MSP430FR2032 [TI]

具有 8KB FRAM、1KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU;
MSP430FR2032
型号: MSP430FR2032
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 8KB FRAM、1KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU

静态存储器
文件: 总99页 (文件大小:1903K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
MSP430FR203x 混合信号微控制器  
1 器件概述  
1.1 特性  
1
嵌入式微控制器  
时钟系统 (CS)  
频率高达 16MHz 16 位精简指令集计算机  
(RISC) 架构  
片上 32kHz RC 振荡器 (REFO)  
带有锁频环 (FLL) 的片上 16MHz 数控振荡器  
– 3.6V 1.8V 的宽电源电压范围(最低电源电压  
受限于 SVS 电平,请参阅 SVS 规格)  
经优化的低功耗模式(3V)  
工作状态:126µA/MHz  
待机  
(DCO)  
室温下的精度为 ±1%(具有片上基准)  
片上超低频 10kHz 振荡器 (VLO)  
片上高频调制振荡器时钟 (MODCLK)  
外部 32kHz 晶振 (XT1)  
– LPM3.5(具有 VLO):0.4µA  
可编程 MCLK 预分频器(1 128)  
实时时钟 (RTC) 计数器(LPM3.5,采用  
32768Hz 晶振):0.77μA  
通过可编程预分频器(124 8)从 MCLK  
获得的 SMCLK  
关断 (LPM4.5)15nA  
低功耗铁电 RAM (FRAM)  
容量高达 15.5KB 的非易失性存储器  
内置错误修正码 (ECC)  
通用输入/输出和引脚功能  
共计 60 I/O64 引脚封装)  
– 16 个中断引脚(P1 P2)可以将 MCU 从  
LPM 唤醒  
可配置的写保护  
所有 I/O 均为电容式触控 I/O  
开发工具和软件  
免费的专业开发环境  
系列成员(另请参阅 器件比较)  
对程序、常量和存储的统一存储  
耐写次数达 1015  
抗辐射和非磁性  
智能数字外设  
– MSP430FR203315KB 程序 FRAM + 512B 信  
FRAM + 2KB RAM  
红外调制逻辑  
– MSP430FR20328KB 程序 FRAM + 512B 信息  
两个 16 位定时器,每个定时器有 3 个捕捉/比较  
寄存器 (Timer_A3)  
FRAM + 1KB RAM  
封装选项  
一个仅用作计数器的 16 RTC 计数器  
– 16 位循环冗余校验 (CRC)  
增强型串行通信  
– 64 引脚:LQFP (PM)  
– 56 引脚:TSSOP (G56)  
– 48 引脚:TSSOP (G48)  
增强型 USCI A (eUSCI_A) 支持 UARTIrDA 和  
SPI  
增强型 USCI B (eUSCI_B) 支持 SPI I2C  
高性能模拟  
– 10 通道 10 位模数转换器 (ADC)  
– 1.5V 的内部基准电压  
采样与保持 200ksps  
1.2 应用  
烟雾或火灾探测器  
玻璃破裂探测器  
温度传感器或控制器  
数据存储、数据集成  
人机界面 (HMI) 控制器  
工业传感器管理  
系统监测器、低功耗控制器  
1.3 说明  
TI MSP430™系列低功耗微控制器种类繁多,各成员器件配备不同的外设集以满足各类应用 的需求的需  
求。该架构与多种低功耗模式配合使用,经过优化,可在便携式测量应用延长电池 寿命。此器件 具有 一个  
强大的 16 位精简指令集 (RISC) CPU,使用 16 位寄存器以及常数发生器,以便获得最高编码效率。DCO  
可使器件在不到 10µs 的时间内从低功率模式唤醒并进入工作模式。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASE45  
 
 
 
 
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
有关完整的模块说明,请参阅MSP430FR4xx MSP430FR2xx 系列器件用户指南》。  
器件信息(1)  
封装  
器件型号  
MSP430FR2033IPM  
MSP430FR2033IG56  
MSP430FR2033IG48  
MSP430FR2032IPM  
MSP430FR2032IG56  
MSP430FR2032IG48  
封装尺寸(2)  
LQFP (64)  
TSSOP (56)  
TSSOP (48)  
LQFP (64)  
TSSOP (56)  
TSSOP (48)  
10mm x 10mm  
14.0mm x 6.1mm  
12.5mm x 6.1mm  
10mm x 10mm  
14.0mm x 6.1mm  
12.5mm x 6.1mm  
(1) 要获得最新的产品、封装和订购信息,请参见封装选项附录9),或者访问德州仪器 (TI) 网站  
www.ti.com.cn。  
(2) 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据9)。  
2
器件概述  
版权 © 2014–2019, Texas Instruments Incorporated  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
1.4 功能方框图  
1-1 给出了功能框图。  
XIN  
XOUT  
P1.x, P2.x  
P3.x, P4.x  
P5.x, P6.x  
P7.x, P8.x  
Capacitive Touch I/O  
XT1  
ADC  
FRAM  
RAM  
I/O Ports  
P1, P2  
2×8 IOs,  
Interrupt  
and Wakeup,  
PA  
I/O Ports  
P3, P4  
2×8 IOs  
I/O Ports  
P5, P6  
2×8 IOs  
I/O Ports  
P7, P8  
1×8 IOs  
1×4 IOs  
PD  
DVCC  
DVSS  
Up to 10  
channels,  
single ended,  
10 bit,  
15KB+512B  
8KB+512B  
2KB  
1KB  
Clock  
System  
Control  
Power  
Management  
Module  
PB  
1×16 IOs  
PC  
1×16 IOs  
200 ksps  
1×12 IOs  
RST/NMI  
1×16 IOs  
MAB  
MDB  
16-MHz CPU  
with  
16 registers  
EEM  
RTC  
Counter  
SYS  
CRC16  
TA0  
TA1  
eUSCI_A0  
eUSCI_B0  
(SPI, I2C)  
TCK  
TMS  
16-bit  
Cyclic  
Redundancy  
Check  
16-bit  
Real-Time  
Clock  
JTAG  
SBW  
Timer_A  
3 CC  
Registers  
Timer_A  
3 CC  
Registers  
TDI/TCLK  
TDO  
(UART,  
IrDA, SPI)  
SBWTCK  
SBWTDIO  
Watchdog  
LPM3.5 Domain  
1-1. 功能框图  
该器件具有一对主电源(DVCC DVSS),分别为数字和模拟模块供电。推荐的旁路电容和去耦电容  
分别为 4.7µF 10µF 0.1µF,精度为 ±5%。  
P1 P2 特有引脚中断功能,可将 MCU LPM3.5 模式唤醒。  
每个 Timer_A3 均有 3 CC 寄存器,不过只有 CCR1 CCR2 从外部连接。CCR0 寄存器仅用于内部  
周期时序和产生中断。  
LPM3.5 模式下,RTC 计数器可继续工作,而其余外设会停止工作。  
TSSOP-56 TSSOP-48 封装中,并非所有 I/O 均已打线接合(请参见Table 4-1)。所有 I/O 均可  
配置为电容式触摸 I/O。  
版权 © 2014–2019, Texas Instruments Incorporated  
器件概述  
3
 
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 1  
1.3 说明 ................................................... 1  
1.4 功能方框图............................................ 3  
修订历史记录............................................... 5  
Device Comparison ..................................... 7  
3.1 Related Products ..................................... 7  
Terminal Configuration and Functions.............. 8  
4.1 Pin Diagrams ......................................... 8  
4.2 Signal Descriptions.................................. 11  
4.3 Pin Multiplexing ..................................... 14  
4.4 Connection of Unused Pins ......................... 14  
Specifications ........................................... 15  
5.1 Absolute Maximum Ratings......................... 15  
5.2 ESD Ratings ........................................ 15  
5.3 Recommended Operating Conditions............... 15  
5.12 Timing and Switching Characteristics ............... 20  
Detailed Description ................................... 34  
6.1 CPU ................................................. 34  
6.2 Operating Modes.................................... 34  
6.3 Interrupt Vector Addresses.......................... 35  
6.4 Bootloader (BSL).................................... 36  
6.5 JTAG Standard Interface............................ 36  
6.6 Spy-Bi-Wire Interface (SBW)........................ 37  
6.7 FRAM................................................ 37  
6.8 Memory Protection .................................. 37  
6.9 Peripherals .......................................... 38  
6.10 Device Descriptors (TLV) ........................... 62  
6.11 Memory.............................................. 63  
6.12 Identification ......................................... 70  
Applications, Implementation, and Layout........ 71  
6
2
3
4
5
7
8
7.1  
Device Connection and Layout Fundamentals...... 71  
7.2  
Peripheral- and Interface-Specific Design  
Information .......................................... 74  
5.4  
Active Mode Supply Current Into VCC Excluding  
External Current..................................... 16  
5.5 Active Mode Supply Current Per MHz .............. 16  
器件和文档支持 .......................................... 76  
8.1 开始使............................................. 76  
8.2 器件命名规则 ........................................ 76  
8.3 工具和软件 .......................................... 77  
8.4 文档支............................................. 79  
8.5 相关链............................................. 80  
8.6 社区资............................................. 81  
8.7 商标.................................................. 81  
8.8 静电放电警告 ........................................ 81  
8.9 Glossary ............................................. 81  
机械、封装和可订购信息................................ 82  
5.6  
5.7  
5.8  
5.9  
Low-Power Mode LPM0 Supply Currents Into VCC  
Excluding External Current.......................... 16  
Low-Power Mode LPM3 and LPM4 Supply Currents  
(Into VCC) Excluding External Current .............. 17  
Low-Power Mode LPMx.5 Supply Currents (Into  
VCC) Excluding External Current.................... 17  
Typical Characteristics, Low-Power Mode Supply  
Currents ............................................. 18  
5.10 Typical Characteristics - Current Consumption Per  
Module .............................................. 19  
5.11 Thermal Characteristics............................. 19  
9
4
内容  
版权 © 2014–2019, Texas Instruments Incorporated  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
从修订版本 D 更改为修订版本 E  
Changes from January 22, 2019 to December 9, 2019  
Page  
Changed the note that begins "Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset..." in  
Section 5.3, Recommended Operating Conditions ............................................................................. 15  
Added the note that begins "TI recommends that power to the DVCC pin must not exceed the limits..." in  
Section 5.3, Recommended Operating Conditions ............................................................................. 15  
Changed the note that begins "A capacitor tolerance of ±20% or better is required..." in Section 5.3,  
Recommended Operating Conditions ............................................................................................ 15  
Added the note "See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing" to  
Table 5-3, XT1 Crystal Oscillator (Low Frequency) ............................................................................ 22  
Changed the note that begins "Requires external capacitors at both terminals..." in Table 5-3, XT1 Crystal  
Oscillator (Low Frequency) ........................................................................................................ 22  
Added the t(int) parameter in Table 5-8, Digital Inputs ......................................................................... 24  
Added the tTA,cap parameter in Table 5-10, Timer_A............................................................................ 25  
Corrected the test conditions for the RI,MUX parameter in Table 5-17, ADC, Power Supply and Input Range  
Conditions ............................................................................................................................ 31  
Added the note that begins "tSample = ln(2n+1) × τ ..." in Table 5-18, ADC, 10-Bit Timing Parameters.................... 31  
从修订版本 C 更改为修订版本 D  
Changes from August 30, 2018 to January 21, 2019  
Page  
已通篇将调制振荡器 (MODOSC) 更改为调制振荡器时钟 (MODCLK) ......................................................... 1  
Added "or memory corruption" to note (1) in Section 5.1, Absolute Maximum Ratings ................................... 15  
Added the note that begins "The VLO clock frequency is reduced by..." after Table 5-6, Internal Very-Low-Power  
Low-Frequency Oscillator (VLO) ................................................................................................. 23  
Added the tTA,cap parameter in Table 5-10, Timer_A............................................................................ 25  
Changed the parameter symbol from RI to RI,MUX in Table 5-17, ADC, Power Supply and Input Range Conditions.. 31  
Added the RI,Misc parameter in Table 5-17, ADC, Power Supply and Input Range Conditions ........................... 31  
Removed ADCDIV from the formula for the tCONVERT TYP value, because ADCCLK is after division, in Table 5-  
18, ADC, 10-Bit Timing Parameters .............................................................................................. 31  
Added note (2) for RI calculation in Table 5-18, ADC, 10-Bit Timing Parameters.......................................... 31  
Removed "±3°C" on both temperatures in the note that begins "The device descriptor structure contains..." in  
Table 5-19, ADC, 10-Bit Linearity Parameters ................................................................................. 32  
Add "10b" for ADCSSEL bit in Table 6-6, Clock Distribution .................................................................. 39  
Added Figure 6-1, Clock Distribution Block Diagram........................................................................... 39  
Corrected the spelling of the IRDSSEL bit in the paragraph that begins "The IR functions are controlled by..." in  
Section 6.9.8, Timers (Timer0_A3, Timer1_A3)................................................................................. 44  
Changed two instances of "ADC 1.5-V Reference Temperature" to "ADC 1.5-V Reference Temperature Sensor"  
in Table 6-29, Device Descriptors................................................................................................. 62  
从修订版本 B 更改为修订版本 C  
Changes from August 15, 2015 to August 29, 2018  
Page  
Updated Section 3.1, Related Products ........................................................................................... 7  
Replaced all notes on Section 5.11, Thermal Characteristics ................................................................ 19  
Added note to VSVSH- and VSVSH+ parameters in Table 5-1, PMM, SVS and BOR.......................................... 20  
Added the tTA,cap parameter in Table 5-10, Timer_A............................................................................ 25  
Updated the link to the BSL user's guide in Section 6.4, Bootloader (BSL)................................................. 36  
Changed all instances of "bootstrap loader" to "bootloader" throughout document........................................ 36  
Corrected the ADCINCHx column heading in Table 6-12, ADC Channel Connections ................................... 45  
版权 © 2014–2019, Texas Instruments Incorporated  
修订历史记录  
5
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
更新了8器件和文档支持 中的特定于器件的信息和链接 .................................................................. 76  
从修订版本 A 更改为修订版本 B  
Changes from December 23, 2014 to August 14, 2015  
Page  
Corrected "10-BIT ADC CHANNELS" column for MSP430FR2032IPM in Table 3-1, Device Comparison .............. 7  
Added Tstg MIN and MAX values.................................................................................................. 15  
Added Section 5.2, ESD Ratings.................................................................................................. 15  
Changed all graphs in Section 5.9, Typical Characteristics, Low-Power Mode Supply Currents, for new  
measurements ...................................................................................................................... 18  
Added VREF, 1.2V parameter to Table 5-1, PMM, SVS and BOR............................................................... 20  
Added the tTA,cap parameter in Table 5-10, Timer_A............................................................................ 25  
Changed tSTE,LEAD MIN value at 2 V from 40 ns to 50 ns ...................................................................... 28  
Changed tSTE,LEAD MIN value at 3 V from 24 ns to 45 ns ...................................................................... 28  
Changed tVALID,SO MAX value at 2 V from 55 ns to 65 ns...................................................................... 28  
Changed tVALID,SO MAX value at 3 V from 30 ns to 40 ns...................................................................... 28  
Changed the fADCOSC TYP value from 4.5 MHz to 5.0 MHz.................................................................... 31  
In Table 6-1, Operating Modes, changed the entry for "Power Consumption at 25°C, 3 V" in AM from  
100 µA/MHz to 126 µA/MHz ....................................................................................................... 34  
In Table 6-1, Operating Modes, added "with RTC only" to the entry for "Power Consumption at 25°C, 3 V" in  
LPM3.5 ............................................................................................................................... 34  
In Table 6-2, Interrupt Sources, Flags, and Vectors, removed "FRAM access time error" (ACCTEIFG) from the  
"System NMI" row .................................................................................................................. 35  
从初始发行版更改为修订版本 A  
Changes from October 3, 2014 to December 22, 2014  
Page  
Moved Tstg to Absolute Maximum Ratings ....................................................................................... 15  
Added the tTA,cap parameter in Table 5-10, Timer_A............................................................................ 25  
Changed link to BSL user's guide in Section 6.4, Bootloader (BSL) ......................................................... 36  
Added note (1) to Table 6-6 ....................................................................................................... 39  
Changed the values of ADC Calibration Tag and ADC Calibration Length in the ADC Calibration row................. 62  
Added Calibration Tag, Calibration Length, and 1.5-V Reference in the Reference and DCO Calibration row ........ 63  
Added row for BSL memory to Table 6-30....................................................................................... 63  
6
修订历史记录  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
3 Device Comparison  
Table 3-1 summarizes the features of the available family members.  
Table 3-1. Device Comparison(1)(2)  
PROGRAM  
FRAM +  
INFORMATION (BYTES)  
FRAM (BYTES)  
SRAM  
10-BIT ADC  
CHANNELS  
DEVICE  
TA0, TA1  
eUSCI_A  
eUSCI_B  
I/O  
PACKAGE  
PM  
(LQFP64)  
MSP430FR2033IPM  
MSP430FR2033IG56  
MSP430FR2033IG48  
MSP430FR2032IPM  
MSP430FR2032IG56  
MSP430FR2032IG48  
15360 + 512  
15360 + 512  
15360 + 512  
8192 + 512  
8192 + 512  
8192 + 512  
2048  
2048  
2048  
1024  
1024  
1024  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
3 × CCR(3)  
1
1
1
1
1
1
1
1
1
1
1
1
10  
8
60  
52  
44  
60  
52  
44  
G56  
(TSSOP56)  
G48  
(TSSOP48)  
8
PM  
(LQFP64)  
10  
8
G56  
(TSSOP56)  
G48  
(TSSOP48)  
8
(1) For the most current device, package, and ordering information, see the Package Option Addendum in 9, or see the TI website at  
www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/packaging.  
(3) A CCR register is a configurable register that provides internal and external capture or compare inputs, or internal and external PWM  
outputs.  
3.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
TI 16-bit and 32-bit microcontrollers  
High-performance low-power solutions to enable the autonomous future  
Products for MSP430 ultra-low-power sensing & measurement MCUs  
One platform. One ecosystem. Endless possibilities.  
Companion products for MSP430FR2033  
Review products that are frequently purchased or used with this product.  
Reference designs for MSP430FR2033  
Find reference designs leveraging the best in TI technology to solve your system-level challenges.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Device Comparison  
7
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
4 Terminal Configuration and Functions  
4.1 Pin Diagrams  
Figure 4-1 shows the 64-pin PM package.  
P4.7  
P4.6  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
2
P4.5  
3
P4.4  
4
P4.3  
5
P4.2/XOUT  
P4.1/XIN  
6
7
DVSS  
8
DVCC  
9
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P4.0/TA1.1  
P8.3/TA1.2  
P8.2/TA1CLK  
P8.1/ACLK/A9  
P8.0/SMCLK/A8  
10  
11  
12  
13  
14  
15  
16  
Figure 4-1. 64-Pin PM (LQFP) Designation (Top View)  
8
Terminal Configuration and Functions  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
Figure 4-2 shows the 56-pin G56 package.  
P7.5  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
P3.0  
P7.4  
P7.3  
2
P3.1  
3
P3.2  
P7.2  
4
P3.3  
P7.1  
5
P3.4  
P7.0  
6
P3.5  
P4.7  
7
P3.6  
P4.6  
8
P3.7  
P4.5  
9
P6.0  
P4.4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
P6.1  
P4.3  
P6.2  
P4.2/XOUT  
P4.1/XIN  
P6.3  
P6.4  
DVSS  
P6.5  
DVCC  
P2.0  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P4.0/TA1.1  
P2.1  
P2.2  
P2.3  
P8.3/TA1.2  
P2.4  
P8.2/TA1CLK  
P1.7/TA0.1/TDO/A7  
P1.6/TA0.2/TDI/TCLK/A6  
P1.5/TA0CLK/TMS/A5  
P1.4/MCLK/TCK/A4/VREF+  
P1.3/UCA0STE/A3  
P1.2/UCA0CLK/A2  
P2.5  
P2.6  
P2.7  
P5.0/UCB0STE  
P5.1/UCB0CLK  
P5.2/UCB0SIMO/UCB0SDA  
P5.3/UCB0SOMI/UCB0SCL  
P5.4  
P1.1/UCA0RXD/UCA0SOMI/A1/Veref+  
P1.0/UCA0TXD/UCA0SIMO/A0/Veref–  
P5.5  
Figure 4-2. 56-Pin DGG (TSSOP) Designation (Top View)  
Copyright © 2014–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Figure 4-3 shows the 48-pin G48 package.  
P3.1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P3.2  
P3.0  
2
P3.3  
P7.3  
3
P3.4  
P7.2  
P7.1  
4
P3.5  
5
P3.6  
P7.0  
6
P3.7  
P4.7  
7
P6.0  
P4.6  
8
P6.1  
P4.5  
9
P6.2  
P4.4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P6.3  
P4.3  
P2.0  
P4.2/XOUT  
P2.1  
P4.1/XIN  
P2.2  
DVSS  
P2.3  
DVCC  
P2.4  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P4.0/TA1.1  
P2.5  
P2.6  
P2.7  
P1.7/TA0.1/TDO/A7  
P1.6/TA0.2/TDI/TCLK/A6  
P1.5/TA0CLK/TMS/A5  
P1.4/MCLK/TCK/A4/VREF+  
P1.3/UCA0STE/A3  
P1.2/UCA0CLK/A2  
P5.0/UCB0STE  
P5.1/UCB0CLK  
P5.2/UCB0SIMO/UCB0SDA  
P5.3/UCB0SOMI/UCB0SCL  
P1.0/UCA0TXD/UCA0SIMO/A0/Veref–  
P1.1/UCA0RXD/UCA0SOMI/A1/Veref+  
Figure 4-3. 48-Pin DGG (TSSOP) Designation (Top View)  
10  
Terminal Configuration and Functions  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
4.2 Signal Descriptions  
Table 4-1 describes the signals for all device variants and package options.  
Table 4-1. Signal Descriptions  
TERMINAL  
PACKAGE SUFFIX  
I/O  
DESCRIPTION  
NAME  
PM  
G56  
7
G48  
P4.7  
P4.6  
P4.5  
P4.4  
P4.3  
1
2
3
4
5
7
8
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
8
9
9
10  
11  
10  
11  
P4.2/XOUT  
P4.1/XIN  
6
7
12  
13  
12  
13  
I/O  
I/O  
Output terminal for crystal oscillator  
General-purpose I/O  
Input terminal for crystal oscillator  
Power ground  
DVSS  
DVCC  
8
9
14  
15  
14  
15  
Power supply  
Reset input, active low  
RST/NMI/SBWTDIO  
10  
16  
16  
I/O  
Nonmaskable interrupt input  
Spy-Bi-Wire data input/output  
Test Mode pin – selected digital I/O on JTAG pins  
TEST/SBWTCK  
P4.0/TA1.1  
11  
12  
13  
14  
17  
18  
19  
20  
17  
18  
I
Spy-Bi-Wire input clock  
General-purpose I/O  
I/O  
I/O  
I/O  
Timer TA1 CCR1 capture: CCI1A input, compare: Out1 outputs  
General-purpose I/O  
P8.3/TA1.2(1)  
P8.2/TA1CLK(1)  
Timer TA1 CCR2 capture: CCI2A input, compare: Out2 outputs  
General-purpose I/O  
Timer clock input TACLK for TA1  
General-purpose I/O  
P8.1/ACLK/A9(1)  
15  
16  
I/O  
I/O  
ACLK output  
Analog input A9  
General-purpose I/O  
P8.0/SMCLK/A8(1)  
SMCLK output  
Analog input A8  
General-purpose I/O(2)  
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 outputs  
Test data output  
P1.7/TA0.1/TDO/A7(2)  
17  
18  
21  
22  
19  
20  
I/O  
I/O  
Analog input A7  
General-purpose I/O(2)  
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 outputs  
Test data input or test clock input  
P1.6/TA0.2/TDI/TCLK/A6(2)  
Analog input A6  
(1) Any pin that is not bonded out in a smaller package must be initialized by software after reset to achieve the lowest leakage current.  
(2) Because this pin is multiplexed with the JTAG function, TI recommends disabling the pin interrupt function while in JTAG debug to  
prevent collisions.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Table 4-1. Signal Descriptions (continued)  
TERMINAL  
PACKAGE SUFFIX  
I/O  
DESCRIPTION  
NAME  
PM  
G56  
G48  
General-purpose I/O(2)  
Timer clock input TACLK for TA0  
Test mode select  
P1.5/TA0CLK/TMS/A5(2)  
19  
20  
23  
21  
22  
I/O  
Analog input A5  
General-purpose I/O(2)  
MCLK output  
Test clock  
P1.4/MCLK/TCK/A4/VREF+(2)  
24  
I/O  
Analog input A4  
Output of positive reference voltage with ground as reference  
General-purpose I/O  
P1.3/UCA0STE/A3  
P1.2/UCA0CLK/A2  
21  
22  
25  
26  
23  
24  
I/O  
I/O  
eUSCI_A0 SPI slave transmit enable  
Analog input A3  
General-purpose I/O  
eUSCI_A0 SPI clock input/output  
Analog input A2  
General-purpose I/O  
eUSCI_A0 UART receive data  
P1.1/UCA0RXD/UCA0SOMI/  
A1/Veref+  
23  
24  
27  
28  
25  
26  
I/O  
I/O  
eUSCI_A0 SPI slave out/master in  
Analog input A1, and ADC positive reference  
General-purpose I/O  
eUSCI_A0 UART transmit data  
P1.0/UCA0TXD/UCA0SIMO/  
A0/Veref-  
eUSCI_A0 SPI slave in/master out  
Analog input A0, and ADC negative reference  
General-purpose I/O  
P5.7(1)  
P5.6(1)  
P5.5(1)  
P5.4(1)  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O  
29  
30  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
P5.3/UCB0SOMI/UCB0SCL  
P5.2/UCB0SIMO/UCB0SDA  
P5.1/UCB0CLK  
29  
30  
31  
32  
31  
32  
33  
34  
27  
28  
29  
30  
I/O  
I/O  
I/O  
I/O  
eUSCI_B0 SPI slave out/master in; eUSCI_B0 I2C clock  
General-purpose I/O  
eUSCI_B0 SPI slave in/master out; eUSCI_B0 I2C data  
General-purpose I/O  
eUSCI_B0 clock input/output  
General-purpose I/O  
P5.0/UCB0STE  
eUSCI_B0 slave transmit enable  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
P2.7  
P2.6  
P2.5  
P2.4  
P2.3  
P2.2  
P2.1  
33  
34  
35  
36  
37  
38  
39  
35  
36  
37  
38  
39  
40  
41  
31  
32  
33  
34  
35  
36  
37  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
12  
Terminal Configuration and Functions  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
Table 4-1. Signal Descriptions (continued)  
TERMINAL  
PACKAGE SUFFIX  
I/O  
DESCRIPTION  
NAME  
PM  
40  
G56  
G48  
P2.0  
42  
38  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
P6.7(1)  
P6.6(1)  
P6.5(1)  
P6.4(1)  
P6.3  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
1
P6.2  
P6.1  
P6.0  
P3.7  
P3.6  
P3.5  
P3.4  
P3.3  
P3.2  
P3.1  
P3.0  
2
P7.7(1)  
P7.6(1)  
P7.5(1)  
P7.4(1)  
P7.3  
1
2
3
4
5
6
3
4
5
6
P7.2  
P7.1  
P7.0  
Copyright © 2014–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
4.3 Pin Multiplexing  
Pin multiplexing for these devices is controlled by both register settings and operating modes (for  
example, if the device is in test mode). For details of the settings for each pin and diagrams of the  
multiplexed ports, see Section 6.9.12.  
4.4 Connection of Unused Pins  
Table 4-2 shows the correct termination of unused pins.  
Table 4-2. Connection of Unused Pins(1)  
PIN  
POTENTIAL  
Open  
COMMENT  
Px.0 to Px.7  
RST/NMI  
TEST  
Set to port function, output direction (PxDIR.n = 1)  
47-kpullup or internal pullup selected with 10-nF (or 1.1-nF) pulldown(2)  
DVCC  
Open  
This pin always has an internal pulldown enabled.  
(1) Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection  
guidelines.  
(2) The pulldown capacitor should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode with TI tools like  
FET interfaces or GANG programmers.  
14  
Terminal Configuration and Functions  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Voltage applied at DVCC pin to VSS  
Voltage applied to any pin(2)  
–0.3  
4.1  
V
VCC + 0.3  
(4.1 Maximum)  
–0.3  
V
Diode current at any device pin  
±2  
85  
mA  
°C  
Maximum junction temperature, TJ  
(3)  
Storage temperature, Tstg  
–40  
125  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage or memory corruption to the device.  
These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect  
device reliability.  
(2) All voltages referenced to VSS  
.
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
5.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±1000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V  
may actually have higher performance.  
5.3 Recommended Operating Conditions  
Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
VCC  
VSS  
TA  
Supply voltage applied at DVCC pin(1)(2)(3)(4)  
Supply voltage applied at DVSS pin  
Operating free-air temperature  
1.8  
3.6  
V
V
0
–40  
–40  
4.7  
85  
85  
°C  
°C  
µF  
TJ  
Operating junction temperature  
Recommended capacitor at DVCC(5)  
CDVCC  
10  
No FRAM wait states  
(NWAITSx = 0)  
0
0
8
fSYSTEM  
Processor frequency (maximum MCLK frequency)(6)  
MHz  
With FRAM wait states  
(NWAITSx = 1)(7)  
16(8)  
fACLK  
Maximum ACLK frequency  
Maximum SMCLK frequency  
40  
16(8)  
kHz  
fSMCLK  
MHz  
(1) Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset even within the recommended supply voltage range. Following the  
data sheet recommendation for capacitor CDVCC limits the slopes accordingly.  
(2) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(3) TI recommends that power to the DVCC pin must not exceed the limits specified in Recommended Operating Conditions. Exceeding the  
specified limits can cause malfunction of the device including erroneous writes to RAM and FRAM.  
(4) The minimum supply voltage is defined by the SVS levels. See the SVS threshold parameters in Table 5-1.  
(5) A capacitor tolerance of ±20% or better is required. A low-ESR ceramic capacitor of 100 nF (minimum) should be placed as close as  
possible (within a few millimeters) to the respective pin pair.  
(6) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
(7) Wait states only occur on actual FRAM accesses (that is, on FRAM cache misses). RAM and peripheral accesses are always executed  
without wait states.  
(8) If clock sources such as HF crystals or the DCO with frequencies >16 MHz are used, the clock must be divided in the clock system to  
comply with this operating condition.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
5.4 Active Mode Supply Current Into VCC Excluding External Current(1)  
FREQUENCY (fMCLK = fSMCLK  
)
1 MHz  
0 WAIT STATES  
(NWAITSx = 0)  
8 MHz  
0 WAIT STATES  
(NWAITSx = 0)  
16 MHz  
1 WAIT STATE  
(NWAITSx = 1)  
EXECUTION  
MEMORY  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
TYP  
504  
516  
209  
217  
231  
MAX  
TYP  
2874  
2919  
633  
MAX  
TYP  
3156  
3205  
1056  
1074  
1450  
MAX  
3700  
3 V, 25°C  
3 V, 85°C  
3 V, 25°C  
3 V, 85°C  
3 V, 25°C  
FRAM  
0% cache hit ratio  
IAM, FRAM(0%)  
µA  
1298  
FRAM  
100% cache hit ratio  
IAM, FRAM(100%)  
µA  
µA  
647  
(2)  
IAM, RAM  
RAM  
809  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Characterized with program executing typical data  
processing.  
fACLK = 32786 Hz, fMCLK = fSMCLK = fDCO at specified frequency  
Program and data entirely reside in FRAM. All execution is from FRAM.  
(2) Program and data reside entirely in RAM. All execution is from RAM. No access to FRAM.  
5.5 Active Mode Supply Current Per MHz  
VCC = 3 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TYP  
UNIT  
µA/MHz  
((IAM, 75% cache hit rate at 8 MHz) –  
(IAM, 75% cache hit rate at 1 MHz))  
/ 7 MHz  
Active mode current consumption per MHz,  
execution from FRAM, no wait states(1)  
dIAM,FRAM/df  
126  
(1) All peripherals are turned on in default settings.  
5.6 Low-Power Mode LPM0 Supply Currents Into VCC Excluding External Current  
VCC = 3 V, TA = 25°C (unless otherwise noted)(1)(2)  
FREQUENCY (fSMCLK  
8 MHz  
)
PARAMETER  
VCC  
1 MHz  
TYP  
16 MHz  
TYP MAX  
UNIT  
MAX  
TYP  
307  
318  
MAX  
2 V  
3 V  
158  
169  
415  
427  
ILPM0  
Low-power mode LPM0 supply current  
µA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) Current for watchdog timer clocked by SMCLK included.  
fACLK = 32786 Hz, fMCLK = 0 MHz, fSMCLK at specified frequency.  
16  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
5.7 Low-Power Mode LPM3 and LPM4 Supply Currents (Into VCC) Excluding External Current  
(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
–40°C  
TYP MAX  
25°C  
TYP  
85°C  
TYP  
PARAMETER  
VCC  
UNIT  
MAX  
MAX  
3 V  
2 V  
3 V  
2 V  
3 V  
3 V  
2 V  
3 V  
2 V  
1.13  
1.06  
0.92  
0.86  
1.08  
0.65  
0.63  
0.51  
0.50  
1.31  
1.21  
1.00  
1.00  
1.25  
0.75  
0.73  
0.58  
0.57  
1.99  
3.00  
2.94  
2.89  
2.75  
3.04  
1.88  
1.85  
1.51  
1.49  
ILPM3,XT1  
Low-power mode 3, includes SVS(2)(3)(4)  
µA  
1.75  
ILPM3,VLO  
ILPM3, RTC  
ILPM4, SVS  
Low-power mode 3, VLO, excludes SVS(5)  
Low-power mode 3, RTC, excludes SVS(6)  
Low-power mode 4, includes SVS  
µA  
µA  
µA  
ILPM4  
Low-power mode 4, excludes SVS  
µA  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current  
(2) Not applicable for devices with HF crystal oscillator only.  
(3) Characterized with a Golledge MS1V-TK/I_32.768KHZ crystal with a load capacitance chosen to closely match the required load.  
(4) Low-power mode 3, includes SVS test conditions:  
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 3, VLO, excludes SVS test conditions:  
Current for watchdog timer clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0).  
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(6) RTC periodically wakes up every second with external 32768-Hz as source.  
5.8 Low-Power Mode LPMx.5 Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
–40°C  
TYP MAX  
25°C  
TYP  
85°C  
TYP  
PARAMETER  
VCC  
UNIT  
µA  
MAX  
MAX  
Low-power mode 3.5, includes SVS(1)(2) (3)  
(also see Figure 5-2)  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
0.71  
0.66  
0.77  
0.70  
1.25  
1.06  
0.95  
0.32  
0.24  
2.06  
ILPM3.5, XT1  
ILPM4.5, SVS  
ILPM4.5  
0.23  
0.25 0.375  
0.20  
0.43  
Low-power mode 4.5, includes SVS(4)  
Low-power mode 4.5, excludes SVS(5)  
µA  
0.20  
0.010  
0.008  
0.015 0.070 0.073 0.140  
0.013 0.060  
µA  
(1) Not applicable for devices with HF crystal oscillator only.  
(2) Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance chosen to closely match the required load.  
(3) Low-power mode 3.5, includes SVS test conditions:  
Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz  
(4) Low-power mode 4.5, includes SVS test conditions:  
Current for brownout and SVS included (SVSHE = 1). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
(5) Low-power mode 4.5, excludes SVS test conditions:  
Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled.  
PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5),  
fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
5.9 Typical Characteristics, Low-Power Mode Supply Currents  
5
4.5  
4
3
2.5  
2
3.5  
3
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (°C)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (°C)  
LPM3  
SVS disabled  
DVCC = 3 V  
LPM3.5  
12.5-pF crystal on XT1  
DVCC = 3 V  
SVS enabled  
RTC counter on  
Figure 5-1. LPM3 Supply Current vs Temperature  
Figure 5-2. LPM3.5 Supply Current vs Temperature  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (°C)  
LPM4.5  
DVCC = 3 V  
SVS enabled  
Figure 5-3. LPM4.5 Supply Current vs Temperature  
18  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
5.10 Typical Characteristics - Current Consumption Per Module  
MODULE  
Timer_A  
TEST CONDITIONS  
REFERENCE CLOCK  
Module input clock  
TYP  
5
UNIT  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
nA  
eUSCI_A  
eUSCI_A  
eUSCI_B  
eUSCI_B  
RTC  
UART mode  
SPI mode  
SPI mode  
Module input clock  
Module input clock  
Module input clock  
Module input clock  
32 kHz  
7
5
5
I2C mode, 100 kbaud  
5
85  
8.5  
CRC  
From start to end of operation  
MCLK  
µA/MHz  
5.11 Thermal Characteristics  
THERMAL METRIC(1)  
PACKAGE  
VALUE(2)  
61.7  
25.4  
32.7  
32.4  
2.5  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
θJC, (TOP)  
θJB  
Junction-to-board thermal resistance  
LQFP-64 (PM)  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
ΨJT  
θJA  
62.4  
18.7  
31.4  
31.1  
0.8  
θJC, (TOP)  
θJB  
Junction-to-board thermal resistance  
TSSOP-56 (DGG56)  
TSSOP-48 (DGG48)  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
Junction-to-ambient thermal resistance, still air  
Junction-to-case (top) thermal resistance  
ΨJT  
θJA  
68.9  
23  
θJC, (TOP)  
θJB  
Junction-to-board thermal resistance  
35.8  
35.3  
1.1  
ΨJB  
Junction-to-board thermal characterization parameter  
Junction-to-top thermal characterization parameter  
ΨJT  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) The values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a JEDEC-  
defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
5.12 Timing and Switching Characteristics  
5.12.1 Power Supply Sequencing  
Figure 5-4 shows the power supply reset parameters.  
V
Power Cycle Reset  
VSVS+  
SVS Reset  
BOR Reset  
VSVS–  
VBOR  
tBOR  
t
Figure 5-4. Power Cycle, SVS, and BOR Reset Conditions  
Table 5-1. PMM, SVS and BOR  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.1  
10  
TYP  
MAX UNIT  
VBOR, safe  
tBOR, safe  
ISVSH,AM  
Safe BOR power-down level(1)  
Safe BOR reset delay(2)  
V
ms  
SVSH current consumption, active mode  
SVSH current consumption, low-power modes  
SVSH power-down level(3)  
VCC = 3.6 V  
VCC = 3.6 V  
1.5  
µA  
nA  
V
ISVSH,LPM  
VSVSH-  
240  
1.81  
1.88  
70  
1.71  
1.76  
1.87  
1.99  
VSVSH+  
SVSH power-up level(3)  
V
VSVSH_hys  
tPD,SVSH, AM  
tPD,SVSH, LPM  
VREF, 1.2V  
SVSH hysteresis  
mV  
µs  
µs  
V
SVSH propagation delay, active mode  
SVSH propagation delay, low-power modes  
1.2-V REF voltage(4)  
10  
100  
1.158  
1.200  
1.242  
(1) A safe BOR can be correctly generated only if DVCC drops below this voltage before it rises.  
(2) When an BOR occurs, a safe BOR can be correctly generated only if DVCC is kept low longer than this period before it reaches VSVSH+  
(3) For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference  
Design.  
.
(4) This is a characterized result with external 1-mA load to ground from –40°C to 85°C.  
20  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
5.12.2 Reset Timing  
Table 5-2. Wake-Up Times From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
VCC  
3 V  
3V  
MIN  
TYP  
MAX UNIT  
Additional wake-up time to activate the FRAM in AM  
if previously disabled by the FRAM controller or from  
a LPM if immediate activation is selected for  
wakeup(1)  
tWAKE-UP FRAM  
10  
µs  
200 ns +  
2.5/fDCO  
tWAKE-UP LPM0  
Wake-up time from LPM0 to active mode(1)  
(2)  
tWAKE-UP LPM3  
tWAKE-UP LPM4  
tWAKE-UP LPM3.5  
Wake-up time from LPM3 to active mode  
3 V  
3 V  
3 V  
3 V  
3 V  
10  
10  
µs  
µs  
µs  
µs  
ms  
Wake-up time from LPM4 to active mode  
(2)  
Wake-up time from LPM3.5 to active mode  
350  
350  
1
SVSHE = 1  
SVSHE = 0  
(2)  
tWAKE-UP LPM4.5  
Wake-up time from LPM4.5 to active mode  
Wake-up time from RST or BOR event to active  
mode  
tWAKE-UP-RESET  
tRESET  
3 V  
3 V  
1
ms  
µs  
(2)  
Pulse duration required at RST/NMI pin to accept a  
reset  
2
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first  
externally observable MCLK clock edge.  
(2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first  
instruction of the user program is executed.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.3 Clock Specifications  
Table 5-3. XT1 Crystal Oscillator (Low Frequency)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
LFXTBYPASS = 0  
MIN  
TYP  
MAX UNIT  
fXT1, LF  
XT1 oscillator crystal, low frequency  
32768  
Hz  
Measured at MCLK,  
fLFXT = 32768 Hz  
DCXT1, LF  
XT1 oscillator LF duty cycle  
30%  
70%  
XT1 oscillator logic-level square-wave  
input frequency  
(3)(4)  
fXT1,SW  
DCXT1, SW  
OALFXT  
CL,eff  
LFXTBYPASS = 1  
LFXTBYPASS = 1  
32768  
Hz  
LFXT oscillator logic-level square-  
wave input duty cycle  
40%  
60%  
Oscillation allowance for LF crystals  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
fLFXT = 32768 Hz, CL,eff = 12.5 pF  
200  
1
kΩ  
(5)  
Integrated effective load  
capacitance(6)  
(7)  
See  
pF  
fOSC = 32768 Hz,  
LFXTBYPASS = 0, LFXTDRIVE = {3},  
TA = 25°C, CL,eff = 12.5 pF  
(8)  
tSTART,LFXT  
fFault,LFXT  
Start-up time  
1000  
ms  
(9)  
Oscillator fault frequency  
XTS = 0(10)  
0
3500  
Hz  
(1) To improve EMI on the LFXT oscillator, the following guidelines should be observed.  
Keep the trace between the device and the crystal as short as possible.  
Design a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.  
(2) See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing.  
(3) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics  
defined in the Schmitt-trigger inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW  
.
(4) Maximum frequency of operation of the entire device cannot be exceeded.  
(5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
For LFXTDRIVE = {0}, CL,eff = 3.7 pF  
For LFXTDRIVE = {1}, 6 pF CL,eff 9 pF  
For LFXTDRIVE = {2}, 6 pF CL,eff 10 pF  
For LFXTDRIVE = {3}, 6 pF CL,eff 12 pF  
(6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
(7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended  
effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds  
additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance  
of the selected crystal is met.  
(8) Includes start-up counter of 1024 clock cycles.  
(9) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specification may set the  
flag. A static condition or stuck at fault condition sets the flag.  
(10) Measured with logic-level input frequency but also applies to operation with crystals.  
22  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
Table 5-4. DCO FLL, Frequency  
over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
–1.0%  
–2.0%  
TYP  
MAX UNIT  
1.0%  
FLL lock frequency, 16 MHz, 25°C  
FLL lock frequency, 16 MHz, –40°C to 85°C  
Measured at MCLK, Internal  
trimmed REFO as reference  
2.0%  
fDCO, FLL  
3 V  
Measured at MCLK,  
XT1 crystal as reference  
FLL lock frequency, 16 MHz, –40°C to 85°C  
–0.5%  
40%  
0.5%  
60%  
fDUTY  
Duty cycle  
50%  
0.25%  
0.022%  
120  
Jittercc  
Jitterlong  
tFLL, lock  
Cycle-to-cycle jitter, 16 MHz  
Long-term jitter, 16 MHz  
FLL lock time  
Measured at MCLK,  
XT1 crystal as reference  
3 V  
ms  
Table 5-5. REFO  
over recommended operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA = 25°C  
VCC  
MIN  
TYP  
15  
MAX UNIT  
µA  
IREFO  
REFO oscillator current consumption  
REFO calibrated frequency  
3 V  
3 V  
Measured at MCLK  
–40°C to 85°C  
Measured at MCLK(1)  
32768  
Hz  
fREFO  
REFO absolute calibrated tolerance  
REFO frequency temperature drift  
1.8 V to 3.6 V  
3 V  
–3.5%  
3.5%  
dfREFO/dT  
0.01  
1
%/°C  
dfREFO  
/
Measured at MCLK at  
25°C(2)  
REFO frequency supply voltage drift  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
%/V  
dVCC  
fDC  
REFO duty cycle  
Measured at MCLK  
40%  
50%  
50  
60%  
µs  
tSTART  
REFO start-up time  
40% to 60% duty cycle  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(2 V to 3.6 V) – MIN(2 V to 3.6 V)) / MIN(2 V to 3.6 V) / (3.6 V – 2 V)  
Table 5-6. Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
3 V  
MIN  
TYP  
10  
MAX UNIT  
kHz  
fVLO  
Measured at MCLK  
dfVLO/dT  
Measured at MCLK(1)  
Measured at MCLK(2)  
Measured at MCLK  
3 V  
0.5  
4
%/°C  
dfVLO/dVCC VLO frequency supply voltage drift  
fVLO,DC Duty cycle  
1.8 V to 3.6 V  
3 V  
%/V  
50%  
(1) Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))  
(2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)  
NOTE  
The VLO clock frequency is reduced by 15% (typical) when the device switches from active  
mode to LPM3 or LPM4, because the reference changes. This lower frequency is not a  
violation of the VLO specifications (see Table 5-6).  
Table 5-7. Module Oscillator Clock (MODCLK)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
MODCLK frequency  
VCC  
3 V  
3 V  
MIN  
TYP  
4.8  
MAX UNIT  
5.8 MHz  
%/℃  
fMODCLK  
3.8  
fMODCLK/dT  
MODCLK frequency temperature drift  
MODCLK frequency supply voltage drift  
Duty cycle  
0.102  
1.8 V to  
3.6 V  
fMODCLK/dVCC  
fMODCLK,DC  
1.02  
50%  
%/V  
60%  
3 V  
40%  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.4 Digital I/Os  
Table 5-8. Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
0.90  
1.35  
0.50  
0.75  
0.3  
TYP  
MAX UNIT  
1.50  
V
VIT+  
VIT–  
Vhys  
Positive-going input threshold voltage  
2.25  
1.10  
V
Negative-going input threshold voltage  
1.65  
0.8  
V
Input voltage hysteresis (VIT+ – VIT–  
Pullup or pulldown resistor  
)
0.4  
1.2  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
RPull  
CI,dig  
CI,ana  
20  
35  
3
50  
20  
kΩ  
pF  
pF  
nA  
Input capacitance, digital only port pins  
VIN = VSS or VCC  
Input capacitance, port pins with shared analog  
functions  
Ilkg(Px.y) High-impedance leakage current(1)(2)  
VIN = VSS or VCC  
5
2 V, 3 V  
2 V, 3 V  
–20  
50  
Ports with interrupt capability  
(see block diagram and  
terminal function descriptions)  
External interrupt timing (external trigger pulse  
t(int)  
ns  
duration to set interrupt flag)(3)  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is  
disabled.  
(3) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
Table 5-9. Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
I(OHmax) = –3 mA(1)  
I(OHmax) = –5 mA(1)  
I(OLmax) = 3 mA(1)  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
1.4  
2.4  
0.0  
0.0  
16  
TYP  
MAX UNIT  
2.0  
V
VOH  
High-level output voltage  
3.0  
0.60  
V
VOL  
Low-level output voltage  
I(OHmax) = 5 mA(1)  
0.60  
fPort_CLK  
trise,dig  
tfall,dig  
Clock output frequency  
CL = 20 pF(2)  
CL = 20 pF  
CL = 20 pF  
MHz  
ns  
16  
10  
7
Port output rise time, digital only port pins  
Port output fall time, digital only port pins  
10  
5
ns  
(1) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(2) The port can output frequencies at least up to the specified limit and might support higher frequencies.  
24  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
5.12.4.1 Digital I/O Typical Characteristics  
25  
10  
7.5  
5
TA = 85°C  
TA = 85°C  
TA = 25°C  
20  
TA = 25°C  
15  
10  
5
2.5  
0
0
0
0.5  
1
1.5  
2
2.5  
3
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
Low-Level Output Voltage (V)  
Figure 5-5. Typical Low-Level Output Current vs Low-Level  
Output Voltage (DVCC = 3 V)  
Low-Level Output Voltage (V)  
Figure 5-6. Typical Low-Level Output Current vs Low-Level  
Output Voltage (DVCC = 2 V)  
0
0
TA = 85°C  
TA = 85°C  
-5  
TA = 25°C  
TA = 25°C  
-2.5  
-10  
-5  
-7.5  
-10  
-15  
-20  
-25  
0
0.5  
1
1.5  
2
2.5  
3
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
High-Level Output Voltage (V)  
Figure 5-7. Typical High-Level Output Current vs High-Level  
Output Voltage (DVCC = 3 V)  
High-Level Output Voltage (V)  
Figure 5-8. Typical High-Level Output Current vs High-Level  
Output Voltage (DVCC = 2 V)  
5.12.5 Timer_A  
Table 5-10. Timer_A Recommended Operating Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or ACLK,  
External: TACLK,  
Duty cycle = 50% ±10%  
fTA  
Timer_A input clock frequency  
2 V, 3 V  
16 MHz  
ns  
All capture inputs, minimum pulse  
duration required for capture  
tTA,cap Timer_A capture timing  
2 V, 3 V  
20  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
5.12.6 eUSCI  
Table 5-11. eUSCI (UART Mode) Recommended Operating Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX UNIT  
Internal: SMCLK or MODCLK,  
External: UCLK,  
feUSCI eUSCI input clock frequency  
2 V, 3 V  
16 MHz  
Duty cycle = 50% ±10%  
BITCLK clock frequency  
fBITCLK  
2 V, 3 V  
5
MHz  
(equals baud rate in Mbaud)  
Table 5-12. eUSCI (UART Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
UCGLITx = 0  
VCC  
TYP UNIT  
12  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
40  
ns  
68  
(1)  
tt  
UART receive deglitch time  
2 V, 3 V  
110  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized, their duration should exceed the maximum specification of the deglitch time.  
Table 5-13. eUSCI (SPI Master Mode) Recommended Operating Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Internal: SMCLK or MODCLK,  
Duty cycle = 50% ±10%  
feUSCI  
eUSCI input clock frequency  
8
MHz  
Table 5-14. eUSCI (SPI Master Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
MAX  
UNIT  
UCxCLK  
cycles  
tSTE,LEAD  
tSTE,LAG  
STE lead time, STE active to clock  
UCSTEM = 1, UCMODEx = 01 or 10  
1
UCxCLK  
cycles  
STE lag time, Last clock to STE inactive  
SOMI input data setup time  
UCSTEM = 1, UCMODEx = 01 or 10  
1
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
45  
35  
0
tSU,MI  
ns  
ns  
ns  
ns  
tHD,MI  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
0
20  
20  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO  
0
0
tHD,MO  
CL = 20 pF  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)  
)
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-9 and Figure 5-10.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-  
9 and Figure 5-10.  
26  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tSU,MI  
tHD,MI  
SOMI  
SIMO  
tVALID,MO  
Figure 5-9. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tHD,MI  
tSU,MI  
SOMI  
SIMO  
tVALID,MO  
Figure 5-10. SPI Master Mode, CKPH = 1  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Table 5-15. eUSCI (SPI Slave Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
2 V  
3 V  
MIN  
55  
MAX UNIT  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE active to clock  
ns  
45  
20  
STE lag time, Last clock to STE inactive  
ns  
20  
65  
ns  
40  
STE access time, STE active to SOMI data out  
40  
ns  
35  
STE disable time, STE inactive to SOMI high  
impedance  
4
4
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
ns  
ns  
12  
12  
tHD,SI  
65  
ns  
40  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
5
5
(3)  
tHD,SO  
SOMI output data hold time  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)  
)
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 5-11 and Figure 5-12.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-11  
and Figure 5-12.  
28  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SIMO  
tHD,SIMO  
tLOW/HIGH  
tLOW/HIGH  
SIMO  
SOMI  
tACC  
tVALID,SOMI  
tDIS  
Figure 5-11. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLOW/HIGH  
tLOW/HIGH  
tHD,SI  
tSU,SI  
SIMO  
SOMI  
tACC  
tDIS  
tVALID,SO  
Figure 5-12. SPI Slave Mode, CKPH = 1  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Table 5-16. eUSCI (I2C Mode) Switching Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-13)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK or MODCLK,  
External: UCLK,  
feUSCI  
eUSCI input clock frequency  
16 MHz  
Duty cycle = 50% ±10%  
fSCL  
SCL clock frequency  
2 V, 3 V  
2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
fSCL = 100 kHz  
fSCL > 100 kHz  
fSCL = 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
tSU,STA  
Setup time for a repeated START  
2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2 V, 3 V  
2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL = 100 kHz  
fSCL > 100 kHz  
UCGLITx = 0  
UCGLITx = 1  
UCGLITx = 2  
UCGLITx = 3  
UCCLTOx = 1  
UCCLTOx = 2  
UCCLTOx = 3  
tSU,STO  
Setup time for STOP  
2 V, 3 V  
µs  
600  
25  
300  
ns  
Pulse duration of spikes suppressed by  
input filter  
tSP  
2 V, 3 V  
12.5  
6.3  
150  
75  
27  
30  
33  
tTIMEOUT  
Clock low time-out  
2 V, 3 V  
ms  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
tLOW  
tHIGH  
tSP  
SCL  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 5-13. I2C Mode Timing  
30  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
5.12.7 ADC  
Table 5-17. ADC, Power Supply and Input Range Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.0  
0
TYP  
MAX UNIT  
DVCC  
V(Ax)  
ADC supply voltage  
Analog input voltage range  
3.6  
V
V
All ADC pins  
DVCC  
Operating supply current into  
DVCC terminal, reference  
current not included, repeat-  
single-channel mode  
2 V  
3 V  
185  
207  
fADCCLK = 5 MHz, ADCON = 1,  
REFON = 0, SHT0 = 0, SHT1 = 0,  
ADCDIV = 0, ADCCONSEQx = 10b  
IADC  
µA  
Only one terminal Ax can be selected at one  
time from the pad to the ADC capacitor array,  
including wiring and pad  
CI  
RI,MUX  
RI,Misc  
Input capacitance  
2.2 V  
1.6  
34  
2.0  
2
pF  
Input MUX ON resistance  
DVCC = 2 V, 0 V VAx DVCC  
kΩ  
kΩ  
Input miscellaneous  
resistance  
Table 5-18. ADC, 10-Bit Timing Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC linearity  
parameters  
2 V to  
3.6 V  
fADCCLK  
fADCOSC  
0.45  
5
5.5 MHz  
Internal ADC oscillator  
(MODCLK)  
2 V to  
3.6 V  
ADCDIV = 0, fADCCLK = fADCOSC  
4.5  
5.0  
5.5 MHz  
REFON = 0, Internal oscillator,  
10 ADCCLK cycles, 10-bit mode,  
fADCOSC = 4.5 MHz to 5.5 MHz  
2 V to  
3.6 V  
2.18  
2.67  
µs  
tCONVERT  
Conversion time  
External fADCCLK from ACLK, MCLK, or SMCLK,  
ADCSSEL 0  
2 V to  
3.6 V  
(1)  
The error in a conversion started after tADCON is less  
than ±0.5 LSB,  
Reference and input signal already settled  
RS = 1000 Ω, RI(2) = 36000 Ω, CI = 3.5 pF,  
approximately 8 Tau (t) are required for an error of  
less than ±0.5 LSB(3)  
Turn-on settling time of  
the ADC  
tADCON  
100  
ns  
µs  
2 V  
3 V  
1.5  
2.0  
tSample  
Sampling time  
(1) 12 × 1/fADCCLK  
(2) RI = RI,MUX + RI,Misc  
(3) tSample = ln(2n+1) × τ, where n = ADC resolution, τ = (RI + RS) × CI  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
MAX UNIT  
Table 5-19. ADC, 10-Bit Linearity Parameters  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
2.4 V to  
3.6 V  
Integral linearity error (10-bit mode)  
–2  
2
EI  
VDVCC as reference  
VDVCC as reference  
VDVCC as reference  
LSB  
2
2 V to  
3.6 V  
Integral linearity error (8-bit mode)  
Differential linearity error (10-bit mode)  
Differential linearity error (8-bit mode)  
Offset error (10-bit mode)  
–2  
–1  
2.4 V to  
3.6 V  
1
ED  
LSB  
1
2 V to  
3.6 V  
–1  
2.4 V to  
3.6 V  
–6.5  
–6.5  
6.5  
mV  
6.5  
EO  
2 V to  
3.6 V  
Offset error (8-bit mode)  
VDVCC as reference  
–2.0  
–3.0%  
–2.0  
2.0 LSB  
3.0%  
2.4 V to  
3.6 V  
Gain error (10-bit mode)  
Internal 1.5-V reference  
VDVCC as reference  
EG  
2.0 LSB  
3.0%  
2 V to  
3.6 V  
Gain error (8-bit mode)  
Internal 1.5-V reference  
VDVCC as reference  
–3.0%  
–2.0  
2.0 LSB  
3.0%  
2.4 V to  
3.6 V  
Total unadjusted error (10-bit mode)  
Total unadjusted error (8-bit mode)  
Internal 1.5-V reference  
VDVCC as reference  
–3.0%  
–2.0  
ET  
2.0 LSB  
3.0%  
2 V to  
3.6 V  
Internal 1.5-V reference  
ADCON = 1, INCH = 0Ch, TA = 0°C  
ADCON = 1, INCH = 0Ch  
–3.0%  
(1)  
VSENSOR  
See  
3 V  
3 V  
1.013  
3.35  
mV  
(2)  
TCSENSOR See  
mV/°C  
ADCON = 1, INCH = 0Ch, Error of  
conversion result 1 LSB, AM and all  
LPM above LPM3  
3 V  
3 V  
30  
tSENSOR  
(sample)  
Sample time required if channel 12 is  
selected(3)  
µs  
ADCON = 1, INCH = 0Ch, Error of  
conversion result 1 LSB, LPM3  
100  
(1) The temperature sensor offset can vary significantly. TI recommends a single-point calibration to minimize the offset error of the built-in  
temperature sensor.  
(2) The device descriptor structure contains calibration values for 30°C and 85°C for each of the available reference voltage levels. The  
sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR can be  
computed from the calibration values for higher accuracy.  
(3) The typical equivalent impedance of the sensor is 700 kΩ. The sample time required includes the sensor-on time tSENSOR(on)  
.
32  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
5.12.8 FRAM  
Table 5-20. FRAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Read and write endurance  
TEST CONDITIONS  
MIN  
1015  
100  
40  
MAX UNIT  
cycles  
TJ = 25°C  
tRetention  
Data retention duration  
TJ = 70°C  
TJ = 85°C  
years  
10  
5.12.9 Emulation and Debug  
Table 5-21. JTAG and Spy-Bi-Wire Interface Characteristics  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Spy-Bi-Wire input frequency  
VCC  
MIN  
0
TYP  
MAX UNIT  
fSBW  
2 V, 3 V  
2 V, 3 V  
2 V, 3 V  
10 MHz  
tSBW,Low  
tSBW, En  
tSBW,Rst  
Spy-Bi-Wire low clock pulse duration  
0.028  
15  
110  
100  
16  
µs  
µs  
µs  
(1)  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)  
Spy-Bi-Wire return to normal operation time  
15  
0
2 V  
3 V  
(2)  
fTCK  
TCK input frequency, 4-wire JTAG  
MHz  
0
16  
Rinternal  
Internal pulldown resistance on TEST  
2 V, 3 V  
20  
35  
50  
kΩ  
(1) Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the  
first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6 Detailed Description  
6.1 CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All  
operations, other than program-flow instructions, are performed as register operations in conjunction with  
seven addressing modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter (PC), stack pointer (SP), status register  
(SR), and constant generator (CG), respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be handled  
with all instructions.  
6.2 Operating Modes  
The MSP430 has one active mode and several software selectable low-power modes of operation. An  
interrupt event can wake up the device from low-power mode LPM0 or LPM3, service the request, and  
restore back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and  
LPM4.5 disable the core supply to minimize power consumption.  
Table 6-1. Operating Modes  
AM  
LPM0  
CPU OFF  
16 MHz  
20 µA/MHz  
instant  
LPM3  
STANDBY  
40 kHz  
1.2 µA  
10 µs  
LPM4  
OFF  
0
LPM3.5  
LPM4.5  
SHUTDOWN  
0
MODE  
ACTIVE  
MODE  
ONLY RTC  
COUNTER  
Maximum System Clock  
Power Consumption at 25°C, 3 V  
Wake-up time  
16 MHz  
126 µA/MHz  
N/A  
40 kHz  
0.6 µA  
without SVS  
0.77 µA with  
RTC only  
13 nA  
without SVS  
10 µs  
150 µs  
150 µs  
RTC Counter,  
I/O  
Wake-up events  
N/A  
All  
All  
I/O  
I/O  
Full  
Regulation  
Full  
Regulation  
Partial Power Partial Power Partial Power  
Regulator  
Power Down  
Down  
Optional  
On  
Down  
Optional  
On  
Down  
Optional  
On  
Power  
SVS  
On  
On  
On  
On  
Optional  
On  
Brown Out  
MCLK  
SMCLK  
FLL  
Active  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
On  
Off  
Off  
Off  
Off  
Off  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
DCO  
Off  
Off  
Off  
Off  
Clock  
MODCLK  
REFO  
Off  
Off  
Off  
Off  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
ACLK  
Off  
Off  
Off  
XT1CLK  
VLOCLK  
CPU  
Off  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
FRAM  
On  
On  
Off  
Off  
Off  
Off  
Core  
RAM  
On  
On  
On  
On  
Off  
Off  
Backup Memory(1)  
On  
On  
On  
On  
On  
Off  
(1) Backup memory contains one 32-byte register in the peripheral memory space. See Table 6-31 and Table 6-49 for its memory  
allocation.  
34  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
Table 6-1. Operating Modes (continued)  
AM  
LPM0  
LPM3  
LPM4  
LPM3.5  
LPM4.5  
MODE  
Timer0_A3  
ACTIVE  
MODE  
ONLY RTC  
COUNTER  
CPU OFF  
STANDBY  
OFF  
SHUTDOWN  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Timer1_A3  
WDT  
Off  
eUSCI_A0  
eUSCI_B0  
CRC  
Off  
Peripherals  
Off  
Off  
Off  
Off  
ADC  
Optional  
Optional  
Off  
RTC Counter  
State Held  
General Digital  
Input/Output  
On  
Optional  
Optional  
State Held  
Optional  
State Held  
Off  
Off  
Off  
State Held  
Off  
I/O  
Capacitive Touch I/O  
Optional  
6.3 Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h. The  
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence  
Table 6-2. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power up, Brownout, Supply supervisor,  
External reset RST,  
SVSHIFG  
PMMRSTIFG  
Watchdog time-out, Key violation,  
FRAM uncorrectable bit error detection,  
Software POR,  
WDTIFG  
PMMPORIFG, PMMBORIFG  
SYSRSTIV  
Reset  
FFFEh  
63, Highest  
FLL unlock error  
FLLUNLOCKIFG  
System NMI  
Vacant memory access,  
JTAG mailbox,  
VMAIFG  
JMBINIFG, JMBOUTIFG  
CBDIFG, UBDIFG  
Nonmaskable  
Nonmaskable  
FFFCh  
FFFAh  
62  
61  
FRAM bit error detection  
User NMI  
External NMI,  
Oscillator Fault  
NMIIFG  
OFIFG  
Timer0_A3  
Timer0_A3  
Timer1_A3  
Timer1_A3  
TA0CCR0 CCIFG0  
Maskable  
Maskable  
Maskable  
Maskable  
FFF8h  
FFF6h  
FFF4h  
FFF2h  
60  
59  
58  
57  
TA0CCR1 CCIFG1, TA0CCR2  
CCIFG2, TA0IFG (TA0IV)  
TA1CCR0 CCIFG0  
TA1CCR1 CCIFG1, TA1CCR2  
CCIFG2, TA1IFG (TA1IV)  
RTC Counter  
RTCIFG  
WDTIFG  
Maskable  
Maskable  
FFF0h  
FFEEh  
56  
55  
Watchdog Timer Interval mode  
UCTXCPTIFG, UCSTTIFG,  
UCRXIFG, UCTXIFG (UART mode)  
UCRXIFG, UCTXIFG (SPI mode)  
(UCA0IV))  
eUSCI_A0 Receive or Transmit  
Maskable  
FFECh  
54  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
35  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
PRIORITY  
Table 6-2. Interrupt Sources, Flags, and Vectors (continued)  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
UCB0RXIFG, UCB0TXIFG (SPI  
mode)  
UCALIFG, UCNACKIFG,  
UCSTTIFG, UCSTPIFG,  
UCRXIFG0, UCTXIFG0,  
UCRXIFG1, UCTXIFG1,  
UCRXIFG2, UCTXIFG2,  
UCRXIFG3, UCTXIFG3,  
UCCNTIFG, UCBIT9IFG (I2C mode)  
(UCB0IV)  
eUSCI_B0 Receive or Transmit  
Maskable  
FFEAh  
53  
ADCIFG0, ADCINIFG, ADCLOIFG,  
ADCHIIFG, ADCTOVIFG,  
ADCOVIFG (ADCIV)  
ADC  
Maskable  
FFE8h  
52  
P1  
P2  
P1IFG.0 to P1IFG.7 (P1IV)  
P2IFG.0 to P2IFG.7 (P2IV)  
Reserved  
Maskable  
Maskable  
Maskable  
FFE6h  
FFE4h  
51  
50, Lowest  
Reserved  
FFE2h to FF88h  
0FF86h  
BSL Signature 2  
BSL Signature 1  
0FF84h  
Signatures  
JTAG Signature 2  
JTAG Signature 1  
0FF82h  
0FF80h  
6.4 Bootloader (BSL)  
The BSL enables users to program the FRAM or RAM using a UART serial interface. Access to the device  
memory through the BSL is protected by an user-defined password. Table 6-3 lists the BSL pin  
requirements. BSL entry requires  
a specific entry sequence on the RST/NMI/SBWTDIO and  
TEST/SBWTCK pins. For a complete description of the features of the BSL and its implementation, see  
the MSP430 FRAM Devices Bootloader (BSL) User's Guide.  
Table 6-3. BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.0  
P1.1  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
6.5 JTAG Standard Interface  
The MSP430 family supports the standard JTAG interface which requires four signals for sending and  
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to  
enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with  
MSP430 development tools and device programmers. Table 6-4 lists the JTAG pin requirements. For  
further details on interfacing to development tools and device programmers, see the MSP430 Hardware  
Tools User's Guide. For a complete description of the features of the JTAG interface and its  
implementation, see MSP430 Programming With the JTAG Interface.  
36  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
Table 6-4. JTAG Pin Requirements and Function  
DEVICE SIGNAL  
P1.4/MCLK/TCK/A4/VREF+  
P1.5/TA0CLK/TMS/A5  
P1.6/TA0.2/TDI/TCLK/A6  
P1.7/TA0.1/TDO/A7  
TEST/SBWTCK  
DIRECTION  
JTAG FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input/TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
IN  
OUT  
IN  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
6.6 Spy-Bi-Wire Interface (SBW)  
The MSP430 family supports the 2-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with  
MSP430 development tools and device programmers. Table 6-5 shows the Spy-Bi-Wire interface pin  
requirements. For further details on interfacing to development tools and device programmers, see the  
MSP430 Hardware Tools User's Guide.  
Table 6-5. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
IN  
SBW FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN, OUT  
VSS  
Ground supply  
6.7 FRAM  
The FRAM can be programmed using the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the  
CPU. Features of the FRAM include:  
Byte and word access capability  
Programmable wait state generation  
Error correction coding (ECC)  
6.8 Memory Protection  
The device features memory protection that can restrict user access and enable write protection:  
Securing the whole memory map to prevent unauthorized access from JTAG port or BSL, by writing  
JTAG and BSL signatures using the JTAG port, SBW, the BSL, or in-system by the CPU.  
Write protection enabled to prevent unwanted write operation to FRAM contents by setting the control  
bits in System Configuration register 0. For more detailed information, see the SYS chapter in the  
MSP430FR4xx and MSP430FR2xx Family User's Guide.  
NOTE  
The FRAM is protected by default on PUC. To write to FRAM during code execution, the  
application must first clear the corresponding PFWP or DFWP bit in System Configuration  
Register 0 to unprotect the FRAM.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
37  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.9 Peripherals  
Peripherals are connected to the CPU through data, address, and control buses. All peripherals can be  
handled by using all instructions in the memory map. For complete module description, see the  
MSP430FR4xx and MSP430FR2xx Family User's Guide.  
6.9.1 Power Management Module (PMM) and On-chip Reference Voltages  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM  
also includes supply voltage supervisor (SVS) and brownout protection. The brownout reset circuit (BOR)  
is implemented to provide the proper internal reset signal to the device during power-on and power-off.  
The SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is  
available on the primary supply.  
The device contains two on-chip reference: 1.5 V for internal reference and 1.2 V for external reference.  
The 1.5-V reference is internally connected to ADC channel 13. DVCC is internally connected to ADC  
channel 15. When DVCC is set as the reference voltage for ADC conversion, the DVCC can be easily  
represent as Equation 1 by using ADC sampling 1.5-V reference without any external components  
support.  
DVCC = (1023 × 1.5 V) ÷ 1.5-V Reference ADC result  
(1)  
A 1.2-V reference voltage can be buffered and output to P1.4/MCLK/TCK/A4/VREF+, when the ADC  
channel 4 is selected as the function. For more detailed information, see the MSP430FR4xx and  
MSP430FR2xx Family User's Guide.  
6.9.2 Clock System (CS) and Clock Distribution  
The clock system includes a 32-kHz crystal oscillator (XT1), an internal very low-power low-frequency  
oscillator (VLO), an integrated 32-kHz RC oscillator (REFO), an integrated internal digitally controlled  
oscillator (DCO) that may use frequency-locked loop (FLL) locking with internal or external 32-kHz  
reference clock, and on-chip asynchronous high-speed clock (MODCLK). The clock system is designed to  
target cost-effective designs with minimal external components. A fail-safe mechanism is designed for  
XT1. The clock system module offers the following clock signals.  
Main Clock (MCLK): the system clock used by the CPU and all relevant peripherals accessed by the  
bus. All clock sources except MODCLK can be selected as the source with a predivider of 1, 2, 4, 8,  
16, 32, 64, or 128.  
Sub-Main Clock (SMCLK): the subsystem clock used by the peripheral modules. SMCLK derives from  
the MCLK with a predivider of 1, 2, 4, or 8. This means SMCLK is always equal to or less than MCLK.  
Auxiliary Clock (ACLK): this clock is derived from the external XT1 clock or internal REFO clock up to  
40 kHz.  
All peripherals may have one or several clock sources depending on specific functionality. Table 6-6  
shows the clock distribution used in this device.  
38  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
Table 6-6. Clock Distribution  
CLOCK  
SOURCE  
SELECT  
BITS  
MCLK  
SMCLK  
ACLK  
MODCLK  
XT1CLK(1)  
VLOCLK  
EXTERNAL PIN  
Frequency  
Range  
DC to  
16 MHz  
DC to  
16 MHz  
DC to  
40 kHz  
DC to  
40 kHz  
10 kHz  
±50%  
5 MHz ±10%  
CPU  
N/A  
N/A  
Default  
Default  
Default  
Default  
Default  
FRAM  
RAM  
N/A  
CRC  
N/A  
I/O  
N/A  
TA0  
TASSEL  
TASSEL  
UCSSEL  
UCSSEL  
WDTSSEL  
ADCSSEL  
RTCSS  
10b  
10b  
01b  
01b  
00b (TA0CLK pin)  
00b (TA1CLK pin)  
00b (UCA0CLK pin)  
00b (UCB0CLK pin)  
TA1  
eUSCI_A0  
eUSCI_B0  
WDT  
10b or 11b  
10b or 11b  
00b  
01b  
01b  
01b  
01b  
10b  
11b  
ADC  
10b or 11b  
01b  
00b  
RTC  
10b  
(1) To enable XT1 functionality, configure P4SEL0.1 (XIN) and P4SEL0.2 (XOUT) before configuring the Clock System registers.  
CPU  
FRAM  
SRAM  
CRC  
I/O  
MCLK  
Timer_A  
0
Timer_A  
1
eUSCI_  
A0  
eUSCI_  
B0  
WDT  
RTC  
ADC10  
Clock System (CS)  
SMCLK  
ACLK  
VLOCLK  
MODCLK  
XT1CLK  
Figure 6-1. Clock Distribution Block Diagram  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
39  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.9.3 General-Purpose Input/Output Port (I/O)  
There are up to 60 I/O ports implemented, depending on the package.  
P1, P2, P3, P4, P5, P6, and P7 are full 8-bit ports; P8 has 4 bits implemented.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for P1 and P2.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise or word-wise in pairs.  
Capacitive Touch I/O functionality is supported on all pins.  
NOTE  
Configuration of digital I/Os after BOR reset  
To prevent any cross currents during start-up of the device, all port pins are high-impedance  
with Schmitt triggers and module functions disabled. To enable the I/O functions after a BOR  
reset, the ports must be configured first and then the LOCKLPM5 bit must be cleared. For  
details, see the Configuration After Reset section in the Digital I/O chapter of the  
MSP430FR4xx and MSP430FR2xx Family User's Guide.  
40  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
6.9.4 Watchdog Timer (WDT)  
The primary function of the WDT module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not  
needed in an application, the module can be configured as interval timer and can generate interrupts at  
selected time intervals.  
Table 6-7. WDT Clocks  
NORMAL OPERATION  
WDTSSEL  
(WATCHDOG AND INTERVAL TIMER MODE)  
00  
01  
10  
11  
SMCLK  
ACLK  
VLOCLK  
VLOCLK  
6.9.5 System Module (SYS)  
The SYS module handles many of the system functions within the device. These include Power-On Reset  
(POR) and Power-Up Clear (PUC) handling, NMI source selection and management, reset interrupt vector  
generators, bootloader entry mechanisms, and configuration management (device descriptors). SYS also  
includes a data exchange mechanism through SBW called a JTAG mailbox mail box that can be used in  
the application.  
Table 6-8. System Module Interrupt Vector Registers  
INTERRUPT VECTOR  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
REGISTER  
No interrupt pending  
Brownout (BOR)  
00h  
02h  
Highest  
RSTIFG RST/NMI (BOR)  
PMMSWBOR software BOR (BOR)  
LPMx.5 wakeup (BOR)  
Security violation (BOR)  
Reserved  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
SVSHIFG SVSH event (BOR)  
Reserved  
Reserved  
12h  
SYSRSTIV, System Reset  
015Eh  
PMMSWPOR software POR (POR)  
WDTIFG watchdog time-out (PUC)  
WDTPW password violation (PUC)  
FRCTLPW password violation (PUC)  
Uncorrectable FRAM bit error detection  
Peripheral area fetch (PUC)  
PMMPW PMM password violation (PUC)  
Reserved  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
FLL unlock (PUC)  
24h  
Reserved  
26h to 3Eh  
Lowest  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
41  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-8. System Module Interrupt Vector Registers (continued)  
INTERRUPT VECTOR  
REGISTER  
ADDRESS  
INTERRUPT EVENT  
VALUE  
PRIORITY  
No interrupt pending  
SVS low-power reset entry  
Uncorrectable FRAM bit error detection  
Reserved  
00h  
02h  
Highest  
04h  
06h  
Reserved  
08h  
Reserved  
0Ah  
Reserved  
0Ch  
SYSSNIV, System NMI  
015Ch  
Reserved  
0Eh  
Reserved  
10h  
VMAIFG Vacant memory access  
JMBINIFG JTAG mailbox input  
JMBOUTIFG JTAG mailbox output  
Correctable FRAM bit error detection  
Reserved  
12h  
14h  
16h  
18h  
1Ah to 1Eh  
00h  
Lowest  
Highest  
Lowest  
No interrupt pending  
NMIIFG NMI pin or SVSH event  
OFIFG oscillator fault  
Reserved  
02h  
SYSUNIV, User NMI  
015Ah  
04h  
06h to 1Eh  
6.9.6 Cyclic Redundancy Check (CRC)  
The 16-bit cyclic redundancy check (CRC) module produces a signature based on a sequence of data  
values and can be used for data checking purposes. The CRC generation polynomial is compliant with  
CRC-16-CCITT standard of x16 + x12 + x5 + 1.  
6.9.7 Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_B0)  
The eUSCI modules are used for serial data communications. The eUSCI_A module supports either  
UART or SPI communications. The eUSCI_B module supports either SPI or I2C communications.  
Additionally, eUSCI_A supports automatic baud-rate detection and IrDA.  
Table 6-9. eUSCI Pin Configurations  
PIN  
P1.0  
P1.1  
P1.2  
P1.3  
PIN  
UART  
TXD  
RXD  
SPI  
SIMO  
SOMI  
SCLK  
STE  
eUSCI_A0  
eUSCI_B0  
I2C  
SPI  
P5.0  
P5.1  
P5.2  
P5.3  
STE  
SCLK  
SIMO  
SOMI  
SDA  
SCL  
42  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
6.9.8 Timers (Timer0_A3, Timer1_A3)  
The Timer0_A3 and Timer1_A3 modules are 16-bit timers and counters with three capture/compare  
registers each. Each timer can support multiple captures or compares, PWM outputs, and interval timing.  
Each timer has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow  
conditions and from each of the capture/compare registers. The CCR0 registers on both TA0 and TA1 are  
not externally connected and can only be used for hardware period timing and interrupt generation. In Up  
mode, they can be used to set the overflow value of the counter.  
Table 6-10. Timer0_A3 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P1.5  
TA0CLK  
TACLK  
ACLK  
ACLK (internal)  
SMCLK (internal)  
Timer  
N/A  
TA0  
TA1  
SMCLK  
From Capacitive  
Touch I/O (internal)  
INCLK  
CCI0A  
CCI0B  
Timer1_A3 CCI0B  
input  
CCR0  
CCR1  
DVSS  
DVCC  
TA0.1  
GND  
VCC  
P1.7  
P1.6  
CCI1A  
TA0.1  
Timer1_A3 CCI1B  
input  
From RTC (internal)  
CCI1B  
DVSS  
DVCC  
TA0.2  
GND  
VCC  
CCI2A  
TA0.2  
Timer1_A3 INCLK  
Timer1_A3 CCI2B  
input,  
From Capacitive  
Touch I/O (internal)  
CCI2B  
CCR2  
TA2  
IR Input  
DVSS  
DVCC  
GND  
VCC  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
43  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-11. Timer1_A3 Signal Connections  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
PORT PIN  
MODULE BLOCK  
P8.2  
TA1CLK  
TACLK  
ACLK  
ACLK (internal)  
SMCLK (internal)  
Timer  
N/A  
TA0  
TA1  
TA2  
SMCLK  
Timer0_A3 CCR2B  
output (internal)  
INCLK  
CCI0A  
CCI0B  
Timer0_A3 CCR0B  
output (internal)  
CCR0  
CCR1  
CCR2  
DVSS  
DVCC  
TA1.1  
GND  
VCC  
P4.0  
P8.3  
CCI1A  
TA1.1  
Timer0_A3 CCR1B  
output (internal)  
CCI1B  
To ADC trigger  
DVSS  
DVCC  
TA1.2  
GND  
VCC  
CCI2A  
TA1.2  
Timer0_A3 CCR2B  
output (internal)  
CCI2B  
IR Input  
DVSS  
DVCC  
GND  
VCC  
The interconnection of Timer0_A3 and Timer1_A3 can be used to modulate the eUSCI_A pin of  
UCA0TXD/UCA0SIMO in either ASK or FSK mode. This configuration helps an application easily acquire  
a modulated infrared command for directly driving an external IR diode.  
The IR functions are controlled by the following bits in the System Configuration 1 (SYSCFG1) register:  
IREN (enable), IRPSEL (polarity select), IRMSEL (mode select), IRDSSEL (data select), and IRDATA  
(data). For more information, see the SYS chapter in the MSP430FR4xx and MSP430FR2xx Family  
User's Guide.  
44  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
6.9.9 Real-Time Clock (RTC) Counter  
The RTC counter is a 16-bit modulo counter that is functional in AM, LPM0, LPM3, and LPM3.5. The RTC  
can periodically wake up the CPU from LPM0, LPM3, or LPM3.5 based on timing from a low-power clock  
source such as the XT1 and VLO clocks. In AM, RTC can be driven by SMCLK to generate high-  
frequency timing events and interrupts. The RTC overflow events trigger:  
Timer0_A3 CCR1B  
ADC conversion trigger when ADCSHSx bits are set as 01b  
6.9.10 10-Bit Analog Digital Converter (ADC)  
The 10-bit ADC module supports fast 10-bit analog-to-digital conversions with single-ended input. The  
module implements a 10-bit SAR core, sample select control, reference generator and a conversion result  
buffer. A window comparator with a lower and upper limit allows CPU independent result monitoring with  
three window comparator interrupt flags.  
The ADC supports 10 external inputs and four internal inputs (see Table 6-12).  
Table 6-12. ADC Channel Connections  
ADCINCHx  
ADC CHANNELS  
EXTERNAL PIN OUT  
0
1
A0/Veref–  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P8.0(2)  
P8.1(2)  
N/A  
A1/Veref+  
2
A2  
3
A3  
A4(1)  
4
5
A5  
6
A6  
7
A7  
8
A8  
9
A9  
Not used  
10  
11  
12  
13  
14  
15  
Not used  
N/A  
On-chip temperature sensor  
Reference voltage (1.5 V)  
DVSS  
N/A  
N/A  
N/A  
DVCC  
N/A  
(1) When A4 is used, the PMM 1.2-V reference voltage can be output to this pin by setting the PMM  
control register. The 1.2-V voltage can be directly measured by A4 channel.  
(2) P8.0 and P8.1 are only available in the LQFP-64 package.  
The A/D conversion can be started by software or a hardware trigger. Table 6-13 shows the trigger  
sources that are available.  
Table 6-13. ADC Trigger Signal Connections  
ADCSHSx  
TRIGGER SOURCE  
BINARY  
DECIMAL  
00  
01  
10  
11  
0
1
2
3
ADCSC bit (software trigger)  
RTC event  
TA1.1B  
TA1.2B  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.9.11 Embedded Emulation Module (EEM)  
The EEM supports real-time in-system debugging. The EEM on these devices has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
46  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
6.9.12 Input/Output Diagrams  
6.9.12.1 Port P1 Input/Output With Schmitt Trigger  
A0 to A7  
From ADC A  
P1REN.x  
P1DIR.x  
0
1
From Module  
DVSS  
DVCC  
0
1
P1OUT.x  
0
1
From Module  
P1SEL0.x  
EN  
D
To module  
P1IN.x  
P1IE.x  
Bus  
Keeper  
P1 Interrupt  
D
S
Q
P1.0/UCA0TXD/UCA0SIMO/A0  
P1.1/UCA0RXD/UCA0SOMI/A1  
P1.2/UCA0CLK/A2  
P1IFG.x  
P1.3/UCA0STE/A3  
Edge  
Select  
P1.4/MCLK/TCK/A4/VREF+  
P1.5/TA0CLK/TMS/A5  
P1.6/TA0.2/TDI/TCLK/A6  
P1.7/TA0.1/TDO/A7  
P1IES.x  
From JTAG  
To JTAG  
Figure 6-2. Port P1 Input/Output With Schmitt Trigger  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-14. Port P1 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1.0 (I/O)  
P1DIR.x  
P1SEL0.x  
ADCPCTLx(2)  
JTAG  
N/A  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
1
X
0
0
P1.0/UCA0TXD/UCA0SIMO/A0  
0
UCA0TXD/UCA0SIMO  
A0  
X
0
N/A  
X
1 (x = 0)  
N/A  
P1.1 (I/O)  
UCA0RXD/UCA0SOMI  
A1  
I: 0; O: 1  
0
N/A  
P1.1/UCA0RXD/UCA0SOMI/A1  
P1.2/UCA0CLK/A2  
1
2
3
X
0
N/A  
X
1 (x = 1)  
N/A  
P1.2 (I/O)  
UCA0CLK  
A2  
I: 0; O: 1  
0
N/A  
X
0
N/A  
X
1 (x = 2)  
N/A  
P1.3 (I/O)  
UCA0STE  
A3  
I: 0; O: 1  
0
N/A  
P1.3/UCA0STE/A3  
X
0
1 (x = 3)  
0
N/A  
X
N/A  
P1.4 (I/O)  
VSS  
I: 0; O: 1  
Disabled  
0
1
0
Disabled  
P1.4/MCLK/TCK/A4/VREF+  
P1.5/TA0CLK/TMS/A5  
4
5
6
7
MCLK  
1
A4, VREF+  
JTAG TCK  
P1.5 (I/O)  
TA0CLK  
VSS  
X
X
X
0
1 (x = 4)  
Disabled  
TCK  
X
X
0
I: 0; O: 1  
Disabled  
0
1
0
Disabled  
1
A5  
X
X
X
0
1 (x = 5)  
Disabled  
TMS  
JTAG TMS  
P1.6 (I/O)  
TA0.CCI2A  
TA0.2  
X
X
0
I: 0; O: 1  
Disabled  
0
1
0
Disabled  
P1.6/TA0.2/TDI/TCLK/A6  
1
A6  
X
X
X
0
1 (x = 6)  
Disabled  
TDI/TCLK  
Disabled  
JTAG TDI/TCLK  
P1.7 (I/O)  
TA0.CCI1A  
TA0.1  
X
X
0
I: 0; O: 1  
0
1
1
0
Disabled  
P1.7/TA0.1/TDO/A7  
(1) X = don't care  
A7  
X
X
X
X
1 (x = 7)  
X
Disabled  
TDO  
JTAG TDO  
(2) Setting the ADCPCTLx bit in SYSCFG2 register disables both the output driver and the input Schmitt trigger to prevent leakage when  
analog signals are applied.  
48  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
6.9.12.2 Port P2 Input/Output With Schmitt Trigger  
P2REN.x  
P2DIR.x  
DVSS  
DVCC  
0
1
P2OUT.x  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P2IN.x  
P2IE.x  
Bus  
Keeper  
P2 Interrupt  
1
D
S
Q
P2IFG.x  
P2IES.x  
1
Edge  
Select  
Figure 6-3. Port P2 Input/Output With Schmitt Trigger  
Table 6-15. Port P2 Pin Functions  
CONTROL BITS AND  
SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
0
1
2
3
4
5
6
7
P2.0 (I/O)  
P2.1 (I/O)  
P2.2 (I/O)  
P2.3 (I/O)  
P2.4 (I/O)  
P2.5 (I/O)  
P2.6 (I/O)  
P2.7 (I/O)  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.9.12.3 Port P3 Input/Output With Schmitt Trigger  
P3REN.x  
P3DIR.x  
DVSS  
DVCC  
0
1
P3OUT.x  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P3IN.x  
Bus  
Keeper  
Figure 6-4. Port P3 Input/Output With Schmitt Trigger  
Table 6-16. Port P3 Pin Functions  
CONTROL BITS AND  
SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
P3DIR.x  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
0
1
2
3
4
5
6
7
P3.0 (I/O)  
P3.1 (I/O)  
P3.2 (I/O)  
P3.3 (I/O)  
P3.4 (I/O)  
P3.5 (I/O)  
P3.6 (I/O)  
P3.7 (I/O)  
50  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
6.9.12.4 Port P4.0 Input/Output With Schmitt Trigger  
P4REN.x  
P4DIR.x  
0
1
From Module  
DVSS  
DVCC  
0
1
P4OUT.x  
0
1
From Module  
P4SEL0.x  
EN  
D
To module  
P4IN.x  
Bus  
Keeper  
P4.0/TA1.1  
Figure 6-5. Port P4.0 Input/Output With Schmitt Trigger  
Table 6-17. Port P4.0 Pin Functions  
CONTROL BITS AND SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL0.x  
P4.0 (I/O)  
TA1.CCI1A  
TA1.1  
I: 0; O: 1  
0
P4.0/TA1.1  
0
0
1
1
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.9.12.5 Port P4.1 and P4.2 Input/Output With Schmitt Trigger  
XIN, XOUT  
P4REN.x  
P4DIR.x  
DVSS  
DVCC  
0
1
P4OUT.x  
P4SEL0.x  
P4IN.x  
Bus  
Keeper  
P4.1/XIN  
P4.2/XOUT  
Figure 6-6. Port P4.1 and P4.2 Input/Output With Schmitt Trigger  
Table 6-18. Port P4.1 and P4.2 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P4.x)  
x
1
2
FUNCTION  
P4DIR.x  
I: 0; O: 1  
X
P4SEL0.x  
P4.1 (I/O)  
XIN  
0
1
0
1
P4.1/XIN  
P4.2 (I/O)  
XOUT  
I: 0; O: 1  
X
P4.2/XOUT  
(1) X = don't care  
52  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
6.9.12.6 Port 4.3, P4.4, P4.5, P4.6, and P4.7 Input/Output With Schmitt Trigger  
P4REN.x  
P4DIR.x  
DVSS  
DVCC  
0
1
P4OUT.x  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
P4IN.x  
Bus  
Keeper  
Figure 6-7. Port 4.3, P4.4, P4.5, P4.6, and P4.7 Input/Output With Schmitt Trigger  
Table 6-19. Port P4.3, P4.4, P4.5, P4.6, and P4.7 Pin Functions  
CONTROL BITS AND  
SIGNALS  
P4DIR.x  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
PIN NAME (P4.x)  
x
FUNCTION  
P4.3  
P4.4  
P4.5  
P4.6  
P4.7  
3
4
5
6
7
P4.3 (I/O)  
P4.4 (I/O)  
P4.5 (I/O)  
P4.6 (I/O)  
P4.7 (I/O)  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.9.12.7 Port P5.0, P5.1, P5.2, and P5.3 Input/Output With Schmitt Trigger  
P5REN.x  
P5DIR.x  
0
1
From Module  
DVSS  
DVCC  
0
1
P5OUT.x  
0
1
From Module  
P5.0/UCB0STE  
P5.1/UCB0CLK  
P5SEL0.x  
P5.2/UCB0SIMO/UCB0SDA  
P5.3/UCB0SOMI/UCB0SCL  
EN  
D
To module  
P5IN.x  
Bus  
Keeper  
Figure 6-8. Port P5.0, P5.1, P5.2, and P5.3 Input/Output With Schmitt Trigger  
Table 6-20. Port P5.0, P5.1, P5.2, and P5.3 Pin Functions  
CONTROL BITS AND SIGNALS  
PIN NAME (P5.x)  
x
0
1
2
3
FUNCTION  
P5DIR.x  
P5SEL0.x  
P5.0 (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
P5.0/UCB0STE  
UCB0STE  
0
P5.1 (I/O)  
I: 0; O: 1  
P5.1/UCB0CLK  
UCB0CLK  
0
P5.2 (I/O)  
I: 0; O: 1  
P5.2/UCB0SIMO/UCB0SDA  
P5.3/UCB0SOMI/UCB0SCL  
UCB0SIMO/UCB0SDA  
P5.3 (I/O)  
0
I: 0; O: 1  
0
UCB0SOMI/UCB0SCL  
54  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
6.9.12.8 Port P5.4, P5.5, P5.6, and P5.7 Input/Output With Schmitt Trigger  
P5REN.x  
P5DIR.x  
DVSS  
DVCC  
0
1
P5OUT.x  
P5.4  
P5.5  
P5.6  
P5.7  
P5IN.x  
Bus  
Keeper  
Figure 6-9. Port P5.4, P5.5, P5.6, and P5.7 Input/Output With Schmitt Trigger  
Table 6-21. Port P5.4, P5.5, P5.6, and P5.7 Pin Functions  
CONTROL BITS AND  
SIGNALS  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
P5.4  
P5.5  
P5.6  
P5.7  
4
5
6
7
P5.4 (I/O)  
P5.5 (I/O)  
P5.6 (I/O)  
P5.7 (I/O)  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.9.12.9 Port P6.0, P6.1, P6.2, and P6.3 Input/Output With Schmitt Trigger  
P6REN.x  
P6DIR.x  
DVSS  
DVCC  
0
1
P6OUT.x  
P6.0  
P6.1  
P6.2  
P6.3  
P6IN.x  
Bus  
Keeper  
Figure 6-10. Port P6.0, P6.1, P6.2, and P6.3 Input/Output With Schmitt Trigger  
Table 6-22. Port P6 Pin Functions  
CONTROL BITS AND  
SIGNALS  
P6DIR.x  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
PIN NAME (P6.x)  
x
FUNCTION  
P6.0  
P6.1  
P6.2  
P6.3  
0
1
2
3
P6.0 (I/O)  
P6.1 (I/O)  
P6.2 (I/O)  
P6.3 (I/O)  
56  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
6.9.12.10 Port P6.4, P6.5, P6.6, and P6.7 Input/Output With Schmitt Trigger  
P6REN.x  
P6DIR.x  
DVSS  
DVCC  
0
1
P6OUT.x  
P6.4  
P6.5  
P6.6  
P6.7  
P6IN.x  
Bus  
Keeper  
Figure 6-11. Port P6.4, P6.5, P6.6, and P6.7 Input/Output With Schmitt Trigger  
Table 6-23. Port P6.4, P6.5, P6.6, and P6.7 Pin Functions  
CONTROL BITS AND  
SIGNALS  
P6DIR.x  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
PIN NAME (P6.x)  
x
FUNCTION  
P6.4  
P6.5  
P6.6  
P6.7  
4
5
6
7
P6.4 (I/O)  
P6.5 (I/O)  
P6.6 (I/O)  
P6.7 (I/O)  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.9.12.11 Port P7.0, P7.1, P7.2, and P7.3 Input/Output With Schmitt Trigger  
P7REN.x  
P7DIR.x  
DVSS  
DVCC  
0
1
P7OUT.x  
P7.0  
P7.1  
P7.2  
P7.3  
P7IN.x  
Bus  
Keeper  
Figure 6-12. Port P7.0, P7.1, P7.2, and P7.3 Input/Output With Schmitt Trigger  
Table 6-24. Port P7.0, P7.1, P7.2, and P7.3 Pin Functions  
CONTROL BITS AND  
SIGNALS  
P7DIR.x  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
PIN NAME (P7.x)  
x
FUNCTION  
P7.0  
P7.1  
P7.2  
P7.3  
0
1
2
3
P7.0 (I/O)  
P7.1 (I/O)  
P7.2 (I/O)  
P7.3 (I/O)  
58  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
6.9.12.12 Port P7.4, P7.5, P7.6, and P7.7 Input/Output With Schmitt Trigger  
P7REN.x  
P7DIR.x  
DVSS  
DVCC  
0
1
P7OUT.x  
P7.4  
P7.5  
P7.6  
P7.7  
P7IN.x  
Bus  
Keeper  
Figure 6-13. Port P7.4, P7.5, P7.6, and P7.7 Input/Output With Schmitt Trigger  
Table 6-25. Port P7.4, P7.5, P7.6, and P7.7 Pin Functions  
CONTROL BITS AND  
SIGNALS  
P7DIR.x  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
I: 0; O: 1  
PIN NAME (P7.x)  
x
FUNCTION  
P7.4  
P7.5  
P7.6  
P7.7  
4
5
6
7
P7.4 (I/O)  
P7.5 (I/O)  
P7.6 (I/O)  
P7.7 (I/O)  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.9.12.13 Port P8.0 and P8.1 Input/Output With Schmitt Trigger  
A8, A9  
From ADC A  
P8REN.x  
P8DIR.x  
0
1
From Module  
DVSS  
DVCC  
0
1
P8OUT.x  
0
1
From MCLK, ACLK  
P8SEL0.x  
EN  
D
To module  
P8IN.x  
Bus  
Keeper  
P8.0/SMCLK/A8  
P8.1/ACLK/A9  
Figure 6-14. Port P8.0 and P8.1 Input/Output With Schmitt Trigger  
Table 6-26. Port P8.0 and P8.1 Pin Functions  
CONTROL BITS AND SIGNALS(1)  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL0.x  
ADCPCTLx(2)  
P8.0 (I/O)  
VSS  
I: 0; O: 1  
0
0
0
P8.0/SMCLK/A8  
0
1
0
SMCLK  
A8  
1
X
X
0
1 (x = 8)  
0
P8.1 (I/O)  
VSS  
I: 0; O: 1  
0
1
P8.1/ACLK/A9  
1
1
0
ACLK  
A9  
X
X
1 (x = 9)  
(1) X = don't care  
(2) Setting the ADCPCTLx bit in SYSCFG2 register disables both the output driver and the input Schmitt trigger to prevent leakage when  
analog signals are applied.  
60  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
6.9.12.14 Port P8.2 and P8.3 Input/Output With Schmitt Trigger  
P8REN.x  
P8DIR.x  
0
1
From Module  
DVSS  
DVCC  
0
1
P8OUT.x  
0
1
From Module  
P8SEL0.x  
EN  
D
To module  
P8IN.x  
Bus  
Keeper  
P8.2/TA1CLK  
P8.3/TA1.2  
Figure 6-15. Port P8.2 and P8.3 Input/Output With Schmitt Trigger  
Table 6-27. Port P8.2 and P8.3 Pin Functions  
CONTROL BITS AND SIGNALS  
PIN NAME (P8.x)  
x
FUNCTION  
P8DIR.x  
P8SEL0.x  
P8.2 (I/O)  
TA1 CLK  
VSS  
I: 0; O: 1  
0
P8.2/TA1CLK  
2
0
1
0
1
1
P8.3 (I/O)  
TA1.CCI2A  
TA1.2  
I: 0; O: 1  
P8.3/TA1.2  
3
0
1
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.10 Device Descriptors (TLV)  
Table 6-28 lists the Device IDs of the MSP430FR203x device variants. Table 6-29 lists the contents of the  
device descriptor tag-length-value (TLV) structure for MSP430FR203x devices.  
Table 6-28. Device IDs  
DEVICE ID  
DEVICE  
1A04h  
75h  
1A05h  
82h  
MSP430FR2033  
MSP430FR2032  
78h  
82h  
Table 6-29. Device Descriptors  
MSP430FR203x  
ADDRESS  
DESCRIPTION  
Info Length  
VALUE  
06h  
1A00h  
1A01h  
1A02h  
1A03h  
1A04h  
1A05h  
1A06h  
1A07h  
1A08h  
1A09h  
1A0Ah  
1A0Bh  
1A0Ch  
1A0Dh  
1A0Eh  
1A0Fh  
1A10h  
1A11h  
1A12h  
1A13h  
1A14h  
1A15h  
1A16h  
1A17h  
1A18h  
1A19h  
1A1Ah  
1A1Bh  
1A1Ch  
1A1Dh  
CRC Length  
CRC Value(1)  
06h  
Per unit  
Per unit  
Information Block  
Device ID  
See Table 6-28  
Hardware Revision  
Firmware Revision  
Die Record Tag  
Per unit  
Per unit  
08h  
Die Record Length  
0Ah  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
11h  
Lot Wafer ID  
Die Record  
Die X Position  
Die Y Position  
Test Result  
ADC Calibration Tag  
ADC Calibration Length  
08h  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
Per unit  
ADC Gain Factor  
ADC Calibration  
ADC Offset  
ADC 1.5-V Reference Temperature Sensor 30°C  
ADC 1.5-V Reference Temperature Sensor 85°C  
(1) The CRC value covers the checksum from 1A04h to 1A77h by applying the CRC-CCITT-16 polynomial of x16 + x12 + x5 + 1.  
62 Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
 
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
Table 6-29. Device Descriptors (continued)  
MSP430FR203x  
DESCRIPTION  
ADDRESS  
1A1Eh  
1A1Fh  
1A20h  
VALUE  
12h  
Calibration Tag  
Calibration Length  
04h  
Per unit  
Per unit  
Per unit  
Per unit  
Reference and DCO  
Calibration  
1.5-V Reference Factor  
1A21h  
1A22h  
DCO Tap Settings for 16 MHz, Temperature 30°C(2)  
1A23h  
(2) This value can be directly loaded into DCO bits in CSCTL0 register to get accurate 16-MHz frequency at room temperature, especially  
when MCU exits from LPM3 and below. TI suggests using a predivider to decrease the frequency, if the temperature drift might result an  
overshoot beyond 16 MHz.  
6.11 Memory  
Table 6-30 summarizes the memory map of the MSP430FR203x devices.  
Table 6-30. Memory Organization  
ACCESS  
MSP430FR2033  
MSP430FR2032  
Memory (FRAM)  
Main: interrupt vectors and signatures  
Main: code memory  
15KB  
FFFFh to FF80h  
FFFFh to C400h  
8KB  
FFFFh to FF80h  
FFFFh to E000h  
Read/Write  
(Optional Write Protect)(1)  
2KB  
27FFh to 2000h  
1KB  
23FFh to 2000h  
RAM  
Read/Write  
Read/Write  
512B  
19FFh to 1800h  
512B  
19FFh to 1800h  
Information Memory (FRAM)  
Bootloader (BSL) Memory (ROM)  
Peripherals  
(Optional Write Protect)(2)  
1KB  
13FFh to 1000h  
1KB  
13FFh to 1000h  
Read only  
4KB  
0FFFh to 0000h  
4KB  
0FFFh to 0000h  
Read/Write  
(1) The Program FRAM can be write protected by setting PFWP bit in SYSCFG0 register. See the SYS chapter in the MSP430FR4xx and  
MSP430FR2xx Family User's Guide for more details  
(2) The Information FRAM can be write protected by setting DFWP bit in SYSCFG0 register. See the SYS chapter in the MSP430FR4xx  
and MSP430FR2xx Family User's Guide for more details  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.11.1 Peripheral File Map  
Table 6-31 shows the base address and the memory size of the register region for each peripheral, and  
Table 6-32 through Table 6-50 show all of the available registers for each peripheral and their address  
offsets.  
Table 6-31. Peripherals Summary  
MODULE NAME  
Special Functions  
PMM  
BASE ADDRESS  
0100h  
SIZE  
REGISTERS  
Table 6-32  
Table 6-33  
Table 6-34  
Table 6-35  
Table 6-36  
Table 6-37  
Table 6-38  
Table 6-39  
Table 6-40  
Table 6-41  
Table 6-42  
Table 6-43  
Table 6-44  
Table 6-45  
Table 6-46  
Table 6-47  
Table 6-48  
Table 6-49  
Table 6-50  
0010h  
0020h  
0030h  
0020h  
0010h  
0008h  
0002h  
0020h  
0020h  
0020h  
0020h  
0010h  
0030h  
0030h  
0010h  
0020h  
0030h  
0020h  
0040h  
0120h  
SYS  
0140h  
CS  
0180h  
FRAM  
01A0h  
01C0h  
01CCh  
0200h  
CRC  
WDT  
Port P1, P2  
Port P3, P4  
Port P5, P6  
Port P7, P8  
Capacitive Touch I/O  
Timer0_A3  
Timer1_A3  
RTC  
0220h  
0240h  
0260h  
02E0h  
0300h  
0340h  
03C0h  
0500h  
eUSCI_A0  
eUSCI_B0  
Backup Memory  
ADC  
0540h  
0660h  
0700h  
64  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
Table 6-32. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
00h  
SFR interrupt enable  
SFR interrupt flag  
SFRIFG1  
SFRRPCR  
02h  
SFR reset pin control  
04h  
Table 6-33. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
PMMCTL1  
PMMCTL2  
PMMIFG  
OFFSET  
00h  
PMM control 0  
PMM control 1  
PMM control 2  
PMM interrupt flags  
PM5 control 0  
02h  
04h  
0Ah  
PM5CTL0  
10h  
Table 6-34. SYS Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
SYSCTL  
OFFSET  
00h  
System control  
Bootloader configuration area  
JTAG mailbox control  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus Error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
System configuration 0  
System configuration 1  
System configuration 2  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
SYSSNIV  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
20h  
SYSRSTIV  
SYSCFG0  
SYSCFG1  
SYSCFG2  
22h  
24h  
Table 6-35. CS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
CSCTL0  
CSCTL1  
CSCTL2  
CSCTL3  
CSCTL4  
CSCTL5  
CSCTL6  
CSCTL7  
CSCTL8  
OFFSET  
00h  
CS control register 0  
CS control register 1  
CS control register 2  
CS control register 3  
CS control register 4  
CS control register 5  
CS control register 6  
CS control register 7  
CS control register 8  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
Table 6-36. FRAM Registers (Base Address: 01A0h)  
REGISTER DESCRIPTION  
REGISTER  
FRCTL0  
OFFSET  
00h  
FRAM control 0  
General control 0  
General control 1  
GCCTL0  
GCCTL1  
04h  
06h  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-37. CRC Registers (Base Address: 01C0h)  
REGISTER DESCRIPTION  
REGISTER  
CRC16DI  
OFFSET  
CRC data input  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
Table 6-38. WDT Registers (Base Address: 01CCh)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Watchdog timer control  
WDTCTL  
00h  
Table 6-39. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
P1IN  
OFFSET  
00h  
Port P1 input  
Port P1 output  
P1OUT  
P1DIR  
P1REN  
P1SEL0  
P1IV  
02h  
Port P1 direction  
04h  
Port P1 pulling register enable  
Port P1 selection 0  
06h  
0Ah  
0Eh  
18h  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
Port P2 input  
P1IES  
P1IE  
1Ah  
1Ch  
01h  
P1IFG  
P2IN  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2SEL0  
P2IV  
03h  
Port P2 direction  
05h  
Port P2 pulling register enable  
Port P2 selection 0(1)  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
07h  
0Bh  
1Eh  
19h  
P2IES  
P2IE  
1Bh  
1Dh  
P2IFG  
(1) Port P2 selection register does not feature any valid bits. P2SEL0 presents for 16-bit Port A operation with P1SEL0.  
Table 6-40. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
P3IN  
OFFSET  
00h  
Port P3 input  
Port P3 output  
Port P3 direction  
P3OUT  
P3DIR  
02h  
04h  
Port P3 pulling register enable  
Port P3 selection 0(1)  
Port P4 input  
P3REN  
P3SEL0  
P4IN  
06h  
0Ah  
01h  
Port P4 output  
P4OUT  
P4DIR  
03h  
Port P4 direction  
05h  
Port P4 pulling register enable  
Port P4 selection 0  
P4REN  
P4SEL0  
07h  
0Bh  
(1) Port P3 selection register does not feature any valid bits. P3SEL0 presents for 16-bit Port B operation with P4SEL0.  
66  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
Table 6-41. Port P5, P6 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
P5IN  
OFFSET  
00h  
Port P5 input  
Port P5 output  
Port P5 direction  
P5OUT  
P5DIR  
02h  
04h  
Port P5 pulling register enable  
Port P5 selection 0  
Port P6 input  
P5REN  
P5SEL0  
P6IN  
06h  
0Ah  
01h  
Port P6 output  
P6OUT  
P6DIR  
03h  
Port P6 direction  
05h  
Port P6 pulling register enable  
Port P6 selection 0(1)  
P6REN  
P6SEL0  
07h  
0Bh  
(1) Port P6 selection register does not feature any valid bits. P6SEL0 presents for 16-bit Port C operation with P5SEL0.  
Table 6-42. Port P7, P8 Registers (Base Address: 0260h)  
REGISTER DESCRIPTION  
REGISTER  
P7IN  
OFFSET  
00h  
Port P7 input  
Port P7 output  
Port P7 direction  
P7OUT  
P7DIR  
02h  
04h  
Port P7 pulling register enable  
Port P7 selection 0(1)  
Port P8 input  
P7REN  
P7SEL0  
P8IN  
06h  
0Ah  
01h  
Port P8 output  
P8OUT  
P8DIR  
03h  
Port P8 direction  
05h  
Port P8 pulling register enable  
Port P8 selection 0  
P8REN  
P8SEL0  
07h  
0Bh  
(1) Port P7 selection register does not feature any valid bits. P7SEL0 presents for 16-bit Port D operation with P8SEL0.  
Table 6-43. Capacitive Touch I/O Registers (Base Address: 02E0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Capacitive Touch I/O 0 control  
CAPTIO0CTL  
0Eh  
Table 6-44. Timer0_A3 Registers (Base Address: 0300h)  
REGISTER DESCRIPTION  
REGISTER  
TA0CTL  
OFFSET  
00h  
TA0 control  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA0 counter register  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0R  
02h  
04h  
06h  
10h  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA0 expansion register 0  
TA0 interrupt vector  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0EX0  
12h  
14h  
16h  
20h  
TA0IV  
2Eh  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
Table 6-45. Timer1_A3 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
TA1CTL  
OFFSET  
TA1 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter register  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA1 expansion register 0  
TA1 interrupt vector  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1IV  
Table 6-46. RTC Registers (Base Address: 03C0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL  
RTCIV  
OFFSET  
00h  
RTC control  
RTC interrupt vector  
RTC modulo  
04h  
RTCMOD  
RTCCNT  
08h  
RTC counter  
0Ch  
Table 6-47. eUSCI_A0 Registers (Base Address: 0500h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTLW0  
UCA0CTLW1  
UCA0BR0  
OFFSET  
00h  
eUSCI_A control word 0  
eUSCI_A control word 1  
eUSCI_A control rate 0  
eUSCI_A control rate 1  
eUSCI_A modulation control  
eUSCI_A status  
02h  
06h  
UCA0BR1  
07h  
UCA0MCTLW  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
lUCA0IRTCTL  
IUCA0IRRCTL  
UCA0IE  
08h  
0Ah  
0Ch  
0Eh  
10h  
eUSCI_A receive buffer  
eUSCI_A transmit buffer  
eUSCI_A LIN control  
eUSCI_A IrDA transmit control  
eUSCI_A IrDA receive control  
eUSCI_A interrupt enable  
eUSCI_A interrupt flags  
eUSCI_A interrupt vector word  
12h  
13h  
1Ah  
1Ch  
1Eh  
UCA0IFG  
UCA0IV  
Table 6-48. eUSCI_B0 Registers (Base Address: 0540h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTLW0  
UCB0CTLW1  
UCB0BR0  
OFFSET  
00h  
eUSCI_B control word 0  
eUSCI_B control word 1  
eUSCI_B bit rate 0  
02h  
06h  
eUSCI_B bit rate 1  
UCB0BR1  
07h  
eUSCI_B status word  
UCB0STATW  
UCB0TBCNT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA0  
08h  
eUSCI_B byte counter threshold  
eUSCI_B receive buffer  
eUSCI_B transmit buffer  
eUSCI_B I2C own address 0  
0Ah  
0Ch  
0Eh  
14h  
68  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
Table 6-48. eUSCI_B0 Registers (Base Address: 0540h) (continued)  
REGISTER DESCRIPTION  
REGISTER  
UCB0I2COA1  
UCB0I2COA2  
UCB0I2COA3  
UCB0ADDRX  
UCB0ADDMASK  
UCB0I2CSA  
UCB0IE  
OFFSET  
16h  
eUSCI_B I2C own address 1  
eUSCI_B I2C own address 2  
eUSCI_B I2C own address 3  
eUSCI_B receive address  
eUSCI_B address mask  
18h  
1Ah  
1Ch  
1Eh  
eUSCI_B I2C slave address  
eUSCI_B interrupt enable  
eUSCI_B interrupt flags  
20h  
2Ah  
UCB0IFG  
2Ch  
2Eh  
eUSCI_B interrupt vector word  
UCB0IV  
Table 6-49. Backup Memory Registers (Base Address: 0660h)  
REGISTER DESCRIPTION  
REGISTER  
BAKMEM0  
BAKMEM1  
BAKMEM2  
BAKMEM3  
BAKMEM4  
BAKMEM5  
BAKMEM6  
BAKMEM7  
BAKMEM8  
BAKMEM9  
BAKMEM10  
BAKMEM11  
BAKMEM12  
BAKMEM13  
BAKMEM14  
BAKMEM15  
OFFSET  
00h  
Backup Memory 0  
Backup Memory 1  
Backup Memory 2  
Backup Memory 3  
Backup Memory 4  
Backup Memory 5  
Backup Memory 6  
Backup Memory 7  
Backup Memory 8  
Backup Memory 9  
Backup Memory 10  
Backup Memory 11  
Backup Memory 12  
Backup Memory 13  
Backup Memory 14  
Backup Memory 15  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
Table 6-50. ADC Registers (Base Address: 0700h)  
REGISTER DESCRIPTION  
REGISTER  
ADCCTL0  
ADCCTL1  
ADCCTL2  
ADCLO  
OFFSET  
00h  
ADC control register 0  
ADC control register 1  
02h  
ADC control register 2  
04h  
ADC window comparator low threshold  
ADC window comparator high threshold  
ADC memory control register 0  
ADC conversion memory register  
ADC interrupt enable  
06h  
ADCHI  
08h  
ADCMCTL0  
ADCMEM0  
ADCIE  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC interrupt flags  
ADCIFG  
ADC interrupt vector word  
ADCIV  
Copyright © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
69  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
6.12 Identification  
6.12.1 Revision Identification  
The device revision information is shown as part of the top-side marking on the device package. The  
device-specific errata sheet describes these markings. For links to the errata sheets for the devices in this  
data sheet, see 8.4.  
The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Hardware Revision" entries in Section 6.10.  
6.12.2 Device Identification  
The device type can be identified from the top-side marking on the device package. The device-specific  
errata sheet describes these markings. For links to the errata sheets for the devices in this data sheet, see  
8.4.  
A device identification value is also stored in the Device Descriptor structure in the Info Block section. For  
details on this value, see the "Device ID" entries in Section 6.10.  
6.12.3 JTAG Identification  
Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in  
detail in the MSP430 Programming With the JTAG Interface.  
70  
Detailed Description  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
7 Applications, Implementation, and Layout  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
7.1 Device Connection and Layout Fundamentals  
This section discusses the recommended guidelines when designing with the MSP430FR413x devices.  
These guidelines are to make sure that the device has proper connections for powering, programming,  
debugging, and optimum analog performance.  
7.1.1 Power Supply Decoupling and Bulk Capacitors  
TI recommends connecting a combination of a 10-µF plus a 100-nF low-ESR ceramic decoupling  
capacitor to the DVCC and DVSS pins. Higher-value capacitors may be used but can impact supply rail  
ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple  
(within a few millimeters).  
DVCC  
+
Power Supply  
Decoupling  
DVSS  
10 µF  
100 nF  
Figure 7-1. Power Supply Decoupling  
7.1.2 External Oscillator  
This device supports only a low-frequency crystal (32 kHz) on the XIN and XOUT pins. External bypass  
capacitors for the crystal oscillator pins are required.  
It is also possible to apply digital clock signals to the XIN input pin that meet the specifications of the  
respective oscillator if the appropriate XT1BYPASS mode is selected. In this case, the associated XOUT  
pin can be used for other purposes. If they are left unused, they must be terminated according to  
Section 4.4.  
Figure 7-2 shows a typical connection diagram.  
XIN  
XOUT  
CL1  
CL2  
Figure 7-2. Typical Crystal Connection  
See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal  
oscillator with the MSP430 devices.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
71  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
7.1.3 JTAG  
With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or  
MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the  
connections also support the MSP-GANG production programmers, thus providing an easy way to  
program prototype boards, if desired. Figure 7-3 shows the connections between the 14-pin JTAG  
connector and the target device required to support in-system programming and debugging for 4-wire  
JTAG communication. Figure 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).  
The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are  
identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-  
FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an  
alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the  
target board (that is, a battery or other local power supply) and adjusts the output signals accordingly.  
Figure 7-3 and Figure 7-4 show a jumper block that supports both scenarios of supplying VCC to the  
target board. If this flexibility is not required, the desired VCC connections may be hard-wired to eliminate  
the jumper block. Pins 2 and 4 must not be connected at the same time.  
For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User’s  
Guide.  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
DVCC  
J2 (see Note A)  
R1  
47 kW  
JTAG  
RST/NMI/SBWTDIO  
VCC TOOL  
TDO/TDI  
TDI  
TDO/TDI  
TDI  
2
1
VCC TARGET  
4
3
TMS  
TMS  
6
5
7
TEST  
TCK  
8
TCK  
GND  
RST  
10  
12  
14  
9
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,  
make connection J2.  
B. The upper limit for C1 is 1.1 nF when using current TI tools.  
Figure 7-3. Signal Connections for 4-Wire JTAG Communication  
72  
Applications, Implementation, and Layout  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
VCC  
Important to connect  
MSP430FRxxx  
J1 (see Note A)  
J2 (see Note A)  
DVCC  
R1  
47 kΩ  
(see Note B)  
JTAG  
VCC TOOL  
VCC TARGET  
TDO/TDI  
2
1
3
5
7
9
RST/NMI/SBWTDIO  
4
6
TCK  
8
GND  
10  
12  
14  
11  
13  
TEST/SBWTCK  
DVSS  
C1  
1 nF  
(see Note B)  
A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the  
debug or programming adapter.  
B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during  
JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with  
the device. The upper limit for C1 is 1.1 nF when using current TI tools.  
Figure 7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)  
7.1.4 Reset  
The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function  
Register (SFR), SFRRPCR.  
In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing  
specifications generates a BOR-type device reset.  
Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is  
edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the  
external NMI. When an external NMI event occurs, the NMIIFG is set.  
The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either  
pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not.  
If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an  
external 47-kΩ pullup resistor to the RST/NMI pin with a 1.1-nF pulldown capacitor. The pulldown  
capacitor should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or  
in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers.  
See the MSP430FR4xx and MSP430FR2xx Family User's Guide for more information on the referenced  
control registers and bits.  
7.1.5 Unused Pins  
For details on the connection of unused pins, see Section 4.4.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
73  
Submit Documentation Feedback  
Product Folder Links: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
7.1.6 General Layout Recommendations  
Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430  
32-kHz Crystal Oscillators for recommended layout guidelines.  
Proper bypass capacitors on DVCC and reference pins, if used.  
Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital  
switching signals such as PWM or JTAG signals away from the oscillator circuit.  
Proper ESD level protection should be considered to protect the device from unintended high-voltage  
electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines.  
7.1.7 Do's and Don'ts  
During power up, power down, and device operation, DVCC must not exceed the limits specified in  
Section 5.1, Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the  
device including erroneous writes to RAM and FRAM.  
7.2 Peripheral- and Interface-Specific Design Information  
7.2.1 ADC Peripheral  
7.2.1.1 Partial Schematic  
Figure 7-5 shows the recommended circuit for external reference inputs to the ADC.  
DVSS  
Using an external  
VREF+/VEREF+  
positive reference  
+
100 nF  
10 µF  
Using an external  
negative reference  
VEREF-  
+
10 µF  
100 nF  
Figure 7-5. ADC Grounding and Noise Considerations  
7.2.1.2 Design Requirements  
As with any high-resolution ADC, appropriate PCB layout and grounding techniques should be followed to  
eliminate ground loops, unwanted parasitic effects, and noise.  
Ground loops are formed when return current from the ADC flows through paths that are common with  
other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset  
voltages that can add to or subtract from the reference or input voltages of the ADC. The general  
guidelines in Section 7.1.1 combined with the connections shown in Section 7.2.1.1 prevent this.  
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital  
switching or switching power supplies can corrupt the conversion result. TI recommends a noise-free  
design using separate analog and digital ground planes with a single-point connection to achieve high  
accuracy.  
Figure 7-5 shows the recommended decoupling circuit when an external voltage reference is used. The  
internal reference module has a maximum drive current as described in the sections ADC Pin Enable and  
1.2-V Reference Settings of the MSP430FR4xx and MSP430FR2xx Family User's Guide.  
74  
Applications, Implementation, and Layout  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2033 MSP430FR2032  
 
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are  
selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage  
enters the device. In this case, the 10-µF capacitor is used to buffer the reference pin and filter any low-  
frequency ripple. A bypass capacitor of 100 nF is used to filter out any high-frequency noise.  
7.2.1.3 Layout Guidelines  
Components that are shown in the partial schematic (see Figure 7-5) should be placed as close as  
possible to the respective device pins to avoid long traces, because they add additional parasitic  
capacitance, inductance, and resistance on the signal.  
Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM),  
because the high-frequency switching can be coupled into the analog signal.  
版权 © 2014–2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
75  
提交文档反馈意见  
产品主页链接: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
8 器件和文档支持  
8.1 开始使用  
有关可帮助您开发的 MSP430 系列器件、工具和库的介绍,请参阅 MSP430™ 超低功耗感应和测量 MCU  
概述。  
8.2 器件命名规则  
为了标示产品开发周期所处的阶段,TI 为所有 MSP MCU 器件的部件号分配了前缀。每个 MSP MCU 商用  
系列产品成员都具有以下两个前缀之一:MSP XMS。这些前缀代表了产品开发的发展阶段,即从工程原  
(XMS) 直到完全合格的生产器件 (MSP)。  
XMS - 实验器件,不一定代表最终器件的电气规格  
MSP - 完全合格的生产器件  
XMS 器件在供货时附带如下免责声明:  
开发中的产品用于内部评估用途。”  
MSP 器件的特性已经全部明确,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书对该器件适  
用。  
预测显示原型器件 (XMS) 的故障率大于标准生产器件。由于这些器件的预计最终使用故障率尚不确定,德  
州仪器 (TI) 建议不要将它们用于任何生产系统。请仅使用合格的生产器件。  
TI 器件的命名规则还包括一个带有器件系列名称的后缀。此后缀表示温度范围、封装类型和配送形式。 提  
供了解读完整器件名称的图例。  
MSP 430 FR  
2
033  
I
PM  
R
Distribution Format  
Processor Family  
Platform  
Memory Type  
Packaging  
Temperature Range  
Series  
Feature Set  
Processor Family  
Platform  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
430 = TI’s 16-Bit MSP430 Low-Power Microcontroller Platform  
Memory Type  
Series  
FR = FRAM  
2 = FRAM 2 series up to 16 MHz without LCD  
Feature Set  
First and Second Digits: ADC Channels / 16-bit Timers / I/Os Third Digit: FRAM (KB) / SRAM (KB)  
3 = 16 / 2  
2 = 8 / 1  
03 = Up to 10 / 3 / Up to 60  
Temperature Range  
Packaging  
I = –40°C to 85°C  
http://www.ti.com/packaging  
Distribution Format  
T = Small reel  
R = Large reel  
No marking = Tube or tray  
8-1. 器件命名规则  
76  
器件和文档支持  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
8.3 工具和软件  
8-1 列出了 MSP430FR203x 微控制器所 调试 调控功能。请参阅《适用于 MSP430™ MCU Code  
Composer Studio™ IDE》用户指南,以了解有关可用 功能的详细信息。  
8-1. 硬件 特性  
四线制  
JTAG  
两线制  
JTAG  
断点  
(N)  
状态序列发生  
LPMX.5 调试  
支持  
MSP430 架构  
范围断点  
时钟控制  
跟踪缓冲器  
MSP430Xv2  
3
设计套件与评估模块  
MSP430FR4133 LaunchPad 开发套件  
MSP-EXP430FR4133 LaunchPad 开发套件是适用于 MSP430FR4133 微控制器的简单易用的评估模块  
(EVM)。它包含在基于 FRAM MSP430 超低功耗 (ULP) 微控制器 (MCU) 平台上进行开发所需的全部资  
源,包括用于编程、调试和能量测量的板载仿真。  
适用于 MSP430FR2x/4x MCU MSP-TS430PM64D 目标开发板  
MSP-TS430PM64D 是一款独立的 64 引脚 ZIF 插座目标板,用于通过 JTAG 接口或 Spy Bi-Wire2 线  
JTAG)协议对 MSP430 MCU 系统内置器件进行编程和调试。  
适用于 MSP430FR2x/4x MCU MSP-FET430U64D 目标开发板(64 引脚)和 MSP-FET 编程器捆绑包  
MSP-FET430U64D 是一款捆绑套件,包含 MSP-FET 仿真器和 MSP-TS430PM64D 64 引脚 ZIF 插座目标  
板,用于通过 JTAG 接口或 Spy Bi-Wire2 线式 JTAG)协议对 MSP430 MCU 系统内置器件进行编程和  
调试。  
软件  
MSP430Ware™ 软件  
MSP430Ware 软件集合了所有 MSP430 器件的代码示例、数据表以及其他设计资源,打包提供给用户。除  
了提供已有 MSP430 MCU 设计资源的完整集合外,MSP430Ware 软件还包含名为 MSP 驱动程序库的高级  
API。借助该库可以轻松地对 MSP430 硬件进行编程。MSP430Ware 软件以 CCS 组件或独立软件包两种形  
式提供。  
MSP430FR413xMSP430FR203x 代码示例  
根据不同应用需求配置各集成外设的每个 MSP 器件均具备相应的 C 代码示例。  
适用于 MSP 超低功耗微控制器的 FRAM 嵌入式软件实用程序  
TI FRAM 实用程序软件旨在用作不断扩充的嵌入式软件实用程序集合,其中的实用程序充分利用了 FRAM  
的超低功耗和近乎无限次的写入寿命。这些实用程序适用于 MSP430FRxx FRAM 微控制器并提供示例代  
码,以帮助开始进行应用程序开发。  
版权 © 2014–2019, Texas Instruments Incorporated  
器件和文档支持  
77  
提交文档反馈意见  
产品主页链接: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
MSP430 Touch Pro GUI  
MSP430 Touch Pro 工具是基于 PC 的工具,可用于检验电容式触控按钮、滑块和滚轮设计。此工具可接收  
并显示 CapTouch 传感器数据,帮助用户快速轻松地评估、诊断和调整按钮、滑块和滚轮设计。  
MSP430 触控电源设计器 GUI  
使用 MSP430 电容式触控电源设计器,可以计算给定的 MSP430 电容式触控系统的估计平均电流消耗。通  
过输入系统参数(如工作电压、频率、按钮数量和按钮选通时间),用户可以在数分钟内估计给定的器件系  
列的指定电容式触控配置的功耗。  
适用于 MSP 微控制器的数字信号处理 (DSP) 库  
数字信号处理库是一组经高度优化的函数,可针对 MSP430 MSP432 微控制器对定点数执行许多常见的  
信号处理运算。该函数集通常用于 以 要求完成实时密集处理转换,从而以最低能耗实现高精度的应用。针  
对定点数学对 MSP 固有硬件的最佳利用可以极大地提高性能。  
MSP 驱动程序库  
MSP 驱动程序库的抽象 API 提供易用的函数调用,无需直接操纵 MSP430 硬件的位与字节。完整的文档通  
过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证的参数的详细信息。开发人员可使  
用驱动程序库函数以尽可能低的费用编写全部项目。  
MSP EnergyTrace 技术  
适用于 MSP430 微控制器的 EnergyTrace 技术是基于电能的代码分析工具,适用于测量和显示应用的电能  
系统配置并帮助优化应用以实现超低功耗。  
ULP(超低功耗)Advisor  
ULP Advisor™软件是一款辅助工具,旨在指导开发人员编写更为高效的代码,从而充分利用 MSP430 和  
MSP432 微控制器 独特 功能。ULP Advisor 的目标人群是微控制器的资深开发者和开发新手,可以根据详  
尽的 ULP 检验表检查代码,以便最大限度地减少应用程序的能耗。在编译时,ULP Advisor 会提供通知和  
备注以突出显示代码中可以进一步优化的区域,进而实现更低功耗。  
适用于 MSP 的定点数学库  
MSP IQmath Qmath 库是为 C 语言开发者提供的一套经过高度优化的高精度数学运算函数集合,能够将  
浮点算法无缝嵌入 MSP430 MSP432 器件的定点代码中。这些例程通常用于计算密集型实时 应用, 而  
优化的执行速度、高精度以及超低能耗通常是影响这些实时应用的关键因素。与使用浮点数学算法编写的同  
等代码相比,使用 IQmath Qmath 库可以大幅提高执行速度并显著降低能耗。  
适用于 MSP430 的浮点数学库  
TI 在低功耗和低成本微控制器领域锐意创新,为您提供 MSPMATHLIB。该标量函数的浮点数学库能够利用  
我们的器件的智能外设,其速度最高可为标准 MSP430 数学函数的 26 倍。Mathlib 能够轻松集成到您的设  
计中。该运算库免费使用并集成在 Code Composer Studio IDE IAR Embedded Workbench IDE 中。  
78  
器件和文档支持  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
开发工具  
适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境  
Code Composer Studio (CCS) 集成开发环境 (IDE) 支持所有 MSP 微控制器器件。CCS 包含一整套用于开  
发和调试嵌入式 应用的嵌入式软件实用程序。CCS 包含了优化的 C/C++ 编译器、源代码编辑器、项目构建  
环境、调试器、描述器以及其他众多 功能。  
命令行编程器  
MSP Flasher 是一款基于 shell 的开源接口,可使用 JTAG Spy-Bi-Wire (SBW) 通信通过 FET 编程器或  
eZ430 MSP 微控制器进行编程。MSP Flasher 可用于将二进制文件(.txt .hex 文件)直接下载到  
MSP 微控制器,而无需使用 IDE。  
MSP MCU 编程器和调试器  
MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可帮助用户在 MSP 低功耗微控制器 (MCU)  
中快速开发应用。创建 MCU 软件通常需要将生成的二进制程序下载到 MSP 器件中,从而进行验证和调  
试。  
MSP-GANG 生产编程器  
MSP Gang 编程器是一款 MSP430 MSP432 器件编程器,可同时对多达八个完全相同的 MSP430 或  
MSP432 闪存或 FRAM 器件进行编程。MSP Gang 编程器可使用标准的 RS-232 USB 连接与主机 PC  
相连并提供灵活的编程选项,允许用户完全自定义流程。  
8.4 文档支持  
以下文档描述了 MSP430FR203x 微控制器。www.ti.com.cn 网站上提供了这些文档的副本。  
接收文档更新通知  
要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹(关于产品文件  
夹的链接,请参见8.5)。请单击右上角的通知我按钮。点击注册后,即可收到产品信息更改每周摘要  
(如有)。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
勘误  
MSP430FR2033 器件勘误表》  
介绍了这款器件所有芯片修订版本的功能规格的已知例外情况。  
MSP430FR2032 器件勘误表》  
介绍了这款器件所有芯片修订版本的功能规格的已知例外情况。  
用户指南  
MSP430FR4xx MSP430FR2xx 系列用户指南》  
可 说明 。  
MSP430 FRAM 器件引导加载程序 (BSL) 用户指南》  
MSP430 MCU 上的引导加载程序 (BSL) 允许用户在原型设计、投产和维护等各阶段与 MSP430 MCU 中的  
嵌入式存储器进行通信。可编程存储器(FRAM 存储器)和数据存储器 (RAM) 均可按要求予以修改。  
版权 © 2014–2019, Texas Instruments Incorporated  
器件和文档支持  
79  
提交文档反馈意见  
产品主页链接: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
《通过 JTAG 接口对 MSP430 进行编程》  
此文档介绍了使用 JTAG 通信端口擦除、编程和验证基于 MSP430 闪存和 FRAM 的微控制器系列的存储器  
模块所需的功能。此外,该文档还介绍了如何编程所有 MSP430 器件上均具备的 JTAG 访问安全保险丝。  
此文档介绍了使用标准四线制 JTAG 接口和两线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))的器件访问。  
MSP430 硬件工具用户指南》  
此手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针对 MSP430 超低功耗微控制器的程  
序开发工具。文中对提供的接口类型,即并行端口接口和 USB 接口进行了说明。  
应用报告  
MSP430 FRAM 技术 操作方法和最佳实践  
FRAM 采用非易失性存储器技术,行为与 SRAM 类似,支持大量新 应用,还改变了固件的设计方式。该应  
用程序报告从嵌入式软件开发方面概述了 FRAM 技术在 MSP430 中的使用方法和最佳实践。其中介绍了如  
何按照应用程序特定的代码、常量、数据空间要求实施存储器布局以及如何使用 FRAM 优化应用程序的能  
耗。  
MSP430 32kHz 晶体振荡器》  
选择合适的晶体、正确的负载电路和适当的电路板布局是实现稳定的晶体振荡器的关键。该应用报告总结了  
晶体振荡器的功能,介绍了用于选择合适的晶体以实现 MSP430 超低功耗运行的参数。此外,还给出了正  
确电路板布局的提示和示例。此外,为了确保振荡器在大规模生产后能够稳定运行,还可能需要进行一些振  
荡器测试,该文档中提供了有关这些测试的详细信息。  
MSP430 系统级 ESD 注意事项》  
随着芯片技术向更低电压方向发展以及设计具有成本效益的超低功耗组件的需求的出现,系统级 ESD 要求  
变得越来越苛刻。该应用报告介绍了三个不同的 ESD 主题,旨在帮助电路板设计人员和 OEM 理解并设计  
出稳健耐用的系统级设计。  
8.5 相关链接  
8-2 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品  
的快速链接。  
8-2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
MSP430FR2033  
MSP430FR2032  
80  
器件和文档支持  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2033 MSP430FR2032  
 
MSP430FR2033, MSP430FR2032  
www.ti.com.cn  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
8.6 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参见 TI 《使用条款》。  
TI E2E™ 社区  
TI 的工程师交流 (E2E) 社区. 此社区的创建目的是为了促进工程师之间协作。在 e2e.ti.com 中,您可以提  
问、共享知识、拓展思路,在同领域工程师的帮助下解决问题。  
TI 嵌入式处理器维基网页  
德州仪器 (TI) 嵌入式处理器维基网页。此网站的建立是为了帮助开发人员熟悉德州仪器 (TI) 的嵌入式处理  
器,并且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。  
8.7 商标  
MSP430, MSP430Ware, ULP Advisor, 适用于 MSP 微控制器的 Code Composer Studio, E2E are  
trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
8.8 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.9 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
器件和文档支持  
81  
产品主页链接: MSP430FR2033 MSP430FR2032  
MSP430FR2033, MSP430FR2032  
ZHCSDF2E OCTOBER 2014REVISED DECEMBER 2019  
www.ti.com.cn  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
82  
机械、封装和可订购信息  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP430FR2033 MSP430FR2032  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP430FR2032IG48  
MSP430FR2032IG48R  
MSP430FR2032IG56  
MSP430FR2032IG56R  
MSP430FR2032IPMR  
MSP430FR2033IG48  
MSP430FR2033IG48R  
MSP430FR2033IG56  
MSP430FR2033IG56R  
MSP430FR2033IPM  
MSP430FR2033IPMR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
LQFP  
DGG  
DGG  
DGG  
DGG  
PM  
48  
48  
56  
56  
64  
48  
48  
56  
56  
64  
64  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
FR2032  
2000 RoHS & Green  
35 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
FR2032  
FR2032  
FR2032  
FR2032  
FR2033  
FR2033  
FR2033  
FR2033  
FR2033  
FR2033  
2000 RoHS & Green  
1000 RoHS & Green  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
LQFP  
DGG  
DGG  
DGG  
DGG  
PM  
40  
2000 RoHS & Green  
35 RoHS & Green  
2000 RoHS & Green  
160 RoHS & Green  
1000 RoHS & Green  
RoHS & Green  
LQFP  
PM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
MSP430FR2032IG48R TSSOP  
MSP430FR2032IG56R TSSOP  
DGG  
DGG  
PM  
48  
56  
64  
48  
56  
64  
2000  
2000  
1000  
2000  
2000  
1000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
8.6  
8.6  
13.0  
15.6  
13.0  
13.0  
15.6  
13.0  
1.8  
1.8  
2.1  
1.8  
1.8  
2.1  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
Q1  
Q1  
Q2  
Q1  
Q1  
Q2  
MSP430FR2032IPMR  
LQFP  
13.0  
8.6  
MSP430FR2033IG48R TSSOP  
MSP430FR2033IG56R TSSOP  
DGG  
DGG  
PM  
8.6  
MSP430FR2033IPMR  
LQFP  
13.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
MSP430FR2032IG48R  
MSP430FR2032IG56R  
MSP430FR2032IPMR  
MSP430FR2033IG48R  
MSP430FR2033IG56R  
MSP430FR2033IPMR  
TSSOP  
TSSOP  
LQFP  
DGG  
DGG  
PM  
48  
56  
64  
48  
56  
64  
2000  
2000  
1000  
2000  
2000  
1000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
TSSOP  
TSSOP  
LQFP  
DGG  
DGG  
PM  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
MSP430FR2032IG48  
MSP430FR2032IG56  
MSP430FR2033IG48  
MSP430FR2033IG56  
DGG  
DGG  
DGG  
DGG  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
48  
56  
48  
56  
40  
35  
40  
35  
530  
530  
530  
530  
11.89  
11.89  
11.89  
11.89  
3600  
3600  
3600  
3600  
4.9  
4.9  
4.9  
4.9  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
MSP430FR2033IPM  
PM  
LQFP  
64  
160  
8 x 20  
150  
315 135.9 7620 15.2  
13.1  
13  
Pack Materials-Page 4  
PACKAGE OUTLINE  
PM0064A  
LQFP - 1.6 mm max height  
SCALE 1.400  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
33  
16  
32  
17  
A
0.27  
0.17  
64X  
60X 0.5  
4X 7.5  
0.08  
C A B  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1.4)  
1.6 MAX  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215162/A 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
49  
64  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
33  
16  
17  
32  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215162/A 03/2017  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PM0064A  
LQFP - 1.6 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
SYMM  
(11.4)  
60X (0.5)  
(R0.05) TYP  
16  
33  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4215162/A 03/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DGG0056A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
0
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
54X 0.5  
56  
1
14.1  
13.9  
NOTE 3  
2X  
13.5  
28  
B
29  
0.27  
0.17  
6.2  
6.0  
56X  
1.2 MAX  
0.08  
C A  
B
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.05  
0.75  
0.50  
DETAIL A  
TYPICAL  
4222167/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05)  
TYP  
SYMM  
28  
29  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222167/A 07/2015  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05) TYP  
SYMM  
28  
29  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4222167/A 07/2015  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DGG0048A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
3
5
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
46X 0.5  
48  
1
12.6  
12.4  
NOTE 3  
2X  
11.5  
24  
B
25  
0.27  
0.17  
48X  
6.2  
6.0  
1.2  
1.0  
0.08  
C A B  
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.75  
0.05  
0.50  
DETAIL A  
TYPICAL  
4214859/B 11/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0048A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
48X (1.5)  
SYMM  
1
48  
48X (0.3)  
46X (0.5)  
(R0.05)  
TYP  
SYMM  
24  
25  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214859/B 11/2020  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0048A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
48X (1.5)  
SYMM  
1
48  
48X (0.3)  
46X (0.5)  
SYMM  
(R0.05) TYP  
24  
25  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4214859/B 11/2020  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
MECHANICAL DATA  
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PINS SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

MSP430FR2032IG48

具有 8KB FRAM、1KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | DGG | 48 | -40 to 85
TI

MSP430FR2032IG48R

具有 8KB FRAM、1KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | DGG | 48 | -40 to 85
TI

MSP430FR2032IG56

具有 8KB FRAM、1KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | DGG | 56 | -40 to 85
TI

MSP430FR2032IG56R

具有 8KB FRAM、1KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | DGG | 56 | -40 to 85
TI

MSP430FR2032IPMR

具有 8KB FRAM、1KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | PM | 64 | -40 to 85
TI

MSP430FR2033

具有 16KB FRAM、2KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU
TI

MSP430FR2033IG48

具有 16KB FRAM、2KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | DGG | 48 | -40 to 85
TI

MSP430FR2033IG48R

具有 16KB FRAM、2KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | DGG | 48 | -40 to 85
TI

MSP430FR2033IG56

具有 16KB FRAM、2KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | DGG | 56 | -40 to 85
TI

MSP430FR2033IG56R

具有 16KB FRAM、2KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | DGG | 56 | -40 to 85
TI

MSP430FR2033IPM

具有 16KB FRAM、2KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | PM | 64 | -40 to 85
TI

MSP430FR2033IPMR

具有 16KB FRAM、2KB SRAM、10 位 ADC、UART/SPI/I2C、红外逻辑和计时器的 16MHz MCU | PM | 64 | -40 to 85
TI