MSP432E401Y [TI]

具有以太网、CAN、1MB 闪存和 256kB RAM 的 SimpleLink™ 32 位 Arm Cortex-M4F MCU;
MSP432E401Y
型号: MSP432E401Y
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有以太网、CAN、1MB 闪存和 256kB RAM 的 SimpleLink™ 32 位 Arm Cortex-M4F MCU

以太网 闪存
文件: 总156页 (文件大小:1377K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
MSP432E401Y SimpleLink™ 以太网微控制器  
1 器件概述  
1.1 特性  
1
内核  
安全性  
– 120MHz ARM® Cortex®- 具有浮点运算单元  
(FPU) M4F 处理器内核  
高级加密标准 (AES):基于 128192 256 位  
密钥的硬件加速数据加密和解密  
连接  
数据加密标准 (DES):具有 168 位有效密钥长度  
并且支持块密码实施的硬件加速数据加密和解密  
以太网 MAC:具有集成以太网 PHY 10/100  
以太网 MAC  
安全哈希算法/消息摘要算法 (SHA/MD5):支持  
SHA-1SHA-2 MD5 哈希计算的高级哈希引  
以太网 PHY:具有 IEEE 1588 PTP 硬件支持的  
PHY  
循环冗余校验 (CRC) 硬件  
篡改:支持四个篡改输入和可配置篡改事件响应  
模拟  
通用串行总线 (USB):具有 ULPI 接口选项和链  
路层电源管理 (LPM) USB 2.0 OTG、主机或  
器件  
– 8 个通用异步接收器/发射器 (UART),每个具有  
独立计时的发送器和接收器  
– 2 个基于 12 SAR ADC 模块,每个模块支  
持高达 200 万次/秒的采样率 (2Msps)  
– 4 个四通道同步串行接口 (QSSI):提供双通道、  
四通道和高级 SSI 支持  
– 3 个独立的模拟比较器控制器  
– 16 个数字比较器  
系统管理  
提供高速模式支持的 10 个内部集成电路 (I2C) 模  
– JTAG 和串行线调试 (SWD):一个具有集成  
ARM SWD JTAG 模块提供访问和控制测试设  
计 特性 的途径,如 I/O 引脚监督和控制、扫描测  
试和调试。  
– 2 CAN 2.0 A B 控制器:多播共享串行总线  
标准  
存储器  
具有 4 个存储体的 1024KB 闪存存储器配置支持  
对每个存储体提供独立代码保护  
开发套件和软件(请参阅 工具和软件)  
– SimpleLink™MSP-EXP432E401Y LaunchPad™  
开发套件  
具有单周期访问的 256KB SRAM 120MHz 时  
钟频率提供近 2GB/s 的内存带宽  
– 6KB EEPROM:每 2 个页块写入 500k、矫正、  
锁定保护  
– SimpleLink MSP432E4 软件开发套件 (SDK)  
封装信息  
封装:128 引脚 TQFP (PDT)  
扩展工作温度(环境)范围:–40°C 105°C  
内部 ROM:搭载有 SimpleLink™SDK 软件  
外设驱动程序库  
引导加载程序  
外部外设接口 (EPI)816 32 位专用并行接  
口访问外部器件和存储器(SDRAM、闪存或  
SRAM)  
1.2 应用  
工业以太网网关  
工业智能网关  
适用于楼宇自动化的区域控制器  
工厂自动化数据收集器和网关  
面向电网基础设施的数据集中器  
无线转以太网网关  
1.3 说明  
SimpleLink MSP432E401Y ARM® Cortex®-M4F 微控制器具有顶级性能和高级集成功能。该产品系列 用于  
需要强大的控制处理和连接功能且具有成本效益的应用。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASEN5  
 
 
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
MSP432E401Y 微控制器集成了大量丰富的通信 特性, 以实现全新的高度互连设计,在性能和功耗之间实  
现重要的实时控制。这些微控制器具有集成式通信外设以及其他高性能的模拟和数字功能,为开发从人机界  
(HMI) 到联网系统管理控制器在内的许多不同目标应用奠定了坚实的基础。  
此外,MSP432E401Y 微控制器为基于 ARM 的微控制器提供了诸多优势,如广泛可用的开发工具、片上系  
(SoC) 基础架构,以及一个庞大的用户社区。另外,这些微控制器使用 ARM Thumb®兼容的 Thumb-2®  
指令集来减少内存要求,并以此达到降低成本的目的。当使用 SimpleLink MSP432™SDK  
时,MSP432E401Y SimpleLink 系列的所有成员的代码兼容,因此使用灵活,可满足各类具体需求。  
MSP432E401Y 器件是 SimpleLink 微控制器 (MCU) 平台的一部分,该平台包含 Wi-Fi®、低功耗 Bluetooth  
®、低于 1GHz、以太网、Zigbee、线程和主机 MCU,它们均共用一个通用、简单易用的开发环境,其中包  
含单核软件开发套件 (SDK) 和丰富的工具集。借助一次性集成的 SimpleLink 平台,可以将产品组合中的任  
何器件组合添加至您的设计中,从而在设计要求变更时实现 100% 代码重用。更多详细信息,请访问  
www.ti.com/simplelink。  
Device Information(1)  
PART NUMBER  
MSP432E401YTPDT  
PACKAGE  
封装尺寸  
TQFP (128)  
14mm x 14mm  
(1) 更多信息,请参见 9机械、封装和可订购产品信息。  
2
器件概述  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
1.4 功能框图  
1-1 给出了功能框图。  
JTAG, SWD  
Arm  
Cortex-M4F  
Bootloader  
ROM  
DriverLib  
(120 MHz)  
AES and CRC  
Ethernet Bootloater  
System  
Control and  
Clocks  
(with Precision  
Oscillator)  
Flash  
ETM  
FPU  
DCode bus  
ICode bus  
(1024KB)  
NVIC  
MPU  
System Bus  
SRAM  
(256KB)  
Bus Matrix  
SYSTEM PERIPHERALS  
Watchdog  
Timer  
(2 Units)  
DMA  
Hibernation  
Module  
EEPROM  
(6K)  
Tamper  
General-  
Purpose  
Timer (8 Units)  
GPIOs  
(90)  
External  
Peripheral  
Interface  
CRC  
Module  
DES  
Module  
AES  
Module  
SHA/MD5  
Module  
SERIAL PERIPHERALS  
USB OTG  
(FS PHY  
or ULPI)  
UART  
(8 Units)  
SSI  
(4 Units)  
I2C  
(10 Units)  
CAN  
Controller  
(2 Units)  
Ethernet  
MAC, PHY, MII  
ANALOG PERIPHERALS  
12-Bit ADC  
(2 Units,  
20 Channels)  
Analog  
Comparator  
(3 Units)  
MOTION CONTROL PERIPHERALS  
PWM  
(1 Unit,  
8 Signals)  
QEI  
(1 Unit)  
Copyright © 2017, Texas Instruments Incorporated  
1-1. MSP432E401Y 功能方框图  
版权 © 2017, Texas Instruments Incorporated  
器件概述  
3
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 1  
1.3 说明 ................................................... 1  
1.4 功能框图 .............................................. 3  
Revision History ......................................... 5  
Device Characteristics.................................. 6  
3.1 Related Products ..................................... 7  
Terminal Configuration and Functions.............. 8  
4.1 Pin Diagram .......................................... 8  
4.2 Pin Attributes ......................................... 9  
4.3 Signal Descriptions.................................. 19  
4.4 GPIO Pin Multiplexing............................... 30  
4.5 Buffer Type.......................................... 33  
4.6 Connections for Unused Pins ....................... 33  
Specifications ........................................... 35  
5.1 Absolute Maximum Ratings......................... 35  
5.2 ESD Ratings ........................................ 35  
5.3 Recommended Operating Conditions............... 35  
5.11 Peripheral Current Consumption.................... 41  
5.12 LDO Regulator Characteristics...................... 41  
5.13 Power Dissipation ................................... 42  
5.14 Thermal Resistance Characteristics, 128-Pin PDT  
(TQFP) Package .................................... 42  
5.15 Timing and Switching Characteristics ............... 43  
Detailed Description ................................... 94  
6.1 Overview ............................................ 94  
6.2 Functional Block Diagram........................... 95  
6.3 Arm Cortex-M4F Processor Core ................... 96  
6.4 On-Chip Memory................................... 100  
6.5 Peripherals ......................................... 102  
6.6 Identification........................................ 144  
6.7 Boot Modes ........................................ 144  
Applications, Implementation, and Layout ...... 146  
7.1 System Design Guidelines......................... 146  
器件和文档支......................................... 147  
8.1 入门和后续步骤 .................................... 147  
8.2 器件命名规则....................................... 147  
8.3 工具和软件 ......................................... 148  
8.4 文档支持 ........................................... 149  
8.5 Community Resources............................. 150  
8.6 商标 ................................................ 150  
8.7 静电放电警告....................................... 150  
8.8 出口管制提示....................................... 150  
8.9 术语.............................................. 150  
机械、封装和可订购信息 .............................. 151  
2
3
6
4
7
8
5
5.4  
5.5  
5.6  
Recommended DC Operating Conditions .......... 35  
Recommended GPIO Operating Characteristics ... 35  
Recommended Fast GPIO Pad Operating  
Conditions ........................................... 36  
Recommended Slow GPIO Pad Operating  
5.7  
Conditions ........................................... 36  
5.8 GPIO Current Restrictions .......................... 37  
5.9 I/O Reliability ........................................ 37  
5.10 Current Consumption ............................... 38  
9
4
内容  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
2 Revision History  
注:之前版本的页码可能与当前版本有所不同。  
DATE  
REVISION  
NOTES  
2017 10 月  
*
初始发行版  
版权 © 2017, Texas Instruments Incorporated  
Revision History  
5
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
3 Device Characteristics  
3-1 lists the characteristics of the MSP432E401Y MCU.  
3-1. Device Characteristics  
Feature  
Description  
Performance  
Core  
Arm Cortex-M4F processor core  
Performance  
120-MHz operation, 150-DMIPS performance  
1024KB of flash memory  
Flash  
System SRAM  
256KB of single-cycle system SRAM  
6KB of EEPROM  
EEPROM  
Internal ROM  
Internal ROM loaded with SimpleLink SDK software  
8-, 16-, or 32-bit dedicated interface for peripherals and memory  
External Peripheral Interface (EPI)  
Security  
Cyclical Redundancy Check (CRC)  
16- or 32-bit hash function that supports four CRC forms  
Hardware accelerated data encryption and decryption based on 128-, 192-, and 256-bit  
keys  
Advanced Encryption Standard (AES)  
Data Encryption Standard (DES)  
Hardware Accelerated Hash (SHA/MD5)  
Tamper  
Block cipher implementation with 168-bit effective key length  
Advanced hash engine that supports SHA-1, SHA-2, or MD5 hash computation  
Support for four tamper inputs and configurable tamper event response  
Communication Interfaces  
Universal Asynchronous Receiver/Transmitter  
(UART)  
Eight UARTs  
Quad Synchronous Serial Interface (QSSI)  
Inter-Integrated Circuit (I2C)  
Controller Area Network (CAN)  
Ethernet MAC  
Four SSI modules with bi-, quad-, and advanced-SSI support  
Ten I2C modules with four transmission speeds including high-speed mode  
Two CAN 2.0 A/B controllers  
10/100 Ethernet MAC  
Ethernet PHY  
PHY with IEEE 1588 PTP hardware support  
USB 2.0 OTG, Host, and Device with ULPI interface option and Link Power  
Management (LPM) support  
Universal Serial Bus (USB)  
System Integration  
Micro Direct Memory Access (µDMA)  
General-Purpose Timer (GPTM)  
Watchdog Timer (WDT)  
Arm PrimeCell® 32-channel configurable µDMA controller  
Eight 16- or 32-bit GPTM blocks  
Two watchdog timers  
Hibernation Module (HIB)  
Low-power battery-backed Hibernation module  
15 physical GPIO blocks  
General-Purpose Input/Output (GPIO)  
Advanced Motion Control  
One PWM module, with four PWM generator blocks and a control block, for a total of 8  
PWM outputs  
Pulse Width Modulator (PWM)  
Quadrature Encoder Interface (QEI)  
Analog Support  
One QEI module  
Analog-to-Digital Converter (ADC)  
Analog Comparator Controller  
Digital Comparator  
Two 12-bit ADC modules, each with a maximum sample rate of 2 Msps  
Three independent integrated analog comparators  
16 digital comparators  
System Management  
JTAG and Serial Wire Debug (SWD)  
Package Information  
One JTAG module with integrated Arm SWD  
Package  
128-pin TQFP (PDT)  
Operating Range (Ambient)  
Extended temperature range (–40°C to 105°C)  
6
Device Characteristics  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
3.1 Related Products  
For information about other devices in this family of products or related products, see the following links.  
Products for TI Microcontrollers Low-power and high-performance MCUs, with wired and wireless  
connectivity options.  
Products for SimpleLink MSP432 MCUs SimpleLink MSP432 MCUs with an ultra-low-power Arm  
Cortex-M4 core are optimized for Internet-of-Things sensor node applications. With an  
integrated ADC, the family enables acquisition and processing of high-precision signals  
without sacrificing power and is an optimal host MCU for TI's SimpleLink wireless  
connectivity solutions.  
Companion Products for MSP432E401Y Review products that are frequently purchased or used with  
this product.  
Reference Designs The TI Designs Reference Design Library is a robust reference design library that  
spans analog, embedded processor, and connectivity. Created by TI experts to help you  
jump start your system design, all TI Designs include schematic or block diagrams, BOMs,  
and design files to speed your time to market.  
版权 © 2017, Texas Instruments Incorporated  
Device Characteristics  
7
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4 Terminal Configuration and Functions  
4.1 Pin Diagram  
4-1 shows the pinout of the 128-pin TQFP (PDT) package.  
Each GPIO signal is identified by its GPIO port unless it defaults to an alternate function on reset. In this  
case, the GPIO port name is followed by the default alternate function. For a complete list of functions for  
each pin, see 4-2.  
PD0  
PD1  
1
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
PB1  
2
PB0  
PD2  
3
PL6  
PD3  
4
PL7  
PQ0  
PQ1  
VDD  
VDDA  
VREFA+  
GNDA  
PQ2  
PE3  
5
PB3  
6
PB2  
7
VDD  
OSC1  
OSC0  
VDDC  
PL5  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PL4  
PE2  
PL3  
PE1  
PL2  
PE0  
PL1  
VDD  
GND  
PK0  
PL0  
GND  
VDD  
PM0  
PM1  
PM2  
PM3  
PM4  
PM5  
PM6  
PM7  
RST  
VDD  
VBAT  
XOSC1  
XOSC0  
HIB  
PK1  
PK2  
PK3  
PC7  
PC6  
PC5  
PC4  
VDD  
PQ3  
VDD  
PH0  
PH1  
PH2  
PH3  
4-1. 128-Pin PDT Package (Top View)  
8
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4.2 Pin Attributes  
4-1 lists GPIO pins with special considerations. Most GPIO pins are configured as GPIOs and are high-  
impedance by default (GPIOAFSEL = 0, GPIODEN = 0, GPIOPDR = 0, GPIOPUR = 0, and GPIOPCTL =  
0). Special consideration pins may be programed to a non-GPIO function or may have special commit  
controls out of reset. In addition, a POR returns these GPIOs to their original special consideration state.  
4-1. GPIO Pins With Special Considerations  
DEFAULT  
GPIO PINS  
GPIOAFSEL  
GPIODEN  
GPIOPDR  
GPIOPUR  
GPIOPCTL  
GPIOCR  
RESET STATE  
JTAG/SWD  
GPIO(1)  
PC[3:0]  
PD[7]  
1
0
0
1
0
0
0
0
0
1
0
0
0x1  
0x0  
0x0  
0
0
0
PE[7]  
GPIO(1)  
(1) This pin is configured as a GPIO by default but is locked and can only be reprogrammed by unlocking the pin in the GPIOLOCK register  
and uncommitting it by setting the GPIOCR register.  
4-2 describes the pin attributes.  
4-2. Pin Attributes  
STATE AFTER  
SIGNAL  
TYPE(1)  
BUFFER  
TYPE(2)  
PIN MUX  
ENCODING  
POWER  
PIN NUMBER  
SIGNAL NAME  
RESET  
SOURCE(3)  
RELEASE(4)  
PD0  
I/O  
I
LVCMOS  
Analog  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
AIN15  
PD0  
C0o  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PD0 (5)  
PD0 (2)  
PD0 (15)  
PD0 (3)  
1
VDD  
VDD  
VDD  
I2C7SCL  
SSI2XDAT1  
T0CCP0  
PD1  
I/O  
I/O  
I/O  
I/O  
I
AIN14  
PD1  
C1o  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PD1 (5)  
PD1 (2)  
PD1 (15)  
PD1 (3)  
2
3
I2C7SDA  
SSI2XDAT0  
T0CCP1  
PD2  
I/O  
I/O  
I/O  
I/O  
I
AIN13  
PD2  
C2o  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PD2 (5)  
PD2 (2)  
PD2 (15)  
PD2 (3)  
I2C8SCL  
SSI2Fss  
T1CCP0  
PD3  
I/O  
I/O  
I/O  
I/O  
I
AIN12  
PD3  
4
5
I2C8SDA  
SSI2Clk  
T1CCP1  
PQ0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PD3 (2)  
PD3 (15)  
PD3 (3)  
VDD  
VDD  
EPI0S20  
SSI3Clk  
PQ0 (15)  
PQ0 (14)  
(1) Signal Types: I = Input, O = Output, I/O = Input or Output.  
(2) For details on buffer types, see 4-5.  
(3) N/A = Not applicable  
(4) State after reset release: PU = High impedance with an active pullup resistor, OFF = High impedance, N/A = not applicable  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
 
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-2. Pin Attributes (continued)  
STATE AFTER  
RESET  
SIGNAL  
TYPE(1)  
BUFFER  
TYPE(2)  
PIN MUX  
ENCODING  
POWER  
PIN NUMBER  
SIGNAL NAME  
SOURCE(3)  
RELEASE(4)  
PQ1  
I/O  
I/O  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
PQ1 (15)  
PQ1 (14)  
Fixed  
Fixed  
Fixed  
Fixed  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
6
EPI0S21  
SSI3Fss  
VDD  
7
8
VDD  
N/A  
N/A  
N/A  
N/A  
VDDA  
VREFA+  
GNDA  
PQ2  
Power  
9
Analog  
10  
Power  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
11  
12  
13  
14  
15  
EPI0S22  
SSI3XDAT0  
PE3  
PQ2 (15)  
PQ2 (14)  
VDD  
VDD  
VDD  
VDD  
VDD  
AIN0  
PE3  
U1DTR  
PE2  
O
I/O  
I
LVCMOS  
LVCMOS  
Analog  
PE3 (1)  
AIN1  
PE2  
U1DCD  
PE1  
I
LVCMOS  
LVCMOS  
Analog  
PE2 (1)  
I/O  
I
AIN2  
PE1  
U1DSR  
PE0  
I
LVCMOS  
LVCMOS  
Analog  
PE1 (1)  
I/O  
I
AIN3  
PE0  
U1RTS  
VDD  
O
LVCMOS  
Power  
PE0 (1)  
Fixed  
Fixed  
16  
17  
N/A  
N/A  
GND  
Power  
PK0  
I/O  
I
LVCMOS  
Analog  
AIN16  
EPI0S0  
U4Rx  
PK1  
PK0  
18  
19  
20  
21  
22  
VDD  
VDD  
VDD  
VDD  
VDD  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PK0 (15)  
PK0 (1)  
I/O  
I
AIN17  
EPI0S1  
U4Tx  
PK1  
I/O  
O
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PK1 (15)  
PK1 (1)  
PK2  
AIN18  
EPI0S2  
U4RTS  
PK3  
PK2  
I/O  
O
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PK2 (15)  
PK2 (1)  
AIN19  
EPI0S3  
U4CTS  
PC7  
PK3  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PK3 (15)  
PK3 (1)  
I/O  
I
C0-  
PC7  
EPI0S4  
U5Tx  
I/O  
O
LVCMOS  
LVCMOS  
PC7 (15)  
PC7 (1)  
10  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4-2. Pin Attributes (continued)  
STATE AFTER  
SIGNAL  
TYPE(1)  
BUFFER  
TYPE(2)  
PIN MUX  
ENCODING  
POWER  
PIN NUMBER  
SIGNAL NAME  
RESET  
SOURCE(3)  
RELEASE(4)  
PC6  
C0+  
I/O  
I
LVCMOS  
Analog  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
PC6  
23  
VDD  
EPI0S5  
U5Rx  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PC6 (15)  
PC6 (1)  
PC5  
I/O  
I
C1+  
PC5  
24  
25  
EPI0S6  
RTCCLK  
U7Tx  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PC5 (15)  
PC5 (7)  
PC5 (1)  
VDD  
VDD  
O
PC4  
I/O  
I
C1-  
PC4  
EPI0S7  
U7Rx  
I/O  
I
LVCMOS  
LVCMOS  
Power  
PC4 (15)  
PC4 (1)  
Fixed  
26  
27  
28  
29  
VDD  
N/A  
VDD  
N/A  
PQ3  
I/O  
I/O  
I/O  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
EPI0S23  
SSI3XDAT1  
VDD  
PQ3 (15)  
PQ3 (14)  
Fixed  
PH0  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
EPI0S0  
U0RTS  
PH1  
PH0 (15)  
PH0 (1)  
VDD  
I/O  
I/O  
I
30  
31  
32  
EPI0S1  
U0CTS  
PH2  
PH1 (15)  
PH1 (1)  
VDD  
VDD  
VDD  
I/O  
I/O  
I
EPI0S2  
U0DCD  
PH3  
PH2 (15)  
PH2 (1)  
I/O  
I/O  
I
EPI0S3  
U0DSR  
PA0  
PH3 (15)  
PH3 (1)  
I/O  
I
CAN0Rx  
I2C9SCL  
T0CCP0  
U0Rx  
PA0 (7)  
PA0 (2)  
PA0 (3)  
PA0 (1)  
33  
34  
35  
I/O  
I/O  
I
VDD  
VDD  
VDD  
PA1  
I/O  
O
CAN0Tx  
I2C9SDA  
T0CCP1  
U0Tx  
PA1 (7)  
PA1 (2)  
PA1 (3)  
PA1 (1)  
I/O  
I/O  
O
PA2  
I/O  
I/O  
I/O  
I/O  
I
I2C8SCL  
SSI0Clk  
T1CCP0  
U4Rx  
PA2 (2)  
PA2 (15)  
PA2 (3)  
PA2 (1)  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-2. Pin Attributes (continued)  
STATE AFTER  
RESET  
SIGNAL  
TYPE(1)  
BUFFER  
TYPE(2)  
PIN MUX  
ENCODING  
POWER  
PIN NUMBER  
SIGNAL NAME  
SOURCE(3)  
RELEASE(4)  
PA3  
I/O  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
I2C8SDA  
SSI0Fss  
PA3 (2)  
PA3 (15)  
PA3 (3)  
PA3 (1)  
36  
37  
VDD  
VDD  
T1CCP1  
U4Tx  
PA4  
I/O  
I/O  
I/O  
I/O  
I
I2C7SCL  
SSI0XDAT0  
T2CCP0  
U3Rx  
PA4 (2)  
PA4 (15)  
PA4 (3)  
PA4 (1)  
PA5  
I/O  
I/O  
I/O  
I/O  
O
I2C7SDA  
SSI0XDAT1  
T2CCP1  
U3Tx  
PA5 (2)  
PA5 (15)  
PA5 (3)  
PA5 (1)  
Fixed  
38  
39  
VDD  
N/A  
VDD  
PA6  
I/O  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
EPI0S8  
I2C6SCL  
SSI0XDAT2  
T3CCP0  
U2Rx  
PA6 (15)  
PA6 (2)  
PA6 (13)  
PA6 (3)  
PA6 (1)  
PA6 (5)  
40  
VDD  
USB0EPEN  
PA7  
O
I/O  
I/O  
I/O  
I/O  
I/O  
O
EPI0S9  
I2C6SDA  
SSI0XDAT3  
T3CCP1  
U2Tx  
PA7 (15)  
PA7 (2)  
PA7 (13)  
PA7 (3)  
PA7 (1)  
PA7 (11)  
PA7 (5)  
41  
VDD  
USB0EPEN  
USB0PFLT  
PF0  
O
I
I/O  
O
EN0LED0  
M0PWM0  
SSI3XDAT1  
TRD2  
PF0 (5)  
PF0 (6)  
PF0 (14)  
PF0 (15)  
42  
O
VDD  
I/O  
O
PF1  
I/O  
O
EN0LED2  
M0PWM1  
SSI3XDAT0  
TRD1  
PF1 (5)  
PF1 (6)  
PF1 (14)  
PF1 (15)  
43  
44  
O
VDD  
VDD  
I/O  
O
PF2  
I/O  
O
M0PWM2  
SSI3Fss  
TRD0  
PF2 (6)  
PF2 (14)  
PF2 (15)  
I/O  
O
12  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4-2. Pin Attributes (continued)  
STATE AFTER  
SIGNAL  
TYPE(1)  
BUFFER  
TYPE(2)  
PIN MUX  
ENCODING  
POWER  
PIN NUMBER  
SIGNAL NAME  
RESET  
SOURCE(3)  
RELEASE(4)  
PF3  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
M0PWM3  
SSI3Clk  
TRCLK  
PF4  
PF3 (6)  
PF3 (14)  
PF3 (15)  
45  
VDD  
I/O  
O
I/O  
O
EN0LED1  
M0FAULT0  
SSI3XDAT2  
TRD3  
PF4 (5)  
PF4 (6)  
PF4 (14)  
PF4 (15)  
Fixed  
46  
I
VDD  
I/O  
O
47  
48  
VDD  
N/A  
N/A  
GND  
Power  
Fixed  
PG0  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
EN0PPS  
EPI0S11  
I2C1SCL  
M0PWM4  
PG1  
PG0 (5)  
PG0 (15)  
PG0 (2)  
PG0 (6)  
49  
I/O  
I/O  
O
VDD  
VDD  
I/O  
I/O  
I/O  
O
EPI0S10  
I2C1SDA  
M0PWM5  
VDD  
PG1 (15)  
PG1 (2)  
PG1 (6)  
Fixed  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
N/A  
N/A  
VDD  
Power  
Fixed  
EN0RXIN  
EN0RXIP  
GND  
I/O  
I/O  
LVCMOS  
LVCMOS  
Power  
Fixed  
VDD  
VDD  
N/A  
Fixed  
Fixed  
EN0TXON  
EN0TXOP  
GND  
I/O  
I/O  
LVCMOS  
LVCMOS  
Power  
Fixed  
VDD  
VDD  
N/A  
Fixed  
Fixed  
RBIAS  
O
Analog  
Fixed  
VDD  
PK7  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
EPI0S24  
I2C4SDA  
M0FAULT2  
RTCCLK  
U0RI  
PK7 (15)  
PK7 (2)  
PK7 (6)  
PK7 (5)  
PK7 (1)  
60  
VDD  
O
I
PK6  
I/O  
O
EN0LED1  
EPI0S25  
I2C4SCL  
M0FAULT1  
PK5  
PK6 (5)  
PK6 (15)  
PK6 (2)  
PK6 (6)  
61  
62  
I/O  
I/O  
I
VDD  
VDD  
I/O  
O
EN0LED2  
EPI0S31  
I2C3SDA  
M0PWM7  
PK5 (5)  
PK5 (15)  
PK5 (2)  
PK5 (6)  
I/O  
I/O  
O
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-2. Pin Attributes (continued)  
STATE AFTER  
RESET  
SIGNAL  
TYPE(1)  
BUFFER  
TYPE(2)  
PIN MUX  
ENCODING  
POWER  
PIN NUMBER  
SIGNAL NAME  
SOURCE(3)  
RELEASE(4)  
PK4  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
EN0LED0  
EPI0S32  
PK4 (5)  
PK4 (15)  
PK4 (2)  
PK4 (6)  
Fixed  
Fixed  
Fixed  
Fixed  
Fixed  
Fixed  
Fixed  
63  
I/O  
I/O  
O
VDD  
I2C3SCL  
M0PWM6  
WAKE  
HIB  
64  
65  
66  
67  
68  
69  
70  
I
VBAT  
VBAT  
VBAT  
VBAT  
N/A  
O
XOSC0  
XOSC1  
VBAT  
I
O
Analog  
Power  
VDD  
Power  
N/A  
RST  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
VDD  
PM7  
I/O  
I/O  
I/O  
I
T5CCP1  
TMPR0  
U0RI  
PM7 (3)  
PM7  
71  
72  
73  
74  
VDD  
VDD  
VDD  
VDD  
PM7 (1)  
PM6  
I/O  
I/O  
I/O  
I
T5CCP0  
TMPR1  
U0DSR  
PM5  
PM6 (3)  
PM6  
PM6 (1)  
I/O  
I/O  
I/O  
I
T4CCP1  
TMPR2  
U0DCD  
PM4  
PM5 (3)  
PM5  
PM5 (1)  
I/O  
I/O  
I/O  
I
T4CCP0  
TMPR3  
U0CTS  
PM3  
PM4 (3)  
PM4  
PM4 (1)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
75  
76  
77  
78  
EPI0S12  
T3CCP1  
PM2  
PM3 (15)  
PM3 (3)  
VDD  
VDD  
VDD  
VDD  
EPI0S13  
T3CCP0  
PM1  
PM2 (15)  
PM2 (3)  
EPI0S14  
T2CCP1  
PM0  
PM1 (15)  
PM1 (3)  
EPI0S15  
T2CCP0  
VDD  
PM0 (15)  
PM0 (3)  
Fixed  
Fixed  
79  
80  
N/A  
N/A  
GND  
Power  
14  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4-2. Pin Attributes (continued)  
STATE AFTER  
SIGNAL  
TYPE(1)  
BUFFER  
TYPE(2)  
PIN MUX  
ENCODING  
POWER  
PIN NUMBER  
SIGNAL NAME  
RESET  
SOURCE(3)  
RELEASE(4)  
PL0  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
EPI0S16  
I2C2SDA  
M0FAULT3  
USB0D0  
PL1  
PL0 (15)  
PL0 (2)  
PL0 (6)  
PL0 (14)  
81  
VDD  
I/O  
I/O  
I/O  
I/O  
I
EPI0S17  
I2C2SCL  
PhA0  
PL1 (15)  
PL1 (2)  
PL1 (6)  
PL1 (14)  
82  
83  
84  
VDD  
VDD  
VDD  
USB0D1  
PL2  
I/O  
I/O  
O
C0o  
PL2 (5)  
PL2 (15)  
PL2 (6)  
PL2 (14)  
EPI0S18  
PhB0  
I/O  
I
USB0D2  
PL3  
I/O  
I/O  
O
C1o  
PL3 (5)  
PL3 (15)  
PL3 (6)  
PL3 (14)  
EPI0S19  
IDX0  
I/O  
I
USB0D3  
PL4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
EPI0S26  
T0CCP0  
USB0D4  
PL5  
PL4 (15)  
PL4 (3)  
PL4 (14)  
85  
86  
VDD  
VDD  
EPI0S33  
T0CCP1  
USB0D5  
VDDC  
PL5 (15)  
PL5 (3)  
PL5 (14)  
Fixed  
87  
88  
89  
90  
N/A  
VDD  
VDD  
N/A  
OSC0  
I
Analog  
Fixed  
OSC1  
O
Analog  
Fixed  
VDD  
Power  
Fixed  
PB2  
I/O  
I/O  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
EPI0S27  
I2C0SCL  
T5CCP0  
USB0STP  
PB3  
PB2 (15)  
PB2 (2)  
PB2 (3)  
PB2 (14)  
91  
VDD  
I/O  
I/O  
I/O  
I/O  
O
EPI0S28  
I2C0SDA  
T5CCP1  
USB0CLK  
PL7  
PB3 (15)  
PB3 (2)  
PB3 (3)  
PB3 (14)  
92  
93  
VDD  
VDD  
I/O  
I/O  
I/O  
T1CCP1  
USB0DM  
PL7 (3)  
PL7  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-2. Pin Attributes (continued)  
STATE AFTER  
RESET  
SIGNAL  
TYPE(1)  
BUFFER  
TYPE(2)  
PIN MUX  
ENCODING  
POWER  
PIN NUMBER  
SIGNAL NAME  
SOURCE(3)  
RELEASE(4)  
PL6  
I/O  
I/O  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
PU  
94  
95  
T1CCP0  
USB0DP  
PL6 (3)  
PL6  
VDD  
VDD  
PB0  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
CAN1Rx  
I2C5SCL  
T4CCP0  
U1Rx  
PB0 (7)  
PB0 (2)  
PB0 (3)  
PB0 (1)  
PB0  
I/O  
I/O  
I
USB0ID  
PB1  
I
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
CAN1Tx  
I2C5SDA  
T4CCP1  
U1Tx  
PB1 (7)  
PB1 (2)  
PB1 (3)  
PB1 (1)  
PB1  
I/O  
I/O  
O
96  
VDD  
USB0VBUS  
PC3  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
97  
98  
99  
VDD  
VDD  
VDD  
TDO/SWO  
PC2  
PC3 (1)  
I/O  
I
N/A  
PU  
TDI  
PC2 (1)  
PC1  
I/O  
I/O  
I/O  
I
OFF  
PU  
TMS/SWDIO  
PC0  
PC1 (1)  
OFF  
PU  
100  
101  
VDD  
N/A  
TCK/SWCLK  
VDD  
PC0 (1)  
Fixed  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
PQ4  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
102  
DIVSCLK  
U1Rx  
PQ4 (7)  
PQ4 (1)  
VDD  
I
PP2  
I/O  
I/O  
O
EPI0S29  
U0DTR  
USB0NXT  
PP3  
PP2 (15)  
PP2 (1)  
PP2 (14)  
103  
VDD  
O
I/O  
I/O  
O
EPI0S30  
RTCCLK  
U0DCD  
U1CTS  
USB0DIR  
PP4  
PP3 (15)  
PP3 (7)  
PP3 (2)  
PP3 (1)  
PP3 (14)  
104  
VDD  
I
I
O
I/O  
I
U0DSR  
U3RTS  
USB0D7  
PP5  
PP4 (2)  
PP4 (1)  
PP4 (14)  
105  
106  
VDD  
VDD  
O
I/O  
I/O  
I/O  
I
I2C2SCL  
U3CTS  
USB0D6  
PP5 (2)  
PP5 (1)  
PP5 (14)  
I/O  
16  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
PIN NUMBER  
ZHCSH09 OCTOBER 2017  
4-2. Pin Attributes (continued)  
STATE AFTER  
SIGNAL  
TYPE(1)  
BUFFER  
TYPE(2)  
PIN MUX  
ENCODING  
POWER  
SIGNAL NAME  
RESET  
SOURCE(3)  
RELEASE(4)  
PN0  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power  
OFF  
N/A  
OFF  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
107  
108  
VDD  
U1RTS  
PN1  
PN0 (1)  
I/O  
I
VDD  
VDD  
U1CTS  
PN2  
PN1 (1)  
I/O  
I/O  
I
EPI0S29  
U1DCD  
U2RTS  
PN3  
PN2 (15)  
PN2 (1)  
PN2 (2)  
109  
110  
O
I/O  
I/O  
I
EPI0S30  
U1DSR  
U2CTS  
PN4  
PN3 (15)  
PN3 (1)  
PN3 (2)  
VDD  
VDD  
I
I/O  
I/O  
I/O  
O
EPI0S34  
I2C2SDA  
U1DTR  
U3RTS  
PN5  
PN4 (15)  
PN4 (3)  
PN4 (1)  
PN4 (2)  
111  
112  
O
I/O  
I/O  
I/O  
I
EPI0S35  
I2C2SCL  
U1RI  
PN5 (15)  
PN5 (3)  
PN5 (1)  
PN5 (2)  
Fixed  
Fixed  
Fixed  
VDD  
U3CTS  
VDD  
I
113  
114  
115  
N/A  
N/A  
N/A  
GND  
Power  
VDDC  
PJ0  
Power  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
116  
117  
EN0PPS  
U3Rx  
PJ0 (5)  
PJ0 (1)  
VDD  
VDD  
I
PJ1  
I/O  
O
U3Tx  
PJ1 (1)  
PP0  
I/O  
I
C2+  
PP0  
118  
119  
VDD  
VDD  
SSI3XDAT2  
U6Rx  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PP0 (15)  
PP0 (1)  
PP1  
I/O  
I
C2-  
PP1  
SSI3XDAT3  
U6Tx  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PP1 (15)  
PP1 (1)  
PB5  
I/O  
I
AIN11  
I2C5SDA  
SSI1Clk  
U0RTS  
PB5  
120  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
PB5 (2)  
PB5 (15)  
PB5 (1)  
VDD  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-2. Pin Attributes (continued)  
STATE AFTER  
RESET  
SIGNAL  
TYPE(1)  
BUFFER  
TYPE(2)  
PIN MUX  
ENCODING  
POWER  
PIN NUMBER  
SIGNAL NAME  
SOURCE(3)  
RELEASE(4)  
PB4  
I/O  
I
LVCMOS  
Analog  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
OFF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
AIN10  
PB4  
121  
I2C5SCL  
SSI1Fss  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Power  
PB4 (2)  
PB4 (15)  
PB4 (1)  
Fixed  
VDD  
U0CTS  
VDD  
122  
123  
N/A  
PE4  
I/O  
I
LVCMOS  
Analog  
AIN9  
PE4  
VDD  
SSI1XDAT0  
U1RI  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PE4 (15)  
PE4 (1)  
PE5  
I/O  
I
124  
125  
AIN8  
PE5  
VDD  
VDD  
SSI1XDAT1  
PD4  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
Analog  
PE5 (15)  
AIN7  
PD4  
SSI1XDAT2  
T3CCP0  
U2Rx  
I/O  
I/O  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PD4 (15)  
PD4 (3)  
PD4 (1)  
PD5  
I/O  
I
AIN6  
PD5  
126  
127  
SSI1XDAT3  
T3CCP1  
U2Tx  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PD5 (15)  
PD5 (3)  
PD5 (1)  
VDD  
VDD  
PD6  
I/O  
I
AIN5  
PD6  
SSI2XDAT3  
T4CCP0  
U2RTS  
USB0EPEN  
PD7  
I/O  
I/O  
O
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PD6 (15)  
PD6 (3)  
PD6 (1)  
PD6 (5)  
O
I/O  
I
AIN4  
PD7  
NMI  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PD7 (8)  
PD7 (15)  
PD7 (3)  
PD7 (1)  
PD7 (5)  
128  
SSI2XDAT2  
T4CCP1  
U2CTS  
USB0PFLT  
I/O  
I/O  
I
VDD  
I
18  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4.3 Signal Descriptions  
4-3 describes the signals. The signals are sorted by function.  
4-3. Signal Descriptions  
FUNCTION  
SIGNAL NAME  
AIN0  
PIN NO.  
PIN TYPE  
DESCRIPTION  
12  
I
Analog-to-digital converter input 0.  
Analog-to-digital converter input 1  
Analog-to-digital converter input 2  
Analog-to-digital converter input 3  
Analog-to-digital converter input 4  
Analog-to-digital converter input 5  
Analog-to-digital converter input 6  
Analog-to-digital converter input 7  
Analog-to-digital converter input 8  
Analog-to-digital converter input 9  
Analog-to-digital converter input 10  
Analog-to-digital converter input 11  
Analog-to-digital converter input 12  
Analog-to-digital converter input 13  
Analog-to-digital converter input 14  
Analog-to-digital converter input 15  
Analog-to-digital converter input 16  
Analog-to-digital converter input 17  
Analog-to-digital converter input 18  
Analog-to-digital converter input 19  
AIN1  
13  
14  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
AIN2  
AIN3  
15  
AIN4  
128  
127  
126  
125  
124  
123  
121  
120  
4
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
AIN16  
AIN17  
AIN18  
AIN19  
ADC  
3
2
1
18  
19  
20  
21  
A reference voltage used to specify the voltage at which the  
ADC converts to a maximum value. This pin is used in  
conjunction with GNDA. The voltage that is applied to  
VREFA+ is the voltage with which an AINn signal is  
converted to 4095. The VREFA+ voltage is limited to the  
range specified in the ADC electrical specifications.  
VREFA+  
9
-
C0+  
C0-  
23  
22  
I
I
Analog comparator 0 positive input  
Analog comparator 0 negative input  
1
83  
C0o  
O
Analog comparator 0 output  
C1+  
C1-  
24  
25  
I
I
Analog comparator 1 positive input  
Analog comparator 1 negative input  
Analog Comparators  
2
84  
C1o  
O
Analog comparator 1 output  
C2+  
118  
119  
3
I
I
Analog comparator 2 positive input  
Analog comparator 2 negative input  
Analog comparator 2 output  
CAN module 0 receive  
C2-  
C2o  
O
I
CAN0Rx  
CAN0Tx  
CAN1Rx  
CAN1Tx  
33  
34  
95  
96  
O
I
CAN module 0 transmit  
Controller Area  
Network  
CAN module 1 receive  
O
CAN module 1 transmit  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-3. Signal Descriptions (continued)  
FUNCTION  
SIGNAL NAME  
TRCLK  
PIN NO.  
PIN TYPE  
DESCRIPTION  
45  
O
Trace clock.  
Trace data 0.  
Trace data 1.  
Trace data 2.  
TRD0  
TRD1  
TRD2  
TRD3  
44  
43  
42  
46  
O
O
O
O
Core  
Trace data 3.  
42  
63  
EN0LED0  
EN0LED1  
EN0LED2  
EN0PPS  
O
O
O
O
Ethernet 0 LED 0  
46  
61  
Ethernet 0 LED 1  
Ethernet 0 LED 2  
43  
62  
49  
116  
Ethernet  
Ethernet 0 pulse-per-second (PPS) output  
EN0RXIN  
EN0RXIP  
EN0TXON  
EN0TXOP  
RBIAS  
53  
54  
56  
57  
59  
I/O  
I/O  
I/O  
I/O  
O
Ethernet PHY negative receive differential input  
Ethernet PHY positive receive differential input  
Ethernet PHY negative transmit differential output  
Ethernet PHY positive transmit differential output  
4.87-kΩ resistor (1% precision) for Ethernet PHY  
20  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4-3. Signal Descriptions (continued)  
FUNCTION  
SIGNAL NAME  
EPI0S0  
PIN NO.  
PIN TYPE  
DESCRIPTION  
18  
29  
I/O  
EPI module 0 signal 0  
EPI module 0 signal 1  
EPI module 0 signal 2  
EPI module 0 signal 3  
19  
30  
EPI0S1  
EPI0S2  
EPI0S3  
I/O  
I/O  
I/O  
20  
31  
21  
32  
EPI0S4  
22  
23  
24  
25  
40  
41  
50  
49  
75  
76  
77  
78  
81  
82  
83  
84  
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
EPI module 0 signal 4  
EPI module 0 signal 5  
EPI module 0 signal 6  
EPI module 0 signal 7  
EPI module 0 signal 8  
EPI module 0 signal 9  
EPI module 0 signal 10  
EPI module 0 signal 11  
EPI module 0 signal 12  
EPI module 0 signal 13  
EPI module 0 signal 14  
EPI module 0 signal 15  
EPI module 0 signal 16  
EPI module 0 signal 17  
EPI module 0 signal 18  
EPI module 0 signal 19  
EPI module 0 signal 20  
EPI module 0 signal 21  
EPI module 0 signal 22  
EPI module 0 signal 23  
EPI module 0 signal 24  
EPI module 0 signal 25  
EPI module 0 signal 26  
EPI module 0 signal 27  
EPI module 0 signal 28  
EPI0S5  
EPI0S6  
EPI0S7  
EPI0S8  
EPI0S9  
EPI0S10  
EPI0S11  
EPI0S12  
EPI0S13  
EPI0S14  
EPI0S15  
EPI0S16  
EPI0S17  
EPI0S18  
EPI0S19  
EPI0S20  
EPI0S21  
EPI0S22  
EPI0S23  
EPI0S24  
EPI0S25  
EPI0S26  
EPI0S27  
EPI0S28  
External Peripheral  
Interface  
6
11  
27  
60  
61  
85  
91  
92  
103  
109  
EPI0S29  
EPI0S30  
I/O  
I/O  
EPI module 0 signal 29  
EPI module 0 signal 30  
104  
110  
EPI0S31  
EPI0S32  
EPI0S33  
EPI0S34  
EPI0S35  
62  
63  
I/O  
I/O  
I/O  
I/O  
I/O  
EPI module 0 signal 31  
EPI module 0 signal 32  
EPI module 0 signal 33  
EPI module 0 signal 34  
EPI module 0 signal 35  
86  
111  
112  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-3. Signal Descriptions (continued)  
FUNCTION  
SIGNAL NAME  
T0CCP0  
PIN NO.  
PIN TYPE  
DESCRIPTION  
1
33  
85  
I/O  
16/32-Bit Timer 0 Capture/Compare/PWM 0  
2
T0CCP1  
T1CCP0  
T1CCP1  
34  
86  
I/O  
I/O  
I/O  
16/32-Bit Timer 0 Capture/Compare/PWM 1  
16/32-Bit Timer 1 Capture/Compare/PWM 0  
16/32-Bit Timer 1 Capture/Compare/PWM 1  
3
35  
94  
4
36  
93  
37  
78  
T2CCP0  
T2CCP1  
I/O  
I/O  
16/32-Bit Timer 2 Capture/Compare/PWM 0  
16/32-Bit Timer 2 Capture/Compare/PWM 1  
38  
77  
General-Purpose  
Timers  
40  
76  
125  
T3CCP0  
T3CCP1  
T4CCP0  
T4CCP1  
I/O  
I/O  
I/O  
I/O  
16/32-Bit Timer 3 Capture/Compare/PWM 0  
16/32-Bit Timer 3 Capture/Compare/PWM 1  
16/32-Bit Timer 4 Capture/Compare/PWM 0  
16/32-Bit Timer 4 Capture/Compare/PWM 1  
41  
75  
126  
74  
95  
127  
73  
96  
128  
72  
91  
T5CCP0  
T5CCP1  
I/O  
I/O  
16/32-Bit Timer 5 Capture/Compare/PWM 0  
16/32-Bit Timer 5 Capture/Compare/PWM 1  
71  
92  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
33  
34  
35  
36  
37  
38  
40  
41  
95  
96  
91  
92  
121  
120  
100  
99  
98  
97  
25  
24  
23  
22  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO port A bit 0  
GPIO port A bit 1  
GPIO port A bit 2  
GPIO port A bit 3  
GPIO port A bit 4  
GPIO port A bit 5  
GPIO port A bit 6  
GPIO port A bit 7  
GPIO port B bit 0  
GPIO port B bit 1  
GPIO port B bit 2  
GPIO port B bit 3  
GPIO port B bit 4  
GPIO port B bit 5  
GPIO port C bit 0  
GPIO port C bit 1  
GPIO port C bit 2  
GPIO port C bit 3  
GPIO port C bit 4  
GPIO port C bit 5  
GPIO port C bit 6  
GPIO port C bit 7  
GPIO, Port A  
GPIO, Port B  
GPIO, Port C  
22  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4-3. Signal Descriptions (continued)  
FUNCTION  
SIGNAL NAME  
PD0  
PIN NO.  
1
PIN TYPE  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DESCRIPTION  
GPIO port D bit 0  
GPIO port D bit 1  
GPIO port D bit 2  
GPIO port D bit 3  
GPIO port D bit 4  
GPIO port D bit 5  
GPIO port D bit 6  
GPIO port D bit 7  
GPIO port E bit 0  
GPIO port E bit 1  
GPIO port E bit 2  
GPIO port E bit 3  
GPIO port E bit 4  
GPIO port E bit 5  
GPIO port F bit 0  
GPIO port F bit 1  
GPIO port F bit 2  
GPIO port F bit 3  
GPIO port F bit 4  
GPIO port G bit 0  
GPIO port G bit 1  
GPIO port H bit 0  
GPIO port H bit 1  
GPIO port H bit 2  
GPIO port H bit 3  
GPIO port J bit 0  
GPIO port J bit 1  
GPIO port K bit 0  
GPIO port K bit 1  
GPIO port K bit 2  
GPIO port K bit 3  
GPIO port K bit 4  
GPIO port K bit 5  
GPIO port K bit 6  
GPIO port K bit 7  
GPIO port L bit 0  
GPIO port L bit 1  
GPIO port L bit 2  
GPIO port L bit 3  
GPIO port L bit 4  
GPIO port L bit 5  
GPIO port L bit 6  
GPIO port L bit 7  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
PF0  
PF1  
PF2  
PF3  
PF4  
PG0  
PG1  
PH0  
PH1  
PH2  
PH3  
PJ0  
PJ1  
PK0  
PK1  
PK2  
PK3  
PK4  
PK5  
PK6  
PK7  
PL0  
PL1  
PL2  
PL3  
PL4  
PL5  
PL6  
PL7  
2
3
4
GPIO, Port D  
125  
126  
127  
128  
15  
14  
13  
12  
123  
124  
42  
43  
44  
45  
46  
49  
50  
29  
30  
31  
32  
116  
117  
18  
19  
20  
21  
63  
62  
61  
60  
81  
82  
83  
84  
85  
86  
94  
93  
GPIO, Port E  
GPIO, Port F  
GPIO, Port G  
GPIO, Port H  
GPIO, Port J  
GPIO, Port K  
GPIO, Port L  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-3. Signal Descriptions (continued)  
FUNCTION  
SIGNAL NAME  
PM0  
PIN NO.  
78  
PIN TYPE  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
DESCRIPTION  
GPIO port M bit 0  
GPIO port M bit 1  
GPIO port M bit 2  
GPIO port M bit 3  
GPIO port M bit 4  
GPIO port M bit 5  
GPIO port M bit 6  
GPIO port M bit 7  
GPIO port N bit 0  
GPIO port N bit 1  
GPIO port N bit 2  
GPIO port N bit 3  
GPIO port N bit 4  
GPIO port N bit 5  
GPIO port P bit 0  
GPIO port P bit 1  
GPIO port P bit 2  
GPIO port P bit 3  
GPIO port P bit 4  
GPIO port P bit 5  
GPIO port Q bit 0  
GPIO port Q bit 1  
GPIO port Q bit 2  
GPIO port Q bit 3  
GPIO port Q bit 4  
PM1  
PM2  
PM3  
PM4  
PM5  
PM6  
PM7  
PN0  
PN1  
PN2  
PN3  
PN4  
PN5  
PP0  
PP1  
PP2  
PP3  
PP4  
PP5  
PQ0  
PQ1  
PQ2  
PQ3  
PQ4  
HIB  
77  
76  
75  
GPIO, Port M  
74  
73  
72  
71  
107  
108  
109  
110  
111  
112  
118  
119  
103  
104  
105  
106  
5
GPIO, Port N  
GPIO, Port P  
6
GPIO, Port Q  
11  
27  
102  
65  
An output that indicates the processor is in Hibernate mode  
24  
60  
104  
Buffered version of the Hibernation module's 32.768-kHz  
clock. This signal is not output when the part is in Hibernate  
mode and before being configured after power-on reset.  
RTCCLK  
O
TMPR0  
TMPR1  
TMPR2  
TMPR3  
71  
72  
73  
74  
I/O  
I/O  
I/O  
I/O  
Tamper signal 0  
Tamper signal 1  
Tamper signal 2  
Tamper signal 3  
Power source for the Hibernation module. It is normally  
connected to the positive terminal of a battery and serves as  
the battery backup and Hibernation module power-source  
supply.  
Hibernate  
VBAT  
68  
-
An external input that brings the processor out of Hibernate  
mode when asserted  
WAKE  
64  
66  
67  
I
I
Hibernation module oscillator crystal input or an external  
clock reference input. This is either a crystal or a 32.768-  
kHz oscillator for the Hibernation module RTC.  
XOSC0  
XOSC1  
Hibernation module oscillator crystal output. Leave  
unconnected when using a single-ended clock source.  
O
24  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4-3. Signal Descriptions (continued)  
FUNCTION  
SIGNAL NAME  
I2C0SCL  
PIN NO.  
PIN TYPE  
DESCRIPTION  
I2C module 0 clock. This signal has an active pullup. The  
corresponding port pin should not be configured as open  
drain.  
91  
I/O  
I2C0SDA  
I2C1SCL  
I2C1SDA  
I2C2SCL  
92  
I/O  
I2C module 0 data  
I2C module 1 clock. This signal has an active pullup. The  
corresponding port pin should not be configured as open  
drain.  
I2C module 1 data  
I2C module 2 clock. This signal has an active pullup. The  
corresponding port pin should not be configured as open  
drain.  
49  
I/O  
50  
I/O  
82  
106  
112  
I/O  
81  
111  
I2C2SDA  
I/O  
I2C module 2 data  
I2C module 3 clock. This signal has an active pullup. The  
corresponding port pin should not be configured as open  
drain.  
I2C module 3 data  
I2C module 4 clock. This signal has an active pullup. The  
corresponding port pin should not be configured as open  
drain.  
I2C module 4 data  
I2C3SCL  
I2C3SDA  
I2C4SCL  
I2C4SDA  
I2C5SCL  
63  
62  
61  
60  
I/O  
I/O  
I/O  
I/O  
I/O  
I2C module 5 clock. This signal has an active pullup. The  
corresponding port pin should not be configured as open  
drain.  
I2C  
95  
121  
96  
120  
I2C5SDA  
I/O  
I2C module 5 data  
I2C module 6 clock. This signal has an active pullup. The  
corresponding port pin should not be configured as open  
drain.  
I2C module 6 data  
I2C module 7 clock. This signal has an active pullup. The  
corresponding port pin should not be configured as open  
drain.  
I2C6SCL  
I2C6SDA  
I2C7SCL  
40  
41  
I/O  
I/O  
I/O  
1
37  
2
38  
I2C7SDA  
I2C8SCL  
I2C8SDA  
I2C9SCL  
I/O  
I/O  
I/O  
I/O  
I2C module 7 data  
I2C module 8 clock. This signal has an active pullup. The  
corresponding port pin should not be configured as open  
drain.  
3
35  
4
36  
I2C module 8 data  
I2C module 9 clock. This signal has an active pullup. The  
corresponding port pin should not be configured as open  
drain  
33  
I2C9SDA  
TCK/SWCLK  
TDI  
34  
100  
98  
I/O  
I2C module 9 data  
JTAG/SWD clock  
JTAG TDI  
I
I
JTAG, SWD, SWO  
TDO/SWO  
TMS/SWDIO  
97  
O
I
JTAG TDO and SWO  
JTAG TMS and SWDIO  
99  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
25  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-3. Signal Descriptions (continued)  
FUNCTION  
SIGNAL NAME  
M0FAULT0  
PIN NO.  
46  
PIN TYPE  
DESCRIPTION  
Motion Control module 0 PWM fault 0  
Motion Control module 0 PWM fault 1  
Motion Control module 0 PWM fault 2  
Motion Control module 0 PWM fault 3  
I
I
I
I
M0FAULT1  
M0FAULT2  
M0FAULT3  
61  
60  
81  
Motion Control module 0 PWM 0. This signal is controlled by  
module 0 PWM generator 0.  
M0PWM0  
M0PWM1  
M0PWM2  
M0PWM3  
M0PWM4  
M0PWM5  
M0PWM6  
M0PWM7  
42  
43  
44  
45  
49  
50  
63  
62  
O
O
O
O
O
O
O
O
Motion Control module 0 PWM 1. This signal is controlled by  
module 0 PWM generator 0.  
Motion Control module 0 PWM 2. This signal is controlled by  
module 0 PWM generator 1.  
PWM  
Motion Control module 0 PWM 3. This signal is controlled by  
module 0 PWM generator 1.  
Motion Control module 0 PWM 4. This signal is controlled by  
module 0 PWM generator 2.  
Motion Control module 0 PWM 5. This signal is controlled by  
module 0 PWM generator 2.  
Motion Control module 0 PWM 6. This signal is controlled by  
module 0 PWM generator 3.  
Motion Control module 0 PWM 7. This signal is controlled by  
module 0 PWM generator 3.  
17  
48  
55  
58  
80  
114  
GND  
-
-
Ground reference for logic and I/O pins  
The ground reference for the analog circuits (ADC, Analog  
Comparators, etc.). These are separated from GND to  
minimize the electrical noise contained on VDD from  
affecting the analog functions  
GNDA  
10  
7
16  
26  
28  
39  
47  
51  
52  
VDD  
-
Positive supply for I/O and some logic  
Power  
69  
79  
90  
101  
113  
122  
The positive supply for the analog circuits (for example,  
ADC and Analog Comparators). These are separated from  
VDD to minimize the electrical noise contained on VDD from  
affecting the analog functions. VDDA pins must be supplied  
with a voltage that meets the specification in, regardless of  
system implementation  
VDDA  
VDDC  
8
-
-
Positive supply for most of the logic function, including the  
processor core and most peripherals. The voltage on this  
pin is 1.2 V and is supplied by the on-chip LDO. The VDDC  
pins should only be connected to each other and an external  
capacitor as specified in the LDO electrical specifications.  
87  
115  
IDX0  
PhA0  
PhB0  
84  
82  
83  
I
I
I
QEI module 0 index  
QEI module 0 phase A  
QEI module 0 phase B  
QEI  
26  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4-3. Signal Descriptions (continued)  
FUNCTION  
SIGNAL NAME  
SSI0Clk  
PIN NO.  
35  
PIN TYPE  
I/O  
DESCRIPTION  
SSI module 0 clock  
SSI module 0 frame signal  
SSI0Fss  
36  
I/O  
SSI module 0 bidirectional data pin 0 (SSI0TX in Legacy  
SSI mode)  
SSI0XDAT0  
37  
38  
I/O  
I/O  
SSI module 0 bidirectional data pin 1 (SSI0RX in Legacy  
SSI mode)  
SSI0XDAT1  
SSI0XDAT2  
SSI0XDAT3  
SSI1Clk  
40  
41  
I/O  
I/O  
I/O  
I/O  
SSI module 0 bidirectional data pin 2  
SSI module 0 bidirectional data pin 3  
SSI module 1 clock  
120  
121  
SSI1Fss  
SSI module 1 frame signal  
SSI module 1 bidirectional data pin 0 (SSI1TX in Legacy  
SSI mode)  
SSI1XDAT0  
SSI1XDAT1  
123  
124  
I/O  
I/O  
SSI module 1 bidirectional data pin 1 (SSI1RX in Legacy  
SSI mode)  
SSI1XDAT2  
SSI1XDAT3  
SSI2Clk  
125  
126  
4
I/O  
I/O  
I/O  
I/O  
SSI module 1 bidirectional data pin 2  
SSI module 1 bidirectional data pin 3  
SSI module 2 clock  
SSI  
SSI2Fss  
3
SSI module 2 frame signal  
SSI module 2 bidirectional data pin 0 (SSI2TX in Legacy  
SSI mode)  
SSI2XDAT0  
SSI2XDAT1  
2
1
I/O  
I/O  
SSI module 2 bidirectional data pin 1 (SSI2RX in Legacy  
SSI mode)  
SSI2XDAT2  
SSI2XDAT3  
128  
127  
I/O  
I/O  
SSI module 2 bidirectional data pin 2  
SSI module 2 bidirectional data pin 3  
5
45  
SSI3Clk  
I/O  
I/O  
I/O  
I/O  
SSI module 3 clock  
6
44  
SSI3Fss  
SSI module 3 frame signal  
11  
43  
SSI module 3 bidirectional data pin 0 (SSI3TX in Legacy  
SSI mode)  
SSI3XDAT0  
SSI3XDAT1  
27  
42  
SSI module 3 bidirectional data pin 1 (SSI3RX in Legacy  
SSI mode)  
46  
118  
SSI3XDAT2  
SSI3XDAT3  
I/O  
I/O  
SSI module 3 bidirectional data pin 2  
SSI module 3 bidirectional data pin 3  
119  
102  
An optionally divided reference clock output based on a  
selected clock source. This signal is not synchronized to the  
system clock.  
DIVSCLK  
O
NMI  
128  
88  
I
I
Nonmaskable interrupt  
System Control and  
Clocks  
Main oscillator crystal input or an external clock reference  
input  
OSC0  
Main oscillator crystal output. Leave unconnected when  
using a single-ended clock source.  
OSC1  
RST  
89  
70  
O
I
System reset input  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
27  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-3. Signal Descriptions (continued)  
FUNCTION  
SIGNAL NAME  
U0CTS  
PIN NO.  
PIN TYPE  
DESCRIPTION  
30  
74  
121  
UART module 0 Clear To Send modem flow control input  
signal  
I
31  
73  
104  
UART module 0 Data Carrier Detect modem status input  
signal  
U0DCD  
U0DSR  
I
I
32  
72  
UART module 0 Data Set Ready modem output control line  
105  
UART Module 0  
UART module 0 Data Terminal Ready modem status input  
signal  
U0DTR  
U0RI  
103  
O
I
60  
71  
UART module 0 Ring Indicator modem status input signal  
29  
120  
UART module 0 Request to Send modem flow control  
output signal  
U0RTS  
O
U0Rx  
U0Tx  
33  
34  
I
UART module 0 receive  
UART module 0 transmit  
O
104  
108  
UART module 1 Clear To Send modem flow control input  
signal  
U1CTS  
U1DCD  
U1DSR  
U1DTR  
U1RI  
I
I
13  
109  
UART module 1 Data Carrier Detect modem status input  
signal  
14  
110  
I
UART module 1 Data Set Ready modem output control line  
12  
111  
UART module 1 Data Terminal Ready modem status input  
signal  
O
I
UART Module 1  
112  
123  
UART module 1 Ring Indicator modem status input signal  
15  
107  
UART module 1 Request to Send modem flow control  
output line  
U1RTS  
O
95  
102  
U1Rx  
U1Tx  
I
O
I
UART module 1 receive.  
UART module 1 transmit  
96  
110  
128  
UART module 2 Clear To Send modem flow control input  
signal  
U2CTS  
109  
127  
UART module 2 Request to Send modem flow control  
output line  
U2RTS  
U2Rx  
O
I
UART Module 2  
UART Module 3  
UART Module 4  
40  
125  
UART module 2 receive  
UART module 2 transmit  
41  
126  
U2Tx  
O
I
106  
112  
UART module 3 Clear To Send modem flow control input  
signal  
U3CTS  
U3RTS  
U3Rx  
105  
111  
UART module 3 Request to Send modem flow control  
output line  
O
I
37  
116  
UART module 3 receive  
UART module 3 transmit  
38  
117  
U3Tx  
O
I
UART module 4 Clear To Send modem flow control input  
signal  
U4CTS  
U4RTS  
U4Rx  
21  
20  
UART module 4 Request to Send modem flow control  
output line  
O
I
18  
35  
UART module 4 receive  
UART module 4 transmit  
19  
36  
U4Tx  
O
28  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4-3. Signal Descriptions (continued)  
FUNCTION  
SIGNAL NAME  
U5Rx  
PIN NO.  
23  
PIN TYPE  
DESCRIPTION  
UART module 5 receive  
I
UART Module 5  
UART Module 6  
UART Module 7  
U5Tx  
22  
O
UART module 5 transmit  
UART module 6 receive  
UART module 6 transmit  
UART module 7 receive  
UART module 7 transmit  
60-MHz clock to the external PHY  
USB data 0  
U6Rx  
118  
119  
25  
I
U6Tx  
O
U7Rx  
I
U7Tx  
24  
O
USB0CLK  
USB0D0  
USB0D1  
USB0D2  
USB0D3  
USB0D4  
USB0D5  
USB0D6  
USB0D7  
92  
O
81  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
82  
USB data 1  
83  
USB data 2  
84  
USB data 3  
85  
USB data 4  
86  
USB data 5  
106  
105  
USB data 6  
USB data 7  
Indicates that the external PHY is able to accept data from  
the USB controller  
USB0DIR  
USB0DM  
USB0DP  
104  
93  
O
Bidirectional differential data pin (D– per USB specification)  
for USB0  
I/O  
I/O  
Bidirectional differential data pin (D+ per USB specification)  
for USB0  
94  
USB  
40  
41  
127  
Optionally used in Host mode to control an external power  
source to supply power to the USB bus  
USB0EPEN  
USB0ID  
O
I
This signal senses the state of the USB ID signal. The USB  
PHY enables an integrated pull-up, and an external element  
(USB connector) indicates the initial state of the USB  
controller (pulled down is the A side of the cable and pulled  
up is the B side).  
95  
USB0NXT  
USB0PFLT  
103  
O
I
Asserted by the external PHY to throttle all data types  
41  
128  
Optionally used in Host mode by an external power source  
to indicate an error state by that power source  
Asserted by the USB controller to signal the end of a USB  
transmit packet or register write operation  
USB0STP  
91  
96  
O
This signal is used during the session request protocol. This  
signal allows the USB PHY to both sense the voltage level  
of VBUS, and pull up VBUS momentarily during VBUS  
pulsing.  
USB0VBUS  
I/O  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
29  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4.4 GPIO Pin Multiplexing  
4-4 lists the GPIO pins and their analog and digital alternate functions. The AINx analog signals go through an isolation circuit before reaching  
their circuitry. These signals are configured by clearing the corresponding DEN bit in the GPIO Digital Enable (GPIODEN) register and setting the  
corresponding AMSEL bit in the GPIO Analog Mode Select (GPIOAMSEL) register. Other analog signals are 3.3-V tolerant and are connected  
directly to their circuitry (C0-, C0+, C1 -, C1+, C2-, C2+, USB0VBUS, USB0ID). These signals are configured by clearing the DEN bit in the  
GPIODEN register. The digital signals are enabled by setting the appropriate bit in the GPIO Alternate Function Select (GPIOAFSEL) and  
GPIODEN registers and configuring the PMCx bit field in the GPIO Port Control (GPIOPCTL) register to the numeric encoding shown in 4-4.  
4-4. GPIO Pins and Alternate Functions  
ANALOG  
OR  
DIGITAL FUNCTION (GPIOPCTL PMCx BIT FIELD ENCODING)  
I/O  
PIN  
SPECIAL  
1
2
3
4
5
6
7
8
11  
13  
14  
15  
FUNCTION  
(1)  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PD0  
PD1  
33  
34  
35  
36  
37  
38  
40  
41  
95  
96  
91  
92  
121  
120  
100  
99  
98  
97  
25  
24  
23  
22  
1
U0Rx  
U0Tx  
U4Rx  
U4Tx  
U3Rx  
U3Tx  
U2Rx  
U2Tx  
U1Rx  
U1Tx  
I2C9SCL  
I2C9SDA  
I2C8SCL  
I2C8SDA  
I2C7SCL  
I2C7SDA  
I2C6SCL  
I2C6SDA  
I2C5SCL  
I2C5SDA  
I2C0SCL  
I2C0SDA  
I2C5SCL  
I2C5SDA  
T0CCP0  
CAN0Rx  
T0CCP1  
CAN0Tx  
T1CCP0  
SSI0Clk  
SSI0Fss  
SSI0XDAT0  
SSI0XDAT1  
EPI0S8  
EPI0S9  
T1CCP1  
T2CCP0  
T2CCP1  
T3CCP0  
USB0EPEN  
SSI0XDAT2  
T3CCP1  
USB0PFLT  
USB0EPEN SSI0XDAT3  
USB0ID  
T4CCP0  
CAN1Rx  
USB0VBUS  
T4CCP1  
CAN1Tx  
T5CCP0  
USB0STP  
EPI0S27  
EPI0S28  
SSI1Fss  
SSI1Clk  
T5CCP1  
USB0CLK  
AIN10  
AIN11  
U0CTS  
U0RTS  
TCK SWCLK  
TMS SWDIO  
TDI  
TDO SWO  
U7Rx  
U7Tx  
U5Rx  
U5Tx  
C1-  
C1+  
C0+  
C0-  
AIN15  
AIN14  
EPI0S7  
EPI0S6  
EPI0S5  
EPI0S4  
SSI2XDAT1  
SSI2XDAT0  
RTCCLK  
I2C7SCL  
I2C7SDA  
T0CCP0  
T0CCP1  
C0o  
C1o  
2
(1) The TMPRn signals are digital signals enabled and configured by the Hibernation module. All other signals listed in this column are analog signals.  
30 Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4-4. GPIO Pins and Alternate Functions (continued)  
ANALOG  
OR  
DIGITAL FUNCTION (GPIOPCTL PMCx BIT FIELD ENCODING)  
I/O  
PIN  
SPECIAL  
1
2
3
4
5
6
7
8
11  
13  
14  
15  
FUNCTION  
(1)  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
PF0  
PF1  
PF2  
PF3  
PF4  
PG0  
PG1  
PH0  
PH1  
PH2  
PH3  
PJ0  
PJ1  
PK0  
PK1  
PK2  
PK3  
PK4  
PK5  
PK6  
PK7  
PL0  
3
AIN13  
I2C8SCL  
T1CCP0  
C2o  
SSI2Fss  
SSI2Clk  
SSI1XDAT2  
SSI1XDAT3  
SSI2XDAT3  
SSI2XDAT2  
4
AIN12  
I2C8SDA  
T1CCP1  
125  
126  
127  
128  
15  
AIN7  
U2Rx  
U2Tx  
U2RTS  
U2CTS  
U1RTS  
U1DSR  
U1DCD  
U1DTR  
U1RI  
T3CCP0  
AIN6  
T3CCP1  
AIN5  
T4CCP0  
USB0EPEN  
AIN4  
T4CCP1  
USB0PFLT  
NMI  
AIN3  
14  
AIN2  
13  
AIN1  
12  
AIN0  
123  
124  
42  
AIN9  
SSI1XDAT0  
SSI1XDAT1  
TRD2  
AIN8  
EN0LED0  
M0PWM0  
SSI3XDAT1  
43  
EN0LED2  
M0PWM1  
SSI3XDAT0  
TRD1  
44  
M0PWM2  
SSI3Fss  
TRD0  
45  
M0PWM3  
SSI3Clk  
TRCLK  
TRD3  
46  
EN0LED1  
M0FAULT0  
SSI3XDAT2  
49  
I2C1SCL  
EN0PPS  
M0PWM4  
EPI0S11  
EPI0S10  
EPI0S0  
EPI0S1  
EPI0S2  
EPI0S3  
50  
I2C1SDA  
M0PWM5  
29  
U0RTS  
U0CTS  
U0DCD  
U0DSR  
U3Rx  
U3Tx  
U4Rx  
U4Tx  
U4RTS  
U4CTS  
30  
31  
32  
116  
117  
18  
EN0PPS  
AIN16  
EPI0S0  
EPI0S1  
EPI0S2  
EPI0S3  
EPI0S32  
EPI0S31  
EPI0S25  
EPI0S24  
EPI0S16  
19  
AIN17  
20  
AIN18  
21  
AIN19  
63  
I2C3SCL  
I2C3SDA  
I2C4SCL  
I2C4SDA  
I2C2SDA  
EN0LED0  
EN0LED2  
EN0LED1  
RTCCLK  
M0PWM6  
M0PWM7  
M0FAULT1  
M0FAULT2  
M0FAULT3  
62  
61  
60  
U0RI  
81  
USB0D0  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
31  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-4. GPIO Pins and Alternate Functions (continued)  
ANALOG  
DIGITAL FUNCTION (GPIOPCTL PMCx BIT FIELD ENCODING)  
OR  
I/O  
PIN  
SPECIAL  
1
2
3
4
5
6
7
8
11  
13  
14  
15  
FUNCTION  
(1)  
PL1  
PL2  
PL3  
PL4  
PL5  
PL6  
PL7  
PM0  
PM1  
PM2  
PM3  
PM4  
PM5  
PM6  
PM7  
PN0  
PN1  
PN2  
PN3  
PN4  
PN5  
PP0  
PP1  
PP2  
PP3  
PP4  
PP5  
PQ0  
PQ1  
PQ2  
PQ3  
PQ4  
82  
83  
I2C2SCL  
C0o  
C1o  
PhA0  
USB0D1  
EPI0S17  
EPI0S18  
EPI0S19  
EPI0S26  
EPI0S33  
PhB0  
USB0D2  
84  
IDX0  
USB0D3  
85  
T0CCP0  
USB0D4  
86  
T0CCP1  
USB0D5  
94  
USB0DP  
T1CCP0  
93  
USB0DM  
T1CCP1  
78  
T2CCP0  
EPI0S15  
EPI0S14  
EPI0S13  
EPI0S12  
77  
T2CCP1  
76  
T3CCP0  
75  
T3CCP1  
74  
TMPR3  
U0CTS  
U0DCD  
U0DSR  
U0RI  
U1RTS  
U1CTS  
U1DCD  
U1DSR  
U1DTR  
U1RI  
U6Rx  
U6Tx  
U0DTR  
U1CTS  
U3RTS  
U3CTS  
T4CCP0  
73  
TMPR2  
T4CCP1  
72  
TMPR1  
T5CCP0  
71  
TMPR0  
T5CCP1  
107  
108  
109  
110  
111  
112  
118  
119  
103  
104  
105  
106  
5
U2RTS  
EPI0S29  
EPI0S30  
EPI0S34  
EPI0S35  
SSI3XDAT2  
SSI3XDAT3  
EPI0S29  
EPI0S30  
U2CTS  
U3RTS  
I2C2SDA  
U3CTS  
I2C2SCL  
C2+  
C2-  
USB0NXT  
USB0DIR  
USB0D7  
USB0D6  
SSI3Clk  
SSI3Fss  
SSI3XDAT0  
SSI3XDAT1  
U0DCD  
RTCCLK  
U0DSR  
I2C2SCL  
EPI0S20  
EPI0S21  
EPI0S22  
EPI0S23  
6
11  
27  
102  
U1Rx  
DIVSCLK  
32  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4.5 Buffer Type  
4-5 describes the buffer types that are referenced in 4.2.  
4-5. Buffer Type  
NOMINAL  
OUTPUT  
DRIVE  
STRENGTH  
(mA)  
BUFFER TYPE  
(STANDARD)  
NOMINAL  
VOLTAGE  
PU OR PD  
STRENGTH  
(µA)  
OTHER  
CHARACTERISTICS  
HYSTERESIS  
PU OR PD  
See analog modules in 5  
for details.  
Analog(1)  
3.3 V  
3.3 V  
N
N/A  
N/A  
N/A  
See  
Input/Output  
See Typical  
Characteristics.  
LVCMOS  
Y(2)  
Programmable  
Pin  
Characteristics  
.
Power (VDD)(3)  
Power (VDDA)(3)  
3.3 V  
3.3 V  
N
N
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Power (GND and  
GNDA)(3)  
0 V  
N
N/A  
N/A  
N/A  
(1) This is a switch, not a buffer.  
(2) Only for input pins  
(3) This is supply input, not a buffer.  
4.6 Connections for Unused Pins  
4-6 lists the recommended connections for unused pins.  
4-6 lists two options: an acceptable practice and a preferred practice for reduced power consumption  
and improved EMC characteristics. If a module is not used in a system, and its inputs are grounded, it is  
important that the clock to the module is never enabled by setting the corresponding bit in the RCGCx  
register.  
4-6. Connections for Unused Pins  
ACCEPTABLE  
PRACTICE  
PREFERRED  
PRACTICE  
FUNCTION  
SIGNAL NAME  
PIN NUMBER  
ADC  
VREFA+  
9
VDDA  
NC  
VDDA  
NC  
EN0RXIN  
EN0RXIP  
EN0TXON  
EN0TXOP  
53  
54  
56  
57  
NC  
NC  
NC  
NC  
Ethernet  
NC  
NC  
Connect to ground  
through 4.87-kΩ  
resistor.  
Connect to ground  
through 4.87-kΩ  
resistor.  
RBIAS  
59  
PA1 (U0Tx)  
PA4 (SSI0XDAT0)  
All unused GPIOs  
HIB  
34  
37  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND(1)  
GND(2)  
GND  
NC  
GPIO  
65  
68  
64  
66  
VBAT  
VDD  
WAKE  
GND  
GND  
Hibernate  
XOSC0  
XOSC1  
NC  
NC  
67  
(1) PA1 (U0Tx) may be enabled as an output by the ROM bootloader if no code is present in the flash and PA0 (U0Rx) receives a valid  
boot signature. Ensure that this condition will not occur if PA1 is to be connected directly to GND.  
(2) PA4 (SSI0XDAT0) may be enabled as an output by the ROM bootloader if no code is present in the flash and the SSI0x (PA2, PA3,  
PA5) receives a valid boot signature. Ensure that this condition will not occur if PA4 is to be connected directly to GND.  
版权 © 2017, Texas Instruments Incorporated  
Terminal Configuration and Functions  
33  
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
4-6. Connections for Unused Pins (continued)  
ACCEPTABLE  
PRACTICE  
PREFERRED  
PRACTICE  
FUNCTION  
SIGNAL NAME  
PIN NUMBER  
OSC0  
OSC1  
NC  
NC  
GND  
88  
89  
NC  
System Control  
Pull up to VDD with 0 to  
RST  
VDD  
NC  
100-kΩ resistor.(3)  
70  
93  
94  
Pull down to GND with  
USB0DM / PL7  
USB0DP / PL6  
1-kΩ resistor.(4)  
USB  
Pull down to GND with  
NC  
1-kΩ resistor.(4)  
(3) For details, see the System Control chapter of the SimpleLink™ MSP432E4 Microcontrollers Technical Reference Manual  
(4) The ROM bootloader may configure these pins as USB pins if no code is present in the flash. Therefore, they should not be connected  
directly to ground.  
34  
Terminal Configuration and Functions  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2)  
MIN  
0
MAX  
4
UNIT  
V
VDD  
VDD supply voltage  
VDDA  
VDDA supply voltage  
0
4
V
VBAT  
VBAT battery supply voltage  
VBAT battery supply voltage ramp time  
0
4
V
VBATRMP  
VIN_GPIO  
IGPIOMAX  
TS  
0
0.7  
4
V/µs  
V
(3)  
Input voltage  
–0.3  
Maximum current per output pin  
Unpowered storage temperature range  
Maximum junction temperature  
64  
150  
125  
mA  
°C  
°C  
–65  
TJMAX  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltages are measured with respect to GND.  
(3) Applies to static and dynamic signals including overshoot.  
5.2 ESD Ratings  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
±2000  
±500  
UNIT  
(1) (2)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS001  
Charged-device model (CDM), per JEDEC specification JESD22C101  
V(ESD)  
Electrostatic discharge  
V
(3)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as  
±2000 V may actually have higher performance.  
(2) All pins are HBM compliant to ±2000 V for all combinations as per JESD22-A114F, except for the following stress combinations:  
The Ethernet EN0RXIN, EN0TXON, EN0RXIP, and EN0TXOP pins to each other.  
The GPIO pins PM4, PM5, PM6, and PM7 to other pins.  
These exceptions are compliant to 500 V and do not require any special handling beyond typical ESD control procedures during  
assembly operations per JEDEC publication JEP155. These pins do meet the 500-V CDM specification.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V  
may actually have higher performance.  
5.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–40  
–40  
MAX  
105  
UNIT  
°C  
TA Ambient operating temperature range  
TJ Junction operating temperature range  
Extended temperature  
Extended temperature  
125  
°C  
5.4 Recommended DC Operating Conditions  
over operating free-air temperature (unless otherwise noted)  
MIN  
2.97  
2.97  
1.14  
0.85  
NOM  
3.3  
MAX  
3.63  
3.63  
1.32  
0.95  
UNIT  
VDD  
VDD supply voltage  
VDDA supply voltage  
V
V
V
V
(1)  
VDDA  
VDDC  
VDDCDS  
3.3  
VDDC supply voltage, run mode  
1.2  
VDDC supply voltage, deep-sleep mode  
(1) To ensure proper operation, power on VDDA before VDD if sourced from different supplies, or connect VDDA to the same supply as VDD  
.
No restriction exists for powering off.  
5.5 Recommended GPIO Operating Characteristics  
The following sections describe the recommended GPIO operating characteristics for the device.  
Two types of pads are provided on the device:  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
35  
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
Fast GPIO pads: These pads provide variable, programmable drive strength and optimized voltage  
output levels.  
Slow GPIO pads: These pads provide 2-mA drive strength and are designed to be sensitive to voltage  
inputs. The PJ1 GPIOs port pins are slow GPIO pads. All other GPIOs have a fast GPIO pad type.  
Port pins PL6 and PL7 operate as fast GPIO pads, but have 4-mA drive capability only.  
GPIO register controls for drive strength, slew rate and open drain have no effect on these  
pins. The registers which have no effect are as follows: GPIODR2R, GPIODR4R,  
GPIODR8R, GPIODR12R, GPIOSLR, and GPIOODR.  
Port pins PM[7:4] operate as fast GPIO pads but support only 2-, 4-, 6-, and 8-mA drive  
capability. 10- and 12-mA drive are not supported. All standard GPIO register controls,  
except for the GPIODR12R register, apply to these port pins.  
5.6 Recommended Fast GPIO Pad Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
4
UNIT  
V
0.65 ×  
VDD  
VIH  
IIH  
Fast GPIO high-level input voltage  
Fast GPIO high-level input current  
Fast GPIO low-level input voltage  
300  
nA  
V
0.35 ×  
VDD  
VIL  
0
(1)  
IIL  
Fast GPIO low-level input current  
Fast GPIO input hysteresis  
–200  
0.40  
nA  
V
VHYS  
VOH  
VOL  
0.49  
2.4  
Fast GPIO high-level output voltage  
Fast GPIO low-level output voltage  
V
V
2-mA drive  
4-mA drive  
8-mA drive  
10-mA drive  
12-mA drive  
2-mA drive  
4-mA drive  
8-mA drive  
10-mA drive  
12-mA drive  
2.0  
4.0  
(2)  
IOH  
Fast GPIO high-level source current, VOH = 2.4 V  
8.0  
mA  
10.0  
12.0  
2.0  
4.0  
8.0  
(2)  
10.0  
12.0  
IOL  
Fast GPIO low-level sink current, VOL = 0.4 V  
mA  
12-mA drive  
overdriven to  
18 mA  
18.0  
(1) Output, pullup, and pulldown are disabled; only input is enabled.  
(2) IO specifications reflect the maximum current where the corresponding output voltage meets the VOH or VOL thresholds. IO current can  
exceed these limits (subject to absolute maximum ratings).  
5.7 Recommended Slow GPIO Pad Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
4
UNIT  
V
0.65 ×  
VDD  
VIH  
IIH  
Slow GPIO high-level input voltage  
Slow GPIO high-level input current  
4.1  
nA  
36  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
Recommended Slow GPIO Pad Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
0.35 ×  
VDD  
VIL  
Slow GPIO low-level input voltage  
0
V
(1)  
IIL  
Slow GPIO low-level input current  
Slow GPIO input hysteresis  
–1  
nA  
V
VHYS  
VOH  
VOL  
IOH  
IOL  
0.49  
2.4  
Slow GPIO high-level output voltage  
V
Slow GPIO low-level output voltage  
0.4  
V
Slow GPIO high-level source current, VOH = 2.4 V, 2-mA drive  
Slow GPIO low-level sink current, VOL = 0.4 V (2), 2-mA drive  
2.0  
2.0  
mA  
mA  
(1) Output, pullup, and pulldown are disabled; only input is enabled.  
(2) IO specifications reflect the maximum current where the corresponding output voltage meets the VOH or VOL thresholds. IO current can  
exceed these limits (subject to absolute maximum ratings).  
5.8 GPIO Current Restrictions  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
NOM  
MAX  
112  
97.6  
112  
80  
UNIT  
mA  
IMAXL  
IMAXB  
IMAXR  
IMAXT  
Cumulative maximum GPIO current per side, left  
Cumulative maximum GPIO current per side, bottom  
(2)  
mA  
(2)  
Cumulative maximum GPIO current per side, right  
mA  
(2)  
Cumulative maximum GPIO current per side, top  
mA  
(1) Based on design simulations, not tested in production.  
(2) Sum of sink and source current for GPIOs as listed in 5-1.  
5-1. Maximum GPIO Package Side Assignments  
SIDE  
Left  
GPIOs  
PC[4-7], PD[0-3], PQ[0-3], PE[0-3], PK[0-3], PN[4-5], PH[0-3]  
Bottom  
Right  
Top  
PA[0-7], PF[0-4],PG[0-1], PK[4-7]  
PM[0-7], PL[0-7], PB[0-3]  
PC[0-3], PQ[4], PP[0-5], PN[0-5], PJ[0-1], PB[4-5], PE[4-5], PD[4-7]  
5.9 I/O Reliability  
For typical continuous drive applications, I/O pins configured in the range from 2 mA to 12 mA and  
operating at –40°C to 85°C meet the standard 10-year lifetime reliability. If a continuous current sink of 18  
mA is required, then operation is limited to 0 to 75°C to meet the standard 10-year reliability.  
At 105°C, I/O pins configured for continuous drive meet the standard 2.5-year lifetime reliability.  
In typical switching applications (40% switch rate) operating at –40°C to 85°C, all I/O configurations except  
2 mA meet the standard 10-year lifetime reliability with 50-pF loading. By limiting the capacitive loading to  
20 pF for an I/O configured to 2 mA, the 10-year lifetime reliability can be met at –40°C to 85°C.  
In typical switching applications (40% switch rate) operating at 105°C, all I/O configurations except 2 mA  
meet the standard 2.5-year lifetime reliability. By reducing the capacitive loading to 20 pF with a typical  
switching rate at 105°C, a 2-mA I/O configuration meets a 2.5-year lifetime reliability.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
37  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.10 Current Consumption  
over operating free-air temperature (unless otherwise noted)  
(1)  
SYSTEM CLOCK  
TYP  
MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
CLOCK  
SOURCE  
105°C  
FREQ  
120 MHz  
60 MHz  
–40°C  
96.4  
25°C  
85°C  
107.2  
78.6  
105°C  
108.7  
79.9  
85°C  
129.9  
100.3  
(2)  
MOSC with  
PLL  
105.3  
76.6  
140.0  
112.5  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on  
including MAC and PHY  
MOSC with  
PLL  
67.4  
16 MHz  
1 MHz  
PIOSC  
PIOSC  
11.9  
5.75  
24.4  
10.9  
25.5  
12.1  
26.7  
13.3  
45.0  
31.3  
56.4  
42.6  
MOSC with  
PLL  
120 MHz  
60 MHz  
69.9  
40.9  
77.8  
49.2  
79.6  
50.9  
80.8  
52.1  
98.8  
69.2  
108.4  
80.8  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on  
including MAC but not  
PHY  
MOSC with  
PLL  
16 MHz  
1 MHz  
PIOSC  
PIOSC  
11.3  
5.10  
23.6  
10.1  
25.0  
11.5  
26.2  
12.7  
43.1  
29.3  
54.3  
40.5  
Run mode  
(flash loop)  
MOSC with  
PLL  
120 MHz  
60 MHz  
68.1  
40.0  
76.0  
48.2  
77.6  
49.8  
78.6  
50.8  
96.6  
67.9  
106.0  
79.2  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on  
except MAC and PHY  
MOSC with  
PLL  
16 MHz  
1 MHz  
PIOSC  
PIOSC  
11.1  
5.07  
23.3  
10.1  
24.6  
11.3  
25.6  
12.3  
42.5  
29.0  
53.3  
39.8  
MOSC with  
PLL  
120 MHz  
60 MHz  
35.2  
23.2  
39.1  
29.4  
40.4  
30.7  
41.5  
31.7  
55.8  
45.8  
65.3  
55.5  
VDD = 3.3 V,  
VDDA = 3.3 V,  
MOSC with  
PLL  
Peripherals = All off  
16 MHz  
1 MHz  
PIOSC  
PIOSC  
7.38  
4.12  
17.9  
9.13  
19.0  
10.3  
20.0  
11.4  
34.5  
25.7  
44.1  
35.5  
IDD_RUN  
mA  
MOSC with  
PLL  
120 MHz  
60 MHz  
93.8  
66.9  
103.6  
76.7  
111.6  
78.7  
113.2  
80.0  
133.4  
100.0  
144.6  
111.9  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on  
including MAC and PHY  
MOSC with  
PLL  
16 MHz  
1 MHz  
PIOSC  
PIOSC  
12.6  
5.73  
19.0  
10.6  
20.1  
11.7  
21.3  
12.8  
39.1  
30.9  
50.3  
42.2  
MOSC with  
PLL  
120 MHz  
60 MHz  
67.2  
40.3  
76.1  
49.2  
84.0  
50.9  
85.4  
52.2  
102.3  
68.9  
113.0  
80.2  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on  
including MAC but not  
PHY  
MOSC with  
PLL  
16 MHz  
1 MHz  
PIOSC  
PIOSC  
11.9  
5.08  
18.2  
9.79  
19.6  
11.2  
20.8  
12.3  
37.2  
28.9  
48.2  
40.1  
Run mode  
(SRAM loop)  
MOSC with  
PLL  
120 MHz  
60 MHz  
65.4  
39.4  
74.3  
48.2  
82.0  
49.8  
83.2  
50.9  
100.1  
67.6  
110.6  
78.6  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals =All on  
except MAC and PHY  
MOSC with  
PLL  
16 MHz  
1 MHz  
PIOSC  
PIOSC  
11.7  
5.05  
17.9  
9.75  
19.2  
11.0  
20.2  
11.9  
36.6  
28.6  
47.2  
39.4  
MOSC with  
PLL  
120 MHz  
60 MHz  
35.4  
23.4  
43.3  
29.4  
44.7  
30.7  
45.8  
31.7  
59.8  
45.5  
69.0  
54.9  
VDD = 3.3 V,  
VDDA = 3.3 V,  
MOSC with  
PLL  
Peripherals = All off  
16 MHz  
1 MHz  
PIOSC  
PIOSC  
7.08  
4.60  
12.4  
8.78  
13.6  
10.0  
14.6  
11.0  
28.7  
25.3  
38.0  
34.9  
(1) Section 5.11 lists the current consumption that specific peripherals contribute to the run mode current consumption in Section 5.10. If  
these peripherals are not powered, then the peripheral current consumption can be subtracted from the run mode consumption in  
Section 5.10.  
(2) Applicable to extended temperature devices only.  
38  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
Current Consumption (continued)  
(1)  
over operating free-air temperature (unless otherwise noted)  
SYSTEM CLOCK  
TYP  
MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
CLOCK  
SOURCE  
105°C  
FREQ  
120 MHz  
60 MHz  
–40°C  
82.8  
25°C  
94.8  
69.2  
85°C  
96.8  
71.2  
105°C  
98.1  
85°C  
(2)  
MOSC with  
PLL  
117.9  
91.8  
129.1  
102.9  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on  
including MAC and PHY,  
LDO = 1.2 V  
MOSC with  
PLL  
60.8  
72.3  
16 MHz  
1 MHz  
PIOSC  
11.2  
5.10  
16.8  
10.3  
18.1  
11.5  
19.1  
12.6  
35.4  
28.9  
45.9  
39.6  
(3)  
PIOSC  
MOSC with  
PLL  
120 MHz  
60 MHz  
56.2  
34.4  
67.4  
41.9  
69.1  
43.4  
70.3  
44.5  
87.1  
60.7  
97.8  
71.6  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on  
including MAC but not  
PHY,  
MOSC with  
PLL  
(3)  
16 MHz  
1 MHz  
PIOSC  
10.6  
4.47  
16.2  
9.60  
17.5  
10.9  
18.5  
12.0  
34.5  
28.0  
45.1  
38.7  
LDO = 1.2 V  
(3)  
Sleep mode  
PIOSC  
(FLASHPM =  
0x0)  
MOSC with  
PLL  
120 MHz  
60 MHz  
54.4  
33.5  
65.6  
40.9  
67.1  
42.3  
68.1  
43.2  
84.9  
59.4  
95.4  
70.0  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on  
except MAC and PHY,  
LDO = 1.2 V  
MOSC with  
PLL  
(3)  
16 MHz  
1 MHz  
PIOSC  
10.4  
4.44  
15.9  
9.56  
17.1  
10.7  
17.9  
11.6  
33.9  
27.7  
44.1  
38.0  
(3)  
PIOSC  
MOSC with  
PLL  
120 MHz  
60 MHz  
22.0  
16.3  
28.6  
22.0  
29.8  
23.2  
30.7  
24.1  
44.1  
37.5  
53.1  
46.6  
VDD = 3.3 V,  
MOSC with  
PLL  
VDDA = 3.3 V,  
Peripherals = All off,  
LDO = 1.2 V  
(3)  
16 MHz  
1 MHz  
PIOSC  
5.37  
4.37  
10.4  
8.60  
11.5  
9.71  
12.4  
10.6  
26.1  
24.6  
35.1  
33.9  
(3)  
PIOSC  
IDD_SLEEP  
mA  
MOSC with  
PLL  
120 MHz  
60 MHz  
86.5  
61.6  
89.0  
63.4  
91.2  
65.6  
92.5  
66.7  
112.1  
86.0  
123.5  
97.2  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on  
including MAC and PHY,  
LDO = 1.2 V  
MOSC with  
PLL  
(3)  
16 MHz  
1 MHz  
PIOSC  
10.4  
4.45  
11.1  
4.49  
12.4  
5.83  
13.5  
6.98  
29.8  
23.4  
40.4  
34.2  
(3)  
PIOSC  
MOSC with  
PLL  
120 MHz  
60 MHz  
59.9  
35.1  
61.7  
36.1  
63.4  
37.8  
64.7  
38.9  
81.3  
54.9  
92.1  
66.0  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on  
including MAC but not  
PHY,  
MOSC with  
PLL  
(3)  
16 MHz  
1 MHz  
PIOSC  
9.75  
3.82  
10.4  
3.82  
11.8  
5.25  
12.9  
6.38  
28.9  
22.5  
39.6  
33.4  
LDO = 1.2 V  
(3)  
Sleep mode  
(FLASHPM =  
0x2)  
PIOSC  
MOSC with  
PLL  
120 MHz  
60 MHz  
58.1  
34.2  
59.9  
35.1  
61.4  
36.7  
62.5  
37.6  
79.1  
53.6  
89.7  
64.4  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on  
except MAC and PHY,  
LDO = 1.2 V  
MOSC with  
PLL  
(3)  
16 MHz  
1 MHz  
PIOSC  
9.50  
3.79  
10.1  
3.78  
11.4  
5.06  
12.3  
5.96  
28.3  
22.2  
38.6  
32.7  
(3)  
PIOSC  
MOSC with  
PLL  
120 MHz  
60 MHz  
22.0  
15.7  
22.8  
16.2  
24.1  
17.5  
25.1  
18.5  
38.2  
31.7  
47.4  
40.9  
VDD = 3.3 V,  
MOSC with  
PLL  
VDDA = 3.3 V,  
Peripherals = All off,  
LDO = 1.2 V  
(3)  
16 MHz  
1 MHz  
PIOSC  
4.50  
3.00  
4.60  
2.80  
5.80  
4.10  
6.80  
5.20  
20.5  
19.1  
29.8  
28.7  
(3)  
PIOSC  
(3) If the MOSC is the source of the run-mode system clock and is powered down in sleep mode, wake time is increased by tMOSC_SETTLE  
.
版权 © 2017, Texas Instruments Incorporated  
Specifications  
39  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
Current Consumption (continued)  
(1)  
over operating free-air temperature (unless otherwise noted)  
SYSTEM CLOCK  
TYP  
MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
CLOCK  
SOURCE  
105°C  
FREQ  
–40°C  
25°C  
85°C  
105°C  
85°C  
(2)  
VDD = 3.3 V,  
16 MHz  
PIOSC  
9.74  
9.78  
10.8  
11.6  
24.1  
32.1  
25.3  
22.7  
20.7  
20.1  
14.9  
13.4  
10.8  
VDDA = 3.3 V,  
Peripherals = All on,  
LDO = 1.2 V  
30 kHz  
16 MHz  
30 kHz  
16 MHz  
30 kHz  
16 MHz  
30 kHz  
LFIOSC  
PIOSC  
LFIOSC  
PIOSC  
LFIOSC  
PIOSC  
LFIOSC  
2.60  
4.53  
2.83  
4.05  
3.83  
4.88  
1.69  
7.97  
2.79  
3.61  
0.954  
4.60  
5.53  
2.46  
8.48  
3.29  
4.01  
1.36  
17.1  
15.9  
13.3  
15.3  
10.0  
9.50  
6.86  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All off,  
LDO = 1.2 V  
Deep-sleep  
0.614  
5.21  
0.762  
7.33  
mode  
(FLASHPM =  
0x2)  
IDD_DEEPSLEEP  
mA  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on,  
LDO = 0.9 V  
2.02  
2.16  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All off,  
LDO = 0.9 V  
1.08  
3.10  
0.367  
0.454  
(4)  
MOSC with  
PLL  
120 MHz  
60 MHz  
2.61  
2.61  
2.66  
2.66  
2.68  
2.68  
2.66  
2.66  
3.03  
3.04  
3.35  
3.10  
VDD = 3.3 V,  
MOSC with  
PLL  
All run modes  
VDDA = 3.3 V,  
Peripherals = All on  
16 MHz  
1 MHz  
PIOSC  
PIOSC  
2.45  
2.45  
2.49  
2.48  
2.50  
2.50  
2.48  
2.48  
2.85  
2.84  
2.95  
2.90  
IDDA_RUN, IDDA_SLEEP  
mA  
MOSC with  
PLL  
120 MHz  
60 MHz  
0.227  
0.229  
0.229  
0.232  
0.270  
0.267  
0.250  
0.250  
0.559  
0.579  
0.650  
0.600  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All off  
MOSC with  
PLL  
All sleep  
modes  
16 MHz  
1 MHz  
PIOSC  
PIOSC  
PIOSC  
0.228  
0.227  
2.45  
0.229  
0.227  
2.48  
0.265  
0.267  
2.50  
0.251  
0.247  
2.48  
0.545  
0.549  
2.84  
0.575  
0.555  
2.90  
VDD = 3.3 V,  
16 MHz  
VDDA = 3.3 V,  
Peripherals = All on,  
LDO = 1.2 V  
30 kHz  
16 MHz  
30 kHz  
16 MHz  
30 kHz  
16 MHz  
30 kHz  
LFIOSC  
PIOSC  
LFIOSC  
PIOSC  
LFIOSC  
PIOSC  
LFIOSC  
2.45  
0.226  
0.228  
2.14  
2.48  
0.227  
0.227  
2.42  
2.50  
0.265  
0.272  
2.44  
2.48  
0.249  
0.247  
2.42  
2.85  
0.558  
0.558  
2.78  
2.90  
0.635  
0.600  
2.88  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All off,  
LDO = 1.2 V  
Deep-sleep  
mode  
(FLASHPM =  
0x2)  
IDDA_DEEPSLEEP  
mA  
VDD = 3.3 V,  
VDDA = 3.3 V,  
Peripherals = All on,  
2.44  
2.42  
2.44  
2.42  
2.86  
2.88  
(4)  
LDO = 0.9 V  
VDD = 3.3 V,  
VDDA = 3.3 V,  
0.216  
0.223  
0.166  
0.167  
0.209  
0.209  
0.193  
0.189  
0.563  
0.508  
0.580  
0.580  
Peripherals = All off,  
(4)  
LDO = 0.9 V  
VBAT = 3.0 V VDD = 0 V,  
VDDA = 0 V,  
System clock = OFF,  
Hibernate module =  
32.768 kHz  
Hibernate  
mode (external  
wake, RTC  
disabled)  
IHIB_NORTC  
1.04  
1.12  
1.20  
1.29  
1.44  
1.54  
1.69  
1.82  
1.62  
1.75  
2.14  
2.33  
µA  
µA  
VBAT = 3.0 V,  
VDD = 0 V,  
VDDA = 0 V,  
System clock = OFF,  
Hibernate module =  
32.768 kHz  
Hibernate  
mode (RTC  
enabled)  
IHIB_RTC  
(4) See the System Control chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical Reference Manual for information on  
lowering the LDO voltage to 0.9 V.  
40  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
Current Consumption (continued)  
(1)  
over operating free-air temperature (unless otherwise noted)  
SYSTEM CLOCK  
TYP  
MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
CLOCK  
SOURCE  
105°C  
FREQ  
–40°C  
25°C  
85°C  
105°C  
85°C  
(2)  
VBAT = 3.0 V,  
VDD = 3.3 V,  
VDDA = 3.3 V,  
System clock = OFF,  
Hibernate module =  
32.768 kHz  
Hibernate  
mode  
(VDD3ON  
mode, tamper  
enabled)  
6.78  
7.99  
17.0  
22.1  
31.0  
28.9  
46.2  
32.0  
IHIB_VDD3ON  
µA  
VBAT = 3.0 V,  
VDD = 3.3 V,  
VDDA = 3.3 V,  
System clock = OFF,  
Hibernate module =  
32.768 kHz  
Hibernate  
mode  
(VDD3ON  
mode, tamper  
disabled)  
5.42  
6.39  
15.4  
17.8  
5.11 Peripheral Current Consumption  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SYSTEM CLOCK  
TYP  
UNIT  
USB (including USB PHY) run mode  
current  
VDD = 3.3 V,  
VDDA = 3.3 V  
IDDUSB  
120 MHz (MOSC with PLL)  
120 MHz (MOSC with PLL)  
120 MHz (MOSC with PLL)  
4.0  
1.9  
30  
mA  
VDD = 3.3 V,  
VDDA = 3.3 V  
IDDEMAC  
IDDEMACPHY  
Ethernet MAC run mode current  
mA  
mA  
VDD = 3.3 V,  
VDDA = 3.3 V  
Ethernet MAC and PHY run mode current  
5.12 LDO Regulator Characteristics  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
2.5  
0
TYP  
MAX  
4.0  
UNIT  
µF  
CLDO  
ESR  
External filter capacitor size for internal power supply(1)  
Filter capacitor equivalent series resistance  
Filter capacitor equivalent series inductance  
LDO output voltage, run mode  
100  
0.5  
mΩ  
nH  
ESL  
VLDO  
IINRUSH  
1.13  
50  
1.2  
1.27  
250  
V
Inrush current  
mA  
(1) Connect the capacitor as close as possible to pin 115.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
41  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.13 Power Dissipation  
over operating free-air temperature (unless otherwise noted)  
(1) (2)  
PARAMETER  
TA  
TJ  
MIN  
MAX  
452  
UNIT  
Extended temperature device power  
dissipation  
105°C (extended  
temperature part)  
125°C (extended  
temperature part)  
PDE  
mW  
(1) If the device exceeds the power dissipation value shown, then modifications such as heat sinks or fans must be used to conform to the  
limits shown.  
(2) A larger power dissipation allowance can be achieved by lowering TA as long as TJMAX shown in Section 5.1 is not exceeded.  
5.14 Thermal Resistance Characteristics, 128-Pin PDT (TQFP) Package  
over operating free-air temperature range (unless otherwise noted)  
THERMAL METRIC  
VALUE  
44.2  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
(1)  
θJA  
θJB  
θJC  
ΨJT  
ΨJB  
Thermal resistance (junction to ambient)  
(1)  
Thermal resistance (junction to board)  
22.4  
(1)  
Thermal resistance (junction to case)  
6.8  
Thermal metric (junction to top of package)  
Thermal metric (junction to board)  
0.2  
22.1  
(2)  
TC + (P × ΨJT  
TPCB + (P × ΨJB  
)
(3)  
)
TJ  
Junction temperature formula  
°C  
(4)  
TA + (P × θJA  
)
(5) (6)  
TB + (P × θJB  
)
(1) Junction to ambient thermal resistance (θJA), junction to board thermal resistance (θJB), and junction to case thermal resistance (θJC  
)
numbers are determined by a package simulator.  
(2) TC is the case temperature and P is the device power consumption.  
(3) TPCB is the temperature of the board acquired by following the steps listed in the EAI/JESD 51-8 standard summarized in Semiconductor  
and IC Package Thermal Metrics. P is the device power consumption.  
(4) Because θJA is highly variable and based on factors such as board design, chip size, pad size, altitude, and external ambient  
temperature, TI recommends using the equations that contain ΨJT and ΨJB for best results.  
(5) TB is temperature of the board.  
(6) θJB is not a pure reflection of the internal resistance of the package because it includes the resistance of the testing board and  
environment. TI recommends using equations that contain ΨJT and ΨJB for best results.  
42  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5.15 Timing and Switching Characteristics  
5.15.1 Load Conditions  
5-2 shows the load conditions used for timing measurements, and 5-2 lists the load values for the  
specified signals.  
Pin  
CL  
5-1. Load Conditions  
5-2. Load Conditions  
SIGNALS  
EPI0S[35:0] SDRAM interface  
EPI0S[35:0] general-purpose interface  
EPI0S[35:0] host-bus interface  
EPI0S[35:0] PSRAM interface  
All other digital I/O signals  
LOAD VALUE (CL)  
30 pF  
40 pF  
50 pF  
5.15.2 Power Supply Sequencing  
To ensure proper operation, power on VDDA before VDD if sourced from different supplies, or connect VDDA  
to the same supply as VDD. No restriction exists for powering off.  
5.15.2.1 Power and Brownout  
5-3. Power and Brownout Levels  
over operating free-air temperature (unless otherwise noted)  
NO.  
P1  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
µs  
tVDDA_RISE  
tVDD_RISE  
tVDDC_RISE  
Analog supply voltage (VDDA) rise time  
I/O supply voltage (VDD) rise time  
Core supply voltage (VDDC) rise time  
Power-on reset threshold (rising edge)  
Power-on reset threshold (falling edge)  
Power-on reset hysteresis  
P2  
µs  
P3  
10  
1.98  
1.84  
0.06  
2.67  
2.71  
2.65  
2.67  
2.77  
0.85  
0.71  
150  
2.72  
2.56  
0.24  
2.97  
2.89  
2.90  
2.85  
2.95  
1.10  
0.85  
µs  
2.35  
2.20  
0.15  
2.82  
2.80  
2.80  
2.76  
2.86  
0.95  
0.80  
P4  
VPOR  
V
P5  
P6  
VDDA_POK  
VDDA power-OK threshold (rising edge)  
VDDA brownout reset threshold  
V
V
VDDA_BOR0  
VDD power-OK threshold (rising edge)  
VDD power-OK threshold (falling edge)  
VDD brownout reset threshold  
P7  
P8  
P9  
VDD_POK  
VDD_BOR0  
VDDC_POK  
V
V
V
VDDC power-OK threshold (rising edge)  
VDDC power-OK threshold (falling edge)  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
43  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.15.2.1.1 VDDA Levels  
The VDDA supply has three monitors:  
Power-on reset (POR)  
Power-OK (POK)  
Brownout reset (BOR)  
The POR monitor is used to keep the analog circuitry in reset until the VDDA supply reaches the correct  
range for the analog circuitry to begin operating. The POK monitor is used to keep the digital circuitry in  
reset until the VDDA power supply is at an acceptable operational level. The digital reset is only released  
when the Power-On Reset has deasserted and the Power-OK monitor for each supply indicates that  
power levels are in operational ranges. The BOR monitor is used to generate a reset to the device or  
assert an interrupt if the VDDA supply drops below its operational range.  
VDDA BOR and VDD BOR events are a combined BOR to the system logic, such that if either  
BOR event occurs, the following bits are affected:  
The BORRIS bit in the Raw Interrupt Status (RIS) register, System Control offset 0x050  
The BORMIS bit in the Masked Interrupt Status and Clear (MISC) register, System  
Control offset 0x058. This bit is set only if the BORIM bit in the Interrupt Mask Control  
(IMC) register has been set.  
The BOR bit in the Reset Cause (RESC) register, System Control offset 0x05C. This bit  
is set only if either of the BOR events have been configured to initiate a reset.  
In addition, the following bits control both BOR events:  
The BORIM bit in the Interrupt Mask Control (IMC) register, System Control offset 0x054  
The VDDA_UBOR0 and VDD_UBOR0 bits in the Power-Temperature Cause (PWRTC)  
register  
See the System Control chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical  
Reference Manual for more information on how to configure these registers.  
5-2 shows the relationship between VDDA, POK, POR, and a BOR event.  
P1  
VDDAMIN  
P6  
P5RISE  
P4  
P4  
1
0
1
0
1
0
5-2. Power and Brownout Assertions vs VDDA Levels  
44  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5.15.2.1.2 VDD Levels  
The VDD supply has two monitors:  
Power-OK (POK)  
Brownout reset (BOR)  
The POK monitor is used to keep the digital circuitry in reset until the VDD power supply reaches an  
acceptable operational level. The digital reset is only released when the POR has deasserted and the  
POK monitor for each supply indicates that power levels are in operational ranges. The BOR monitor is  
used to generate a reset to the device or assert an interrupt if the VDD supply drops below its operational  
range.  
VDDA BOR and VDD BOR events are a combined BOR to the system logic, such that if either  
BOR event occurs, the following bits are affected:  
The BORRIS bit in the Raw Interrupt Status (RIS) register, System Control offset 0x050  
The BORMIS bit in the Masked Interrupt Status and Clear (MISC) register, System  
Control offset 0x058. This bit is set only if the BORIM bit in the Interrupt Mask Control  
(IMC) register has been set.  
The BOR bit in the Reset Cause (RESC) register, System Control offset 0x05C. This bit  
is set only if either of the BOR events have been configured to initiate a reset.  
In addition, the following bits control both BOR events:  
The BORIM bit in the Interrupt Mask Control (IMC) register, System Control offset 0x054  
The VDDA_UBOR0 and VDD_UBOR0 bits in the Power-Temperature Cause (PWRTC)  
register  
See the System Control chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical  
Reference Manual for more information on how to configure these registers.  
5-3 shows the relationship between VDD, POK, POR, and a BOR event.  
P2  
VDDMIN  
P8  
P7RISE  
P7FALL  
1
0
1
0
5-3. Power and Brownout Assertions vs VDD Levels  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
45  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.15.2.1.3 VDDC Levels  
The VDDC supply has one monitor, the Power-OK (POK). The POK monitor is used to keep the digital  
circuitry in reset until the VDDC power supply reaches an acceptable operational level. The digital reset is  
only released when the power-on reset has deasserted and the POK monitor for each supply indicates  
that power levels are in operational ranges. 5-4 shows the relationship between POK and VDDC  
.
P3  
1.2V  
P9RISE  
P9FALL  
1
0
5-4. POK Assertion vs VDDC  
5.15.2.1.4 VDD Glitch Response  
5-5 shows the response of the BOR and the POR circuit to glitches on the VDD supply.  
5-5. POR-BOR VDD Glitch Response  
5.15.2.1.5 VDD Droop Response  
5-6 shows the response of the BOR and the POR monitors to a drop on the VDD supply.  
5-6. POR-BOR VDD Droop Response  
5.15.3 Reset Timing  
5-4 lists the reset characteristics.  
46  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5-4. Reset Characteristics  
over operating free-air temperature (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
126  
UNIT  
R1  
tDPORDLY  
Digital POR to internal reset assertion delay (see 5-7)  
Standard internal reset time  
Internal reset time with recovery code repair (program or erase)(3)  
BOR0 to internal reset assertion delay (5) (see 5-8)  
0.44  
µs  
14  
16  
6400(4)  
(1) (2)  
R2  
tIRTOUT  
ms  
24.4  
0.44  
(1)  
R3  
R4  
R5  
R6  
tBOR0DLY  
tRSTMIN  
125  
µs  
µs  
µs  
µs  
0.25(6) or  
100(7)  
Minimum RST pulse duration  
tIRHWDLY  
RST to internal reset assertion delay (see 5-9)  
0.85  
Internal reset time-out after software-initiated system reset (see 图  
(1)  
tIRSWR  
2.44  
5-10)  
(1)  
(1)  
R7  
R8  
tIRWDR  
tIRMFR  
Internal reset time-out after watchdog reset (see 5-11)  
Internal reset time-out after MOSC failure reset (see 5-12)  
2.44  
2.44  
µs  
µs  
(1) These values are based on simulation.  
(2) This is the delay from the time POR is released until the reset vector is fetched.  
(3) This parameter applies only in situations where a power-loss or brownout event occurs during an EEPROM program or erase operation,  
and EEPROM must be repaired (which is a rare case). For all other sequences, there is no change to normal POR timing. This delay is  
in addition to other POR delays.  
(4) This value represents the maximum internal reset time when the EEPROM reaches its endurance limit.  
(5) Timing values depend on the VDD power-down ramp rate.  
(6) Standard operation  
(7) Deep-sleep operation with PIOSC powered down  
Digital POR  
R1  
R2  
Reset  
(Internal)  
5-7. Digital Power-On Reset Timing  
The digital power-on reset is released only when the analog power-on reset has deasserted and the  
Power-OK monitor for each supply indicates that power levels are in operational ranges.  
BOR  
R3  
R2  
Reset  
(Internal)  
5-8. Brownout Reset Timing  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
47  
 
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
R4  
RST  
(Package Pin)  
R5  
R2  
Reset  
(Internal)  
5-9. External Reset Timing (RST)  
Software Reset  
R6  
Reset  
(Internal)  
5-10. Software Reset Timing  
Watchdog Reset  
R7  
Reset  
(Internal)  
5-11. Watchdog Reset Timing  
MOSC Fail Reset  
R8  
Reset  
(Internal)  
5-12. MOSC Failure Reset Timing  
48  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5.15.4 Clock Specifications  
The following sections provide specifications on the various clock sources and mode.  
5.15.4.1 PLL Specifications  
5-5 lists the PLL characteristics.  
If the integrated Ethernet PHY is used, fREF_XTAL and fREF_EXT must be 25 MHz.  
5-5. Phase Locked Loop (PLL) Characteristics  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
5
MAX  
25  
UNIT  
MHz  
MHz  
MHz  
MHz  
fREF_XTAL  
fREF_EXT  
fPLLR  
Crystal reference  
External clock reference  
5
25  
PLL VCO frequency at 1.2 V(1)  
PLL VCO frequency at 0.9 V(2)  
100  
100  
480  
480  
fPLLS  
512 ×  
(reference  
clock period)  
Enabling the PLL, when PLL is transitioning from power down to  
power up  
128 ×  
(reference  
clock period)  
When the PLL VCO frequency is changed (PLL is already  
enabled)  
tREADY  
PLL lock time  
µs  
128 ×  
(reference  
Changing the OSCSRC between MOSC and PIOSC  
clock period)  
(1) PLL frequency is manually calculated using the values in the PLLFREQ0 and PLLFREQ1 registers.  
(2) If the LDO is dropped to 0.9 V, the system must be run 1/4 of the maximum frequency at most. The Q value in the PLLFREQ1 register  
must be set to 0x3 rather than using the PSYSDIV field in the RSCLKCFG register for the divisor.  
5.15.4.1.1 PLL Configuration  
The PLL is disabled by default during power-on reset and is enabled later by software if required. Software  
specifies the output divisor to set the system clock frequency and enables the PLL to drive the output. The  
PLL is controlled using the PLLFREQ0, PLLFREQ1, and PLLSTAT registers. Changes made to these  
registers do not become active until after the NEWFREQ bit in the RSCLKCFG register is enabled. The  
clock source for the main PLL is selected by configuring the PLLSRC field in the Run and Sleep Clock  
Configuration (RSCLKCFG) register. The PLL allows for the generation of system clock frequencies in  
excess of the reference clock provided. The reference clocks for the PLL are the PIOSC and the MOSC.  
The PLL is controlled by two registers, PLLFREQ0 and PLLFREQ1. The PLL VCO frequency (fVCO) is  
determined through 公式 1.  
fVCO = fIN × MDIV  
where  
fIN = fXTAL / (Q+1)(N+1) or fPIOSC / (Q+1)(N+1)  
MDIV = MINT + (MFRAC / 1024)  
(1)  
The Q and N values are programmed in the PLLFREQ1 register. To reduce jitter, program MFRAC to 0x0.  
When the PLL is active, the system clock frequency (SysClk) is calculated using 公式 2.  
SysClk = fVCO / (1 + 1)  
(2)  
The PLL system divisor factor (PSYSDIV) must be set as 1. 5-6 lists examples of the system clock  
frequency.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
49  
 
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5-6. Examples of System Clock Frequencies  
System Clock  
fVCO (MHz)  
Q
PSYSDIV + 1  
(SYSCLK) Frequency  
(MHz)  
480  
480  
480  
480  
320  
320  
320  
2
3
4
5
2
3
4
2
2
2
2
2
2
2
120  
80  
60  
48  
80  
53  
40  
If the main oscillator provides the clock reference to the PLL, the translation provided by hardware and  
used to program the PLL is available for software in the PLL Frequency n (PLLFREQn) registers. The  
internal translation provides a translation within ±1% of the targeted PLL VCO frequency. 5-7 shows the  
actual PLL frequency and error for a given crystal choice.  
5-7 provides examples of the programming expected for the PLLFREQ0 and PLLFREQ1 registers. The  
CRYSTAL FREQUENCY column specifies the input crystal frequency and the PLL FREQUENCY column  
displays the PLL frequency given the values of MINT and N, when Q = 0.  
5-7. Actual PLL Frequency(1)  
MINT  
REFERENCE  
FREQUENCY  
(MHz)(2)  
CRYSTAL  
FREQUENCY (MHz)  
PLL FREQUENCY  
(MHz)  
N
HEXADECIMAL  
VALUE  
DECIMAL VALUE  
5
64  
160  
40  
32  
80  
20  
160  
16  
40  
64  
96  
80  
60  
48  
40  
30  
80  
24  
20  
96  
0x40  
0x35  
0x28  
0x20  
0x50  
0x14  
0xA0  
0x10  
0x28  
0x40  
0x60  
0x50  
0x3C  
0x30  
0x28  
0x1E  
0x50  
0x18  
0x14  
0x60  
0x0  
0x2  
0x0  
0x0  
0x2  
0x0  
0x8  
0x0  
0x2  
0x4  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x2  
0x0  
0x0  
0x4  
5
2
320  
320  
320  
320  
320  
320  
320  
320  
320  
320  
480  
480  
480  
480  
480  
480  
480  
480  
480  
480  
6
8
8
10  
12  
16  
18  
20  
24  
25  
5
10  
4
16  
2
20  
8
5
5
6
6
8
8
10  
12  
16  
18  
20  
24  
25  
10  
12  
16  
6
20  
24  
5
(1) For all examples listed, Q = 0.  
(2) For a given crystal frequency, N should be chosen such that the reference frequency is 4 to 30 MHz.  
50  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5.15.4.2 PIOSC Specifications  
5-8 lists the PIOSC characteristics.  
5-8. PIOSC Clock Characteristics  
PARAMETER  
Factory calibration, 0°C to 105°C:  
Internal 16-MHz precision oscillator frequency variance across voltage and  
temperature range when factory calibration is used  
MIN  
NOM  
MAX  
±6%  
±10%  
±1%  
1
UNIT  
fPIOSC  
Factory calibration, –40°C to <0°C  
Recalibration:  
Internal 16-MHz precision oscillator frequency variance when recalibration is used  
at a specific temperature  
PIOSC start-up time(1)  
tSTART  
µs  
(1) PIOSC start-up time is part of reset and is included in the internal reset time-out value (TIRTOUT) in 5-4. The TSTART value is based on  
simulation.  
5.15.4.3 Low-Frequency Oscillator Specifications  
5-9 lists the characteristics of the low-frequency oscillator.  
5-9. Low-Frequency Oscillator Characteristics  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
fLFIOSC  
Internal low-frequency oscillator frequency  
10  
33  
75  
kHz  
5.15.4.4 Hibernation Low-Frequency Oscillator Specifications  
5-10. Hibernation External Oscillator (XOSC) Input Characteristics  
PARAMETER  
Parallel resonance frequency  
MIN  
NOM  
MAX  
UNIT  
kHz  
pF  
(1)  
fHIBXOSC  
C1, C2  
CPKG  
32.768  
(2)  
External load capacitance on XOSC0, XOSC1 pins  
12  
24  
(2)  
Device package stray shunt capacitance  
0.5  
0.5  
pF  
(2)  
CPCB  
PCB stray shunt capacitance  
pF  
(2)  
CSHUNT  
Total shunt capacitance  
4
50  
75  
pF  
(3)  
Crystal effective series resistance, OSCDRV = 0  
ESR  
kΩ  
(3)  
Crystal effective series resistance, OSCDRV = 1  
DL  
Oscillator output drive level  
0.25  
µW  
ms  
(4)  
(5)  
tSTART  
Oscillator start-up time, when using a crystal  
600  
1500  
CMOS input high level, when using an external oscillator with VSupply  
3.3 V  
>
2.64  
VIH  
V
CMOS input high level, when using an external oscillator with 1.8 V ≤  
0.8 ×  
V
Supply 3.3 V  
CMOS input low level, when using an external oscillator with 1.8 V ≤  
Supply 3.63 V  
VSupply  
0.2 ×  
VSupply  
(6)  
VIL  
V
V
CMOS input buffer hysteresis, when using an external oscillator with 1.8 V  
VSupply 3.63 V  
(6)  
VHYS  
360  
960  
1390  
70%  
mV  
DCHIBOSC_EXT  
External single-ended (bypass) reference duty cycle  
30%  
(1) The Hibernation XOSC pins are not fail-safe and must follow the limits in 5.15.9.1.2.  
(2) See the additional information about the load capacitors following this table.  
(3) Crystal ESR specified by crystal manufacturer.  
(4) Oscillator start-up time is specified from the time the oscillator is enabled to when it reaches a stable point of oscillation such that the  
internal clock is valid.  
(5) Only valid for recommended supply conditions. Measured with OSCDRV bit set (high drive strength enabled, 24 pF).  
(6) Specification is relative to the larger of VDD or VBAT  
.
版权 © 2017, Texas Instruments Incorporated  
Specifications  
51  
 
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
Choose the load capacitors added on the board, C1 and C2, such that 公式 3 is satisfied (see 5-10 for  
typical values).  
CL = (C1 × C2) / (C1 + C2) + CSHUNT  
where  
CL = load capacitance specified by crystal manufacturer  
CSHUNT = CPKG + CPCB + C0 (total shunt capacitance seen across XOSC0 and XOSC1)  
CPKG, CPCB as measured across the XOSC0 and XOSC1 pins excluding the crystal  
Clear the OSCDRV bit in the Hibernation Control (HIBCTL) register for C1,2 18 pF  
Set the OSCDRV bit for C1,2 > 18 pF  
C0 = Shunt capacitance of crystal specified by the crystal manufacturer  
(3)  
5-11 lists the characteristics of the Hibernation module low-frequency oscillator.  
5-11. Hibernation Internal Low-Frequency Oscillator Clock Characteristics  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
fHIBLFIOSC  
Internal low-frequency hibernation oscillator frequency  
10  
33  
90  
kHz  
5.15.4.5 Main Oscillator Specifications  
5-12 lists the required characteristics of the main oscillator input.  
5-12. Main Oscillator Input Characteristics  
over operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
MIN  
NOM  
MAX  
25  
UNIT  
MHz  
MHz  
pF  
(2)  
fMOSC  
Parallel resonance frequency  
4
fREF_XTAL_BYPASS  
C1, C2  
External clock reference (PLL in BYPASS mode)  
0
120  
24  
(3)  
External load capacitance on OSC0, OSC1 pins  
12  
(3)  
CPKG  
Device package stray shunt capacitance  
0.5  
0.5  
pF  
(3)  
CPCB  
PCB stray shunt capacitance  
pF  
(3)  
CSHUNT  
Total shunt capacitance  
4
300  
200  
130  
120  
100  
50  
pF  
(4) (5)  
(4) (5)  
(4) (5)  
4 MHz  
6 MHz  
8 MHz  
ESR  
Crystal effective series resistance  
Ω
(4) (5)  
(4) (5)  
(4) (5)  
12 MHz  
16 MHz  
25 MHz  
DL  
Oscillator output drive level(6)  
OSCPWR  
mW  
ms  
(7)  
TSTART  
Oscillator start-up time, when using a crystal  
18  
0.65 ×  
VDD  
VIH  
VIL  
CMOS input high level, when using an external oscillator  
CMOS input low level, when using an external oscillator  
VDD  
V
0.35 ×  
VDD  
GND  
V
VHYS  
CMOS input buffer hysteresis, when using an external oscillator  
External clock reference duty cycle  
150  
mV  
DCOSC_EXT  
45%  
55%  
(1) See 5-39 and 5-40 for additional Ethernet crystal requirements.  
(2) 5 MHz is the minimum when using the PLL.  
(3) See the additional information about the load capacitors following this table.  
(4) Crystal ESR specified by crystal manufacturer.  
(5) Crystal vendors can be contacted to confirm these specifications are met for a specific crystal part number if the vendors generic crystal  
datasheet show limits outside of these specifications.  
(6) OSCPWR = (2 × π × FP × CL × 2.5)2 × ESR / 2. An estimation of the typical power delivered to the crystal is based on the CL, FP and  
ESR parameters of the crystal in the circuit as calculated by the OSCPWR equation. Ensure that the value calculated for OSCPWR does  
not exceed the crystal's drive-level maximum.  
(7) Oscillator start-up time is specified from the time the oscillator is enabled to when it reaches a stable point of oscillation such that the  
internal clock is valid.  
52  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
The load capacitors added on the board, C1 and C2, should be chosen such that 公式 4 is satisfied (see  
5-12 for typical values and 5-13 for detailed crystal parameter information).  
CL = (C1 × C2) / (C1 + C2) + CSHUNT  
where  
CL = load capacitance specified by crystal manufacturer  
CSHUNT = C0 + CPKG + CPCB (total shunt capacitance seen across OSC0 and OSC1 crystal inputs)  
CPKG, CPCB = Mutual capacitance as measured across the OSC0 and OSC1 pins excluding the crystal  
C0 = Shunt capacitance of crystal specified by the crystal manufacturer  
(4)  
5-13 lists part numbers of crystals that have been simulated and confirmed to operate within the  
specifications in 5-12. Other crystals that have nearly identical crystal parameters can be expected to  
work as well.  
In 5-13, the crystal parameters labeled C0, C1, and L1 are values that are obtained from the crystal  
manufacturer. These numbers are usually a result of testing a relevant batch of crystals on a network  
analyzer. The parameters labeled ESR, DL, and CL are maximum numbers usually available in the data  
sheet for a crystal.  
5-13 also includes three columns of Recommended Component Values. These values apply to system  
board components. C1 and C2 are the values in picofarads of the load capacitors that should be put on  
each leg of the crystal pins to ensure oscillation at the correct frequency. Rs is the value in kΩ of a resistor  
that is placed in series with the crystal between the OSC1 pin and the crystal pin. Rs dissipates some of  
the power so the Max Dl crystal parameter is not exceeded. Only use the recommended C1, C2, and Rs  
values with the associated crystal part. The values in the table were used in the simulation to ensure  
crystal start-up and to determine the worst-case drive level (WC DL). The value in the WC DL column  
should not be greater than the Max DL crystal parameter. The WC DL value can be used to determine if a  
crystal with similar parameter values but a lower Max DL value is acceptable.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
53  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5-13. Crystal Parameters  
Crystal Parameters  
Recommended  
Component Values  
Crystal  
Typical Values  
Max Values  
WC  
DL  
(µW)  
Manufacturer Part  
Package Size  
(mm × mm)  
Frequency  
(MHz)  
Specification  
(Tolerance /  
Stability)  
Manufacturer  
Holder  
Number  
Max  
DL  
(µW)  
C0  
(pF)  
C1  
(fF)  
ESR  
(Ω)  
C1  
(pF)  
C2  
(pF)  
Rs  
(kΩ)  
L1 (mH)  
CL (pf)  
NX8045GB-4.000M-  
STD-CJL-5  
NDK  
FOX  
NDK  
NX8045GB  
2-SMD  
8 × 4.5  
10 × 4.5  
8 × 4.5  
4
4
5
30 / 50 ppm  
30 / 30 ppm  
30 / 50 ppm  
1.00  
1.18  
1.00  
2.70  
4.05  
2.80  
598.10  
396.00  
356.50  
300  
150  
250  
500  
500  
500  
8
10  
8
12  
14  
12  
12  
14  
12  
0
0
0
132  
103  
164  
FQ1045A-4  
NX8045GB-5.000M-  
STD-CSF-4  
NX8045GB  
NX8045GB-6.000M-  
STD-CSF-4  
NDK  
FOX  
NDK  
NX8045GB  
2-SMD  
8 × 4.5  
10 × 4.5  
8 × 4.5  
6
6
8
30 / 50 ppm  
30 / 30 ppm  
30 / 50 ppm  
1.30  
1.37  
1.00  
4.10  
6.26  
2.80  
173.20  
112.30  
139.30  
250  
150  
200  
500  
500  
500  
8
10  
8
12  
14  
12  
12  
14  
12  
0
0
0
214  
209  
277  
FQ1045A-6  
NX8045GB-8.000M-  
STD-CSF-6  
NX8045GB  
FOX  
ECS  
FQ7050B-8  
4-SMD  
7 × 5  
8
8
30 / 30 ppm  
50 / 30 ppm  
1.95  
1.82  
6.69  
4.90  
59.10  
85.70  
80  
80  
500  
500  
10  
16  
14  
24  
14  
24  
0
0
217  
298  
ECS-80-16-28A-TR  
HC49/US  
12.5 × 4.85  
AABMM-12.0000MHz-  
10-D-1-X-T  
(1)  
Abracon  
NDK  
ABMM  
7.2 × 5.2  
3.2 × 2.5  
12  
12  
10 / 20 ppm  
20 / 30 ppm  
2.37  
0.70  
8.85  
2.20  
20.5  
50  
500  
200  
10  
8
12  
12  
12  
12  
2.0  
124  
147  
NX3225GA-12.000MHZ-  
STD-CRG-2  
NX3225GA  
81.00  
100  
2.5  
NX5032GA-12.000MHZ-  
LN-CD-1  
NDK  
FOX  
NX5032GA  
4-SMD  
5 × 3.2  
5 × 3.2  
12  
12  
16  
16  
16  
30 / 50 ppm  
30 / 30 ppm  
10 / 20 ppm  
15 / 30 ppm  
20 / 30 ppm  
0.93  
1.16  
3.00  
3.00  
1.00  
3.12  
4.16  
11.00  
12.7  
2.90  
56.40  
42.30  
9.30  
120  
80  
50  
50  
80  
500  
500  
8
12  
14  
12  
12  
12  
12  
14  
12  
12  
12  
0
0
362  
370  
143  
139  
188  
FQ5032B-12  
10  
10  
10  
8
AABMM-16.0000MHz-  
10-D-1-X-T  
(1)  
(1)  
Abracon  
Ecliptek  
NDK  
ABMM  
7.2 × 5.2  
13.3 × 4.85  
3.2 × 2.5  
500  
2.0  
2.0  
ECX-6595-16.000M  
HC-49/UP  
NX3225GA  
8.1  
1000  
200  
NX3225GA-16.000MHZ-  
STD-CRG-2  
33.90  
2
NX5032GA-16.000MHZ-  
LN-CD-1  
(2)  
NDK  
ECS  
NX5032GA  
ECX-42  
5 × 3.2  
4 × 2.5  
16  
16  
25  
25  
25  
30 / 50 ppm  
10 / 10 ppm  
10 / 20 ppm  
15 / 30 ppm  
20 / 30 ppm  
1.02  
1.47  
3.00  
3.00  
1.10  
3.82  
3.90  
11.00  
12.8  
4.70  
25.90  
25.84  
3.70  
3.2  
120  
500  
300  
8
9
10  
12  
12  
12  
12  
10  
12  
12  
12  
12  
0
437  
289  
158  
159  
181  
ECS-160-9-42-CKM-TR  
60  
50  
40  
50  
0.5  
AABMM-25.0000MHz-  
10-D-1-X-T  
(1)  
Abracon  
Ecliptek  
NDK  
ABMM  
7.2 × 5.2  
13.3 × 4.85  
3.2 × 2.5  
500  
10  
10  
8
2.0  
1.5  
(1)  
ECX-6593-25.000M  
HC-49/UP  
NX3225GA  
1000  
200  
NX3225GA-25.000MHZ-  
STD-CRG-2  
8.70  
2
(1) RS values as low as 0 Ω can be used. Using a lower RS value causes the WC DL to increase toward the maximum DL of the crystal.  
(2) Although this ESR value is outside of the recommended crystal ESR maximum for this frequency, this crystal has been simulated to confirm proper operation and is valid for use with this  
device.  
54  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5-13. Crystal Parameters (continued)  
Crystal Parameters  
Recommended  
Crystal  
Component Values  
Typical Values  
Max Values  
WC  
DL  
(µW)  
Manufacturer Part  
Number  
Package Size  
(mm × mm)  
Frequency  
(MHz)  
Specification  
(Tolerance /  
Stability)  
Manufacturer  
Holder  
Max  
DL  
C0  
(pF)  
C1  
ESR  
(Ω)  
C1  
C2  
Rs  
L1 (mH)  
CL (pf)  
(fF)  
5.1  
(pF)  
(pF)  
(kΩ)  
(µW)  
(1)  
10  
12  
10  
12  
1.0  
216  
269  
NX5032GA-25.000MHZ-  
LD-CD-1  
NDK  
NX5032GA  
HC3225/4  
5 × 3.2  
25  
25  
30 / 50 ppm  
30 / 30 ppm  
1.3  
7.1  
70  
500  
8
0.75  
(3)  
Q-25.000M-HC3225/4-  
F-30-30-E-12-TR  
AURIS  
3.2 × 2.5  
1.58  
5.01  
8.34  
50  
500  
12  
16  
16  
1
331  
FOX  
TXC  
FQ5032B-25  
7A2570018  
4-SMD  
5 × 3.2  
5 × 3.2  
25  
25  
30 / 30 ppm  
20 / 25 ppm  
1.69  
2.0  
7.92  
6.7  
5.13  
6.1  
50  
30  
500  
350  
10  
10  
14  
12  
14  
12  
0.5  
433  
124  
(3)  
NX5032GA  
2.0  
(3) RS values as low as 500 Ω can be used. Using a lower RS value causes the WC DL to increase toward the maximum DL of the crystal.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
55  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.15.4.6 Main Oscillator Specification WIth ADC  
5-14 lists the system clock characteristics with ADC operation.  
5-14. System Clock Characteristics With ADC Operation  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
System clock frequency when the ADC module is operating (when PLL is  
bypassed)  
fsysadc  
16  
MHz  
5.15.4.7 System Clock Characteristics With USB Operation  
5-15 lists the system clock characteristics with USB operation.  
5-15. System Clock Characteristics With USB Operation  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
System clock frequency when the USB module is operating (MOSC must be the  
clock source, either with or without using the PLL)  
fsysusb  
30  
MHz  
5.15.5 Sleep Modes  
The following tables can be used to calculate the maximum wake time from sleep or deep sleep mode,  
depending on the specific application. Depending on the application configuration, each parameter, except  
for tFLASH, adds sequential latency to the wake time. Flash restoration happens in parallel to the other  
wake processes, and its wake time is normally absorbed by the other latencies. As an example, the wake  
time for a device in deep sleep mode with the PIOSC and PLL turned off and the flash and SRAM in low-  
power mode is calculated by 公式 5.  
Wake Time = tPIOSCDS + tPLLDS + tSRAMLPDS  
(5)  
tFLASH does not contribute to this equation because the values of the other parameters are greater.  
In sleep mode, the wake time due to a clock source is zero because the device uses the same clock  
configuration in run mode; thus, there is no latency involved with respect to the clocks.  
5-16 lists the wake-up times from sleep mode.  
5-16. Wake From Sleep Characteristics  
over operating free-air temperature (unless otherwise noted)  
NO.  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
PARAMETER  
MIN  
TYP  
MAX UNIT  
tPIOSC  
tMOSC  
tPLL  
Time to restore PIOSC as system clock in sleep mode  
Time to restore MOSC as system clock in sleep mode  
Time to restore PLL as system clock in sleep mode  
N/A  
N/A  
N/A  
39  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
tLDO  
Time to restore LDO to 1.2 V in sleep mode  
tFLASH  
tSRAMLP  
tSRAMSTBY  
Time to restore flash to active state from low-power state in sleep mode  
Time to restore SRAM to active state from low-power state in sleep mode  
Time to restore SRAM to active state from standby state in sleep mode  
96  
15  
15  
56  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5-16 lists the wake-up times from deep sleep mode.  
5-17. Wake From Deep Sleep Characteristics  
over operating free-air temperature (unless otherwise noted)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
14  
UNIT  
deep-  
sleep  
clock  
D8  
tPIOSCDS  
Time to restore PIOSC as system clock in deep sleep mode  
Time to restore MOSC as system clock in deep sleep mode  
cycles  
D9  
tMOSCDS  
18  
ms  
1 cycle of  
deep sleep  
clock + 512  
clock  
D10  
tPLLDS  
Time to restore PLL as system clock in deep sleep mode  
cycles of PLL cycles  
reference  
(1)  
clock  
D11  
D12  
D13  
D14  
tLDODS  
Time to restore LDO to 1.2 V in deep sleep mode  
39  
96  
15  
15  
µs  
µs  
µs  
µs  
tFLASHLPDS  
tSRAMLPDS  
tSRAMSTBYDS  
Time to restore flash to active state from low-power state  
Time to restore SRAM to active state from low-power state  
Time to restore SRAM to active state from standby state  
(1) Deep sleep clock can vary. See the System Control chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical Reference  
Manual for the deep sleep clock options.  
5.15.6 Hibernation Module  
The Hibernation module requires special system implementation considerations because it is intended to  
power down all other sections of its host device. See the Hibernation Module chapter of the MSP432E4  
SimpleLink™ Microcontrollers Technical Reference Manual.  
5-18 lists the required characteristics of the Hibernation module battery.  
5-18. Hibernation Module Battery Characteristics  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
1.8  
0
NOM  
MAX  
3.6  
0.7  
2.0  
2.2  
2.4  
2.6  
UNIT  
V
VBAT  
Battery supply voltage  
3.0  
VBATRMP  
VBAT battery supply voltage ramp time  
V/µs  
VBATSEL = 0x0  
VBATSEL = 0x1  
VBATSEL = 0x2  
VBATSEL = 0x3  
1.8  
2.0  
2.2  
2.4  
1.9  
2.1  
2.3  
2.5  
VLOWBAT  
Low-battery detect voltage  
V
版权 © 2017, Texas Instruments Incorporated  
Specifications  
57  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5-19 lists the timing characteristics of the HIB module.  
5-19. Hibernation Module Characteristics  
over operating free-air temperature (unless otherwise noted) (see 5-13)  
NO.  
PARAMETER  
WAKE assertion time  
MIN  
TYP  
MAX  
UNIT  
H1  
tWAKE  
100  
ns  
HIB module  
clock period  
H2  
tWAKE_TO_HIB  
WAKE assert to HIB desassert (wake-up time)  
1
(1)  
H3  
H4  
tVDD_RAMP  
tVDD_CODE  
VDD ramp to 3.0 V  
See  
µs  
µs  
VDD at 3 V to internal POR deassert; first instruction executes  
500  
Duty cycle for RTCCLK output signal, when using a  
32.768kHz crystal  
40%  
30%  
60%  
H5  
DCRTCCLK  
Duty cycle for RTCCLK output signal, when using a  
32.768kHz external single-ended (bypass) clock source  
70%  
(1) Depends on characteristics of power supply.  
H1  
WAKE  
HIB  
H2  
H3  
VDD  
H4  
POR  
5-13. Hibernation Module Timing  
5-20 lists the characteristics of the HIB module tamper detection.  
5-20. Hibernation Module Tamper I/O Characteristics  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
3.5  
62  
TYP  
4.4  
MAX  
5.2  
UNIT  
MΩ  
µs  
RTPU  
tSP  
TMPRn pullup resistor  
TMPRn pulse duration with short glitch filter  
TMPRn pulse duration with long glitch filter  
TMPRn assertion to NMI (short glitch filter)  
TMPRn assertion to NMI (long glitch filter)  
tLP  
94  
ms  
µs  
tNMIS  
tNMIL  
95  
94  
ms  
VBAT  
× 0.8  
VIH  
TMPRn high-level input voltage when operating from VBAT  
V
58  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5.15.7 Flash Memory  
5-21 lists the characteristics of the flash memory.  
5-21. Flash Memory Characteristics  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
100000  
20  
TYP  
MAX  
UNIT  
cycles  
years  
PECYC  
tRET  
Number of program and erase cycles  
Data retention with 100% power-on hours at TJ = 85°C  
Data retention with 10% power-on hours at TJ = 125°C and 90% power-on  
hours at TJ = 100°C  
tRET_EXTEMP  
tPROG64  
11  
30  
years  
µs  
Program time for double-word-aligned (64 bits) data  
<1k cycles  
100  
8
300  
15  
tERASE  
Page erase time  
10k cycles  
100k cycles  
<1k cycles  
10k cycles  
100k cycles  
15  
75  
10  
20  
300  
40  
ms  
ms  
500  
25  
tME  
Mass erase time  
70  
2500  
5.15.8 EEPROM  
5-22 lists the characteristics of the EEPROM.  
5-22. EEPROM Characteristics  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
500000  
20  
TYP  
MAX  
UNIT  
cycles  
years  
EPECYC  
ETRET  
Number of mass program and erase cycles of a single word  
Data retention with 100% power-on hours at TJ = 85°C  
Data retention with 10% power-on hours at TJ = 125°C and 90% power-on  
hours at TJ = 100°C  
ETRET_EXTEMP  
11  
years  
µs  
Program time for 32 bits of data with memory space available  
110  
30  
600  
900  
Program time for 32 bits of data in which a copy to the copy buffer is  
required, the copy buffer has space, and less than 10% of EEPROM  
endurance used  
Program time for 32 bits of data in which a copy to the copy buffer is  
required, the copy buffer has space, and more than 90% of EEPROM  
endurance used  
ETPROG  
ms  
Program time for 32 bits of data in which a copy of the copy buffer is  
required, the copy buffer requires an erase, and less than 10% of  
EEPROM endurance used  
60  
Program time for 32 bits of data a copy to the copy buffer is required, the  
copy buffer requires an erase, and more than 90% of EEPROM endurance  
used  
1800  
system  
clock  
cycles  
7 +  
2EWS  
9 +  
4EWS  
ETREAD  
Read access time  
<1k cycles  
8
15  
75  
15  
40  
ETME  
Mass erase time  
10k cycles  
ms  
100k cycles  
500  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
59  
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.15.9 Input/Output Pin Characteristics  
All GPIO signals are 3.3-V tolerant, except for PB1 (USB0VBUS) which is 5-V tolerant. See  
the General-Purpose Input/Outputs (GPIOs) chapter of the MSP432E4 SimpleLink™  
Microcontrollers Technical Reference Manual for more information on GPIO configuration.  
Two types of pads are provided on the device:  
Fast GPIO pads: These pads provide variable, programmable drive strength and optimized voltage  
output levels.  
Slow GPIO pads: These pads provide 2-mA drive strength and are designed to be sensitive to voltage  
inputs. The following GPIOs port pins are designed with slow GPIO pads:  
PJ1  
Port pins PL6 and PL7 operate as fast GPIO pads, but have 4-mA drive capability only.  
GPIO register controls for drive strength, slew rate, and open drain have no effect on these  
pins. The following registers have no effect: GPIODR2R, GPIODR4R, GPIODR8R,  
GPIODR12R, GPIOSLR, and GPIOODR.  
Port pins PM[7:4] operate as fast GPIO pads but support only 2-, 4-, 6-, and 8-mA drive  
capability. All standard GPIO register controls, except for the GPIODR12R register, apply to  
these port pins.  
60  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5-23 lists the characteristics of the fast GPIOs.  
5-23. Fast GPIO Module Characteristics  
(1) (2) (3) (4)  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
50  
UNIT  
pF  
(5)  
CLGPIO  
Capacitive loading for measurements given in this table  
(6)  
RGPIOPU  
Fast GPIO internal pullup resistor  
12.1  
25  
16.0  
20.2  
40  
kΩ  
RGPIOPU4MA  
RGPIOPD  
Fast GPIO PL6 and PL7 (4 mA only) pullup resistor  
kΩ  
(6)  
Fast GPIO internal pulldown resistor  
13.0  
10  
20.5  
14.3  
35.5  
17  
kΩ  
RGPIOPD4MA  
Fast GPIO PL6 and PL7 (4 mA only) pulldown resistor  
kΩ  
Fast GPIO input leakage current, 0 V VIN VDD GPIO pins(7)  
400  
ILKG+  
nA  
Fast GPIO input leakage current, 0 V < VIN VDD, fast GPIO pins configured  
as ADC or analog comparator inputs  
400  
IINJ-  
DC injection current, VIN 0 V  
60  
–0.5  
µA  
(8)  
IMAXINJ-  
Maximum negative injection if not voltage protected  
mA  
2-mA drive  
4-mA drive  
8-mA drive  
7.85  
4.15  
2.33  
11.73  
6.35  
3.73  
tGPIOR  
Fast GPIO rise time(9)  
ns  
8-mA drive with slew rate  
control  
3.77  
5.76  
10-mA drive  
12-mA drive  
2-mA drive  
4-mA drive  
1.98  
1.75  
10.3  
5.15  
2.58  
3.22  
2.9  
16.5  
8.29  
4.16  
8-mA drive  
(10)  
tGPIOF  
Fast GPIO fall time  
ns  
8-mA drive with slew rate  
control  
3.54  
5.55  
10-mA drive  
12-mA drive  
2.07  
1.73  
3.34  
2.78  
(1) VDD must be within the range specified in Section 5.4.  
(2) Leakage and Injection current characteristics specified in this table also apply to XOSC0 and XOSC1 inputs.  
(3) For the external reference inputs of the ADC, avoid a current-limiting resistor (see the IVREF specification in 5-33).  
(4) I/O pads should be protected if the I/O voltage may go outside the limits shown in the table. If the part is unpowered, the I/O pad voltage  
or current must be limited (as shown in this table) to avoid powering the part through the I/O pad, which can potentially cause  
irreversible damage.  
(5) See the individual peripheral sections for specific loading information.  
(6) This value includes all GPIO except for port pins PL6 and PL7.  
(7) The leakage current is measured with VIN applied to the corresponding pins. The leakage of digital port pins is measured individually.  
The port pin is configured as an input and the pullup/pulldown resistor is disabled.  
(8) If the I/O pad is not voltage limited, it should be current limited (to IINJ + and IINJ-) if there is any possibility of the pad voltage exceeding  
the VIO limits (including transient behavior during supply ramp up, or at any time when the part is unpowered).  
(9) Time measured from 20% to 80% of VDD  
(10) Time measured from 80% to 20% of VDD  
.
.
版权 © 2017, Texas Instruments Incorporated  
Specifications  
61  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5-24 lists the characteristics of the slow GPIOs.  
5-24. Slow GPIO Module Characteristics  
over operating free-air temperature (unless otherwise noted)(1)(2)(3)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
pF  
CLGPIO  
Capacitive loading for measurements given in this table(4)  
50  
31.4  
35.5  
3.25  
RGPIOPU  
RGPIOPD  
Slow GPIO internal pullup resistor  
13.8  
13.0  
20.0  
20.5  
kΩ  
Slow GPIO internal pulldown resistor  
Slow GPIO input leakage current, 0 V VIN VDD, GPIO pins(5)  
kΩ  
ILKG+  
nA  
Slow GPIO input leakage current, 0 V < VIN VDD, GPIO pins configured as ADC  
or analog comparator inputs  
3.25  
IINJ-  
DC injection current, VIN 0 V  
Slow GPIO rise time, 2-mA drive(6)  
Slow GPIO fall time, 2-mA drive(7)  
3.42  
29.8  
21.1  
µA  
ns  
ns  
tGPIOR  
tGPIOF  
19.3  
12.8  
(1) VDD must be within the range specified in Section 5.4.  
(2) VIN must be within the range specified in Section 5.1. Leakage current outside of this maximum voltage is not ensured and can result in  
permanent damage of the device.  
(3) To avoid potential damage to the part, externally limit either the voltage or current on the I/Os other than power and WAKE as listed in  
this table.  
(4) See the individual peripheral sections for specific loading information.  
(5) The leakage current is measured with VIN applied to the corresponding pins. The leakage of digital port pins is measured individually.  
The port pin is configured as an input and the pullup/pulldown resistor is disabled.  
(6) Time measured from 20% to 80% of VDD  
(7) Time measured from 80% to 20% of VDD  
.
.
62  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5.15.9.1 Types of I/O Pins and ESD Protection  
CAUTION  
All device I/Os pins, except for PB1, are NOT 5-V tolerant; voltages in excess  
of the limits in Section 5.4 can permanently damage the device. PB1 is used for  
the USB0VBUS signal, which requires a 5-V input.  
5.15.9.1.1 Hibernate WAKE pin  
The Hibernate WAKE pin uses ESD protection, similar to the one shown in 5-14. This ESD protection  
prevents a direct path between this pad and any power supply rails in the device. The WAKE pad input  
voltage should be kept inside the maximum ratings specified in Section 5.1 to ensure current leakage and  
current injections are within acceptable range. 5-25 lists current leakages and current injection for these  
pins.  
VDD  
I/O Pad  
ESD  
Clamp  
GND  
5-14. ESD Protection  
5-25. Pad Voltage and Current Characteristics for Hibernate WAKE Pin  
over operating free-air temperature (unless otherwise noted)(1)(2)  
PARAMETER  
MIN  
TYP  
MAX  
300  
43.3  
2
UNIT  
nA  
ILKG+  
ILKG-  
IINJ+  
IINJ-  
Positive I/O leakage for VDD VIN VBAT + 0.3 V  
Negative I/O leakage for –0.3 V VIN 0 V(3)  
Maximum positive injection if not voltage protected  
Maximum negative injection if not voltage protected  
µA  
mA  
mA  
(4)  
–0.5  
(1) VIN must be within the range specified in Section 5.1. Leakage current outside of this maximum voltage is not ensured and can result in  
permanent damage of the device.  
(2) VDD must be within the range specified in Section 5.4.  
(3) Leakage outside the minimum range (–0.3 V) is unbounded and must be limited to IINJ- using an external resistor.  
(4) If the I/O pad is not voltage limited, it should be current limited (to IINJ + and IINJ-) if there is any possibility of the pad voltage exceeding  
the VIO limits (including transient behavior during supply ramp up, or at any time when the part is unpowered).  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
63  
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.15.9.1.2 Nonpower I/O Pins  
Most nonpower I/Os (with the exception of the I/O pad for Hibernate WAKE input) have ESD protection as  
shown in 5-15.  
These I/Os have an ESD clamp to ground and a diode connection to the corresponding power supply rail.  
To prevent potential damage to the device, follow the specifications in 5-26 for the voltage and current  
of these I/Os. In addition, comply with that the ADC external reference specifications in 5-33 to prevent  
gain error.  
VDD  
I/O Pad  
ESD  
Clamp  
GND  
5-15. ESD Protection for Nonpower Pins (Except WAKE Signal)  
5-26. Nonpower I/O Pad Voltage and Current Characteristics  
(1) (2) (3)  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
V
VIO  
I/O pad voltage limits if voltage protected  
–0.3  
VDD VDD + 0.3  
(4)  
ILKG+  
ILKG-  
IINJ+  
IINJ-  
Positive I/O leakage for VDD VIN VIO  
400  
60  
nA  
(4)  
Negative I/O leakage for VIO MIN VIN 0V  
µA  
Maximum positive injection if not voltage protected(5)  
Maximum negative injection if not voltage protected(5)  
2
mA  
mA  
–0.5  
(1) To avoid potential damage to the part, externally limit either the voltage or current on I/Os other than power and WAKE as listed in this  
table.  
(2) For the external reference inputs of the ADC, avoid a current-limiting resistor (see the IVREF specification in 5-33).  
(3) I/O pads should be protected if at any point the I/O voltage has a possibility of going outside the limits shown in the table. If the part is  
unpowered, the I/O pad voltage and current must be limited (as shown in this table) to avoid powering the part through the I/O pad,  
which can potentially cause irreversible damage.  
(4) MIN and MAX leakage current for the case when the I/O is voltage protected to VIO MIN or VIO MAX.  
(5) If the I/O pad is not voltage limited, it should be current limited (to IINJ+ and IINJ-) if there is any possibility of the pad voltage exceeding  
the VIO limits (including transient behavior during supply ramp up, or at any time when the part is unpowered).  
64  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5.15.10 External Peripheral Interface (EPI)  
5-27 lists the load conditions used to characterize the EPI interface.  
5-27. EPI Interface Load Conditions  
SIGNALS  
EPI0S[35:0] SDRAM interface  
LOAD VALUE (CL)  
EPI0S[35:0] General-Purpose interface  
EPI0S[35:0] Host-Bus interface  
30 pF  
40 pF  
EPI0S[35:0] PSRAM interface  
When the EPI module is in SDRAM mode, EPI CLK (EPI0S31) must be configured to 12 mA. The EPI  
data bus can be configured to 8 mA. 5-28 lists the rise and fall times in SDRAM mode.  
5-28. EPI SDRAM Characteristics  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
12-mA drive, CL = 30 pF  
12-mA drive, CL = 30 pF  
MIN  
TYP  
2
MAX  
UNIT  
ns  
tSDRAMR  
tSDRAMF  
EPI rise time (from 20% to 80% of VDD  
)
3
3
EPI fall time (from 80% to 20% of VDD  
)
2
ns  
5-29 lists the switching characteristics of the SDRAM interface.  
5-29. EPI SDRAM Interface Characteristics  
over operating free-air temperature (unless otherwise noted) (1) (see 5-16, 5-17, and 5-18)  
NO.  
E1  
PARAMETER  
MIN  
16.67  
8.33  
TYP  
MAX  
UNIT  
ns  
tCK  
tCH  
tCL  
SDRAM clock period  
E2  
SDRAM clock high time  
SDRAM clock low time  
CLK to output valid  
CLK to output invalid  
CLK to output tristate  
Input set up to CLK  
CLK to input hold  
ns  
E3  
8.33  
ns  
E4  
tCOV  
tCOI  
tCOT  
tS  
4
4
4
ns  
E5  
ns  
E6  
ns  
E7  
8.5  
0
ns  
E8  
tH  
ns  
E9  
tPU  
tRP  
tRFC  
tMRD  
Power-up time  
100  
20  
66  
2
µs  
E10  
E11  
E12  
Precharge all banks  
Auto refresh  
ns  
ns  
Program mode register  
EPI CLK  
(1) The EPI SDRAM interface must use 12-mA drive.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
65  
 
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
CLK  
(EPI0S31)  
E1  
E2  
E3  
CKE  
(EPI0S30)  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
NOP  
PRE  
AREF  
PRE  
AREF  
LOAD  
NOP  
AREF  
Active  
(EPI0S[29:28,19:18])  
DQMH, DQML  
(EPI0S[17:16])  
AD11, AD[9:0]  
(EPI0S[11,9:0]  
Code  
Code  
Row  
Row  
Bank  
All Banks  
AD10  
(EPI0S[10])  
Single Bank  
BAD[1:0]  
(EPI0S[14:13])  
AD [15,12]  
(EPI0S [15,12])  
E9  
E10  
E11  
E12  
(1) If CS is high at clock high time, all applied commands are NOP.  
(2) The Mode register can be loaded before the autorefresh cycles.  
(3) JEDEC and PC100 specify 3 clock cycles.  
(4) Outputs are Hi-Z after the command is issued.  
5-16. SDRAM Initialization and Load Mode Register Timing  
CLK  
(EPI0S31)  
CKE  
(EPI0S30)  
E4  
E5  
E6  
CSn (EPI0S29)  
WEn (EPI0S28)  
RASn  
(EPI0S19)  
CASn  
(EPI0S18)  
E7  
DQMH, DQML  
(EPI0S [17:16])  
E8  
AD [15:0] (EPI0S  
[15:0])  
Row  
Column  
Data 0  
Data 1  
...  
Data n  
Burst Term  
Activate  
NOP  
Read  
NOP  
AD [15:0] driven in  
AD [15:0] driven out  
AD [15:0] driven out  
5-17. SDRAM Read Timing  
66  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
CLK  
(EPI0S31)  
CKE  
(EPI0S30)  
E4  
E5  
E6  
CSn (EPI0S29)  
WEn (EPI0S28)  
RASn  
(EPI0S19)  
CASn  
(EPI0S18)  
DQMH, DQML  
(EPI0S [17:16])  
AD [15:0] (EPI0S  
[15:0])  
Row  
Column-1  
Write  
Data 0  
Data 1  
...  
Data n  
Activate  
NOP  
Burst Term  
AD [15:0] driven out  
AD [15:0] driven out  
5-18. SDRAM Write Timing  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
67  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5-30 lists the characteristics of the Host-Bus 8 and Host-Bus 16 interface.  
5-30. EPI Host-Bus 8 and Host-Bus 16 Interface Characteristics  
over operating free-air temperature (unless otherwise noted) (see 5-19, 5-20, 5-21, and 5-22)  
NO.  
E14  
E15  
E16  
PARAMETER  
Read data set up time  
MIN  
10  
0
TYP  
MAX  
UNIT  
ns  
tISU  
tIH  
Read data hold time  
ns  
tDV  
WRn to write data valid  
3.6  
ns  
EPI clock  
cycles  
E17  
tDI  
Data hold from WRn invalid  
1
1
E18  
E19  
tOV  
ALE/CSn to output valid  
CSn to output invalid  
4
4
ns  
ns  
tOINV  
EPI clock  
cycles  
E20  
E21  
E22  
E23  
E24  
tSTLOW  
tALEHIGH  
tCSLOW  
tALEST  
WRn / RDn strobe duration low  
ALE duration high  
EPI clock  
cycles  
1
EPI clock  
cycles  
CSn duration low  
2
2
1
EPI clock  
cycles  
ALE rising to WRn / RDn strobe falling  
ALE falling to Address high impedance  
EPI clock  
cycles  
tALEADD  
E21  
ALE (EPI0S30)  
CSn (EPI0S30)  
WRn (EPI0S29)  
E18  
E22  
E19  
E23  
E20  
RDn/OEn  
(EPI0S28)  
BSEL0n/  
BSEL1na  
Address  
E15  
E14  
Data  
Data  
a BSEL0n and BSEL1n are available in Host-Bus 16 mode only.  
5-19. Host-Bus 8/16 Asynchronous Mode Read Timing  
68  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
E21  
ALE  
(EPI0S30)  
E18  
E22  
CSn  
(EPI0S30)  
E18  
E19  
E20  
WRn  
(EPI0S29)  
E23  
RDn/Oen  
(EPI0S28)  
BSEL0n  
BSEL1na  
Address  
E16  
E17  
Data  
Data  
a BSEL0n and BSEL1n are available in Host-Bus 16 mode only.  
5-20. Host-Bus 8/16 Asynchronous Mode Write Timing  
E21  
ALE (EPI0S30)  
CSn (EPI0S30)  
WRn (EPI0S29)  
E18  
E22  
E19  
E18  
E23  
E20  
RDn/OEn  
(EPI0S28)  
E24  
BSEL0n/  
BSEL1na  
E14  
E15  
Muxed Address/  
Data  
Address  
Data  
a BSEL0n and BSEL1n are available in Host-Bus 16 mode only.  
5-21. Host-Bus 8/16 Mode Asynchronous Muxed Read Timing  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
69  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
E21  
ALE  
(EPI0S30)  
E18  
E22  
CSn  
(EPI0S30)  
E18  
E19  
E20  
WRn  
(EPI0S29)  
E23  
RDn/Oen  
(EPI0S28)  
BSEL0n  
BSEL1na  
E16  
Muxed Address/  
Data  
Address  
Data  
a BSEL0n and BSEL1n are available in Host-Bus 16 mode only.  
5-22. Host-Bus 8/16 Mode Asynchronous Muxed Write Timing  
70  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5-31 lists the switching characteristics of the general-purpose interface.  
5-31. EPI General-Purpose Interface Characteristics  
over operating free-air temperature (unless otherwise noted) (see 5-23)  
NO.  
E25  
E26  
E27  
E28  
E29  
E30  
E31  
PARAMETER  
General-purpose clock period  
MIN  
16.67  
8.33  
8.33  
8.50  
0
TYP  
MAX  
UNIT  
ns  
tCK  
tCH  
tCL  
tISU  
tIH  
General-purpose clock high time  
ns  
General-purpose clock low time  
ns  
Input signal set up time to rising clock edge  
Input signal hold time from rising clock edge  
Falling clock edge to output valid  
ns  
ns  
tDV  
tDI  
4
4
ns  
Falling clock edge to output invalid  
ns  
E25  
E26  
E27  
Clock  
(EPI0S31)  
E30  
Frame  
(EPI0S30)  
RD  
(EPI0S29)  
WR  
(EPI0S28)  
Address  
E30  
Data  
E31  
E28  
Data  
Data  
E29  
Read  
Write  
NOTE: This figure shows accesses when the FRM50 bit is clear, the FRMCNT field is 0x0, and the WR2CYC bit is clear.  
5-23. General-Purpose Mode Read and Write Timing  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
71  
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5-32 lists the switching characteristics of the PSRAM interface.  
5-32. EPI PSRAM Interface Characteristics  
over operating free-air temperature (unless otherwise noted) (see 5-24 and 5-25)  
NO.  
E33  
E34  
E35  
E36  
E37  
E38  
E39  
E40  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
tEPICLK  
tRTFT  
tOV  
EPI_CLK period  
20  
EPI_CLK rise or fall time  
1.8  
20  
ns  
(1)  
Falling EPI_CLK to address/write data or control output valid  
4.5  
2
ns  
(1)  
tHT  
Falling EPI_CLK to address/write data or control hold time  
Read data setup time from EPI_CLK rising  
Read data output hold from EPI_CLK rising  
iRDY setup time  
ns  
tSUP  
tDH  
9
ns  
0
ns  
tIRV  
9
9
ns  
tIRH  
iRDY hold time  
ns  
(1) Control output includes WRn, RDn, OEn, BSELn, ALE, and CSn.  
E33  
E34  
EPICLK  
EPI0S31  
E35  
E36  
EPI0S [19:0]  
ADDRESS  
ALE  
E36  
CSn  
E36  
WRn  
EPI0S29  
BSELn  
E40  
E39  
iRDY  
EPI0S32  
EPI0S[15:0]  
DATA  
E37  
E38  
5-24. PSRAM Single Burst Read  
72  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
E34  
E33  
EPICLK  
EPI0S31  
E35  
E36  
EPI0S[19:0]  
ADDRESS  
ALE  
E35  
BSELn  
E36  
CSn  
WRn  
EPI0S29  
E39  
E40  
iRDY  
EPI0S32  
E35  
E36  
EPI0S[15:0]  
DATA  
DATA  
DATA  
DATA  
5-25. PSRAM Single Burst Write  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
73  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.15.11 Analog-to-Digital Converter (ADC)  
5-33 lists the electrical characteristics for the ADC at 1 Msps.  
5-33. Electrical Characteristics for ADC at 1 Msps  
VREF+ = 3.3 V, fADC = 16 MHz (unless otherwise noted)(1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Power supply requirements  
VDDA  
ADC supply voltage  
ADC ground voltage  
2.97  
3.3  
0
3.63  
V
V
GNDA  
VDDA and GNDA voltage reference  
(2)  
CREF  
Voltage reference decoupling capacitance  
1.0 // 0.01  
µF  
External voltage reference input  
Positive external voltage reference for ADC, when VREF field in the  
VREFA+  
VREFA-  
2.4  
VDDA  
VDDA  
0.3  
V
V
ADCCTL register is 0x1(3)  
Negative external voltage reference for ADC, when VREF field in the  
ADCCTL register is 0x1(3)  
GNDA  
GNDA  
330.5  
IVREF  
ILVREF  
CREF  
Current on VREF+ input, using external VREF+ = 3.3 V  
440  
2.0  
µA  
µA  
µF  
DC leakage current on VREF+ input when external VREF disabled  
(3)  
(2)  
External reference decoupling capacitance  
1.0 // 0.01  
Analog input  
Single-ended, full-scale analog input voltage, internal reference  
(4) (5)  
(3)  
0
VDDA  
(4)(6)  
Differential, full-scale analog input voltage, internal reference  
–VDDA  
VVDDA  
Single-ended, full-scale analog input voltage, external reference  
VREFA-  
VREFA+  
(5)  
VADCIN  
V
V
–(VREFA+  
– VREFA-  
)
Differential, full-scale analog input voltage, external reference(3)(7)  
VREFA+ – VREFA-  
[(VREFA+  
+
VINCM  
Input common-mode voltage, differential mode(8)  
ADC input leakage current(9)  
VREFA-) / 2]  
±0.025  
IL  
2.0  
2.5  
10  
µA  
kΩ  
pF  
Ω
(9)  
RADC  
CADC  
RS  
ADC equivalent input resistance  
(9)  
ADC equivalent input capacitance  
(9)  
Analog source resistance  
500  
Sampling dynamics  
fADC  
fCONV  
tS  
ADC conversion clock frequency(10)  
16  
1
MHz  
Msps  
ns  
ADC conversion rate  
ADC sample time  
250  
1
(11)  
tC  
ADC conversion time  
µs  
(1) Best design practices suggest placing static or quiet digital I/O signals adjacent to sensitive analog inputs to reduce capacitive coupling  
and crosstalk. Unexpected results can occur if a switching digital I/O is placed adjacent to an ADC input channel or voltage reference  
input. In addition, analog signals that are adjacent to ADC input channels or reference inputs must meet the RADC equivalent input  
resistance given in this table and must be band-limited to 100 kHz or lower.  
(2) Two capacitors in parallel. These capacitors should be as close to the die as possible.  
(3) Assumes external filtering network between VREFA+ and VREFA- as shown in 5-26. External reference noise level must be under  
12-bit (–74 dB) full-scale input, over input bandwidth, measured at VREFA+ – VREFA-.  
(4) Internal reference is connected directly between VDDA and GNDA (VREFi = VDDA – GNDA). In this mode, EO, EG, ET, and dynamic  
specifications are adversely affected due to internal voltage drop and noise on VDDA and GNDA. Internal reference voltage is selected  
when VREF field in the ADCCTL register is 0x0.  
(5) VADCIN = VINP – VINN  
(6) With signal common-mode voltage as VDDA / 2.  
(7) With signal common-mode voltage as VREF+ + GNDA.  
(8) This parameter is defined as the average of the differential inputs.  
(9) As shown in 5-27, RADC is the total equivalent resistance in the input line all the way up to the sampling node at the input of the ADC.  
(10) See 5-14 for full ADC clock frequency specification.  
(11) ADC conversion time (tC) includes the ADC sample time (tS).  
74  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5-33. Electrical Characteristics for ADC at 1 Msps (continued)  
VREF+ = 3.3 V, fADC = 16 MHz (unless otherwise noted)(1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ADC  
clock  
cycles  
tLT  
Latency from trigger to start of conversion  
2
(12) (13)  
System performance when using external reference  
N
Resolution  
12  
±1.5  
±0.8  
±1.0  
±2.0  
±2.5  
bits  
LSB  
LSB  
LSB  
LSB  
LSB  
INL  
DNL  
EO  
EG  
ET  
Integral nonlinearity error, over full input range  
Differential nonlinearity error, over full input range  
Offset error  
±3.0  
(14)  
+2.0/–1.0  
±3.0  
±3.0  
±4.0  
(15)  
Gain error  
(16)  
Total unadjusted error, over full input range  
System performance when using internal reference  
N
Resolution  
12  
±1.5  
bits  
LSB  
LSB  
LSB  
LSB  
LSB  
INL  
DNL  
EO  
EG  
ET  
Integral nonlinearity error, over full input range  
Differential nonlinearity error, over full input range  
Offset error  
±3.0  
(14)  
±0.8  
+2.0/–1.0  
±5.0  
±15.0  
±30.0  
±30.0  
(15)  
Gain error  
±10.0  
±10.0  
(16)  
Total unadjusted error, over full input range  
(12) (17)  
Dynamic characteristics  
(18)  
SNRD  
Signal-to-noise-ratio, Differential input, VADCIN: –20 dB FS, 1 kHz  
70  
72  
72  
75  
dB  
dB  
Signal-to-distortion ratio, Differential input, VADCIN: –3 dB FS, 1 kHz  
SDRD  
(18) (19) (20)  
Signal-to-Noise+Distortion ratio, Differential input, VADCIN: –3 dB FS,  
1 kHz  
SNDRD  
SNRS  
68  
60  
70  
60  
70  
65  
72  
63  
dB  
dB  
dB  
dB  
(18) (21) (22)  
Signal-to-noise-ratio, Single-ended input, VADCIN: –20 dB FS, 1 kHz  
(23)  
Signal-to-distortion ratio, Single-ended input, VADCIN: –3 dB FS, 1  
SDRS  
(19) (20)  
kHz  
Signal-to-Noise+Distortion ratio, Single-ended input, VADCIN: –3 dB  
SNDRS  
(23) (21) (22)  
FS, 1 kHz  
Temperature sensor  
VTSENS Temperature sensor voltage, junction temperature 25°C  
1.633  
–13.3  
V
Temperature sensor slope at:  
STSENS  
mV/°C  
–40°C to 105°C ambient (extended temperature part)  
(12) A low-noise environment is assumed to obtain values close to specifications. The board must have good ground isolation between  
analog and digital grounds and a clean reference voltage. The input signal must be band-limited to Nyquist bandwidth. No antialiasing  
filter is provided internally.  
(13) ADC static measurements taken by averaging over several samples. At least 20-sample averaging is assumed to obtain expected  
typical or maximum specification values.  
(14) 12-bit DNL  
(15) Gain error is measured at maximum code after compensating for offset. Gain error is equivalent to the full-scale error. It can be given  
in % of slope error, or in LSB, as done here.  
(16) Total unadjusted error is the maximum error at any one code versus the ideal ADC curve. It includes all other errors (offset error, gain  
error and INL) at any given ADC code.  
(17) ADC dynamic characteristics are measured using low-noise board design, with low-noise reference voltage (< –74-dB noise level in  
signal bandwidth) and low-noise analog supply voltage. Board noise and ground bouncing couple into the ADC and affect dynamic  
characteristics. A clean external reference must be used to achieve the listed specifications.  
(18) Differential signal with correct common-mode voltage, applied between two ADC inputs.  
(19) SDR = –THD in dB.  
(20) For higher-frequency inputs, expect degradation in SDR.  
(21) SNDR = S/(N+D) = SINAD (in dB)  
(22) Effective number of bits (ENOB) can be calculated from SNDR: ENOB = (SNDR – 1.76) / 6.02.  
(23) Single-ended inputs are more sensitive to board and trace noise than differential inputs; SNR and SNDR measurements on single-  
ended inputs are highly dependent on how clean the test setup is. If the input signal is not well isolated on the board, higher noise than  
specified could be seen at the ADC output.  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
75  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5-33. Electrical Characteristics for ADC at 1 Msps (continued)  
VREF+ = 3.3 V, fADC = 16 MHz (unless otherwise noted)(1)  
PARAMETER  
Temperature sensor accuracy (24) at:  
–40°C to 105°C ambient (extended temperature part)  
MIN  
TYP  
MAX  
±5  
UNIT  
ETSENS  
°C  
(24) This parameter does not include ADC error.  
76  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5-34 lists the electrical characteristics for the ADC at 2 Msps.  
5-34. Electrical Characteristics for ADC at 2 Msps  
VREF+ = 3.3 V, fADC = 32 MHz, over operating free-air temperature (unless otherwise noted) (see 5-26 and 5-27)(1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Power supply requirements  
VDDA  
ADC supply voltage  
ADC ground voltage  
2.97  
3.3  
0
3.63  
V
V
GNDA  
VDDA and GNDA voltage reference  
(2)  
CREF  
Voltage reference decoupling capacitance  
1.0 // 0.01  
µF  
External voltage reference input  
Positive external voltage reference for ADC, when VREF field in the  
VREFA+  
VREFA-  
2.4  
VDDA  
VDDA  
0.3  
V
V
ADCCTL register is 0x1(3)  
Negative external voltage reference for ADC, when VREF field in the  
GNDA  
GNDA  
330.5  
(3)  
ADCCTL register is 0x1  
IVREF  
ILVREF  
CREF  
Current on VREF+ input, using external VREF+ = 3.3 V  
440  
2.0  
µA  
µA  
µF  
DC leakage current on VREF+ input when external VREF disabled  
(3)  
(2)  
External reference decoupling capacitance  
1.0 // 0.01  
Analog input  
Single-ended, full-scale analog input voltage, internal reference(4)(5)  
0
VDDA  
(4)(6)  
Differential, full-scale analog input voltage, internal reference  
Single-ended, full-scale analog input voltage, external reference  
–VDDA  
VVDDA  
(3)  
VREFA-  
VREFA+  
(5)  
VADCIN  
V
V
–(VREFA+  
– VREFA-  
)
(3)(7)  
Differential, full-scale analog input voltage, external reference  
VREFA+ – VREFA-  
[(VREFA+  
+
(8)  
VINCM  
Input common-mode voltage, differential mode  
VREFA-) / 2]  
±0.025  
IL  
ADC input leakage current(9)  
2.0  
2.5  
10  
µA  
kΩ  
pF  
Ω
(9)  
RADC  
CADC  
RS  
ADC equivalent input resistance  
(9)  
ADC equivalent input capacitance  
(9)  
Analog source resistance  
250  
Sampling dynamics  
fADC  
fCONV  
tS  
ADC conversion clock frequency(10)  
32  
MHz  
Msps  
ns  
ADC conversion rate  
ADC sample time  
2
125  
0.5  
(11)  
tC  
ADC conversion time  
µs  
ADC  
clock  
cycles  
tLT  
Latency from trigger to start of conversion  
2
(1) Best design practices suggest placing static or quiet digital I/O signals adjacent to sensitive analog inputs to reduce capacitive coupling  
and crosstalk. Unexpected results can occur if a switching digital I/O is placed adjacent to an ADC input channel or voltage reference  
input. In addition, analog signals configured adjacent to ADC input channels or reference inputs must meet the RADC equivalent input  
resistance given in this table and must be band-limited to 100 kHz or lower.  
(2) Two capacitors in parallel. These capacitors should be as close to the die as possible.  
(3) Assumes external filtering network between VREFA+ and VREFA- as shown in 5-26. External reference noise level must be under  
12-bit (–74-dB) full scale input, over input bandwidth, measured at VREFA+ – VREFA-.  
(4) Internal reference is connected directly between VDDA and VGNDA (VREFi = VDDA – VGNDA). In this mode, EO, EG, ET, and dynamic  
specifications are adversely affected due to internal voltage drop and noise on VDDA and GNDA. Internal reference voltage is selected  
when VREF field in the ADCCTL register is 0x0.  
(5) VADCIN = VINP – VINN  
(6) With signal common-mode voltage as VDDA / 2.  
(7) With signal common-mode voltage as (VREF+ + VREF-) / 2.  
(8) This parameter is defined as the average of the differential inputs.  
(9) As shown in 5-27, RADC is the total equivalent resistance in the input line all the way up to the sampling node at the input of the ADC.  
(10) See 5-14 for full ADC clock frequency specification.  
(11) ADC conversion time (tC) includes the ADC sample time (tS).  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
77  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5-34. Electrical Characteristics for ADC at 2 Msps (continued)  
VREF+ = 3.3 V, fADC = 32 MHz, over operating free-air temperature (unless otherwise noted) (see 5-26 and 5-27)(1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
(12) (13)  
System performance when using external reference  
N
Resolution  
12  
±1.5  
±0.8  
±1.0  
±2.0  
±2.5  
bits  
LSB  
LSB  
LSB  
LSB  
LSB  
INL  
DNL  
EO  
EG  
ET  
Integral nonlinearity error, over full input range  
Differential nonlinearity error, over full input range  
Offset error  
±3.0  
(14)  
+2.0/–1.0  
±3.0  
±3.0  
±4.0  
(15)  
Gain error  
(16)  
Total unadjusted error, over full input range  
System performance when using internal reference  
N
Resolution  
12  
±1.5  
bits  
LSB  
LSB  
LSB  
LSB  
LSB  
INL  
DNL  
EO  
EG  
ET  
Integral nonlinearity error, over full input range  
Differential nonlinearity error, over full input range  
Offset error  
±3.0  
(14)  
±0.8  
+2.0/–1.0  
±5.0  
±15.0  
±30.0  
±30.0  
(15)  
Gain error  
±10.0  
±10.0  
(16)  
Total unadjusted error, over full input range  
(17) (18)  
Dynamic characteristics  
(19)  
SNRD  
Signal-to-noise-ratio, differential input, VADCIN: –20 dB FS, 1 kHz  
68  
70  
72  
75  
dB  
dB  
Signal-to-distortion ratio, differential input, VADCIN: –3 dB FS, 1 kHz  
SDRD  
(19) (20) (21)  
Signal-to-noise+distortion ratio, differential input, VADCIN: –3 dB FS, 1  
kHz  
SNDRD  
SNRS  
65  
58  
68  
58  
70  
65  
72  
63  
dB  
dB  
dB  
dB  
(19) (22) (23)  
Signal-to-noise-ratio, single-ended input, VADCIN: –20 dB FS, 1 kHz  
(24)  
Signal-to-distortion ratio, single-ended input, VADCIN: –3 dB FS, 1  
SDRS  
(20) (21)  
kHz  
Signal-to-noise+distortion ratio, single-ended input, VADCIN: –3 dB  
SNDRS  
(24) (22) (23)  
FS, 1 kHz  
(12) A low-noise environment is assumed to obtain values close to specifications. The board must have good ground isolation between  
analog and digital grounds, a clean reference voltage is assumed, and input signal must be bandlimited to Nyquist bandwidth. No  
antialiasing filter is provided internally.  
(13) ADC static measurements taken by averaging over several samples. At least 20-sample averaging is assumed to obtain expected  
typical or maximum specification values.  
(14) 12-bit DNL  
(15) Gain error is measured at maximum code after compensating for offset. Gain error is equivalent to"Full Scale Error." It can be given  
in % of slope error, or in LSB, as done here.  
(16) Total Unadjusted Error is the maximum error at any one code versus the ideal ADC curve. It includes all other errors (offset error, gain  
error and INL) at any given ADC code.  
(17) A low noise environment is assumed to obtain values close to spec. The board must have good ground isolation between analog and  
digital grounds and a clean reference voltage. The input signal must be band-limited to Nyquist bandwidth. No antialiasing filter is  
provided internally.  
(18) ADC dynamic characteristics are measured using low-noise board design, with low-noise reference voltage (< –74 dB noise level in  
signal BW) and low-noise analog supply voltage. Board noise and ground bouncing couple into the ADC and affect dynamic  
characteristics. Clean external reference must be used to achieve the listed specifications.  
(19) Differential signal with correct common-mode voltage, applied between two ADC inputs.  
(20) SDR = –THD in dB.  
(21) For higher-frequency inputs, expect degradation in SDR.  
(22) SNDR = S/(N+D) = SINAD (in dB)  
(23) Effective number of bits (ENOB) can be calculated from SNDR: ENOB = (SNDR – 1.76) / 6.02.  
(24) Single-ended inputs are more sensitive to board and trace noise than differential inputs; SNR and SNDR measurements on single-  
ended inputs are highly dependent on how clean the test setup is. If the input signal is not well isolated on the board, higher noise than  
specified could be seen at the ADC output.  
78  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
MSP432E4 Microcontroller  
IVREF  
VREFA+  
VREFA-  
VREFP  
+
VREF  
_
ADC  
CREF  
VREFA-  
VREFA+  
VREFN  
Copyright © 2017, Texas Instruments Incorporated  
5-26. ADC External Reference Filtering  
MSP432E4 Microcontroller  
VDD  
ZADC  
Zs  
Rs  
Pin  
+
RADC  
ESD  
Clamp  
12-bit  
Word  
VS  
VADCIN  
CS  
RADC  
Pin  
Pin  
Input pad equivalent  
circuit  
RADC  
Input pad equivalent  
circuit  
CADC  
Copyright © 2017, Texas Instruments Incorporated  
5-27. ADC Input Equivalency  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
79  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.15.12 Synchronous Serial Interface (SSI)  
5-35. SSI Characteristics  
over operating free-air temperature (unless otherwise noted) (see 5-28, 5-29, and 5-30)  
NO.  
PARAMETER  
MIN  
16.67  
100  
TYP  
MAX  
UNIT  
As master(1)  
As slave(2)  
As master  
As slave  
S1  
tCLK_PER  
tCLK_HIGH  
tCLK_LOW  
SSIClk cycle time  
SSIClk high time  
SSIClk low time  
ns  
8.33  
50  
S2  
S3  
ns  
ns  
As master  
As slave  
8.33  
50  
S4  
S5  
tCLKR  
tCLKF  
SSIClk rise time(3)  
1.25  
1.25  
ns  
ns  
(3)  
SSIClk fall time  
Master mode: master Tx data output (to slave) valid time from  
edge of SSIClk  
S6  
S7  
tTXDMOV  
tTXDMOH  
4.00  
ns  
ns  
Master mode: master Tx data output (to slave) hold time after  
next SSIClk  
0.60  
S8  
S9  
tRXDMS  
tRXDMH  
Master mode: master Rx data In (from slave) setup time  
Master mode: master Rx data In (from slave) hold time  
7.89  
0
ns  
ns  
Slave mode: master Tx data output (to master) valid time from  
edge of SSIClk  
S10  
S11  
tTXDSOV  
tTXDSOH  
47.60(4)  
ns  
ns  
Slave mode: slave Tx data output (to master) hold time from next  
SSIClk  
37.4(5)  
S13  
S14  
tRXDSSU  
tRXDSH  
Slave mode: Rx data in (from master) setup time  
Slave mode: Rx data in (from master) hold time  
0
ns  
ns  
37.03(6)  
(1) In master mode, the system clock must be at least twice as fast as the SSIClk.  
(2) In slave mode, the system clock must be at least 12 times faster than the SSIClk.  
(3) The delays shown are using 12-mA drive strength.  
(4) This MAX value is for the minimum slave mode tSYSCLK period (8.33 ns). To find the MAX tTXDSOV value for a larger tSYSCLK, use the  
equation: 4 × tSYSCLK + 14.25.  
(5) This MIN value is for the minimum slave mode tSYSCLK (8.33 ns). To find the MIN tTXDSOH value for a larger tSYSCLK, use the equation: 4  
× tSYSCLK + 4.08.  
(6) This MIN value is for the minimum slave mode tSYSCLK (8.33 ns). To find the MIN tTXDSH value for a larger tSYSCLK, use the equation: 4 ×  
tSYSCLK + 3.70.  
S1  
S2  
S5  
S4  
SSIClk  
SSIFss  
S3  
SSITx  
SSIRx  
MSB  
LSB  
4 to 16 bits  
5-28. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement  
80  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
S1  
S5  
S2  
S4  
SSIClk  
(SPO=1)  
S3  
SSIClk  
(SPO=0)  
S7  
S6  
SSITx  
(to slave)  
MSB  
S9  
LSB  
S8  
SSIRx  
(from slave)  
MSB  
LSB  
SSIFss  
5-29. Master Mode SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1  
S1  
S5  
S2  
S4  
SSIClk  
(SPO=1)  
S3  
S3  
SSIClk  
(SPO=0)  
S10  
S11  
SSITx  
(to master)  
MSB  
LSB  
S12  
S13  
MSB  
SSIRx  
( from master)  
LSB  
SSIFss  
5-30. Slave Mode SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
81  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5-36 lists the characteristics for Bi-SSI and Quad-SSI.  
5-36. Bi- and Quad-SSI Characteristics(1)  
over operating free-air temperature (unless otherwise noted)  
NO.  
S15  
S16  
S17  
S18  
S19  
PARAMETER  
MIN  
16.67  
8.33  
8.33  
1.25  
1.25  
TYP  
MAX  
UNIT  
ns  
(2)  
tCLK_PER  
tCLK_HIGH  
tCLK_LOW  
tCLKR  
SSIClk cycle time, as master  
SSIClk high time, as master  
SSIClk low time, as master  
ns  
ns  
(3)  
SSIClk rise time  
ns  
(3)  
tCLKF  
SSIClk fall time  
ns  
Master mode: master SSInXDATn data output (to slave) valid time  
from edge of SSIClk  
S20  
S21  
tTXDMOV  
tTXDMOH  
4.04  
ns  
ns  
Master mode: master SSInXDATn data output (to slave) hold time  
after next SSIClk  
0.60  
S22  
S23  
tRXDMS  
tRXDMH  
Master mode: master SSInXDATn data in (from slave) setup time  
Master mode: master SSInXDATn data in (from slave) hold time  
5.78  
0
ns  
ns  
(1) Parameters S15 to S23 correspond to parameters S1 to S9 in 5-28 and 5-29.  
(2) In master mode, the system clock must be at least twice as fast as the SSIClk.  
(3) The delays shown are using 12-mA drive strength.  
82  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5.15.13 Inter-Integrated Circuit (I2C) Interface  
5-37 lists the characteristics for the I2C interface.  
5-37. I2C Characteristics  
over operating free-air temperature (unless otherwise noted) (see 5-31)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
system  
clock  
I1(1)  
tSCH  
Start condition hold time  
36  
cycles  
system  
clock  
(1)  
I2  
tLP  
Clock low period  
36  
cycles  
(2)  
(2)  
I3  
tSRT  
tDH  
tSFT  
tHT  
I2CSCL and I2CSDA rise time (VIL = 0.5 V to V IH = 2.4 V)  
Slave  
See  
ns  
2
7
9
system  
clock  
cycles  
I4  
Data hold time  
Master  
(3)  
I5  
I2CSCL and I2CSDA fall time (VIH = 2.4 V to V IL = 0.5 V)  
Clock high time  
10  
ns  
system  
clock  
cycles  
(1)  
I6  
24  
18  
36  
24  
system  
clock  
cycles  
I7  
tDS  
Data setup time  
system  
clock  
cycles  
(1)  
I8  
tSCSR  
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
system  
clock  
(1)  
I9  
tSCS  
cycles  
system  
clock  
Slave  
2
cycles  
I10  
tDV  
Data valid  
(6 × (1 +  
TPR)) +  
1
system  
clock  
cycles  
Master  
(1) Values depend on the value programmed into the TPR bit in the I2C Master Timer Period (I2CMTPR) register; a TPR programmed for  
the maximum I2CSCL frequency (TPR = 0x2) results in a minimum output timing listed in this table. The I2C interface is designed to  
scale the actual data transition time to move it to the middle of the I2CSCL low period. The actual position is affected by the value  
programmed into the TPR; however, the values in this table are minimum values.  
(2) Because I2CSCL and I2CSDA operate as open-drain-type signals, which the controller can only actively drive low, the time I2CSCL or  
I2CSDA takes to reach a high level depends on external signal capacitance and pullup resistor values.  
(3) Specified at a nominal 50-pF load  
I2  
I10  
I6  
I5  
I2CSCL  
I2CSDA  
I1  
I7  
I8  
I3  
I9  
I4  
5-31. I2C Timing  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
83  
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.15.14 Ethernet Controller  
5.15.14.1 DC Characteristics  
The parameters listed in 5-38, with the exception of RBIAS, apply to transmit pins of the Ethernet PHY,  
which are generally the EN0TXOP and EN0TXON signals during standard operation but can also be the  
EN0RXIN and EN0RXIP signals if Auto-MDIX is enabled.  
5-38. Ethernet PHY DC Characteristics  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
Value of the pulldown resistor on the RBIAS pin  
100M transmit voltage  
MIN  
4.82  
0.95  
–2%  
TYP  
4.87  
1
MAX  
4.92  
1.05  
2%  
UNIT  
kΩ  
RBIAS  
VTPTD_100  
VTPTDSYM  
VOVRSHT  
VTPTD_10  
VTH1  
V
100M transmit voltage symmetry  
Output overshoot  
5%  
10M transmit voltage  
2.2  
2.5  
2.8  
V
10Base-T Receive threshold  
200  
mV  
5.15.14.2 Clock Characteristics for Ethernet  
5-39 lists the specifications of the MOSC 25-MHz crystal.  
5-39. MOSC 25-MHz Crystal Specification(1)  
over operating free-air temperature (unless otherwise noted) (see 5-32)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
ppm  
N1  
fMOSC25  
fTOL  
Frequency  
25  
Frequency tolerance at operational temperature  
Frequency stability at 1-year aging  
0
±50  
±5  
fSTA  
(1) See 5-12 for additional MOSC requirements.  
N1  
OSC0  
5-32. MOSC Crystal Characteristics for Ethernet  
84  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5-40 lists the specifications of the single-ended 25-MHz oscillator.  
5-40. MOSC Single-Ended 25-MHz Oscillator Specification  
(1)  
over operating free-air temperature (unless otherwise noted) (see 5-33)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
ppm  
ns  
N4  
fOSC  
fTOL  
tSTA  
tRF  
Frequency  
25  
Frequency tolerance at operational temperature  
Frequency stability at 1-year aging  
Frequency rise and fall time  
0
±50  
±50  
1
N5  
Cycle to cycle  
Over 10 ms  
50  
ps  
tJ  
Jitter  
1
ns  
DC  
Duty cycle  
40%  
60%  
(1) See 5-12 for additional MOSC requirements.  
N4  
N5  
N5  
OSC0  
5-33. Single-Ended MOSC Characteristics for Ethernet  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
85  
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.15.14.3 AC Characteristics  
5-41 lists the timing characterists of the enable and reset.  
5-41. Ethernet Controller Enable and Software Reset Timing  
over operating free-air temperature (unless otherwise noted) (see 5-34)  
NO.  
N16  
N17  
PARAMETER  
MIN  
45  
TYP  
MAX  
UNIT  
µs  
Time from the System Control enable of the PHY to energy on the  
tEN  
(1) (2)  
PMD output pin  
tSWRST  
Time from software reset of the PHY to energy on the PMD output pin  
110  
ns  
(1) The PHY is enabled through System Control by setting the P0 bit in the PCEPHY register and the R0 bit in the RCGCPHY register.  
(2) This minimum timing assumes the PHYHOLD bit in the EMACPC register is not set.  
CLK  
PHY Enable  
N16  
PHY SW Reset  
N17  
PMD Output Pair  
5-34. Reset Timing  
86  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5-42 lists the 100Base-TX transmit timing.  
5-42. 100Base-TX Transmit Timing  
over operating free-air temperature (unless otherwise noted) (see 5-35)  
NO.  
N38  
N39  
PARAMETER  
MIN  
TYP  
MAX  
5
UNIT  
ns  
(1)  
tRF  
100-Mbps PMD output pair tR and tF  
3
4
(2) (3)  
tRF_MM  
tRF_JTTR  
100-Mbps tR and tF symmetry  
500  
1.4  
ps  
100-Mbps PMD output pair transmit jitter  
ns  
(1) Rise and fall times taken at 10% and 90% of the +1 or –1 amplitude.  
(2) Normal mismatch is the difference between the maximum and minimum of all rise and fall times  
(3) Choice of Ethernet transformer magnetics can affect this parameter.  
90%  
90%  
10%  
10%  
PMD Output Pair  
90%  
90%  
+1  
rise  
+1 fall  
N38  
N38  
10%  
10%  
-1  
rise  
-1 fall  
N38  
N38  
N39  
PMD Output Pair  
Eye Pattern  
N39  
5-35. 100 Base-TX Transmit Timing  
5-43 lists the 10Base-T normal link pulse timing.  
5-43. 10Base-T Normal Link Pulse Timing  
over operating free-air temperature (unless otherwise noted) (see 5-36)  
NO.  
N69  
N70  
PARAMETER  
MIN  
TYP  
76  
MAX  
UNIT  
ms  
tLP_PER  
tLP_WID  
Link pulse period  
Link pulse width  
100  
µs  
N69  
N70  
Normal Link  
Pulse(s)  
5-36. 10Base-TX Normal Link Pulse Timing  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
87  
 
 
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5-44 lists the Auto-Negotiation FLP timing.  
5-44. Auto-Negotiation Fast Link Pulse (FLP) Timing  
over operating free-air temperature (unless otherwise noted) (see 5-37)  
NO.  
N72  
N73  
N74  
N75  
N76  
PARAMETER  
Clock pulse to clock pulse period  
Clock pulse to data pulse period  
Clock, data pulse width  
MIN  
TYP  
125  
62  
MAX  
UNIT  
µs  
tCLKP  
tCLKDP  
tPUL  
tBRSTP  
tBRSTW  
µs  
110  
16  
ns  
FLP burst to flp burst period  
Burst width  
ms  
ms  
2
N76  
N72  
N73  
N74  
N74  
Fast Link Pulse(s)  
Clock  
Pulse  
Data  
Pulse  
Clock  
Pulse  
N75  
N76  
FLP Burst  
FLP Burst  
5-37. Auto-Negotiation Fast Link Pulse Timing  
5-45 lists the 100Base-TX signal detect timing.  
5-45. 100Base-TX Signal Detect Timing  
over operating free-air temperature (unless otherwise noted) (see 5-38)  
NO.  
N79  
N80  
PARAMETER  
SD internal turnon time  
Internal turnoff time  
MIN  
TYP  
MAX  
100  
UNIT  
µs  
tON  
tOFF  
200  
µs  
PMD Input Pair  
N79  
N80  
Signal Detect  
(Internal)  
5-38. 100Base-TX Signal Detect Timing  
88  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5.15.15 Universal Serial Bus (USB) Controller  
The USB controller electrical specifications are compliant with the Universal Serial Bus Specification  
Rev 2.0 (full-speed and low-speed support) and the On-The-Go Supplement to the USB 2.0 Specification  
Rev 1.0. Some components of the USB system are integrated within the microcontroller and specific to the  
microcontroller design.  
GPIO pin PB1, which can be configured as the USB0VBUS signal, is the only pin that is 5-V  
tolerant on the device.  
5-46 lists the timing characteristics of the ULPI interface.  
5-46. ULPI Interface Timing  
over operating free-air temperature (unless otherwise noted) (see 5-39)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Timings with respect to external clock source input to USB0CLK  
U1  
U2  
U3  
U4  
U5  
U6  
tSUC  
tSUD  
tHTC  
tHTD  
tODC  
tODD  
Setup time (control in) USB0DIR, USB0NXT  
Setup time (data in) USB0Dn  
4.8  
3.5  
0
ns  
ns  
ns  
ns  
ns  
ns  
Hold time (control in) USB0DIR, USB0NXT  
Hold time (data in) USB0Dn  
0
Output delay (control out) USB0STP  
Output delay (data out) USB0Dn  
3.7  
3.7  
9.5  
9.5  
Timings with USB0CLK as clock output  
U1  
U2  
U3  
U4  
U5  
U6  
tSUC  
tSUD  
tHTC  
tHTD  
tODC  
tODD  
Setup time (control in) USB0DIR, USB0NXT  
Setup time (data in) USB0Dn  
6.0  
4.6  
0
ns  
ns  
ns  
ns  
ns  
ns  
Hold time (control in) USB0DIR, USB0NXT  
Hold time (data in) USB0Dn  
0
Output delay (control out) USB0STP  
Output delay (data out) USB0Dn  
4.0  
4.0  
10.6  
10.6  
USB0CLK  
U5  
U6  
USB0STP  
USB0Dn  
Write  
U1  
U2  
U3  
USB0DIR/  
USB0NXT  
U4  
USB0Dn  
Read  
5-39. ULPI Interface Timing Diagram  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
89  
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.15.16 Analog Comparator  
5-47 lists the characteristics of the comparator.  
5-47. Analog Comparator Characteristics  
(1) (2)  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
GNDA  
GNDA  
TYP  
MAX  
UNIT  
VINP  
,
Input voltage range  
VDDA  
V
(3)  
VINN  
VCM  
VOS  
Input common-mode voltage range  
Input offset voltage  
VDDA  
V
mV  
µA  
dB  
µs  
(4)  
±10  
50  
±50  
IINP, IINN Input leakage current over full voltage range  
2.0  
CMRR  
tRT  
Common-mode rejection ratio  
Response time  
(5)  
1.0  
tMC  
Comparator mode change to output valid  
10  
µs  
(1) Best design practices suggest placing static or quiet digital I/O signals adjacent to sensitive analog inputs to reduce capacitive coupling  
and crosstalk.  
(2) To achieve best analog results, keep the source resistance driving the analog inputs, VINP and VINN, low.  
(3) The external voltage inputs to the analog comparator are designed to be highly sensitive and can be affected by external noise on the  
board. For this reason, VINP and VINN must be set to different voltage levels during idle states to ensure the analog comparator triggers  
are not enabled. If an internal voltage reference is used, it should be set to a mid-supply level. When operating in sleep or deep-sleep  
modes, disable the analog comparator module or set the external voltage inputs to different levels (greater than the input offset voltage)  
to achieve minimum current draw.  
(4) Measured at VREF = 100 mV  
(5) Measured at external VREF = 100 mV, input signal switching from 75 mV to 125 mV  
5-48 lists the characteristics for the comparator.  
5-48. Analog Comparator Characteristics  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
Resolution in high range  
MIN  
TYP  
VDDA / 29.4  
VDDA / 22.12  
MAX  
UNIT  
RHR  
RLR  
AHR  
ALR  
V
V
V
V
Resolution in low range  
Absolute accuracy high range  
Absolute accuracy low range  
±RHR / 2  
±RLR / 2  
90  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
5-49 and 5-50 list the reference voltages for the comparator under different conditions.  
5-49. Analog Comparator Voltage Reference Characteristics  
VDDA = 3.3 V, EN = 1, RNG = 0, over operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VREF = 0x0  
MIN  
0.731  
0.843  
0.955  
1.067  
1.180  
1.292  
1.404  
1.516  
1.629  
1.741  
1.853  
1.965  
2.078  
2.190  
2.302  
2.414  
TYP  
0.786  
0.898  
1.010  
1.122  
1.235  
1.347  
1.459  
1.571  
1.684  
1.796  
1.908  
2.020  
2.133  
2.245  
2.357  
2.469  
MAX  
0.841  
0.953  
1.065  
1.178  
1.290  
1.402  
1.514  
1.627  
1.739  
1.851  
1.963  
2.076  
2.188  
2.300  
2.412  
2.525  
UNIT  
VREF = 0x1  
VREF = 0x2  
VREF = 0x3  
VREF = 0x4  
VREF = 0x5  
VREF = 0x6  
VREF = 0x7  
VREF = 0x8  
VREF = 0x9  
VREF = 0xA  
VREF = 0xB  
VREF = 0xC  
VREF = 0xD  
VREF = 0xE  
VREF = 0xF  
VIREF  
Reference voltage  
V
5-50. Analog Comparator Voltage Reference Characteristics  
VDDA = 3.3 V, EN = 1, RNG = 1, over operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VREF = 0x0  
MIN  
0.000  
0.076  
0.225  
0.374  
0.523  
0.672  
0.822  
0.971  
1.120  
1.269  
1.418  
1.567  
1.717  
1.866  
2.015  
2.164  
TYP  
0.000  
0.149  
0.298  
0.448  
0.597  
0.746  
0.895  
1.044  
1.193  
1.343  
1.492  
1.641  
1.790  
1.939  
2.089  
2.238  
MAX  
0.074  
0.223  
0.372  
0.521  
0.670  
0.820  
0.969  
1.118  
1.267  
1.416  
1.565  
1.715  
1.864  
2.013  
2.162  
2.311  
UNIT  
VREF = 0x1  
VREF = 0x2  
VREF = 0x3  
VREF = 0x4  
VREF = 0x5  
VREF = 0x6  
VREF = 0x7  
VREF = 0x8  
VREF = 0x9  
VREF = 0xA  
VREF = 0xB  
VREF = 0xC  
VREF = 0xD  
VREF = 0xE  
VREF = 0xF  
VIREF  
Reference voltage  
V
版权 © 2017, Texas Instruments Incorporated  
Specifications  
91  
 
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
5.15.17 Pulse-Width Modulator (PWM)  
5-51 lists the PWM timing characteristics.  
5-51. PWM Timing Characteristics  
over operating free-air temperature (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
PWM  
clock  
tFLTW  
Minimum fault pulse width  
2
periods  
24 + (1  
PWM  
clock)  
(1)  
tFLTMAX  
tFLTMIN  
MnFAULTn assertion to PWM inactive  
MnFAULTn deassertion to PWM active  
ns  
ns  
(2)  
5
(1) This parameter value can vary depending on the PWM clock frequency which is controlled by the System Clock and a programmable  
divider field in the PWMCC register.  
(2) The latch and minimum fault period functions that can be enabled in the PWMnCTL register can change the timing of this parameter.  
5.15.18 Emulation and Debug  
5-52 lists the JTAG characteristics.  
5-52. JTAG Characteristics  
over operating free-air temperature (unless otherwise noted) (see 5-40 and 5-41)  
NO.  
J1  
PARAMETER  
TCK operational clock frequency  
TCK operational clock period  
TCK clock low time  
MIN  
0
TYP  
MAX  
UNIT  
MHz  
ns  
fTCK  
10  
J2  
tTCK  
100  
J3  
tTCK_LOW  
tTCK_HIGH  
tTCK_R  
tTCK / 2  
tTCK / 2  
ns  
J4  
TCK clock high time  
ns  
J5  
TCK rise time  
0
0
10  
10  
ns  
J6  
tTCK_F  
TCK fall time  
ns  
J7  
tTMS_SU  
tTMS_HLD  
tTDI_SU  
tTDI_HLD  
TMS setup time to TCK rise  
TMS hold time from TCK rise  
TDI setup time to TCK rise  
TDI hold time from TCK rise  
8
ns  
J8  
4
ns  
J9  
18  
4
ns  
J10  
ns  
2-mA drive  
13  
9
35  
26  
26  
29  
13  
14  
20  
26  
21  
26  
14  
15  
16  
16  
16  
19  
22  
25  
4-mA drive  
8-mA drive  
8
J11  
J12  
J13  
tTDO_ZDV  
TCK fall to data valid from Hi-Z  
ns  
ns  
ns  
8-mA drive with slew rate control  
10-mA drive  
10  
11  
11  
14  
10  
8
12-mA drive  
2-mA drive  
4-mA drive  
8-mA drive  
TCK fall to data valid from  
data valid  
tTDO_DV  
8-mA drive with slew rate control  
10-mA drive  
10  
12  
12  
7
12-mA drive  
2-mA drive  
4-mA drive  
7
8-mA drive  
7
tTDO_DVZ  
TCK fall to Hi-Z from data valid  
8-mA drive with slew rate control  
10-mA drive  
8
20  
20  
12-mA drive  
92  
Specifications  
版权 © 2017, Texas Instruments Incorporated  
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
J2  
J3  
J4  
TCK  
J6  
J5  
5-40. JTAG Test Clock Input Timing  
TCK  
TMS  
TDI  
J7  
J8  
J7  
J8  
TMS Input Valid  
TMS Input Valid  
J9  
J10  
J9  
J10  
TDI Input Valid  
TDI Input Valid  
J11  
J12  
J13  
TDO  
TDO Output Valid  
TDO Output Valid  
5-41. JTAG Test Access Port (TAP) Timing  
版权 © 2017, Texas Instruments Incorporated  
Specifications  
93  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
The SimpleLink MSP432E401Y Arm Cortex-M4 microcontroller (MCU) provides top performance and  
advanced integration. The MSP432E4 product family is positioned for cost-effective applications requiring  
significant control processing and connectivity capabilities such as the following:  
Industrial communication equipment  
Network appliances, gateways, and adapters  
Residential and commercial site monitoring and control  
Remote connectivity and monitoring  
Security and access systems  
HMI control panels  
Factory automation control  
Test and measurement equipment  
Fire and security systems  
Motion control and power inversion  
Medical instrumentation  
Gaming equipment  
Electronic point-of-sale (POS) displays  
Smart energy and smart grid solutions  
Intelligent lighting control  
Vehicle tracking  
The MSP432E401Y MCU integrates a large variety of rich communication features to enable a new class  
of highly connected designs that can support critical, real-time control with a balance between  
performance and power. The MCU features integrated communication peripherals and other high-  
performance analog and digital functions to offer a strong foundation for many different target uses, from  
human-machine interface to networked system management controllers.  
In addition, the MSP432E401Y MCU offers the advantages of widely available development tools from  
Arm, System-on-Chip (SoC) infrastructure, and a large user community. Additionally, this MCU uses the  
Thumb-compatible Thumb-2 instruction set from Arm to reduce memory requirements and, thereby, cost.  
Finally, when using the SimpleLink SDK, the MSP432E401Y MCU is code-compatible with all members of  
the SimpleLink series, providing flexibility to fit precise needs.  
TI offers a complete solution to get to market quickly, with evaluation and development boards; white  
papers and application notes; an easy-to-use peripheral driver library; and a strong support, sales, and  
distributor network.  
94  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6.2 Functional Block Diagram  
6-1 shows the features on the MSP432E401Y MCU. Two on-chip buses connect the core to the  
peripherals. The Advanced Peripheral Bus (APB) bus is the legacy bus. The Advanced High-Performance  
Bus (AHB) bus provides better back-to-back access performance than the APB bus.  
JTAG, SWD  
Arm  
Cortex-M4F  
Bootloader  
ROM  
DriverLib  
(120 MHz)  
AES and CRC  
Ethernet Bootloater  
System  
Control and  
Clocks  
(with Precision  
Oscillator)  
Flash  
ETM  
NVIC  
FPU  
DCode bus  
ICode bus  
(1024KB)  
MPU  
System Bus  
SRAM  
(256KB)  
Bus Matrix  
SYSTEM PERIPHERALS  
Watchdog  
Timer  
(2 Units)  
DMA  
Hibernation  
Module  
EEPROM  
(6K)  
Tamper  
General-  
Purpose  
Timer (8 Units)  
GPIOs  
(90)  
External  
Peripheral  
Interface  
CRC  
Module  
DES  
Module  
AES  
Module  
SHA/MD5  
Module  
SERIAL PERIPHERALS  
USB OTG  
(FS PHY  
or ULPI)  
UART  
(8 Units)  
SSI  
(4 Units)  
I2C  
(10 Units)  
CAN  
Controller  
(2 Units)  
Ethernet  
MAC, PHY, MII  
ANALOG PERIPHERALS  
12-Bit ADC  
(2 Units,  
20 Channels)  
Analog  
Comparator  
(3 Units)  
MOTION CONTROL PERIPHERALS  
PWM  
(1 Unit,  
8 Signals)  
QEI  
(1 Unit)  
Copyright © 2017, Texas Instruments Incorporated  
6-1. MSP432E401Y High-Level Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
95  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6.3 Arm Cortex-M4F Processor Core  
All members of the MSP432E4 family are designed around an Arm Cortex-M processor core. The Arm  
Cortex-M processor provides the core for a high-performance low-cost platform that meets the needs of  
minimal memory implementation, reduced pin count, and low power consumption, while delivering  
outstanding computational performance and exceptional system response to interrupts.  
6.3.1 Processor Core  
Features of the processor core include:  
32-bit Arm Cortex-M4F architecture optimized for small-footprint embedded applications  
120-MHz operation; 150 DMIPS performance  
Outstanding processing performance combined with fast interrupt handling  
Thumb-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit Arm  
core in a compact memory size usually associated with 8- and 16-bit devices, typically in the range of  
a few kilobytes of memory for MCU-class applications.  
Single-cycle multiply instruction and hardware divide  
Atomic bit manipulation (bit-banding), delivering maximum memory use and streamlined peripheral  
control  
Unaligned data access, enabling data to be efficiently packed into memory  
IEEE 754-compliant single-precision floating-point unit (FPU)  
16-bit SIMD vector processing unit  
Fast code execution permits slower processor clock or increases sleep mode time  
Harvard architecture characterized by separate buses for instruction and data  
Efficient processor core, system, and memories  
Hardware division and fast digital-signal-processing orientated multiply accumulate  
Saturating arithmetic for signal processing  
Deterministic high-performance interrupt handling for time-critical applications  
Memory protection unit (MPU) to provide a privileged mode for protected operating system functionality  
Enhanced system debug with extensive breakpoint and trace capabilities  
Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging and tracing  
Migration from the Arm7® processor family for better performance and power efficiency  
Optimized for single-cycle flash memory use up to specific frequencies; see the Internal Memory  
chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical Reference Manual for more  
information.  
Ultra-low-power consumption with integrated sleep modes  
6.3.2 System Timer (SysTick)  
SysTick provides a simple, 24-bit, clear-on-write, decrementing, wrap-on-zero counter with a flexible  
control mechanism. The counter can be used in several different ways, for example:  
An RTOS tick timer that fires at a programmable rate (for example, 100 Hz) and invokes a SysTick  
routine  
A high-speed alarm timer using the system clock  
A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and  
the dynamic range of the counter  
A simple counter used to measure time to completion and time used  
An internal clock-source control based on missing or meeting durations  
96  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6.3.3 Nested Vectored Interrupt Controller (NVIC)  
The NVIC and Cortex-M4F core prioritize and handle all exceptions in handler mode. The processor state  
is automatically stored to the stack on an exception and automatically restored from the stack at the end  
of the interrupt service routine (ISR). The interrupt vector is fetched in parallel to the state saving, enabling  
efficient interrupt entry. The processor supports tail-chaining, meaning that back-to-back interrupts can be  
performed without the overhead of state saving and restoration. Software can set 8 priority levels on 7  
exceptions (system handlers) and 109 interrupts.  
Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining (these  
values reflect no FPU stacking)  
External nonmaskable interrupt signal (NMI) available for immediate execution of NMI handler for  
safety critical applications  
Dynamically reprioritizable interrupts  
Exceptional interrupt handling through hardware implementation of required register manipulations  
6-1 lists the interrupts.  
6-1. Interrupts  
INTERRUPT NUMBER  
(BIT IN INTERRUPT  
REGISTERS)  
VECTOR ADDRESS OR  
OFFSET  
VECTOR NUMBER  
DESCRIPTION  
0x0000.0000 to  
0x0000.003C  
0 to 15  
Processor exceptions  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
0
0x0000.0040  
0x0000.0044  
0x0000.0048  
0x0000.004C  
0x0000.0050  
0x0000.0054  
0x0000.0058  
0x0000.005C  
0x0000.0060  
0x0000.0064  
0x0000.0068  
0x0000.006C  
0x0000.0070  
0x0000.0074  
0x0000.0078  
0x0000.007C  
0x0000.0080  
0x0000.0084  
0x0000.0088  
0x0000.008C  
0x0000.0090  
0x0000.0094  
0x0000.0098  
0x0000.009C  
0x0000.00A0  
0x0000.00A4  
0x0000.00A8  
0x0000.00AC  
0x0000.00B0  
GPIO Port A  
1
GPIO Port B  
2
GPIO Port C  
3
GPIO Port D  
4
GPIO Port E  
5
UART0  
6
UART1  
7
SSI0  
8
I2C0  
9
PWM fault  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
PWM generator 0  
PWM generator 1  
PWM generator 2  
QEI0  
ADC0 sequence 0  
ADC0 sequence 1  
ADC0 sequence 2  
ADC0 sequence 3  
Watchdog timers 0 and 1  
16-/32-Bit Timer 0A  
16-/32-Bit Timer 0B  
16-/32-Bit Timer 1A  
16-/32-Bit Timer 1B  
16-/32-Bit Timer 2A  
16-/32-Bit Timer 2B  
Analog comparator 0  
Analog comparator 1  
Analog comparator 2  
System control  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
97  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-1. Interrupts (continued)  
INTERRUPT NUMBER  
(BIT IN INTERRUPT  
REGISTERS)  
VECTOR ADDRESS OR  
OFFSET  
VECTOR NUMBER  
DESCRIPTION  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
0x0000.00B4  
0x0000.00B8  
0x0000.00BC  
0x0000.00C0  
0x0000.00C4  
0x0000.00C8  
0x0000.00CC  
0x0000.00D0  
0x0000.00D4  
0x0000.00D8  
0x0000.00DC  
0x0000.00E0  
0x0000.00E4  
0x0000.00E8  
0x0000.00EC  
0x0000.00F0  
0x0000.00F4  
0x0000.00F8  
0x0000.00FC  
0x0000.0100  
0x0000.0104  
0x0000.0108  
0x0000.010C  
0x0000.0110  
0x0000.0114  
0x0000.0118  
0x0000.011C  
0x0000.0120  
0x0000.0124  
0x0000.0128  
0x0000.012C  
0x0000.0130  
0x0000.0134  
0x0000.0138  
0x0000.013C  
0x0000.0140  
0x0000.0144  
0x0000.0148  
0x0000.014C  
Flash memory control  
GPIO port F  
GPIO port G  
GPIO port H  
UART2  
SSI1  
16-/32-Bit Timer 3A  
16-/32-Bit Timer 3B  
I2C1  
CAN0  
CAN1  
Ethernet MAC  
HIB  
USB MAC  
PWM generator 3  
µDMA 0 Software  
µDMA 0 Error  
ADC1 sequence 0  
ADC1 sequence 1  
ADC1 sequence 2  
ADC1 sequence 3  
EPI0  
GPIO port J  
GPIO port K  
GPIO port L  
SSI2  
SSI3  
UART3  
UART4  
UART5  
UART6  
UART7  
I2C2  
I2C3  
Timer 4A  
Timer 4B  
Timer 5A  
Timer 5B  
Floating-Point Exception (imprecise)  
Reserved  
Reserved  
0x0000.0158  
0x0000.015C  
0x0000.0160  
0x0000.0164  
I2C4  
I2C5  
GPIO port M  
GPIO port N  
Reserved  
98  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-1. Interrupts (continued)  
INTERRUPT NUMBER  
(BIT IN INTERRUPT  
REGISTERS)  
VECTOR ADDRESS OR  
OFFSET  
VECTOR NUMBER  
DESCRIPTION  
91  
75  
76  
0x0000.016C  
0x0000.017  
0x0000.0174  
0x0000.0178  
0x0000.017C  
0x0000.0180  
0x0000.0184  
0x0000.0188  
0x0000.018C  
0x0000.0190  
0x0000.0194  
0x0000.0198  
0x0000.019C  
0x0000.01A0  
0x0000.01A4  
0x0000.01A8  
0x0000.01AC  
Tamper  
92  
GPIO port P (Summary or P0)  
GPIO port P1  
GPIO port P2  
GPIO port P3  
GPIO port P4  
GPIO port P5  
GPIO port P6  
GPIO port P7  
GPIO port Q (summary or Q0)  
GPIO port Q1  
GPIO port Q2  
GPIO port Q3  
GPIO port Q4  
GPIO port Q5  
GPIO port Q6  
GPIO port Q7  
Reserved  
93  
77  
94  
78  
95  
79  
96  
80  
97  
81  
98  
82  
99  
83  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
Reserved  
94  
0x0000.01B8  
0x0000.01BC  
0x0000.01C0  
SHA/MD5  
95  
AES  
96  
DES  
97  
Reserved  
98  
0x0000.01C8  
0x0000.01CC  
0x0000.01D0  
0x0000.01D4  
0x0000.01D8  
0x0000.01DC  
16-/32-Bit Timer 6A  
16-/32-Bit Timer 6B  
16-/32-Bit Timer 7A  
16-/32-Bit Timer 7B  
I2C6  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
I2C7  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x0000.01F4  
0x0000.01F8  
I2C8  
I2C9  
Reserved  
6.3.4 System Control Block (SCB)  
The SCB provides system implementation information and system control, including configuration, control,  
and reporting of system exceptions.  
6.3.5 Memory Protection Unit (MPU)  
The MPU supports the standard Arm7 Protected Memory System Architecture (PMSA) model. The MPU  
provides full support for protection regions, overlapping protection regions, access permissions, and  
exporting memory attributes to the system.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
99  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6.3.6 Floating-Point Unit (FPU)  
The FPU fully supports single-precision add, subtract, multiply, divide, multiply-and-accumulate, and  
square root operations. It also provides conversions between fixed-point and floating-point data formats,  
and floating-point constant instructions.  
32-bit instructions for single-precision (C float) data-processing operations  
Combined multiply and accumulate instructions for increased precision (fused MAC)  
Hardware support for conversion, addition, subtraction, multiplication with optional accumulate,  
division, and square-root  
Hardware support for denormals and all IEEE rounding modes  
32 dedicated 32-bit single-precision registers, also addressable as 16 double-word registers  
Decoupled 3-stage pipeline  
6.4 On-Chip Memory  
The following on-chip memories are supported:  
256KB of single-cycle SRAM  
1024KB of flash memory  
6KB of EEPROM  
Internal ROM loaded with SimpleLink SDK software:  
Peripheral driver library  
Bootloader  
6.4.1 SRAM  
The MSP432E401Y MCU provides 256KB of single-cycle on-chip SRAM. The internal SRAM of the device  
is at offset 0x2000.0000 of the device memory map.  
The SRAM is implemented using four 32-bit-wide interleaving SRAM banks (separate SRAM arrays),  
which allow for increased speed between memory accesses. The SRAM memory provides nearly 2 GBps  
of memory bandwidth at a 120-MHz clock frequency.  
Because read-modify-write (RMW) operations are time consuming, Arm has introduced bit-banding  
technology in the Cortex-M4F processor. With a bit-band-enabled processor, certain regions in the  
memory map (SRAM and peripheral space) can use address aliases to access individual bits in an atomic  
operation.  
Data can be transferred to and from SRAM by the following masters:  
µDMA  
USB  
Ethernet controller  
6.4.2 Flash Memory  
The MSP432E401Y MCU provides 1024KB of on-chip flash memory. The flash memory is configured as  
four banks of 16K × 128 bits (4 × 256KB total) that are 2-way interleaved. Memory blocks can be marked  
as read only or execute only, providing different levels of code protection. Read-only blocks cannot be  
erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks  
cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism,  
protecting the contents of those blocks from being read by either the controller or a debugger.  
Two sets of instruction prefetch buffers provide enhanced performance and power savings. Each prefetch  
buffer is 2 × 256 bits and can be combined as a 4 × 256-bit prefetch buffer.  
The flash can also be accessed by the µDMA in run mode.  
100  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6.4.3 ROM  
The ROM is preprogrammed with the following software and programs:  
Peripheral driver library  
Bootloader  
The SimpleLink MSP432E4 SDK driver library is a royalty-free software library for controlling on-chip  
peripherals with a bootloader capability. The library performs both peripheral initialization and control  
functions, with a choice of polled or interrupt-driven peripheral support. In addition, the library is designed  
to take full advantage of the stellar interrupt performance of the Arm Cortex-M4F core. No special  
pragmas or custom assembly code prologue or epilogue functions are required. For applications that  
require in-field programmability, the royalty-free bootloader can act as an application loader and support  
in-field firmware updates.  
6.4.4 EEPROM  
The EEPROM includes the following features:  
6KB of memory accessible as 1536 32-bit words  
96 blocks of 16 words (64 bytes) each  
Built-in wear leveling  
Access protection per block  
Lock protection option for the whole peripheral as well as per block using 32-bit to 96-bit unlock codes  
(application selectable)  
Interrupt support for write completion to avoid polling  
Endurance of 500k writes (when writing at fixed offset in every alternate page in circular fashion) to  
15M operations (when cycling through two pages) per each 2-page block.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
101  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6.4.5 Memory Map  
The device supports a 4GB address space that is divided into eight 512MB zones (see 6-2).  
0xFFFF.FFFF  
Private Peripheral Bus  
0xE000.0000  
0xDFFF.FFFF  
External Device  
External Device  
External RAM  
External RAM  
Peripherals  
0xC000.0000  
0xBFFF.FFFF  
0xA000.0000  
0x9FFF.FFFF  
0x8000.0000  
0x9FFF.FFFF  
0x6000.0000  
0x5FFF.FFFF  
0x4000.0000  
0x3FFF.FFFF  
SRAM  
Code  
0x2000.0000  
0x1FFF.FFFF  
0x0000.0000  
6-2. Device Memory Zones  
6.5 Peripherals  
6.5.1 External Peripheral Interface (EPI)  
The EPI provides access to external devices using a parallel path. Unlike communications peripherals  
such as SSI, UART, and I2C, the EPI acts as a bus to external peripherals and memory.  
The EPI has the following features:  
8-, 16-, or 32-bit dedicated parallel bus for external peripherals and memory  
Memory interface supports contiguous memory access independent of data bus width, thus enabling  
code execution directly from SDRAM, SRAM, and flash memory  
Blocking and nonblocking reads  
Separates processor from timing details through use of an internal write FIFO  
Efficient transfers using µDMA  
Separate channels for read and write  
Read channel request asserted by programmable levels on the internal Nonblocking Read FIFO  
(NBRFIFO)  
Write channel request asserted by empty on the internal Write FIFO (WFIFO)  
The EPI supports three primary functional modes: SDRAM mode, traditional host-bus mode, and general-  
purpose mode. The EPI module also provides custom GPIOs; however, unlike regular GPIOs, the EPI  
module uses a FIFO in the same way as a communication mechanism and is speed-controlled using  
clocking.  
102  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
SDRAM mode  
Supports ×16 (single data rate) SDRAM at up to 60 MHz  
Supports low-cost SDRAMs up to 64MB (512 Mb)  
Includes automatic refresh and access to all banks and rows  
Includes a sleep (standby) mode to keep contents active with minimal power draw  
Multiplexed address and data interface for reduced pin count  
Host-bus mode  
Traditional ×8 and ×16 MCU bus interface capabilities  
Similar device compatibility options as PIC, ATmega, 8051, and others  
Access to SRAM, NOR flash memory, and other devices, with up to 1MB of addressing in  
nonmultiplexed mode and 256MB in multiplexed mode (512MB in host bus 16 mode with no byte  
selects)  
Support for up to 512Mb PSRAM in quad chip select mode, with dedicated configuration register  
read and write enable  
Support of both muxed and demuxed address and data  
Access to a range of devices supporting the nonaddress FIFO ×8 and ×16 interface variant, with  
support for external FIFO (XFIFO) EMPTY and FULL signals  
Speed controlled, with read and write data wait-state counters  
Support for read or write burst mode to Host Bus  
Multiple chip-select modes including single, dual, and quad chip selects, with and without ALE  
External iRDY signal provided for stall capability of reads and writes  
Manual chip-enable (or use extra address pins)  
General-purpose mode  
Wide parallel interfaces for fast communications with CPLDs and FPGAs  
Data widths up to 32 bits  
Data rates up to 150 MB/second  
Optional "address" sizes from 4 bits to 20 bits  
Optional clock output, read and write strobes, framing (with counter-based size), and clock-enable  
input  
General parallel GPIO  
1 to 32 bits, FIFO with speed control  
Useful for custom peripherals or for digital data acquisition and actuator controls  
6.5.2 Cyclical Redundancy Check (CRC)  
The CRC computation module is for uses such as message transfer and safety system checks. This  
module can be used with the AES and DES modules. The CRC has the following features:  
Support four major CRC forms:  
CRC16-CCITT as used by CCITT/ITU X.25  
CRC16-IBM as used by USB and ANSI  
CRC32-IEEE as used by IEEE 802.3 and MPEG-2  
CRC32C as used by G.Hn  
Allows word and byte feed  
Supports automatic initialization and manual initialization  
Supports MSb and LSb  
Supports CCITT post-processing  
Can be fed by µDMA, flash memory, and code  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
103  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6.5.3 Advanced Encryption Standard (AES) Accelerator  
The AES accelerator module provides hardware-accelerated data encryption and decryption operations  
based on a binary key. The AES module is a symmetric cipher module that supports a 128-, 192-, or 256-  
bit key in hardware for both encryption and decryption.  
The AES has following features:  
Support for basic AES encryption and decryption operations:  
Galois/counter mode (GCM) with basic GHASH operation  
Counter mode with CBC-MAC (CCM)  
XTS mode  
Availability of the following feedback operating modes:  
Electronic code book mode (ECB)  
Cipher block chaining mode (CBC)  
Counter mode (CTR)  
Cipher feedback mode (CFB), 128-bit  
F8 mode  
Key sizes 128-, 192-, and 256-bits  
Support for CBC_MAC and Fedora 9 (F9) authentication modes  
Basic GHASH operation (when selecting no encryption)  
Key scheduling in hardware  
Support for µDMA transfers  
Fully synchronous design  
6.5.4 Data Encryption Standard (DES) Accelerator  
The DES module provides hardware accelerated data encryption and decryption functions. The module  
runs either the single DES or the triple DES (3DES) algorithm and supports electronic codebook (ECB),  
cipher block chaining (CBC), and cipher feedback (CFB) modes of operation.  
The DES accelerator includes the following main features:  
DES/3DES encryption and decryption algorithm compliant with the FIPS 180-3 standard  
Feedback modes: ECB, CBC, CFB  
Host interrupt or µDMA driven modes of operation. µDMA support for data and context in and result  
out  
Fully synchronous design  
Internal wide-bus interface  
6.5.5 Secure Hash Algorithm/Message Digest Algorithm (SHA/MD5) Accelerator  
The SHA/MD5 module provides hardware-accelerated hash functions and can run:  
MD5 message digest algorithm developed by Ron Rivest in 1991  
SHA-1 algorithm compliant with the FIPS 180-3 standard  
SHA-2 (SHA-224 and SHA-256) algorithm compliant with the FIPS 180-3 standard  
Hash message authentication code (HMAC) operation  
The algorithms produce a condensed representation of a message or a data file, which can then be used  
to verify the message integrity.  
The SHA/MD5 accelerator module includes the following main features:  
Hashing of 0 to (233 – 2) bytes of data [of which (232 – 1) bytes are in one pass] using the MD5, SHA-  
1, SHA-224, or SHA-256 hash algorithm (byte granularity only, no support for bit granularity)  
Automatic HMAC key preprocessing for HMAC keys up to 64 bytes  
104  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
Host-assisted HMAC key preprocessing for HMAC keys larger than 64 bytes  
HMAC from precomputes (inner and outer digest) for improved performance on small blocks  
Supports µDMA operation for data and context in and result out transfers  
Supports interrupt to read the digest (signature)  
6.5.6 Serial Communications Peripherals  
Both asynchronous and synchronous serial communications are supported with:  
10/100 Ethernet MAC with advanced IEEE 1588 PTP hardware; integrated PHY provided  
Two CAN 2.0 A and B controllers  
USB 2.0 controller OTG, host, or device with optional high speed using external PHY through ULPI  
interface  
Eight UARTs with IrDA, 9-bit, and ISO 7816 support  
Ten I2C modules with four transmission speeds including high-speed mode  
Four Quad Synchronous Serial Interface (QSSI) modules with bi- and quad-SSI support  
The following sections provide more detail on each of these communications functions.  
6.5.6.1 Ethernet MAC and PHY  
The Ethernet controller consists of a fully integrated media access controller (MAC) and network physical  
(PHY) interface with the following features:  
Conforms to the IEEE 802.3 specification  
10BASE-T and 100BASE-TX IEEE-802.3 compliant  
Supports 10- and 100-Mbps data transmission rates  
Supports full-duplex and half-duplex (CSMA/CD) operation  
Supports flow control and back pressure  
Full-featured and enhanced auto-negotiation  
Supports IEEE 802.1Q VLAN tag detection  
Conforms to IEEE 1588-2002 timestamp PTP protocol and the IEEE 1588-2008 advanced timestamp  
specification  
Transmit and receive frame timestamping  
Precision time protocol  
Flexible pulse per second output  
Supports coarse and fine correction methods  
Multiple addressing modes  
Four MAC address filters  
Programmable 64-bit hash filter for multicast address filtering  
Promiscuous mode support  
Processor offloading  
Programmable insertion (TX) or deletion (RX) of preamble and start-of-frame data  
Programmable generation (TX) or deletion (RX) of CRC and pad data  
IP header and hardware checksum checking (IPv4, IPv6, TCP, UDP, ICMP)  
Highly configurable  
LED activity selection  
Supports network statistics with RMON and MIB counters  
Supports magic packet and wake-up frames  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
105  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
Efficient transfers using integrated µDMA  
Dual-buffer (ring) or linked-list (chained) descriptors  
Round-robin or fixed priority arbitration between TX and RX  
Descriptors support transfer blocks size up to 8KB  
Programmable interrupts for flexible system implementation  
Physical media manipulation  
MDI/MDI-X cross-over support  
Register-programmable transmit amplitude  
Automatic polarity correction and 10BASE-T signal reception  
6.5.6.2 Controller Area Network (CAN)  
CAN is a multicast shared serial-bus standard for connecting electronic control units (ECUs). CAN was  
specifically designed to be robust in electromagnetically noisy environments and can use a differential  
balanced line like RS-485 or twisted-pair wire. Originally created for automotive purposes, it is now used in  
many embedded control applications (for example, industrial or medical). Bit rates up to 1 Mbps are  
possible at network lengths below 40 meters. Decreased bit rates allow longer network distances (for  
example, 125 kbps at 500 m).  
A transmitter sends a message to all CAN nodes (broadcasting). Each node decides on the basis of the  
identifier received whether it should process the message. The identifier also determines the priority that  
the message enjoys in competition for bus access. Each CAN message can transmit from 0 to 8 bytes of  
user information.  
Each of the two CAN units includes the following features:  
CAN protocol version 2.0 part A/B  
Bit rates up to 1 Mbps  
32 message objects with individual identifier masks  
Maskable interrupt  
Disable Automatic Retransmission mode for Time-Triggered CAN (TTCAN) applications  
Programmable loopback mode for self-test operation  
Programmable FIFO mode enables storage of multiple message objects  
Gluelessly attaches to an external CAN transceiver through the CANnTX and CANnRX signals  
6.5.6.3 Universal Serial Bus (USB)  
USB is a serial bus standard designed to allow connection and disconnection of peripherals using a  
standardized interface without rebooting the system.  
One USB controller supports high-speed and full-speed multiple-point communications and complies with  
the USB 2.0 standard for high-speed function. The USB controller can have three configurations: USB  
device, USB host, and USB OTG (negotiated on-the-go as host or device when connected to other USB-  
enabled systems). Support for full-speed communication is provided by using the integrated USB PHY or  
optionally, a high-speed ULPI can communicate to an external PHY.  
The USB module has the following features:  
Complies with USB-IF (Implementer's Forum) certification standards  
USB 2.0 high-speed (480 Mbps) operation with the integrated ULPI communicating with an external  
PHY  
Link power-management support that uses link-state awareness to reduce power usage  
Four transfer types: control, interrupt, bulk, and isochronous  
16 endpoints  
1 dedicated control IN endpoint and 1 dedicated control OUT endpoint  
7 configurable IN endpoints and 7 configurable OUT endpoints  
106  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
4KB of dedicated endpoint memory: one endpoint may be defined for double-buffered 1023-byte  
isochronous packet size  
VBUS droop detection and interrupt  
Integrated USB DMA with bus master capability  
Up to eight RX endpoint channels and up to eight TX endpoint channels are available.  
Each channel can be separately programmed to operate in different modes.  
Incremental burst transfers of 4, 8, 16, or unspecified length supported  
6.5.6.4 Universal Asynchronous Receiver/Transmitter (UART)  
A UART is an integrated circuit used for RS-232C serial communications, containing a transmitter  
(parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.  
Eight fully programmable 16C550-type UARTs are integrated. Although the functionality is similar to a  
16C550 UART, this UART design is not register compatible. The UART can generate individually masked  
interrupts from the RX, TX, modem flow control, modem status, and error conditions. The module  
generates one combined interrupt when any of the interrupts are asserted and are unmasked.  
The UARTs have the following features:  
Programmable baud-rate generator allowing speeds up to 7.5 Mbps for regular speed (divide by 16)  
and 15 Mbps for high speed (divide by 8)  
Separate 16×8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading  
Programmable FIFO length, including a 1-byte-deep operation providing conventional double-buffered  
interface  
FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8  
Standard asynchronous communication bits for start, stop, and parity  
Line-break generation and detection  
Fully programmable serial interface characteristics  
5, 6, 7, or 8 data bits  
Even, odd, stick, or no-parity bit generation/detection  
1 or 2 stop bit generation  
IrDA serial-IR (SIR) encoder and decoder providing  
Programmable use of IrDA Serial Infrared (SIR) or UART I/O  
Support of IrDA SIR encoder and decoder functions for data rates up to 115.2 kbps half-duplex  
Support of normal 3/16 and low-power (1.41 to 2.23 µs) bit durations  
Programmable internal clock generator enabling division of reference clock by 1 to 256 for low-  
power mode bit duration  
Support for communication with ISO 7816 smart cards  
Modem functionality available on the following UARTs:  
UART0 (modem flow control and modem status)  
UART1 (modem flow control and modem status)  
UART2 (modem flow control)  
UART3 (modem flow control)  
UART4 (modem flow control)  
EIA-485 9-bit support  
Standard FIFO-level and end-of-transmission interrupts  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
107  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
Efficient transfers using µDMA  
Separate channels for transmit and receive  
Receive single request asserted when data is in the FIFO; burst request asserted at programmed  
FIFO level  
Transmit single request asserted when there is space in the FIFO; burst request asserted at  
programmed FIFO level  
The Global Alternate Clock (ALTCLK) resource or System Clock (SYSCLK) can be used to generate  
the baud clock  
6.5.6.5 Inter-Integrated Circuit (I2C)  
The I2C bus provides bidirectional data transfer through a 2-wire design (a serial data line SDA and a  
serial clock line SCL). The I2C bus interfaces to external I2C devices such as serial memory (RAMs and  
ROMs), networking devices, LCDs, tone generators, and so on. The I2C bus can also be used for system  
testing and diagnostic purposes in product development and manufacture.  
Each device on the I2C bus can be designated as either a master or a slave. The I2C module supports  
both sending and receiving data as either a master or a slave and can operate simultaneously as both a  
master and a slave. Both the I2C master and slave can generate interrupts.  
The I2C modules include the following features:  
Devices on the I2C bus can be designated as either a master or a slave  
Supports both transmitting and receiving data as either a master or a slave  
Supports simultaneous master and slave operation  
Four I2C modes  
Master transmit  
Master receive  
Slave transmit  
Slave receive  
Two 8-entry FIFOs for receive and transmit data  
FIFOs can be independently assigned to master or slave  
Four transmission speeds:  
Standard (100 kbps)  
Fast-mode (400 kbps)  
Fast-mode plus (1 Mbps)  
High-speed mode (3.33 Mbps)  
Glitch suppression  
SMBus support through software  
Clock low time-out interrupt  
Dual slave address capability  
Quick command capability  
Master and slave interrupt generation  
Master generates interrupts when a transmit or receive operation completes (or aborts due to an  
error)  
Slave generates interrupts when data has been transferred or requested by a master or when a  
START or STOP condition is detected  
Master with arbitration and clock synchronization, multiple-master support, and 7-bit addressing mode  
Efficient transfers using µDMA  
Separate channels for transmit and receive  
Ability to execute single data transfers or burst data transfers using the RX and TX FIFOs in the I2C  
108  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6.5.6.6 Quad Synchronous Serial Interface (QSSI)  
QSSI is a bidirectional communications interface that converts data between parallel and serial. The QSSI  
module performs serial-to-parallel conversion on data received from a peripheral device and performs  
parallel-to-serial conversion on data transmitted to a peripheral device. The QSSI module can be  
configured as either a master or slave device. As a slave device, the QSSI module can also be configured  
to disable its output, which allows a master device to be coupled with multiple slave devices. The TX and  
RX paths are buffered with separate internal FIFOs.  
The QSSI module also includes a programmable bit rate clock divider and prescaler to generate the  
output serial clock derived from the input clock of the QSSI module. Bit rates are generated based on the  
input clock, and the maximum bit rate is determined by the connected peripheral.  
The four QSSI modules each support the following features:  
Four QSSI channels with advanced, bi-SSI, and quad-SSI functionality  
Programmable interface operation for Freescale SPI or TI synchronous serial interfaces in legacy  
mode. Support for Freescale interface in Bi- and Quad-SSI mode.  
Master or slave operation  
Programmable clock bit rate and prescaler  
Separate transmit and receive FIFOs, each 16 bits wide and 8 locations deep  
Programmable data frame size from 4 to 16 bits  
Internal loopback test mode for diagnostic/debug testing  
Standard FIFO-based interrupts and end-of-transmission interrupt  
Efficient transfers using µDMA  
Separate channels for transmit and receive  
Receive single request asserted when data is in the FIFO; burst request asserted when FIFO  
contains four entries  
Transmit single request asserted when there is space in the FIFO; burst request asserted when  
four or more entries are available to be written in the FIFO  
Maskable µDMA interrupts for receive and transmit complete  
Global alternate clock (ALTCLK) resource or system clock (SYSCLK) can be used to generate baud  
clock.  
6.5.7 System Integration  
A variety of standard system functions are integrated into the device, including:  
Direct memory access (DMA) controller (see 6.5.7.1)  
System control and clocks including on-chip precision 16-MHz oscillator (see 6.5.7.2)  
Eight 32-bit timers (each timer can be configured as two 16-bit timers) (see 6.5.7.3)  
Lower-power battery-backed Hibernation module (see 6.5.7.5)  
RTC in Hibernation module  
Two watchdog timers (see 6.5.7.6)  
One timer runs off the main oscillator.  
One timer runs off the precision internal oscillator.  
90 GPIOs, depending on configuration (see 6.5.7.7)  
Highly flexible pin multiplexing allows use as GPIO or one of several peripheral functions.  
GPIOs are independently configurable to 2-, 4-, 8-, 10-, or 12-mA drive capability.  
Up to 4 GPIOs can have 18-mA drive capability.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
109  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6.5.7.1 Direct Memory Access (DMA)  
The DMA controller is known as micro-DMA (µDMA). The µDMA controller provides a way to offload data  
transfer tasks from the Cortex-M4F processor, allowing for more efficient use of the processor and the  
available bus bandwidth. The µDMA controller can perform transfers between memory and peripherals. It  
has dedicated channels for each supported on-chip module and can be programmed to automatically  
perform transfers between peripherals and memory as the peripheral is ready to transfer more data. The  
µDMA controller provides the following features:  
Arm PrimeCell 32-channel configurable µDMA controller  
Support for memory-to-memory, memory-to-peripheral, and peripheral-to-memory in multiple transfer  
modes  
Basic for simple transfer scenarios  
Ping-pong for continuous data flow  
Scatter-gather for a programmable list of up to 256 arbitrary transfers initiated from one request  
Highly flexible and configurable channel operation  
Independently configured and operated channels  
Dedicated channels for supported on-chip modules  
Flexible channel assignments  
One channel each for receive and transmit path for bidirectional modules  
Dedicated channel for software-initiated transfers  
Per-channel configurable priority scheme  
Optional software-initiated requests for any channel  
Two levels of priority  
Design optimizations for improved bus access performance between µDMA controller and the  
processor core  
µDMA controller access is subordinate to core access  
RAM striping  
Peripheral bus segmentation  
Data sizes of 8, 16, and 32 bits  
Transfer size is programmable in binary steps from 1 to 1024  
Source and destination address increment size of byte, halfword, word, or no increment  
Maskable peripheral requests  
Interrupt on transfer completion, with a separate interrupt per channel  
Each DMA channel has up to nine possible assignments that are selected using the DMA Channel Map  
Select n (DMACHMAPn) registers with 4-bit assignment fields for each µDMA channel.  
110  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-2 lists the µDMA channel mapping. The Encoding column lists the encoding for the respective DMACHMAPn bit field. Encodings 0x9 to 0xF  
are reserved. The Type column indicates if a particular peripheral uses a single request (S), burst request (B), or either (SB).  
Channels or encodings marked as Reserved cannot be used for µDMA transfers. Channels designated in the table as only "Software" are  
dedicated software channels. When only one software request is required in an application, dedicated software channels can be used. If  
multiple software requests in code are required, then peripheral channel software requests should be used for proper µDMA completion  
acknowledgement.  
6-2. µDMA Channel Assignments  
Encoding  
0
Peripheral  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UART0 RX  
UART0 TX  
SSI0 RX  
1
Peripheral  
UART2 RX  
UART2 TX  
GPTimer 3A  
GPTimer 3B  
GPTimer 2A  
GPTimer 2B  
GPTimer 2A  
GPTimer 2B  
UART1 RX  
UART1 TX  
SSI1 RX  
2
Peripheral  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
UART5 RX  
UART5 TX  
Reserved  
Reserved  
UART6 RX  
UART6 TX  
SSI2 RX  
3
Peripheral  
GPTimer 4A  
GPTimer 4B  
Reserved  
Software  
GPIO A  
4
Peripheral  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
I2C0 RX  
I2C0 TX  
I2C1RX  
5
Peripheral  
Reserved  
6
Peripheral  
I2C0 RX  
I2C0 TX  
7
Peripheral  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPTimer 6A  
GPTimer 6B  
GPTimer 7A  
GPTimer 7B  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8
Peripheral  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
I2C8 RX  
Type  
Type  
SB  
SB  
B
Type  
Type  
B
B
Type  
Type  
Type  
SB  
SB  
SB  
SB  
SB  
SB  
Type  
Type  
0
1
Reserved  
2
Reserved  
I2C1RX  
3
B
S
B
B
B
B
B
B
Reserved  
I2C1 TX  
4
B
SHA/MD5 0 Cin  
SHA/MD5 0 Din  
SHA/MD5 0 Cout  
Reserved  
B
B
B
I2C2 RX  
I2C2 TX  
5
B
GPIO B  
6
B
SB  
SB  
GPIO C  
SB  
SB  
SB  
SB  
SB  
SB  
B
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7
B
GPIO D  
8
SB  
SB  
SB  
SB  
SB  
SB  
SB  
SB  
SB  
SB  
B
GPTimer 5A  
GPTimer 5B  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO E  
Reserved  
9
I2C1 TX  
I2C2 RX  
I2C2 TX  
GPIO K  
Reserved  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SB  
SB  
SB  
SB  
SB  
SB  
SB  
SB  
SB  
SB  
SB  
SB  
Reserved  
B
B
B
B
SSI0 TX  
SSI1 TX  
Reserved  
Reserved  
Reserved  
ADC0 SS0  
ADC0 SS1  
ADC0 SS2  
ADC0 SS3  
GPTimer 0A  
GPTimer 0B  
GPTimer 1A  
GPTimer 1B  
UART1 RX  
UART1 TX  
SSI1 RX  
UART2 RX  
UART2 TX  
GPTimer 2A  
GPTimer 2B  
Reserved  
AES0 Cin  
AES0 Cout  
AES0 Din  
AES0 Dout  
Reserved  
B
B
B
B
SSI2 TX  
GPIO L  
B
SB  
SB  
SB  
SB  
B
SSI3 RX  
B
B
GPIO M  
GPIO N  
B
B
SSI3 TX  
GPIO F  
B
UART3 RX  
UART3 TX  
UART4 RX  
UART4 TX  
UART7 RX  
UART7 TX  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO B  
GPIO P  
B
Reserved  
Reserved  
I2C3 RX  
I2C3 TX  
I2C4 RX  
I2C4 TX  
I2C5 RX  
I2C5 TX  
GPIO Q  
Reserved  
Reserved  
GPTimer 1A  
GPTimer 1B  
EPI0 RX Software  
EPI0 TX Software  
Software  
B
B
B
B
B
B
B
SB  
SB  
SB  
SB  
SB  
SB  
B
Reserved  
B
B
GPIO G  
Reserved  
B
B
GPIO H  
DES0 Cin  
DES0 Din  
DES0 Dout  
Reserved  
B
B
B
B
B
GPIO J  
SB  
SB  
SB  
SB  
B
Software  
Software  
Reserved  
Reserved  
B
B
B
B
Software  
B
I2C8 TX  
ADC1 SS0  
ADC1 SS1  
SB  
SB  
Reserved  
I2C9 RX  
SSI1 TX  
Reserved  
I2C9 TX  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
111  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-2. µDMA Channel Assignments (continued)  
Encoding  
0
1
Peripheral  
ADC1 SS2  
ADC1 SS3  
Reserved  
Reserved  
Software  
2
Peripheral  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
3
Peripheral  
Reserved  
Reserved  
Reserved  
Reserved  
Software  
Reserved  
4
Peripheral  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
5
Peripheral  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
Peripheral  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7
Peripheral  
Reserved  
Reserved  
Reserved  
Reserved  
EPI0 RX  
8
Peripheral  
Peripheral  
Software  
Software  
Reserved  
Reserved  
Software  
Reserved  
Type  
Type  
SB  
SB  
Type  
Type  
Type  
Type  
Type  
Type  
Type  
26  
27  
28  
29  
30  
31  
B
B
B
B
B
B
B
I2C6 RX  
I2C6 TX  
I2C7 RX  
I2C7 TX  
Reserved  
Reserved  
B
B
B
B
B
Reserved  
EPI0 TX  
112  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6.5.7.2 System Control and Clocks  
System control determines the overall operation of the device. It provides information about the device,  
controls power-saving features, controls the clocking of the device and individual peripherals, and handles  
reset detection and reporting.  
Device identification information: version, part number, SRAM size, flash memory size, and so on  
Power control  
On-chip fixed low dropout (LDO) voltage regulator  
Hibernation module manages the power-up and power-down 3.3-V sequencing and control for the  
core digital logic and analog circuits  
Low-power options for MCU: sleep and deep-sleep modes with clock gating  
Low-power options for on-chip modules: software controls shutdown of individual peripherals and  
memory  
3.3-V supply brownout detection and reporting through interrupt or reset  
Multiple clock sources for the system clock. The MCU is clocked by the system clock (SYSCLK) that is  
distributed to the processor and integrated peripherals after clock gating. The SYSCLK frequency is  
based on the frequency of the clock source and a divisor factor. A PLL is provided for the generation of  
system clock frequencies in excess of the reference clock provided. The reference clocks for the PLL  
are the PIOSC and the main crystal oscillator. The following clock sources are provided to the MCU:  
16-MHz precision oscillator (PIOSC)  
Main oscillator (MOSC): A frequency-accurate clock source by one of two means: an external  
single-ended clock source is connected to the OSC0 input pin, or an external crystal is connected  
across the OSC0 input and OSC1 output pins.  
Low-frequency internal oscillator (LFIOSC): On-chip resource used during power-saving modes.  
Hibernate RTC oscillator (RTCOSC): A clock that can be configured to be the 32.768-kHz external  
oscillator source from the HIB module or the HIB low-frequency clock source (HIB LFIOSC), which  
is in the HIB module.  
Flexible reset sources  
Power-on reset (POR)  
Reset pin assertion  
Brownout reset (BOR) detector alerts to system power drops  
Software reset  
Watchdog timer reset  
Hibernation module event  
MOSC failure  
128-bit unique identifier for individual device identification  
6.5.7.3 Programmable Timers  
Programmable timers can be used to count or time external events that drive the Timer input pins. Each  
16- or 32-bit General-Purpose Timer Module (GPTM) block provides two 16-bit timers/counters that can  
be configured to operate independently as timers or event counters. These two timers/counters can also  
be configured to operate as one 32-bit timer or one 32-bit RTC. Timers can also be used to trigger analog-  
to-digital conversions and DMA transfers.  
The GPTM contains eight 16- or 32-bit GPTM blocks with the following functional options:  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
113  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
Operating modes  
16- or 32-bit programmable one-shot timer  
16- or 32-bit programmable periodic timer  
16-bit general-purpose timer with an 8-bit prescaler  
32-bit RTC when using an external 32.768-kHz clock as the input  
16-bit input-edge count- or time-capture modes with an 8-bit prescaler  
16-bit PWM mode with an 8-bit prescaler and software-programmable output inversion of the PWM  
signal  
Count up or down  
Sixteen 16- or 32-bit capture/compare PWM (CCP) pins  
Daisy-chaining of timer modules lets one timer initiate multiple timing events  
Timer synchronization lets selected timers start counting on the same clock cycle  
ADC event trigger  
User-enabled stalling when the MCU asserts the CPU halt flag during debug (excluding RTC mode)  
Can determine the elapsed time between the assertion of the timer interrupt and entry into the ISR  
Efficient transfers using µDMA  
Dedicated channel for each timer  
Burst request generated on timer interrupt  
6.5.7.4 Capture Compare PWM (CCP) Pins  
CCP pins can be used by the General-Purpose Timer module to time or count external events using the  
CCP pin as an input. Alternatively, the GPTM can generate a simple PWM output on the CCP pin.  
The 16/32-bit CCP pins can be programmed to operate in the following modes:  
Capture: The GP timer is incremented or decremented by programmed events on the CCP input. The  
GP timer captures and stores the current timer value when a programmed event occurs.  
Compare: The GP timer is incremented or decremented by programmed events on the CCP input. The  
GP timer compares the current value with a stored value and generates an interrupt when a match  
occurs.  
PWM: The GP timer is incremented or decremented by the system clock. A PWM signal is generated  
based on a match between the counter value and a value stored in a match register and is output on  
the CCP pin.  
6.5.7.5 Hibernation (HIB) Module  
The HIB module provides logic to switch power off to the main processor and peripherals and to wake on  
external or time-based events. The HIB module includes power-sequencing logic and has the following  
features:  
32-bit RTC with 1/32768-second resolution and a 15-bit subseconds counter  
32-bit RTC seconds match register and a 15-bit subseconds match for timed wakeup and interrupt  
generation with 1/32768-second resolution  
RTC predivider trim for making fine adjustments to the clock rate  
Hardware calendar function  
Year, month, day, day of week, hours, minutes, and seconds  
Four-year leap compensation  
24-hour or AM and PM configuration  
Two mechanisms for power control  
System power control using a discrete external regulator  
On-chip power control using internal switches under register control  
VDD supplies power when valid, even if VBAT > VDD  
114  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
Dedicated pin for wake using an external signal  
Can configure the external reset (RST) pin or up to four GPIO port pins as wake sources, with  
programmable wake level  
Tamper functionality  
Support for four tamper inputs  
Configurable level, weak pullup, and glitch filter  
Configurable tamper event response  
Logging of up to four tamper events  
Optional BBRAM erase on tamper detection  
Tamper detection and wake-from-hibernate capability  
Hibernation clock input failure detect with a switch to the internal oscillator on detection  
RTC operational and hibernation memory valid as long as VDD or VBAT is valid  
Low-battery detection, signaling, and interrupt generation, with optional wake on low battery  
GPIO pin state can be retained during hibernation  
Clock source from an internal low-frequency oscillator (HIB LFIOSC) or a 32.768-kHz external crystal  
or oscillator  
Sixteen 32-bit words of battery-backed memory to save state during hibernation  
Programmable interrupts for:  
RTC match  
External wake  
Low battery  
6.5.7.6 Watchdog Timers  
A watchdog timer is used to regain control when a system has failed due to a software error or to the  
failure of an external device to respond in the expected way. The watchdog timer can generate an  
interrupt, a nonmaskable interrupt, or a reset when a time-out value is reached. In addition, the watchdog  
timer is Arm FiRM-compliant and can be configured to generate an interrupt to the MCU on its first time-  
out, and to generate a reset signal on its second time-out. After the watchdog timer has been configured,  
the lock register can be written to prevent inadvertently altering the timer configuration.  
Two watchdog timer modules are supported: Watchdog Timer 0 uses the system clock for its timer clock;  
Watchdog Timer 1 uses the PIOSC as its timer clock. The watchdog timer module has the following  
features:  
32-bit down counter with a programmable load register  
Separate watchdog clock with an enable  
Programmable interrupt generation logic with interrupt masking and optional NMI function  
Lock register protection from runaway software  
Reset generation logic with an enable/disable  
User-enabled stalling when the MCU asserts the CPU Halt flag during debug  
6.5.7.7 Programmable GPIOs  
General-purpose input/output (GPIO) pins offer flexibility for a variety of connections. The GPIO module is  
composed of 15 physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module  
is FiRM-compliant (compliant to the Arm Foundation IP for Real-Time MCUs specification) and supports 0  
to 90 programmable I/O pins. The number of GPIOs available depends on the peripherals being used.  
Up to 90 GPIOs, depending on configuration  
Highly flexible pin multiplexing allows use as GPIO or one of several peripheral functions  
3.3-V tolerant in input configuration  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
115  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
Advanced high-performance bus (AHB) accesses all ports:  
Ports A to H, K to N, P, and Q  
Fast toggle capable of a change every clock cycle for ports on AHB  
Programmable control for GPIO interrupts  
Interrupt generation masking  
Edge-triggered on rising, falling, or both  
Level-sensitive on high or low values  
Per-pin interrupts available on port P and port Q  
Bit masking in both read and write operations through address lines  
Can be used to initiate an ADC sample sequence or a µDMA transfer  
Pin state can be retained during hibernation mode; pins on port P can be programmed to wake on  
level in hibernation mode  
Pins configured as digital inputs are Schmitt triggered  
Programmable control for GPIO pad configuration  
Weak pullup or pulldown resistors  
2-, 4-, 6-, 8-, 10-, or 12-mA pad drive for digital communication; up to four pads can sink 18-mA for  
high-current applications  
Slew rate control for 8-, 10-, and 12-mA pad drive  
Open-drain enables  
Digital-input enables  
6.5.8 Advanced Motion Control  
The motion control functions that are integrated into the device support the following features:  
Eight advanced PWM outputs for motion and energy applications  
Four fault inputs to promote low-latency shutdown  
One quadrature encoder input (QEI)  
The following sections provides more detail on these motion control functions.  
6.5.8.1 Pulse Width Modulation (PWM)  
PWM is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used  
to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog  
signal. Typical applications include switching power supplies and motor control.  
One PWM module is included, with four PWM generator blocks and a control block, for a total of eight  
PWM outputs. Each PWM generator block contains one timer (16-bit down or up/down counter), two  
comparators, a PWM signal generator, a dead-band generator, and an interrupt or ADC-trigger selector.  
Each PWM generator block produces two PWM signals that can be either independent signals or a pair of  
complementary signals with dead-band delays inserted.  
Each PWM generator has the following features:  
Four fault-condition handling inputs to quickly provide low-latency shutdown and prevent damage to  
the motor being controlled  
One 16-bit counter  
Runs in down or up/down mode  
Output frequency controlled by a 16-bit load value  
Synchronized load value updates  
Produces output signals at zero and load value  
116  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
Two PWM comparators  
Synchronized comparator value updates  
Produces output signals on match  
PWM signal generator  
Output PWM signal is constructed based on actions taken as a result of the counter and PWM  
comparator output signals.  
Produces two independent PWM signals  
Dead-band generator  
Produces two PWM signals with programmable dead-band delays suitable for driving a half-H  
bridge  
Can be bypassed, leaving input PWM signals unmodified  
Can initiate an ADC sample sequence  
The control block determines the polarity of the PWM signals and which signals are passed through to the  
pins. The output of the PWM generation blocks are managed by the output control block before being  
passed to the device pins. The PWM control block has the following options:  
PWM output enable of each PWM signal  
Optional output inversion of each PWM signal (polarity control)  
Optional fault handling for each PWM signal  
Synchronization of timers in the PWM generator blocks  
Synchronization of timer/comparator updates across the PWM generator blocks  
Extended PWM synchronization of timer/comparator updates across the PWM generator blocks  
Interrupt status summary of the PWM generator blocks  
Extended PWM fault handling, with multiple fault signals, programmable polarities, and filtering  
PWM generators can be operated independently or synchronized with other generators  
6.5.8.2 Quadrature Encoder With Index (QEI) Module  
A quadrature encoder, also known as a 2-channel incremental encoder, converts linear displacement into  
a pulse signal. By monitoring both the number of pulses and the relative phase of the two signals, the  
position, direction of rotation, and speed can be tracked. In addition, a third channel, or index signal, can  
be used to reset the position counter. The QEI module interprets the code produced by a quadrature  
encoder wheel to integrate position over time and determine direction of rotation. In addition, it can  
capture a running estimate of the velocity of the encoder wheel. The input frequency of the QEI inputs  
may be as high as 1/4 of the system frequency (for example, 30 MHz for a 120-MHz system).  
One QEI module provides control of one motor with the following features:  
Position integrator that tracks the encoder position  
Programmable noise filter on the inputs  
Velocity capture using built-in timer  
The input frequency of the QEI inputs may be as high as 1/4 of the system frequency (for example,  
12.5 MHz for a 50-MHz system)  
Interrupt generation on:  
Index pulse  
Velocity-timer expiration  
Direction change  
Quadrature error detection  
6.5.9 Analog  
Integrated analog functions include:  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
117  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
Two 12-bit ADCs with a total of 20 analog input channels and each with a sample rate of 2 Msps (see  
6.5.9.1)  
Three analog comparators (see 6.5.9.2)  
On-chip voltage regulator  
6.5.9.1 ADC  
An ADC is a peripheral that converts a continuous analog voltage to a discrete digital number. The ADC  
module features 12-bit conversion resolution and supports 20 input channels plus an internal temperature  
sensor. Four buffered sample sequencers allow rapid sampling of up to 20 analog input sources without  
controller intervention. Each sample sequencer provides flexible programming with fully configurable input  
source, trigger events, interrupt generation, and sequencer priority. Each ADC module has a digital  
comparator function that lets the conversion value be sent to a comparison unit that provides eight digital  
comparators.  
Both ADC modules support the following features:  
20 shared analog input channels  
12-bit precision ADC  
Single-ended and differential-input configurations  
On-chip internal temperature sensor  
Maximum sample rate of two million samples/second  
Optional, programmable phase delay  
Sample and hold window programmability  
Four programmable sample conversion sequencers from one to eight entries long, with corresponding  
conversion result FIFOs  
Flexible trigger control  
Controller (software)  
Timers  
Analog comparators  
PWM  
GPIO  
Hardware averaging of up to 64 samples  
Eight digital comparators  
Converter uses two external reference signals (VREFA+ and VREFA–) or VDDA and GNDA as the  
voltage reference  
Power and ground for the analog circuitry is separate from the digital power and ground  
Efficient transfers using µDMA  
Dedicated channel for each sample sequencer  
ADC module uses burst requests for DMA  
Global Alternate Clock (ALTCLK) resource or System Clock (SYSCLK) can be used to generate ADC  
clock.  
6.5.9.2 Analog Comparators  
An analog comparator is a peripheral that compares two analog voltages and provides a logical output  
that signals the comparison result. The independent integrated analog comparators can be configured to  
drive an output or generate an interrupt or ADC event.  
118  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
The comparator can provide its output to a device pin, acting as a replacement for an analog comparator  
on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to  
start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This  
means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a  
falling edge.  
Each analog comparator supports the following functions:  
Compare external pin input to external pin input or to internal programmable voltage reference  
Compare a test voltage against any one of the following voltages:  
An individual external reference voltage  
A shared single external reference voltage  
A shared internal reference voltage  
6.5.10 JTAG and Arm Serial Wire Debug  
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port (TAP) and  
Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for  
controlling the associated test logic. The TAP, Instruction Register (IR), and Data Register (DR) can be  
used to test the interconnections of assembled printed circuit boards and obtain manufacturing information  
on the components. The JTAG port also provides a means of accessing and controlling design-for-test  
features such as I/O pin observation and control, scan testing, and debugging. TI replaces the Arm SW-  
DP and JTAG-DP with the Arm Serial Wire JTAG Debug Port (SWJ-DP) interface. The SWJ-DP interface  
combines the SWD and JTAG debug ports into one module. This module provides the standard JTAG  
debug and test functionality plus real-time access to system memory without halting the core or requiring  
any target resident code. The SWJ-DP interface has the following features:  
IEEE 1149.1-1990 compatible TAP controller  
Four-bit IR chain for storing JTAG instructions  
IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, and EXTEST  
Arm additional instructions: APACC, DPACC, and ABORT  
Integrated Arm Serial Wire Debug (SWD)  
Serial Wire JTAG Debug Port (SWJ-DP)  
Flash Patch and Breakpoint (FPB) unit for implementing breakpoints  
Data Watchpoint and Trace (DWT) unit for implementing watchpoints, trigger resources, and  
system profiling  
Instrumentation Trace Macrocell (ITM) for support of printf-style debugging  
Embedded Trace Macrocell (ETM) for instruction trace capture  
Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer  
6.5.11 Peripheral Memory Map  
6-3 lists the address for each peripheral.  
Within the memory map, attempts to read or write addresses in reserved spaces result in a  
bus fault. In addition, attempts to write addresses in the flash range also result in a bus fault.  
6-3. Memory Map  
START  
END  
DESCRIPTION  
REGISTERS  
0x4000.0000  
0x4000.1000  
0x4000.2000  
0x4000.0FFF  
0x4000.1FFF  
0x4000.3FFF  
Watchdog Timer 0  
Watchdog Timer 1  
Reserved  
6-32  
6-32  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
119  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-3. Memory Map (continued)  
START  
END  
DESCRIPTION  
REGISTERS  
0x4000.4000  
0x4000.5000  
0x4000.6000  
0x4000.7000  
0x4000.8000  
0x4000.9000  
0x4000.A000  
0x4000.B000  
0x4000.C000  
0x4000.D000  
0x4000.E000  
0x4000.F000  
0x4001.0000  
0x4001.1000  
0x4001.2000  
0x4001.3000  
0x4001.4000  
0x4002.0000  
0x4002.1000  
0x4002.2000  
0x4002.3000  
0x4002.4000  
0x4002.5000  
0x4002.6000  
0x4002.7000  
0x4002.8000  
0x4002.9000  
0x4002.C000  
0x4002.D000  
0x4003.0000  
0x4003.1000  
0x4003.2000  
0x4003.3000  
0x4003.4000  
0x4003.5000  
0x4003.6000  
0x4003.8000  
0x4003.9000  
0x4003.A000  
0x4003.C000  
0x4003.D000  
0x4003.E000  
0x4004.0000  
0x4004.1000  
0x4004.2000  
0x4005.0000  
0x4005.1000  
0x4000.4FFF  
0x4000.5FFF  
0x4000.6FFF  
0x4000.7FFF  
0x4000.8FFF  
0x4000.9FFF  
0x4000.AFFF  
0x4000.BFFF  
0x4000.CFFF  
0x4000.DFFF  
0x4000.EFFF  
0x4000.FFFF  
0x4001.0FFF  
0x4001.1FFF  
0x4001.2FFF  
0x4001.3FFF  
0x4001.FFFF  
0x4002.0FFF  
0x4002.1FFF  
0x4002.2FFF  
0x4002.3FFF  
0x4002.4FFF  
0x4002.5FFF  
0x4002.6FFF  
0x4002.7FFF  
0x4002.8FFF  
0x4002.BFFF  
0x4002.CFFF  
0x4002.FFFF  
0x4003.0FFF  
0x4003.1FFF  
0x4003.2FFF  
0x4003.3FFF  
0x4003.4FFF  
0x4003.5FFF  
0x4003.7FFF  
0x4003.8FFF  
0x4003.9FFF  
0x4003.BFFF  
0x4003.CFFF  
0x4003.DFFF  
0x4003.FFFF  
0x4004.0FFF  
0x4004.1FFF  
0x4004.FFFF  
0x4005.0FFF  
0x4005.7FFF  
GPIO Port A  
6-17  
6-17  
6-17  
6-17  
6-25  
6-25  
6-25  
6-25  
6-30  
6-30  
6-30  
6-30  
6-30  
6-30  
6-30  
6-30  
GPIO Port B  
GPIO Port C  
GPIO Port D  
SSI0  
SSI1  
SSI2  
SSI3  
UART0  
UART1  
UART2  
UART3  
UART4  
UART5  
UART6  
UART7  
Reserved  
I2C 0  
6-20  
6-20  
6-20  
6-20  
6-17  
6-17  
6-17  
6-17  
6-23  
I2C 1  
I2C 2  
I2C 3  
GPIO Port E  
GPIO Port F  
GPIO Port G  
GPIO Port H  
PWM 0  
Reserved  
QEI0  
6-24  
Reserved  
16/32-bit Timer 0  
16/32-bit Timer 1  
16/32-bit Timer 2  
16/32-bit Timer 3  
16/32-bit Timer 4  
16/32-bit Timer 5  
Reserved  
ADC0  
6-18  
6-18  
6-18  
6-18  
6-18  
6-18  
6-6  
6-6  
ADC1  
Reserved  
Analog Comparator  
GPIO Port J  
Reserved  
CAN0 Controller  
CAN1 Controller  
Reserved  
USB  
6-8  
6-17  
6-7  
6-7  
6-31  
Reserved  
120  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-3. Memory Map (continued)  
START  
END  
DESCRIPTION  
GPIO Port A (AHB aperture)  
GPIO Port B (AHB aperture)  
GPIO Port C (AHB aperture)  
GPIO Port D (AHB aperture)  
GPIO Port E (AHB aperture)  
GPIO Port F (AHB aperture)  
GPIO Port G (AHB aperture)  
GPIO Port H (AHB aperture)  
GPIO Port J (AHB aperture)  
GPIO Port K (AHB aperture)  
GPIO Port L (AHB aperture)  
GPIO Port M (AHB aperture)  
GPIO Port N (AHB aperture)  
GPIO Port P (AHB aperture)  
GPIO Port Q (AHB aperture)  
Reserved  
REGISTERS  
0x4005.8000  
0x4005.9000  
0x4005.A000  
0x4005.B000  
0x4005.C000  
0x4005.D000  
0x4005.E000  
0x4005.F000  
0x4006.0000  
0x4006.1000  
0x4006.2000  
0x4006.3000  
0x4006.4000  
0x4006.5000  
0x4006.6000  
0x4006.7000  
0x400A.F000  
0x400B.0000  
0x400B.6000  
0x400B.7000  
0x400B.8000  
0x400B.9000  
0x400B.A000  
0x400C.0000  
0x400C.1000  
0x400C.2000  
0x400C.3000  
0x400C.4000  
0x400D.0000  
0x400D.1000  
0x400E.0000  
0x400E.1000  
0x400E.2000  
0x400E.C000  
0x400E.D000  
0x400F.9000  
0x400F.A000  
0x400F.C000  
0x400F.D000  
0x400F.E000  
0x400F.F000  
0x4010.0000  
0x4200.0000  
0x4400.0000  
0x4403.0000  
0x4403.1000  
0x4403.2000  
0x4005.8FFF  
0x4005.9FFF  
0x4005.AFFF  
0x4005.BFFF  
0x4005.CFFF  
0x4005.DFFF  
0x4005.EFFF  
0x4005.FFFF  
0x4006.0FFF  
0x4006.1FFF  
0x4006.2FFF  
0x4006.3FFF  
0x4006.4FFF  
0x4006.5FFF  
0x4006.6FFF  
0x400A.EFFF  
0x400A.FFFF  
0x400B.5FFF  
0x400B.6FFF  
0x400B.7FFF  
0x400B.8FFF  
0x400B.9FFF  
0x400B.FFFF  
0x400C.0FFF  
0x400C.1FFF  
0x400C.2FFF  
0x400C.3FFF  
0x400C.FFFF  
0x400D.0FFF  
0x400D.FFFF  
0x400E.0FFF  
0x400E.1FFF  
0x400E.BFFF  
0x400E.CFFF  
0x400F.8FFF  
0x400F.9FFF  
0x400F.BFFF  
0x400F.CFFF  
0x400F.DFFF  
0x400F.EFFF  
0x400F.FFFF  
0x41FF.FFFF  
0x43FF.FFFF  
0x4402.FFFF  
0x4403.0FFF  
0x4403.1FFF  
0x4403.3FFF  
6-17  
6-17  
6-17  
6-17  
6-17  
6-17  
6-17  
6-17  
6-17  
6-17  
6-17  
6-17  
6-17  
6-17  
6-17  
EEPROM and Key Locker  
Reserved  
6-12  
Reserved  
Reserved  
I2C 8  
6-20  
6-20  
I2C 9  
Reserved  
I2C 4  
6-20  
6-20  
6-20  
6-20  
I2C 5  
I2C 6  
I2C 7  
Reserved  
EPI0  
6-13  
Reserved  
16/32-bit Timer 6  
16/32-bit Timer 7  
Reserved  
6-18  
6-18  
Ethernet Controller  
Reserved  
6-14  
6-29  
System Exception  
Reserved  
Hibernation  
6-19  
6-16  
6-28  
6-21  
Flash Memory Control  
System Control  
µDMA  
Reserved  
Bit-banded alias of 0x4000.0000 through 0x400F.FFFF  
Reserved  
CRC and Cryptographic Control  
Reserved (4KB)  
6-9  
Reserved (8KB)  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
121  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-3. Memory Map (continued)  
START  
END  
DESCRIPTION  
REGISTERS  
0x4403.4000  
0x4403.6000  
0x4403.8000  
0x4403.A000  
0x4403.F000  
0x4404.0000  
0x4405.0000  
0x4405.1000  
0x4405.4000  
0x4405.5000  
0x6000.0000  
0x4403.5FFF  
0x4403.7FFF  
0x4403.9FFF  
0x4403.EFFF  
0x4403.FFFF  
0x4404.FFFF  
0x4405.0FFF  
0x4405.3FFF  
0x4405.4FFF  
0x5FFF.FFFF  
0xDFFF.FFFF  
SHA/MD5  
6-26  
AES  
6-4, 6-5  
DES  
6-10, 6-11  
Reserved  
Reserved (4KB)  
Reserved (64KB)  
Reserved  
Reserved  
EPHY 0  
6-15  
6-13  
Reserved  
EPI0 Mapped Peripheral and RAM  
6-4. AES Registers  
OFFSET  
0x00C  
0x010  
ACRONYM  
REGISTER NAME  
AES Key 2_5  
AES Key 2_2  
AES Key 2_3  
AES Key 2_0  
AES Key 2_1  
AES Key 1_6  
AES Key 1_7  
AES Key 1_4  
AES Key 1_5  
AES Key 1_2  
AES Key 1_3  
AES Key 1_0  
AES Key 1_1  
AES_KEY2_5  
AES_KEY2_2  
AES_KEY2_3  
AES_KEY2_0  
AES_KEY2_1  
AES_KEY1_6  
AES_KEY1_7  
AES_KEY1_4  
AES_KEY1_5  
AES_KEY1_2  
AES_KEY1_3  
AES_KEY1_0  
AES_KEY1_1  
0x014  
0x018  
0x01C  
0x020  
0x024  
0x028  
0x02C  
0x030  
0x034  
0x038  
0x03C  
0x40 to 0x4C  
0x50  
AES_IV_IN_0 to AES_IV_IN_3  
AES_CTRL  
AES Initialization Vector Input 0 to AES Initialization Vector Input 3  
AES Control  
AES_C_LENGTH_0 to  
AES_C_LENGTH_1  
0x54 to 0x58  
0x5C  
AES Crypto Data Length 0 to AES Crypto Data Length 1  
AES Authentication Data Length  
AES_AUTH_LENGTH  
AES_DATA_IN_0 to  
AES_DATA_IN_3  
AES Data R/W Plaintext/Ciphertext 0 to AES Data R/W Plaintext/Ciphertext  
3
0x60 to 0x6C  
AES_TAG_OUT_0 to  
AES_TAG_OUT_3  
0x70 to 0x7C  
AES Hash Tag Out 0 to AES Hash Tag Out 3  
0x80  
0x84  
0x88  
0x8C  
0x90  
0x94  
AES_REVISION  
AES IP Revision Identifier  
AES System Configuration  
AES System Status  
AES Interrupt Status  
AES Interrupt Enable  
AES Dirty Bits  
AES_SYSCONFIG  
AES_SYSSTATUS  
AES_IRQSTATUS  
AES_IRQENABLE  
AES_DIRTYBITS  
6-5. AES µDMA Registers  
OFFSET  
0x20  
ACRONYM  
REGISTER NAME  
AES_DMAIM  
AES_DMARIS  
AES_DMAMIS  
AES DMA Interrupt Mask  
AES DMA Raw Interrupt Status  
AES DMA Masked Interrupt Status  
0x24  
0x28  
122  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
 
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-5. AES µDMA Registers (continued)  
OFFSET  
ACRONYM  
REGISTER NAME  
0x2C  
AES_DMAIC  
AES DMA Interrupt Clear  
6-6. ADC Registers  
OFFSET  
0x0  
ACRONYM  
ADCACTSS  
ADCRIS  
REGISTER NAME  
ADC Active Sample Sequencer  
ADC Raw Interrupt Status  
0x4  
0x8  
ADCIM  
ADC Interrupt Mask  
0xC  
ADCISC  
ADC Interrupt Status and Clear  
ADC Overflow Status  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x30  
0x34  
0x38  
0x40  
0x44  
0x48  
0x4C  
0x50  
0x54  
0x58  
0x5C  
0x60  
0x64  
0x068  
0x06C  
0x70  
0x74  
0x78  
0x7C  
0x080  
0x084  
0x088  
0x08C  
0x090  
0x094  
0x098  
0x09C  
0xA0  
0xA4  
0x0A8  
0x0AC  
0xB0  
ADCOSTAT  
ADCEMUX  
ADC Event Multiplexer Select  
ADC Underflow Status  
ADCUSTAT  
ADCTSSEL  
ADCSSPRI  
ADC Trigger Source Select  
ADC Sample Sequencer Priority  
ADC Sample Phase Control  
ADCSPC  
ADCPSSI  
ADC Processor Sample Sequence Initiate  
ADC Sample Averaging Control  
ADC Digital Comparator Interrupt Status and Clear  
ADC Control  
ADCSAC  
ADCDCISC  
ADCCTL  
ADCSSMUX0  
ADCSSCTL0  
ADCSSFIFO0  
ADCSSFSTAT0  
ADCSSOP0  
ADCSSDC0  
ADCSSEMUX0  
ADCSSTSH0  
ADCSSMUX1  
ADCSSCTL1  
ADCSSFIFO1  
ADCSSFSTAT1  
ADCSSOP1  
ADCSSDC1  
ADCSSEMUX1  
ADCSSTSH1  
ADCSSMUX2  
ADCSSCTL2  
ADCSSFIFO2  
ADCSSFSTAT2  
ADCSSOP2  
ADCSSDC2  
ADCSSEMUX2  
ADCSSTSH2  
ADCSSMUX3  
ADCSSCTL3  
ADCSSFIFO3  
ADCSSFSTAT3  
ADCSSOP3  
ADC Sample Sequence Input Multiplexer Select 0  
ADC Sample Sequence Control 0  
ADC Sample Sequence Result FIFO 0  
ADC Sample Sequence FIFO 0 Status  
ADC Sample Sequence 0 Operation  
ADC Sample Sequence 0 Digital Comparator Select  
ADC Sample Sequence Extended Input Multiplexer Select 0  
ADC Sample Sequence 0 Sample and Hold Time  
ADC Sample Sequence Input Multiplexer Select 1  
ADC Sample Sequence Control 1  
ADC Sample Sequence Result FIFO 1  
ADC Sample Sequence FIFO 1 Status  
ADC Sample Sequence 1 Operation  
ADC Sample Sequence 1 Digital Comparator Select  
ADC Sample Sequence Extended Input Multiplexer Select 1  
ADC Sample Sequence 1 Sample and Hold Time  
ADC Sample Sequence Input Multiplexer Select 2  
ADC Sample Sequence Control 2  
ADC Sample Sequence Result FIFO 2  
ADC Sample Sequence FIFO 2 Status  
ADC Sample Sequence 2 Operation  
ADC Sample Sequence 2 Digital Comparator Select  
ADC Sample Sequence Extended Input Multiplexer Select 2  
ADC Sample Sequence 2 Sample and Hold Time  
ADC Sample Sequence Input Multiplexer Select 3  
ADC Sample Sequence Control 3  
ADC Sample Sequence Result FIFO 3  
ADC Sample Sequence FIFO 3 Status  
ADC Sample Sequence 3 Operation  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
123  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-6. ADC Registers (continued)  
OFFSET  
0xB4  
ACRONYM  
REGISTER NAME  
ADCSSDC3  
ADC Sample Sequence 3 Digital Comparator Select  
0xB8  
ADCSSEMUX3  
ADCSSTSH3  
ADC Sample Sequence Extended Input Multiplexer Select 3  
ADC Sample Sequence 3 Sample and Hold Time  
ADC Digital Comparator Reset Initial Conditions  
0xBC  
0xD00  
ADCDCRIC  
0xE00 to 0xE1C  
0xE40 to 0xE5C  
0xFC0  
ADCDCCTL0 to ADCDCCTL7  
ADCDCCMP0 to ADCDCCMP7  
ADCPP  
ADC Digital Comparator Control 0 to ADC Digital Comparator Control 7  
ADC Digital Comparator Range 0 to ADC Digital Comparator Range 7  
ADC Peripheral Properties  
0xFC4  
ADCPC  
ADC Peripheral Configuration  
0xFC8  
ADCCC  
ADC Clock Configuration  
6-7. CAN Registers  
OFFSET  
0x0  
ACRONYM  
CANCTL  
REGISTER NAME  
CAN Control  
0x4  
CANSTS  
CAN Status  
0x8  
CANERR  
CAN Error Counter  
CAN Bit Timing  
0xC  
CANBIT  
0x10  
0x14  
0x18  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x44  
0x48  
0x80  
0x84  
0x88  
0x8C  
0x90  
0x94  
0x98  
0x9C  
0xA0  
0xA4  
0xA8  
0x100  
0x104  
0x120  
0x124  
0x140  
0x144  
CANINT  
CAN Interrupt  
CANTST  
CAN Test  
CANBRPE  
CAN Baud Rate Prescaler Extension  
CAN IF1 Command Request  
CAN IF1 Command Mask  
CAN IF1 Mask 1  
CANIF1CRQ  
CANIF1CMSK  
CANIF1MSK1  
CANIF1MSK2  
CANIF1ARB1  
CANIF1ARB2  
CANIF1MCTL  
CANIF1DA1  
CANIF1DA2  
CANIF1DB1  
CANIF1DB2  
CANIF2CRQ  
CANIF2CMSK  
CANIF2MSK1  
CANIF2MSK2  
CANIF2ARB1  
CANIF2ARB2  
CANIF2MCTL  
CANIF2DA1  
CANIF2DA2  
CANIF2DB1  
CANIF2DB2  
CANTXRQ1  
CANTXRQ2  
CANNWDA1  
CANNWDA2  
CANMSG1INT  
CANMSG2INT  
CAN IF1 Mask 2  
CAN IF1 Arbitration 1  
CAN IF1 Arbitration 2  
CAN IF1 Message Control  
CAN IF1 Data A1  
CAN IF1 Data A2  
CAN IF1 Data B1  
CAN IF1 Data B2  
CAN IF2 Command Request  
CAN IF2 Command Mask  
CAN IF2 Mask 1  
CAN IF2 Mask 2  
CAN IF2 Arbitration 1  
CAN IF2 Arbitration 2  
CAN IF2 Message Control  
CAN IF2 Data A1  
CAN IF2 Data A2  
CAN IF2 Data B1  
CAN IF2 Data B2  
CAN Transmission Request 1  
CAN Transmission Request 2  
CAN New Data 1  
CAN New Data 2  
CAN Message 1 Interrupt Pending  
CAN Message 2 Interrupt Pending  
124  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-7. CAN Registers (continued)  
OFFSET  
0x160  
ACRONYM  
REGISTER NAME  
CANMSG1VAL  
CANMSG2VAL  
CAN Message 1 Valid  
CAN Message 2 Valid  
0x164  
6-8. Comparator Registers  
OFFSET  
0x0  
ACRONYM  
ACMIS  
REGISTER NAME  
Analog Comparator Masked Interrupt Status  
0x4  
ACRIS  
Analog Comparator Raw Interrupt Status  
Analog Comparator Interrupt Enable  
Analog Comparator Reference Voltage Control  
Analog Comparator Status 0  
0x8  
ACINTEN  
ACREFCTL  
ACSTAT0  
ACCTL0  
ACSTAT1  
ACCTL1  
ACSTAT2  
ACCTL2  
ACMPPP  
0x10  
0x20  
0x24  
0x40  
0x44  
0x60  
0x64  
0xFC0  
Analog Comparator Control 0  
Analog Comparator Status 1  
Analog Comparator Control 1  
Analog Comparator Status 2  
Analog Comparator Control 2  
Analog Comparator Peripheral Properties  
6-9. CRC Registers  
OFFSET  
400h  
ACRONYM  
CRCCTRL  
CRCSEED  
CRCDIN  
REGISTER NAME  
CRC Control  
410h  
CRC SEED/Context  
CRC Data Input  
414h  
418h  
CRCRSLTPP  
CRC Post Processing Result  
6-10. DES Registers  
OFFSET  
0x00  
0x04  
0x08  
0x0C  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x44  
ACRONYM  
REGISTER NAME  
DES_KEY3_L  
DES_KEY3_H  
DES_KEY2_L  
DES_KEY2_H  
DES_KEY1_L  
DES_KEY1_H  
DES_IV_L  
DES Key 3 LSW for 192-Bit Key  
DES Key 3 MSW for 192-Bit Key  
DES Key 2 LSW for 128-Bit Key  
DES Key 2 MSW for 128-Bit Key  
DES Key 1 LSW for 64-Bit Key  
DES Key 1 MSW for 64-Bit Key  
DES Initialization Vector  
DES Initialization Vector  
DES Control  
DES_IV_H  
DES_CTRL  
DES_LENGTH  
DES_DATA_L  
DES_DATA_H  
DES_REVISION  
DES_SYSCONFIG  
DES_SYSSTATUS  
DES_IRQSTATUS  
DES_IRQENABLE  
DES_DIRTYBITS  
DES Cryptographic Data Length  
DES LSW Data RW  
DES MSW Data RW  
DES Revision Number  
DES System Configuration  
DES System Status  
DES Interrupt Status  
DES Interrupt Enable  
DES Dirty Bits  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
125  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-11. DES µDMA Registers  
OFFSET  
0x30  
ACRONYM  
REGISTER NAME  
DES_DMAIM  
DES_DMARIS  
DES_DMAMIS  
DES_DMAIC  
DES DMA Interrupt Mask  
DES DMA Raw Interrupt Status  
DES DMA Masked Interrupt Status  
DES DMA Interrupt Clear  
0x34  
0x38  
0x3C  
6-12. EEPROM Registers  
OFFSET  
0x0  
ACRONYM  
EESIZE  
REGISTER NAME  
EEPROM Size Information  
EEPROM Current Block  
EEPROM Current Offset  
EEPROM Read-Write  
0x4  
EEBLOCK  
EEOFFSET  
EERDWR  
0x8  
0x10  
0x14  
EERDWRINC  
EEDONE  
EEPROM Read-Write with Increment  
EEPROM Done Status  
0x18  
0x1C  
0x20  
EESUPP  
EEPROM Support Control and Status  
EEPROM Unlock  
EEUNLOCK  
EEPROT  
0x30  
EEPROM Protection  
0x34 to 0x3C  
0x40  
EEPASS0 to EEPASS2  
EEINT  
EEPROM Password 0 to EEPROM Password 2  
EEPROM Interrupt  
0x50  
EEHIDE0  
EEPROM Block Hide 0  
0x54  
EEHIDE1  
EEPROM Block Hide 1  
0x58  
EEHIDE2  
EEPROM Block Hide 2  
0x80  
EEDBGME  
EEPROMPP  
EEPROM Debug Mass Erase  
EEPROM Peripheral Properties  
0xFC0  
6-13. EPI Registers  
OFFSET  
0x000  
0x004  
0x008  
0x010  
0x010  
0x010  
0x010  
0x014  
0x014  
0x01C  
0x020  
0x024  
0x028  
0x030  
0x034  
0x038  
0x060  
0x06C  
0x70 to 0x8C  
0x200  
0x24  
ACRONYM  
EPICFG  
REGISTER NAME  
EPI Configuration  
EPIBAUD  
EPI Main Baud Rate  
EPIBAUD2  
EPI Main Baud Rate  
EPISDRAMCFG  
EPIHB8CFG  
EPIHB16CFG  
EPIGPCFG  
EPIHB8CFG2  
EPIHB16CFG2  
EPIADDRMAP  
EPIRSIZE0  
EPIRADDR0  
EPIRPSTD0  
EPIRSIZE1  
EPIRADDR1  
EPIRPSTD1  
EPISTAT  
EPI SDRAM Configuration  
EPI Host-Bus 8 Configuration  
EPI Host-Bus 16 Configuration  
EPI General-Purpose Configuration  
EPI Host-Bus 8 Configuration 2  
EPI Host-Bus 16 Configuration 2  
EPI Address Map  
EPI Read Size 0  
EPI Read Address 0  
EPI Non-Blocking Read Data 0  
EPI Read Size 1  
EPI Read Address 1  
EPI Non-Blocking Read Data 1  
EPI Status  
EPIRFIFOCNT  
EPI Read FIFO Count  
EPIREADFIFO0 to EPIREADFIFO7  
EPIFIFOLVL  
EPI Read FIFO 0 to EPI Read FIFO 7  
EPI FIFO Level Selects  
EPIWFIFOCNT  
EPI Write FIFO Count  
126  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-13. EPI Registers (continued)  
OFFSET  
0x28  
ACRONYM  
REGISTER NAME  
EPIDMATXCNT  
EPIIM  
EPI DMA Transmit Count  
EPI Interrupt Mask  
0x210  
0x214  
0x218  
0x21C  
0x308  
0x308  
0x30C  
0x30C  
0x310  
0x310  
0x314  
0x314  
0x318  
0x318  
0x31C  
0x31C  
0x360  
EPIRIS  
EPI Raw Interrupt Status  
EPI Masked Interrupt Status  
EPIMIS  
EPIEISC  
EPI Error and Interrupt Status and Clear  
EPIHB8CFG3  
EPIHB16CFG3  
EPIHB8CFG4  
EPIHB16CFG4  
EPIHB8TIME  
EPIHB16TIME  
EPIHB8TIME2  
EPIHB16TIME2  
EPIHB8TIME3  
EPIHB16TIME3  
EPIHB8TIME4  
EPIHB16TIME4  
EPIHBPSRAM  
EPI Host-Bus 8 Configuration 3  
EPI Host-Bus 16 Configuration 3  
EPI Host-Bus 8 Configuration 4  
EPI Host-Bus 16 Configuration 4  
EPI Host-Bus 8 Timing Extension  
EPI Host-Bus 16 Timing Extension  
EPI Host-Bus 8 Timing Extension  
EPI Host-Bus 16 Timing Extension  
EPI Host-Bus 8 Timing Extension  
EPI Host-Bus 16 Timing Extension  
EPI Host-Bus 8 Timing Extension  
EPI Host-Bus 16 Timing Extension  
EPI Host-Bus PSRAM  
6-14. Ethernet MAC (EMAC) Registers  
OFFSET  
0x0  
ACRONYM  
REGISTER NAME  
EMACCFG  
Ethernet MAC Configuration  
Ethernet MAC Frame Filter  
Ethernet MAC Hash Table High  
Ethernet MAC Hash Table Low  
Ethernet MAC MII Address  
Ethernet MAC MII Data Register  
Ethernet MAC Flow Control  
Ethernet MAC VLAN Tag  
0x4  
EMACFRAMEFLTR  
EMACHASHTBLH  
EMACHASHTBLL  
EMACMIIADDR  
EMACMIIDATA  
EMACFLOWCTL  
EMACVLANTG  
EMACSTATUS  
EMACRWUFF  
0x8  
0xC  
0x10  
0x14  
0x18  
0x1C  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x44  
0x48  
0x4C  
0x50  
0x54  
0x58  
0x5C  
0xDC  
0x100  
0x104  
Ethernet MAC Status  
Ethernet MAC Remote Wake-Up Frame Filter  
EMACPMTCTLSTAT  
EMACLPICTLSTAT  
EMACLPITIMERCTRL  
EMACRIS  
Ethernet MAC PMT Control and Status  
LPI Control and Status  
LPI Timers Control  
Ethernet MAC Raw Interrupt Status  
Ethernet MAC Interrupt Mask  
Ethernet MAC Address 0 High  
Ethernet MAC Address 0 Low Register  
Ethernet MAC Address 1 High  
Ethernet MAC Address 1 Low  
Ethernet MAC Address 2 High  
Ethernet MAC Address 2 Low  
Ethernet MAC Address 3 High  
Ethernet MAC Address 3 Low  
Ethernet MAC Watchdog Time-out  
Ethernet MAC MMC Control  
EMACIM  
EMACADDR0H  
EMACADDR0L  
EMACADDR1H  
EMACADDR1L  
EMACADDR2H  
EMACADDR2L  
EMACADDR3H  
EMACADDR3L  
EMACWDOGTO  
EMACMMCCTRL  
EMACMMCRXRIS  
Ethernet MAC MMC Receive Raw Interrupt Status  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
127  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-14. Ethernet MAC (EMAC) Registers (continued)  
OFFSET  
0x108  
ACRONYM  
EMACMMCTXRIS  
REGISTER NAME  
Ethernet MAC MMC Transmit Raw Interrupt Status  
Ethernet MAC MMC Receive Interrupt Mask  
Ethernet MAC MMC Transmit Interrupt Mask  
0x10C  
0x110  
EMACMMCRXIM  
EMACMMCTXIM  
EMACTXCNTGB  
0x118  
Ethernet MAC Transmit Frame Count for Good and Bad Frames  
Ethernet MAC Transmit Frame Count for Frames Transmitted After Single  
Collision  
0x14C  
0x150  
EMACTXCNTSCOL  
EMACTXCNTMCOL  
Ethernet MAC Transmit Frame Count for Frames Transmitted After Multiple  
Collisions  
0x164  
0x180  
0x194  
0x198  
0x1C4  
0x584  
0x588  
0x700  
0x704  
0x708  
0x70C  
0x710  
0x714  
0x718  
0x71C  
0x720  
0x724  
0x728  
0x72C  
0x760  
0x764  
0xC00  
0xC04  
0xC08  
0xC0C  
0xC10  
0xC14  
0xC18  
0xC1C  
0xC20  
0xC24  
0xC48  
0xC4C  
0xC50  
0xC54  
0xFC0  
0xFC4  
0xFC8  
0xFD0  
0xFD4  
EMACTXOCTCNTG  
EMACRXCNTGB  
EMACRXCNTCRCERR  
EMACRXCNTALGNERR  
EMACRXCNTGUNI  
EMACVLNINCREP  
EMACVLANHASH  
EMACTIMSTCTRL  
EMACSUBSECINC  
EMACTIMSEC  
Ethernet MAC Transmit Octet Count Good  
Ethernet MAC Receive Frame Count for Good and Bad Frames  
Ethernet MAC Receive Frame Count for CRC Error Frames  
Ethernet MAC Receive Frame Count for Alignment Error Frames  
Ethernet MAC Receive Frame Count for Good Unicast Frames  
Ethernet MAC VLAN Tag Inclusion or Replacement  
Ethernet MAC VLAN Hash Table  
Ethernet MAC Timestamp Control  
Ethernet MAC Sub-Second Increment  
Ethernet MAC System Time - Seconds  
EMACTIMNANO  
EMACTIMSECU  
EMACTIMNANOU  
EMACTIMADD  
Ethernet MAC System Time - Nanoseconds  
Ethernet MAC System Time - Seconds Update  
Ethernet MAC System Time - Nanoseconds Update  
Ethernet MAC Timestamp Addend  
EMACTARGSEC  
EMACTARGNANO  
EMACHWORDSEC  
EMACTIMSTAT  
EMACPPSCTRL  
EMACPPS0INTVL  
EMACPPS0WIDTH  
EMACDMABUSMOD  
EMACTXPOLLD  
EMACRXPOLLD  
EMACRXDLADDR  
EMACTXDLADDR  
EMACDMARIS  
Ethernet MAC Target Time Seconds  
Ethernet MAC Target Time Nanoseconds  
Ethernet MAC System Time-Higher Word Seconds  
Ethernet MAC Timestamp Status  
Ethernet MAC PPS Control  
Ethernet MAC PPS0 Interval  
Ethernet MAC PPS0 Width  
Ethernet MAC DMA Bus Mode  
Ethernet MAC Transmit Poll Demand  
Ethernet MAC Receive Poll Demand  
Ethernet MAC Receive Descriptor List Address  
Ethernet MAC Transmit Descriptor List Address  
Ethernet MAC DMA Interrupt Status  
EMACDMAOPMODE  
EMACDMAIM  
Ethernet MAC DMA Operation Mode  
Ethernet MAC DMA Interrupt Mask Register  
Ethernet MAC Missed Frame and Buffer Overflow Counter  
Ethernet MAC Receive Interrupt Watchdog Timer  
Ethernet MAC Current Host Transmit Descriptor  
Ethernet MAC Current Host Receive Descriptor  
Ethernet MAC Current Host Transmit Buffer Address  
Ethernet MAC Current Host Receive Buffer Address  
Ethernet MAC Peripheral Property Register  
Ethernet MAC Peripheral Configuration  
Ethernet MAC Clock Configuration  
EMACMFBOC  
EMACRXINTWDT  
EMACHOSTXDESC  
EMACHOSRXDESC  
EMACHOSTXBA  
EMACHOSRXBA  
EMACPP  
EMACPC  
EMACCC  
EPHYRIS  
Ethernet PHY Raw Interrupt Status  
EPHYIM  
Ethernet PHY Interrupt Mask  
128  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-14. Ethernet MAC (EMAC) Registers (continued)  
OFFSET  
ACRONYM  
EPHYMISC  
REGISTER NAME  
0xFD8  
Ethernet PHY Masked Interrupt Status and Clear  
6-15. Ethernet MII Management (EPHY) Registers (Accessed Through the EMACMIIADDR Register)  
ADDRESS  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0D  
0x0E  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1E  
0x1F  
0x25  
ACRONYM  
REGISTER NAME  
EPHYBMCR  
EPHYBMSR  
EPHYID1  
Ethernet PHY Basic Mode Control - MR0  
Ethernet PHY Basic Mode Status - MR1  
Ethernet PHY Identifier Register 1 - MR2  
Ethernet PHY Identifier Register 2 - MR3  
Ethernet PHY Auto-Negotiation Advertisement - MR4  
Ethernet PHY Auto-Negotiation Link Partner Ability -MR5  
Ethernet PHY Auto-Negotiation Expansion - MR6  
Ethernet PHY Auto-Negotiation Next Page TX - MR7  
Ethernet PHY Auto-Negotiation Link Partner Ability Next Page - MR8  
Ethernet PHY Configuration 1 - MR9  
EPHYID2  
EPHYANA  
EPHYANLPA  
EPHYANER  
EPHYANNPTR  
EPHYANLNPTR  
EPHYCFG1  
EPHYCFG2  
EPHYCFG3  
EPHYREGCTL  
EPHYADDAR  
EPHYSTS  
Ethernet PHY Configuration 2 - MR10  
Ethernet PHY Configuration 3 - MR11  
Ethernet PHY Register Control - MR13  
Ethernet PHY Address or Data - MR14  
Ethernet PHY Status - MR16  
EPHYSCR  
Ethernet PHY Specific Control - MR17  
EPHYMISR1  
EPHYMISR2  
EPHYFCSCR  
EPHYRXERCNT  
EPHYBISTCR  
EPHYLEDCR  
EPHYCTL  
Ethernet PHY MII Interrupt Status 1 - MR18  
Ethernet PHY MII Interrupt Status 2 - MR19  
Ethernet PHY False Carrier Sense Counter - MR20  
Ethernet PHY Receive Error Count - MR21  
Ethernet PHY BIST Control - MR22  
Ethernet PHY LED Control - MR24  
Ethernet PHY Control - MR25  
EPHY10BTSC  
EPHYBICSR1  
EPHYBICSR2  
EPHYCDCR  
EPHYRCR  
Ethernet PHY 10Base-T Status/Control - MR26  
Ethernet PHY BIST Control and Status 1 - MR27  
Ethernet PHY BIST Control and Status 2 - MR28  
Ethernet PHY Cable Diagnostic Control - MR30  
Ethernet PHY Reset Control - MR31  
EPHYLEDCFG  
Ethernet PHY LED Configuration - MR37  
6-16. Flash Registers  
OFFSET  
0x0  
ACRONYM  
FMA  
REGISTER NAME  
Flash Memory Address  
0x4  
FMD  
Flash Memory Data  
0x8  
FMC  
Flash Memory Control  
0xC  
FCRIS  
Flash Controller Raw Interrupt Status  
Flash Controller Interrupt Mask  
Flash Controller Masked Interrupt Status and Clear  
Flash Memory Control 2  
0x10  
FCIM  
0x14  
FCMISC  
FMC2  
0x20  
0x30  
FWBVAL  
FLPEKEY  
FWB0 to FWB31  
FLASHPP  
Flash Write Buffer Valid  
0x3C  
Flash Program/Erase Key  
0x100 to 0x17C  
0xFC0  
Flash Write Buffer 0 to Flash Write Buffer 32  
Flash Peripheral Properties  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
129  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-16. Flash Registers (continued)  
OFFSET  
0xFC4  
0xFC8  
0xFCC  
0xFD0  
0xFD4  
ACRONYM  
REGISTER NAME  
SSIZE  
SRAM Size  
FLASHCONF  
ROMSWMAP  
FLASHDMASZ  
FLASHDMAST  
Flash Configuration Register  
ROM Third-Party Software  
Flash DMA Address Size  
Flash DMA Starting Address  
6-17. GPIO Registers  
OFFSET  
0x0  
ACRONYM  
GPIODATA  
GPIODIR  
REGISTER NAME  
GPIO Data  
0x400  
0x404  
0x408  
0x40C  
0x410  
0x414  
0x418  
0x41C  
0x420  
0x500  
0x504  
0x508  
0x50C  
0x510  
0x514  
0x518  
0x51C  
0x520  
0x524  
0x528  
0x52C  
0x530  
0x534  
0x538  
0x53C  
0x540  
0x544  
0x548  
0xFC0  
0xFC4  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
GPIO Direction  
GPIOIS  
GPIO Interrupt Sense  
GPIOIBE  
GPIO Interrupt Both Edges  
GPIO Interrupt Event  
GPIOIEV  
GPIOIM  
GPIO Interrupt Mask  
GPIORIS  
GPIO Raw Interrupt Status  
GPIO Masked Interrupt Status  
GPIO Interrupt Clear  
GPIOMIS  
GPIOICR  
GPIOAFSEL  
GPIODR2R  
GPIODR4R  
GPIODR8R  
GPIOODR  
GPIO Alternate Function Select  
GPIO 2-mA Drive Select  
GPIO 4-mA Drive Select  
GPIO 8-mA Drive Select  
GPIO Open Drain Select  
GPIO Pullup Select  
GPIOPUR  
GPIOPDR  
GPIO Pulldown Select  
GPIO Slew Rate Control Select  
GPIO Digital Enable  
GPIOSLR  
GPIODEN  
GPIOLOCK  
GPIOCR  
GPIO Lock  
GPIO Commit  
GPIOAMSEL  
GPIOPCTL  
GPIOADCCTL  
GPIODMACTL  
GPIOSI  
GPIO Analog Mode Select  
GPIO Port Control  
GPIO ADC Control  
GPIO DMA Control  
GPIO Select Interrupt  
GPIODR12R  
GPIOWAKEPEN  
GPIOWAKELVL  
GPIOWAKESTAT  
GPIOPP  
GPIO 12-mA Drive Select  
GPIO Wake Pin Enable  
GPIO Wake Level  
GPIO Wake Status  
GPIO Peripheral Property  
GPIO Peripheral Configuration  
GPIO Peripheral Identification 4  
GPIO Peripheral Identification 5  
GPIO Peripheral Identification 6  
GPIO Peripheral Identification 7  
GPIO Peripheral Identification 0  
GPIO Peripheral Identification 1  
GPIO Peripheral Identification 2  
GPIO Peripheral Identification 3  
GPIOPC  
GPIOPeriphID4  
GPIOPeriphID5  
GPIOPeriphID6  
GPIOPeriphID7  
GPIOPeriphID0  
GPIOPeriphID1  
GPIOPeriphID2  
GPIOPeriphID3  
130  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-17. GPIO Registers (continued)  
OFFSET  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
ACRONYM  
REGISTER NAME  
GPIOPCellID0  
GPIOPCellID1  
GPIOPCellID2  
GPIOPCellID3  
GPIO PrimeCell Identification 0  
GPIO PrimeCell Identification 1  
GPIO PrimeCell Identification 2  
GPIO PrimeCell Identification 3  
6-18. GPTM Registers  
OFFSET  
0x0  
ACRONYM  
GPTMCFG  
REGISTER NAME  
GPTM Configuration  
0x4  
GPTMTAMR  
GPTMTBMR  
GPTMCTL  
GPTM Timer A Mode  
0x8  
GPTM Timer B Mode  
0xC  
GPTM Control  
0x10  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x40  
0x44  
0x48  
0x4C  
0x50  
0x54  
0x58  
0x5C  
0x60  
0x6C  
0x70  
0xFC0  
0xFC8  
GPTMSYNC  
GPTMIMR  
GPTM Synchronize  
GPTM Interrupt Mask  
GPTM Raw Interrupt Status  
GPTM Masked Interrupt Status  
GPTM Interrupt Clear  
GPTM Timer A Interval Load  
GPTM Timer B Interval Load  
GPTM Timer A Match  
GPTM Timer B Match  
GPTM Timer A Prescale  
GPTM Timer B Prescale  
GPTM TimerA Prescale Match  
GPTM TimerB Prescale Match  
GPTM Timer A  
GPTMRIS  
GPTMMIS  
GPTMICR  
GPTMTAILR  
GPTMTBILR  
GPTMTAMATCHR  
GPTMTBMATCHR  
GPTMTAPR  
GPTMTBPR  
GPTMTAPMR  
GPTMTBPMR  
GPTMTAR  
GPTMTBR  
GPTM Timer B  
GPTMTAV  
GPTM Timer A Value  
GPTMTBV  
GPTM Timer B Value  
GPTMRTCPD  
GPTMTAPS  
GPTMTBPS  
GPTMDMAEV  
GPTMADCEV  
GPTMPP  
GPTM RTC Predivide  
GPTM Timer A Prescale Snapshot  
GPTM Timer B Prescale Snapshot  
GPTM DMA Event  
GPTM ADC Event  
GPTM Peripheral Properties  
GPTM Clock Configuration  
GPTMCC  
6-19. HIB Registers  
OFFSET  
0x0  
ACRONYM  
HIBRTCC  
HIBRTCM0  
HIBRTCLD  
HIBCTL  
REGISTER NAME  
Hibernation RTC Counter  
Hibernation RTC Match 0  
Hibernation RTC Load  
0x4  
0xC  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
Hibernation Control  
HIBIM  
Hibernation Interrupt Mask  
Hibernation Raw Interrupt Status  
Hibernation Masked Interrupt Status  
Hibernation Interrupt Clear  
Hibernation RTC Trim  
HIBRIS  
HIBMIS  
HIBIC  
HIBRTCT  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
131  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-19. HIB Registers (continued)  
OFFSET  
0x28  
ACRONYM  
REGISTER NAME  
HIBRTCSS  
HIBIO  
Hibernation RTC Sub Seconds  
Hibernation IO Configuration  
Hibernation Data  
0x2C  
0x30 to 0x6F  
0x300  
0x310  
0x314  
0x320  
0x324  
0x330  
0x334  
0x360  
0x400  
0x404  
0x410  
0x4E0  
0x4E4  
0x4E8  
0x4EC  
0x4F0  
0x4F4  
0x4F8  
0x4FC  
0xFC0  
0xFC8  
HIBDATA  
HIBCALCTL  
HIBCAL0  
Hibernation Calendar Control  
Hibernation Calendar 0  
Hibernation Calendar 1  
Hibernation Calendar Load 0  
Hibernation Calendar Load 1  
Hibernation Calendar Match 0  
Hibernation Calendar Match 1  
Hibernation Lock  
HIBCAL1  
HIBCALLD0  
HIBCALLD1  
HIBCALM0  
HIBCALM1  
HIBLOCK  
HIBTPCTL  
HIBTPSTAT  
HIBTPIO  
HIB Tamper Control  
HIB Tamper Status  
HIB Tamper I/O Control  
HIB Tamper Log 0  
HIBTPLOG0  
HIBTPLOG1  
HIBTPLOG2  
HIBTPLOG3  
HIBTPLOG4  
HIBTPLOG5  
HIBTPLOG6  
HIBTPLOG7  
HIBPP  
HIB Tamper Log 1  
HIB Tamper Log 2  
HIB Tamper Log 3  
HIB Tamper Log 4  
HIB Tamper Log 5  
HIB Tamper Log 6  
HIB Tamper Log 7  
Hibernation Peripheral Properties  
Hibernation Clock Control  
HIBCC  
6-20. I2C Registers  
OFFSET  
0x0  
ACRONYM  
I2CMSA  
REGISTER NAME  
I2C Master Slave Address  
I2C Master Control/Status  
I2C Master Data  
0x4  
I2CMCS  
0x8  
I2CMDR  
0xC  
I2CMTPR  
I2CMIMR  
I2CMRIS  
I2CMMIS  
I2CMICR  
I2CMCR  
I2C Master Timer Period  
I2C Master Interrupt Mask  
I2C Master Raw Interrupt Status  
I2C Master Masked Interrupt Status  
I2C Master Interrupt Clear  
I2C Master Configuration  
I2C Master Clock Low Time-out Count  
I2C Master Bus Monitor  
I2C Master Burst Length  
I2C Master Burst Count  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x2C  
0x30  
0x34  
0x800  
0x804  
0x808  
0x80C  
0x810  
0x814  
0x818  
I2CMCLKOCNT  
I2CMBMON  
I2CMBLEN  
I2CMBCNT  
I2CSOAR  
I2CSCSR  
I2CSDR  
I2C Slave Own Address  
I2C Slave Control/Status  
I2C Slave Data  
I2CSIMR  
I2CSRIS  
I2C Slave Interrupt Mask  
I2C Slave Raw Interrupt Status  
I2C Slave Masked Interrupt Status  
I2C Slave Interrupt Clear  
I2CSMIS  
I2CSICR  
132  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-20. I2C Registers (continued)  
OFFSET  
0x81C  
0x820  
0xF00  
0xF04  
0xF08  
0xFC0  
0xFC4  
ACRONYM  
I2CSOAR2  
I2CSACKCTL  
I2CFIFODATA  
I2CFIFOCTL  
I2CFIFOSTATUS  
I2CPP  
REGISTER NAME  
I2C Slave Own Address 2  
I2C Slave ACK Control  
I2C FIFO Data  
I2C FIFO Control  
I2C FIFO Status  
I2C Peripheral Properties  
I2C Peripheral Configuration  
I2CPC  
6-21. µDMA Registers  
OFFSET  
0x0  
ACRONYM  
REGISTER NAME  
DMASTAT  
DMA Status  
0x4  
DMACFG  
DMA Configuration  
0x8  
DMACTLBASE  
DMAALTBASE  
DMAWAITSTAT  
DMASWREQ  
DMA Channel Control Base Pointer  
DMA Alternate Channel Control Base Pointer  
DMA Channel Wait-on-Request Status  
DMA Channel Software Request  
DMA Channel Useburst Set  
DMA Channel Useburst Clear  
DMA Channel Request Mask Set  
DMA Channel Request Mask Clear  
DMA Channel Enable Set  
0xC  
0x10  
0x14  
0x18  
DMAUSEBURSTSET  
DMAUSEBURSTCLR  
DMAREQMASKSET  
DMAREQMASKCLR  
DMAENASET  
DMAENACLR  
DMAALTSET  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
DMA Channel Enable Clear  
DMA Channel Primary Alternate Set  
DMA Channel Primary Alternate Clear  
DMA Channel Priority Set  
0x34  
DMAALTCLR  
DMAPRIOSET  
DMAPRIOCLR  
DMAERRCLR  
DMACHMAP0  
DMACHMAP1  
DMACHMAP2  
DMACHMAP3  
DMAPeriphID4  
DMAPeriphID0  
DMAPeriphID1  
DMAPeriphID2  
DMAPeriphID3  
DMAPCellID0  
DMAPCellID1  
DMAPCellID2  
DMAPCellID3  
0x38  
0x3C  
0x4C  
0x510  
0x514  
0x518  
0x51C  
0xFD0  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
DMA Channel Priority Clear  
DMA Bus Error Clear  
DMA Channel Map Select 0  
DMA Channel Map Select 1  
DMA Channel Map Select 2  
DMA Channel Map Select 3  
DMA Peripheral Identification 4  
DMA Peripheral Identification 0  
DMA Peripheral Identification 1  
DMA Peripheral Identification 2  
DMA Peripheral Identification 3  
DMA PrimeCell Identification 0  
DMA PrimeCell Identification 1  
DMA PrimeCell Identification 2  
DMA PrimeCell Identification 3  
6-22. µDMA Channel Control Structure Registers  
OFFSET  
0x0  
ACRONYM  
REGISTER NAME  
DMASRCENDP  
DMADSTENDP  
DMACHCTL  
DMA Channel Source Address End Pointer  
DMA Channel Destination Address End Pointer  
DMA Channel Control Word  
0x4  
0x8  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
133  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-23. PWM Registers  
OFFSET  
0x0  
ACRONYM  
REGISTER NAME  
PWMCTL  
PWM Master Control  
0x4  
PWMSYNC  
PWM Time Base Sync  
0x8  
PWMENABLE  
PWMINVERT  
PWMFAULT  
PWMINTEN  
PWMRIS  
PWM Output Enable  
0xC  
PWM Output Inversion  
PWM Output Fault  
0x10  
0x14  
PWM Interrupt Enable  
0x18  
PWM Raw Interrupt Status  
PWM Interrupt Status and Clear  
PWM Status  
0x1C  
0x20  
PWMISC  
PWMSTATUS  
PWMFAULTVAL  
PWMENUPD  
PWM0CTL  
0x24  
PWM Fault Condition Value  
PWM Enable Update  
0x28  
0x40  
PWM0 Control  
0x44  
PWM0INTEN  
PWM0RIS  
PWM0 Interrupt and Trigger Enable  
PWM0 Raw Interrupt Status  
PWM0 Interrupt Status and Clear  
PWM0 Load  
0x48  
0x4C  
0x50  
PWM0ISC  
PWM0LOAD  
PWM0COUNT  
PWM0CMPA  
PWM0CMPB  
PWM0GENA  
PWM0GENB  
PWM0DBCTL  
PWM0DBRISE  
PWM0DBFALL  
PWM0FLTSRC0  
PWM0FLTSRC1  
PWM0MINFLTPER  
PWM1CTL  
0x54  
PWM0 Counter  
0x58  
PWM0 Compare A  
0x5C  
0x60  
PWM0 Compare B  
PWM0 Generator A Control  
PWM0 Generator B Control  
PWM0 Dead-Band Control  
PWM0 Dead-Band Rising-Edge Delay  
PWM0 Dead-Band Falling-Edge-Delay  
PWM0 Fault Source 0  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x78  
PWM0 Fault Source 1  
0x7C  
0x080  
0x084  
0x088  
0x08C  
0x090  
0x094  
0x098  
0x09C  
0x0A0  
0x0A4  
0x0A8  
0x0AC  
0x0B0  
0x0B4  
0x0B8  
0x0BC  
0x0C0  
0x0C4  
0x0C8  
0x0CC  
PWM0 Minimum Fault Period  
PWM1 Control  
PWM1INTEN  
PWM1RIS  
PWM1 Interrupt and Trigger Enable  
PWM1 Raw Interrupt Status  
PWM1 Interrupt Status and Clear  
PWM1 Load  
PWM1ISC  
PWM1LOAD  
PWM1COUNT  
PWM1CMPA  
PWM1CMPB  
PWM1GENA  
PWM1GENB  
PWM1DBCTL  
PWM1DBRISE  
PWM1DBFALL  
PWM1FLTSRC0  
PWM1FLTSRC1  
PWM1MINFLTPER  
PWM2CTL  
PWM1 Counter  
PWM1 Compare A  
PWM1 Compare B  
PWM1 Generator A Control  
PWM1 Generator B Control  
PWM1 Dead-Band Control  
PWM1 Dead-Band Rising-Edge Delay  
PWM1 Dead-Band Falling-Edge-Delay  
PWM1 Fault Source 0  
PWM1 Fault Source 1  
PWM1 Minimum Fault Period  
PWM2 Control  
PWM2INTEN  
PWM2RIS  
PWM2 Interrupt and Trigger Enable  
PWM2 Raw Interrupt Status  
PWM2 Interrupt Status and Clear  
PWM2ISC  
134  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-23. PWM Registers (continued)  
OFFSET  
0x0D0  
0x0D4  
0x0D8  
0x0DC  
0x0E0  
0x0E4  
0x0E8  
0x0EC  
0x0F0  
0x0F4  
0x0F8  
0x0FC  
0x100  
0x104  
0x108  
0x10C  
0x110  
0x114  
0x118  
0x11C  
0x120  
0x124  
0x128  
0x12C  
0x130  
0x134  
0x138  
0x13C  
0x800  
0x804  
0x808  
0x880  
0x884  
0x888  
0x900  
0x904  
0x908  
0x980  
0x984  
0x988  
0xFC0  
0xFC8  
ACRONYM  
REGISTER NAME  
PWM2LOAD  
PWM2 Load  
PWM2COUNT  
PWM2CMPA  
PWM2 Counter  
PWM2 Compare A  
PWM2CMPB  
PWM2 Compare B  
PWM2GENA  
PWM2 Generator A Control  
PWM2 Generator B Control  
PWM2 Dead-Band Control  
PWM2 Dead-Band Rising-Edge Delay  
PWM2 Dead-Band Falling-Edge-Delay  
PWM2 Fault Source 0  
PWM2GENB  
PWM2DBCTL  
PWM2DBRISE  
PWM2DBFALL  
PWM2FLTSRC0  
PWM2FLTSRC1  
PWM2MINFLTPER  
PWM3CTL  
PWM2 Fault Source 1  
PWM2 Minimum Fault Period  
PWM3 Control  
PWM3INTEN  
PWM3RIS  
PWM3 Interrupt and Trigger Enable  
PWM3 Raw Interrupt Status  
PWM3 Interrupt Status and Clear  
PWM3 Load  
PWM3ISC  
PWM3LOAD  
PWM3COUNT  
PWM3CMPA  
PWM3 Counter  
PWM3 Compare A  
PWM3CMPB  
PWM3 Compare B  
PWM3GENA  
PWM3 Generator A Control  
PWM3 Generator B Control  
PWM3 Dead-Band Control  
PWM3 Dead-Band Rising-Edge Delay  
PWM3 Dead-Band Falling-Edge-Delay  
PWM3 Fault Source 0  
PWM3GENB  
PWM3DBCTL  
PWM3DBRISE  
PWM3DBFALL  
PWM3FLTSRC0  
PWM3FLTSRC1  
PWM3MINFLTPER  
PWM0FLTSEN  
PWM0FLTSTAT0  
PWM0FLTSTAT1  
PWM1FLTSEN  
PWM1FLTSTAT0  
PWM1FLTSTAT1  
PWM2FLTSEN  
PWM2FLTSTAT0  
PWM2FLTSTAT1  
PWM3FLTSEN  
PWM3FLTSTAT0  
PWM3FLTSTAT1  
PWMPP  
PWM3 Fault Source 1  
PWM3 Minimum Fault Period  
PWM0 Fault Pin Logic Sense  
PWM0 Fault Status 0  
PWM0 Fault Status 1  
PWM1 Fault Pin Logic Sense  
PWM1 Fault Status 0  
PWM1 Fault Status 1  
PWM2 Fault Pin Logic Sense  
PWM2 Fault Status 0  
PWM2 Fault Status 1  
PWM3 Fault Pin Logic Sense  
PWM3 Fault Status 0  
PWM3 Fault Status 1  
PWM Peripheral Properties  
PWM Clock Configuration  
PWMCC  
6-24. QEI Registers  
OFFSET  
0x0  
ACRONYM  
QEICTL  
REGISTER NAME  
QEI Control  
0x4  
QEISTAT  
QEI Status  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
135  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-24. QEI Registers (continued)  
OFFSET  
0x8  
ACRONYM  
REGISTER NAME  
QEI Position  
QEIPOS  
0xC  
QEIMAXPOS  
QEILOAD  
QEITIME  
QEICOUNT  
QEISPEED  
QEIINTEN  
QEIRIS  
QEI Maximum Position  
QEI Timer Load  
0x10  
0x14  
0x18  
0x1C  
0x20  
0x24  
0x28  
QEI Timer  
QEI Velocity Counter  
QEI Velocity  
QEI Interrupt Enable  
QEI Raw Interrupt Status  
QEI Interrupt Status and Clear  
QEIISC  
6-25. QSSI Registers  
OFFSET  
0x0  
ACRONYM  
SSICR0  
REGISTER NAME  
QSSI Control 0  
0x4  
SSICR1  
QSSI Control 1  
0x8  
SSIDR  
QSSI Data  
0xC  
SSISR  
QSSI Status  
0x10  
SSICPSR  
SSIIM  
QSSI Clock Prescale  
0x14  
QSSI Interrupt Mask  
0x18  
SSIRIS  
QSSI Raw Interrupt Status  
QSSI Masked Interrupt Status  
QSSI Interrupt Clear  
0x1C  
SSIMIS  
0x20  
SSIICR  
0x24  
SSIDMACTL  
SSIPP  
QSSI DMA Control  
0xFC0  
0xFC8  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
QSSI Peripheral Properties  
QSSI Clock Configuration  
QSSI Peripheral Identification 4  
QSSI Peripheral Identification 5  
QSSI Peripheral Identification 6  
QSSI Peripheral Identification 7  
QSSI Peripheral Identification 0  
QSSI Peripheral Identification 1  
QSSI Peripheral Identification 2  
QSSI Peripheral Identification 3  
QSSI PrimeCell Identification 0  
QSSI PrimeCell Identification 1  
QSSI PrimeCell Identification 2  
QSSI PrimeCell Identification 3  
SSICC  
SSIPeriphID4  
SSIPeriphID5  
SSIPeriphID6  
SSIPeriphID7  
SSIPeriphID0  
SSIPeriphID1  
SSIPeriphID2  
SSIPeriphID3  
SSIPCellID0  
SSIPCellID1  
SSIPCellID2  
SSIPCellID3  
6-26. SHA/MD5 Registers  
OFFSET  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x018  
0x01C  
ACRONYM  
REGISTER NAME  
SHA Outer Digest A  
SHA Outer Digest B  
SHA Outer Digest C  
SHA Outer Digest D  
SHA Outer Digest E  
SHA Outer Digest F  
SHA Outer Digest G  
SHA Outer Digest H  
SHA_ODIGEST_A  
SHA_ODIGEST_B  
SHA_ODIGEST_C  
SHA_ODIGEST_D  
SHA_ODIGEST_E  
SHA_ODIGEST_F  
SHA_ODIGEST_G  
SHA_ODIGEST_H  
136  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-26. SHA/MD5 Registers (continued)  
OFFSET  
0x020  
0x024  
0x028  
0x02C  
0x030  
0x034  
0x038  
0x03C  
0x40  
ACRONYM  
REGISTER NAME  
SHA Inner Digest A  
SHA Inner Digest B  
SHA Inner Digest C  
SHA Inner Digest D  
SHA Inner Digest E  
SHA Inner Digest F  
SHA Inner Digest G  
SHA Inner Digest H  
SHA_IDIGEST_A  
SHA_IDIGEST_B  
SHA_IDIGEST_C  
SHA_IDIGEST_D  
SHA_IDIGEST_E  
SHA_IDIGEST_F  
SHA_IDIGEST_G  
SHA_IDIGEST_H  
SHA_DIGEST_COUNT  
SHA_MODE  
SHA Digest Count  
SHA Mode  
0x44  
0x48  
SHA_LENGTH  
SHA Length  
0x080  
0x084  
0x088  
0x08C  
0x090  
0x094  
0x098  
0x09C  
0x0A0  
0x0A4  
0x0A8  
0x0AC  
0x0B0  
0x0B4  
0x0B8  
0x0BC  
0x100  
0x110  
0x114  
0x118  
0x11C  
SHA_DATA_0_IN  
SHA_DATA_1_IN  
SHA_DATA_2_IN  
SHA_DATA_3_IN  
SHA_DATA_4_IN  
SHA_DATA_5_IN  
SHA_DATA_6_IN  
SHA_DATA_7_IN  
SHA_DATA_8_IN  
SHA_DATA_9_IN  
SHA_DATA_10_IN  
SHA_DATA_11_IN  
SHA_DATA_12_IN  
SHA_DATA_13_IN  
SHA_DATA_14_IN  
SHA_DATA_15_IN  
SHA_REVISION  
SHA_SYSCONFIG  
SHA_SYSSTATUS  
SHA_IRQSTATUS  
SHA_IRQENABLE  
SHA Data 0 Input  
SHA Data 1 Input  
SHA Data 2 Input  
SHA Data 3 Input  
SHA Data 4 Input  
SHA Data 5 Input  
SHA Data 6 Input  
SHA Data 7 Input  
SHA Data 8 Input  
SHA Data 9 Input  
SHA Data 10 Input  
SHA Data 11 Input  
SHA Data 12 Input  
SHA Data 13 Input  
SHA Data 14 Input  
SHA Data 15 Input  
SHA Revision  
SHA System Configuration  
SHA System Status  
SHA Interrupt Status  
SHA Interrupt Enable  
6-27. SHA/MD5 µDMA Registers  
OFFSET  
0x10  
ACRONYM  
REGISTER NAME  
SHA_DMAIM  
SHA_DMARIS  
SHA_DMAMIS  
SHA_DMAIC  
SHA DMA Interrupt Mask  
SHA DMA Raw Interrupt Status  
SHA DMA Masked Interrupt Status  
SHA DMA Interrupt Clear  
0x14  
0x18  
0x1C  
6-28. System Control Memory Registers  
OFFSET  
0xD4  
ACRONYM  
RVP  
REGISTER NAME  
Reset Vector Pointer  
Boot Configuration  
0x1D0  
BOOTCFG  
0x1E0 to 0x1EC  
USER_REG_0 to USER_REG_3  
User Register 0 to User Register 3  
Flash Memory Protection Read Enable 0 to Flash Memory Protection Read  
Enable 15  
0x200 to 0x23C  
FMPRE_0 to FMPRE_15  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
137  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-28. System Control Memory Registers (continued)  
OFFSET  
ACRONYM  
REGISTER NAME  
Flash Memory Protection Program Enable 0 to Flash Memory Protection  
Program Enable 15  
0x400 to 0x43C  
FMPPE_0 to FMPPE_15  
6-29. System Exception Registers  
OFFSET  
0x0  
ACRONYM  
SYSEXCRIS  
SYSEXCIM  
SYSEXCMIS  
SYSEXCIC  
REGISTER NAME  
System Exception Raw Interrupt Status  
System Exception Interrupt Mask  
System Exception Masked Interrupt Status  
System Exception Interrupt Clear  
0x4  
0x8  
0xC  
6-30. UART Registers  
OFFSET  
0x0  
ACRONYM  
REGISTER NAME  
UARTDR  
UART Data  
0x4  
UARTRSR/UARTECR  
UARTFR  
UART Receive Status/Error Clear  
UART Flag  
0x18  
0x20  
UARTILPR  
UART IrDA Low-Power Register  
UART Integer Baud-Rate Divisor  
UART Fractional Baud-Rate Divisor  
UART Line Control  
0x24  
UARTIBRD  
0x28  
UARTFBRD  
0x2C  
0x30  
UARTLCRH  
UARTCTL  
UART Control  
0x34  
UARTIFLS  
UART Interrupt FIFO Level Select  
UART Interrupt Mask  
0x38  
UARTIM  
0x3C  
0x40  
UARTRIS  
UART Raw Interrupt Status  
UART Masked Interrupt Status  
UART Interrupt Clear  
UARTMIS  
0x44  
UARTICR  
0x48  
UARTDMACTL  
UART9BITADDR  
UART9BITAMASK  
UARTPP  
UART DMA Control  
0xA4  
UART 9-Bit Self Address  
0xA8  
UART 9-Bit Self Address Mask  
UART Peripheral Properties  
UART Clock Configuration  
UART Peripheral Identification 4  
UART Peripheral Identification 5  
UART Peripheral Identification 6  
UART Peripheral Identification 7  
UART Peripheral Identification 0  
UART Peripheral Identification 1  
UART Peripheral Identification 2  
UART Peripheral Identification 3  
UART PrimeCell Identification 0  
UART PrimeCell Identification 1  
UART PrimeCell Identification 2  
UART PrimeCell Identification 3  
0xFC0  
0xFC8  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
UARTCC  
UARTPeriphID4  
UARTPeriphID5  
UARTPeriphID6  
UARTPeriphID7  
UARTPeriphID0  
UARTPeriphID1  
UARTPeriphID2  
UARTPeriphID3  
UARTPCellID0  
UARTPCellID1  
UARTPCellID2  
UARTPCellID3  
6-31. USB Registers  
OFFSET  
0x0  
ACRONYM  
USBFADDR  
USBPOWER  
REGISTER NAME  
USB Device Functional Address  
USB Power  
0x1  
138  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-31. USB Registers (continued)  
OFFSET  
0x2  
ACRONYM  
REGISTER NAME  
USBTXIS  
USB Transmit Interrupt Status  
USB Receive Interrupt Status  
USB Transmit Interrupt Enable  
USB Receive Interrupt Enable  
USB General Interrupt Status  
USB Interrupt Enable  
0x4  
USBRXIS  
0x6  
USBTXIE  
0x8  
USBRXIE  
0xA  
USBIS  
0xB  
USBIE  
0xC  
USBFRAME  
USB Frame Value  
0xE  
USBEPIDX  
USB Endpoint Index  
0xF  
USBTEST  
USB Test Mode  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0x38  
0x3C  
0x60  
0x61  
0x62  
0x63  
0x64  
0x66  
0x70  
0x74  
0x75  
0x76  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x80  
0x82  
0x83  
0x88  
0x8A  
0x8B  
0x8C  
0x8E  
0x8F  
0x90  
0x92  
0x93  
0x94  
USBFIFO0  
USB FIFO Endpoint 0  
USBFIFO1  
USB FIFO Endpoint 1  
USBFIFO2  
USB FIFO Endpoint 2  
USBFIFO3  
USB FIFO Endpoint 3  
USBFIFO4  
USB FIFO Endpoint 4  
USBFIFO5  
USB FIFO Endpoint 5  
USBFIFO6  
USB FIFO Endpoint 6  
USBFIFO7  
USB FIFO Endpoint 7  
USBDEVCTL  
USBCCONF  
USB Device Control  
USB Common Configuration  
USB Transmit Dynamic FIFO Sizing  
USB Receive Dynamic FIFO Sizing  
USB Transmit FIFO Start Address  
USB Receive FIFO Start Address  
USB ULPI VBUS Control  
USB ULPI Register Data  
USB ULPI Register Address  
USB ULPI Register Control  
USB Endpoint Information  
USB RAM Information  
USBTXFIFOSZ  
USBRXFIFOSZ  
USBTXFIFOADD  
USBRXFIFOADD  
ULPIVBUSCTL  
ULPIREGDATA  
ULPIREGADDR  
ULPIREGCTL  
USBEPINFO  
USBRAMINFO  
USBCONTIM  
USBVPLEN  
USB Connect Timing  
USB OTG VBUS Pulse Timing  
USBHSEOF  
USB High-Speed Last Transaction to End of Frame Timing  
USBFSEOF  
USB Full-Speed Last Transaction to End of Frame Timing  
USB Low-Speed Last Transaction to End of Frame Timing  
USB Transmit Functional Address Endpoint 0  
USB Transmit Hub Address Endpoint 0  
USB Transmit Hub Port Endpoint 0  
USBLSEOF  
USBTXFUNCADDR0  
USBTXHUBADDR0  
USBTXHUBPORT0  
USBTXFUNCADDR1  
USBTXHUBADDR1  
USBTXHUBPORT1  
USBRXFUNCADDR1  
USBRXHUBADDR1  
USBRXHUBPORT1  
USBTXFUNCADDR2  
USBTXHUBADDR2  
USBTXHUBPORT2  
USBRXFUNCADDR2  
USB Transmit Functional Address Endpoint 1  
USB Transmit Hub Address Endpoint 1  
USB Transmit Hub Port Endpoint 1  
USB Receive Functional Address Endpoint 1  
USB Receive Hub Address Endpoint 1  
USB Receive Hub Port Endpoint 1  
USB Transmit Functional Address Endpoint 2  
USB Transmit Hub Address Endpoint 2  
USB Transmit Hub Port Endpoint 2  
USB Receive Functional Address Endpoint 2  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
139  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-31. USB Registers (continued)  
OFFSET  
0x96  
ACRONYM  
REGISTER NAME  
USBRXHUBADDR2  
USBRXHUBPORT2  
USBTXFUNCADDR3  
USBTXHUBADDR3  
USBTXHUBPORT3  
USBRXFUNCADDR3  
USBRXHUBADDR3  
USBRXHUBPORT3  
USBTXFUNCADDR4  
USBTXHUBADDR4  
USBTXHUBPORT4  
USBRXFUNCADDR4  
USBRXHUBADDR4  
USBRXHUBPORT4  
USBTXFUNCADDR5  
USBTXHUBADDR5  
USBTXHUBPORT5  
USBRXFUNCADDR5  
USBRXHUBADDR5  
USBRXHUBPORT5  
USBTXFUNCADDR6  
USBTXHUBADDR6  
USBTXHUBPORT6  
USBRXFUNCADDR6  
USBRXHUBADDR6  
USBRXHUBPORT6  
USBTXFUNCADDR7  
USBTXHUBADDR7  
USBTXHUBPORT7  
USBRXFUNCADDR7  
USBRXHUBADDR7  
USBRXHUBPORT7  
USBCSRL0  
USB Receive Hub Address Endpoint 2  
USB Receive Hub Port Endpoint 2  
0x97  
0x98  
USB Transmit Functional Address Endpoint 3  
USB Transmit Hub Address Endpoint 3  
USB Transmit Hub Port Endpoint 3  
0x9A  
0x9B  
0x9C  
0x9E  
0x9F  
USB Receive Functional Address Endpoint 3  
USB Receive Hub Address Endpoint 3  
USB Receive Hub Port Endpoint 3  
0xA0  
0xA2  
0xA3  
0xA4  
0xA6  
0xA7  
0xA8  
0xAA  
0xAB  
0xAC  
0xAE  
0xAF  
0xB0  
0xB2  
0xB3  
0xB4  
0xB6  
0xB7  
0xB8  
0xBA  
0xBB  
0xBC  
0xBE  
0xBF  
0x102  
0x103  
0x108  
0x10A  
0x10B  
0x110  
0x112  
0x113  
0x114  
0x116  
0x117  
0x118  
0x11A  
0x11B  
0x11C  
USB Transmit Functional Address Endpoint 4  
USB Transmit Hub Address Endpoint 4  
USB Transmit Hub Port Endpoint 4  
USB Receive Functional Address Endpoint 4  
USB Receive Hub Address Endpoint 4  
USB Receive Hub Port Endpoint 4  
USB Transmit Functional Address Endpoint 5  
USB Transmit Hub Address Endpoint 5  
USB Transmit Hub Port Endpoint 5  
USB Receive Functional Address Endpoint 5  
USB Receive Hub Address Endpoint 5  
USB Receive Hub Port Endpoint 5  
USB Transmit Functional Address Endpoint 6  
USB Transmit Hub Address Endpoint 6  
USB Transmit Hub Port Endpoint 6  
USB Receive Functional Address Endpoint 6  
USB Receive Hub Address Endpoint 6  
USB Receive Hub Port Endpoint 6  
USB Transmit Functional Address Endpoint 7  
USB Transmit Hub Address Endpoint 7  
USB Transmit Hub Port Endpoint 7  
USB Receive Functional Address Endpoint 7  
USB Receive Hub Address Endpoint 7  
USB Receive Hub Port Endpoint 7  
USB Control and Status Endpoint 0 Low  
USB Control and Status Endpoint 0 High  
USB Receive Byte Count Endpoint 0  
USB Type Endpoint 0  
USBCSRH0  
USBCOUNT0  
USBTYPE0  
USBNAKLMT  
USB NAK Limit  
USBTXMAXP1  
USB Maximum Transmit Data Endpoint 1  
USB Transmit Control and Status Endpoint 1 Low  
USB Transmit Control and Status Endpoint 1 High  
USB Maximum Receive Data Endpoint 1  
USB Receive Control and Status Endpoint 1 Low  
USB Receive Control and Status Endpoint 1 High  
USB Receive Byte Count Endpoint 1  
USB Host Transmit Configure Type Endpoint 1  
USB Host Transmit Interval Endpoint 1  
USB Host Configure Receive Type Endpoint 1  
USBTXCSRL1  
USBTXCSRH1  
USBRXMAXP1  
USBRXCSRL1  
USBRXCSRH1  
USBRXCOUNT1  
USBTXTYPE1  
USBTXINTERVAL1  
USBRXTYPE1  
140  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-31. USB Registers (continued)  
OFFSET  
0x11D  
0x120  
0x122  
0x123  
0x124  
0x126  
0x127  
0x128  
0x12A  
0x12B  
0x12C  
0x12D  
0x130  
0x132  
0x133  
0x134  
0x136  
0x137  
0x138  
0x13A  
0x13B  
0x13C  
0x13D  
0x140  
0x142  
0x143  
0x144  
0x146  
0x147  
0x148  
0x14A  
0x14B  
0x14C  
0x14D  
0x150  
0x152  
0x153  
0x154  
0x156  
0x157  
0x158  
0x15A  
0x15B  
0x15C  
0x15D  
0x160  
0x162  
ACRONYM  
REGISTER NAME  
USBRXINTERVAL1  
USBTXMAXP2  
USBTXCSRL2  
USBTXCSRH2  
USBRXMAXP2  
USBRXCSRL2  
USBRXCSRH2  
USBRXCOUNT2  
USBTXTYPE2  
USBTXINTERVAL2  
USBRXTYPE2  
USBRXINTERVAL2  
USBTXMAXP3  
USBTXCSRL3  
USBTXCSRH3  
USBRXMAXP3  
USBRXCSRL3  
USBRXCSRH3  
USBRXCOUNT3  
USBTXTYPE3  
USBTXINTERVAL3  
USBRXTYPE3  
USBRXINTERVAL3  
USBTXMAXP4  
USBTXCSRL4  
USBTXCSRH4  
USBRXMAXP4  
USBRXCSRL4  
USBRXCSRH4  
USBRXCOUNT4  
USBTXTYPE4  
USBTXINTERVAL4  
USBRXTYPE4  
USBRXINTERVAL4  
USBTXMAXP5  
USBTXCSRL5  
USBTXCSRH5  
USBRXMAXP5  
USBRXCSRL5  
USBRXCSRH5  
USBRXCOUNT5  
USBTXTYPE5  
USBTXINTERVAL5  
USBRXTYPE5  
USBRXINTERVAL5  
USBTXMAXP6  
USBTXCSRL6  
USB Host Receive Polling Interval Endpoint 1  
USB Maximum Transmit Data Endpoint 2  
USB Transmit Control and Status Endpoint 2 Low  
USB Transmit Control and Status Endpoint 2 High  
USB Maximum Receive Data Endpoint 2  
USB Receive Control and Status Endpoint 2 Low  
USB Receive Control and Status Endpoint 2 High  
USB Receive Byte Count Endpoint 2  
USB Host Transmit Configure Type Endpoint 2  
USB Host Transmit Interval Endpoint 2  
USB Host Configure Receive Type Endpoint 2  
USB Host Receive Polling Interval Endpoint 2  
USB Maximum Transmit Data Endpoint 3  
USB Transmit Control and Status Endpoint 3 Low  
USB Transmit Control and Status Endpoint 3 High  
USB Maximum Receive Data Endpoint 3  
USB Receive Control and Status Endpoint 3 Low  
USB Receive Control and Status Endpoint 3 High  
USB Receive Byte Count Endpoint 3  
USB Host Transmit Configure Type Endpoint 3  
USB Host Transmit Interval Endpoint 3  
USB Host Configure Receive Type Endpoint 3  
USB Host Receive Polling Interval Endpoint 3  
USB Maximum Transmit Data Endpoint 4  
USB Transmit Control and Status Endpoint 4 Low  
USB Transmit Control and Status Endpoint 4 High  
USB Maximum Receive Data Endpoint 4  
USB Receive Control and Status Endpoint 4 Low  
USB Receive Control and Status Endpoint 4 High  
USB Receive Byte Count Endpoint 4  
USB Host Transmit Configure Type Endpoint 4  
USB Host Transmit Interval Endpoint 4  
USB Host Configure Receive Type Endpoint 4  
USB Host Receive Polling Interval Endpoint 4  
USB Maximum Transmit Data Endpoint 5  
USB Transmit Control and Status Endpoint 5 Low  
USB Transmit Control and Status Endpoint 5 High  
USB Maximum Receive Data Endpoint 5  
USB Receive Control and Status Endpoint 5 Low  
USB Receive Control and Status Endpoint 5 High  
USB Receive Byte Count Endpoint 5  
USB Host Transmit Configure Type Endpoint 5  
USB Host Transmit Interval Endpoint 5  
USB Host Configure Receive Type Endpoint 5  
USB Host Receive Polling Interval Endpoint 5  
USB Maximum Transmit Data Endpoint 6  
USB Transmit Control and Status Endpoint 6 Low  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
141  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-31. USB Registers (continued)  
OFFSET  
0x163  
0x164  
0x166  
0x167  
0x168  
0x16A  
0x16B  
0x16C  
0x16D  
0x170  
0x172  
0x173  
0x174  
0x176  
0x177  
0x178  
0x17A  
0x17B  
0x17C  
0x17D  
0x200  
0x204  
0x208  
0x20C  
0x214  
0x218  
0x21C  
0x224  
0x228  
0x22C  
0x234  
0x238  
0x23C  
0x244  
0x248  
0x24C  
0x254  
0x258  
0x25C  
0x264  
0x268  
0x26C  
0x274  
0x278  
0x27C  
0x304  
0x308  
ACRONYM  
REGISTER NAME  
USBTXCSRH6  
USB Transmit Control and Status Endpoint 6 High  
USBRXMAXP6  
USBRXCSRL6  
USB Maximum Receive Data Endpoint 6  
USB Receive Control and Status Endpoint 6 Low  
USB Receive Control and Status Endpoint 6 High  
USB Receive Byte Count Endpoint 6  
USB Host Transmit Configure Type Endpoint 6  
USB Host Transmit Interval Endpoint 6  
USB Host Configure Receive Type Endpoint 6  
USB Host Receive Polling Interval Endpoint 6  
USB Maximum Transmit Data Endpoint 7  
USB Transmit Control and Status Endpoint 7 Low  
USB Transmit Control and Status Endpoint 7 High  
USB Maximum Receive Data Endpoint 7  
USB Receive Control and Status Endpoint 7 Low  
USB Receive Control and Status Endpoint 7 High  
USB Receive Byte Count Endpoint 7  
USB Host Transmit Configure Type Endpoint 7  
USB Host Transmit Interval Endpoint 7  
USB Host Configure Receive Type Endpoint 7  
USB Host Receive Polling Interval Endpoint 7  
USB DMA Interrupt  
USBRXCSRH6  
USBRXCOUNT6  
USBTXTYPE6  
USBTXINTERVAL6  
USBRXTYPE6  
USBRXINTERVAL6  
USBTXMAXP7  
USBTXCSRL7  
USBTXCSRH7  
USBRXMAXP7  
USBRXCSRL7  
USBRXCSRH7  
USBRXCOUNT7  
USBTXTYPE7  
USBTXINTERVAL7  
USBRXTYPE7  
USBRXINTERVAL7  
USBDMAINTR  
USBDMACTL0  
USB DMA Control 0  
USBDMAADDR0  
USBDMACOUNT0  
USBDMACTL1  
USB DMA Address 0  
USB DMA Count 0  
USB DMA Control 1  
USBDMAADDR1  
USBDMACOUNT1  
USBDMACTL2  
USB DMA Address 1  
USB DMA Count 1  
USB DMA Control 2  
USBDMAADDR2  
USBDMACOUNT2  
USBDMACTL3  
USB DMA Address 2  
USB DMA Count 2  
USB DMA Control 3  
USBDMAADDR3  
USBDMACOUNT3  
USBDMACTL4  
USB DMA Address 3  
USB DMA Count 3  
USB DMA Control 4  
USBDMAADDR4  
USBDMACOUNT4  
USBDMACTL5  
USB DMA Address 4  
USB DMA Count 4  
USB DMA Control 5  
USBDMAADDR5  
USBDMACOUNT5  
USBDMACTL6  
USB DMA Address 5  
USB DMA Count 5  
USB DMA Control 6  
USBDMAADDR6  
USBDMACOUNT6  
USBDMACTL7  
USB DMA Address 6  
USB DMA Count 6  
USB DMA Control 7  
USBDMAADDR7  
USBDMACOUNT7  
USBRQPKTCOUNT1  
USBRQPKTCOUNT2  
USB DMA Address 7  
USB DMA Count 7  
USB Request Packet Count in Block Transfer Endpoint 1  
USB Request Packet Count in Block Transfer Endpoint 2  
142  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
6-31. USB Registers (continued)  
OFFSET  
0x30C  
0x310  
0x314  
0x318  
0x31C  
0x340  
0x342  
0x344  
0x346  
0x348  
0x360  
0x362  
0x363  
0x364  
0x365  
0x400  
0x404  
0x408  
0x40C  
0x410  
0x414  
0x418  
0x41C  
0x430  
0x434  
0x438  
0x43C  
0xFC0  
0xFC4  
0xFC8  
ACRONYM  
REGISTER NAME  
USBRQPKTCOUNT3  
USBRQPKTCOUNT4  
USBRQPKTCOUNT5  
USBRQPKTCOUNT6  
USBRQPKTCOUNT7  
USBRXDPKTBUFDIS  
USBTXDPKTBUFDIS  
USBCTO  
USB Request Packet Count in Block Transfer Endpoint 3  
USB Request Packet Count in Block Transfer Endpoint 4  
USB Request Packet Count in Block Transfer Endpoint 5  
USB Request Packet Count in Block Transfer Endpoint 6  
USB Request Packet Count in Block Transfer Endpoint 7  
USB Receive Double Packet Buffer Disable  
USB Transmit Double Packet Buffer Disable  
USB Chirp Time-out  
USBHHSRTN  
USBHSBT  
USB High Speed to UTM Operating Delay  
USB High Speed Time-out Adder  
USBLPMATTR  
USBLPMCNTRL  
USBLPMIM  
USB LPM Attributes  
USB LPM Control  
USB LPM Interrupt Mask  
USBLPMRIS  
USBLPMFADDR  
USBEPC  
USB LPM Raw Interrupt Status  
USB LPM Function Address  
USB External Power Control  
USBEPCRIS  
USBEPCIM  
USB External Power Control Raw Interrupt Status  
USB External Power Control Interrupt Mask  
USB External Power Control Interrupt Status and Clear  
USB Device RESUME Raw Interrupt Status  
USB Device RESUME Interrupt Mask  
USB Device RESUME Interrupt Status and Clear  
USB General-Purpose Control and Status  
USB VBUS Droop Control  
USBEPCISC  
USBDRRIS  
USBDRIM  
USBDRISC  
USBGPCS  
USBVDC  
USBVDCRIS  
USBVDCIM  
USB VBUS Droop Control Raw Interrupt Status  
USB VBUS Droop Control Interrupt Mask  
USB VBUS Droop Control Interrupt Status and Clear  
USB Peripheral Properties  
USBVDCISC  
USBPP  
USBPC  
USB Peripheral Configuration  
USBCC  
USB Clock Configuration  
6-32. WDT Registers  
OFFSET  
0x0  
ACRONYM  
WDTLOAD  
WDTVALUE  
WDTCTL  
REGISTER NAME  
Watchdog Load  
0x4  
Watchdog Value  
0x8  
Watchdog Control  
0xC  
WDTICR  
Watchdog Interrupt Clear  
Watchdog Raw Interrupt Status  
Watchdog Masked Interrupt Status  
Watchdog Test  
0x10  
WDTRIS  
0x14  
WDTMIS  
0x418  
0xC00  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
WDTTEST  
WDTLOCK  
WDTPeriphID4  
WDTPeriphID5  
WDTPeriphID6  
WDTPeriphID7  
WDTPeriphID0  
WDTPeriphID1  
Watchdog Lock  
Watchdog Peripheral Identification 4  
Watchdog Peripheral Identification 5  
Watchdog Peripheral Identification 6  
Watchdog Peripheral Identification 7  
Watchdog Peripheral Identification 0  
Watchdog Peripheral Identification 1  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
143  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
6-32. WDT Registers (continued)  
OFFSET  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
ACRONYM  
REGISTER NAME  
WDTPeriphID2  
WDTPeriphID3  
WDTPCellID0  
WDTPCellID1  
WDTPCellID2  
WDTPCellID3  
Watchdog Peripheral Identification 2  
Watchdog Peripheral Identification 3  
Watchdog PrimeCell Identification 0  
Watchdog PrimeCell Identification 1  
Watchdog PrimeCell Identification 2  
Watchdog PrimeCell Identification 3  
6.6 Identification  
Device Identification  
Read-only registers in the system control module provide information about the MCU, such as version,  
part number, pin count, operating temperature range, and available peripherals on the device. The Device  
Identification 0 (DID0) and Device Identification 1 (DID1) registers provide details about the version,  
package, and temperature range of the device. The peripheral present registers starting at system control  
offset 0x300, such as the Watchdog Timer Peripheral Present (PPWD) register, provide information on  
how many of each type of module are included on the device. Finally, information about the capabilities of  
the on-chip peripherals are provided at offset 0xFC0 in the register space of each peripheral in the  
peripheral properties registers, such as the GPTM Peripheral Properties (GPTMPP). In addition, four  
unique identifier registers, Unique Identifier n (UNIQUEIDn), provide a 128-bit unique identifier that cannot  
be modified for each device.  
JTAG Identification  
6-3 shows the format for the 32-bit IDCODE Data Register defined by the IEEE Standard 1149.1. The  
major uses of the JTAG port are for manufacturer testing of component assembly and program  
development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction  
outputs a value of 0x4BA0.0477. This value lets the debuggers automatically configure themselves to  
work correctly with the Cortex-M4F during debug.  
31  
28 27  
12 11  
1 0  
TDI  
TDO  
Version  
Part Number  
Manufacturer ID  
1
6-3. IDCODE Register Format  
ROM Version  
The internal ROM is at address 0x0100.0000 of the device memory map.  
6.7 Boot Modes  
After POR and device initialization occurs, the hardware loads the stack pointer from either flash or ROM,  
based on the presence of an application in flash and the state of the EN bit in the BOOTCFG register.  
If the flash address 0x0000.0004 contains an erased word (value 0xFFFF.FFFF) or the EN bit is of the  
BOOTCFG register is clear, the stack pointer and reset vector pointer are loaded from ROM at address  
0x0100.0000 and 0x0100.0004, respectively. The bootloader executes and configures the available boot  
slave interfaces and waits for a programmer, host PC, or boot server to load its software. The bootloader  
uses a simple packet interface to provide synchronous communication with the device for I2C, SSI, and  
UART. The speed of the bootloader is determined by the frequency of the internal oscillator (PIOSC) or  
external crystal (if connected).  
The ROM invokes the USB and Ethernet bootloader only when an external crystal is detected. Also, the  
Ethernet bootloader works only when a 25-MHz crystal is detected.  
The following serial interfaces can be used:  
144  
Detailed Description  
版权 © 2017, Texas Instruments Incorporated  
 
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
UART0  
SSI0  
I2C0  
USB  
Ethernet MAC and Integrated PHY  
If the check of the flash at address 0x0000.0004 contains a valid reset vector value and the EN bit in the  
BOOTCFG register is set, the stack pointer and reset vector values are fetched from the beginning of  
flash. This application stack pointer and reset vector are loaded and the processor executes the  
application directly. Otherwise, the stack pointer and reset vector values are fetched from the beginning of  
ROM.  
版权 © 2017, Texas Instruments Incorporated  
Detailed Description  
145  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
7 Applications, Implementation, and Layout  
Information in the following Applications section is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI's customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
7.1 System Design Guidelines  
The SimpleLink MSP432E4 microcontrollers are highly-integrated system-on-chip (SoC) devices with  
extensive interface and processing capabilities. Consequently, there are many factors to consider when  
creating a schematic and designing a circuit board. By following the recommendations in this design  
guide, your confidence will increase that the board will work successfully upon initial power up.  
System Design Guidelines for MSP432E4 SimpleLink™ Microcontrollers  
146  
Applications, Implementation, and Layout  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
8 器件和文档支持  
8.1 入门和后续步骤  
TI 提供大量的开发工具。下面是用于评估器件性能、生成代码和开发解决方案的工具和软件。  
8.2 器件命名规则  
为了指出产品开发周期所处的阶段,TI 为所有微处理器 (MPU) 和支持工具的产品型号分配了前缀。每个器  
件都具有以下三个前缀中的其中一个:XMSPMS MSP。这些前缀代表了产品开发的发展阶段,即从工  
程原型直到完全合格的生产器件和工具。  
器件开发进化流程:  
XMS  
PMS  
MSP  
试验器件不一定代表最终器件的电气规范标准,并且可能不使用生产组装流程。  
原型器件不一定是最终器件模型,并且不一定符合最终电气标准规范。  
完全合格的器件模型的生产版本。  
试验器件和工具在供货时附带如下免责声明:  
开发中的产品用于内部评估用途。”  
生产器件和开发支持工具已进行完全特性描述,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书  
适用。  
预测显示原型器件的故障率大于标准生产器件。由于这些器件的预计最终使用故障率仍未定义,德州仪器  
(TI) 建议不要将它们用于任何生产系统。只有合格的产品器件将被使用。  
TI 器件的命名规则也包括一个带有器件系列名称的后缀。这个后缀表示封装类型(例如,ZAD)和温度范围  
(例如,空白是默认的商业级温度范围)。8-1 显示了完整器件名称的解读图例。  
有关器件的订购部件号,请参阅本文档的封装选项附录、ti.com.cn 或者与您的 TI 销售代表联系。  
有关裸片器件命名规则标记 的 其他说明,请参阅具体器件的《器件勘误表》。  
MSP 432  
E
411Y  
T
ZAD R  
Processor Family  
Platform  
Series  
Feature Set  
Optional: Distribution Format  
Packaging  
Optional: Temperature Range  
Processor Family  
Platform  
MSP = Mixed-Signal Processor  
XMS = Experimental Silicon  
432 = TI’s 32-Bit Low-Power Microcontroller Platform  
E = Ethernet and Wired Connectivity Series  
Series  
First Digit  
4 = Flash-based devices  
up to 120 MHz  
Second Digit  
1 = LCD  
0 = No LCD  
Third Digit  
1 = ADC  
0 = No ADC  
Fourth Digit  
Y = 1MB Flash  
Feature Set  
T = –40°C to 105°C  
Optional:  
Temperature Range  
Packaging  
http://www.ti.com/packaging  
Optional:  
Distribution  
Format  
T = Small reel  
R = Large reel  
No markings = Tube or tray  
8-1. 器件命名规则  
版权 © 2017, Texas Instruments Incorporated  
器件和文档支持  
147  
 
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
8.3 工具和软件  
设计套件与评估模块  
MSP432E401Y SimpleLink 微控制器 LaunchPad 开发套件 SimpleLink 以太网 MSP432E401Y 微控制器  
LaunchPad 开发套件是一款适用于基于 SimpleLink Arm Cortex-M4F 以太网微控制器的低成  
本评估平台。以太网 LaunchPad 开发套件设计的重点突出了 MSP432E401Y 微控制器及其片  
10/100 以太网 MAC PHYUSB 2.0、休眠模块、运动控制脉宽调制以及大量同步串行  
连接。  
软件  
SimpleLink MSP432E4 软件开发套件 (SDK) MSP432E4 SDK 是一套综合性的软件包,可帮助工程师在德  
州仪器 (TI) MSP432E4 MCU 快速开发 功能强大的 应用。MSP432E4 SDK 由多个兼容软  
件组件构成,其中包括 RTOS、驱动程序和中间件以及一些如何一起使用这些组件的示例。此  
外,还提供了各种示例来展示如何使用各功能区和各个受支持的器件,同时这些示例还可用作  
您自己的项目的起点。  
开发工具  
适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境 Code Composer Studio 是一种集成开  
发环境 (IDE),支持所有 MSP430 SimpleLink MSP432 微控制器器件。Code Composer  
Studio 包含一整套开发和调试嵌入式应用 的嵌入式软件实用程序。它包含了优化的 C/C++ 编  
译器、源代码编辑器、项目构建环境、调试器、描述器以及其他多种 功能。借助集成式 TI 资  
源浏览器,您可以访问适用于您的器件和开发板的更多示例、库、可执行代码和文档。有关更  
多信息,请参阅《适用于 SimpleLink™ MSP432™ 微控制器的 Code Composer Studio™ IDE  
用户指南》。  
IAR 嵌入式工作平台 Kickstart 适用于 MSP IAR 嵌入式工作平台 Kickstart 是一套完整的调试器和  
C/C++ 编译器工具链, 可用于 构建和调试基于 MSP430 SimpleLink MSP432 微控制器的  
嵌入式应用。MSP430 器件和 MSP432 器件的 C/C++ 编译器代码尺寸限制分别为 8KB 和  
32KB。有关更多信息,请参阅《适用于 SimpleLink™ MSP432™ 微控制器的 IAR Embedded  
Workbench® for ARM® 用户指南》。  
Arm® Keil® MDK – 免费 32KB IDE Arm Keil MDK 是一套完整的调试器和 C/C++ 编译器工具链,可用于  
构建和调试嵌入式 应用。Keil MDK 支持低功耗和高性能 SimpleLink MSP432 MCU 系列,并  
且它还包括一个全集成调试器,适用于源代码级调试和反汇编级调试,支持复杂代码和数据断  
点。对于此 IDESimpleLink MSP432 软件开发套件 (SDK) 中仅支持非 RTOS 示例。有关更  
多信息,请参阅《适用于 SimpleLink™ MSP432™ 微控制器的 Arm® Keil® MDK 用户指  
南》。  
MSP432E CMSIS 器件系列软件包 TI MSP432E 器件提供了符合 CMSIS 标准的器件系列软件包。该软  
件包将 MSP432E 器件支持添加到 IAR EWArm 8.xKeil MDK 5.x Atollic True Studio  
7.x。在 IAR EWArm 中,该软件包是可选的,因为 IDE 本身便支持这些器件。  
适用于 MSP432 的调试器 根据设计,SimpleLink MSP432E MCU 可与 TI 及第三方供应商的各种调试器结  
合使用。MSP-FET 不支持 MSP432E 器件系列。  
148  
器件和文档支持  
版权 © 2017, Texas Instruments Incorporated  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
8.4 文档支持  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
以下文档描述了 MCU、相关外设和其他技术材料。  
勘误表  
MSP432E4 SimpleLink™ 微控制器器件勘误表》 介绍与已发布的规格不同的器件行为  
应用报告  
SimpleLink™ MSP432E4 微控制器的系统设计指南》 SimpleLink MSP432E4 微控制器是高度集成的片  
上系统 (SOC) 器件,具有扩展接口和处理功能。因此,在创建原理图和设计电路板时要考虑  
很多因素。通过采用本设计指南中的建议,您会更有信心,设计的电路板在首次加电时就可以  
有效工作。  
《在 SimpleLink MSP432E4 微控制器上使用 I2C 主机的功能集》 内部集成电路 (I2C) 是一个多主多从单  
端总线,通常用于将速度较低的外设 IC 连接到处理器和微控制器。从器件涵盖从非易失性存  
储器到数据采集器件在内的各类型器件,如模数转换器 (ADC)、传感器等。本应用报告展示了  
如何在 SimpleLink MSP432E4 微控制器上使用功能丰富的 I2C 主机与系统中的多个从器件通  
信。  
《通过 JTAG 接口使用 SimpleLink MSP432E4 微控制器》 IEEE 标准 1149.1 - 1990IEEE 标准测试访  
问端口和边界扫描架构 (JTAG) 是一种用于验证设计和测试组装后的印刷电路板的方法。它是  
将数据传输到嵌入式系统的非易失性存储器和调试嵌入式软件的主要手段。本应用报告介绍了  
JTAG 的物理连接和设计自定义电路板时需要考虑的注意事项。它还说明了如何使用  
SimpleLink MSP432E4 LaunchPad 开发套件上的 JTAG 接口,以通过外部调试器调试板载微  
控制器,或使用板载调试器调试非板载微控制器。  
用户指南  
MSP432E4 SimpleLink™ 微控制器技术参考手册》 介绍 MSP432E4 系列微控制器,包括围绕 Arm  
Cortex-M4F 内核设计的片上系统 (SoC) 件的功能块。  
MSP432E4 SimpleLink™ 微控制器引导加载程序用户指南》 引导加载程序是一小段代码,可以编程到  
闪存的开始位置,以便用作应用加载程序。也可以 用作 在 SimpleLink MSP432E4 基于 Arm  
Cortex-M4 的微控制器上运行的应用的更新机制。引导加载程序可以搭建为使用 UART、  
SSII2CCAN、以太网或 USB 端口来更新微控制器上的代码。通过源代码修改,或者简单  
地在编译时决定要包括的例程,可以定制引导加载程序。由于提供了完整源代码,因此引导加  
载程序可完全自定义  
版权 © 2017, Texas Instruments Incorporated  
器件和文档支持  
149  
MSP432E401Y  
ZHCSH09 OCTOBER 2017  
www.ti.com.cn  
8.5 Community Resources  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术  
规范,并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社为了促进工程师之间的合作,我们创建了 TI 工程师对工程师 (E2E) 社区。在 e2e.ti.com  
中,您可以提问、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
TI Embedded Processors Wiki Established to help developers get started with Embedded Processors  
from Texas Instruments and to foster innovation and growth of general knowledge about the  
hardware and software surrounding these devices.  
8.6 商标  
SimpleLink, LaunchPad, MSP432, E2E are trademarks of Texas Instruments.  
ARM, Cortex, Thumb, Thumb-2, PrimeCell, Arm7 are registered trademarks of Arm Limited.  
Bluetooth is a registered trademark of Bluetooth SIG.  
Wi-Fi is a registered trademark of Wi-Fi Alliance.  
All other trademarks are the property of their respective owners.  
8.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.8 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过非披露义务的披露方获得的任何产品或技术数据  
(其中包括软件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制  
产品或此项技术的任何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政  
府机构授权的情况下,接收方不得在知情的情况下,以直接或间接的方式将其出口。  
8.9 术语表  
TI 术语表  
这份术语表列出并解释术语、缩写和定义。  
150  
器件和文档支持  
版权 © 2017, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: MSP432E401Y  
MSP432E401Y  
www.ti.com.cn  
ZHCSH09 OCTOBER 2017  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
机械、封装和可订购信息  
151  
提交文档反馈意见  
产品主页链接: MSP432E401Y  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
MSP432E401YTPDT  
MSP432E401YTPDTR  
ACTIVE  
TQFP  
TQFP  
PDT  
128  
128  
90  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
MSP432  
E401YT  
Samples  
Samples  
ACTIVE  
PDT  
1000 RoHS & Green  
NIPDAU  
MSP432  
E401YT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2023  
Addendum-Page 2  
MECHANICAL DATA  
MPQF013 – NOVEMBER 1995  
PDT (S-PQFP-G128)  
PLASTIC QUAD FLATPACK  
0,23  
0,13  
M
0,40  
96  
0,05  
65  
64  
97  
33  
128  
0,13 NOM  
1
32  
12,40 TYP  
Gage Plane  
14,05  
SQ  
13,95  
0,25  
16,10  
SQ  
0,05 MIN  
15,90  
0°5°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4087726/A 11/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

MSP432E401YTPDT

具有以太网、CAN、1MB 闪存和 256kB RAM 的 SimpleLink™ 32 位 Arm Cortex-M4F MCU | PDT | 128 | -40 to 105
TI

MSP432E401YTPDTR

具有以太网、CAN、1MB 闪存和 256kB RAM 的 SimpleLink™ 32 位 Arm Cortex-M4F MCU | PDT | 128 | -40 to 105
TI

MSP432E411Y

具有以太网、CAN、TFT LCD、1MB 闪存和 256kB RAM 的 SimpleLink™ 32 位 Arm Cortex-M4F MCU
TI

MSP432E411YTZAD

具有以太网、CAN、TFT LCD、1MB 闪存和 256kB RAM 的 SimpleLink™ 32 位 Arm Cortex-M4F MCU | ZAD | 212 | -40 to 105
TI

MSP432E411YTZADR

具有以太网、CAN、TFT LCD、1MB 闪存和 256kB RAM 的 SimpleLink™ 32 位 Arm Cortex-M4F MCU | ZAD | 212 | -40 to 105
TI

MSP4408G

Multistandard Sound Processor
MICRONAS

MSP4408G-C4PP

Consumer Circuit, CMOS, PDIP64, 0.750 INCH, PLASTIC, MS-021, SDIP-64
TDK

MSP4408G-C4QA

Consumer Circuit, CMOS, PQFP80, 14 X 20 MM, 2.70 MM HEIGHT, PLASTIC, MS-022, MQFP-80
TDK

MSP4408G-C4QI

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, 2 MM HEIGHT, PLASTIC, MS-022, MQFP-64
TDK

MSP4408GFH

Consumer Circuit, PQFP64, PLASTIC, LQFP-64
TDK

MSP4408GPP

Consumer Circuit, CMOS, PDIP64, 0.750 INCH, PLASTIC, SDIP-64
TDK

MSP4408GQA

Consumer Circuit, CMOS, PQFP80, 14 X 20 MM, 2.70 MM HEIGHT, PLASTIC, QFP-80
TDK