NN325-Q1 [TI]

多感应触摸管理器;
NN325-Q1
型号: NN325-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

多感应触摸管理器

文件: 总73页 (文件大小:1870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Multisensing Touch Manager  
1
FEATURES  
2
Qualified for Automotive Applications  
Brownout Detector  
Serial Onboard Programming, No External  
Programming Voltage Needed, Programmable  
Code Protection by Security Fuse  
Low Supply Voltage Range: 1.8 V to 3.6 V  
Ultra-Low-Power Consumption  
Active Mode: 270 µA at 1 MHz, 2.2 V  
Standby Mode: 0.7 µA  
Bootstrap Loader (BSL)  
On-Chip Emulation Module  
Family Members Include:  
Off Mode (RAM Retention): 0.1 µA  
Ultra-Fast Wakeup From Standby Mode in  
Less Than 1 µs  
NN325  
32KB + 256B Flash Memory  
1KB RAM  
16-Bit RISC Architecture, 62.5-ns Instruction  
Cycle Time  
Basic Clock Module Configurations  
Available in a 40-Pin QFN Package (RHA)  
Internal Frequencies up to 16 MHz With  
Four Calibrated Frequencies to ±1%  
For Complete Module Descriptions, See the  
MSP430x2xx Family User's Guide (SLAU144)  
Internal Very-Low-Power Low-Frequency  
Oscillator  
APPLICATIONS  
Optical Touch Screen  
32-kHz Crystal  
High-Frequency (HF) Crystal up to 16 MHz  
Resonator  
DESCRIPTION  
The NN325 device is an ultra-low-power multisensing  
touch manager that includes optimized peripherals  
dedicated for high-performance touch-sensing  
applications. The device is optimized for ultra-low  
power operation using five low-power modes. The  
embedded powerful 16-bit RISC core based on a  
MSP430™ architecture offers 16-bit registers and  
constant generators to achieve maximum code  
efficiency. The digitally controlled oscillator (DCO)  
allows wakeup from low-power modes to active mode  
in less than 1 µs. The ultra-low-power core comes  
together with two built-in 16-bit timers, a universal  
serial communication interface (USCI), a 10-bit ADC  
with integrated reference and data transfer controller  
(DTC), and 32 I/O pins.  
External Digital Clock Source  
External Resistor  
16-Bit Timer_A With Three Capture/Compare  
Registers  
16-Bit Timer_B With Three Capture/Compare  
Registers  
Universal Serial Communication Interface  
(USCI)  
Enhanced UART With Auto-Baudrate  
Detection (LIN)  
IrDA Encoder and Decoder  
Synchronous SPI  
I2C  
10-Bit 200-ksps Analog-to-Digital Converter  
(ADC) With Internal Reference, Sample-and-  
Hold, Autoscan, and Data Transfer Controller  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
MSP430 is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Functional Block Diagram  
VCC  
VSS  
P1.x/P2.x  
2x8  
P3.x/P4.x  
2x8  
XIN  
XOUT  
ADC10  
10-Bit  
Ports P1/P2  
ACLK  
Ports P3/P4  
Basic Clock  
System+  
2x8 I/O  
Interrupt  
capability,  
pullup/down  
resistors  
Flash  
32kB  
RAM  
1kB  
SMCLK  
12  
2x8 I/O  
pullup/down  
resistors  
Channels,  
Autoscan,  
DTC  
MCLK  
MAB  
16MHz  
CPU  
incl. 16  
Registers  
MDB  
Emulation  
(2BP)  
Timer_B3  
USCI_A0:  
UART/LIN,  
IrDA, SPI  
Watchdog  
WDT+  
Timer_A3  
JTAG  
Interface  
Brownout  
Protection  
3 CC  
Registers,  
Shadow  
Reg  
3 CC  
Registers  
USCI_B0:  
SPI, I2C  
15/16Bit  
SpyBi Wire  
RST/NMI  
2
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
Device Pinout  
RHA PACKAGE  
(TOP VIEW)  
39 38 37 36 35 34 33 32  
DVSS  
XOUT/P2.7  
1
2
3
4
5
6
7
8
9
10  
30 P1.1/TA0  
29 P1.0/TACLK/ADC10CLK  
28 P2.4/TA2/A4/VREF+/VeREF+  
27 P2.3/TA1/A3/VREF−/VeREF−  
26 P3.7/A7  
XIN/P2.6  
DVSS  
RST/NMI/SBWTDIO  
P2.0/ACLK/A0  
25 P3.6/A6  
P2.1/TAINCLK/SMCLK/A1  
P2.2/TA0/A2  
24 P3.5/UCA0RXD/UCA0SOMI  
23 P3.4/UCA0TXD/UCA0SIMO  
22 P4.7/TBCLK  
P3.0/UCB0STE/UCA0CLK/A5  
P3.1/UCB0SIMO/UCB0SDA  
21 P4.6/TBOUTH/A15  
12 13 14 15 16 17 18 19  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Table 1. Terminal Functions  
TERMINAL  
NAME  
NO.  
I/O  
I/O  
I/O  
DESCRIPTION  
RHA  
General-purpose digital I/O pin  
Timer_A, clock signal TACLK input  
ADC10, conversion clock  
P1.0/TACLK/ADC10CLK  
P1.1/TA0  
29  
30  
General-purpose digital I/O pin  
Timer_A, capture: CCI0A input, compare: OUT0 output  
BSL transmit  
General-purpose digital I/O pin  
P1.2/TA1  
P1.3/TA2  
31  
32  
I/O  
I/O  
Timer_A, capture: CCI1A input, compare: OUT1 output  
General-purpose digital I/O pin  
Timer_A, capture: CCI2A input, compare: OUT2 output  
General-purpose digital I/O pin  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
33  
34  
35  
36  
I/O  
I/O  
I/O  
I/O  
SMCLK signal output  
Test Clock input for device programming and test  
General-purpose digital I/O pin  
Timer_A, compare: OUT0 output  
Test Mode Select input for device programming and test  
General-purpose digital I/O pin  
P1.6/TA1/TDI/TCLK  
P1.7/TA2/TDO/TDI(1)  
Timer_A, compare: OUT1 output  
Test Data Input or Test Clock Input for programming and test  
General-purpose digital I/O pin  
Timer_A, compare: OUT2 output  
Test Data Output or Test Data Input for programming and test  
General-purpose digital I/O pin  
ACLK output  
P2.0/ACLK/A0  
6
7
I/O  
I/O  
ADC10, analog input A0  
General-purpose digital I/O pin  
Timer_A, clock signal at INCLK  
SMCLK signal output  
P2.1/TAINCLK/SMCLK/A1  
ADC10, analog input A1  
General-purpose digital I/O pin  
Timer_A, capture: CCI0B input, compare: OUT0 output  
BSL receive  
P2.2/TA0/A2  
8
I/O  
I/O  
I/O  
ADC10, analog input A2  
General-purpose digital I/O pin  
Timer_A, capture CCI1B input, compare: OUT1 output  
ADC10, analog input A3  
P2.3/TA1/A3/ VREF-/VeREF-  
27  
28  
Negative reference voltage output/input  
General-purpose digital I/O pin  
Timer_A, compare: OUT2 output  
ADC10, analog input A4  
P2.4/TA2/A4/ VREF+/VeREF+  
Positive reference voltage output/input  
(1) TDO or TDI is selected via JTAG instruction.  
Submit Documentation Feedback  
4
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Table 1. Terminal Functions (continued)  
TERMINAL  
NAME  
NO.  
I/O  
DESCRIPTION  
RHA  
General-purpose digital I/O pin  
P2.5/ROSC  
XIN/P2.6  
40  
3
I/O  
I/O  
I/O  
Input for external DCO resistor to define DCO frequency  
Input terminal of crystal oscillator  
General-purpose digital I/O pin  
Output terminal of crystal oscillator  
General-purpose digital I/O pin(2)  
General-purpose digital I/O pin  
XOUT/P2.7  
2
USCI_B0 slave transmit enable  
USCI_A0 clock input/output  
P3.0/UCB0STE/UCA0CLK/A5  
9
I/O  
ADC10, analog input A5  
General-purpose digital I/O pin  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
P3.4/UCA0TXD/UCA0SIMO  
P3.5/UCA0RXD/UCA0SOMI  
10  
11  
12  
23  
24  
I/O  
I/O  
I/O  
I/O  
I/O  
USCI_B0 slave in, master out (SPI mode)  
USCI_B0 SDA I2C data (I2C mode)  
General-purpose digital I/O pin  
USCI_B0 slave out, master in (SPI mode)  
USCI_B0 SCL I2C clock (I2C mode)  
General-purpose digital I/O pin  
USCI_B0 clock input/output  
USCI_A0 slave transmit enable  
General-purpose digital I/O pin  
USCI_A0 transmit data output (UART mode)  
USCI_A0 slave in, master out (SPI mode)  
General-purpose digital I/O pin  
USCI_A0 receive data input in UART mode  
USCI_A0 slave out/master in SPI mode  
General-purpose digital I/O pin  
P3.6/A6  
P3.7/A7  
25  
26  
I/O  
I/O  
ADC10 analog input A6  
General-purpose digital I/O pin  
ADC10 analog input A7  
General-purpose digital I/O pin  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
15  
16  
17  
I/O  
I/O  
I/O  
Timer_B, capture: CCI0A input, compare: OUT0 output  
General-purpose digital I/O pin  
Timer_B, capture: CCI1A input, compare: OUT1 output  
General-purpose digital I/O pin  
Timer_B, capture: CCI2A input, compare: OUT2 output  
General-purpose digital I/O pin  
Timer_B, capture: CCI0B input, compare: OUT0 output  
ADC10 analog input A12  
P4.3/TB0/A12  
P4.4/TB1/A13  
18  
19  
I/O  
I/O  
General-purpose digital I/O pin  
Timer_B, capture: CCI1B input, compare: OUT1 output  
ADC10 analog input A13  
(2) If XOUT/P2.7 is used as an input, excess current flows until P2SEL.7 is cleared. This is due to the oscillator output driver connection to  
this pad after reset.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Table 1. Terminal Functions (continued)  
TERMINAL  
NAME  
NO.  
I/O  
DESCRIPTION  
RHA  
General-purpose digital I/O pin  
Timer_B, compare: OUT2 output  
ADC10 analog input A14  
P4.5/TB2/A14  
20  
21  
I/O  
General-purpose digital I/O pin  
Timer_B, switch all TB0 to TB3 outputs to high impedance  
ADC10 analog input A15  
P4.6/TBOUTH/A15  
I/O  
General-purpose digital I/O pin  
P4.7/TBCLK  
22  
5
I/O  
I
Timer_B, clock signal TBCLK input  
Reset or nonmaskable interrupt input  
RST/NMI/SBWTDIO  
Spy-Bi-Wire test data input/output during programming and test  
Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to  
TEST.  
TEST/SBWTCK  
37  
I
Spy-Bi-Wire test clock input during programming and test  
Digital supply voltage  
DVCC  
38, 39  
14  
AVCC  
Analog supply voltage  
DVSS  
1, 4  
13  
Digital ground reference  
AVSS  
Analog ground reference  
QFN Pad  
Pad  
NA  
QFN package pad; connection to DVSS recommended.  
6
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Short-Form Description  
Program Counter  
Stack Pointer  
PC/R0  
CPU  
The MSP430™ CPU has a 16-bit RISC architecture  
that is highly transparent to the application. All  
operations, other than program-flow instructions, are  
performed as register operations in conjunction with  
seven addressing modes for source operand and four  
addressing modes for destination operand.  
SP/R1  
Status Register  
SR/CG1/R2  
Constant Generator  
CG2/R3  
R4  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
General-Purpose Register  
The CPU is integrated with 16 registers that provide  
reduced instruction execution time. The register-to-  
register operation execution time is one cycle of the  
CPU clock.  
R5  
R6  
R7  
Four of the registers, R0 to R3, are dedicated as  
program counter, stack pointer, status register, and  
constant generator respectively. The remaining  
registers are general-purpose registers.  
R8  
R9  
Peripherals are connected to the CPU using data,  
address, and control buses and can be handled with  
all instructions.  
R10  
R11  
Instruction Set  
The instruction set consists of 51 instructions with  
three formats and seven address modes. Each  
instruction can operate on word and byte data.  
Table 2 shows examples of the three types of  
instruction formats; Table 3 shows the address  
modes.  
R12  
R13  
R14  
R15  
Table 2. Instruction Word Formats  
INSTRUCTION FORMAT  
Dual operands, source-destination  
EXAMPLE  
ADD R4,R5  
CALL R8  
JNE  
OPERATION  
R4 + R5 R5  
Single operands, destination only  
PC (TOS), R8 PC  
Relative jump, unconditional/conditional  
Jump-on-equal bit = 0  
Table 3. Address Mode Descriptions  
(1)  
(2)  
ADDRESS MODE  
Register  
S
D
SYNTAX  
MOV Rs,Rd  
EXAMPLE  
OPERATION  
R10 R11  
MOV R10,R11  
Indexed  
MOV X(Rn),Y(Rm)  
MOV EDE,TONI  
MOV &MEM,&TCDAT  
MOV @Rn,Y(Rm)  
MOV 2(R5),6(R6)  
M(2+R5) M(6+R6)  
M(EDE) M(TONI)  
M(MEM) M(TCDAT)  
M(R10) M(Tab+R6)  
Symbolic (PC relative)  
Absolute  
Indirect  
MOV @R10,Tab(R6)  
MOV @R10+,R11  
MOV #45,TONI  
M(R10) R11  
R10 + 2 R10  
Indirect autoincrement  
Immediate  
MOV @Rn+,Rm  
MOV #X,TONI  
#45 M(TONI)  
(1) S = source  
(2) D = destination  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: NN325-Q1  
 
 
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Operating Modes  
The NN325-Q1 has one active mode and five software-selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the five low-power modes, service the request, and restore back to the  
low-power mode on return from the interrupt program.  
The following six operating modes can be configured by software:  
Active mode (AM)  
All clocks are active.  
Low-power mode 0 (LPM0)  
CPU is disabled.  
ACLK and SMCLK remain active. MCLK is disabled.  
Low-power mode 1 (LPM1)  
CPU is disabled ACLK and SMCLK remain active. MCLK is disabled.  
DCO dc-generator is disabled if DCO not used in active mode.  
Low-power mode 2 (LPM2)  
CPU is disabled.  
MCLK and SMCLK are disabled.  
DCO dc-generator remains enabled.  
ACLK remains active.  
Low-power mode 3 (LPM3)  
CPU is disabled.  
MCLK and SMCLK are disabled.  
DCO dc-generator is disabled.  
ACLK remains active.  
Low-power mode 4 (LPM4)  
CPU is disabled.  
ACLK is disabled.  
MCLK and SMCLK are disabled.  
DCO dc-generator is disabled.  
Crystal oscillator is stopped.  
8
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Interrupt Vector Addresses  
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFC0h.  
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.  
If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, if flash is not programmed), the  
CPU goes into LPM4 immediately after power up.  
Table 4. Interrupt Vector Addresses  
SYSTEM  
INTERRUPT  
INTERRUPT SOURCE  
INTERRUPT FLAG  
WORD ADDRESS  
PRIORITY  
Power-up  
External reset  
Watchdog  
PORIFG  
RSTIFG  
WDTIFG  
KEYV(2)  
Reset  
0FFFEh  
31, highest  
Flash key violation  
PC out-of-range(1)  
NMI  
Oscillator fault  
Flash memory access violation  
NMIIFG  
OFIFG  
(non)-maskable,  
(non)-maskable,  
(non)-maskable  
0FFFCh  
30  
ACCVIFG(2)(3)  
Timer_B3  
TBCCR0 CCIFG(4)  
maskable  
0FFFAh  
0FFF8h  
29  
28  
TBCCR1 and TBCCR2 CCIFGs,  
TBIFG(2)(4)  
Timer_B3  
maskable  
0FFF6h  
0FFF4h  
0FFF2h  
27  
26  
25  
Watchdog Timer  
Timer_A3  
WDTIFG  
maskable  
maskable  
TACCR0 CCIFG (see Note 3)  
TACCR1 CCIFG  
TACCR2 CCIFG  
TAIFG(2)(4)  
Timer_A3  
maskable  
0FFF0h  
24  
USCI_A0/USCI_B0 Receive  
USCI_A0/USCI_B0 Transmit  
ADC10  
UCA0RXIFG, UCB0RXIFG(2)  
UCA0TXIFG, UCB0TXIFG(2)  
ADC10IFG(4)  
maskable  
maskable  
maskable  
0FFEEh  
0FFECh  
0FFEAh  
0FFE8h  
23  
22  
21  
20  
I/O Port P2  
(eight flags)  
P2IFG.0 to P2IFG.7(2)(4)  
P1IFG.0 to P1IFG.7(2)(4)  
maskable  
maskable  
0FFE6h  
0FFE4h  
19  
18  
I/O Port P1  
(eight flags)  
0FFE2h  
0FFE0h  
17  
16  
15  
(5)  
(6)  
0FFDEh  
0FFDCh to 0FFC0h  
14 to 0, lowest  
(1) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from  
within unused address range.  
(2) Multiple source flags  
(3) (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.  
Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.  
(4) Interrupt flags are located in the module.  
(5) This location is used as bootstrap loader security key (BSLSKEY).  
A 0AA55h at this location disables the BSL completely.  
A zero (0h) disables the erasure of the flash if an invalid password is supplied.  
(6) The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if  
necessary.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Special Function Registers  
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits  
not allocated to a functional purpose are not physically present in the device. Simple software access is provided  
with this arrangement.  
Legend  
rw  
Bit can be read and written.  
rw-0, 1  
rw-(0), (1)  
Bit can be read and written. It is Reset or Set by PUC.  
Bit can be read and written. It is Reset or Set by POR.  
SFR bit is not present in device.  
Table 5. Interrupt Enable 1  
Address  
00h  
7
6
5
4
3
2
1
0
ACCVIE  
rw-0  
NMIIE  
rw-0  
OFIE  
rw-0  
WDTIE  
rw-0  
WDTIE  
Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval  
timer mode.  
OFIE  
Oscillator fault interrupt enable  
(Non)maskable interrupt enable  
Flash access violation interrupt enable  
NMIIE  
ACCVIE  
Table 6. Interrupt Enable 2  
Address  
7
6
5
4
3
2
1
0
01h  
UCB0TXIE  
rw-0  
UCB0RXIE  
rw-0  
UCA0TXIE  
rw-0  
UCA0RXIE  
rw-0  
UCA0RXIE  
UCA0TXIE  
UCB0RXIE  
UCB0TXIE  
USCI_A0 receive-interrupt enable  
USCI_A0 transmit-interrupt enable  
USCI_B0 receive-interrupt enable  
USCI_B0 transmit-interrupt enable  
Table 7. Interrupt Flag Register 1  
Address  
02h  
7
6
5
4
3
2
1
0
NMIIFG  
rw-0  
RSTIFG  
rw-(0)  
PORIFG  
rw-(1)  
OFIFG  
rw-1  
WDTIFG  
rw-(0)  
WDTIFG  
Set on watchdog timer overflow (in watchdog mode) or security key violation.  
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.  
OFIFG  
Flag set on oscillator fault  
RSTIFG  
PORIFG  
NMIIFG  
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up.  
Power-on reset interrupt flag. Set on VCC power up.  
Set via RST/NMI pin  
Table 8. Interrupt Flag Register 2  
Address  
03h  
7
6
5
4
3
2
1
0
UCB0TXIFG UCB0RXIFG UCA0TXIFG UCA0RXIFG  
rw-1 rw-0 rw-1 rw-0  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
USCI_A0 receive-interrupt flag  
USCI_A0 transmit-interrupt flag  
USCI_B0 receive-interrupt flag  
USCI_B0 transmit-interrupt flag  
10  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Memory Organization  
Table 9. Memory Organization  
NN325  
Memory  
Main: interrupt vector  
Main: code memory  
Size  
Flash  
Flash  
32KB Flash  
0FFFFh-0FFC0h  
0FFFFh-08000h  
Size  
Flash  
256 Byte  
010FFh-01000h  
Information memory  
Boot memory  
RAM  
Size  
ROM  
1KB  
0FFFh-0C00h  
1KB  
05FFh-0200h  
Size  
16-bit  
8-bit  
8-bit SFR  
01FFh-0100h  
0FFh-010h  
0Fh-00h  
Peripherals  
Bootstrap Loader (BSL)  
The bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface.  
Access to the NN325-Q1 memory via the BSL is protected by user-defined password. For complete description  
of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader  
User’s Guide (SLAU319).  
Table 10. BSL Function Pins  
BSL FUNCTION  
Data transmit  
Data receive  
RHA PACKAGE PINS  
30 - P1.1  
8 - P2.2  
Flash Memory  
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The  
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:  
Flash memory has n segments of main memory and four segments of information memory (A to D) of  
64 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments A to D can be erased individually, or as a group with segments 0 to n.  
Segments A to D are also called information memory.  
Segment A contains calibration data. After reset, segment A is protected against programming and erasing. It  
can be unlocked, but care should be taken not to erase this segment if the device-specific calibration data is  
required.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: NN325-Q1  
 
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).  
Oscillator and System Clock  
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal  
oscillator, an internal very-low-power low-frequency oscillator, an internal digitally-controlled oscillator (DCO), and  
a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low  
system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in  
less than 1 µs. The basic clock module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or the internal very-  
low-power LF oscillator.  
Main clock (MCLK), the system clock used by the CPU.  
Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.  
Table 11. DCO Calibration Data  
(Provided From Factory in Flash Information Memory Segment A)  
DCO FREQUENCY  
CALIBRATION REGISTER  
CALBC1_1MHZ  
SIZE  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
byte  
ADDRESS  
010FFh  
010FEh  
010FDh  
010FCh  
010FBh  
010FAh  
010F9h  
010F8h  
1 MHz  
CALDCO_1MHZ  
CALBC1_8MHZ  
8 MHz  
12 MHz  
16 MHz  
CALDCO_8MHZ  
CALBC1_12MHZ  
CALDCO_12MHZ  
CALBC1_16MHZ  
CALDCO_16MHZ  
Brownout  
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and  
power off.  
Digital I/O  
There are four 8-bit I/O ports implemented—ports P1, P2, P3, and P4:  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt condition is possible.  
Edge-selectable interrupt input capability for all eight bits of port P1 and P2.  
Read/write access to port-control registers is supported by all instructions.  
Each I/O has an individually programmable pullup/pulldown resistor.  
Because there are only three I/O pins implemented from port P2, bits [5:1] of all port P2 registers read as 0, and  
write data is ignored.  
Watchdog Timer (WDT+)  
The primary function of the WDT+ module is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the module can be disabled or configured as an interval timer and can generate interrupts at  
selected time intervals.  
12  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Timer_A3  
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 12. Timer_A3 Signal Connections  
OUTPUT PIN  
NUMBER  
INPUT PIN NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
MODULE BLOCK  
RHA  
RHA  
29 - P1.0  
TACLK  
ACLK  
SMCLK  
TAINCLK  
TA0  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
7 - P2.1  
30 - P1.1  
8 - P2.2  
CCR0  
CCR1  
CCR2  
TA0  
TA1  
TA2  
30 - P1.1  
8 - P2.2  
TA0  
VSS  
34 - P1.5  
VCC  
VCC  
31 - P1.2  
27 - P2.3  
TA1  
CCI1A  
CCI1B  
GND  
31 - P1.2  
27 - P2.3  
35 - P1.6  
TA1  
VSS  
VCC  
VCC  
32 - P1.3  
TA2  
CCI2A  
CCI2B  
GND  
32 - P1.3  
28 - P2.4  
36 - P1.7  
ACLK (internal)  
VSS  
VCC  
VCC  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Timer_B3  
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple  
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.  
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare  
registers.  
Table 13. Timer_B3 Signal Connections  
OUTPUT PIN  
NUMBER  
INPUT PIN NUMBER  
DEVICE INPUT  
SIGNAL  
MODULE INPUT  
NAME  
MODULE OUTPUT  
SIGNAL  
MODULE BLOCK  
RHA  
RHA  
22 - P4.7  
TBCLK  
ACLK  
SMCLK  
TBCLK  
TB0  
TBCLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
22 - P4.7  
15 - P4.0  
18 - P4.3  
CCR0  
CCR1  
CCR2  
TB0  
TB1  
TB2  
15 - P4.0  
18 - P4.3  
TB0  
VSS  
VCC  
VCC  
16 - P4.1  
19 - P4.4  
TB1  
CCI1A  
CCI1B  
GND  
16 - P4.1  
19 - P4.4  
TB1  
VSS  
VCC  
VCC  
17 - P4.2  
TB2  
CCI2A  
CCI2B  
GND  
17 - P4.2  
20 - P4.5  
ACLK (internal)  
VSS  
VCC  
VCC  
Universal Serial Communications Interface (USCI)  
The USCI module is used for serial data communication. The USCI module supports synchronous  
communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols such as UART,  
enhanced UART with automatic baudrate detection (LIN), and IrDA.  
USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.  
USCI_B0 provides support for SPI (3 or 4 pin) and I2C.  
ADC10  
The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion  
result handling allowing ADC samples to be converted and stored without any CPU intervention.  
14  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Peripheral File Map  
Table 14. Peripherals With Word Access  
MODULE  
ADC10  
REGISTER NAME  
SHORT NAME  
ADDRESS  
OFFSET  
ADC data transfer start address  
ADC memory  
ADC10SA  
ADC10MEM  
ADC10CTL1  
ADC10CTL0  
ADC10AE0  
ADC10AE1  
ADC10DTC1  
ADC10DTC0  
TBCCR2  
TBCCR1  
TBCCR0  
TBR  
1BCh  
1B4h  
ADC control register 1  
ADC control register 0  
ADC analog enable 0  
ADC analog enable 1  
ADC data transfer control register 1  
ADC data transfer control register 0  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_B register  
1B2h  
1B0h  
04Ah  
04Bh  
049h  
048h  
Timer_B  
0196h  
0194h  
0192h  
0190h  
0186h  
0184h  
0182h  
0180h  
011Eh  
0176h  
0174h  
0172h  
0170h  
0166h  
0164h  
0162h  
0160h  
012Eh  
012Ch  
012Ah  
0128h  
0120h  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_B control  
TBCCTL2  
TBCCTL1  
TBCCTL0  
TBCTL  
Timer_B interrupt vector  
Capture/compare register  
Capture/compare register  
Capture/compare register  
Timer_A register  
TBIV  
Timer_A  
TACCR2  
TACCR1  
TACCR0  
TAR  
Capture/compare control  
Capture/compare control  
Capture/compare control  
Timer_A control  
TACCTL2  
TACCTL1  
TACCTL0  
TACTL  
Timer_A interrupt vector  
Flash control 3  
TAIV  
Flash Memory  
FCTL3  
Flash control 2  
FCTL2  
Flash control 1  
FCTL1  
Watchdog Timer+  
Watchdog/timer control  
WDTCTL  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Table 15. Peripherals With Byte Access  
MODULE  
USCI_B0  
REGISTER NAME  
SHORT NAME  
ADDRESS  
OFFSET  
06Fh  
06Eh  
06Dh  
06Bh  
06Ah  
069h  
068h  
011Ah  
0118h  
067h  
066h  
065h  
064h  
063h  
062h  
061h  
060h  
05Fh  
05Eh  
05Dh  
053h  
058h  
057h  
056h  
011h  
01Fh  
01Eh  
01Dh  
01Ch  
010h  
01Bh  
01Ah  
019h  
018h  
02Fh  
02Eh  
02Dh  
02Ch  
02Bh  
02Ah  
029h  
028h  
USCI_B0 transmit buffer  
USCI_B0 receive buffer  
USCI_B0 status  
UCB0TXBUF  
UCB0RXBUF  
UCB0STAT  
UCB0BR1  
UCB0BR0  
UCB0CTL1  
UCB0CTL0  
UCB0SA  
UCB0OA  
UCA0TXBUF  
UCA0RXBUF  
UCA0STAT  
UCA0MCTL  
UCA0BR1  
UCA0BR0  
UCA0CTL1  
UCA0CTL0  
UCA0IRRCTL  
UCA0IRTCTL  
UCA0ABCTL  
BCSCTL3  
BCSCTL2  
BCSCTL1  
DCOCTL  
P4REN  
USCI_B0 bit rate control 1  
USCI_B0 bit rate control 0  
USCI_B0 control 1  
USCI_B0 control 0  
USCI_B0 I2C slave address  
USCI_B0 I2C own address  
USCI_A0 transmit buffer  
USCI_A0 receive buffer  
USCI_A0 status  
USCI_A0  
USCI_A0 modulation control  
USCI_A0 baud rate control 1  
USCI_A0 baud rate control 0  
USCI_A0 control 1  
USCI_A0 control 0  
USCI_A0 IrDA receive control  
USCI_A0 IrDA transmit control  
USCI_A0 auto baud rate control  
Basic clock system control 3  
Basic clock system control 2  
Basic clock system control 1  
DCO clock frequency control  
Port P4 resistor enable  
Port P4 selection  
Basic Clock System+  
Port P4  
P4SEL  
Port P4 direction  
P4DIR  
Port P4 output  
P4OUT  
Port P4 input  
P4IN  
Port P3  
Port P2  
Port P3 resistor enable  
Port P3 selection  
P3REN  
P3SEL  
Port P3 direction  
P3DIR  
Port P3 output  
P3OUT  
Port P3 input  
P3IN  
Port P2 resistor enable  
Port P2 selection  
P2REN  
P2SEL  
Port P2 interrupt enable  
Port P2 interrupt edge select  
Port P2 interrupt flag  
Port P2 direction  
P2IE  
P2IES  
P2IFG  
P2DIR  
Port P2 output  
P2OUT  
Port P2 input  
P2IN  
16  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Table 15. Peripherals With Byte Access (continued)  
MODULE  
REGISTER NAME  
SHORT NAME  
ADDRESS  
OFFSET  
Port P1  
Port P1 resistor enable  
Port P1 selection  
P1REN  
P1SEL  
P1IE  
027h  
026h  
025h  
024h  
023h  
022h  
021h  
020h  
003h  
002h  
001h  
000h  
Port P1 interrupt enable  
Port P1 interrupt edge select  
Port P1 interrupt flag  
Port P1 direction  
P1IES  
P1IFG  
P1DIR  
P1OUT  
P1IN  
Port P1 output  
Port P1 input  
Special Function  
SFR interrupt flag 2  
SFR interrupt flag 1  
SFR interrupt enable 2  
SFR interrupt enable 1  
IFG2  
IFG1  
IE2  
IE1  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Absolute Maximum Ratings(1)  
Voltage applied at VCC to VSS  
-0.3 V to 4.1 V  
-0.3 V to VCC + 0.3 V  
±2 mA  
(2)  
Voltage applied to any pin  
Diode current at any device terminal  
Unprogrammed device  
Programmed device  
-55°C to 150°C  
-55°C to 150°C  
(3)  
Storage temperature, Tstg  
(1) Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditionsis not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is  
applied to the TEST pin when blowing the JTAG fuse.  
(3) Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak  
reflow temperatures not higher than classified on the device label on the shipping boxes or reels.  
Recommended Operating Conditions(1)(2)  
MIN NOM  
MAX UNIT  
During program  
execution  
1.8  
3.6  
3.6  
V
V
VCC  
Supply voltage  
AVCC = DVCC = VCC  
AVSS = DVSS = VSS  
During program/erase  
flash memory  
2.2  
VSS  
TA  
Supply voltage  
0
V
Operating free-air temperature  
T version  
-40  
dc  
dc  
dc  
105  
°C  
VCC = 1.8 V, Duty cycle = 50% ±10%  
(maximum MCLK frequency)(1)(2) VCC = 2.7 V, Duty cycle = 50% ±10%  
4.15  
Processor frequency  
fSYSTEM  
12 MHz  
16  
(see Figure 1)  
VCC 3.3 V, Duty cycle = 50% ±10%  
(1) The CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified  
maximum frequency.  
(2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
Legend:  
16 MHz  
Supply voltage range,  
during flash memory  
programming  
12 MHz  
Supply voltage range,  
during program execution  
7.5 MHz  
4.15 MHz  
1.8 V  
2.2 V  
2.7 V  
3.3 V 3.6 V  
Supply Voltage −V  
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC  
of 2.2 V.  
Figure 1. Operating Area  
18  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
 
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
(1)(2)  
Active Mode Supply Current (into DVCC + AVCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fDCO = fMCLK = fSMCLK = 1 MHz,  
fACLK = 32768 Hz,  
2.2 V  
270  
390  
Program executes in flash,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active mode (AM)  
current (1 MHz)  
IAM,1MHz  
µA  
3 V  
390  
240  
340  
550  
fDCO = fMCLK = fSMCLK = 1 MHz,  
fACLK = 32768 Hz,  
2.2 V  
3.3 V  
Program executes in RAM,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 0, SCG0 = 0, SCG1 = 0,  
OSCOFF = 0  
Active mode (AM)  
current (1 MHz)  
IAM,1MHz  
µA  
fMCLK = fSMCLK = fACLK = 32768 Hz/8 =  
4096 Hz,  
fDCO = 0 Hz,  
Program executes in flash,  
SELMx = 11, SELS = 1,  
DIVMx = DIVSx = DIVAx = 11,  
CPUOFF = 0, SCG0 = 1, SCG1 = 0,  
OSCOFF = 0  
-40°C to  
85°C  
5
6
9
2.2 V  
3 V  
105°C  
18  
µA  
10  
Active mode (AM)  
current (4 kHz)  
IAM,4kHz  
-40°C to  
85°C  
105°C  
20  
85  
-40°C to  
85°C  
60  
72  
fMCLK = fSMCLK = fDCO(0, 0) 100 kHz,  
fACLK = 0 Hz,  
Program executes in flash,  
RSELx = 0, DCOx = 0, CPUOFF = 0,  
SCG0 = 0, SCG1 = 0, OSCOFF = 1  
2.2 V  
3 V  
105°C  
95  
Active mode (AM)  
current (100 kHz)  
IAM,100kHz  
µA  
-40°C to  
85°C  
95  
105°C  
105  
(1) All inputs are tied to 0 V or VCC . Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Typical Characteristics - Active-Mode Supply Current (Into DVCC + AVCC)  
ACTIVE-MODE CURRENT  
vs  
ACTIVE-MODE CURRENT  
SUPPLY VOLTAGE  
TA = 25°C  
vs  
DCO FREQUENCY  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
f
f
= 16 MHz  
= 12 MHz  
DCO  
DCO  
T
= 85 °C  
A
T
A
= 25 °C  
V
CC  
= 3 V  
f
= 8 MHz  
DCO  
T
= 85 °C  
= 25 °C  
A
T
A
V
CC  
= 2.2 V  
f
= 1 MHz  
DCO  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
4.0  
8.0  
12.0  
16.0  
V
CC  
− Supply Voltage − V  
f
DCO  
− DCO Frequency − MHz  
Figure 2.  
Figure 3.  
20  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
(1)(2)  
Low-Power-Mode Supply Currents (Into VCC ) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
fMCLK = 0 MHz,  
2.2 V  
75  
90  
fSMCLK = fDCO = 1 MHz,  
fACLK = 32768 Hz,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0,  
SCG1 = 0, OSCOFF = 0  
Low-power mode 0  
ILPM0,1MHz  
µA  
(LPM0) current(3)  
3 V  
90  
120  
fMCLK = 0 MHz,  
fSMCLK = fDCO(0, 0) 100 kHz,  
fACLK = 0 Hz,  
RSELx = 0, DCOx = 0,  
CPUOFF = 1, SCG0 = 0,  
SCG1 = 0, OSCOFF = 1  
2.2 V  
3 V  
37  
41  
48  
Low-power mode 0  
(LPM0) current(3)  
ILPM0,100kHz  
µA  
65  
-40°C to  
85°C  
fMCLK = fSMCLK = 0 MHz,  
fDCO = 1 MHz,  
fACLK = 32768 Hz,  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
CPUOFF = 1, SCG0 = 0,  
SCG1 = 1, OSCOFF = 0  
22  
25  
29  
2.2 V  
3 V  
105°C  
31  
Low-power mode 2  
(LPM2) current(4)  
ILPM2  
µA  
-40°C to  
85°C  
32  
105°C  
-40°C  
25°C  
34  
1.4  
1.4  
3.3  
0.7  
0.7  
2.4  
5
2.2 V  
3 V  
85°C  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 32768 Hz,  
CPUOFF = 1, SCG0 = 1,  
SCG1 = 1, OSCOFF = 0  
105°C  
-40°C  
25°C  
10  
µA  
1.5  
Low-power mode 3  
(LPM3) current(4)  
ILPM3,LFXT1  
0.9  
0.9  
2.6  
6
1.5  
3.8  
12  
1
85°C  
105°C  
-40°C  
25°C  
0.4  
0.5  
1.8  
4.5  
0.5  
0.6  
2.1  
5.5  
0.1  
0.1  
1.5  
4.5  
1
2.2 V  
3 V  
85°C  
2.9  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK from internal LF oscillator  
(VLO),  
CPUOFF = 1, SCG0 = 1,  
SCG1 = 1, OSCOFF = 0  
105°C  
-40°C  
25°C  
9
µA  
1.2  
Low-power mode 3  
current, (LPM3)(4)  
ILPM3,VLO  
1.2  
3.3  
11  
85°C  
105°C  
-40°C  
25°C  
0.5  
fDCO = fMCLK = fSMCLK = 0 MHz,  
fACLK = 0 Hz,  
CPUOFF = 1, SCG0 = 1,  
SCG1 = 1, OSCOFF = 1  
0.5  
µA  
3
Low-power mode 4  
(LPM4) current(5)  
2.2 V,  
3 V  
ILPM4  
85°C  
105°C  
9
(1) All inputs are tied to 0 V or VCC . Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external  
load capacitance is chosen to closely match the required 9 pF.  
(3) Current for brownout and WDT clocked by SMCLK included.  
(4) Current for brownout and WDT clocked by ACLK included.  
(5) Current for brownout included.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
MAX UNIT  
Schmitt-Trigger Inputs (Ports P1, P2, P3, P4, and RST/NMI)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45 VCC  
1
TYP  
0.75 VCC  
1.65  
VIT+  
Positive-going input threshold voltage  
2.2 V  
3 V  
V
1.35  
2.25  
0.25 VCC  
0.55  
0.55 VCC  
VIT-  
Negative-going input threshold voltage  
2.2 V  
3 V  
1.20  
1.65  
1
V
V
0.75  
2.2 V  
3 V  
0.1  
Vhys  
Input voltage hysteresis (VIT+ - VIT- )  
0.3  
1
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
,
RPull  
CI  
Pullup/pulldown resistor  
Input capacitance  
3 V  
20  
35  
5
50  
kΩ  
VIN = VSS or VCC  
pF  
Inputs (Ports P1, P2)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Port P1, P2: P1.x to P2.x, External trigger  
pulse width to set interrupt flag(1)  
t(int)  
External interrupt timing  
2.2 V, 3 V  
20  
ns  
(1) An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set even with trigger signals  
shorter than t(int)  
.
Leakage Current (Ports P1, P2, P3, and P4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
±50 nA  
(1) (2)  
Ilkg(Px.y)  
High-impedance leakage current  
2.2 V, 3 V  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
22  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Outputs (Ports P1, P2, P3, and P4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
VCC - 0.25  
VCC - 0.6  
VCC - 0.25  
VCC - 0.6  
VSS  
MAX  
VCC  
UNIT  
(1)  
IOH(max) = -1.5 mA  
2.2 V  
(2)  
IOH(max) = -6 mA  
VCC  
VOH  
High-level output voltage  
V
IOH(max) = -1.5 mA(1)  
IOH(max) = -6 mA(2)  
IOL(max) = 1.5 mA(1)  
IOL(max) = 6 mA(2)  
IOL(max) = 1.5 mA(1)  
IOL(max) = 6 mA(2)  
VCC  
3 V  
2.2 V  
3 V  
VCC  
VSS + 0.25  
VSS + 0.6  
VSS + 0.25  
VSS + 0.6  
VSS  
VOL  
Low-level output voltage  
V
VSS  
VSS  
(1) The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop  
specified.  
(2) The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
Output Frequency (Ports P1, P2, P3, and P4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
TYP  
MAX UNIT  
10  
P1.4/SMCLK, CL = 20 pF,  
fPx.y  
Port output frequency (with load)  
MHz  
12  
RL = 1 kagainst VCC/2(1)(2)  
2.2 V  
3 V  
12  
fPort_CLK  
Clock output frequency  
P2.0/ACLK, P1.4/SMCLK, CL = 20 pF(2)  
MHz  
16  
(1) Alternatively, a resistive divider with two 2-kresistors between VCC and VSS is used as load. The output is connected to the center tap  
of the divider.  
(2) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Typical Characteristics - Outputs  
One output loaded at a time.  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
25.0  
20.0  
15.0  
10.0  
5.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
V
= 2.2 V  
T
= 25°C  
V = 3 V  
CC  
CC  
A
P4.5  
P4.5  
T
= 25°C  
= 85°C  
A
T
= 85°C  
A
T
A
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
− Low-Level Output V oltage − V  
V
OL  
− Low-Level Output V oltage − V  
Figure 4.  
Figure 5.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.0  
−5.0  
0.0  
−10.0  
−20.0  
−30.0  
−40.0  
−50.0  
V
= 2.2 V  
V
= 3 V  
CC  
CC  
P4.5  
P4.5  
−10.0  
−15.0  
−20.0  
−25.0  
T
= 85°C  
A
T
A
= 85°C  
T = 25°C  
A
T
A
= 25°C  
1.5  
0.0  
0.5  
1.0  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OH  
− High-Level Output V oltage − V  
V
OH  
− High-Level Output V oltage − V  
Figure 6.  
Figure 7.  
24  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
(1) (2)  
POR/Brownout Reset (BOR)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
0.7 ×  
V(B_IT-)  
VCC(start)  
See Figure 8  
dVCC /dt 3 V/s  
V
V(B_IT-)  
See Figure 8 through Figure 10  
See Figure 8  
dVCC /dt 3 V/s  
dVCC /dt 3 V/s  
1.71  
210  
V
Vhys(B_IT-)  
td(BOR)  
70  
2
130  
mV  
µs  
See Figure 8  
2000  
Pulse length needed at RST/NMI pin  
to accepted reset internally  
t(reset)  
3 V  
µs  
+
(1) The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT-)  
Vhys(B_IT-) is 1.8 V.  
(2) During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT-) + Vhys(B_IT-) . The default DCO settings  
must not be changed until VCC VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency.  
V
CC  
V
hys(B_IT−)  
V
(B_IT−)  
V
CC(start)  
1
0
t
d(BOR)  
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: NN325-Q1  
 
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Typical Characteristics - POR/Brownout Reset (BOR)  
V
t
CC  
pw  
2
3 V  
V
= 3 V  
Typical Conditions  
CC  
1.5  
1
V
CC(drop)  
0.5  
0
0.001  
1
1000  
1 ns  
1 ns  
− Pulse Width − µs  
t
− Pulse Width − µs  
t
pw  
pw  
Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal  
V
t
CC  
pw  
2
1.5  
1
3 V  
V
= 3 V  
CC  
Typical Conditions  
V
CC(drop)  
0.5  
0
t = t  
f
r
0.001  
1
1000  
t
t
r
f
t
− Pulse Width − µs  
t
− Pulse Width − µs  
pw  
pw  
Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal  
26  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Main DCO Characteristics  
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14  
overlaps RSELx = 15.  
DCO control bits DCOx have a step size as defined by parameter SDCO .  
Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK  
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to:  
32 × f  
× f  
DCO(RSEL,DCO)  
DCO(RSEL,DCO+1)  
f
=
average  
MOD × f  
+ (32 – MOD) × f  
DCO(RSEL,DCO+1)  
DCO(RSEL,DCO)  
DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
RSELx < 14  
VCC  
MIN  
1.8  
TYP  
MAX UNIT  
3.6  
VCC  
Supply voltage range  
RSELx = 14  
2.2  
3.6  
3.6  
V
RSELx = 15  
3.0  
fDCO(0,0)  
fDCO(0,3)  
fDCO(1,3)  
fDCO(2,3)  
fDCO(3,3)  
fDCO(4,3)  
fDCO(5,3)  
fDCO(6,3)  
fDCO(7,3)  
fDCO(8,3)  
fDCO(9,3)  
fDCO(10,3)  
fDCO(11,3)  
fDCO(12,3)  
fDCO(13,3)  
fDCO(14,3)  
fDCO(15,3)  
fDCO(15,7)  
DCO frequency (0, 0)  
DCO frequency (0, 3)  
DCO frequency (1, 3)  
DCO frequency (2, 3)  
DCO frequency (3, 3)  
DCO frequency (4, 3)  
DCO frequency (5, 3)  
DCO frequency (6, 3)  
DCO frequency (7, 3)  
DCO frequency (8, 3)  
DCO frequency (9, 3)  
DCO frequency (10, 3)  
DCO frequency (11, 3)  
DCO frequency (12, 3)  
DCO frequency (13, 3)  
DCO frequency (14, 3)  
DCO frequency (15, 3)  
DCO frequency (15, 7)  
RSELx = 0, DCOx = 0, MODx = 0  
RSELx = 0, DCOx = 3, MODx = 0  
RSELx = 1, DCOx = 3, MODx = 0  
RSELx = 2, DCOx = 3, MODx = 0  
RSELx = 3, DCOx = 3, MODx = 0  
RSELx = 4, DCOx = 3, MODx = 0  
RSELx = 5, DCOx = 3, MODx = 0  
RSELx = 6, DCOx = 3, MODx = 0  
RSELx = 7, DCOx = 3, MODx = 0  
RSELx = 8, DCOx = 3, MODx = 0  
RSELx = 9, DCOx = 3, MODx = 0  
RSELx = 10, DCOx = 3, MODx = 0  
RSELx = 11, DCOx = 3, MODx = 0  
RSELx = 12, DCOx = 3, MODx = 0  
RSELx = 13, DCOx = 3, MODx = 0  
RSELx = 14, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 3, MODx = 0  
RSELx = 15, DCOx = 7, MODx = 0  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
3 V  
0.06  
0.07  
0.10  
0.14  
0.20  
0.28  
0.39  
0.54  
0.80  
1.10  
1.60  
2.50  
3.00  
4.30  
6.00  
8.60  
12.0  
16.0  
0.14 MHz  
0.17 MHz  
0.20 MHz  
0.28 MHz  
0.40 MHz  
0.54 MHz  
0.77 MHz  
1.06 MHz  
1.50 MHz  
2.10 MHz  
3.00 MHz  
4.30 MHz  
5.50 MHz  
7.30 MHz  
9.60 MHz  
13.9 MHz  
18.5 MHz  
26.0 MHz  
3 V  
Frequency step between  
range RSEL and RSEL+1  
SRSEL  
SDCO  
SRSEL = fDCO(RSEL+1,DCO) /fDCO(RSEL,DCO)  
2.2 V, 3 V  
1.55 ratio  
1.12 ratio  
Frequency step between tap  
DCO and DCO+1  
SDCO = fDCO(RSEL,DCO+1) /fDCO(RSEL,DCO)  
Measured at P1.4/SMCLK  
2.2 V, 3 V  
2.2 V, 3 V  
1.05  
40  
1.08  
50  
Duty cycle  
60  
%
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
MAX UNIT  
Calibrated DCO Frequencies - Tolerance at Calibration  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
Frequency tolerance at calibration  
25°C  
3 V  
-1  
±0.2  
+1  
%
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
fCAL(1MHz)  
fCAL(8MHz)  
fCAL(12MHz)  
fCAL(16MHz)  
1-MHz calibration value  
8-MHz calibration value  
12-MHz calibration value  
16-MHz calibration value  
25°C  
25°C  
25°C  
25°C  
3 V  
3 V  
3 V  
3 V  
0.990  
7.920  
11.88  
15.84  
1
8
1.010 MHz  
8.080 MHz  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
12 12.12 MHz  
16 16.16 MHz  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
Calibrated DCO Frequencies - Tolerance Over Temperature 0°C to 85°C  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX  
UNIT  
1-MHz tolerance over  
temperature  
0°C to 85°C  
3 V  
-2.5  
±0.5  
+2.5  
%
8-MHz tolerance over  
temperature  
0°C to 85°C  
0°C to 85°C  
0°C to 85°C  
3 V  
3 V  
3 V  
-2.5  
-2.5  
-3  
±1.0  
±1.0  
±2.0  
+2.5  
+2.5  
%
%
%
12-MHz tolerance over  
temperature  
16-MHz tolerance over  
temperature  
+3  
2.2 V  
3 V  
0.97  
0.975  
0.97  
7.76  
7.8  
1
1
1.03  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
fCAL(1MHz)  
1-MHz calibration value  
8-MHz calibration value  
0°C to 85°C  
0°C to 85°C  
1.025 MHz  
1.03  
3.6 V  
2.2 V  
3 V  
1
8
8.4  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
fCAL(8MHz)  
8
8.2 MHz  
8.24  
3.6 V  
2.2 V  
3 V  
7.6  
8
11.7  
11.7  
11.7  
15.52  
12  
12  
12  
12.3  
BCSCTL1 = CALBC1_12MHZ,  
fCAL(12MHz) 12-MHz calibration value DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
0°C to 85°C  
0°C to 85°C  
12.3 MHz  
12.3  
3.6 V  
3 V  
BCSCTL1 = CALBC1_16MHZ,  
fCAL(16MHz) 16-MHz calibration value DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
16 16.48  
16 16.48  
MHz  
3.6 V  
15  
28  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Calibrated DCO Frequencies - Tolerance Over Supply Voltage VCC  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
-3  
TYP  
±2  
MAX UNIT  
1-MHz tolerance over VCC  
8-MHz tolerance over VCC  
12-MHz tolerance over VCC  
16-MHz tolerance over VCC  
25°C  
25°C  
25°C  
25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
+3  
+3  
+3  
+3  
%
%
%
%
-3  
±2  
-3  
±2  
-6  
±2  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
fCAL(1MHz)  
1-MHz calibration value  
8-MHz calibration value  
25°C  
25°C  
25°C  
25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
0.97  
7.76  
11.64  
15  
1
8
1.03 MHz  
8.24 MHz  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
fCAL(8MHz)  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
fCAL(12MHz) 12-MHz calibration value  
fCAL(16MHz) 16-MHz calibration value  
12 12.36 MHz  
16 16.48 MHz  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
Calibrated DCO Frequencies - Overall Tolerance  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
1-MHz tolerance  
overall  
-40°C to 105°C  
1.8 V to 3.6 V  
-5  
±2  
±2  
±2  
±3  
+5  
+5  
+5  
+6  
%
%
%
%
8-MHz tolerance  
overall  
-40°C to 105°C  
-40°C to 105°C  
-40°C to 105°C  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
-5  
-5  
-6  
12-MHz  
tolerance overall  
16-MHz  
tolerance overall  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ,  
Gating time: 5 ms  
1-MHz  
calibration value  
fCAL(1MHz)  
fCAL(8MHz)  
fCAL(12MHz)  
fCAL(16MHz)  
-40°C to 105°C  
-40°C to 105°C  
-40°C to 105°C  
-40°C to 105°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
0.95  
7.6  
1
8
1.05 MHz  
8.4 MHz  
12.6 MHz  
17 MHz  
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ,  
Gating time: 5 ms  
8-MHz  
calibration value  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ,  
Gating time: 5 ms  
12-MHz  
calibration value  
11.4  
15  
12  
16  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ,  
Gating time: 2 ms  
16-MHz  
calibration value  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Typical Characteristics - Calibrated 1-MHz DCO Frequency  
CALIBRATED 1-MHz FREQUENCY  
CALIBRATED 1-MHz FREQUENCY  
vs  
vs  
TEMPERATURE  
SUPPLY VOLTAGE  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
V
V
= 1.8 V  
= 2.2 V  
CC  
T
= 105 °C  
A
T
= 85 °C  
= 25 °C  
A
CC  
V
CC  
= 3.0 V  
T
A
T
A
= −40°C  
V
CC  
= 3.6 V  
−50.0 −25.0  
0.0  
25.0  
50.0  
75.0 100.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
T
A
Temperature − °C  
V
CC  
− Supply Voltage − V  
Figure 11.  
Figure 12.  
30  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Wake-Up From Lower-Power Modes (LPM3/4)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
BCSCTL1 = CALBC1_1MHZ,  
DCOCTL = CALDCO_1MHZ  
2
BCSCTL1 = CALBC1_8MHZ,  
DCOCTL = CALDCO_8MHZ  
2.2 V, 3 V  
1.5  
µs  
1
DCO clock wake-up time  
from LPM3/4  
tDCO,LPM3/4  
(1)  
BCSCTL1 = CALBC1_12MHZ,  
DCOCTL = CALDCO_12MHZ  
BCSCTL1 = CALBC1_16MHZ,  
DCOCTL = CALDCO_16MHZ  
3 V  
1
CPU wake-up time from  
LPM3/4  
1 / fMCLK  
tClock,LPM3/4  
+
tCPU,LPM3/4  
(2)  
(1) The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, a port interrupt) to the first clock  
edge observable externally on a clock pin (MCLK or SMCLK).  
(2) Parameter applicable only if DCOCLK is used for MCLK.  
Typical Characteristics - DCO Clock Wake-Up Time From LPM3/4  
CLOCK WAKE-UP TIME FROM LPM3  
vs  
DCO FREQUENCY  
10.00  
RSELx = 0...11  
RSELx = 12...15  
1.00  
0.10  
0.10  
1.00  
10.00  
DCO Frequency − MHz  
Figure 13.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
(1)  
DCO With External Resistor ROSC  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
DCOR = 1,  
2.2 V  
1.8  
fDCO,ROSC  
DCO output frequency with ROSC  
RSELx = 4, DCOx = 3, MODx = 0,  
TA = 25°C  
MHz  
3 V  
1.95  
±0.1  
DCOR = 1,  
RSELx = 4, DCOx = 3, MODx = 0  
DT  
DV  
Temperature drift  
Drift with VCC  
2.2 V, 3 V  
%/°C  
%/V  
DCOR = 1,  
RSELx = 4, DCOx = 3, MODx = 0  
2.2 V, 3 V  
10  
(1) ROSC = 100 kΩ. Metal film resistor, type 0257, 0.6 W with 1% tolerance and TK = ±50 ppm/°C.  
Typical Characteristics - DCO With External Resistor ROSC  
DCO FREQUENCY  
DCO FREQUENCY  
vs  
ROSC  
vs  
ROSC  
VCC = 2.2 V, TA = 25°C  
VCC = 3 V, TA = 25°C  
10.00  
1.00  
0.10  
0.01  
10.00  
1.00  
0.10  
0.01  
RSELx = 4  
RSELx = 4  
10.00  
100.00  
1000.00  
10000.00  
10.00  
100.00  
1000.00  
10000.00  
R
OSC  
− External Resistor − kW  
R
OSC  
− External Resistor − kW  
Figure 14.  
Figure 15.  
DCO FREQUENCY  
vs  
TEMPERATURE  
VCC = 3 V  
DCO FREQUENCY  
vs  
SUPPLY VOLTAGE  
TA = 25°C  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
R
= 100k  
OSC  
R
= 100k  
OSC  
R
R
= 270k  
= 1M  
R
= 270k  
= 1M  
OSC  
OSC  
R
OSC  
OSC  
−50.0 −25.0  
0.0  
25.0  
50.0  
75.0 100.0  
2.0  
2.5  
3.0  
3.5  
4.0  
T
A
Temperature −  
C
V
CC  
− Supply Voltage − V  
Figure 16.  
Figure 17.  
32  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Crystal Oscillator LFXT1, Low-Frequency Mode(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
LFXT1 oscillator crystal  
frequency, LF mode 0, 1  
fLFXT1,LF  
XTS = 0, LFXT1Sx = 0 or 1  
1.8 V to 3.6 V  
32768  
Hz  
LFXT1 oscillator logic level  
fLFXT1,LF,logic  
square wave input frequency, XTS = 0, LFXT1Sx = 3  
LF mode  
1.8 V to 3.6 V 10000  
32768 50000  
Hz  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 6 pF  
500  
200  
Oscillation allowance for  
LF crystals  
OALF  
kΩ  
XTS = 0, LFXT1Sx = 0,  
fLFXT1,LF = 32768 Hz, CL,eff = 12 pF  
XTS = 0, XCAPx = 0  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
1
5.5  
8.5  
11  
Integrated effective load  
capacitance, LF mode(2)  
CL,eff  
pF  
XTS = 0, Measured at P2.0/ACLK,  
fLFXT1,LF = 32768 Hz  
Duty cycle, LF mode  
2.2 V, 3 V  
2.2 V, 3 V  
30  
10  
50  
70  
%
Oscillator fault frequency,  
LF mode(3)  
fFault,LF  
XTS = 0, LFXT1Sx = 3(4)  
10000  
Hz  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This  
signal is no longer required for the serial programming adapter.  
(2) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the crystal that is used.  
(3) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(4) Measured with logic-level input frequency but also applies to operation with crystals.  
Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TA  
VCC  
MIN  
TYP  
MAX UNIT  
-40°C to 85°C  
105°C  
4
12  
20  
fVLO  
VLO frequency  
2.2 V, 3 V  
kHz  
22  
(1)  
dfVLO/dT  
VLO frequency temperature drift  
VLO frequency supply voltage drift  
-40°C to 105°C  
25°C  
2.2 V, 3 V  
0.5  
4
%/°C  
%/V  
(2)  
dfVLO/dVCC  
1.8 V to 3.6 V  
(1) Calculated using the box method:  
I version: [MAX(-40...85°C) - MIN(-40...85°C)]/MIN(-40...85°C)/[85°C - (-40°C)]  
T version: [MAX(-40...105°C) - MIN(-40...105°C)]/MIN(-40...105°C)/[105°C - (-40°C)]  
(2) Calculated using the box method: [MAX(1.8...3.6 V) - MIN(1.8...3.6 V)]/MIN(1.8...3.6 V)/(3.6 V - 1.8 V)  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
MAX UNIT  
Crystal Oscillator LFXT1, High-Frequency Mode(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
LFXT1 oscillator crystal  
frequency, HF mode 0  
fLFXT1,HF0  
fLFXT1,HF1  
XTS = 1, LFXT1Sx = 0  
XTS = 1, LFXT1Sx = 1  
1.8 V to 3.6 V  
0.4  
1
MHz  
MHz  
LFXT1 oscillator crystal  
frequency, HF mode 1  
1.8 V to 3.6 V  
1
4
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
2
2
10  
LFXT1 oscillator crystal  
frequency, HF mode 2  
fLFXT1,HF2  
XTS = 1, LFXT1Sx = 2  
12 MHz  
2
16  
1.8 V to 3.6 V  
2.2 V to 3.6 V  
3 V to 3.6 V  
0.4  
0.4  
0.4  
10  
LFXT1 oscillator logic-level  
square-wave input frequency, HF XTS = 1, LFXT1Sx = 3  
mode  
fLFXT1,HF,logic  
12 MHz  
16  
XTS = 1, LFXT1Sx = 0,  
fLFXT1,HF = 1 MHz,  
CL,eff = 15 pF  
2700  
800  
Oscillation allowance for HF  
crystals (see Figure 18 and  
Figure 19)  
XTS = 1, LFXT1Sx = 1,  
fLFXT1,HF = 4 MHz,  
CL,eff = 15 pF  
OAHF  
XTS = 1, LFXT1Sx = 2,  
fLFXT1,HF = 16 MHz,  
CL,eff = 15 pF  
300  
1
Integrated effective load  
capacitance, HF mode(2)  
CL,eff  
XTS = 1(3)  
pF  
XTS = 1,  
Measured at P2.0/ACLK,  
fLFXT1,HF = 10 MHz  
40  
50  
60  
Duty cycle, HF mode  
2.2 V, 3 V  
2.2 V, 3 V  
%
XTS = 1,  
Measured at P2.0/ACLK,  
fLFXT1,HF = 16 MHz  
XTS = 1, LFXT1Sx = 3(5)  
40  
30  
50  
60  
fFault,HF  
Oscillator fault frequency(4)  
300 kHz  
(1) To improve EMI on the XT1 oscillator the following guidelines should be observed:  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This  
signal is no longer required for the serial programming adapter.  
(2) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is  
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should  
always match the specification of the used crystal.  
(3) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(4) Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and  
frequencies in between might set the flag.  
(5) Measured with logic-level input frequency, but also applies to operation with crystals.  
34  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Typical Characteristics - LFXT1 Oscillator in HF Mode (XTS = 1)  
OSCILLATION ALLOWANCE  
vs  
CRYSTAL FREQUENCY  
CL,eff = 15 pF, TA = 25°C  
OSCILLATOR SUPPLY CURRENT  
vs  
CRYSTAL FREQUENCY  
CL,eff = 15 pF, TA = 25°C  
800.0  
700.0  
600.0  
500.0  
400.0  
300.0  
200.0  
100.0  
0.0  
100000.00  
LFXT1Sx = 3  
10000.00  
1000.00  
100.00  
10.00  
LFXT1Sx = 3  
LFXT1Sx = 2  
LFXT1Sx = 2  
LFXT1Sx = 1  
LFXT1Sx = 1  
8.0  
0.10  
1.00  
10.00  
100.00  
0.0  
4.0  
12.0  
16.0  
20.0  
Crystal Frequency − MHz  
Crystal Frequency − MHz  
Figure 18.  
Figure 19.  
Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
2.2 V  
10  
fTA  
Timer_A clock frequency  
Timer_A capture timing  
External: TACLK, INCLK  
Duty cycle = 50% ± 10%  
MHz  
3 V  
16  
tTA,cap  
TA0, TA1, TA2  
2.2 V, 3 V  
20  
ns  
Timer_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
2.2 V  
10  
fTB  
Timer_B clock frequency  
Timer_B capture timing  
External: TACLK, INCLK  
Duty cycle = 50% ± 10%  
MHz  
3 V  
16  
tTB,cap  
TB0, TB1, TB2  
2.2 V, 3 V  
20  
ns  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
tτ  
2.2 V, 3 V  
1
MHz  
ns  
2.2 V  
3 V  
50  
50  
150  
100  
600  
600  
UART receive deglitch time(1)  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
USCI (SPI Master Mode)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(see Figure 20 and Figure 21)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
SMCLK, ACLK  
Duty cycle = 50% ± 10%  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
2.2 V  
3 V  
110  
75  
0
tSU,MI  
SOMI input data setup time  
SOMI input data hold time  
SIMO output data valid time  
ns  
ns  
2.2 V  
3 V  
tHD,MI  
0
2.2 V  
3 V  
30  
ns  
20  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).  
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.  
USCI (SPI Slave Mode)(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
(see Figure 22 and Figure 23)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
STE lead time, STE low to clock  
STE lag time, Last clock to STE high  
STE access time, STE low to SOMI data out  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
50  
ns  
ns  
ns  
10  
50  
50  
STE disable time, STE high to SOMI high  
impedance  
tSTE,DIS  
tSU,SI  
2.2 V, 3 V  
ns  
ns  
2.2 V  
3 V  
20  
15  
10  
10  
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time  
2.2 V  
3 V  
tHD,SI  
ns  
2.2 V  
3 V  
75  
50  
110  
ns  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
75  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).  
For the master's parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached slave.  
36  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
t
LO/HI  
LO/HI  
SU,MI  
t
HD,MI  
SOMI  
SIMO  
t
VALID,MO  
Figure 20. SPI Master Mode, CKPH = 0  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
LO/HI  
LO/HI  
t
HD,MI  
t
SU,MI  
SOMI  
SIMO  
t
VALID,MO  
Figure 21. SPI Master Mode, CKPH = 1  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
t
t
STE,LEAD  
STE,LAG  
STE  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
t
LO/HI  
LO/HI  
SU,SI  
t
HD,SI  
SIMO  
SOMI  
t
t
t
STE,ACC  
VALID,SO  
STE,DIS  
Figure 22. SPI Slave Mode, CKPH = 0  
t
t
STE,LEAD  
STE,LAG  
STE  
1/f  
UCxCLK  
CKPL=0  
CKPL=1  
UCLK  
t
t
LO/HI  
LO/HI  
t
HD,SI  
t
SU,SI  
SIMO  
SOMI  
t
t
t
STE,ACC  
VALID,SO  
STE,DIS  
Figure 23. SPI Slave Mode, CKPH = 1  
38  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 24)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
0
4
400 kHz  
µs  
f
SCL 100 kHz  
fSCL > 100 kHz  
SCL 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
0.6  
4.7  
0.6  
0
f
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
tSU,STO  
Data hold time  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V  
ns  
ns  
µs  
Data setup time  
Setup time for STOP  
250  
4
50  
50  
150  
100  
600  
ns  
tSP  
Pulse width of spikes suppressed by input filter  
3 V  
600  
t
t t  
SU,STA HD,STA  
HD,STA  
SDA  
SCL  
1/f  
SCL  
t
SP  
t
t
SU,STO  
SU,DAT  
t
HD,DAT  
Figure 24. I2C Mode Timing  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: NN325-Q1  
 
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
MAX UNIT  
10-Bit ADC, Power Supply and Input Range Conditions(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
TA  
VCC  
MIN  
TYP  
Analog supply voltage  
range  
VCC  
VSS = 0 V  
2.2  
3.6  
V
V
All Ax terminals,  
Analog inputs selected in  
ADC10AE register  
Analog input voltage  
range(2)  
VAx  
0
VCC  
fADC10CLK = 5 MHz,  
ADC10ON = 1, REFON = 0,  
2.2 V  
3 V  
0.52  
0.6  
1.05  
IADC10 ADC10 supply current(3) ADC10SHT0 = 1,  
ADC10SHT1 = 0,  
-40°C to 105°C  
-40°C to 105°C  
mA  
mA  
1.2  
ADC10DIV = 0  
fADC10CLK = 5 MHz,  
ADC10ON = 0, REF2_5V = 0,  
REFON = 1, REFOUT = 0  
2.2 V, 3 V  
3 V  
0.25  
0.4  
0.4  
Reference supply  
current, reference buffer  
disabled(4)  
IREF+  
fADC10CLK = 5 MHz,  
ADC10ON = 0, REF2_5V = 1,  
REFON = 1, REFOUT = 0  
0.25  
1.1  
fADC10CLK = 5 MHz  
-40°C to 85°C  
105°C  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
1.4  
1.8  
0.7  
0.8  
Reference buffer supply  
ADC10ON = 0, REFON = 1,  
REF2_5V = 0, REFOUT = 1,  
ADC10SR = 0  
IREFB,0 current with  
mA  
mA  
ADC10SR = 0(4)  
fADC10CLK = 5 MHz,  
-40°C to 85°C  
105°C  
0.5  
Reference buffer supply  
ADC10ON = 0, REFON = 1,  
REF2_5V = 0, REFOUT = 1,  
ADC10SR = 1  
IREFB,1 current with  
ADC10SR = 1(4)  
Only one terminal Ax selected at  
a time  
CI  
RI  
Input capacitance  
-40°C to 105°C  
-40°C to 105°C  
27  
pF  
Input MUX ON  
resistance  
0 V VAx VCC  
2.2 V, 3 V  
2000  
Ω
(1) The leakage current is defined in the leakage current table with Px.x/Ax parameter.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VR- for valid conversion results.  
(3) The internal reference supply current is not included in current consumption parameter IADC10  
.
(4) The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.  
40  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
10-Bit ADC, Built-In Voltage Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IVREF+ 1 mA, REF2_5V = 0  
VCC  
MIN  
2.2  
TYP  
MAX  
UNIT  
Positive built-in  
VCC,REF+  
reference analog  
supply voltage range  
IVREF+ 0.5 mA, REF2_5V = 1  
IVREF+ 1 mA, REF2_5V = 1  
2.8  
2.9  
V
IVREF+ IVREF+max, REF2_5V = 0  
IVREF+ IVREF+max, REF2_5V = 1  
2.2 V, 3 V  
3 V  
1.41  
2.35  
1.5  
2.5  
1.59  
2.65  
±0.5  
±1  
Positive built-in  
reference voltage  
VREF+  
V
2.2 V  
3 V  
Maximum VREF+  
load current  
ILD,VREF+  
mA  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 0.75 V,  
REF2_5V = 0  
2.2 V, 3 V  
3 V  
±2  
±2  
VREF+ load  
regulation  
LSB  
ns  
IVREF+ = 500 µA ± 100 µA,  
Analog input voltage VAx 1.25 V,  
REF2_5V = 1  
IVREF+ = 100 µA to 900 µA,  
VAx 0.5 x VREF+  
ADC10SR = 0  
400  
VREF+ load  
regulation response  
time  
,
3 V  
Error of conversion result  
1 LSB  
ADC10SR = 1  
2000  
Maximum  
IVREF+ ±1 mA,  
REFON = 1, REFOUT = 1  
CVREF+  
TCREF+  
tREFON  
capacitance at pin  
2.2 V, 3 V  
2.2 V, 3 V  
3.6 V  
100  
±100  
30  
pF  
ppm/°C  
µs  
(1)  
VREF+  
Temperature  
coefficient  
IVREF+ = constant with  
0 mA IVREF+ 1 mA  
Settling time of  
internal reference  
voltage(2)  
IVREF+ = 0.5 mA, REF2_5V = 0,  
REFON = 0 to 1  
IVREF+ = 0.5 mA,  
REF2_5V = 0,  
REFON = 1,  
ADC10SR = 0  
ADC10SR = 1  
ADC10SR = 0  
ADC10SR = 1  
1
2.5  
2
2.2 V  
3 V  
REFBURST = 1  
Settling time of  
tREFBURST  
µs  
reference buffer(2)  
IVREF+ = 0.5 mA,  
REF2_5V = 1,  
REFON = 1,  
4.5  
REFBURST = 1  
(1) The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA 2/A4/VREF+/ VeREF+ (REFOUT = 1),  
must be limited; the reference buffer may become unstable otherwise.  
(2) The condition is that the error in a conversion started after tREFON or tRefBuf is less than ±0.5 LSB.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
MAX UNIT  
10-Bit ADC, External Reference(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
VeREF+ > VeREF-  
SREF1 = 1, SREF0 = 0  
,
1.4  
VCC  
Positive external reference input  
voltage range(2)  
VeREF+  
V
V
eREF- VeREF+ VCC - 0.15 V,  
1.4  
0
3
SREF1 = 1, SREF0 = 1(3)  
Negative external reference input  
voltage range(4)  
VeREF-  
VeREF+ > VeREF-  
1.2  
VCC  
±1  
V
V
Differential external reference  
input voltage range  
ΔVeREF = VeREF+ - VeREF-  
(5)  
ΔVeREF  
VeREF+ > VeREF-  
1.4  
0 V VeREF+ VCC  
SREF1 = 1, SREF0 = 0  
,
IVeREF+  
Static input current into VeREF+  
Static input current into VeREF-  
2.2 V, 3 V  
2.2 V, 3 V  
µA  
µA  
0 V VeREF+ VCC - 0.15 V 3 V,  
0
SREF1 = 1, SREF0 = 1(3)  
IVeREF-  
0 V VeREF- VCC  
±1  
(1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the  
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) Under this condition, the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply  
current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1.  
(4) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(5) The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
10-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.45  
0.45  
TYP  
MAX UNIT  
ADC10SR = 0  
ADC10SR = 1  
6.3  
ADC10 input clock  
frequency  
For specified performance of  
ADC10 linearity parameters  
fADC10CLK  
fADC10OSC  
2.2 V, 3 V  
MHz  
1.5  
ADC10 built-in oscillator ADC10DIVx = 0, ADC10SSELx = 0,  
2.2 V, 3 V  
2.2 V, 3 V  
3.7  
6.3 MHz  
frequency  
fADC10CLK = fADC10OSC  
ADC10 built-in oscillator, ADC10SSELx = 0,  
fADC10CLK = fADC10OSC  
2.06  
3.51  
µs  
tCONVERT  
Conversion time  
fADC10CLK from ACLK, MCLK or SMCLK,  
13 × ADC10DIVx ×  
1 / fADC10CLK  
ADC10SSELx 0  
Turn on settling time of  
the ADC(1)  
tADC10ON  
100  
ns  
(1) The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
42  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
10-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Integral linearity error  
Differential linearity error  
Offset error  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
±1 LSB  
±1 LSB  
±1 LSB  
EI  
2.2 V, 3 V  
2.2 V, 3 V  
2.2 V, 3 V  
ED  
EO  
Source impedance RS < 100 Ω  
SREFx = 010, unbuffered external reference,  
VeREF+ = 1.5 V  
2.2 V  
3 V  
±1.1  
±1.1  
±1.1  
±1.1  
±2  
±2  
SREFx = 010, unbuffered external reference,  
VeREF+ = 2.5 V  
±2  
EG  
Gain error  
LSB  
±4  
SREFx = 011, buffered external reference(1)  
VeREF+ = 1.5 V  
,
2.2 V  
3 V  
SREFx = 011, buffered external reference(1)  
VeREF+ = 2.5 V  
,
±3  
±5  
SREFx = 010, unbuffered external reference,  
VeREF+ = 1.5 V  
2.2 V  
3 V  
SREFx = 010, unbuffered external reference,  
VeREF+ = 2.5 V  
±2  
±5  
ET  
Total unadjusted error  
LSB  
±7  
SREFx = 011, buffered external reference(1)  
VeREF+ = 1.5 V  
,
2.2 V  
3 V  
±2  
SREFx = 011, buffered external reference(1)  
VeREF+ = 2.5 V  
,
±2  
±6  
(1) The reference buffer offset adds to the gain and total unadjusted error.  
(1)  
10-Bit ADC, Temperature Sensor and Built-In VMID  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
MIN  
TYP  
40  
MAX UNIT  
120  
µA  
Temperature sensor supply  
current(1)  
REFON = 0, INCHx = 0Ah,  
TA = 25°C  
ISENSOR  
3 V  
60  
160  
TCSENSOR  
ADC10ON = 1, INCHx = 0Ah(2)  
ADC10ON = 1, INCHx = 0Ah(2)  
2.2 V, 3 V  
3.44  
-100  
3.55  
3.66 mV/°C  
VOffset,Sensor  
Sensor offset voltage  
100  
mV  
Temperature sensor voltage at  
TA = 105°C (T version only)  
1265  
1365  
1465  
Temperature sensor voltage at TA = 85°C  
Temperature sensor voltage at TA = 25°C  
Temperature sensor voltage at TA = 0°C  
1195  
985  
1295  
1085  
995  
1395  
1185  
1095  
VSENSOR  
Sensor output voltage(3)  
2.2 V, 3 V  
2.2 V, 3 V  
mV  
895  
Sample time required if  
channel 10 is selected(4)  
ADC10ON = 1, INCHx = 0Ah,  
Error of conversion result 1 LSB  
tSENSOR(sample)  
IVMID  
30  
µs  
2.2 V  
3 V  
N/A  
N/A  
Current into divider at  
channel 11(4)  
ADC10ON = 1, INCHx = 0Bh  
µA  
2.2 V  
3 V  
1.06  
1.46  
1.1  
1.5  
1.14  
1.54  
ADC10ON = 1, INCHx = 0Bh,  
VMID  
VCC divider at channel 11  
V
VMID 0.5 × VCC  
2.2 V  
3 V  
1400  
1220  
Sample time required if  
channel 11 is selected(5)  
ADC10ON = 1, INCHx = 0Bh,  
Error of conversion result 1 LSB  
tVMID(sample)  
ns  
(1) The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON = 1 and INCH = 0Ah and sample signal is  
high).When REFON = 1, ISENSOR is included in IREF+.When REFON = 0, ISENSOR applies during conversion of the temperature sensor  
input (INCH = 0Ah).  
(2) The following formula can be used to calculate the temperature sensor output voltage:  
VSensor,typ = TCSensor ( 273 + T [°C] ) + VOffset,sensor [mV] or  
VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV]  
(3) Results based on characterization and/or production test, not TCSensor or VOffset,sensor  
.
(4) No additional current is needed. The VMID is used during sampling.  
(5) The on time, tVMID(on), is included in the sampling time, tVMID(sample); no additional on time is needed.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
2.2  
TYP  
MAX  
3.6  
476  
5
UNIT  
V
VCC (PGM/ERASE) Program and erase supply voltage  
fFTG  
Flash timing generator frequency  
Supply current from VCC during program  
Supply current from VCC during erase  
Cumulative program time(1)  
257  
kHz  
mA  
IPGM  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
2.2 V, 3.6 V  
1
1
IERASE  
tCPT  
7
mA  
10  
ms  
tCMErase  
Cumulative mass erase time  
20  
104  
15  
ms  
Program/Erase endurance  
105  
cycles  
years  
tFTG  
tFTG  
tRetention  
tWord  
Data retention duration  
TJ = 25°C  
(2)  
Word or byte program time  
30  
25  
(2)  
(2)  
tBlock, 0  
Block program time for first byte or word  
Block program time for each additional  
byte or word  
tBlock, 1-63  
18  
tFTG  
(2)  
(2)  
(2)  
tBlock, End  
tMass Erase  
tSeg Erase  
Block program end-sequence wait time  
Mass erase time  
6
10593  
4819  
tFTG  
tFTG  
tFTG  
Segment erase time  
(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
(2) These values are hardwired into the flash controller's state machine (tFTG = 1/fFTG).  
RAM  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CPU halted  
MIN  
MAX UNIT  
(1)  
V(RAMh)  
RAM retention supply voltage  
1.6  
V
(1) This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should  
happen during this supply voltage condition.  
44  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
Spy-Bi-Wire low clock pulse length  
2.2 V, 3 V  
2.2 V, 3 V  
20 MHz  
tSBW,Low  
0.025  
15  
µs  
Spy-Bi-Wire enable time  
tSBW,En  
tSBW,Ret  
2.2 V, 3 V  
1
µs  
(TEST high to acceptance of first clock edge(1)  
)
Spy-Bi-Wire return to normal operation time  
TCK input frequency(2)  
2.2 V, 3 V  
2.2 V  
15  
0
100  
5
µs  
MHz  
fTCK  
3 V  
0
10 MHz  
90 kΩ  
RInternal  
Internal pulldown resistance on TEST  
2.2 V, 3 V  
25  
60  
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before  
applying the first SBWCLK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
JTAG Fuse(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
Supply voltage during fuse-blow condition  
Voltage level on TEST for fuse blow  
Supply current into TEST during fuse blow  
Time to blow fuse  
TEST CONDITIONS  
TA = 25°C  
MIN  
2.5  
6
MAX UNIT  
VCC(FB)  
VFB  
V
7
100  
1
V
IFB  
mA  
ms  
tFB  
(1) Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to  
bypass mode.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Application Information  
Port P1 Pin Schematic: P1.0 to P1.3, Input/Output With Schmitt Trigger  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.0/TACLK/ADC10CLK  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
P1SEL.x  
P1IN.x  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
Table 16. Port P1 (P1.0 to P1.3) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
P1.0(1)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
0
1
1
P1.0/TACLK/ADC10CLK  
0
Timer_A3.TACLK  
ADC10CLK  
P1.1(1) (I/O)  
0
1
I: 0; O: 1  
P1.1/TA0  
P1.2/TA1  
P1.3/TA2  
1
2
3
Timer_A3.CCI0A  
Timer_A3.TA0  
P1.2(1) (I/O)  
0
1
I: 0; O: 1  
Timer_A3.CCI1A  
Timer_A3.TA1  
P1.3(1) (I/O)  
0
1
I: 0; O: 1  
Timer_A3.CCI2A  
Timer_A3.TA2  
0
1
(1) Default after reset (PUC/POR)  
46  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Port P1 Pin Schematic: P1.4 to P1.6, Input/Output With Schmitt Trigger and In-System Access  
Features  
Pad Logic  
P1REN.x  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.x  
Module X OUT  
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
P1.6/TA1/TDI  
Bus  
Keeper  
P1SEL.x  
P1IN.x  
EN  
EN  
D
Module X IN  
P1IRQ.x  
P1IE.x  
EN  
Q
Set  
P1IFG.x  
Interrupt  
Edge  
Select  
P1SEL.x  
P1IES.x  
To JTAG  
From JTAG  
Table 17. Port P1 (P1.4 to P1.6) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
P1SEL.x  
4-Wire JTAG  
P1.4(2) (I/O)  
SMCLK  
I: 0; O: 1  
0
1
X
0
1
X
0
1
X
0
0
1
0
0
1
0
0
1
P1.4/SMCLK/TCK  
P1.5/TA0/TMS  
4
1
TCK  
X
P1.5(2) (I/O)  
Timer_A3.TA0  
TMS  
P1.6(2) (I/O)  
Timer_A3.TA1  
TDI/TCLK(3)  
I: 0; O: 1  
5
6
1
X
I: 0; O: 1  
P1.6/TA1/TDI/TCLK  
(1) X = Don't care  
1
X
(2) Default after reset (PUC/POR)  
(3) Function controlled by JTAG  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Port P1 Pin Schematic: P1.7, Input/Output With Schmitt Trigger and In-System Access Features  
Pad Logic  
P1REN.7  
DVSS  
DVCC  
0
1
1
P1DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P1OUT.7  
Module X OUT  
P1.7/TA2/TDO/TDI  
Bus  
Keeper  
P1SEL.7  
P1IN.7  
EN  
EN  
D
Module X IN  
P1IRQ.7  
P1IE.7  
EN  
Q
Set  
P1IFG.7  
Interrupt  
Edge  
Select  
P1SEL.7  
P1IES.7  
To JTAG  
From JTAG  
From JTAG  
From JTAG (TDO)  
Table 18. Port P1 (P1.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
I: 0; O: 1  
P1SEL.x  
4-Wire JTAG  
P1.7(2) (I/O)  
0
1
0
0
1
P1.7/TA2/TDO/TDI  
(1) X = Don't care  
7
Timer_A3.TA2  
TDO/TDI(3)  
1
X
X
(2) Default after reset (PUC/POR)  
(3) Function controlled by JTAG  
48  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Port P2 Pin Schematic: P2.0, P2.2, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = y  
ADC10AE0.y  
P2REN.x  
P2DIR.x  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.x  
Module X OUT  
P2.0/ACLK/A0  
P2.2/TA0/A2  
Bus  
Keeper  
P2SEL.x  
P2IN.x  
EN  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
EN  
Q
Set  
P2IFG.x  
Interrupt  
Edge  
Select  
P2SEL.x  
P2IES.x  
Table 19. Port P2 (P2.0, P2.2) Pin Functions  
CONTROL BITS/SIGNALS(1)  
Pin Name (P2.x)  
x
y
FUNCTION  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.0(2) (I/O)  
ACLK  
A0(3)  
P2.2(2) (I/O)  
Timer_A3.CCI0B  
Timer_A3.TA0  
A2(3)  
I: 0; O: 1  
0
1
X
0
1
1
X
0
0
1
0
0
0
1
P2.0/ACLK/A0  
0
0
2
1
X
I: 0; O: 1  
0
1
X
P2.2/TA0/A2  
2
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Port P2 Pin Schematic: P2.1, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = 1  
ADC10AE0.1  
P2REN.1  
P2DIR.1  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
P2OUT.1  
0
1
Module X OUT  
P2.1/TAINCLK/SMCLK/A1  
Bus  
Keeper  
P2SEL.1  
P2IN.1  
EN  
EN  
D
Module X IN  
P2IRQ.1  
P2IE.1  
EN  
Q
Set  
P2IFG.1  
Interrupt  
Edge  
Select  
P2SEL.1  
P2IES.1  
Table 20. Port P2 (P2.1) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
y
FUNCTION  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.1(2) (I/O)  
Timer_A3.INCLK  
SMCLK  
I: 0; O: 1  
0
1
1
X
0
0
0
1
0
1
X
P2.1/TAINCLK/SMCLK/  
A1  
1
1
A1(3)  
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
50  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Port P2 Pin Schematic: P2.3, Input/Output With Schmitt Trigger  
SREF2  
VSS  
Pad Logic  
0
1
To ADC10 V  
R−  
To ADC10  
INCHx = 3  
ADC10AE0.3  
P2REN.3  
P2DIR.3  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.3  
Module X OUT  
P2.3/TA1/  
A3/VREF/VeREF−  
Bus  
Keeper  
P2SEL.3  
P2IN.3  
EN  
EN  
D
Module X IN  
P2IRQ.3  
P2IE.3  
EN  
Q
Set  
P2IFG.3  
Interrupt  
Edge  
Select  
P2SEL.3  
P2IES.3  
Table 21. Port P2 (P2.3) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
y
FUNCTION  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.3(2) (I/O)  
I: 0; O: 1  
0
1
1
X
0
0
0
1
Timer_A3.CCI1B  
Timer_A3.TA1  
0
1
X
P2.3/TA1/A3/VREF-  
/VeREF-  
3
3
(3)  
A3/VREF-/VeREF-  
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Port P2 Pin Schematic: P2.4, Input/Output With Schmitt Trigger  
Pad Logic  
To/fromADC10  
positive reference  
To ADC10  
INCHx = 4  
ADC10AE0.4  
P2REN.4  
DVSS  
DVCC  
0
1
1
P2DIR.4  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.4  
Module X OUT  
P2.4/TA2/  
A4/VREF+/VeREF+  
Bus  
Keeper  
P2SEL.4  
P2IN.4  
EN  
EN  
D
Module X IN  
P2IRQ.4  
P2IE.4  
EN  
Q
Set  
P2IFG.4  
Interrupt  
Edge  
Select  
P2SEL.4  
P2IES.4  
Table 22. Port P2 (P2.4) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
y
FUNCTION  
P2DIR.x  
P2SEL.x  
ADC10AE0.y  
P2.4(2) (I/O)  
I: 0; O: 1  
0
1
X
0
0
1
P2.4/TA2/A4/VREF+  
VeREF+  
/
4
4
Timer_A3.TA2  
1
(3)  
A4/VREF+/VeREF+  
X
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
52  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Port P2 Pin Schematic: P2.5, Input/Output With Schmitt Trigger and External ROSC for DCO  
Pad Logic  
To DCO  
DCOR  
P2REN.x  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.x  
Module X OUT  
P2.5/ROSC  
Bus  
Keeper  
P2SEL.x  
P2IN.x  
EN  
EN  
D
Module X IN  
P2IRQ.x  
P2IE.x  
EN  
Q
Set  
P2IFG.x  
Interrupt  
Edge  
Select  
P2SEL.x  
P2IES.x  
Table 23. Port P2 (P2.5) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
I: 0; O: 1  
P2SEL.x  
DCOR  
P2.5(2) (I/O)  
N/A(3)  
0
1
1
X
0
0
0
1
0
1
P2.5/ROSC  
5
DVSS  
ROSC  
X
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) N/A = Not available or not applicable  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger and Crystal Oscillator Input  
BCSCTL3.LFXT1Sx = 11  
LFXT1 Oscillator  
P2.7/XOUT  
LFXT1 off  
0
1
LFXT1CLK  
Pad Logic  
P2SEL.7  
P2REN.6  
DVSS  
0
1
1
DVCC  
P2DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.6  
Module X OUT  
P2.6/XIN  
Bus  
Keeper  
P2SEL.6  
P2IN.6  
EN  
EN  
D
Module X IN  
P2IRQ.6  
P2IE.6  
EN  
Set  
Q
P2IFG.6  
P2SEL.6  
Interrupt  
Edge  
Select  
P2IES.6  
Table 24. Port P2 (P2.6) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
I: 0; O: 1  
X
P2SEL.x  
P2.6 (I/O)  
XIN(2)  
0
1
P2.6/XIN  
6
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
54  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger and Crystal Oscillator Output  
BCSCTL3.LFXT1Sx = 11  
LFXT1 Oscillator  
LFXT1 off  
0
1
LFXT1CLK  
From P2.6/XIN  
P2.6/XIN  
Pad Logic  
P2SEL.6  
P2REN.7  
DVSS  
0
1
1
DVCC  
P2DIR.7  
0
1
Direction  
0: Input  
1: Output  
0
1
P2OUT.7  
Module X OUT  
P2.7/XOUT  
Bus  
Keeper  
P2SEL.7  
P2IN.7  
EN  
EN  
D
Module X IN  
P2IRQ.7  
P2IE.7  
EN  
Set  
Q
P2IFG.7  
P2SEL.7  
Interrupt  
Edge  
Select  
P2IES.7  
Table 25. Port P2 (P2.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
I: 0; O: 1  
X
P2SEL.x  
P2.7 (I/O)  
XOUT(2) (3)  
0
1
XOUT/P2.7  
7
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) If the pin XOUT/P2.7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection to this  
pin after reset.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Port P3 Pin Schematic: P3.0, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = 5  
ADC10AE0.5  
P3REN.0  
DVSS  
DVCC  
0
1
1
P3DIR.0  
0
1
Direction  
0: Input  
1: Output  
USCI Direction  
Control  
0
1
P3OUT.0  
Module X OUT  
P3.0/UCB0STE/UCA0CLK/A5  
Bus  
Keeper  
P3SEL.0  
P3IN.0  
EN  
EN  
D
Module X IN  
Table 26. Port P3 (P3.0) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P1.x)  
x
y
FUNCTION  
P3DIR.x  
I: 0; O: 1  
P3SEL.x  
ADC10AE0.y  
P3.0(2) (I/O)  
0
1
X
0
0
1
P3.0/UCB0STE/  
UCA0CLK/A5  
0
5
UCB0STE/UCA0CLK(3) (4)  
A5(5)  
X
X
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) The pin direction is controlled by the USCI module.  
(4) UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI_B0 is forced to  
3-wire SPI mode if 4-wire SPI mode is selected.  
(5) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
56  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Port P3 Pin Schematic: P3.1 to P3.5, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
USCI Direction  
Control  
0
1
P3OUT.x  
Module X OUT  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
P3.4/UCA0TXD/UCA0SIMO  
P3.5/UCA0RXD/UCA0SOMI  
Bus  
Keeper  
P3SEL.x  
P3IN.x  
EN  
EN  
D
Module X IN  
Table 27. Port P3 (P3.1 to P3.5) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P3.x)  
P3.1/UCB0SIMO/UCB0SDA  
P3.2/UCB0SOMI/UCB0SCL  
P3.3/UCB0CLK/UCA0STE  
P3.4/UCA0TXD/UCA0SIMO  
x
1
2
3
4
5
FUNCTION  
P3DIR.x  
P3SEL.x  
P3.1(2) (I/O)  
I: 0; O: 1  
0
1
0
1
0
1
0
1
0
1
UCB0SIMO/UCB0SDA(3)  
P3.2(2) (I/O)  
X
I: 0; O: 1  
UCB0SOMI/UCB0SCL(3)  
P3.3(2) (I/O)  
X
I: 0; O: 1  
UCB0CLK/UCA0STE(3) (4)  
P3.4(2) (I/O)  
X
I: 0; O: 1  
X
UCA0TXD/UCA0SIMO(3)  
P3.5(2) (I/O)  
I: 0; O: 1  
X
P3.5/UCA0RXD/UCA0SOMI  
(1) X = Don't care  
UCA0RXD/UCA0SOMI(3)  
(2) Default after reset (PUC/POR)  
(3) The pin direction is controlled by the USCI module.  
(4) UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to  
3-wire SPI mode even if 4-wire SPI mode is selected.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Port P3 Pin Schematic: P3.6 to P3.7, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = y  
ADC10AE0.y  
P3REN.x  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
DVSS  
0
1
P3OUT.x  
Module X OUT  
P3.6/A6  
P3.7/A7  
Bus  
Keeper  
P3SEL.x  
P3IN.x  
EN  
EN  
D
Module X IN  
Table 28. Port P3 (P3.6, P3.7) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P3.x)  
x
y
6
7
FUNCTION  
P3DIR.x  
P3SEL.x  
ADC10AE0.y  
P3.6(2) (I/O)  
A6(3)  
P3.7(2) (I/O)  
A7(3)  
I: 0; O: 1  
0
X
0
0
1
0
1
P3.6/A6  
6
7
X
I: 0; O: 1  
X
P3.7/A7  
X
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
58  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Port P4 Pin Schematic: P4.0 to P4.2, Input/Output With Schmitt Trigger  
Timer_B OutputTristate Logic  
P4.6/TBOUTH/A15  
P4SEL.6  
Pad Logic  
P4DIR.6  
ADC10AE1.7  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.x  
Module X OUT  
P4.0/TB0  
P4.1/TB1  
P4.2/TB2  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
Table 29. Port P4 (P4.0 to P4.2) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL.x  
P4.0(1) (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
0
1
1
P4.0/TB0  
0
Timer_B3.CCI0A  
Timer_B3.TB0  
P4.1(1) (I/O)  
0
1
I: 0; O: 1  
P4.1/TB1  
P4.2/TB2  
1
2
Timer_B3.CCI1A  
Timer_B3.TB1  
P4.2(1) (I/O)  
0
1
I: 0; O: 1  
Timer_B3.CCI2A  
Timer_B3.TB2  
0
1
(1) Default after reset (PUC/POR)  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Port P4 Pin Schematic: P4.3 to P4.4, Input/Output With Schmitt Trigger  
Timer_B OutputTristate Logic  
P4.6/TBOUTH/A15  
P4SEL.6  
P4DIR.6  
ADC10AE1.7  
Pad Logic  
To ADC10  
INCHx = 8+y  
ADC10AE1.y  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
0
1
Module X OUT  
P4.3/TB0/A12  
P4.4/TB1/A13  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
60  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Table 30. Port P4 (P4.3 to P4.4) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P4.x)  
x
y
FUNCTION  
P4DIR.x  
P4SEL.x  
ADC10AE1.y  
P4.3(2) (I/O)  
Timer_B3.CCI0B  
Timer_B3.TB0  
A12(3)  
P4.4(2) (I/O)  
Timer_B3.CCI1B  
Timer_B3.TB1  
A13(3)  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
P4.3/TB0/A12  
3
4
1
X
I: 0; O: 1  
0
1
X
P4.4/TB1/A13  
4
5
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Port P4 Pin Schematic: P4.5, Input/Output With Schmitt Trigger  
Timer_B OutputTristate Logic  
P4.6/TBOUTH/A15  
P4SEL.6  
P4DIR.6  
ADC10AE1.7  
Pad Logic  
To ADC10  
INCHx = 14  
ADC10AE1.6  
P4REN.5  
DVSS  
DVCC  
0
1
1
P4DIR.5  
0
1
Direction  
0: Input  
1: Output  
P4OUT.5  
0
1
Module X OUT  
P4.5/TB3/A14  
Bus  
Keeper  
P4SEL.5  
P4IN.5  
EN  
EN  
D
Module X IN  
Table 31. Port P4 (P4.5) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P4.x)  
x
y
FUNCTION  
P4DIR.x  
P4SEL.x  
ADC10AE1.y  
P4.5(2) (I/O)  
Timer_B3.TB2  
A14(3)  
I: 0; O: 1  
0
1
X
0
0
1
P4.5/TB3/A14  
5
6
1
X
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
62  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
Port P4 Pin Schematic: P4.6, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10  
INCHx = 15  
ADC10AE1.7  
P4REN.6  
DVSS  
DVCC  
0
1
1
P4DIR.6  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.6  
Module X OUT  
P4.6/TBOUTH/A15  
Bus  
Keeper  
P4SEL.6  
P4IN.6  
EN  
EN  
D
Module X IN  
Table 32. Port P4 (P4.6) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P4.x)  
x
y
FUNCTION  
P4DIR.x  
P4SEL.x  
ADC10AE1.y  
P4.6(2) (I/O)  
TBOUTH  
DVSS  
I: 0; O: 1  
0
1
1
X
0
0
0
1
0
1
P4.6/TBOUTH/A15  
6
7
A15(3)  
X
(1) X = Don't care  
(2) Default after reset (PUC/POR)  
(3) Setting the ADC10AE1.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when  
applying analog signals.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: NN325-Q1  
NN325-Q1  
SLAS824 DECEMBER 2013  
www.ti.com  
Port P4 Pin Schematic: P4.7, Input/Output With Schmitt Trigger  
Pad Logic  
DVSS  
P4REN.x  
DVSS  
DVCC  
0
1
1
P4DIR.x  
0
1
Direction  
0: Input  
1: Output  
0
1
P4OUT.x  
Module X OUT  
P4.7/TBCLK  
Bus  
Keeper  
P4SEL.x  
P4IN.x  
EN  
EN  
D
Module X IN  
Table 33. Port P4 (Pr.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL.x  
P4.7(1) (I/O)  
I: 0; O: 1  
0
1
1
P4.7/TBCLK  
7
Timer_B3.TBCLK  
DVSS  
0
1
(1) Default after reset (PUC/POR)  
64  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: NN325-Q1  
NN325-Q1  
www.ti.com  
SLAS824 DECEMBER 2013  
JTAG Fuse Check Mode  
NN325-Q1 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of  
the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check  
current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care  
must be taken to avoid accidentally activating the fuse check mode and increasing overall system power  
consumption.  
When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense  
currents are terminated.  
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is  
being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode.  
After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse  
check mode has the potential to be activated.  
The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see  
Figure 25). Therefore, the additional current flow can be prevented by holding the TMS pin high (default  
condition).  
Time TMS Goes Low After POR  
TMS  
I
TF  
I
TEST  
Figure 25. Fuse Check Mode Current  
NOTE  
The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit  
bootloader access key is used. Also, see the Bootstrap Loader section for more  
information.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: NN325-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
NN325TRHARQ1  
ACTIVE  
VQFN  
RHA  
40  
2500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
NN325  
TQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
NN325TRHARQ1  
VQFN  
RHA  
40  
2500  
330.0  
16.4  
6.3  
6.3  
1.1  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RHA 40  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
NN325TRHARQ1  
2500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
6.1  
5.9  
1 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2X 4.5  
4.15 0.1  
(0.2) TYP  
11  
20  
36X 0.5  
10  
21  
EXPOSED  
THERMAL PAD  
2X  
4.5  
SYMM  
41  
30  
0.27  
40X  
1
0.17  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
40  
31  
SYMM  
0.05  
0.5  
0.3  
40X  
4219052/A 06/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.15)  
SYMM  
40X (0.6)  
40X (0.22)  
40  
31  
1
30  
(0.25) TYP  
36X (0.5)  
SYMM  
41  
(5.8)  
(0.685)  
TYP  
(1.14)  
TYP  
(
0.2) TYP  
VIA  
10  
21  
(R0.05) TYP  
20  
11  
(0.685)  
TYP  
(1.14)  
TYP  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MIN  
ALL SIDES  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219052/A 06/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
9X ( 1.17)  
(1.37) TYP  
40X (0.6)  
40X (0.22)  
31  
40  
1
30  
41  
(1.37)  
TYP  
(0.25) TYP  
SYMM  
(5.8)  
36X (0.5)  
(R0.05) TYP  
10  
21  
11  
20  
METAL  
TYP  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
72% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4219052/A 06/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

NN325TRHARQ1

多感应触摸管理器 | RHA | 40 | -40 to 105
TI

NN3478FAS-A

Consumer Circuit, PQFP100, QFH-100
PANASONIC

NN5099K

IC DIVISION
ETC

NN511000J-40

x1 Fast Page Mode DRAM
ETC

NN511000J-45

x1 Fast Page Mode DRAM
ETC

NN511000J-50

x1 Fast Page Mode DRAM
ETC

NN511000J-60

x1 Fast Page Mode DRAM
ETC

NN511000J-70

x1 Fast Page Mode DRAM
ETC

NN511000LJ-40

x1 Fast Page Mode DRAM
ETC

NN511000LJ-45

x1 Fast Page Mode DRAM
ETC

NN511000LJ-50

x1 Fast Page Mode DRAM
ETC

NN511000LJ-60

x1 Fast Page Mode DRAM
ETC