0SOMI/UCB0SCL (see Notes 2 and 3)  
S27  
x
x
NOTES: 1. x: Don’t care.  
2. The pin direction is controlled by the USCI module.  
3. In case the I2C functionality is selected the output drives only the logical 0 to V level.  
SS  
75  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P3 pin schematic: P3.4 to P3.7, input/output with Schmitt trigger  
LCDS28  
Pad Logic  
Segment Sy  
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
P3OUT.x  
0
1
Module X Out  
P3.4/S28  
P3.5/S29  
P3.6/S30  
P3.7/S31  
Bus  
Keeper  
EN  
P3SEL.x  
P3IN.x  
Port P3 (P3.4 to P3.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P3.X)  
X
FUNCTION  
P3DIR.x  
P3SEL.x  
LCDS28  
P3.4/S28  
4
P3.x (I/O)  
S28  
I: 0, O: 1  
0
x
0
x
0
x
0
x
0
1
0
1
0
1
0
1
x
P3.5/S29  
P3.6/S30  
P3.7/S31  
5
6
7
P3.x (I/O)  
S29  
I: 0, O: 1  
x
P3.x (I/O)  
S30  
I: 0, O: 1  
x
I: 0, O: 1  
x
P3.x (I/O)  
S31  
NOTES: 1. x: Don’t care.  
76  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P4 pin schematic: P4.0 to P4.7, input/output with Schmitt trigger  
LCDS4/8  
Pad Logic  
Segment Sy  
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
0/1  
0
1
P4.0/S11  
P4.1/S10  
P4.2/S9  
P4.3/S8  
P4.4/S7  
P4.5/S6  
P4.6/S5  
P4.7/S4  
Bus  
Keeper  
EN  
P4SEL.x  
P4IN.x  
Port P4 (P4.0 and P4.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P4.X)  
X
FUNCTION  
P4DIR.x  
P4SEL.x  
LCDS4/8  
P4.0/S11  
0
P4.x (I/O)  
S11  
I: 0, O: 1  
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0 (LCDS8)  
1 (LCDS8)  
0 (LCDS8)  
1 (LCDS8)  
0 (LCDS8)  
1 (LCDS8)  
0 (LCDS8)  
1 (LCDS8)  
0 (LCDS4)  
1 (LCDS4)  
0 (LCDS4)  
1 (LCDS4)  
0 (LCDS4)  
1 (LCDS4)  
0 (LCDS4)  
1 (LCDS4)  
x
P4.1/S10  
P4.2/S9  
P4.3/S8  
P4.4/S7  
P4.5/S6  
P4.6/S5  
P4.7/S4  
1
2
3
4
5
6
7
P4.x (I/O)  
S10  
I: 0, O: 1  
x
P4.x (I/O)  
S9  
I: 0, O: 1  
x
P4.x (I/O)  
S8  
I: 0, O: 1  
x
P4.x (I/O)  
S7  
I: 0, O: 1  
x
P4.x (I/O)  
S6  
I: 0, O: 1  
x
P4.x (I/O)  
S5  
I: 0, O: 1  
x
I: 0, O: 1  
x
P4.x (I/O)  
S4  
NOTES: 1. x: Don’t care.  
77  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P5 pin schematic: P5.0 and P5.1, input/output with Schmitt trigger  
LCDS20  
Pad Logic  
Segment Sy  
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
P5OUT.x  
0/1  
0
1
P5.0/S20  
P5.1/S21  
Bus  
Keeper  
EN  
P5SEL.x  
P5IN.x  
Port P5 (P5.0 and P5.1) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
X
FUNCTION  
P5DIR.x  
P5SEL.x  
LCDS20  
P5.0/S20  
0
P5.x (I/O)  
S20  
I: 0, O: 1  
0
x
0
x
0
1
0
1
x
I: 0, O: 1  
x
P5.1/S21  
1
P5.x (I/O)  
S21  
NOTES: 1. x: Don’t care.  
78  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P5 pin schematic: P5.2 to P5.7, input/output with Schmitt trigger  
Pad Logic  
LCD Signal  
P5DIR.x  
0
1
Direction  
0: Input  
1: Output  
P5OUT.x  
0/1  
0
1
P5.2/COM1  
P5.3/COM2  
P5.4/COM3  
P5.5/R23  
Bus  
Keeper  
EN  
P5SEL.x  
P5IN.x  
P5.6/LCDREF/R13  
P5.7/R03  
Port P5 (P5.2 to P5.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P5.X)  
X
FUNCTION  
P5DIR.x  
P5SEL.x  
P5.2/COM1  
2
P5.x (I/O)  
COM1  
I: 0, O: 1  
0
1
0
1
0
1
0
1
0
1
0
1
x
P5.3/COM2  
P5.4/COM3  
P5.5/R23  
3
4
5
6
7
P5.x (I/O)  
COM2  
I: 0, O: 1  
x
P5.x (I/O)  
COM3  
I: 0, O: 1  
x
P5.x (I/O)  
R23  
I: 0, O: 1  
x
P5.6/LCDREF/R13  
P5.7/R03  
P5.x (I/O)  
R13 or LCDREF  
P5.x (I/O)  
R03  
I: 0, O: 1  
x
I: 0, O: 1  
x
NOTES: 1. x: Don’t care.  
79  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P6 pin schematic: P6.0 and P6.3, input/output with Schmitt trigger  
INCH=y  
Ay+  
Pad Logic  
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
P6OUT.x  
0
1
Module X OUT  
P6.0/A0+/OA0O  
P6.3/A1+/OA1O  
Bus  
Keeper  
EN  
P6SEL.x  
P6IN.x  
OAx  
Port P6 (P6.0 and P6.3) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
P6.0/A0+/OA0O  
0
P6.x (I/O)  
A0+  
I: 0, O: 1  
0
1
1
0
1
1
x
OA0O  
P6.x (I/O)  
A1+  
x
P6.3/A1+/OA1O  
3
I: 0, O: 1  
x
x
OA1O  
NOTES: 1. x: Don’t care.  
80  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P6 pin schematic: P6.1 and P6.4, input/output with Schmitt trigger  
Pad Logic  
Ay-  
INCH=y  
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
P6OUT.x  
0/1  
0
1
P6.1/A0-/OA0FB  
P6.4/A1-/OA1FB  
Bus  
Keeper  
EN  
P6SEL.x  
P6IN.x  
OAx  
Port P6 (P6.1 and P6.4) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
P6.1/A0--/OA0FB  
1
P6.x (I/O)  
A0--  
I: 0, O: 1  
0
1
1
0
1
1
x
OA0FB  
P6.x (I/O)  
A1--  
x
P6.4/A1--/OA1FB  
4
I: 0, O: 1  
x
x
OA1FB  
NOTES: 1. x: Don’t care.  
81  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P6 pin schematic: P6.2, P6.5 and P6.6, input/output with Schmitt trigger  
P6DIR.x  
0
1
Direction  
0: Input  
1: Output  
Pad Logic  
P6.2/OA0I1 (SW0A)  
P6.5/OA0I2 (SW0B)  
P6.6/OA1I1 (SW1A)  
P6OUT.x  
0/1  
0
1
Bus  
Keeper  
EN  
P6SEL.x  
P6IN.x  
OAx  
Port P6 (P6.2, P6.5 and P6.6) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
P6.2/OA0I1  
2
P6.x (I/O)  
OA0I1  
I: 0, O: 1  
0
1
0
1
0
1
x
P6.5/OA0I2  
P6.6/OA1I1  
5
6
P6.x (I/O)  
OA0I2  
I: 0, O: 1  
x
I: 0, O: 1  
x
P6.x (I/O)  
OA1I1  
NOTES: 1. x: Don’t care.  
82  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Port P6 pin schematic: P6.7, input/output with Schmitt trigger  
VLDx = 1111  
To SVS Mux  
P6DIR.7  
0
1
Pad Logic  
Direction  
0: Input  
1: Output  
P6.7/OA1I2/SVSIN  
(SW1B)  
P6OUT.7  
0
1
Module X OUT  
Bus  
Keeper  
EN  
P6SEL.7  
P6IN.7  
OAx  
Port P6 (P6.7) pin functions  
CONTROL BITS / SIGNALS  
PIN NAME (P6.X)  
X
FUNCTION  
P6DIR.x  
P6SEL.x  
VLDx  
P6.7/OA1I2/SVSIN  
7
P6.x (I/O)  
I: 0, O: 1  
0
1
1
x
x
OA1I2  
SVSIN  
x
x
1111  
NOTES: 1. x: Don’t care.  
83  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
Segment pin schematic: Sx, dedicated Segment Pins  
LCDS12/16/20/24  
Segment Sx  
Pad Logic  
Sx  
Sx pin functions  
CONTROL BITS /  
SIGNALS  
PIN NAME  
X
FUNCTION  
LCDSy  
Sx  
Sx  
Sx  
Sx  
Sx  
Sx  
Sx  
Sx  
Sx  
Sx  
Sx  
Sx  
12  
Sx  
1 (LCDS12)  
0 (LCDS12)  
1 (LCDS12)  
0 (LCDS12)  
1 (LCDS12)  
0 (LCDS12)  
1 (LCDS12)  
0 (LCDS12)  
1 (LCD16)  
3-state  
Sx  
13  
14  
15  
16  
17  
18  
19  
22  
23  
24  
25  
3-state  
Sx  
3-state  
Sx  
3-state  
Sx  
3-state  
Sx  
0 (LCD16)  
1 (LCD16)  
3-state  
Sx  
0 (LCD16)  
1 (LCD16)  
3-state  
Sx  
0 (LCD16)  
1 (LCDS16)  
0 (LCDS16)  
1 (LCDS20)  
0 (LCDS20)  
1 (LCDS20)  
0 (LCDS20)  
1 (LCDS24)  
0 (LCDS24)  
1 (LCDS24)  
0 (LCDS24)  
3-state  
Sx  
3-state  
Sx  
3-state  
Sx  
3-state  
Sx  
3-state  
Segment pin schematic: COM0, dedicated COM0 pin  
Pad Logic  
COM0  
COM0  
Sx pin functions  
PIN NAME  
COM0  
X
FUNCTION  
--  
COM0  
84  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
APPLICATION INFORMATION  
JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger  
TDO  
Controlled by JTAG  
Controlled by JTAG  
JTAG  
TDO/TDI  
Controlled  
by JTAG  
DV  
DV  
CC  
CC  
TDI  
Fuse  
Burn & Test  
Fuse  
Test  
and  
TDI/TCLK  
DV  
CC  
Emulation  
Module  
TMS  
TCK  
TMS  
TCK  
DV  
CC  
During Programming Activity and  
During Blowing of the Fuse, Pin  
TDO/TDI Is Used to Apply the Test  
Input Data for JTAG Circuitry  
JTAG fuse check mode  
For details on the JTAG fuse check mode, see the MSP430 Memory Programming User’s Guide (SLAU265)  
chapter ”Fuse Check and Reset of the JTAG State Machine (TAP Controller)”.  
85  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MSP430FG47x  
MIXED SIGNAL MICROCONTROLLER  
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011  
Data Sheet Revision History  
LITERATURE  
NUMBER  
SUMMARY  
SLAS580  
Product Preview release  
SLAS580A  
SLAS580B  
Changes throughout to update Product Preview  
Production Data release  
In recommended operating conditions table, changed maximum LFXT1 crystal frequency, f  
from 8 MHz to 6 MHz (page 24)  
,
with XT1 selected  
(LFXT1)  
SLAS580C  
SLAS580D  
Changed limits on t  
parameter (page 32)  
d(SVSon)  
Corrected measurement pin name for “Duty cycle, LF mode” parameter (page 37)  
86  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Mar-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
MSP430FG477IPN  
MSP430FG477IPNR  
MSP430FG477IZQW  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PN  
PN  
80  
80  
119  
1000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
Green (RoHS  
& no Sb/Br)  
MSP430FG477IZQWR  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
MSP430FG478IPN  
MSP430FG478IPNR  
MSP430FG478IZQW  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
PN  
PN  
80  
80  
119  
1000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
LQFP  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
Green (RoHS  
& no Sb/Br)  
MSP430FG478IZQWR  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
MSP430FG479IPN  
MSP430FG479IPNR  
MSP430FG479IZQW  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
PN  
PN  
80  
80  
119  
1000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
LQFP  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
Green (RoHS  
& no Sb/Br)  
MSP430FG479IZQWR  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQW  
113  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Mar-2011  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996  
PN (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
60  
M
0,08  
41  
61  
40  
0,13 NOM  
80  
21  
1
20  
Gage Plane  
9,50 TYP  
0,25  
12,20  
SQ  
11,80  
0,05 MIN  
0°7°  
14,20  
SQ  
13,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040135 /B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

MSP430FG478IPNR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FG478IZCAR

具有 48KB 闪存、2KB SRAM、16 位 Σ-Δ ADC、双通道 DAC、2 个运算放大器和 128 段 LCD 的 8MHz MCU | ZCA | 113 | -40 to 85
TI

MSP430FG478IZQW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FG478IZQWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FG479

ULTRA-LOW-POWER MICROCONTROLLERS
TI

MSP430FG479IPN

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FG479IPNR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FG479IZCA

具有 60KB 闪存、2KB SRAM、16 位 Σ-Δ ADC、双通道 DAC、2 个运算放大器和 128 段 LCD 的 8MHz MCU | ZCA | 113 | -40 to 85
TI

MSP430FG479IZCAR

具有 60KB 闪存、2KB SRAM、16 位 Σ-Δ ADC、双通道 DAC、2 个运算放大器和 128 段 LCD 的 8MHz MCU | ZCA | 113 | -40 to 85
TI

MSP430FG479IZQW

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FG479IZQWR

MIXED SIGNAL MICROCONTROLLER
TI

MSP430FG47X

MIXED SIGNAL MICROCONTROLLER
TI