OMAP3530ECBB [TI]

应用处理器 | CBB | 515 | 0 to 90;
OMAP3530ECBB
型号: OMAP3530ECBB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

应用处理器 | CBB | 515 | 0 to 90

外围集成电路
文件: 总239页 (文件大小:3505K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
1 OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
1.1 Features  
Additional C64x+™ Enhancements  
OMAP3525 and OMAP3530 Applications  
Processors:  
Protected Mode Operation  
Exceptions Support for Error Detection  
and Program Redirection  
OMAP™ 3 Architecture  
MPU Subsystem  
Hardware Support for Modulo Loop  
Operation  
600-MHz ARM Cortex™-A8 Core  
NEON™ SIMD Coprocessor  
C64x+ L1/L2 Memory Architecture  
High Performance Image, Video, Audio  
(IVA2.2™) Accelerator Subsystem  
32K-Byte L1P Program RAM/Cache (Direct  
Mapped)  
80K-Byte L1D Data RAM/Cache (2-Way  
Set-Associative)  
64K-Byte L2 Unified Mapped RAM/Cache  
(4-Way Set-Associative)  
32K-Byte L2 Shared SRAM and 16K-Byte L2  
ROM  
430-MHz TMS320C64x+™ DSP Core  
Enhanced Direct Memory Access  
(EDMA) Controller (128 Independent  
Channels)  
Video Hardware Accelerators  
POWERVR SGX™ 2D/3D Graphics  
Accelerator (OMAP3530 Device Only)  
C64x+ Instruction Set Features  
Tile Based Architecture Delivering up to  
10 MPoly/sec  
Universal Scalable Shader Engine:  
Multi-threaded Engine Incorporating  
Pixel and Vertex Shader Functionality  
Industry Standard API Support:  
OpenGLES 1.1 and 2.0, OpenVG1.0  
Fine Grained Task Switching, Load  
Balancing, and Power Management  
Programmable High Quality Image  
Anti-Aliasing  
Byte-Addressable (8-/16-/32-/64-Bit Data)  
8-Bit Overflow Protection  
Bit-Field Extract, Set, Clear  
Normalization, Saturation. Bit-Counting  
Compact 16-Bit Instructions  
Additional Instructions to Support Complex  
Multiplies  
ARM Cortex™-A8 Core  
ARMv7 Architecture  
Trust Zone®  
Thumb®-2  
MMU Enhancements  
Fully Software-Compatible With C64x and  
ARM9™  
Commercial and Extended Temperature  
Grades  
In-Order, Dual-Issue, Superscalar  
Microprocessor Core  
Advanced Very-Long-Instruction-Word (VLIW)  
TMS320C64x+™ DSP Core  
NEON™ Multimedia Architecture  
Over 2x Performance of ARMv6 SIMD  
Supports Both Integer and Floating Point  
SIMD  
Eight Highly Independent Functional Units  
+Six ALUs (32-/40-Bit), Each Supports  
Single 32-Bit, Dual 16-Bit, or Quad 8-Bit  
Arithmetic per Clock Cycle  
Two Multipliers Support Four 16 x 16-Bit  
Multiplies (32-Bit Results) per Clock  
Cycle or Eight 8 x 8-Bit Multiplies (16-Bit  
Results) per Clock Cycle  
Jazelle® RCT Execution Environment  
Architecture  
Dynamic Branch Prediction with Branch  
Target Address Cache, Global History  
Buffer, and 8-Entry Return Stack  
Embedded Trace Macrocell (ETM) Support  
for Non-Invasive Debug  
Load-Store Architecture With Non-Aligned  
Support  
64 32-Bit General-Purpose Registers  
Instruction Packing Reduces Code Size  
All Instructions Conditional  
ARM Cortex™-A8 Memory Architecture:  
16K-Byte Instruction Cache (4-Way  
Set-Associative)  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this document.  
POWERVR SGX is a trademark of Imagination Technologies Ltd.  
OMAP is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCT PREVIEW information concerns products in the  
formative or design phase of development. Characteristic data and  
other specifications are design goals. Texas Instruments reserves  
the right to change or discontinue these products without notice.  
Copyright © 2009, Texas Instruments Incorporated  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
16K-Byte Data Cache (4-Way  
Set-Associative)  
256K-Byte L2 Cache  
Up to 24-Bit RGB  
HD Maximum Resolution  
Supports Up to 2 LCD Panels  
Support for Remote Frame Buffer  
Interface (RFBI) LCD Panels  
112K-Byte ROM  
64K-Byte Shared SRAM  
Endianess:  
2 10-Bit Digital-to-Analog Converters  
(DACs) Supporting:  
Rotation 90-, 180-, and 270-degrees  
Resize Images From 1/4x to 8x  
Color Space Converter  
ARM Instructions - Little Endian  
ARM Data – Configurable  
DSP Instruction/Data - Little Endian  
Composite NTSC/PAL Video  
Luma/Chroma Separate Video (S-Video)  
External Memory Interfaces:  
SDRAM Controller (SDRC)  
16, 32-bit Memory Controller With  
1G-Byte Total Address Space  
Interfaces to Low-Power Double Data  
Rate (LPDDR) SDRAM  
SDRAM Memory Scheduler (SMS) and  
Rotation Engine  
8-bit Alpha Blending  
Serial Communication  
5 Multichannel Buffered Serial Ports  
(McBSPs)  
512 Byte Transmit/Receive Buffer  
(McBSP1/3/4/5)  
5K-Byte Transmit/Receive Buffer  
(McBSP2)  
SIDETONE Core Support (McBSP2 and 3  
Only) For Filter, Gain, and Mix  
Operations  
Direct Interface to I2S and PCM Device  
and TDM Buses  
General Purpose Memory Controller  
(GPMC)  
16-bit Wide Multiplexed Address/Data  
Bus  
Up to 8 Chip Select Pins With 128M-Byte  
Address Space per Chip Select Pin  
Glueless Interface to NOR Flash, NAND  
Flash (With ECC Hamming Code  
128 Channel Transmit/Receive Mode  
Calculation), SRAM and Pseudo-SRAM  
Four Master/Slave Multichannel Serial Port  
Interface (McSPI) Ports  
High-Speed/Full-Speed/Low-Speed USB  
OTG Subsystem (12-/8-Pin ULPI Interface)  
High-Speed/Full-Speed/Low-Speed  
Multiport USB Host Subsystem  
Flexible Asynchronous Protocol Control  
for Interface to Custom Logic (FPGA,  
CPLD, ASICs, etc.)  
Nonmultiplexed Address/Data Mode  
(Limited 2K-Byte Address Space)  
System Direct Memory Access (sDMA)  
Controller (32 Logical Channels With  
Configurable Priority)  
12-/8-Pin ULPI Interface or 6-/4-/3-Pin  
Serial Interface  
Supports Transceiverless Link Logic  
(TLL)  
Camera Image Signal Processing (ISP)  
CCD and CMOS Imager Interface  
Memory Data Input  
RAW Data Interface  
BT.601/BT.656 Digital YCbCr 4:2:2  
(8-/16-Bit) Interface  
A-Law Compression and Decompression  
Preview Engine for Real-Time Image  
Processing  
Glueless Interface to Common Video  
Decoders  
Histogram Module/Auto-Exposure,  
Auto-White Balance, and Auto-Focus  
Engine  
One HDQ/1-Wire Interface  
Three UARTs (One with Infrared Data  
Association [IrDA] and Consumer Infrared  
[CIR] Modes)  
Three Master/Slave High-Speed  
Inter-Integrated Circuit (I2C) Controllers  
Removable Media Interfaces:  
Three Multimedia Card (MMC)/ Secure  
Digital (SD) With Secure Data I/O (SDIO)  
One Memory Stick Pro Host Controller  
Universal Subscriber Identity Module  
(USIM)  
Comprehensive Power, Reset, and Clock  
Management  
Resize Engine  
Resize Images From 1/4x to 4x  
Separate Horizontal/Vertical Control  
SmartReflex™ Technology  
Dynamic Voltage and Frequency Scaling  
(DVFS)  
Display Subsystem  
Parallel Digital Output  
CopyrighOtNMoAteP3525-HiRel and OMAP3530-HiRel Applications Processors  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
(Bottom)  
Test Interfaces  
IEEE-1149.1 (JTAG) Boundary-Scan  
Compatible  
Embedded Trace Macro Interface (ETM)  
Serial Data Transport Interface (SDTI)  
1.8-V I/O and 3.0-V (MMC1 only),  
0.975-V to 1.35-V Adaptive Processor Core  
Voltage,  
0.975-V to 1.35-V Adaptive Core Logic Voltage  
Note: These are default Operating  
Performance Point (OPP) voltages and could  
be optimized to lower values using  
SmartReflex™ AVS.  
12 32-bit General Purpose Timers  
2 32-bit Watchdog Timers  
1 32-bit Secure Watchdog Timer  
1 32-bit 32-kHz Sync Timer  
Applications:  
Up to 188 General-Purpose I/O (GPIO) Pins  
(Multiplexed With Other Device Functions)  
Portable Navigation Devices  
Portable Media Player  
Advanced Portable Consumer Electronics  
Digital TV  
Digital Video Camera  
Portable Data Collection  
Point-of-Sale Devices  
Gaming  
65-nm CMOS Technology  
Package-On-Package (POP) Implementation  
for Memory Stacking  
Discrete Memory Interface (Not Available in  
CBC Package)  
Packages:  
Web Tablet  
515-pin s-PBGA package (CBB Suffix),  
.5mm Ball Pitch (Top), .4mm Ball Pitch  
(Bottom)  
515-pin s-PBGA package (CBC Suffix),  
.65mm Ball Pitch (Top), .5mm Ball Pitch  
Smart White Goods  
Smart Home Controllers  
Ultra Mobile Devices  
1.2 SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS  
Controlled Baseline  
One Assembly/Test Site  
One Fabrication Site  
Extended Product Life Cycle  
Extended Product-Change Notification  
Product Traceability  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
3
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
1.3 Description  
OMAP3530 and OMAP3525 high-performance, applications processors are based on the enhanced  
OMAP™ 3 architecture.  
The OMAP™ 3 architecture is designed to provide best-in-class video, image, and graphics processing  
sufficient to support the following:  
Streaming video  
2D/3D mobile gaming  
Video conferencing  
High-resolution still image  
The device supports high-level operating systems (OSs), such as:  
Linux  
Windows CE  
Symbian OS  
Palm OS  
This OMAP device includes state-of-the-art power-management techniques required for high-performance  
mobile products.  
The following subsystems are part of the device:  
Microprocessor unit (MPU) subsystem based on the ARM Cortex™-A8 microprocessor  
IVA2.2 subsystem with a C64x+ digital signal processor (DSP) core  
POWERVR SGX™ subsystem for 2D and 3D graphics acceleration to support display and gaming  
effects (3530only)  
Camera image signal processor (ISP) that supports multiple formats and interfacing options connected  
to a wide variety of image sensors  
Display subsystem with a wide variety of features for multiple concurrent image manipulation, and a  
programmable interface supporting a wide variety of displays. The display subsystem also supports  
NTSC/PAL video out.  
Level 3 (L3) and level 4 (L4) interconnects that provide high-bandwidth data transfers for multiple  
initiators to the internal and external memory controllers and to on-chip peripherals  
The device also offers:  
A comprehensive power and clock-management scheme that enables high-performance, low-power  
operation, and ultralow-power standby features. The device also supports SmartReflex™ adaptative  
voltage control. This power management technique for automatic control of the operating voltage of a  
module reduces the active power consumption.  
Memory stacking feature using the package-on-package (POP) implementation (CBB and CBC  
packages only)  
OMAP3530 is available in a 515-pin s-PBGA package (CBB suffix) and the OMAP3525 is available in  
515-pin s-PBGA (CBC suffix). Table 1-1 lists the differences between the CBB and CBC packages.  
4
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 1-1. Differences Between CBB and CBC Packages  
FEATURE  
CBB PACKAGE  
CBC PACKAGE  
For CBB package pin assignments  
seeTable 2-1, Ball Characteristics (CBB  
Pkg.)  
For CBC package pin assignments see  
Table 2-2, Ball Characteristics (CBC Pkg.)  
Pin Assignments  
Package-On-Package (POP) Interface  
Discrete Memory Interface  
POP interface supported  
POP interface supported  
Discrete Memory Interface supported  
Eight chip select pins available  
Four wait pins available  
Discrete Memory Interface not supported  
Eight chip select pins available  
Four wait pins available  
GPMC  
The following signals are either available on  
two (double muxed) or three pins (triple  
muxed): uart1_cts (AE21 / T19 / W2),  
uart1_rts (AE22 / R2), uart1_rx (H3 / H25 /  
AE4), uart1_tx (L4 / G26)  
CTS signal is available on 3 pins (triple  
muxed): uart1_cts (AG22 / W8 / T21),  
uart1_rts (AH22 / AA9), uart1_tx (F28 / Y8 /  
AE7), uart1_rx (E26 / AA8)  
UART1  
The following signals are available on two  
The following signals are available on two  
pins (double muxed): uart2_cts (AF6/AB26), pins (double muxed): uart2_cts (Y24/P3),  
uart2_rts (AE6/AB25), uart2_tx (AF5/AA25), uart2_rts (AA24/N3), uart2_tx (AD22/U3),  
UART2  
uart2_rx (AE5/AD25)  
uart2_rx (AD21/W3)  
The following signals are available on three  
The following signals are available on two  
pins (triple muxed): mcbsp3_dx (AF6 / AB26 pins (triple muxed): mcbsp3_dx (U17/ Y24/  
McBSP3  
/ V21), mcbsp3_dr (AE6 / AB25 / U21),  
mcbsp3_clkx (AF5 / AA25 / W21), and  
mcbsp3_fsx (AE5 / AD25 / K26)  
P3), mcbsp3_dr (T20/ AA24 / N3),  
mcbsp3_clkx (T17/ AD22 / U3), mcbsp3_fsx  
(P20/ AD21 / W3)  
The following signals are available on three  
pins (triple muxed): gpt8_pwm_evt (N8 /  
The following signals are available on three  
pins (triple muxed): gpt8_pwm_evt  
GP Timer  
McBSP4  
AD25 / V3), gpt9_pwm_evt (T8 / AB26 / Y2), (C5/AD21/V9), gpt9_pwm_evt (B4/W8/Y24),  
gpt10_pwm_evt (R8 / AB25 / Y3), and  
gpt11_pwm_evt (P8 / AA25 / Y4)  
gpt10_pwm_evt(C4/U8/AA24),  
gpt11_pwm_evt(B5/V8/AD22)  
The following signals are available on two  
The following signals are available on two  
pins (double muxed): mcbsp4_clkx (T8/AE1), pins(double muxed): mcbsp4_clkx (B4 / V3),  
mcbsp4_dr (R8/AD1), mcbsp4_dx (P8/AD2), mcbsp4_dr (C4 / U4), mcbsp4_dx (B5 / R3),  
mcbsp4_fsx (N8/AC1)  
mcbsp4_fsx (C5 / T3)  
HSUSB3_TLL  
MM_FSUSB3  
McSPI1  
Supported  
Supported  
Supported  
Supported  
Four chip select pins are available  
Four chip select pins are available  
The following signals are available on two  
pins (double muxed): mmc3_cmd (AC3 /  
AE10), and mmc3_clk (AB1 / AF10)  
The following signals are available on two  
pins (double muxed): mmc3_cmd (R8 / AB3),  
mmc3_clk (R9 / AB2)  
MMC3  
GPIO  
DSI  
A maximum of 188 GPIO pins are supported. A maximum of 188 GPIO pins are supported.  
Supported  
Supported  
Supported  
Supported  
SDI  
This OMAP3525 and OMAP3530 Applications Processors data manual presents the electrical and  
mechanical specifications for the OMAP3525 and OMAP3530 Applications Processors. The information  
contained in this data manual applies to both the commercial and extended temperature versions of the  
OMAP3525 and OMAP3530 Applications Processors unless otherwise indicated. It consists of the  
following sections:  
A description of the OMAP3525 and OMAP3530 terminals: assignment, electrical characteristics,  
multiplexing, and functional description (Section 2)  
A presentation of the electrical characteristics requirements: power domains, operating conditions,  
power consumption, and dc characteristics (Section 3)  
The clock specifications: input and output clocks, DPLL and DLL (Section 4)  
The video DAC specification (Section 5)  
The timing requirements and switching characteristics (ac timings) of the interfaces (Section 6)  
A description of thermal characteristics, device nomenclature, and mechanical data about the available  
packaging (Section 7)  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
5
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
1.4 Functional Block Diagram  
Figure 1-1 shows the functional block diagram of the OMAP3525/30 Applications Processor.  
OMAP Applications Processor  
CVBS  
or  
S-Video  
Camera  
(Parallel)  
LCD Panel  
Parallel  
MPU  
Subsystem  
IVA 2.2 Subsystem  
Amp  
TV  
TMS320DM64x+ DSP  
Imaging Video and  
Audio Processor  
32K/32K L1$  
ARM Cortex-  
A8TM Core  
16K/16K L1$  
Camera  
ISP  
Image  
Capture  
Hardware  
Image  
Pipeline  
and  
Preview  
HS USB  
Host  
(with  
USB  
TTL)  
HS  
48K L1D RAM  
64K L2$  
32K L2 RAM  
Dual Output 3-Layer  
Display Processor  
(1xGraphics, 2xVideo)  
Temporal Dithering  
SDTV → QCIF Support  
POWERVR  
SGXTM  
Graphics  
Accelerator  
(3530 only)  
32  
Channel  
System  
DMA  
16K L2 ROM  
Video Hardware  
Accelerators  
USB  
OTG  
L2$  
256K  
64  
Async  
64  
32  
32  
64  
64  
64  
32  
32  
32 32  
32  
64  
32  
Async  
64  
L3 Interconnect Network-Hierarchial, Performance, and Power Driven  
32 64 32 32  
SMS:  
32  
32  
L4 Interconnect  
64K  
On-Chip  
RAM  
112K  
SDRAM  
Memory  
Scheduler/  
Rotation  
On-Chip  
ROM  
80KB  
Secure/  
32KB  
BOOT  
GPMC:  
General  
Purpose  
Memory  
Controller  
NAND/  
System  
Controls  
PRCM  
2KB  
Peripherals:  
3xUART, 3xHigh-Speed I2C,  
5xMcBSP  
Public/  
62KB  
Secure  
2xSmartReflexTM  
Control  
Module  
(2x with Sidetone/Audio Buffer)  
4xMcSPI, 6xGPIO,  
3xHigh-Speed MMC/SDIO,  
HDQ/1 Wire,  
NOR  
Flash,  
SRAM  
SDRC:  
SDRAM  
Memory  
Controller  
2xMailboxes  
12xGPTimers, 2xWDT,  
32K Sync Timer  
External  
Peripherals  
Interfaces  
Emulation  
Debug: SDTI, ETM, JTAG,  
External and  
Stacked Memories  
CoresightTM DAP  
Figure 1-1. OMAP3525/30 Functional Block Diagram  
6
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Contents  
1
OMAP3525-HiRel and OMAP3530-HiRel  
4.2 Output Clock Specifications........................ 113  
Applications Processors ............................... 1  
4.3 DPLL and DLL Specifications...................... 115  
VIDEO DAC SPECIFICATIONS ..................... 122  
5.1 Interface Description ............................... 122  
1.1 Features .............................................. 1  
5
6
1.2  
SUPPORTS DEFENSE, AEROSPACE, AND  
MEDICAL APPLICATIONS........................... 3  
5.2  
Electrical Specifications Over Recommended  
1.3 Description............................................ 4  
1.4 Functional Block Diagram ............................ 6  
TERMINAL DESCRIPTION.............................. 8  
2.1 Terminal Assignment ................................. 8  
2.2 Ball Characteristics.................................. 12  
2.3 Multiplexing Characteristics ......................... 50  
2.4 Signal Description ................................... 66  
ELECTRICAL CHARACTERISTICS.................. 93  
3.1 Power Domains ..................................... 93  
3.2 Absolute Maximum Ratings ......................... 95  
3.3 Recommended Operating Conditions............... 97  
3.4 DC Electrical Characteristics........................ 99  
3.5 Core Voltage Decoupling .......................... 102  
3.6 Power-up and Power-down ........................ 104  
CLOCK SPECIFICATIONS........................... 107  
4.1 Input Clock Specifications ......................... 108  
Operating Conditions .............................. 124  
5.3  
Analog Supply (vdda_dac) Noise Requirements .. 126  
2
3
5.4 External Component Value Choice ................ 127  
TIMING REQUIREMENTS AND SWITCHING  
CHARACTERISTICS.................................. 128  
6.1 Timing Test Conditions ............................ 128  
6.2 Interface Clock Specifications ..................... 128  
6.3 Timing Parameters................................. 129  
6.4 External Memory Interfaces........................ 130  
6.5 Video Interfaces.................................... 159  
6.6 Serial Communications Interfaces ................. 179  
6.7 Removable Media Interfaces ...................... 212  
6.8 Test Interfaces ..................................... 227  
PACKAGE CHARACTERISTICS.................... 233  
7.1 Package Thermal Resistance...................... 233  
7.2 Device Support..................................... 233  
7
4
Submit Documentation Feedback  
Contents  
7
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
2 TERMINAL DESCRIPTION  
2.1 Terminal Assignment  
Figure 2-1 through Figure 2-4 show the ball locations for the 515-ball plastic ball grid array (s-PBGA)  
packages. Table 2-1 and Table 2-2 indicate the signal names and ball grid numbers for both packages.  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11  
13  
17  
19  
21  
23  
25  
27  
15  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
030-001  
Figure 2-1. OMAP3525/30 Applications Processor CBB s-PBGA-N515 Package (Bottom View)  
8
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
L
J
M
K
H
G
E
C
A
F
D
B
23  
19  
17  
15  
13  
11  
9
7
5
3
1
21  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
030-002  
Balls A1, A2, A22, A23, AB1, AB2, AB22, AB23, AC1, AC2, AC22, AC23, B1, B2, B22, and B23 are unused.  
Figure 2-2. OMAP3525/30 Applications Processor CBB s-PBGA-N515 Package (Top View)  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
9
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
6 8  
Figure 2-3. OMAP3525/30 Applications Processor CBC s-PBGA-515 Package (Bottom View)  
10  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Figure 2-4. OMAP3525/30 Applications Processor CBC s-PBGA-515 Package (Top View)  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
11  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
2.2 Ball Characteristics  
Table 2-1 and Table 2-2 describe the terminal characteristics and the signals multiplexed on each pin for  
the CBB and CBC packages, respectively. The following list describes the table column headers.  
1. BALL BOTTOM: Ball number(s) on the bottom side associated with each signal(s) on the bottom.  
2. BALL TOP: Ball number(s) on the top side associated with each signal(s) on the top.  
3. PIN NAME: Names of signals multiplexed on each ball (also notice that the name of the pin is the  
signal name in mode 0).  
Note: Table 2-1 and Table 2-2 do not take into account subsystem pin multiplexing options.  
Subsystem pin multiplexing options are described in Section 2.4, Signal Descriptions.  
4. MODE: Multiplexing mode number.  
a. Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the pin  
corresponds to the name of the pin. There is always a function mapped on the primary mode.  
Notice that primary mode is not necessarily the default mode.  
Note: The default mode is the mode which is automatically configured on release of the internal  
GLOBAL_PWRON reset; also see the RESET REL. MODE column.  
b. Modes 1 to 7 are possible modes for alternate functions. On each pin, some modes are effectively  
used for alternate functions, while some modes are not used and do not correspond to a functional  
configuration.  
5. TYPE: Signal direction  
I = Input  
O = Output  
I/O = Input/Output  
D = Open drain  
DS = Differential  
A = Analog  
Note: In the safe_mode, the buffer is configured in high-impedance.  
6. BALL RESET STATE: The state of the terminal at reset (power up).  
0: The buffer drives VOL (pulldown/pullup resistor not activated)  
0(PD): The buffer drives VOL with an active pulldown resistor.  
1: The buffer drives VOH (pulldown/pullup resistor not activated)  
1(PU): The buffer drives VOH with an active pullup resistor.  
Z: High-impedance  
L: High-impedance with an active pulldown resistor  
H : High-impedance with an active pullup resistor  
7. BALL RESET REL. STATE: The state of the terminal at reset release.  
0: The buffer drives VOL (pulldown/pullup resistor not activated)  
0(PD): The buffer drives VOL with an active pulldown resistor.  
1: The buffer drives VOH (pulldown/pullup resistor not activated)  
1(PU): The buffer drives VOH with an active pullup resistor.  
Z: High-impedance  
L: High-impedance with an active pulldown resistor  
H : High-impedance with an active pullup resistor  
8. RESET REL. MODE: This mode is automatically configured on release of the internal  
GLOBAL_PWRON reset.  
9. POWER: The voltage supply that powers the terminal’s I/O buffers.  
10. HYS: Indicates if the input buffer is with hysteresis.  
11. BUFFER STRENGTH: Drive strength of the associated output buffer.  
12. PULL U/D - TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and  
pulldown resistors can be enabled or disabled via software.  
12  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Note: The pullup/pulldown drive strength is equal to 100 µA except for CBB balls P27, P26, R27, and  
R25, which the pulldown drive strength is equal to 1.8 k.  
13. IO CELL: IO cell information.  
Note: Configuring two pins to the same input signal is not supported as it can yield unexpected results.  
This can be easily prevented with the proper software configuration.  
Table 2-1. Ball Characteristics (CBB Pkg.)(1)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
D6  
C6  
J2  
J1  
sdrc_d0  
sdrc_d1  
sdrc_d2  
sdrc_d3  
sdrc_d4  
sdrc_d5  
sdrc_d6  
sdrc_d7  
sdrc_d8  
sdrc_d9  
sdrc_d10  
sdrc_d11  
sdrc_d12  
sdrc_d13  
sdrc_d14  
sdrc_d15  
sdrc_d16  
sdrc_d17  
sdrc_d18  
sdrc_d19  
sdrc_d20  
sdrc_d21  
sdrc_d22  
sdrc_d23  
sdrc_d24  
sdrc_d25  
sdrc_d26  
sdrc_d27  
sdrc_d28  
sdrc_d29  
sdrc_d30  
sdrc_d31  
sdrc_ba0  
sdrc_ba1  
sdrc_a0  
sdrc_a1  
sdrc_a2  
sdrc_a3  
sdrc_a4  
sdrc_a5  
sdrc_a6  
sdrc_a7  
sdrc_a8  
sdrc_a9  
sdrc_a10  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
0
0
0
0
0
0
0
0
0
0
0
0
0
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
B6  
G2  
C8  
G1  
C9  
F2  
A7  
F1  
B9  
D2  
A9  
D1  
C14  
B14  
C15  
B16  
D17  
C17  
B17  
D18  
D11  
B10  
C11  
D12  
C12  
A11  
B13  
D14  
C18  
A19  
B19  
B20  
D20  
A21  
B21  
C21  
H9  
B13  
A13  
B14  
A14  
B16  
A16  
B19  
A19  
B3  
A3  
B5  
A5  
B8  
A8  
B9  
A9  
B21  
A21  
D22  
D23  
E22  
E23  
G22  
G23  
AB21  
AC21  
N22  
N23  
P22  
P23  
R22  
R23  
T22  
T23  
U22  
U23  
V22  
H10  
A4  
O
No  
NA  
O
No  
NA  
B4  
O
No  
NA  
B3  
O
No  
NA  
C5  
O
No  
NA  
C4  
O
No  
NA  
D5  
O
No  
NA  
C3  
O
No  
NA  
C2  
O
No  
NA  
C1  
O
No  
NA  
D4  
O
No  
NA  
D3  
O
No  
NA  
(1) NA in this table stands for Not Applicable.  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
13  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
D2  
D1  
V23  
W22  
W23  
Y22  
M22  
M23  
A11  
B11  
J22  
sdrc_a11  
sdrc_a12  
sdrc_a13  
sdrc_a14  
sdrc_ncs0  
sdrc_ncs1  
sdrc_clk  
0
0
0
0
0
0
0
0
0
7
0
7
0
0
0
0
0
0
0
0
0
0
0
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
1
4
7
0
1
4
O
O
O
O
O
O
IO  
O
O
0
0
0
0
1
1
L
1
H
0
0
0
0
1
1
0
1
1
0
0
0
0
0
0
0
0
7
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
No  
No  
No  
No  
No  
No  
Yes  
No  
Yes  
4
4
4
4
4
4
4
4
4
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
E2  
NA  
E1  
NA  
H11  
H12  
A13  
A14  
H16  
NA  
NA  
PU/ PD  
NA  
sdrc_nclk  
sdrc_cke0  
safe_mode  
sdrc_cke1  
safe_mode  
sdrc_nras  
sdrc_ncas  
sdrc_nwe  
sdrc_dm0  
sdrc_dm1  
sdrc_dm2  
sdrc_dm3  
sdrc_dqs0  
sdrc_dqs1  
sdrc_dqs2  
sdrc_dqs3  
gpmc_a1  
gpio_34  
PU/ PD  
H17  
J23  
O
H
1
7
VDDS_ MEM  
Yes  
4
PU/ PD  
LVCMOS  
H14  
H13  
H15  
B7  
L23  
L22  
K23  
C1  
O
O
1
1
1
0
0
0
0
L
L
L
L
L
1
1
1
0
0
0
0
Z
Z
Z
Z
L
0
0
0
0
0
0
0
0
0
0
0
7
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
No  
No  
4
4
4
4
4
4
4
4
4
4
4
4
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
O
No  
NA  
O
No  
NA  
A16  
B11  
C20  
A6  
A17  
A6  
O
No  
NA  
O
No  
NA  
A20  
C2  
O
No  
NA  
IO  
IO  
IO  
IO  
O
Yes  
Yes  
Yes  
Yes  
Yes  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
A17  
A10  
A20  
N4  
B17  
B6  
B20  
AC15  
IO  
safe_mode  
gpmc_a2  
gpio_35  
M4  
L4  
AB15  
AC16  
AB16  
AC17  
AB17  
AC18  
AB18  
AC19  
O
L
L
L
L
7
7
7
7
7
7
7
7
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_a3  
gpio_36  
O
IO  
safe_mode  
gpmc_a4  
gpio_37  
K4  
T3  
R3  
N3  
M3  
L3  
O
L
L
IO  
safe_mode  
gpmc_a5  
gpio_38  
O
L
L
IO  
safe_mode  
gpmc_a6  
gpio_39  
O
H
H
H
H
H
H
H
H
IO  
safe_mode  
gpmc_a7  
gpio_40  
O
IO  
safe_mode  
gpmc_a8  
gpio_41  
O
IO  
safe_mode  
gpmc_a9  
sys_ ndmareq2  
gpio_42  
O
I
IO  
safe_mode  
gpmc_a10  
sys_ ndmareq3  
gpio_43  
K3  
AB19  
O
I
H
H
7
VDDS_ MEM  
Yes  
4
PU/ PD  
LVCMOS  
IO  
14  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
safe_mode  
gpmc_d0  
7
K1  
L1  
M2  
M1  
N2  
N1  
R2  
R1  
T2  
0
0
0
0
0
0
0
0
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
0
4
7
0
4
7
0
1
4
7
0
1
2
3
4
7
0
1
2
3
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
0
0
0
0
0
0
0
0
0
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_d1  
L2  
gpmc_d2  
P2  
T1  
V1  
V2  
W2  
H2  
gpmc_d3  
gpmc_d4  
gpmc_d5  
gpmc_d6  
T1  
gpmc_d7  
AB3  
gpmc_d8  
gpio_44  
safe_mode  
gpmc_d9  
K2  
P1  
R1  
R2  
T2  
AC3  
AB4  
AC4  
AB6  
AC6  
AB7  
AC7  
IO  
IO  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
0
0
0
0
0
0
0
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_45  
safe_mode  
gpmc_d10  
gpio_46  
IO  
IO  
safe_mode  
gpmc_d11  
gpio_47  
IO  
IO  
safe_mode  
gpmc_d12  
gpio_48  
IO  
IO  
safe_mode  
gpmc_d13  
gpio_49  
IO  
IO  
safe_mode  
gpmc_d14  
gpio_50  
W1  
Y1  
IO  
IO  
safe_mode  
gpmc_d15  
gpio_51  
IO  
IO  
safe_mode  
gpmc_ncs0  
gpmc_ncs1  
gpio_52  
G4  
H3  
Y2  
Y1  
O
O
1
1
1
0
0
VDDS_ MEM  
VDDS_ MEM  
No  
4
4
NA  
LVCMOS  
LVCMOS  
H
Yes  
PU/ PD  
IO  
safe_mode  
gpmc_ncs2  
gpio_53  
V8  
U8  
NA  
NA  
O
H
H
H
H
7
7
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_ncs3  
sys_ ndmareq0  
gpio_54  
O
I
IO  
safe_mode  
gpmc_ncs4  
sys_ ndmareq1  
mcbsp4_ clkx  
gpt9_pwm_evt  
gpio_55  
T8  
NA  
O
I
H
H
7
VDDS_ MEM  
Yes  
4
PU/ PD  
LVCMOS  
IO  
IO  
IO  
safe_mode  
gpmc_ncs5  
sys_ ndmareq2  
mcbsp4_dr  
gpt10_pwm_evt  
R8  
NA  
O
I
H
H
7
VDDS_ MEM  
Yes  
4
PU/ PD  
LVCMOS  
I
IO  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
15  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
gpio_56  
safe_mode  
gpmc_ncs6  
sys_ ndmareq3  
mcbsp4_dx  
gpt11_pwm_evt  
gpio_57  
4
7
0
1
2
3
4
7
0
1
2
3
4
7
0
4
7
0
0
0
0
4
7
0
4
7
0
4
7
0
0
4
7
0
4
7
0
1
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
2
IO  
P8  
N8  
T4  
NA  
NA  
W2  
O
I
H
H
L
H
H
0
7
7
0
VDDS_ MEM  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
IO  
IO  
safe_mode  
gpmc_ncs7  
gpmc_io_dir  
mcbsp4_fsx  
gpt8_pwm_evt  
gpio_58  
O
O
VDDS_ MEM  
IO  
IO  
IO  
safe_mode  
gpmc_clk  
O
VDDS_ MEM  
gpio_59  
IO  
safe_mode  
gpmc_nadv_ale  
gpmc_noe  
gpmc_nwe  
gpmc_nbe0_cle  
gpio_60  
F3  
G2  
F4  
G3  
W1  
V2  
O
O
0
1
1
L
0
1
1
0
0
0
0
0
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
VDDS_ MEM  
No  
No  
4
4
4
4
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
V1  
O
No  
NA  
AC12  
O
Yes  
PU/ PD  
IO  
safe_mode  
gpmc_nbe1  
gpio_61  
U3  
H1  
NA  
O
L
L
L
0
7
0
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_nwp  
gpio_62  
AB10  
O
IO  
safe_mode  
gpmc_wait0  
gpmc_wait1  
gpio_63  
M8  
L8  
AB12  
AC10  
I
I
H
H
H
H
0
7
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
NA  
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_wait2  
gpio_64  
K8  
J8  
NA  
NA  
I
H
H
H
H
7
7
VDDS_ MEM  
VDDS_ MEM  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
gpmc_wait3  
sys_ ndmareq1  
gpio_65  
I
I
IO  
safe_mode  
dss_pclk  
D28  
D26  
NA  
NA  
NA  
NA  
NA  
O
H
H
H
L
H
H
H
L
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
8
8
8
8
8
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_66  
IO  
safe_mode  
dss_hsync  
gpio_67  
O
IO  
safe_mode  
dss_vsync  
gpio_68  
D27  
O
IO  
safe_mode  
dss_acbias  
gpio_69  
E27  
O
IO  
safe_mode  
dss_data0  
uart1_cts  
AG22  
IO  
I
L
L
PU/ PD LVDS/ CMOS  
16  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
gpio_70  
safe_mode  
dss_data1  
uart1_rts  
4
7
0
2
4
7
0
4
7
0
4
7
0
2
4
7
0
2
4
7
0
2
4
7
0
2
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
IO  
AH22  
NA  
IO  
O
L
L
7
VDDS  
Yes  
8
PU/ PD LVDS/ CMOS  
gpio_71  
IO  
safe_mode  
dss_data2  
gpio_72  
AG23  
AH23  
AG24  
NA  
NA  
NA  
IO  
IO  
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
8
8
8
PU/ PD LVDS/ CMOS  
PU/ PD LVDS/ CMOS  
PU/ PD LVDS/ CMOS  
safe_mode  
dss_data3  
gpio_73  
IO  
IO  
safe_mode  
dss_data4  
uart3_rx_ irrx  
gpio_74  
IO  
I
IO  
safe_mode  
dss_data5  
uart3_tx_ irtx  
gpio_75  
AH24  
E26  
NA  
NA  
NA  
IO  
O
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
8
8
8
PU/ PD LVDS/ CMOS  
IO  
safe_mode  
dss_data6  
uart1_tx  
IO  
O
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
gpio_76  
IO  
safe_mode  
dss_data7  
uart1_rx  
F28  
IO  
I
gpio_77  
IO  
safe_mode  
dss_data8  
gpio_78  
F27  
G26  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
IO  
IO  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
8
8
8
8
8
8
8
8
8
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
safe_mode  
dss_data9  
gpio_79  
IO  
IO  
safe_mode  
dss_data10  
gpio_80  
AD28  
AD27  
AB28  
AB27  
AA28  
AA27  
G25  
IO  
IO  
PU/ PD LVDS/ CMOS  
PU/ PD LVDS/ CMOS  
PU/ PD LVDS/ CMOS  
PU/ PD LVDS/ CMOS  
PU/ PD LVDS/ CMOS  
PU/ PD LVDS/ CMOS  
safe_mode  
dss_data11  
gpio_81  
IO  
IO  
safe_mode  
dss_data12  
gpio_82  
IO  
IO  
safe_mode  
dss_data13  
gpio_83  
IO  
IO  
safe_mode  
dss_data14  
gpio_84  
IO  
IO  
safe_mode  
dss_data15  
gpio_85  
IO  
IO  
safe_mode  
dss_data16  
gpio_86  
IO  
IO  
PU/ PD  
LVCMOS  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
17  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
safe_mode  
dss_data17  
gpio_87  
7
H27  
H26  
NA  
NA  
0
4
7
0
2
3
4
7
0
2
3
4
7
0
2
3
4
7
0
2
3
4
7
0
2
3
4
7
0
3
4
7
0
0
0
0
0
0
4
7
0
4
7
0
4
7
0
4
7
0
2
4
IO  
IO  
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
8
8
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
safe_mode  
dss_data18  
mcspi3_clk  
dss_data0  
gpio_88  
IO  
IO  
IO  
IO  
safe_mode  
dss_data19  
mcspi3_ simo  
dss_data1  
gpio_89  
H25  
E28  
NA  
NA  
NA  
NA  
NA  
IO  
IO  
IO  
IO  
L
H
L
L
L
L
H
L
L
L
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
8
8
8
8
8
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
dss_data20  
mcspi3_ somi  
dss_data2  
gpio_90  
O
IO  
IO  
IO  
safe_mode  
dss_data21  
mcspi3_cs0  
dss_data3  
gpio_91  
J26  
O
IO  
IO  
IO  
safe_mode  
dss_data22  
mcspi3_cs1  
dss_data4  
gpio_92  
AC27  
AC28  
O
O
PU/ PD LVDS/ CMOS  
IO  
IO  
safe_mode  
dss_data23  
dss_data5  
gpio_93  
O
PU/ PD LVDS/ CMOS  
IO  
IO  
safe_mode  
tv_out2  
W28  
Y28  
Y27  
W27  
W26  
A24  
NA  
NA  
NA  
NA  
NA  
NA  
O
O
Z
Z
Z
Z
Z
L
0
0
0
0
0
0
0
7
VDDADAC  
VDDADAC  
VDDADAC  
VDDADAC  
VDDADAC  
VDDS  
NA(2)  
NA(2)  
NA(2)  
NA(2)  
NA(2)  
4
NA  
NA  
10-bit DAC  
10-bit DAC  
10-bit DAC  
10-bit DAC  
10-bit DAC  
LVCMOS  
tv_out1  
tv_vfb1  
AO  
AO  
AO  
IO  
NA  
NA  
NA  
L
NA  
tv_vfb2  
NA  
tv_vref  
NA  
cam_hs  
Yes  
Yes  
Yes  
Yes  
Yes  
PU/ PD  
gpio_94  
IO  
safe_mode  
cam_vs  
A23  
C25  
C27  
C23  
NA  
NA  
NA  
NA  
IO  
IO  
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_95  
safe_mode  
cam_ xclka  
gpio_96  
O
IO  
safe_mode  
cam_pclk  
gpio_97  
I
IO  
safe_mode  
cam_fld  
IO  
IO  
IO  
cam_global_reset  
gpio_98  
(2) The drive strength is fixed regardless of the load. The driver is designed to drive 75for video applications.  
18 TERMINAL DESCRIPTION Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
safe_mode  
cam_d0  
7
AG17  
AH17  
B24  
C24  
D24  
A25  
K28  
L28  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
2
4
7
0
4
7
4
7
4
7
4
7
4
I
I
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
7
7
7
7
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes=  
Yes=  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
4
PU/PD  
PU/PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVDS/ CMOS  
LVDS/ CMOS  
LVCMOS  
gpio_99  
safe_mode  
cam_d1  
I
I
gpio_100  
safe_mode  
cam_d2  
I
gpio_101  
safe_mode  
cam_d3  
IO  
I
4
LVCMOS  
gpio_102  
safe_mode  
cam_d4  
IO  
I
4
LVCMOS  
gpio_103  
safe_mode  
cam_d5  
IO  
I
4
LVCMOS  
gpio_104  
safe_mode  
cam_d6  
IO  
I
NA  
8
LVDS/ CMOS  
LVDS/ CMOS  
LVDS/ CMOS  
LVDS/ CMOS  
LVCMOS  
gpio_105  
safe_mode  
cam_d7  
IO  
NA  
NA  
8
I
gpio_106  
safe_mode  
cam_d8  
IO  
NA  
NA  
8
K27  
L27  
I
gpio_107  
safe_mode  
cam_d9  
IO  
NA  
NA  
8
I
gpio_108  
safe_mode  
cam_d10  
gpio_109  
safe_mode  
cam_d11  
gpio_110  
safe_mode  
cam_ xclkb  
gpio_111  
safe_mode  
cam_wen  
cam_ shutter  
gpio_167  
safe_mode  
cam_ strobe  
gpio_126  
safe_mode  
gpio_112  
safe_mode  
gpio_113  
safe_mode  
gpio_114  
safe_mode  
gpio_115  
IO  
NA  
4
B25  
C26  
B26  
B23  
I
IO  
I
4
4
4
LVCMOS  
IO  
O
LVCMOS  
IO  
I
LVCMOS  
O
IO  
D25  
NA  
O
L
L
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
IO  
AG19  
AH19  
AG18  
AH18  
NA  
NA  
NA  
NA  
I
I
I
I
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
NA  
NA  
NA  
NA  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVDS/ CMOS  
LVDS/ CMOS  
LVDS/ CMOS  
LVDS/ CMOS  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
19  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
safe_mode  
mcbsp2_fsx  
gpio_116  
7
P21  
N21  
R21  
M21  
N28  
M27  
N27  
N26  
N25  
P28  
P27  
P26  
R27  
R25  
AE2  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
1
4
7
0
1
4
IO  
IO  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No=  
No=  
No  
4(3)  
4(3)  
4(3)  
4(3)  
8
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD(4)  
PU/ PD(4)  
PU/ PD(4)  
PU/ PD(4)  
PU/ PD(4)  
PU/ PD(4)  
PD(4)  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
mcbsp2_ clkx  
gpio_117  
IO  
IO  
VDDS  
safe_mode  
mcbsp2_dr  
gpio_118  
I
VDDS  
IO  
safe_mode  
mcbsp2_dx  
gpio_119  
IO  
IO  
VDDS  
safe_mode  
mmc1_clk  
gpio_120  
O
VDDS_MMC1  
VDDS_MMC1  
VDDS_MMC1  
VDDS_MMC1  
VDDS_MMC1  
VDDS_MMC1  
VDDS_MMC1a  
VDDS_MMC1a  
VDDS_MMC1a  
VDDS_MMC1a  
VDDS  
IO  
safe_mode  
mmc1_cmd  
gpio_121  
IO  
IO  
8
safe_mode  
mmc1_dat0  
gpio_122  
IO  
IO  
8
safe_mode  
mmc1_dat1  
gpio_123  
IO  
IO  
8
safe_mode  
mmc1_dat2  
gpio_124  
IO  
IO  
8
safe_mode  
mmc1_dat3  
gpio_125  
IO  
IO  
8
safe_mode  
mmc1_dat4  
gpio_126  
IO  
IO  
8
safe_mode  
mmc1_dat5  
gpio_127  
IO  
IO  
8
PD(4)  
safe_mode  
mmc1_dat6  
gpio_128  
IO  
IO  
8
PD(4)  
safe_mode  
mmc1_dat7  
gpio_129  
IO  
IO  
No  
8
PD(4)  
safe_mode  
mmc2_clk  
mcspi3_clk  
gpio_130  
O
Yes  
4
PU/ PD  
IO  
IO  
safe_mode  
mmc2_ cmd  
mcspi3_ simo  
gpio_131  
AG5  
NA  
IO  
IO  
IO  
H
H
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
(3) The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described in  
the above table.  
(4) The PU nominal drive strength of this IO cell is equal to 25 µA @ 1.8V and 41.6 µA @ 3.0V. The PD nominal drive strength of this IO  
cell is equal to 1 mA @ 1.8V and 1.66 mA @ 3.0V.  
20  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
safe_mode  
mmc2_ dat0  
mcspi3_ somi  
gpio_132  
7
AH5  
NA  
0
1
4
7
0
4
7
0
1
4
7
0
1
4
7
0
1
3
4
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
7
0
1
3
4
5
6
7
0
1
4
5
7
0
1
4
5
7
IO  
IO  
IO  
H
H
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
safe_mode  
mmc2_ dat1  
gpio_133  
AH4  
AG4  
NA  
NA  
IO  
IO  
H
H
H
H
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
safe_mode  
mmc2_ dat2  
mcspi3_cs1  
gpio_134  
IO  
O
IO  
safe_mode  
mmc2_ dat3  
mcspi3_cs0  
gpio_135  
AF4  
AE4  
NA  
NA  
IO  
IO  
IO  
H
L
H
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
safe_mode  
mmc2_ dat4  
mmc2_dir_dat0  
mmc3_dat0  
gpio_136  
IO  
O
IO  
IO  
safe_mode  
mmc2_ dat5  
mmc2_dir_dat1  
cam_global_reset  
mmc3_dat1  
gpio_137  
AH3  
NA  
IO  
O
L
L
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
IO  
IO  
IO  
IO  
IO  
hsusb3_tll_stp  
mm3_rxdp  
safe_mode  
mmc2_ dat6  
mmc2_dir_ cmd  
cam_ shutter  
mmc3_dat2  
gpio_138  
AF3  
NA  
IO  
O
L
L
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
O
IO  
IO  
IO  
hsusb3_tll_dir  
safe_mode  
mmc2_ dat7  
mmc2_ clkin  
mmc3_dat3  
gpio_139  
AE3  
NA  
IO  
I
L
L
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
IO  
IO  
IO  
IO  
hsusb3_tll_nxt  
mm3_rxdm  
safe_mode  
mcbsp3_dx  
uart2_cts  
AF6  
AE6  
NA  
NA  
IO  
I
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
LVCMOS  
LVCMOS  
gpio_140  
IO  
IO  
hsusb3_tll_ data4  
safe_mode  
mcbsp3_dr  
uart2_rts  
I
PU/ PD  
O
gpio_141  
IO  
IO  
hsusb3_tll_ data5  
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
21  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
AF5  
AE5  
NA  
NA  
NA  
NA  
NA  
NA  
mcbsp3_ clkx  
uart2_tx  
0
1
4
5
7
0
1
4
5
7
0
1
2
4
7
0
1
2
4
7
0
1
2
4
7
0
1
2
4
7
0
4
7
0
4
7
0
4
5
7
0
2
3
4
7
0
4
5
6
7
0
4
5
6
IO  
O
L
L
7
7
7
7
7
7
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_142  
IO  
IO  
hsusb3_tll_ data6  
safe_mode  
mcbsp3_fsx  
uart2_rx  
IO  
I
L
L
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
gpio_143  
IO  
IO  
hsusb3_tll_ data7  
safe_mode  
uart2_cts  
AB26  
AB25  
AA25  
AD25  
I
H
H
H
H
H
H
H
H
mcbsp3_dx  
gpt9_pwm_evt  
gpio_144  
IO  
IO  
IO  
safe_mode  
uart2_rts  
O
I
mcbsp3_dr  
gpt10_pwm_evt  
gpio_145  
IO  
IO  
safe_mode  
uart2_tx  
O
mcbsp3_ clkx  
gpt11_pwm _evt  
gpio_146  
IO  
IO  
IO  
safe_mode  
uart2_rx  
I
mcbsp3_fsx  
gpt8_pwm_evt  
gpio_147  
IO  
IO  
IO  
safe_mode  
uart1_tx  
AA8  
AA9  
W8  
NA  
NA  
NA  
O
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_148  
IO  
safe_mode  
uart1_rts  
O
gpio_149  
IO  
safe_mode  
uart1_cts  
I
gpio_150  
IO  
O
hsusb3_tll_clk  
safe_mode  
uart1_rx  
Y8  
NA  
NA  
NA  
I
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
mcbsp1_ clkr  
mcspi4_clk  
gpio_151  
IO  
IO  
IO  
safe_mode  
mcbsp4_ clkx  
gpio_152  
AE1  
AD1  
IO  
IO  
IO  
IO  
hsusb3_tll_ data1  
mm3_txse0  
safe_mode  
mcbsp4_dr  
gpio_153  
I
IO  
IO  
IO  
hsusb3_tll_ data0  
mm3_rxrcv  
22  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
safe_mode  
mcbsp4_dx  
gpio_154  
7
AD2  
AC1  
NA  
NA  
0
4
5
6
7
0
4
5
6
7
0
1
4
7
0
2
4
7
0
1
2
4
7
0
1
2
4
7
0
2
4
5
7
0
1
2
4
7
0
2
4
7
0
4
7
0
4
7
0
4
7
0
4
IO  
IO  
IO  
IO  
L
L
L
L
7
7
VDDS  
Yes  
Yes  
4
4
PU/ PD  
LVCMOS  
LVCMOS  
hsusb3_tll_ data2  
mm3_txdat  
safe_mode  
mcbsp4_fsx  
gpio_155  
IO  
IO  
IO  
IO  
VDDS  
PU/ PD  
hsusb3_tll_ data3  
mm3_txen_n  
safe_mode  
mcbsp1_ clkr  
mcspi4_clk  
gpio_156  
Y21  
AA21  
V21  
NA  
NA  
NA  
IO  
IO  
IO  
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
mcbsp1_fsr  
cam_global_reset  
gpio_157  
IO  
IO  
IO  
safe_mode  
mcbsp1_dx  
mcspi4_ simo  
mcbsp3_dx  
gpio_158  
IO  
IO  
IO  
IO  
safe_mode  
mcbsp1_dr  
mcspi4_ somi  
mcbsp3_dr  
gpio_159  
U21  
T21  
K26  
W21  
NA  
NA  
NA  
NA  
I
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
O
IO  
safe_mode  
mcbsp_clks  
cam_ shutter  
gpio_160  
I
O
IO  
I
uart1_cts  
safe_mode  
mcbsp1_fsx  
mcspi4_cs0  
mcbsp3_fsx  
gpio_161  
IO  
IO  
IO  
IO  
safe_mode  
mcbsp1_ clkx  
mcbsp3_ clkx  
gpio_162  
IO  
IO  
IO  
safe_mode  
uart3_cts_ rctx  
gpio_163  
H18  
H19  
H20  
H21  
NA  
NA  
NA  
NA  
IO  
IO  
H
H
H
H
H
H
H
H
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
uart3_rts_ sd  
gpio_164  
O
IO  
safe_mode  
uart3_rx_ irrx  
gpio_165  
I
IO  
safe_mode  
uart3_tx_ irtx  
gpio_166  
O
IO  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
23  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
safe_mode  
hsusb0_clk  
gpio_120  
7
T28  
T25  
R28  
T26  
T27  
NA  
NA  
NA  
NA  
NA  
0
4
7
0
4
7
0
4
7
0
4
7
0
2
4
7
0
2
4
7
0
2
4
7
0
2
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
0
0
4
7
0
4
7
0
4
7
0
4
I
L
H
L
L
L
L
H
L
L
L
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
hsusb0_stp  
gpio_121  
O
IO  
safe_mode  
hsusb0_dir  
gpio_122  
I
IO  
safe_mode  
hsusb0_nxt  
gpio_124  
I
IO  
safe_mode  
hsusb0_ data0  
uart3_tx_ irtx  
gpio_125  
IO  
O
IO  
safe_mode  
hsusb0_ data1  
uart3_rx_ irrx  
gpio_130  
U28  
U27  
U26  
NA  
NA  
NA  
IO  
I
L
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
hsusb0_ data2  
uart3_rts_ sd  
gpio_131  
IO  
O
IO  
safe_mode  
hsusb0_ data3  
uart3_cts_ rctx  
gpio_169  
IO  
IO  
IO  
safe_mode  
hsusb0_ data4  
gpio_188  
U25  
V28  
V27  
V26  
NA  
NA  
NA  
NA  
IO  
IO  
L
L
L
L
L
L
L
L
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
hsusb0_ data5  
gpio_189  
IO  
IO  
safe_mode  
hsusb0_ data6  
gpio_190  
IO  
IO  
safe_mode  
hsusb0_ data7  
gpio_191  
IO  
IO  
safe_mode  
i2c1_scl  
K21  
J21  
NA  
NA  
NA  
IOD  
IOD  
IOD  
IO  
H
H
H
H
H
H
0
0
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
Open Drain  
Open Drain  
Open Drain  
i2c1_sda  
AF15  
i2c2_scl  
gpio_168  
safe_mode  
i2c2_sda  
AE15  
AF14  
AG14  
NA  
NA  
NA  
IOD  
IO  
H
H
H
H
H
H
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
Open Drain  
Open Drain  
Open Drain  
gpio_183  
safe_mode  
i2c3_scl  
IOD  
IO  
gpio_184  
safe_mode  
i2c3_sda  
IOD  
IO  
gpio_185  
24  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
safe_mode  
i2c4_scl  
7
AD26  
AE26  
J25  
NA  
NA  
NA  
0
1
7
0
1
7
0
1
2
3
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
3
4
7
0
3
4
7
0
2
3
4
5
7
0
2
3
4
7
0
1
2
3
4
7
IOD  
O
H
H
H
H
H
H
0
0
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
Open Drain  
Open Drain  
LVCMOS  
sys_ nvmode1  
safe_mode  
i2c4_sda  
IOD  
O
sys_ nvmode2  
safe_mode  
hdq_sio  
IOD  
I
sys_altclk  
i2c2_sccbe  
i2c3_sccbe  
gpio_170  
O
O
IO  
safe_mode  
mcspi1_clk  
mmc2_dat4  
gpio_171  
AB3  
AB4  
AA4  
AC2  
AC3  
AB1  
AB2  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
IO  
IO  
IO  
L
L
L
L
7
7
7
7
7
7
7
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4(3)  
4(3)  
4(3)  
4(3)  
4(3)  
4(3)  
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
mcspi1_ simo  
mmc2_dat5  
gpio_172  
IO  
IO  
IO  
safe_mode  
mcspi1_ somi  
mmc2_dat6  
gpio_173  
IO  
IO  
IO  
L
L
safe_mode  
mcspi1_cs0  
mmc2_dat7  
gpio_174  
IO  
IO  
IO  
H
L
H
H
H
H
safe_mode  
mcspi1_cs1  
mmc3_cmd  
gpio_175  
O
IO  
IO  
safe_mode  
mcspi1_cs2  
mmc3_clk  
O
O
L
gpio_176  
IO  
safe_mode  
mcspi1_cs3  
hsusb2_tll_ data2  
hsusb2_ data2  
gpio_177  
O
H
IO  
IO  
IO  
IO  
mm2_txdat  
safe_mode  
mcspi2_clk  
hsusb2_tll_ data7  
hsusb2_ data7  
gpio_178  
AA3  
NA  
NA  
IO  
IO  
O
L
L
L
L
7
7
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
LVCMOS  
LVCMOS  
IO  
safe_mode  
mcspi2_ simo  
gpt9_pwm_evt  
hsusb2_tll_ data4  
hsusb2_ data4  
gpio_179  
Y2  
IO  
IO  
IO  
I
PU/ PD  
IO  
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
25  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
Y3  
Y4  
V3  
NA  
NA  
NA  
mcspi2_ somi  
gpt10_pwm_evt  
hsusb2_tll_ data5  
hsusb2_ data5  
gpio_180  
0
1
2
3
4
7
0
1
2
3
4
7
0
1
2
3
4
5
7
0
0
0
0
4
7
0
4
7
0
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
1
4
7
0
1
4
7
0
4
IO  
IO  
IO  
O
L
H
L
L
H
L
7
7
7
VDDS  
Yes  
Yes  
Yes  
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
mcspi2_cs0  
gpt11_pwm_evt  
hsusb2_tll_ data6  
hsusb2_ data6  
gpio_181  
IO  
IO  
IO  
O
VDDS  
IO  
safe_mode  
mcspi2_cs1  
gpt8_pwm_evt  
hsusb2_tll_ data3  
hsusb2_ data3  
gpio_182  
O
VDDS  
IO  
IO  
IO  
IO  
IO  
mm2_txen_n  
safe_mode  
sys_32k  
AE25  
AE17  
AF17  
AF25  
NA  
NA  
NA  
NA  
I
Z
Z
Z
0
I
I
NA  
NA  
NA  
0
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
NA  
NA  
NA  
NA  
8
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
sys_xtalin  
I
sys_xtalout  
sys_clkreq  
gpio_1  
O
IO  
IO  
O
1
NA  
NA  
Yes  
PU/ PD  
safe_mode  
sys_nirq  
AF26  
NA  
I
H
H
7
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
gpio_0  
IO  
safe_mode  
sys_ nrespwron  
sys_ nreswarm  
gpio_30  
AH25  
AF24  
NA  
NA  
I
Z
0
I
NA  
0
VDDS  
VDDS  
Yes  
Yes  
NA=  
NA  
LVCMOS  
LVCMOS  
IOD  
IO  
1 (PU)  
8
PU/ PD  
Open Drain  
safe_mode  
sys_boot0  
gpio_2  
AH26  
AG26  
AE14  
AF18  
AF19  
NA  
NA  
NA  
NA  
NA  
I
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
0
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
sys_boot1  
gpio_3  
I
IO  
safe_mode  
sys_boot2  
gpio_4  
I
IO  
safe_mode  
sys_boot3  
gpio_5  
I
IO  
safe_mode  
sys_boot4  
mmc2_dir_dat2  
gpio_6  
I
O
IO  
safe_mode  
sys_boot5  
mmc2_dir_dat3  
gpio_7  
AE21  
AF21  
NA  
NA  
I
Z
Z
Z
Z
0
0
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
O
IO  
safe_mode  
sys_boot6  
gpio_8  
I
IO  
26  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
safe_mode  
sys_off_ mode  
gpio_9  
7
AF22  
AG25  
AE22  
NA  
NA  
NA  
0
4
7
0
4
7
0
4
7
0
0
0
0
0
0
0
0
0
4
7
0
4
7
0
1
2
3
4
5
6
0
2
3
4
6
0
1
2
3
4
5
6
0
1
3
4
5
6
O
0
L
L
L
L
L
7
7
7
VDDS  
VDDS  
VDDS  
Yes  
Yes  
Yes  
8
8
4
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
safe_mode  
sys_clkout1  
gpio_10  
O
IO  
safe_mode  
sys_clkout2  
gpio_186  
O
IO  
safe_mode  
sys_ ipmcsws  
sys_ opmcsws  
jtag_ntrst  
B1  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
AI  
AO  
I
Z
0
AI  
AO  
L
NA  
NA  
0
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
NA  
No  
NA  
NA  
NA  
NA  
8
NA  
Analog  
A1  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
AA17  
AA13  
AA12  
AA18  
AA20  
AA19  
AA11  
L
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
jtag_tck  
I
L
L
0
jtag_rtck  
O
IO  
I
L
0
0
jtag_tms_tmsc  
jtag_tdi  
H
H
L
H
H
Z
0
8
0
NA  
8
jtag_tdo  
O
IO  
IO  
0
jtag_emu0  
gpio_11  
H
H
0
8
safe_mode  
jtag_emu1  
gpio_31  
AA10  
AF10  
NA  
NA  
IO  
IO  
H
H
H
H
0
4
VDDS  
VDDS  
Yes  
Yes  
8
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
safe_mode  
etk_clk  
O
IO  
O
mcbsp5_ clkx  
mmc3_clk  
hsusb1_stp  
gpio_12  
O
IO  
IO  
I
mm1_rxdp  
hsusb1_tll_stp  
etk_ctl  
AE10  
AF11  
NA  
NA  
O
H
H
H
H
4
4
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
LVCMOS  
LVCMOS  
mmc3_cmd  
hsusb1_clk  
gpio_13  
IO  
O
IO  
O
hsusb1_tll_clk  
etk_d0  
O
PU/ PD  
mcspi3_ simo  
mmc3_dat4  
hsusb1_ data0  
gpio_14  
IO  
IO  
IO  
IO  
IO  
IO  
O
mm1_rxrcv  
hsusb1_tll_ data0  
etk_d1  
AG12  
NA  
H
H
4
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
mcspi3_ somi  
hsusb1_ data1  
gpio_15  
IO  
IO  
IO  
IO  
IO  
mm1_txse0  
hsusb1_tll_ data1  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
27  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
AH12  
AE13  
AE11  
AH9  
NA  
NA  
NA  
NA  
NA  
NA  
etk_d2  
mcspi3_cs0  
hsusb1_ data2  
gpio_16  
0
1
3
4
5
6
0
1
2
3
4
6
0
1
2
3
4
6
0
1
2
3
4
6
0
1
2
3
4
6
0
1
2
3
4
5
6
0
1
O
IO  
IO  
IO  
IO  
IO  
O
H
H
L
L
L
L
H
H
L
L
L
L
4
4
4
4
4
4
VDDS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
4
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
mm1_txdat  
hsusb1_tll_data2  
etk_d3  
VDDS  
VDDS  
VDDS  
VDDS  
VDDS  
mcspi3_clk  
mmc3_dat3  
hsusb1_ data7  
gpio_17  
IO  
IO  
IO  
IO  
IO  
O
hsusb1_tll_ data7  
etk_d4  
mcbsp5_dr  
mmc3_dat0  
hsusb1_ data4  
gpio_18  
I
IO  
IO  
IO  
IO  
O
hsusb1_tll_ data4  
etk_d5  
mcbsp5_fsx  
mmc3_dat1  
hsusb1_ data5  
gpio_19  
IO  
IO  
IO  
IO  
IO  
O
hsusb1_tll_ data5  
etk_d6  
AF13  
mcbsp5_dx  
mmc3_dat2  
hsusb1_ data6  
gpio_20  
IO  
IO  
IO  
IO  
IO  
O
hsusb1_tll_ data6  
etk_d7  
AH14  
mcspi3_cs1  
mmc3_dat7  
hsusb1_ data3  
gpio_21  
O
IO  
IO  
IO  
IO  
IO  
O
mm1_txen_n  
hsusb1_tll_ data3  
etk_d8  
AF9  
NA  
L
L
4
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
sys_drm_  
msecure  
O
mmc3_dat6  
hsusb1_dir  
gpio_22  
2
3
4
6
0
1
IO  
I
IO  
O
O
O
hsusb1_tll_dir  
etk_d9  
AG9  
NA  
L
L
4
VDDS  
Yes  
4
PU/ PD  
LVCMOS  
sys_secure_indic  
ator  
mmc3_dat5  
hsusb1_nxt  
gpio_23  
2
3
4
5
6
IO  
I
IO  
IO  
O
mm1_rxdm  
hsusb1_tll_nxt  
28  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)  
BALL  
BOTTOM [1]  
BALL  
TOP [2]  
PIN  
NAME [3]  
MODE [4] TYPE [5]  
BALL  
RESET  
STATE [6]  
BALL  
RESET  
REL.  
RESET  
REL.  
MODE [8]  
POWER [9]  
HYS  
[10]  
BUFFER  
STRENGTH  
(mA) [11]  
PULL  
U/D  
TYPE  
[12]  
IO  
CELL [13]  
STATE [7]  
AE7  
NA  
etk_d10  
uart1_rx  
0
2
3
4
6
0
3
4
5
6
0
3
4
6
0
3
4
5
6
0
3
4
5
6
0
3
4
5
6
O
I
L
L
4
VDDS  
Yes  
Yes  
4
PU/ PD  
LVCMOS  
LVCMOS  
hsusb2_clk  
gpio_24  
O
IO  
O
O
O
IO  
IO  
I
hsusb2_tll_clk  
etk_d11  
AF7  
NA  
L
L
4
VDDS  
4
PU/ PD  
hsusb2_stp  
gpio_25  
mm2_rxdp  
hsusb2_tll_stp  
etk_d12  
AG7  
AH7  
NA  
NA  
O
I
L
L
L
L
4
4
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
PU/ PD  
LVCMOS  
LVCMOS  
hsusb2_dir  
gpio_26  
IO  
O
O
I
hsusb2_tll_dir  
etk_d13  
hsusb2_nxt  
gpio_27  
IO  
IO  
O
O
IO  
IO  
IO  
IO  
O
IO  
IO  
IO  
IO  
mm2_rxdm  
hsusb2_tll_nxt  
etk_d14  
AG8  
AH8  
NA  
NA  
L
L
L
L
4
4
VDDS  
VDDS  
Yes  
Yes  
4
4
PU/ PD  
LVCMOS  
LVCMOS  
hsusb2_ data0  
gpio_28  
mm2_rxrcv  
hsusb2_tll_ data0  
etk_d15  
PU/ PD  
hsusb2_ data1  
gpio_29  
mm2_txse0  
hsusb2_tll_ data1  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
29  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-2. Ball Characteristics (CBC Pkg.)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
AE16  
-
cam_d0  
-
0
2
4
7
0
2
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
I
L
L
L
7
7
-
-
Yes  
Yes  
4
PU100/  
PD100  
LVDS/  
CMOS  
IDS  
gpio_99  
I
safe_mode  
cam_d1  
-
-
AE15  
-
I
L
4
PU100/  
PD100  
LVDS/  
CMOS  
IDS  
gpio_100  
safe_mode  
-
I
-
AD17  
AE18  
AD16  
AE17  
-
-
-
-
IDS  
L
L
L
L
L
L
L
L
7
7
7
7
-
-
-
-
Yes  
Yes  
Yes  
Yes  
4
4
4
4
PU100/  
PD100  
LVDS/  
CMOS  
gpio_112  
safe_mode  
-
I
-
IDS  
PU100/  
PD100  
LVDS/  
CMOS  
gpio_114  
safe_mode  
-
I
-
IDS  
PU100/  
PD100  
LVDS/  
CMOS  
gpio_113  
safe_mode  
-
I
-
IDS  
I
PU100/  
PD100  
LVDS/  
CMOS  
gpio_115  
safe_mode  
sdrc_a0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G20  
K20  
J20  
O
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
H
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
LVDS/  
CMOS  
sdrc_a1  
sdrc_a2  
sdrc_a3  
sdrc_a4  
sdrc_a5  
sdrc_a6  
sdrc_a7  
sdrc_a8  
sdrc_a9  
sdrc_a10  
sdrc_a11  
sdrc_a12  
sdrc_a13  
sdrc_a14  
sdrc_ba0  
sdrc_ba1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LVDS/  
CMOS  
LVDS/  
CMOS  
J21  
LVDS/  
CMOS  
U21  
R20  
M21  
M20  
N20  
K21  
Y16  
N21  
R21  
AA15  
Y12  
AA18  
V20  
Y15  
LVDS/  
CMOS  
LVDS/  
CMOS  
LVDS/  
CMOS  
LVDS/  
CMOS  
LVDS/  
CMOS  
LVDS/  
CMOS  
LVDS/  
CMOS  
LVDS/  
CMOS  
LVDS/  
CMOS  
LVDS/  
CMOS  
LVDS/  
CMOS  
LVDS/  
CMOS  
LVDS/  
CMOS  
sdrc_cke0  
safe_mode  
sdrc_cke1  
safe_mode  
0
7
0
7
PU100/  
PD100  
LVDS/  
CMOS  
-
Y13  
O
H
1
7
vdds_io  
Yes  
4(1)  
PU100/  
PD100  
LVDS/  
CMOS  
(1) The drive strength is programmable vs the capacity load: load range = [2 pF to 6 pF] per default or [6 pF to 12 pF] according to the  
selected mode.  
30  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A12  
D1  
sdrc_clk  
sdrc_d0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
0
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
G1  
sdrc_d1  
PU100/  
PD100  
LVDS/  
CMOS  
G2  
sdrc_d2  
PU100/  
PD100  
LVDS/  
CMOS  
E1  
sdrc_d3  
PU100/  
PD100  
LVDS/  
CMOS  
D2  
sdrc_d4  
PU100/  
PD100  
LVDS/  
CMOS  
E2  
sdrc_d5  
PU100/  
PD100  
LVDS/  
CMOS  
B3  
sdrc_d6  
PU100/  
PD100  
LVDS/  
CMOS  
B4  
sdrc_d7  
PU100/  
PD100  
LVDS/  
CMOS  
A10  
B11  
A11  
B12  
A16  
A17  
B17  
B18  
B7  
sdrc_d8  
PU100/  
PD100  
LVDS/  
CMOS  
sdrc_d9  
PU100/  
PD100  
LVDS/  
CMOS  
sdrc_d10  
sdrc_d11  
sdrc_d12  
sdrc_d13  
sdrc_d14  
sdrc_d15  
sdrc_d16  
sdrc_d17  
sdrc_d18  
sdrc_d19  
sdrc_d20  
sdrc_d21  
sdrc_d22  
sdrc_d23  
sdrc_d24  
sdrc_d25  
sdrc_d26  
sdrc_d27  
sdrc_d28  
sdrc_d29  
sdrc_d30  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
A5  
PU100/  
PD100  
LVDS/  
CMOS  
B6  
PU100/  
PD100  
LVDS/  
CMOS  
A6  
PU100/  
PD100  
LVDS/  
CMOS  
A8  
PU100/  
PD100  
LVDS/  
CMOS  
B9  
PU100/  
PD100  
LVDS/  
CMOS  
A9  
PU100/  
PD100  
LVDS/  
CMOS  
B10  
C21  
D20  
B19  
C20  
D21  
E20  
E21  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
PU100/  
PD100  
LVDS/  
CMOS  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
31  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
-
G21  
H1  
sdrc_d31  
sdrc_dm0  
sdrc_dm1  
sdrc_dm2  
sdrc_dm3  
sdrc_dqs0  
sdrc_dqs1  
sdrc_dqs2  
sdrc_dqs3  
sdrc_ncas  
sdrc_nclk  
sdrc_ncs0  
sdrc_ncs1  
sdrc_nras  
sdrc_nwe  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
O
L
0
0
0
0
L
L
L
L
1
1
1
1
1
1
L
Z
0
0
0
0
Z
Z
Z
Z
1
1
1
1
1
1
L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
-
Yes  
No  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4
PU100/  
PD100  
LVDS/  
CMOS  
-
NA  
NA  
NA  
NA  
LVDS/  
CMOS  
-
A14  
A4  
O
No  
LVDS/  
CMOS  
-
O
No  
LVDS/  
CMOS  
-
A18  
C2  
O
No  
LVDS/  
CMOS  
-
IO  
IO  
IO  
IO  
O
Yes  
Yes  
Yes  
Yes  
No  
PU100/  
PD100  
LVDS/  
CMOS  
-
B15  
B8  
PU100/  
PD100  
LVDS/  
CMOS  
-
PU100/  
PD100  
LVDS/  
CMOS  
-
A19  
U20  
B13  
T21  
T20  
V21  
Y18  
-
PU100/  
PD100  
LVDS/  
CMOS  
-
NA  
NA  
NA  
NA  
NA  
NA  
LVDS/  
CMOS  
-
O
No  
LVDS/  
CMOS  
-
O
No  
LVDS/  
CMOS  
-
O
No  
LVDS/  
CMOS  
-
-
O
No  
LVDS/  
CMOS  
O
No  
LVDS/  
CMOS  
AE21  
dss_data0  
-
0
1
2
4
7
0
1
2
4
7
0
1
4
7
0
1
4
7
0
1
2
4
7
0
1
2
4
7
IO  
ODS  
I
No  
PU100/  
PD100  
LVDS/  
CMOS  
uart1_cts  
gpio_70  
IO  
-
safe_mode  
dss_data1  
-
AE22  
-
IO  
ODS  
O
L
L
7
-
No  
4
PU100/  
PD100  
LVDS/  
CMOS  
uart1_rts  
gpio_71  
safe_mode  
dss_data2  
-
IO  
-
AE23  
AE24  
AD23  
-
-
-
IO  
ODS  
IO  
-
L
L
L
L
L
L
7
7
7
-
-
-
No  
No  
No  
4
4
4
PU100/  
PD100  
LVDS/  
CMOS  
gpio_72  
safe_mode  
dss_data3  
-
IO  
ODS  
IO  
-
PU100/  
PD100  
LVDS/  
CMOS  
gpio_73  
safe_mode  
dss_data4  
-
IO  
ODS  
I
PU100/  
PD100  
LVDS/  
CMOS  
uart3_rx_irrx  
gpio_74  
safe_mode  
dss_data5  
-
IO  
-
AD24  
-
IO  
ODS  
O
L
L
7
-
No  
4
PU100/  
PD100  
LVDS/  
CMOS  
uart3_tx_irtx  
gpio_75  
safe_mode  
IO  
-
32  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
AC26  
AD26  
AA25  
Y25  
-
-
-
-
-
-
-
dss_data10  
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
2
3
4
7
0
1
2
3
4
7
0
1
3
4
7
0
4
5
7
0
4
7
0
4
7
0
4
IO  
ODS  
IO  
-
L
L
L
L
L
L
H
L
L
L
L
L
L
H
7
7
7
7
7
7
7
-
NA  
NA  
NA  
NA  
NA  
NA  
Yes  
4
4
4
4
4
4
4
PU100/  
PD100  
LVDS/  
CMOS  
-
gpio_80  
safe_mode  
dss_data11  
-
IO  
ODS  
IO  
-
-
PU100/  
PD100  
LVDS/  
CMOS  
gpio_81  
safe_mode  
dss_data12  
-
IO  
ODS  
IO  
-
-
PU100/  
PD100  
LVDS/  
CMOS  
gpio_82  
safe_mode  
dss_data13  
-
IO  
ODS  
IO  
-
-
PU100/  
PD100  
LVDS/  
CMOS  
gpio_83  
safe_mode  
dss_data14  
-
AA26  
AB26  
F25  
IO  
ODS  
IO  
-
-
PU100/  
PD100  
LVDS/  
CMOS  
gpio_84  
safe_mode  
dss_data15  
-
IO  
ODS  
IO  
-
-
PU100/  
PD100  
LVDS/  
CMOS  
gpio_85  
safe_mode  
dss_data20  
-
O
vdds_io  
PU100/  
PD100  
LVCMOS  
O
mcspi3_somi  
dss_data2  
gpio_90  
safe_mode  
dss_data22  
-
IO  
IO  
IO  
-
AC25  
-
O
L
L
7
-
NA  
4
PU100/  
PD100  
LVDS/  
CMOS  
ODS  
O
mcspi3_cs1  
dss_data4  
gpio_92  
safe_mode  
dss_data23  
-
IO  
IO  
-
AB25  
-
-
O
L
L
7
7
-
NA  
4
4
PU100/  
PD100  
LVDS/  
CMOS  
ODS  
IO  
IO  
-
dss_data5  
gpio_93  
safe_mode  
dss_pclk  
gpio_66  
hw_dbg12  
safe_mode  
gpmc_a1  
gpio_34  
safe_mode  
gpmc_a2  
gpio_35  
safe_mode  
gpmc_a3  
gpio_36  
G25  
O
H
H
vdds_io  
Yes  
PU100/  
PD100  
LVCMOS  
IO  
O
-
J2  
H1  
H2  
-
-
-
O
L
L
L
L
L
L
7
7
7
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
4(1)  
4(1)  
4(1)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
-
O
PU100/  
PD100  
IO  
-
O
PU100/  
PD100  
IO  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
33  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
safe_mode  
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
1
4
7
0
1
4
7
0
4
7
0
-
O
IO  
-
G2  
F1  
F2  
E1  
E2  
D1  
-
-
-
-
-
-
gpmc_a4  
gpio_37  
L
L
L
L
7
7
7
7
7
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
gpmc_a5  
gpio_38  
O
IO  
-
PU100/  
PD100  
safe_mode  
gpmc_a6  
gpio_39  
O
IO  
-
H
H
H
H
H
H
H
H
PU100/  
PD100  
safe_mode  
gpmc_a7  
gpio_40  
O
IO  
-
PU100/  
PD100  
safe_mode  
gpmc_a8  
gpio_41  
O
IO  
-
PU100/  
PD100  
safe_mode  
gpmc_a9  
sys_ndmareq2  
gpio_42  
O
I
PU100/  
PD100  
IO  
-
safe_mode  
gpmc_a10  
sys_ndmareq3  
gpio_43  
D2  
N1  
-
O
I
H
L
H
0
7
0
vdds_io  
vdds_io  
Yes  
Yes  
4(1)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
IO  
-
safe_mode  
gpmc_clk  
gpio_59  
L1  
O
IO  
-
4(1)  
PU100/  
PD100  
safe_mode  
gpmc_d0  
AA2  
AA1  
AC2  
AC1  
AE5  
AD6  
AD5  
AC5  
V1  
U2  
U1  
IO  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
0
0
0
0
0
0
0
0
0
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
4(1)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_d1  
gpmc_d2  
gpmc_d3  
gpmc_d4  
gpmc_d5  
gpmc_d6  
gpmc_d7  
0
0
0
0
0
0
0
IO  
IO  
IO  
IO  
IO  
IO  
IO  
PU100/  
PD100  
V2  
PU100/  
PD100  
V1  
PU100/  
PD100  
AA3  
AA4  
Y3  
PU100/  
PD100  
PU100/  
PD100  
PU100/  
PD100  
Y4  
PU100/  
PD100  
R1  
gpmc_d8  
gpio_44  
0
4
7
0
4
7
0
4
7
0
4
7
IO  
IO  
-
PU100/  
PD100  
safe_mode  
gpmc_d9  
gpio_45  
Y1  
T1  
U2  
T1  
N1  
P2  
IO  
IO  
-
H
H
H
H
H
H
0
0
0
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
4(1)  
4(1)  
4(1)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
gpmc_d10  
gpio_46  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
gpmc_d11  
gpio_47  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
34  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
U1  
P1  
L2  
P1  
M1  
J2  
gpmc_d12  
gpio_48  
0
4
7
0
4
7
0
4
7
0
4
7
0
0
4
7
0
4
7
0
0
4
7
0
4
7
0
1
4
7
0
1
2
3
4
7
0
1
2
3
4
7
0
1
2
3
4
7
0
1
2
3
4
IO  
IO  
-
H
H
H
H
H
H
H
H
0
0
0
0
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
4(1)  
4(1)  
4(1)  
4(1)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
gpmc_d13  
gpio_49  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
gpmc_d14  
gpio_50  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
gpmc_d15  
gpio_51  
M2  
K2  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
gpmc_nadv_ale  
gpmc_nbe0_cle  
gpio_60  
AD10  
K2  
AA9  
-
O
O
IO  
-
0
L
0
0
0
0
vdds_io  
vdds_io  
No  
4(1)  
4(1)  
NA  
LVCMOS  
LVCMOS  
Yes  
PU100/  
PD100  
safe_mode  
gpmc_nbe1  
gpio_61  
J1  
-
O
IO  
-
L
L
7
vdds_io  
Yes  
4(1)  
PU100/  
PD100  
LVCMOS  
safe_mode  
gpmc_ncs0  
gpmc_ncs1  
gpio_52  
AD8  
AD1  
AA8  
W1  
O
O
IO  
-
1
1
1
0
0
vdds_io  
vdds_io  
No  
4(1)  
4(1)  
NA  
LVCMOS  
LVCMOS  
H
Yes  
PU100/  
PD100  
safe_mode  
gpmc_ncs2  
gpio_53  
A3  
B6  
-
-
O
IO  
-
H
H
H
H
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4(1)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
safe_mode  
gpmc_ncs3  
sys_ndmareq0  
gpio_54  
O
I
4(1)  
PU100/  
PD100  
IO  
-
safe_mode  
gpmc_ncs4  
sys_ndmareq1  
mcbsp4_clkx  
gpt9_pwm_evt  
gpio_55  
B4  
C4  
B5  
C5  
-
-
-
-
O
I
H
H
H
H
H
H
H
H
7
7
7
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
4(1)  
4(1)  
4(1)  
4(1)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
IO  
IO  
-
safe_mode  
gpmc_ncs5  
sys_ndmareq2  
mcbsp4_dr  
gpt10_pwm_evt  
gpio_56  
O
I
PU100/  
PD100  
I
IO  
IO  
-
safe_mode  
gpmc_ncs6  
sys_ndmareq3  
mcbsp4_dx  
gpt11_pwm_evt  
gpio_57  
O
I
PU100/  
PD100  
IO  
IO  
IO  
-
safe_mode  
gpmc_ncs7  
gpmc_io_dir  
mcbsp4_fsx  
gpt8_pwm_evt  
gpio_58  
O
O
IO  
IO  
IO  
PU100/  
PD100  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
35  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
safe_mode  
7
0
0
0
4
7
0
-
O
O
O
IO  
-
N2  
M1  
L2  
K1  
Y5  
gpmc_noe  
gpmc_nwe  
gpmc_nwp  
gpio_62  
1
1
L
1
1
0
0
0
0
vdds_io  
vdds_io  
vdds_io  
No  
No  
4(1)  
4(1)  
4(1)  
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
AC6  
Yes  
PU100/  
PD100  
safe_mode  
gpmc_wait0  
AC11  
AC8  
Y10  
Y8  
I
H
H
H
H
0
7
vdds_io  
vdds_io  
Yes  
Yes  
4(1)  
4(1)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
gpmc_wait1  
gpio_63  
0
4
7
0
4
7
0
1
4
7
0
4
7
0
2
4
7
0
2
4
7
0
2
4
7
0
2
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
I
IO  
-
PU100/  
PD100  
safe_mode  
gpmc_wait2  
gpio_64  
B3  
C6  
-
-
I
H
H
H
H
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4(1)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
IO  
-
safe_mode  
gpmc_wait3  
sys_ndmareq1  
gpio_65  
I
4(1)  
PU100/  
PD100  
I
IO  
-
safe_mode  
hsusb0_clk  
gpio_120  
W19  
V20  
-
-
I
L
L
L
L
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
IO  
-
safe_mode  
hsusb0_data0  
uart3_tx_irtx  
gpio_125  
IO  
O
IO  
-
4(2)  
PU100/  
PD100  
safe_mode  
hsusb0_data1  
uart3_rx_irrx  
gpio_130  
Y20  
V18  
W20  
-
-
-
IO  
I
L
L
L
L
L
L
7
7
7
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
4(2)  
4(2)  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
-
safe_mode  
hsusb0_data2  
uart3_rts_sd  
gpio_131  
IO  
O
IO  
-
PU100/  
PD100  
safe_mode  
hsusb0_data3  
uart3_cts_rctx  
gpio_169  
IO  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
hsusb0_data4  
gpio_188  
W17  
Y18  
Y19  
Y17  
V19  
-
-
-
-
-
IO  
IO  
-
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
Yes  
4(2)  
4(2)  
4(2)  
4(2)  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
hsusb0_data5  
gpio_189  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
hsusb0_data6  
gpio_190  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
hsusb0_data7  
gpio_191  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
hsusb0_dir  
gpio_122  
I
PU100/  
PD100  
IO  
-
safe_mode  
(2) The capacity load range is [2 pf to 6 pF].  
36 TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
W18  
U20  
-
-
hsusb0_nxt  
0
4
7
0
4
7
0
I
IO  
-
L
L
7
vdds_io  
vdds_io  
Yes  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
gpio_124  
safe_mode  
hsusb0_stp  
gpio_121  
O
IO  
-
H
H
7
4(2)  
PU100/  
PD100  
safe_mode  
jtag_ntrst  
U15  
W13  
V14  
U16  
Y13  
V15  
N19  
-
-
-
-
-
-
-
I
L
L
L
0
0
0
0
0
0
0
7
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
4
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
jtag_rtck  
jtag_tck  
0
0
0
0
0
O
I
PU100/  
PD100  
L
L
vdds_io  
NA  
N A  
4
PU100/  
PD100  
jtag_tdi  
I
H
L
H
Z
H
L
vdds_io  
PU100/  
PD100  
jtag_tdo  
O
IO  
vdds_io  
PU100/  
PD100  
jtag_tms_tmsc  
H
L
vdds_io  
4
PU100/  
PD100  
mmc1_clk  
-
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
2
4
7
0
2
4
7
0
2
4
7
O
O
IO  
-
vdds_mmc1  
8
PU100/  
PD100  
gpio_120  
safe_mode  
mmc1_cmd  
-
L18  
M19  
M18  
K18  
N20  
M20  
P17  
P18  
-
-
-
-
-
-
-
-
IO  
O
IO  
-
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
7
7
7
vdds_mmc1  
vdds_mmc1  
vdds_mmc1  
vdds_mmc1  
vdds_mmc1  
vdds_mmc1a  
vdds_mmc1a  
vdds_mmc1a  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
8
8
8
8
8
8
8
8
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_121  
safe_mode  
mmc1_dat0  
-
IO  
IO  
IO  
-
PU100/  
PD100  
gpio_122  
safe_mode  
mmc1_dat1  
-
IO  
IO  
IO  
-
PU100/  
PD100  
gpio_123  
safe_mode  
mmc1_dat2  
-
IO  
IO  
IO  
-
PU100/  
PD100  
gpio_124  
safe_mode  
mmc1_dat3  
-
IO  
IO  
IO  
-
PU100/  
PD100  
gpio_125  
safe_mode  
mmc1_dat4  
-
IO  
IO  
IO  
-
PU/PD(3)  
PU/PD(3)  
PU/PD(3)  
gpio_126  
safe_mode  
mmc1_dat5  
-
IO  
O
IO  
-
No  
gpio_127  
safe_mode  
mmc1_dat6  
-
IO  
O
IO  
-
No  
gpio_128  
safe_mode  
(3) The PU nominal drive strength of this IO cell is equal to 25 µA @ 1.8 V and 41.6 µA @ 3.0 V.  
The PD nominal drive strength of this IO cell is equal to 1 mA @ 1.8 V and 1.66 mA @ 3.0 V.  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
37  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
P19  
-
mmc1_dat7  
0
2
4
7
0
IO  
O
L
L
7
vdds_mmc1a  
No  
8
PU/PD(3)  
LVCMOS  
-
gpio_129  
safe_mode  
i2c1_scl  
IO  
-
J25  
J24  
C2  
-
-
-
IOD  
H
H
H
H
H
H
0
0
7
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
3
3
PU100/  
PD100  
Open Drain  
Open Drain  
i2c1_sda  
0
IOD  
PU100/  
PD100  
i2c2_scl  
0
4
7
0
4
7
0
4
7
0
4
7
0
1
2
4
7
0
2
4
7
0
1
2
4
7
0
1
2
4
7
0
1
2
4
7
0
1
2
4
7
0
4
7
IOD  
IO  
-
3
4
PU100/  
PD100  
LVCMOS  
Open Drain  
gpio_168  
safe_mode  
i2c2_sda  
4
C1  
-
-
-
-
IOD  
IO  
-
H
H
H
L
H
H
H
L
7
7
7
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
3
PU100/  
PD100  
LVCMOS  
Open Drain  
gpio_183  
4
safe_mode  
i2c3_scl  
4
AB4  
AC4  
U19  
IOD  
IO  
-
3
PU100/  
PD100  
LVCMOS  
Open Drain  
gpio_184  
4
safe_mode  
i2c3_sda  
4
IOD  
IO  
-
3
PU100/  
PD100  
LVCMOS  
Open Drain  
gpio_185  
4
safe_mode  
mcbsp1_clkr  
mcspi4_clk  
-
4
IO  
IO  
I
4(2)  
PU100/  
PD100  
LVCMOS  
gpio_156  
IO  
-
safe_mode  
mcbsp1_clkx  
mcbsp3_clkx  
gpio_162  
T17  
T20  
-
-
IO  
IO  
IO  
-
L
L
L
L
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
safe_mode  
mcbsp1_dr  
mcspi4_somi  
mcbsp3_dr  
gpio_159  
I
4(2)  
PU100/  
PD100  
IO  
I
IO  
-
safe_mode  
mcbsp1_dx  
mcspi4_simo  
mcbsp3_dx  
gpio_158  
U17  
V17  
P20  
R18  
-
-
-
-
IO  
IO  
IO  
IO  
-
L
L
L
L
L
L
L
L
7
7
7
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
4(2)  
4(2)  
4(2)  
4(4)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
mcbsp1_fsr  
-
IO  
I
PU100/  
PD100  
cam_global_reset  
gpio_157  
IO  
IO  
-
safe_mode  
mcbsp1_fsx  
mcspi4_cs0  
mcbsp3_fsx  
gpio_161  
IO  
IO  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
mcbsp2_clkx  
gpio_117  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
(4) The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described in  
the above table.  
38  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
T18  
R19  
U18  
P9  
-
-
-
-
mcbsp2_dr  
0
4
7
0
4
7
0
4
7
0
1
4
7
0
1
4
7
0
3
4
7
0
1
4
7
0
1
4
7
0
2
3
4
7
0
1
2
3
4
7
0
1
2
3
4
7
0
1
2
3
4
7
I
L
L
L
L
L
L
L
L
7
7
7
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
4(4)  
4(4)  
4(4)  
4(4)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpio_118  
IO  
-
safe_mode  
mcbsp2_dx  
gpio_119  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
mcbsp2_fsx  
gpio_116  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
mcspi1_clk  
mmc2_dat4  
gpio_171  
IO  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
mcspi1_cs0  
mmc2_dat7  
gpio_174  
R7  
R9  
P8  
P7  
W7  
-
-
-
-
-
IO  
IO  
IO  
-
H
H
L
H
H
L
7
7
7
7
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
Yes  
4(4)  
4(4)  
4(4)  
4(4)  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
mcspi1_cs2  
mmc3_clk  
O
O
IO  
-
PU100/  
PD100  
gpio_176  
safe_mode  
mcspi1_simo  
mmc2_dat5  
gpio_172  
IO  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
mcspi1_somi  
mmc2_dat6  
gpio_173  
IO  
IO  
IO  
-
L
L
PU100/  
PD100  
safe_mode  
mcspi2_clk  
hsusb2_tll_data7  
hsusb2_data7  
gpio_178  
IO  
IO  
O
IO  
-
L
L
PU100/  
PD100  
safe_mode  
mcspi2_cs0  
gpt11_pwm_evt  
hsusb2_tll_data6  
hsusb2_data6  
gpio_181  
V8  
W8  
U8  
-
-
-
IO  
IO  
IO  
O
IO  
-
H
L
L
H
L
L
7
7
7
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
4(2)  
4(2)  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
mcspi2_simo  
gpt9_pwm_evt  
hsusb2_tll_data4  
hsusb2_data4  
gpio_179  
IO  
IO  
IO  
I
PU100/  
PD100  
IO  
-
safe_mode  
mcspi2_somi  
gpt10_pwm_evt  
hsusb2_tll_data5  
hsusb2_data5  
gpio_180  
IO  
IO  
IO  
O
IO  
-
PU100/  
PD100  
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
39  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
W10  
R10  
T10  
-
-
-
mmc2_clk  
0
1
4
7
0
1
4
7
0
1
4
7
0
4
7
0
1
4
7
0
1
4
7
0
1
3
4
7
0
1
4
7
0
2
3
4
7
0
1
4
7
0
1
2
4
7
0
1
2
4
7
0
1
O
IO  
IO  
-
L
H
H
L
H
H
7
7
7
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
4(2)  
4(2)  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
mcspi3_clk  
gpio_130  
safe_mode  
mmc2_cmd  
mcspi3_simo  
gpio_131  
IO  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
mmc2_dat0  
mcspi3_somi  
gpio_132  
IO  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
mmc2_dat1  
gpio_133  
T9  
-
-
IO  
IO  
-
H
H
H
H
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
safe_mode  
mmc2_dat2  
mcspi3_cs1  
gpio_134  
U10  
IO  
O
IO  
-
4(2)  
PU100/  
PD100  
safe_mode  
mmc2_dat3  
mcspi3_cs0  
gpio_135  
U9  
-
-
IO  
IO  
IO  
-
H
L
H
L
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
safe_mode  
mmc2_dat4  
mmc2_dir_dat0  
mmc3_dat0  
gpio_136  
V10  
IO  
O
IO  
IO  
-
4(2)  
PU100/  
PD100  
safe_mode  
uart1_rts  
R2  
H3  
-
-
O
O
IO  
-
L
L
L
L
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
-
gpio_149  
safe_mode  
uart1_rx  
I
4(2)  
PU100/  
PD100  
mcbsp1_clkr  
mcspi4_clk  
gpio_151  
IO  
IO  
IO  
-
safe_mode  
uart1_tx  
L4  
-
-
O
O
IO  
-
L
L
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
-
gpio_148  
safe_mode  
uart2_cts  
Y24  
I
H
H
4
PU100/  
PD100  
mcbsp3_dx  
gpt9_pwm_evt  
gpio_144  
IO  
IO  
IO  
-
safe_mode  
uart2_rts  
AA24  
AD21  
-
-
O
I
H
H
H
H
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4
4
PU100/  
PD100  
LVCMOS  
LVCMOS  
mcbsp3_dr  
gpt10_pwm_evt  
gpio_145  
IO  
IO  
-
safe_mode  
uart2_rx  
I
PU100/  
PD100  
mcbsp3_fsx  
IO  
40  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
gpt8_pwm_evt  
2
4
7
0
1
2
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
1
2
3
4
7
0
1
7
0
1
7
0
4
7
0
4
7
0
4
7
0
4
7
0
1
4
7
0
1
4
7
IO  
IO  
-
gpio_147  
safe_mode  
uart2_tx  
AD22  
-
O
IO  
IO  
IO  
-
H
H
7
vdds_io  
Yes  
4
PU100/  
PD100  
LVCMOS  
mcbsp3_clkx  
gpt11_pwm_evt  
gpio_146  
safe_mode  
uart3_cts_rctx  
gpio_163  
F23  
F24  
H24  
G24  
J23  
-
-
-
-
-
IO  
IO  
-
H
H
H
H
H
H
H
H
H
H
7
7
7
7
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
4
4
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
uart3_rts_sd  
gpio_164  
O
IO  
-
PU100/  
PD100  
safe_mode  
uart3_rx_irrx  
gpio_165  
I
PU100/  
PD100  
IO  
-
safe_mode  
uart3_tx_irtx  
gpio_166  
O
IO  
-
PU100/  
PD100  
safe_mode  
hdq_sio  
IOD  
I
PU100/  
PD100  
LVCMOS  
Open Drain  
sys_altclk  
i2c2_sccbe  
i2c3_sccbe  
gpio_170  
O
O
IO  
-
safe_mode  
i2c4_scl  
AD15  
W16  
F3  
-
-
-
-
-
-
-
IOD  
O
-
H
H
Z
Z
Z
Z
Z
H
H
Z
Z
Z
Z
Z
0
0
0
0
0
0
0
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
3
4
4
3
4
4
4
PU100/  
PD100  
LVCMOS  
Open Drain  
sys_nvmode1  
safe_mode  
i2c4_sda  
IOD  
O
-
PU100/  
PD100  
LVCMOS  
Open Drain  
sys_nvmode2  
safe_mode  
sys_boot0  
gpio_2  
I
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
IO  
-
safe_mode  
sys_boot1  
gpio_3  
D3  
I
4
4
4
4
PU100/  
PD100  
IO  
-
safe_mode  
sys_boot2  
gpio_4  
C3  
I
PU100/  
PD100  
IO  
-
safe_mode  
sys_boot3  
gpio_5  
E3  
I
PU100/  
PD100  
IO  
-
safe_mode  
sys_boot4  
mmc2_dir_dat2  
gpio_6  
E4  
I
PU100/  
PD100  
O
IO  
-
safe_mode  
sys_boot5  
mmc2_dir_dat3  
gpio_7  
G3  
-
I
Z
Z
0
vdds_io  
Yes  
4
PU100/  
PD100  
LVCMOS  
O
IO  
-
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
41  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
D4  
AE14  
W11  
W15  
V16  
-
-
-
-
-
sys_boot6  
gpio_8  
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
0
4
7
0
4
7
0
0
0
0
0
0
0
0
0
0
0
1
4
5
7
0
1
4
5
7
0
1
4
5
7
0
1
4
5
7
I
IO  
-
Z
Z
0
7
7
0
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
Yes  
4
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
sys_clkout1  
gpio_10  
O
IO  
-
L
L
4
PU100/  
PD100  
safe_mode  
sys_clkout2  
gpio_186  
safe_mode  
sys_clkreq  
gpio_1  
O
IO  
-
L
L
4(2)  
PU100/  
PD100  
IO  
IO  
-
0
1
4
PU100/  
PD100  
safe_mode  
sys_nirq  
gpio_0  
I
H
H
4
PU100/  
PD100  
IO  
-
safe_mode  
sys_nrespwron  
sys_nreswarm  
gpio_30  
V13  
AD7  
-
I
Z
0
I
NA  
0
vdds_io  
vdds_io  
Yes  
Yes  
NA  
4
NA  
AA5  
IOD  
IO  
-
1 (PU)  
PU100/  
PD100  
LVCMOS  
Open Drain  
safe_mode  
sys_off_mode  
gpio_9  
V12  
-
O
IO  
-
0
L
7
vdds_io  
Yes  
4
PU100/  
PD100  
LVCMOS  
safe_mode  
sys_xtalin  
sys_xtalout  
sys_ipmcsws  
sys_opmcsws  
tv_out1  
AF19  
AF20  
B1  
-
-
-
-
-
-
-
-
-
-
-
I
Z
Z
Z
0
Z
Z
Z
Z
Z
Z
L
I
NA  
NA  
NA  
NA  
0
vdds_io  
vdds_io  
Yes  
Yes  
No  
NA  
NA  
NA  
NA  
8
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
LVCMOS  
LVCMOS  
Analog  
O
AI  
AO  
AO  
AO  
O
O
I
O
NA  
NA  
0
vdds_io  
A2  
vdds_io  
No  
Analog  
W26  
V26  
W25  
U24  
V23  
AE20  
A24  
vdda_dac  
vdda_dac  
vdda_dac  
vdda_dac  
vdda_dac  
vdds_io  
No  
10-bit DAC  
10-bit DAC  
10-bit DAC  
10-bit DAC  
10-bit DAC  
LVCMOS  
LVCMOS  
tv_out2  
0
0
No  
8
tv_vfb1  
NA  
NA  
NA  
I
0
No  
2
tv_vfb2  
0
No  
2
tv_vref  
0
No  
NA  
NA  
4(2)  
sys_32k  
I
NA  
7
Yes  
Yes  
cam_d2  
I
L
vdds_io  
PU100/  
PD100  
-
I
gpio_101  
hw_dbg4  
safe_mode  
cam_d3  
IO  
O
-
B24  
D24  
C24  
-
-
-
I
L
L
L
L
L
L
7
7
7
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
4(2)  
4(2)  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
-
I
gpio_102  
hw_dbg5  
safe_mode  
cam_d4  
IO  
O
-
I
PU100/  
PD100  
-
I
gpio_103  
hw_dbg6  
safe_mode  
cam_d5  
IO  
O
-
I
PU100/  
PD100  
-
O
IO  
O
-
gpio_104  
hw_dbg7  
safe_mode  
42  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
D25  
-
cam_d10  
-
0
1
4
5
7
0
4
5
7
0
2
4
5
7
0
1
4
5
7
0
4
5
7
0
4
5
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
4
7
0
1
4
5
7
I
O
IO  
O
-
L
L
7
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
gpio_109  
hw_dbg8  
safe_mode  
cam_d11  
gpio_110  
hw_dbg9  
safe_mode  
cam_fld  
E26  
B23  
-
-
I
L
L
L
L
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
IO  
O
-
IO  
IO  
IO  
O
-
4(2)  
PU100/  
PD100  
cam_global_reset  
gpio_98  
hw_dbg3  
safe_mode  
cam_hs  
C23  
-
IO  
O
IO  
O
-
L
L
7
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
-
gpio_94  
hw_dbg0  
safe_mode  
cam_pclk  
gpio_97  
C26  
D26  
-
-
I
L
L
L
L
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
IO  
O
-
hw_dbg2  
safe_mode  
cam_strobe  
gpio_126  
hw_dbg11  
safe_mode  
cam_xclka  
gpio_96  
O
IO  
O
-
4(2)  
PU100/  
PD100  
C25  
E25  
P25  
P26  
N25  
N26  
D23  
-
-
-
-
-
-
-
O
IO  
-
L
L
L
L
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
7
7
vdds_io  
vdds_io  
Yes  
Yes  
NA  
4(2)  
4(2)  
4
PU100/  
PD100  
LVCMOS  
LVCMOS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
LVCMOS  
safe_mode  
cam_xclkb  
gpio_111  
safe_mode  
cam_d6  
O
IO  
-
PU100/  
PD100  
I
vdds_csib  
vdds_csib  
vdds_csib  
vdds_csib  
vdds_io  
PU100/  
PD100  
gpio_105  
safe_mode  
cam_d7  
IO  
-
I
NA  
4
PU100/  
PD100  
gpio_106  
safe_mode  
cam_d8  
IO  
-
I
NA  
4
PU100/  
PD100  
gpio_107  
safe_mode  
cam_d9  
IO  
-
I
NA  
4
PU100/  
PD100  
gpio_108  
safe_mode  
cam_vs  
IO  
-
IO  
O
IO  
O
-
Yes  
4(2)  
PU100/  
PD100  
-
gpio_95  
hw_dbg1  
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
43  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
A23  
-
cam_wen  
0
2
4
5
7
0
4
7
0
2
4
5
7
0
2
4
5
7
0
4
5
7
0
4
5
7
0
4
7
0
4
7
0
1
2
3
4
7
0
1
2
3
4
7
0
1
2
3
4
7
I
L
L
7
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
cam_shutter  
gpio_167  
hw_dbg10  
safe_mode  
dss_acbias  
gpio_69  
O
IO  
O
-
F26  
G26  
-
-
O
IO  
-
L
L
L
L
7
7
vdds_io  
vdds_io  
Yes  
Yes  
8
8
PU100/  
PD100  
LVCMOS  
LVCMOS  
safe_mode  
dss_data6  
uart1_tx  
IO  
O
IO  
O
-
PU100/  
PD100  
gpio_76  
hw_dbg14  
safe_mode  
dss_data7  
uart1_rx  
H25  
-
IO  
I
L
L
7
vdds_io  
Yes  
8
PU100/  
PD100  
LVCMOS  
gpio_77  
IO  
O
-
hw_dbg15  
safe_mode  
dss_data8  
gpio_78  
H26  
J26  
-
-
IO  
IO  
O
-
L
L
L
L
7
7
vdds_io  
vdds_io  
Yes  
Yes  
8
8
PU100/  
PD100  
LVCMOS  
LVCMOS  
hw_dbg16  
safe_mode  
dss_data9  
gpio_79  
IO  
IO  
O
-
PU100/  
PD100  
hw_dbg17  
safe_mode  
dss_data16  
gpio_86  
L25  
L26  
M24  
-
-
-
IO  
IO  
-
L
L
L
L
L
L
7
7
7
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
8
8
8
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
safe_mode  
dss_data17  
gpio_87  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
dss_data18  
-
IO  
O
IO  
IO  
IO  
-
PU100/  
PD100  
mcspi3_clk  
dss_data0  
gpio_88  
safe_mode  
dss_data19  
-
M26  
-
IO  
O
IO  
IO  
IO  
-
L
L
7
vdds_io  
Yes  
8
PU100/  
PD100  
LVCMOS  
mcspi3_simo  
dss_data1  
gpio_89  
safe_mode  
dss_data21  
-
N24  
-
O
O
IO  
IO  
IO  
-
L
L
7
vdds_io  
Yes  
8
PU100/  
PD100  
LVCMOS  
mcspi3_cs0  
dss_data3  
gpio_91  
safe_mode  
44  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
K24  
-
dss_hsync  
0
4
5
7
0
4
7
0
O
IO  
O
-
H
H
7
vdds_io  
Yes  
4
PU100/  
PD100  
LVCMOS  
gpio_67  
hw_dbg13  
safe_mode  
dss_vsync  
gpio_68  
M25  
R8  
-
-
O
IO  
-
H
H
H
H
7
7
vdds_io  
vdds_io  
Yes  
Yes  
4
PU100/  
PD100  
LVCMOS  
LVCMOS  
safe_mode  
mcspi1_cs1  
O
4(4)  
PU100/  
PD100  
-
1
3
4
7
0
2
3
4
5
7
0
1
2
3
4
5
7
0
2
4
5
7
0
1
2
3
4
5
6
7
0
2
3
4
6
7
0
1
2
3
4
5
6
7
I
mmc3_cmd  
gpio_175  
IO  
IO  
-
safe_mode  
mcspi1_cs3  
hsusb2_tll_data2  
hsusb2_data2  
gpio_177  
T8  
-
O
IO  
IO  
IO  
IO  
-
H
H
7
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
mm2_txdat  
safe_mode  
mcspi2_cs1  
gpt8_pwm_evt  
hsusb2_tll_data3  
hsusb2_data3  
gpio_182  
V9  
-
O
IO  
IO  
IO  
IO  
IO  
-
L
L
7
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
mm2_txen_n  
safe_mode  
mcbsp_clks  
cam_shutter  
gpio_160  
T19  
AB2  
-
-
I
L
L
7
4
vdds_io  
vdds_io  
Yes  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
O
IO  
I
uart1_cts  
safe_mode  
etk_clk  
-
O
IO  
O
O
IO  
IO  
I
H
H
4(2)  
PU100/  
PD100  
mcbsp5_clkx  
mmc3_clk  
hsusb1_stp  
gpio_12  
mm1_rxdp  
hsusb1_tll_stp  
hw_dbg0  
O
O
IO  
O
IO  
O
O
O
IO  
IO  
IO  
IO  
IO  
IO  
O
AB3  
-
etk_ctl  
H
H
4
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
mmc3_cmd  
hsusb1_clk  
gpio_13  
hsusb1_tll_clk  
hw_dbg1  
AC3  
-
etk_d0  
H
H
4
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
mcspi3_simo  
mmc3_dat4  
hsusb1_data0  
gpio_14  
mm1_rxrcv  
hsusb1_tll_data0  
hw_dbg2  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
45  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
AD4  
AD3  
AA3  
Y3  
-
-
-
-
-
-
-
etk_d1  
0
1
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
6
7
0
1
2
3
4
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
6
7
0
1
2
O
IO  
IO  
IO  
IO  
IO  
O
H
H
H
L
H
H
H
L
4
4
4
4
4
4
4
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4(2)  
4(2)  
4(2)  
4(2)  
4(2)  
4(2)  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
mcspi3_somi  
hsusb1_data1  
gpio_15  
mm1_txse0  
hsusb1_tll_data1  
hw_dbg3  
etk_d2  
O
PU100/  
PD100  
mcspi3_cs0  
hsusb1_data2  
gpio_16  
IO  
IO  
IO  
IO  
IO  
O
mm1_txdat  
hsusb1_tll_data2  
hw_dbg4  
etk_d3  
O
PU100/  
PD100  
mcspi3_clk  
mmc3_dat3  
hsusb1_data7  
gpio_17  
IO  
IO  
IO  
IO  
IO  
O
hsusb1_tll_data7  
hw_dbg5  
etk_d4  
O
PU100/  
PD100  
mcbsp5_dr  
mmc3_dat0  
hsusb1_data4  
gpio_18  
I
IO  
IO  
IO  
IO  
O
hsusb1_tll_data4  
hw_dbg6  
AB1  
AE3  
AD2  
etk_d5  
O
L
L
PU100/  
PD100  
mcbsp5_fsx  
mmc3_dat1  
hsusb1_data5  
gpio_19  
IO  
IO  
IO  
IO  
IO  
O
hsusb1_tll_data5  
hw_dbg7  
etk_d6  
O
L
L
PU100/  
PD100  
mcbsp5_dx  
mmc3_dat2  
hsusb1_data6  
gpio_20  
IO  
IO  
IO  
IO  
IO  
O
hsusb1_tll_data6  
hw_dbg8  
etk_d7  
O
L
L
PU100/  
PD100  
mcspi3_cs1  
mmc3_dat7  
hsusb1_data3  
gpio_21  
O
IO  
IO  
IO  
IO  
IO  
O
mm1_txen_n  
hsusb1_tll_data3  
hw_dbg9  
AA4  
-
etk_d8  
O
L
L
4
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
sys_drm_msecure  
mmc3_dat6  
O
IO  
46  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
hsusb1_dir  
3
4
6
7
0
1
2
3
4
5
6
7
0
2
3
4
6
7
0
3
4
5
6
7
0
3
4
6
7
0
3
4
5
6
7
0
3
4
5
6
7
0
3
4
5
6
7
0
4
7
0
4
7
I
gpio_22  
IO  
O
O
O
O
IO  
I
hsusb1_tll_dir  
hw_dbg10  
etk_d9  
V2  
-
L
L
4
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
sys_secure_indicator  
mmc3_dat5  
hsusb1_nxt  
gpio_23  
IO  
IO  
O
O
O
I
mm1_rxdm  
hsusb1_tll_nxt  
hw_dbg11  
etk_d10  
AE4  
-
L
L
4
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
uart1_rx  
hsusb2_clk  
gpio_24  
O
IO  
O
O
O
O
IO  
IO  
I
hsusb2_tll_clk  
hw_dbg12  
etk_d11  
AF6  
-
L
L
4
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
hsusb2_stp  
gpio_25  
mm2_rxdp  
hsusb2_tll_stp  
hw_dbg13  
etk_d12  
O
O
I
AE6  
AF7  
-
-
L
L
L
L
4
4
vdds_io  
vdds_io  
Yes  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
hsusb2_dir  
gpio_26  
IO  
O
O
O
I
hsusb2_tll_dir  
hw_dbg14  
etk_d13  
4(2)  
PU100/  
PD100  
hsusb2_nxt  
gpio_27  
IO  
IO  
O
O
O
IO  
IO  
IO  
IO  
O
O
IO  
IO  
IO  
IO  
O
IO  
IO  
-
mm2_rxdm  
hsusb2_tll_nxt  
hw_dbg15  
etk_d14  
AF9  
-
L
L
4
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
hsusb2_data0  
gpio_28  
mm2_rxrcv  
hsusb2_tll_data0  
hw_dbg16  
etk_d15  
AE9  
-
L
L
4
vdds_io  
Yes  
4(2)  
PU100/  
PD100  
LVCMOS  
hsusb2_data1  
gpio_29  
mm2_txse0  
hsusb2_tll_data1  
hw_dbg17  
jtag_emu0  
gpio_11  
Y15  
Y14  
-
-
H
H
H
H
0
0
vdds_io  
vdds_io  
Yes  
Yes  
4
4
PU100/  
PD100  
LVCMOS  
LVCMOS  
safe_mode  
jtag_emu1  
gpio_31  
IO  
IO  
-
PU100/  
PD100  
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
47  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
U3  
N3  
P3  
W3  
V3  
-
-
-
-
-
mcbsp3_clkx  
0
1
4
5
7
0
1
4
5
7
0
1
4
5
7
0
1
4
5
7
0
1
4
5
6
7
0
1
4
5
6
7
0
1
4
5
6
7
0
1
4
5
6
7
0
1
2
3
4
5
6
7
IO  
O
IO  
IO  
-
L
L
L
L
L
L
L
L
L
L
7
7
7
7
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
Yes  
4(2)  
4(2)  
4(2)  
4(2)  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
uart2_tx  
gpio_142  
hsusb3_tll_data6  
safe_mode  
mcbsp3_dr  
uart2_rts  
I
PU100/  
PD100  
O
IO  
IO  
-
gpio_141  
hsusb3_tll_data5  
safe_mode  
mcbsp3_dx  
uart2_cts  
IO  
I
PU100/  
PD100  
gpio_140  
IO  
IO  
-
hsusb3_tll_data4  
safe_mode  
mcbsp3_fsx  
uart2_rx  
IO  
I
PU100/  
PD100  
gpio_143  
IO  
IO  
-
hsusb3_tll_data7  
safe_mode  
mcbsp4_clkx  
-
IO  
I
PU100/  
PD100  
gpio_152  
IO  
IO  
IO  
-
hsusb3_tll_data1  
mm3_txse0  
safe_mode  
mcbsp4_dr  
-
U4  
R3  
T3  
-
-
-
-
I
L
L
L
L
L
L
L
L
7
7
7
7
vdds_io  
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
Yes  
4(2)  
4(2)  
4(2)  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
I
gpio_153  
IO  
IO  
IO  
-
hsusb3_tll_data0  
mm3_rxrcv  
safe_mode  
mcbsp4_dx  
-
IO  
O
IO  
IO  
IO  
-
PU100/  
PD100  
gpio_154  
hsusb3_tll_data2  
mm3_txdat  
safe_mode  
mcbsp4_fsx  
-
IO  
O
IO  
IO  
IO  
-
PU100/  
PD100  
gpio_155  
hsusb3_tll_data3  
mm3_txen_n  
safe_mode  
mmc2_dat5  
mmc2_dir_dat1  
cam_global_reset  
mmc3_dat1  
gpio_137  
M3  
IO  
O
IO  
IO  
IO  
I
PU100/  
PD100  
hsusb3_tll_stp  
mm3_rxdp  
safe_mode  
IO  
-
48  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)  
BALL  
BOTTOM  
[1]  
BALL  
TOP  
[2]  
PIN  
NAME  
[4]  
MODE  
[5]  
TYPE  
[6]  
BALL  
RESET  
STATE  
[7]  
BALL  
RESET  
REL.  
STATE  
[8]  
RESET  
REL.  
MODE  
[9]  
POWER  
[10]  
HYS  
[11]  
BUFFER PULLUP  
IO  
CELL  
[14]  
STRENG  
TH  
/DOWN  
TYPE  
[13]  
(mA)  
[12]  
L3  
K3  
W2  
-
-
-
mmc2_dat6  
0
1
2
3
4
5
7
0
1
3
4
5
6
7
0
1
4
5
7
IO  
O
O
IO  
IO  
O
-
L
L
L
L
L
L
7
7
7
vdds_io  
vdds_io  
vdds_io  
Yes  
Yes  
Yes  
4(2)  
4(2)  
4(2)  
PU100/  
PD100  
LVCMOS  
LVCMOS  
LVCMOS  
mmc2_dir_cmd  
cam_shutter  
mmc3_dat2  
gpio_138  
hsusb3_tll_dir  
safe_mode  
mmc2_dat7  
mmc2_clkin  
mmc3_dat3  
gpio_139  
IO  
I
PU100/  
PD100  
IO  
IO  
IO  
IO  
-
hsusb3_tll_nxt  
mm3_rxdm  
safe_mode  
uart1_cts  
I
PU100/  
PD100  
-
I
gpio_150  
IO  
O
-
hsusb3_tll_clk  
safe_mode  
pop_gpmc_A9  
AF4  
-
-
AF12  
pop_dpd_f_gpmc_nbeo_cl  
e
AC16  
AD18  
L19  
-
-
-
-
-
-
-
-
-
-
vss_csi2  
VDDS_CSI2  
vss_csib  
AC19  
AD19  
L20  
VSS_DSI  
VDDS_DSI  
VDDS_CSIb  
pbias_mmc1a  
VDDS_SDI  
pop_gpmc_a7  
vss  
K23  
AB24  
AE25  
Y26  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
49  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
2.3 Multiplexing Characteristics  
Table 2-3 and Table 2-4 provide a description of the OMAP3525 and OMAP3530 multiplexing on the CBB  
and CBC packages, respectively.  
Note: Table 2-3 and Table 2-4 do not take into account subsystem pin multiplexing options. Subsystem  
pin multiplexing options are described in Section 2.4, Signal Description.  
Table 2-3. Multiplexing Characteristics (CBB Pkg.)(1)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
D6  
C6  
J2  
J1  
sdrc_d0  
sdrc_d1  
sdrc_d2  
sdrc_d3  
sdrc_d4  
sdrc_d5  
sdrc_d6  
sdrc_d7  
sdrc_d8  
sdrc_d9  
sdrc_d10  
sdrc_d11  
sdrc_d12  
sdrc_d13  
sdrc_d14  
sdrc_d15  
sdrc_d16  
sdrc_d17  
sdrc_d18  
sdrc_d19  
sdrc_d20  
sdrc_d21  
sdrc_d22  
sdrc_d23  
sdrc_d24  
sdrc_d25  
sdrc_d26  
sdrc_d27  
sdrc_d28  
sdrc_d29  
sdrc_d30  
sdrc_d31  
sdrc_ba0  
sdrc_ba1  
sdrc_a0  
sdrc_a1  
sdrc_a2  
sdrc_a3  
sdrc_a4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B6  
G2  
C8  
G1  
C9  
F2  
A7  
F1  
B9  
D2  
A9  
D1  
C14  
B14  
C15  
B16  
D17  
C17  
B17  
D18  
D11  
B10  
C11  
D12  
C12  
A11  
B13  
D14  
C18  
A19  
B19  
B20  
D20  
A21  
B21  
C21  
H9  
B13  
A13  
B14  
A14  
B16  
A16  
B19  
A19  
B3  
A3  
B5  
A5  
B8  
A8  
B9  
A9  
B21  
A21  
D22  
D23  
E22  
E23  
G22  
G23  
AB21  
AC21  
N22  
N 23  
P22  
P23  
R22  
H10  
A4  
B4  
B3  
C5  
C4  
(1) NA in table stands for Not Applicable.  
50 TERMINAL DESCRIPTION  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
D5  
C3  
R23  
T22  
sdrc_a5  
sdrc_a6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C2  
T23  
sdrc_a7  
-
-
C1  
U22  
U23  
V22  
V23  
W22  
W23  
Y22  
M22  
M23  
A11  
B11  
J22  
sdrc_a8  
-
-
D4  
sdrc_a9  
-
-
D3  
sdrc_a10  
sdrc_a11  
sdrc_a12  
sdrc_a13  
sdrc_a14  
sdrc_ncs0  
sdrc_ncs1  
sdrc_clk  
-
-
D2  
-
-
D1  
-
-
E2  
-
-
E1  
-
-
H11  
H12  
A13  
A14  
H16  
H17  
H14  
H13  
H15  
B7  
-
-
-
-
-
-
sdrc_nclk  
sdrc_cke0  
sdrc_cke1  
sdrc_nras  
sdrc_ncas  
sdrc_nwe  
sdrc_dm0  
sdrc_dm1  
sdrc_dm2  
sdrc_dm3  
sdrc_dqs0  
sdrc_dqs1  
sdrc_dqs2  
sdrc_dqs3  
gpmc_a1  
gpmc_a2  
gpmc_a3  
gpmc_a4  
gpmc_a5  
gpmc_a6  
gpmc_a7  
gpmc_a8  
gpmc_a9  
-
-
-
safe_mode  
J23  
-
safe_mode  
L23  
-
-
L22  
-
-
K23  
C1  
-
-
-
-
A16  
B11  
C20  
A6  
A17  
A6  
-
-
-
-
A20  
C2  
-
-
-
-
A17  
A10  
A20  
N4  
B17  
B6  
-
-
-
-
B20  
AC15  
AB15  
AC16  
AB16  
AC17  
AB17  
AC18  
AB18  
AC19  
-
-
gpio_34  
gpio_35  
gpio_36  
gpio_37  
gpio_38  
gpio_39  
gpio_40  
gpio_41  
gpio_42  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
M4  
L4  
K4  
T3  
R3  
N3  
M3  
L3  
sys_  
ndmareq2  
K3  
AB19  
gpmc_a10  
sys_  
-
-
gpio_43  
-
-
safe_mode  
ndmareq3  
K1  
L1  
M2  
M1  
N2  
N 1  
R2  
R1  
T2  
gpmc_d0  
gpmc_d1  
gpmc_d2  
gpmc_d3  
gpmc_d4  
gpmc_d5  
gpmc_d6  
gpmc_d7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L2  
P2  
T1  
V1  
V2  
W2  
T1  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
51  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
H2  
K2  
P1  
R1  
R2  
T2  
W1  
Y1  
G4  
H3  
V8  
U8  
AB3  
AC3  
AB4  
AC4  
AB6  
AC6  
AB7  
AC7  
Y2  
gpmc_d8  
gpmc_d9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_44  
gpio_45  
gpio_46  
gpio_47  
gpio_48  
gpio_49  
gpio_50  
gpio_51  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
gpmc_d10  
gpmc_d11  
gpmc_d12  
gpmc_d13  
gpmc_d14  
gpmc_d15  
gpmc_ncs0  
gpmc_ncs1  
gpmc_ncs2  
gpmc_ncs3  
Y1  
gpio_52  
gpio_53  
gpio_54  
safe_mode  
safe_mode  
safe_mode  
NA  
NA  
sys_  
ndmareq0  
T8  
R8  
P8  
N8  
NA  
NA  
NA  
NA  
gpmc_ncs4  
gpmc_ncs5  
gpmc_ncs6  
sys_  
ndmareq1  
mcbsp4_clkx gpt9_pwm_  
evt  
gpio_55  
gpio_56  
gpio_57  
gpio_58  
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
sys_  
ndmareq2  
mcbsp4_dr gpt10_pwm_  
evt  
sys_  
ndmareq3  
mcbsp4_dx gpt11_pwm_  
evt  
gpmc_ncs7 gpmc_io_dir mcbsp4_fsx gpt8_pwm_  
evt  
T4  
F3  
W2  
W1  
gpmc_clk  
-
-
-
-
-
-
gpio_59  
-
-
-
-
-
safe_mode  
-
gpmc_nadv_  
ale  
G2  
F4  
G3  
V2  
V1  
gpmc_noe  
gpmc_nwe  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AC12 gpmc_nbe0_  
cle  
gpio_60  
safe_mode  
U3  
H1  
M8  
L8  
NA  
AB10  
AB12  
AC10  
NA  
gpmc_nbe1  
gpmc_nwp  
gpmc_wait0  
gpmc_wait1  
gpmc_wait2  
gpmc_wait3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_61  
gpio_62  
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
-
gpio_63  
gpio_64  
gpio_65  
safe_mode  
safe_mode  
safe_mode  
K8  
J8  
NA  
sys_  
ndmareq1  
D28  
D26  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
dss_pclk  
dss_hsync  
dss_vsync  
dss_acbias  
dss_data0  
dss_data1  
dss_data2  
dss_data3  
dss_data4  
dss_data5  
dss_data6  
dss_data7  
dss_data8  
dss_data9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_66  
gpio_67  
gpio_68  
gpio_69  
gpio_70  
gpio_71  
gpio_72  
gpio_73  
gpio_74  
gpio_75  
gpio_76  
gpio_77  
gpio_78  
gpio_79  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
D27  
-
E27  
-
AG22  
AH22  
AG23  
AH23  
AG24  
AH24  
E26  
uart1_cts  
uart1_rts  
-
-
uart3_rx_irrx  
uart3_tx_irtx  
uart1_tx  
uart1_rx  
-
F28  
F27  
G26  
-
52  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
AD28  
AD27  
AB28  
AB27  
AA28  
AA27  
G25  
H27  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
dss_data10  
dss_data11  
dss_data12  
dss_data13  
dss_data14  
dss_data15  
dss_data16  
dss_data17  
dss_data18  
dss_data19  
dss_data20  
dss_data21  
dss_data22  
dss_data23  
tv_out2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_80  
gpio_81  
gpio_82  
gpio_83  
gpio_84  
gpio_85  
gpio_86  
gpio_87  
gpio_88  
gpio_89  
gpio_90  
gpio_91  
gpio_92  
gpio_93  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H26  
mcspi3_clk  
dss_data0  
H25  
mcspi3_simo  
dss_data1  
E28  
mcspi3_somi  
dss_data2  
J26  
mcspi3_cs0  
dss_data3  
AC27  
AC28  
W28  
Y28  
mcspi3_cs1  
dss_data4  
-
-
-
-
-
-
-
-
-
-
dss_data5  
-
-
-
-
-
-
-
-
-
-
tv_out1  
-
-
Y27  
tv_vfb1  
-
-
W27  
W26  
A24  
tv_vfb2  
-
-
tv_vref  
-
-
cam_hs  
gpio_94  
gpio_95  
gpio_96  
gpio_97  
gpio_98  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
A23  
cam_vs  
C25  
cam_xclka  
cam_pclk  
cam_fld  
C27  
C23  
cam_global_  
reset  
AG17  
AH17  
B24  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
cam_d0  
cam_d1  
cam_d2  
cam_d3  
cam_d4  
cam_d5  
cam_d6  
cam_d7  
cam_d8  
cam_d9  
cam_d10  
cam_d11  
cam_xclkb  
cam_wen  
cam_strobe  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_99  
gpio_100  
gpio_101  
gpio_102  
gpio_103  
gpio_104  
gpio_105  
gpio_106  
gpio_107  
gpio_108  
gpio_109  
gpio_110  
gpio_111  
gpio_167  
gpio_126  
gpio_112  
gpio_113  
gpio_114  
gpio_115  
gpio_116  
gpio_117  
gpio_118  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
C24  
D24  
A25  
-
-
-
K28  
-
L28  
-
K27  
-
L27  
-
B25  
-
C26  
B26  
-
-
B23  
cam_shutter  
D25  
AG19  
AH19  
AG18  
AH18  
P21  
-
-
-
-
-
-
-
-
-
-
-
mcbsp2_fsx  
mcbsp2_clkx  
mcbsp2_dr  
N21  
R21  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
53  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
M21  
N28  
M27  
N27  
N26  
N25  
P28  
P27  
P26  
R27  
R25  
AE2  
AG5  
AH5  
AH4  
AG4  
AF4  
AE4  
NA  
N A  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
mcbsp2_dx  
mmc1_clk  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_119  
gpio_120  
gpio_121  
gpio_122  
gpio_123  
gpio_124  
gpio_125  
gpio_126  
gpio_127  
gpio_128  
gpio_129  
gpio_130  
gpio_131  
gpio_132  
gpio_133  
gpio_134  
gpio_135  
gpio_136  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
mmc1_cmd  
mmc1_dat0  
mmc1_dat1  
mmc1_dat2  
mmc1_dat3  
mmc1_dat4  
mmc1_dat5  
mmc1_dat6  
mmc1_dat7  
mmc2_clk  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mcspi3_clk  
-
mmc2_cmd mcspi3_simo  
mmc2_dat0 mcspi3_somi  
-
-
mmc2_dat1  
-
-
mmc2_dat2 mcspi3_cs1  
mmc2_dat3 mcspi3_cs0  
-
-
mmc2_dat4  
mmc2_dat5  
mmc2_dat6  
mmc2_dir_  
dat0  
mmc3_dat0  
AH3  
AF3  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
mmc2_dir_ cam_global_ mmc3_dat1  
gpio_137  
gpio_138  
gpio_139  
gpio_140  
gpio_141  
gpio_142  
gpio_143  
gpio_144  
gpio_145  
gpio_146  
gpio_147  
hsusb3_tll_  
stp  
mm3_rxdp  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
dat1  
reset  
mmc2_dir_  
cmd  
cam_shutter mmc3_dat2  
hsusb3_tll_  
dir  
-
AE3  
mmc2_dat7 mmc2_clkin  
-
-
-
-
-
mmc3_dat3  
hsusb3_tll_  
nxt  
mm3_rxdm  
AF6  
mcbsp3_dx  
mcbsp3_dr  
mcbsp3_clkx  
mcbsp3_fsx  
uart2_cts  
uart2_cts  
uart2_rts  
uart2_tx  
-
-
-
-
-
-
-
-
hsusb3_tll_  
data4  
-
-
-
-
-
-
-
-
AE6  
hsusb3_tll_  
data5  
AF5  
hsusb3_tll_  
data6  
AE5  
uart2_rx  
hsusb3_tll_  
data7  
AB26  
AB25  
AA25  
AD25  
mcbsp3_dx  
gpt9_pwm_  
evt  
-
-
-
-
uart2_rts  
mcbsp3_dr gpt10_pwm_  
evt  
uart2_tx  
mcbsp3_clkx gpt11_pwm_  
evt  
uart2_rx  
mcbsp3_fsx gpt8_pwm_  
evt  
AA8  
AA9  
W8  
NA  
NA  
NA  
uart1_tx  
uart1_rts  
uart1_cts  
-
-
-
-
-
-
-
-
-
gpio_148  
gpio_149  
gpio_150  
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
hsusb3_tll_  
clk  
Y8  
NA  
NA  
uart1_rx  
-
-
mcbsp1_clkr mcspi4_clk  
gpio_151  
gpio_152  
-
-
safe_mode  
safe_mode  
AE1  
mcbsp4_clkx  
-
-
hsusb3_tll_  
data1  
mm3_txse0  
AD1  
NA  
mcbsp4_dr  
-
-
-
gpio_153  
hsusb3_tll_  
data0  
mm3_rxrcv  
safe_mode  
54  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
gpio_154  
gpio_155  
Mode 5  
Mode 6  
Mode 7  
AD2  
NA  
mcbsp4_dx  
mcbsp4_fsx  
-
-
-
-
-
-
-
hsusb3_tll_  
data2  
mm3_txdat  
safe_mode  
AC1  
NA  
hsusb3_tll_ mm3_txen_n safe_mode  
data3  
Y21  
NA  
NA  
mcbsp1_clkr mcspi4_clk  
mcbsp1_fsr  
-
-
gpio_156  
gpio_157  
-
-
-
-
safe_mode  
safe_mode  
AA21  
-
cam_global_  
reset  
V21  
U21  
T21  
K26  
W21  
H18  
NA  
NA  
N A  
NA  
NA  
NA  
mcbsp1_dx mcspi4_simo mcbsp3_dx  
mcbsp1_dr mcspi4_somi mcbsp3_dr  
-
-
-
-
-
-
gpio_158  
gpio_159  
gpio_160  
gpio_161  
gpio_162  
gpio_163  
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
mcbsp_clks  
-
cam_shutter  
uart1_cts  
mcbsp1_fsx mcspi4_cs0 mcbsp3_fsx  
-
-
-
mcbsp1_clkx  
-
-
mcbsp3_clkx  
-
uart3_cts_rct  
x
H19  
H20  
H21  
T28  
T25  
R28  
T26  
T27  
NA  
N A  
NA  
NA  
NA  
NA  
NA  
NA  
uart3_rts_sd  
uart3_rx_irrx  
uart3_tx_irtx  
hsusb0_clk  
hsusb0_stp  
hsusb0_dir  
hsusb0_nxt  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_164  
gpio_165  
gpio_166  
gpio_120  
gpio_121  
gpio_122  
gpio_124  
gpio_125  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
-
-
-
-
hsusb0_  
data0  
uart3_tx_irtx  
U28  
U27  
U26  
U25  
V28  
V27  
V26  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
hsusb0_  
data1  
-
-
-
-
-
-
-
uart3_rx_irrx  
uart3_rts_sd  
-
-
-
-
-
-
-
gpio_130  
gpio_131  
gpio_169  
gpio_188  
gpio_189  
gpio_190  
gpio_191  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
hsusb0_  
data2  
hsusb0_  
data3  
uart3_cts_  
rctx  
hsusb0_  
data4  
-
-
-
-
hsusb0_  
data5  
hsusb0_  
data6  
hsusb0_  
data7  
K21  
J21  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
i2c1_scl  
i2c1_sda  
i2c2_scl  
i2c2_sda  
i2c3_scl  
i2c3_sda  
i2c4_scl  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AF15  
AE15  
AF14  
AG14  
AD26  
gpio_168  
gpio_183  
gpio_184  
gpio_185  
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
sys_  
nvmode1  
AE26  
NA  
i2c4_sda  
sys_  
-
-
-
-
-
safe_mode  
nvmode2  
J25  
AB3  
AB4  
AA4  
NA  
NA  
NA  
NA  
hdq_sio  
sys_altclk  
i2c2_sccbe  
i2c3_sccbe  
gpio_170  
gpio_171  
gpio_172  
gpio_173  
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mcspi1_clk  
mmc2_dat4  
-
-
-
-
-
-
mcspi1_simo mmc2_dat5  
mcspi1_somi mmc2_dat6  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
55  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
AC2  
AC3  
AB1  
AB2  
NA  
NA  
NA  
NA  
mcspi1_cs0 mmc2_dat7  
-
-
-
-
gpio_174  
gpio_175  
gpio_176  
gpio_177  
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mcspi1_cs1  
mcspi1_cs2  
mcspi1_cs3  
-
-
-
mmc3_cmd  
mmc3_clk  
-
-
hsusb2_tll_  
data2  
hsusb2_  
data2  
mm2_txdat  
AA3  
Y2  
NA  
NA  
NA  
NA  
NA  
mcspi2_clk  
-
hsusb2_tll_  
data7  
hsusb2_  
data7  
gpio_178  
gpio_179  
gpio_180  
gpio_181  
gpio_182  
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mcspi2_simo gpt9_pwm_  
evt  
hsusb2_tll_  
data4  
hsusb2_  
data4  
-
Y3  
mcspi2_somi gpt10_pwm_ hsusb2_tll_  
evt data5  
hsusb2_  
data5  
-
Y4  
mcspi2_cs0 gpt11_pwm_ hsusb2_tll_  
hsusb2_  
data6  
-
evt  
data6  
V3  
mcspi2_cs1  
gpt8_pwm_  
evt  
hsusb2_tll_  
data3  
hsusb2_  
data3  
mm2_txen_n  
AE25  
AE17  
AF17  
AF25  
AF26  
AH25  
NA  
NA  
NA  
NA  
NA  
NA  
sys_32k  
sys_xtalin  
sys_xtalout  
sys_clkreq  
sys_nirq  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_1  
gpio_0  
-
safe_mode  
safe_mode  
-
sys_nrespwr  
on  
AF24  
NA  
sys_nreswar  
m
-
-
-
gpio_30  
-
-
safe_mode  
AH26  
AG26  
AE14  
AF18  
AF19  
NA  
NA  
NA  
NA  
NA  
sys_boot0  
sys_boot1  
sys_boot2  
sys_boot3  
sys_boot4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_2  
gpio_3  
gpio_4  
gpio_5  
gpio_6  
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mmc2_dir_  
dat2  
AE21  
NA  
sys_boot5  
mmc2_dir_  
dat3  
-
-
gpio_7  
-
-
safe_mode  
AF21  
AF22  
N A  
NA  
sys_boot6  
-
-
-
-
-
-
gpio_8  
gpio_9  
-
-
-
-
safe_mode  
safe_mode  
sys_off_  
mode  
AG25  
AE22  
B1  
NA  
NA  
NA  
NA  
sys_clkout1  
sys_clkout2  
sys_ipmcsws  
-
-
-
-
-
-
-
-
-
-
-
-
gpio_10  
-
-
-
-
-
-
-
-
safe_mode  
gpio_186  
safe_mode  
-
-
-
-
A1  
sys_  
opmcsws  
AA17  
AA13  
AA12  
AA18  
NA  
NA  
NA  
NA  
jtag_ntrst  
jtag_tck  
jtag_rtck  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
jtag_tms_  
tmsc  
AA20  
AA19  
AA11  
AA10  
AF10  
NA  
NA  
NA  
NA  
NA  
jtag_tdi  
jtag_tdo  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
jtag_emu0  
jtag_emu1  
etk_clk  
-
-
-
gpio_11  
gpio_31  
gpio_12  
-
safe_mode  
safe_mode  
-
-
-
-
-
mcbsp5_clkx  
mmc3_clk  
hsusb1_stp  
mm1_rxdp  
hsusb1_tll_  
stp  
56  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)  
Ball  
Bottom  
Ball  
Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
gpio_13  
gpio_14  
gpio_15  
gpio_16  
gpio_17  
gpio_18  
gpio_19  
gpio_20  
gpio_21  
gpio_22  
gpio_23  
gpio_24  
gpio_25  
gpio_26  
gpio_27  
gpio_28  
gpio_29  
Mode 5  
Mode 6  
Mode 7  
AE10  
AF11  
AG12  
AH12  
AE13  
AE11  
AH9  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
etk_ctl  
-
mmc3_cmd  
hsusb1_clk  
-
hsusb1_tll_  
clk  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
etk_d0  
etk_d1  
etk_d2  
etk_d3  
etk_d4  
etk_d5  
etk_d6  
etk_d7  
etk_d8  
etk_d9  
etk_d10  
etk_d11  
etk_d12  
etk_d13  
etk_d14  
etk_d15  
mcspi3_simo mmc3_dat4  
hsusb1_  
data0  
mm1_rxrcv  
hsusb1_tll_  
data0  
mcspi3_somi  
mcspi3_cs0  
mcspi3_clk  
mcbsp5_dr  
-
hsusb1_  
data1  
mm1_txse0  
hsusb1_tll_  
data1  
-
hsusb1_  
data2  
mm1_txdat  
hsusb1_tll_  
data2  
mmc3_dat3  
mmc3_dat0  
hsusb1_  
data7  
-
-
-
-
hsusb1_tll_  
data7  
hsusb1_  
data4  
hsusb1_tll_  
data4  
mcbsp5_fsx mmc3_dat1  
mcbsp5_dx mmc3_dat2  
mcspi3_cs1 mmc3_dat7  
hsusb1_  
data5  
hsusb1_tll_  
data5  
AF13  
AH14  
AF9  
hsusb1_  
data6  
hsusb1_tll_  
data6  
hsusb1_  
data3  
mm1_txen_n hsusb1_tll_  
data3  
sys_drm_  
msecure  
mmc3_dat6  
hsusb1_dir  
hsusb1_nxt  
hsusb2_clk  
hsusb2_stp  
hsusb2_dir  
hsusb2_nxt  
-
hsusb1_tll_  
dir  
AG9  
AE7  
sys_secure_ mmc3_dat5  
indicator  
mm1_rxdm  
-
hsusb1_tll_  
nxt  
-
-
-
-
-
-
uart1_rx  
hsusb2_tll_  
clk  
AF7  
-
-
-
-
-
mm2_rxdp  
-
hsusb2_tll_  
stp  
AG7  
AH7  
hsusb2_tll_  
dir  
mm2_rxdm  
mm2_rxrcv  
mm2_txse0  
hsusb2_tll_  
nxt  
AG8  
AH8  
hsusb2_  
data0  
hsusb2_tll_  
data0  
hsusb2_  
data1  
hsusb2_tll_  
data1  
Table 2-4. Multiplexing Characteristics (CBC Pkg.)  
Ball  
Ball Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
AE16  
-
cam_d0  
cam_d1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_99  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
AE15  
-
gpio_100  
safe_mode  
AD17  
-
gpio_112  
safe_mode  
AE18  
-
-
gpio_114  
safe_mode  
AD16  
-
-
gpio_113  
safe_mode  
AE17  
-
-
gpio_115  
safe_mode  
-
-
-
-
-
-
-
-
G20  
K20  
J20  
J21  
U21  
R20  
M21  
M20  
sdrc_a0  
sdrc_a1  
sdrc_a2  
sdrc_a3  
sdrc_a4  
sdrc_a5  
sdrc_a6  
sdrc_a7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
57  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)  
Ball  
Ball Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N20  
K21  
Y16  
N21  
R21  
AA15  
Y12  
AA18  
V20  
Y15  
Y13  
A12  
D1  
sdrc_a8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
sdrc_a9  
-
sdrc_a10  
sdrc_a11  
sdrc_a12  
sdrc_a13  
sdrc_a14  
sdrc_ba0  
sdrc_ba1  
sdrc_cke0  
sdrc_cke1  
sdrc_clk  
sdrc_d0  
-
-
-
-
-
-
-
safe_mode  
safe_mode  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G1  
sdrc_d1  
G2  
sdrc_d2  
E1  
sdrc_d3  
D2  
sdrc_d4  
E2  
sdrc_d5  
B3  
sdrc_d6  
B4  
sdrc_d7  
A10  
B11  
A11  
B12  
A16  
A17  
B17  
B18  
B7  
sdrc_d8  
sdrc_d9  
sdrc_d10  
sdrc_d11  
sdrc_d12  
sdrc_d13  
sdrc_d14  
sdrc_d15  
sdrc_d16  
sdrc_d17  
sdrc_d18  
sdrc_d19  
sdrc_d20  
sdrc_d21  
sdrc_d22  
sdrc_d23  
sdrc_d24  
sdrc_d25  
sdrc_d26  
sdrc_d27  
sdrc_d28  
sdrc_d29  
sdrc_d30  
sdrc_d31  
sdrc_dm0  
sdrc_dm1  
A5  
B6  
A6  
A8  
B9  
A9  
B10  
C21  
D20  
B19  
C20  
D21  
E20  
E21  
G21  
H1  
A14  
58  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)  
Ball  
Ball Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
-
A4  
sdrc_dm2  
sdrc_dm3  
sdrc_dqs0  
sdrc_dqs1  
sdrc_dqs2  
sdrc_dqs3  
sdrc_ncas  
sdrc_nclk  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A18  
-
-
-
-
-
-
C2  
-
-
-
-
-
-
B15  
-
-
-
-
-
-
B8  
-
-
-
-
-
-
A19  
-
-
-
-
-
-
U20  
-
-
-
-
-
-
B13  
-
-
-
-
-
-
T21  
sdrc_ncs0  
sdrc_ncs1  
sdrc_nras  
sdrc_nwe  
-
-
-
-
-
-
T20  
-
-
-
-
-
-
V21  
-
-
-
-
-
-
Y18  
-
-
-
-
-
AE21  
AE22  
AE23  
AE24  
AC26  
AD26  
AA25  
Y25  
AA26  
AB26  
F25  
-
-
-
-
-
-
-
-
-
-
-
dss_data0  
dss_data1  
dss_data2  
dss_data3  
dss_data10  
dss_data11  
dss_data12  
dss_data13  
dss_data14  
dss_data15  
dss_data20  
dx0  
uart1_cts  
-
gpio_70  
gpio_71  
gpio_72  
gpio_73  
gpio_80  
gpio_81  
gpio_82  
gpio_83  
gpio_84  
gpio_85  
gpio_90  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
dy0  
uart1_rts  
-
dx1  
-
-
-
-
-
-
-
-
-
dy1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mcspi3_so  
mi  
dss_data2  
AC25  
AB25  
G25  
J2  
-
dss_data22  
dss_data23  
dss_pclk  
gpmc_a1  
gpmc_a2  
gpmc_a3  
gpmc_a4  
gpmc_a5  
gpmc_a6  
gpmc_a7  
gpmc_a8  
gpmc_a9  
-
-
-
-
-
-
-
-
-
-
-
mcspi3_cs1 dss_data4  
gpio_92  
gpio_93  
gpio_66  
gpio_34  
gpio_35  
gpio_36  
gpio_37  
gpio_38  
gpio_39  
gpio_40  
gpio_41  
gpio_42  
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
-
-
-
-
-
-
-
-
-
-
dss_data5  
-
-
-
-
-
-
-
-
-
-
-
-
hw_dbg12  
AA13  
-
-
-
-
-
-
-
-
-
H1  
-
-
-
-
-
-
-
-
H2  
G2  
F1  
F2  
E1  
E2  
D1  
sys_ndmare  
q2  
D2  
-
gpmc_a10  
sys_ndmare  
q3  
-
-
gpio_43  
-
-
safe_mode  
N 1  
-
-
-
-
-
-
-
-
gpmc_clk  
gpmc_d0  
gpmc_d1  
gpmc_d2  
gpmc_d3  
gpmc_d4  
gpmc_d5  
gpmc_d6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_59  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
AA2  
AA1  
AC2  
AC1  
AE5  
AD6  
AD5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
59  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)  
Ball  
Ball Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
AC5  
V1  
-
-
-
-
-
-
-
-
-
-
gpmc_d7  
gpmc_d8  
gpmc_d9  
gpmc_d10  
gpmc_d11  
gpmc_d12  
gpmc_d13  
gpmc_d14  
gpmc_d15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_44  
gpio_45  
gpio_46  
gpio_47  
gpio_48  
gpio_49  
gpio_50  
gpio_51  
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
Y1  
T1  
U2  
U1  
P1  
L2  
M2  
AD10  
gpmc_nadv  
_ale  
K2  
-
gpmc_nbe0  
_cle  
-
-
-
gpio_60  
-
-
safe_mode  
J1  
-
-
-
-
-
gpmc_nbe1  
gpmc_ncs0  
gpmc_ncs1  
gpmc_ncs2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_61  
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
-
AD8  
AD1  
A3  
gpio_52  
gpio_53  
gpio_54  
safe_mode  
safe_mode  
safe_mode  
B6  
gpmc_ncs3 sys_ndmare  
q0  
B4  
C4  
B5  
C5  
-
-
-
-
gpmc_ncs4 sys_ndmare mcbsp4_clk gpt9_pwm_ gpio_55  
q1 evt  
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
x
gpmc_ncs5 sys_ndmare mcbsp4_dr gpt10_pwm gpio_56  
q2 _evt  
gpmc_ncs6 sys_ndmare mcbsp4_dx gpt11_pwm gpio_57  
q3 _evt  
gpmc_ncs7 gpmc_io_dir mcbsp4_fsx gpt8_pwm_ gpio_58  
evt  
N2  
-
-
-
-
-
-
-
gpmc_noe  
gpmc_nwe  
gpmc_nwp  
gpmc_wait0  
gpmc_wait1  
gpmc_wait2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M1  
-
-
AC6  
AC11  
AC8  
B3  
gpio_62  
-
safe_mode  
-
gpio_63  
gpio_64  
gpio_65  
safe_mode  
safe_mode  
safe_mode  
C6  
gpmc_wait3 sys_ndmare  
q1  
W19  
V20  
-
-
hsusb0_clk  
-
-
-
-
-
gpio_120  
gpio_125  
-
-
-
-
safe_mode  
safe_mode  
hsusb0_dat  
a0  
uart3_tx_irtx  
Y20  
V18  
W20  
W17  
Y18  
Y19  
-
-
-
-
-
-
hsusb0_dat  
a1  
-
-
-
-
-
-
uart3_rx_irr  
x
-
-
-
-
-
-
gpio_130  
gpio_131  
gpio_169  
gpio_188  
gpio_189  
gpio_190  
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
hsusb0_dat  
a2  
uart3_rts_s  
d
hsusb0_dat  
a3  
uart3_cts_rc  
tx  
hsusb0_dat  
a4  
-
-
-
hsusb0_dat  
a5  
hsusb0_dat  
a6  
60  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)  
Ball  
Ball Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
Y17  
-
hsusb0_dat  
a7  
-
-
-
gpio_191  
-
-
safe_mode  
V19  
W18  
U20  
U15  
W13  
V14  
U16  
Y13  
V15  
-
-
-
-
-
-
-
-
-
hsusb0_dir  
hsusb0_nxt  
hsusb0_stp  
jtag_ntrst  
jtag_rtck  
jtag_tck  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_122  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
gpio_124  
safe_mode  
gpio_121  
safe_mode  
-
-
-
-
-
-
-
-
-
-
-
-
jtag_tdi  
jtag_tdo  
jtag_tms_tm  
sc  
AE19  
K20  
-
-
vdd_dsi  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
vdd_sram_c  
ore  
N9  
-
vdd_sram_  
mpu_iva  
-
-
-
-
-
-
-
K14  
-
-
vdd_wkup  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
vdd_sram_e  
mu  
N19  
L18  
M19  
M18  
K18  
N20  
M20  
P17  
P18  
P19  
J25  
J24  
C2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
mmc1_clk  
ms_clk  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_120  
gpio_121  
gpio_122  
gpio_123  
gpio_124  
gpio_125  
gpio_126  
gpio_127  
gpio_128  
gpio_129  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
mmc1_cmd ms_bs  
mmc1_dat0 ms_dat0  
mmc1_dat1 ms_dat1  
mmc1_dat2 ms_dat2  
mmc1_dat3 ms_dat3  
mmc1_dat4  
mmc1_dat5  
mmc1_dat6  
mmc1_dat7  
i2c1_scl  
-
-
-
-
-
-
-
-
-
-
i2c1_sda  
i2c2_scl  
-
-
gpio_168  
gpio_183  
gpio_184  
gpio_185  
gpio_156  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
C1  
i2c2_sda  
i2c3_scl  
AB4  
AC4  
U19  
i2c3_sda  
mcbsp1_clk mcspi4_clk  
r
T17  
T20  
U17  
V17  
-
-
-
-
mcbsp1_clk  
x
-
mcbsp3_clk  
x
-
-
-
-
gpio_162  
gpio_159  
gpio_158  
gpio_157  
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mcbsp1_dr mcspi4_so  
mi  
mcbsp3_dr  
mcbsp1_dx mcspi4_sim mcbsp3_dx  
o
mcbsp1_fsr  
-
cam_global  
_reset  
P20  
R18  
-
-
mcbsp1_fsx mcspi4_cs0 mcbsp3_fsx  
-
-
gpio_161  
gpio_117  
-
-
-
-
safe_mode  
safe_mode  
mcbsp2_clk  
x
-
-
T18  
-
mcbsp2_dr  
-
-
-
gpio_118  
-
-
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
61  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)  
Ball  
Ball Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
R19  
U18  
P9  
-
-
-
-
-
-
mcbsp2_dx  
mcbsp2_fsx  
-
-
-
-
-
-
-
-
-
gpio_119  
gpio_116  
gpio_171  
gpio_174  
gpio_176  
gpio_172  
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
mcspi1_clk mmc2_dat4  
mcspi1_cs0 mmc2_dat7  
-
R7  
-
R9  
mcspi1_cs2  
-
mmc3_clk  
-
P8  
mcspi1_sim mmc2_dat5  
o
P7  
-
mcspi1_so  
mi  
mmc2_dat6  
-
-
gpio_173  
-
-
safe_mode  
W10  
R10  
-
-
mmc2_clk  
mcspi3_clk  
-
-
-
-
gpio_130  
gpio_131  
-
-
-
-
safe_mode  
safe_mode  
mmc2_cmd mcspi3_sim  
o
T10  
-
mmc2_dat0 mcspi3_so  
mi  
-
-
gpio_132  
-
-
safe_mode  
T9  
-
-
-
-
mmc2_dat1  
-
-
-
-
-
-
-
-
gpio_133  
gpio_134  
gpio_135  
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
U10  
U9  
mmc2_dat2 mcspi3_cs1  
mmc2_dat3 mcspi3_cs0  
V10  
mmc2_dat4 mmc2_dir_d  
at0  
mmc3_dat0 gpio_136  
R2  
H3  
-
-
uart1_rts  
uart1_rx  
-
-
-
-
gpio_149  
-
-
-
-
safe_mode  
safe_mode  
mcbsp1_clk mcspi4_clk gpio_151  
r
L4  
-
-
uart1_tx  
-
-
-
-
gpio_148  
gpio_144  
-
-
-
-
safe_mode  
safe_mode  
Y24  
uart2_cts  
mcbsp3_dx gpt9_pwm_  
evt  
AA24  
AD21  
AD22  
F23  
-
-
-
-
-
-
uart2_rts  
uart2_rx  
uart2_tx  
mcbsp3_dr gpt10_pwm  
_evt  
-
-
-
-
-
-
-
gpio_145  
gpio_147  
gpio_146  
gpio_163  
gpio_164  
gpio_165  
gpio_166  
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mcbsp3_fsx gpt8_pwm_  
evt  
mcbsp3_clk gpt11_pwm  
x
_evt  
uart3_cts_rc  
tx  
-
-
F24  
uart3_rts_s  
d
-
-
-
-
-
H24  
uart3_rx_irr  
x
G24  
J23  
-
-
-
uart3_tx_irtx  
hdq_sio  
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
sys_altclk  
i2c2_sccbe i2c3_sccbe gpio_170  
AD15  
i2c4_scl  
sys_nvmod  
e1  
-
-
-
W16  
-
i2c4_sda  
sys_nvmod  
e2  
-
-
-
-
-
safe_mode  
F3  
D3  
C3  
E3  
E4  
-
-
-
-
-
sys_boot0  
sys_boot1  
sys_boot2  
sys_boot3  
sys_boot4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_2  
gpio_3  
gpio_4  
gpio_5  
gpio_6  
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mmc2_dir_d  
at2  
G3  
D4  
-
-
sys_boot5  
sys_boot6  
mmc2_dir_d  
at3  
-
-
-
-
gpio_7  
gpio_8  
-
-
-
-
safe_mode  
safe_mode  
-
62  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)  
Ball  
Ball Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
AE14  
W11  
W15  
V16  
-
-
-
-
-
sys_clkout1  
sys_clkout2  
sys_clkreq  
sys_nirq  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_10  
gpio_186  
gpio_1  
gpio_0  
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
V13  
sys_nrespw  
ron  
AD7  
V12  
-
-
sys_nreswa  
rm  
-
-
-
-
-
-
gpio_30  
gpio_9  
-
-
-
-
safe_mode  
safe_mode  
sys_off_mo  
de  
AF19  
D6  
-
-
-
sys_xtalin  
bg_testout  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N18  
pbias_mmc  
1
K23  
B1  
-
-
-
pbias_mmc  
1a  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
sys_ipmcsw  
s
A2  
sys_opmcs  
ws  
W26  
V26  
W25  
U24  
V23  
AE20  
A24  
B24  
D24  
C24  
D25  
E26  
B23  
-
-
-
-
-
-
-
-
-
-
-
-
-
tv_out1  
tv_out2  
tv_vfb1  
tv_vfb2  
tv_vref  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
sys_32k  
cam_d2  
cam_d3  
cam_d4  
cam_d5  
cam_d10  
cam_d11  
cam_fld  
-
-
-
gpio_101  
gpio_102  
gpio_103  
gpio_104  
gpio_109  
gpio_110  
gpio_98  
hw_dbg4  
hw_dbg5  
hw_dbg6  
hw_dbg7  
hw_dbg8  
hw_dbg9  
hw_dbg3  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
cam_global  
_reset  
C23  
C26  
D26  
C25  
E25  
P25  
P26  
N25  
N26  
D23  
A23  
F26  
G26  
H25  
H26  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
cam_hs  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_94  
gpio_97  
gpio_126  
gpio_96  
gpio_111  
gpio_105  
gpio_106  
gpio_107  
gpio_108  
gpio_95  
gpio_167  
gpio_69  
gpio_76  
gpio_77  
gpio_78  
hw_dbg0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
cam_pclk  
cam_strobe  
cam_xclka  
cam_xclkb  
cam_d6  
-
hw_dbg2  
-
hw_dbg11  
-
-
-
-
-
-
cam_d7  
-
-
cam_d8  
-
-
cam_d9  
-
-
cam_vs  
-
hw_dbg1  
hw_dbg10  
-
cam_wen  
dss_acbias  
dss_data6  
dss_data7  
dss_data8  
cam_shutter  
-
uart1_tx  
uart1_rx  
-
hw_dbg14  
hw_dbg15  
hw_dbg16  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
63  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)  
Ball  
Ball Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
J26  
L25  
L26  
M24  
M26  
-
-
-
-
-
dss_data9  
dss_data16  
dss_data17  
dss_data18  
dss_data19  
-
-
-
-
-
-
-
-
-
-
-
gpio_79  
gpio_86  
gpio_87  
gpio_88  
gpio_89  
hw_dbg17  
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
-
-
mcspi3_clk dss_data0  
mcspi3_sim dss_data1  
o
N24  
K24  
M25  
R8  
-
-
-
-
-
dss_data21  
dss_hsync  
dss_vsync  
mcspi1_cs1  
mcspi1_cs3  
-
-
-
-
-
mcspi3_cs0 dss_data3  
gpio_91  
gpio_67  
gpio_68  
-
-
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
safe_mode  
-
-
-
-
-
hw_dbg13  
-
mmc3_cmd gpio_175  
-
T8  
hsusb2_tll_ hsusb2_dat gpio_177  
data2 a2  
mm2_txdat  
V9  
-
mcspi2_cs1 gpt8_pwm_ hsusb2_tll_ hsusb2_dat gpio_182  
mm2_txen_  
n
-
-
safe_mode  
safe_mode  
evt  
data3  
a3  
T19  
AB2  
-
-
mcbsp_clks  
etk_clk  
-
cam_shutter  
-
gpio_160  
uart1_cts  
mcbsp5_clk mmc3_clk  
x
hsusb1_stp gpio_12  
mm1_rxdp  
hsusb1_tll_ hw_dbg0  
stp  
AB3  
AC3  
AD4  
AD3  
AA3  
Y3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
etk_ctl  
-
mmc3_cmd hsusb1_clk gpio_13  
-
hsusb1_tll_ hw_dbg1  
clk  
etk_d0  
etk_d1  
etk_d2  
etk_d3  
etk_d4  
etk_d5  
etk_d6  
etk_d7  
etk_d8  
etk_d9  
etk_d10  
etk_d11  
etk_d12  
etk_d13  
etk_d14  
etk_d15  
mcspi3_sim mmc3_dat4 hsusb1_dat gpio_14  
o
mm1_rxrcv hsusb1_tll_ hw_dbg2  
data0  
a0  
mcspi3_so  
mi  
-
-
hsusb1_dat gpio_15  
a1  
mm1_txse0 hsusb1_tll_ hw_dbg3  
data1  
mcspi3_cs0  
hsusb1_dat gpio_16  
a2  
mm1_txdat hsusb1_tll_ hw_dbg4  
data2  
mcspi3_clk mmc3_dat3 hsusb1_dat gpio_17  
a7  
-
-
-
-
hsusb1_tll_ hw_dbg5  
data7  
mcbsp5_dr mmc3_dat0 hsusb1_dat gpio_18  
a4  
hsusb1_tll_ hw_dbg6  
data4  
AB1  
AE3  
AD2  
AA4  
V2  
mcbsp5_fsx mmc3_dat1 hsusb1_dat gpio_19  
a5  
hsusb1_tll_ hw_dbg7  
data5  
mcbsp5_dx mmc3_dat2 hsusb1_dat gpio_20  
a6  
hsusb1_tll_ hw_dbg8  
data6  
mcspi3_cs1 mmc3_dat7 hsusb1_dat gpio_21  
a3  
mm1_txen_ hsusb1_tll_ hw_dbg9  
n
data3  
sys_drm_m mmc3_dat6 hsusb1_dir gpio_22  
secure  
-
hsusb1_tll_ hw_dbg10  
dir  
sys_secure mmc3_dat5 hsusb1_nxt gpio_23  
_indicator  
mm1_rxdm hsusb1_tll_ hw_dbg11  
nxt  
AE4  
AF6  
AE6  
AF7  
AF9  
AE9  
-
-
-
-
-
-
uart1_rx  
hsusb2_clk gpio_24  
hsusb2_stp gpio_25  
hsusb2_dir gpio_26  
hsusb2_nxt gpio_27  
-
hsusb2_tll_ hw_dbg12  
clk  
-
-
-
-
-
mm2_rxdp  
-
hsusb2_tll_ hw_dbg13  
stp  
hsusb2_tll_ hw_dbg14  
dir  
mm2_rxdm hsusb2_tll_ hw_dbg15  
nxt  
hsusb2_dat gpio_28  
a0  
mm2_rxrcv hsusb2_tll_ hw_dbg16  
data0  
hsusb2_dat gpio_29  
a1  
mm2_txse0 hsusb2_tll_ hw_dbg17  
data1  
Y15  
Y14  
-
-
jtag_emu0  
jtag_emu1  
-
-
-
-
-
-
gpio_11  
gpio_31  
-
-
-
-
safe_mode  
safe_mode  
64  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)  
Ball  
Ball Top  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
Mode 5  
Mode 6  
Mode 7  
Bottom  
U3  
N3  
P3  
W3  
V3  
U4  
R3  
T3  
-
-
-
-
-
-
-
-
-
-
-
-
mcbsp3_clk uart2_tx  
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
gpio_142  
gpio_141  
gpio_140  
gpio_143  
gpio_152  
gpio_153  
gpio_154  
gpio_155  
hsusb3_tll_  
data6  
-
-
-
-
safe_mode  
safe_mode  
safe_mode  
safe_mode  
mcbsp3_dr uart2_rts  
mcbsp3_dx uart2_cts  
mcbsp3_fsx uart2_rx  
hsusb3_tll_  
data5  
hsusb3_tll_  
data4  
hsusb3_tll_  
data7  
mcbsp4_clk  
x
-
-
-
-
hsusb3_tll_ mm3_txse0 safe_mode  
data1  
mcbsp4_dr  
mcbsp4_dx  
mcbsp4_fsx  
hsusb3_tll_ mm3_rxrcv safe_mode  
data0  
hsusb3_tll_ mm3_txdat safe_mode  
data2  
hsusb3_tll_ mm3_txen_ safe_mode  
data3  
n
M3  
L3  
mmc2_dat5 mmc2_dir_d cam_global mmc3_dat1 gpio_137  
at1 _reset  
hsusb3_tll_ mm3_rxdp  
stp  
safe_mode  
safe_mode  
mmc2_dat6 mmc2_dir_c cam_shutter mmc3_dat2 gpio_138  
md  
hsusb3_tll_  
dir  
-
K3  
W2  
mmc2_dat7 mmc2_clkin  
-
mmc3_dat3 gpio_139  
hsusb3_tll_ mm3_rxdm safe_mode  
nxt  
uart1_cts  
-
-
-
gpio_150  
hsusb3_tll_  
clk  
-
safe_mode  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
65  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
2.4 Signal Description  
Many signals are available on multiple pins according to the software configuration of the pin multiplexing  
options.  
1. SIGNAL NAME: The signal name  
2. DESCRIPTION: Description of the signal  
3. TYPE: Type = Ball type for this specific function:  
I = Input  
O = Output  
Z = High-impedance  
D = Open Drain  
DS = Differential  
A = Analog  
4. BALL BOTTOM: Associated ball(s) bottom  
5. BALL TOP: Associated ball(s) top  
6. SUBSYSTEM PIN MULTIPLEXING: Contains a list of the pin multiplexing options at the  
module/subsystem level. The pin function is selected at the module/system level.  
Note: The Subsystem Multiplexing Signals are not described in Table 2-1 through Table 2-4.  
2.4.1 External Memory Interfaces  
Table 2-5. External Memory Interfaces – GPMC Signals Description  
SIGNAL  
NAME [1]  
DESCRIPTION [2]  
TYPE  
[3]  
BALL  
BOTTOM  
(CBB  
BALL  
TOP  
(CBB  
BALL BOTTOM  
(CBC Pkg.) [4] (CBC Pkg.) [5]  
BALL TOP  
SUBSYSTEM  
PIN  
MULTIPLEXIN  
Pkg.) [4]  
Pkg.) [5]  
G
[6]  
gpmc_a1  
General-purpose memory  
address bit 1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N4 / K1  
M4 / L1  
L4 / L2  
K4 / P2  
T3 / T1  
R3 / V1  
N3 / V2  
M3 / W2  
L3 / H2  
K3 / K2  
P1  
AC15 / M2  
AB15 / M1  
AC16 / N2  
AB16 / N1  
AC17 / R2  
AB17 / R1  
AC18 / T2  
AB18 / T1  
J2 / AA2  
H1 / AA1  
H2 / AC2  
G2 / AC1  
F1 / AE5  
F2 / AD6  
E1 / AD5  
E2 / AC5  
D1 / V1  
D2 / Y1  
T1  
AA13 / U2  
AA14 / U1  
AA17 / V2  
Y17 / V1  
AA19 / AA3  
AF24 / AA4  
Y19 / Y3  
W2 / Y4  
Y2 / R1  
T1  
gpmc_a17/  
gpmc_d0  
gpmc_a2  
gpmc_a3  
gpmc_a4  
gpmc_a5  
gpmc_a6  
gpmc_a7  
gpmc_a8  
gpmc_a9  
gpmc_a10  
gpmc_a11  
gpmc_a12  
gpmc_a13  
gpmc_a14  
General-purpose memory  
address bit 2  
gpmc_a18/  
gpmc_d1  
General-purpose memory  
address bit 3  
gpmc_a19/  
gpmc_d2  
General-purpose memory  
address bit 4  
gpmc_a20/  
gpmc_d3  
General-purpose memory  
address bit 5  
gpmc_a21/  
gpmc_d4  
General-purpose memory  
address bit 6  
gpmc_a22/  
gpmc_d5  
General-purpose memory  
address bit 7  
gpmc_a23/  
gpmc_d6  
General-purpose memory  
address bit 8  
gpmc_a24/  
gpmc_d7  
General-purpose memory  
address bit 9  
AC19 /  
AB3  
gpmc_a25/  
gpmc_d8  
General-purpose memory  
address bit 10  
AB19 /  
AC3  
gpmc_a26/  
gpmc_d9  
General-purpose memory  
address bit 11  
AB4  
AC4  
AB6  
AC6  
N1  
gpmc_d10  
gpmc_d11  
gpmc_d12  
gpmc_d13  
General-purpose memory  
address bit 12  
R1  
U2  
P2  
General-purpose memory  
address bit 13  
R2  
U1  
P1  
General-purpose memory  
address bit 14  
T2  
P1  
M1  
66  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-5. External Memory Interfaces – GPMC Signals Description (continued)  
SIGNAL  
NAME [1]  
DESCRIPTION [2]  
TYPE  
[3]  
BALL  
BOTTOM  
(CBB  
BALL  
TOP  
(CBB  
BALL BOTTOM  
(CBC Pkg.) [4] (CBC Pkg.) [5]  
BALL TOP  
SUBSYSTEM  
PIN  
MULTIPLEXIN  
Pkg.) [4]  
Pkg.) [5]  
G
[6]  
gpmc_a15  
gpmc_a16  
gpmc_a17  
gpmc_a18  
gpmc_a19  
gpmc_a20  
gpmc_a21  
gpmc_a22  
gpmc_a23  
gpmc_a24  
gpmc_a25  
gpmc_a26  
gpmc_d0  
gpmc_d1  
gpmc_d2  
gpmc_d3  
gpmc_d4  
gpmc_d5  
gpmc_d6  
gpmc_d7  
gpmc_d8  
gpmc_d9  
gpmc_d10  
gpmc_d11  
gpmc_d12  
gpmc_d13  
General-purpose memory  
address bit 15  
O
O
W1  
Y1  
N4  
M4  
L4  
AB7  
AC7  
AC15  
AB15  
AC16  
AB16  
AC17  
AB17  
AC18  
AB18  
AC19  
AB19  
M2  
L2  
M2  
J2  
J2  
K2  
gpmc_d14  
gpmc_d15  
gpmc_a1  
gpmc_a2  
gpmc_a3  
gpmc_a4  
gpmc_a5  
gpmc_a6  
gpmc_a7  
gpmc_a8  
gpmc_a9  
gpmc_a10  
General-purpose memory  
address bit 16  
General-purpose memory  
address bit 17  
O
AA13  
AA14  
AA17  
Y17  
AA19  
AF24  
Y19  
W2  
Y2  
General-purpose memory  
address bit 18  
O
H1  
General-purpose memory  
address bit 19  
O
H2  
General-purpose memory  
address bit 20  
O
K4  
T3  
R3  
N3  
M3  
L3  
G2  
F1  
General-purpose memory  
address bit 21  
O
General-purpose memory  
address bit 22  
O
F2  
General-purpose memory  
address bit 23  
O
E1  
General-purpose memory  
address bit 24  
O
E2  
General-purpose memory  
address bit 25  
O
D1  
General-purpose memory  
address bit 26  
O
K3  
K1  
L1  
D2  
-
GPMC Data bit 0  
GPMC Data bit 1  
GPMC Data bit 2  
GPMC Data bit 3  
GPMC Data bit 4  
GPMC Data bit 5  
GPMC Data bit 6  
GPMC Data bit 7  
GPMC Data bit 8  
GPMC Data bit 9  
GPMC Data bit 10  
GPMC Data bit 11  
GPMC Data bit 12  
GPMC Data bit 13  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AA1  
AA1  
AC2  
AC1  
AE5  
AD6  
AD5  
AC5  
V1  
U2  
gpmc_a1/  
gpmc_d0  
M1  
U1  
gpmc_a2/  
gpmc_d1  
L2  
N2  
V2  
gpmc_a3/  
gpmc_d2  
P2  
T1  
V1  
V2  
W2  
H2  
K2  
P1  
R1  
R2  
T2  
N1  
V1  
gpmc_a4/  
gpmc_d3  
R2  
AA3  
AA4  
Y3  
gpmc_a5/  
gpmc_d4  
R1  
gpmc_a6/  
gpmc_d5  
T2  
gpmc_a7  
/gpmc_d6  
T1  
Y4  
gpmc_a8/  
gpmc_d7  
AB3  
AC3  
AB4  
AC4  
AB6  
AC6  
R1  
gpmc_a9/  
gpmc_d8  
Y1  
T1  
gpmc_a10/  
gpmc_d9  
T1  
N1  
gpmc_a11/  
gpmc_d10  
U2  
P2  
gpmc_a12/  
gpmc_d11  
U1  
P1  
gpmc_a13/  
gpmc_d12  
P1  
M1  
gpmc_a14/  
gpmc_d13  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
67  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-5. External Memory Interfaces – GPMC Signals Description (continued)  
SIGNAL  
NAME [1]  
DESCRIPTION [2]  
TYPE  
[3]  
BALL  
BOTTOM  
(CBB  
BALL  
TOP  
(CBB  
BALL BOTTOM  
(CBC Pkg.) [4] (CBC Pkg.) [5]  
BALL TOP  
SUBSYSTEM  
PIN  
MULTIPLEXIN  
Pkg.) [4]  
Pkg.) [5]  
G
[6]  
gpmc_d14  
gpmc_d15  
GPMC Data bit 14  
IO  
IO  
W1  
Y1  
AB7  
AC7  
L2  
J2  
gpmc_a15/  
gpmc_d14  
GPMC Data bit 15  
M2  
K2  
gpmc_a16/  
gpmc_d15  
gpmc_ncs0  
gpmc_ncs1  
gpmc_ncs2  
gpmc_ncs3  
gpmc_ncs4  
gpmc_ncs5  
gpmc_ncs6  
gpmc_ncs7  
gpmc_io_dir  
GPMC Chip Select bit 0  
GPMC Chip Select bit 1  
GPMC Chip Select bit 2  
GPMC Chip Select bit 3  
GPMC Chip Select bit 4  
GPMC Chip Select bit 5  
GPMC Chip Select bit 6  
GPMC Chip Select bit 7  
O
O
O
O
O
O
O
O
O
G4  
H3  
V8  
U8  
T8  
R8  
P8  
N8  
N8  
Y2  
Y1  
AD8  
AD1  
A3  
AA8  
-
-
-
-
-
-
-
-
-
W1  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
-
-
-
-
-
-
-
B6  
B4  
C4  
B5  
C5  
C5  
GPMC IO direction control for  
use with external transceivers  
gpmc_clk  
GPMC clock  
O
O
T4  
F3  
W2  
W1  
N1  
L1  
-
-
gpmc_nadv_al Address Valid or Address Latch  
AD10  
AA9  
e
Enable  
gpmc_noe  
gpmc_nwe  
Output Enable  
Write Enable  
O
O
O
G2  
F4  
G3  
V2  
V1  
N2  
M1  
K2  
L2  
K1  
-
-
-
-
gpmc_nbe0_cl Lower Byte Enable. Also used for  
AC12  
e
Command Latch Enable  
gpmc_nbe1  
gpmc_nwp  
gpmc_wait0  
gpmc_wait1  
gpmc_wait2  
gpmc_wait3  
Upper Byte Enable  
O
O
I
U3  
H1  
M8  
L8  
NA  
AB10  
AB12  
AC10  
NA  
J1  
AC6  
AC11  
AC8  
B3  
-
Y5  
Y10  
Y8  
-
-
-
-
-
-
-
Flash Write Protect  
External indication of wait  
External indication of wait  
External indication of wait  
External indication of wait  
I
I
K8  
J8  
I
NA  
C6  
-
Table 2-6. External Memory Interfaces – SDRC Signals Description  
SIGNAL  
NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM BALL TOP  
BALL BOTTOM  
(CBC Pkg.)  
BALL TOP  
(CBC Pkg.)  
(CBB Pkg.)  
(CBB Pkg.)  
sdrc_d0  
sdrc_d1  
sdrc_d2  
sdrc_d3  
sdrc_d4  
sdrc_d5  
sdrc_d6  
sdrc_d7  
sdrc_d8  
sdrc_d9  
sdrc_d10  
sdrc_d11  
sdrc_d12  
sdrc_d13  
SDRAM data bit 0  
SDRAM data bit 1  
SDRAM data bit 2  
SDRAM data bit 3  
SDRAM data bit 4  
SDRAM data bit 5  
SDRAM data bit 6  
SDRAM data bit 7  
SDRAM data bit 8  
SDRAM data bit 9  
SDRAM data bit 10  
SDRAM data bit 11  
SDRAM data bit 12  
SDRAM data bit 13  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
D6  
J2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D1  
G1  
C6  
J1  
B6  
G2  
G2  
C8  
G1  
E1  
C9  
F2  
D2  
A7  
F1  
E2  
B9  
D2  
B3  
A9  
D1  
B4  
C14  
B14  
C15  
B16  
D17  
C17  
B13  
A13  
B14  
A14  
B16  
A16  
A10  
B11  
A11  
B12  
A16  
A17  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
68 TERMINAL DESCRIPTION Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-6. External Memory Interfaces – SDRC Signals Description (continued)  
SIGNAL  
NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM BALL TOP  
BALL BOTTOM  
(CBC Pkg.)  
BALL TOP  
(CBC Pkg.)  
(CBB Pkg.)  
B17  
D18  
D11  
B10  
C11  
D12  
C12  
A11  
B13  
D14  
C18  
A19  
B19  
B20  
D20  
A21  
B21  
C21  
H9  
(CBB Pkg.)  
B19  
A19  
B3  
sdrc_d14  
sdrc_d15  
sdrc_d16  
sdrc_d17  
sdrc_d18  
sdrc_d19  
sdrc_d20  
sdrc_d21  
sdrc_d22  
sdrc_d23  
sdrc_d24  
sdrc_d25  
sdrc_d26  
sdrc_d27  
sdrc_d28  
sdrc_d29  
sdrc_d30  
sdrc_d31  
sdrc_ba0  
sdrc_ba1  
sdrc_a0  
SDRAM data bit 14  
SDRAM data bit 15  
SDRAM data bit 16  
SDRAM data bit 17  
SDRAM data bit 18  
SDRAM data bit 19  
SDRAM data bit 20  
SDRAM data bit 21  
SDRAM data bit 22  
SDRAM data bit 23  
SDRAM data bit 24  
SDRAM data bit 25  
SDRAM data bit 26  
SDRAM data bit 27  
SDRAM data bit 28  
SDRAM data bit 29  
SDRAM data bit 30  
SDRAM data bit 31  
SDRAM bank select 0  
SDRAM bank select 1  
SDRAM address bit 0  
SDRAM address bit 1  
SDRAM address bit 2  
SDRAM address bit 3  
SDRAM address bit 4  
SDRAM address bit 5  
SDRAM address bit 6  
SDRAM address bit 7  
SDRAM address bit 8  
SDRAM address bit 9  
SDRAM address bit 10  
SDRAM address bit 11  
SDRAM address bit 12  
SDRAM address bit 13  
SDRAM address bit 14  
Chip select 0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B17  
B18  
B7  
A3  
A5  
B5  
B6  
A5  
A6  
B8  
A8  
A8  
B9  
B9  
A9  
A9  
B10  
C21  
D20  
B19  
C20  
D21  
E20  
E21  
G21  
AA18  
V20  
G20  
K20  
J20  
J21  
U21  
R20  
M21  
M20  
N20  
K21  
Y16  
N21  
R21  
AA15  
Y12  
T21  
T20  
A12  
B13  
Y15  
Y13  
V21  
U20  
B21  
A21  
D22  
D23  
E22  
E23  
G22  
G23  
AB21  
AC21  
N22  
N23  
P22  
P23  
R22  
R23  
T22  
T23  
U22  
U23  
V22  
V23  
W22  
W23  
Y22  
M22  
M23  
A11  
B11  
J22  
O
H10  
A4  
O
sdrc_a1  
O
B4  
sdrc_a2  
O
B3  
sdrc_a3  
O
C5  
sdrc_a4  
O
C4  
sdrc_a5  
O
D5  
sdrc_a6  
O
C3  
sdrc_a7  
O
C2  
sdrc_a8  
O
C1  
sdrc_a9  
O
D4  
sdrc_a10  
sdrc_a11  
sdrc_a12  
sdrc_a13  
sdrc_a14  
sdrc_ncs0  
sdrc_ncs1  
sdrc_clk  
O
D3  
O
D2  
O
D1  
O
E2  
O
E1  
O
H11  
H12  
A13  
A14  
H16  
H17  
H14  
H13  
Chip select 1  
O
Clock  
IO  
O
sdrc_nclk  
sdrc_cke0  
sdrc_cke1  
sdrc_nras  
sdrc_ncas  
Clock Invert  
Clock Enable 0  
O
Clock Enable 1  
O
J23  
SDRAM Row Access  
O
L23  
L22  
SDRAM column address  
strobe  
O
sdrc_nwe  
sdrc_dm0  
sdrc_dm1  
SDRAM write enable  
Data Mask 0  
O
O
O
H15  
B7  
K23  
C1  
-
-
-
Y18  
H1  
Data Mask 1  
A16  
A17  
A14  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
69  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-6. External Memory Interfaces – SDRC Signals Description (continued)  
SIGNAL  
NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM BALL TOP  
BALL BOTTOM  
(CBC Pkg.)  
BALL TOP  
(CBC Pkg.)  
(CBB Pkg.)  
(CBB Pkg.)  
sdrc_dm2  
sdrc_dm3  
sdrc_dqs0  
sdrc_dqs1  
sdrc_dqs2  
sdrc_dqs3  
Data Mask 2  
O
O
B11  
A6  
A20  
C2  
-
-
-
-
-
-
A4  
A18  
C2  
Data Mask 3  
Data Strobe 0  
Data Strobe 1  
Data Strobe 2  
Data Strobe 3  
C20  
IO  
IO  
IO  
IO  
A6  
A17  
B17  
B6  
B15  
B8  
A10  
A20  
B20  
A19  
70  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
2.4.2 Video Interfaces  
Table 2-7. Video Interfaces – CAM Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
cam_hs  
Camera Horizontal Synchronization  
Camera Vertical Synchronization  
Camera Clock Output a  
IO  
IO  
O
O
I
A24  
A23  
C23  
D23  
cam_vs  
cam_xclka  
cam_xclkb  
cam_d0  
C25  
C25  
Camera Clock Output b  
B26  
E25  
Camera digital image data bit 0  
Camera digital image data bit 1  
Camera digital image data bit 2  
Camera digital image data bit 3  
Camera digital image data bit 4  
Camera digital image data bit 5  
Camera digital image data bit 6  
Camera digital image data bit 7  
Camera digital image data bit 8  
Camera digital image data bit 9  
Camera digital image data bit 10  
Camera digital image data bit 11  
Camera field identification  
AG17  
AH17  
B24  
AE16  
AE15  
A24  
cam_d1  
I
cam_d2  
I
cam_d3  
I
C24  
B24  
cam_d4  
I
D24  
D24  
cam_d5  
I
A25  
C24  
cam_d6  
I
K28  
P25  
cam_d7  
I
L28  
P26  
cam_d8  
I
K27  
N25  
cam_d9  
I
L27  
N26  
cam_d10  
cam_d11  
cam_fld  
I
B25  
D25  
I
C26  
E26  
IO  
I
C23  
B23  
cam_pclk  
cam_wen  
cam_strobe  
cam_global_reset  
Camera pixel clock  
C27  
C26  
Camera Write Enable  
I
B23  
A23  
Flash strobe control signal  
O
IO  
D25  
D26  
Global reset is used strobe  
synchronization  
C23 / AH3 / AA21  
V17 / B23  
cam_shutter  
Mechanical shutter control signal  
O
B23 / AF3 / T21  
A23 / T19  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
Table 2-8. Video Interfaces – DSS Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
dss_pclk  
LCD Pixel Clock  
O
O
D28  
D26  
G25  
K24  
dss_hsync  
dss_vsync  
dss_acbias  
dss_data0  
dss_data1  
dss_data2  
dss_data3  
dss_data4  
dss_data5  
dss_data6  
dss_data7  
dss_data8  
dss_data9  
dss_data10  
dss_data11  
LCD Horizontal Synchronization  
LCD Vertical Synchronization  
AC bias control (STN) or pixel data enable (TFT) output  
LCD Pixel Data bit 0  
O
D27  
M25  
O
E27  
F26  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AG22 / H26  
AH22 / H25  
AG23 / E28  
AH23 / J26  
AG24 / AC27  
AH24 / AC28  
E26  
AE21 / M24  
AE22 / M26  
AE23 / F25  
AE24 / N24  
AD23 / AC25  
AD24/ AB25  
G26  
LCD Pixel Data bit 1  
LCD Pixel Data bit 2  
LCD Pixel Data bit 3  
LCD Pixel Data bit 4  
LCD Pixel Data bit 5  
LCD Pixel Data bit 6  
LCD Pixel Data bit 7  
F28  
H25  
LCD Pixel Data bit 8  
F27  
H26  
LCD Pixel Data bit 9  
G26  
J26  
LCD Pixel Data bit 10  
AD28  
AC26  
LCD Pixel Data bit 11  
AD27  
AD26  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
Submit Documentation Feedback TERMINAL DESCRIPTION  
71  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-8. Video Interfaces – DSS Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
AA25  
Y25  
dss_data12  
dss_data13  
dss_data14  
dss_data15  
dss_data16  
dss_data17  
dss_data18  
dss_data19  
dss_data20  
dss_data21  
dss_data22  
dss_data23  
LCD Pixel Data bit 12  
LCD Pixel Data bit 13  
LCD Pixel Data bit 14  
LCD Pixel Data bit 15  
LCD Pixel Data bit 16  
LCD Pixel Data bit 17  
LCD Pixel Data bit 18  
LCD Pixel Data bit 19  
LCD Pixel Data bit 20  
LCD Pixel Data bit 21  
LCD Pixel Data bit 22  
LCD Pixel Data bit 23  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
AB28  
AB27  
AA28  
AA27  
G25  
AA26  
AB26  
L25  
H27  
L26  
H26  
M24  
H25  
M26  
E28  
F25  
O
J26  
N24  
O
AC27  
AC28  
AC25  
AB25  
O
Table 2-9. Video Interfaces – RFBI Signals Description  
SIGNAL  
NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
SUBSYSTEM PIN  
MULTIPLEXING(2)  
rfbi_a0  
RFBI command/data control  
1st LCD chip select  
RFBI data bus 0  
O
O
E27  
D26  
F26  
K24  
dss_acbias  
dss_hsync  
dss_data0  
dss_data1  
dss_data2  
dss_data3  
dss_data4  
dss_data5  
dss_data6  
dss_data7  
dss_data8  
dss_data9  
dss_data10  
dss_data11  
dss_data12  
dss_data13  
dss_data14  
dss_data15  
dss_pclk  
rfbi_cs0  
rfbi_da0  
rfbi_da1  
rfbi_da2  
rfbi_da3  
rfbi_da4  
rfbi_da5  
rfbi_da6  
rfbi_da7  
rfbi_da8  
rfbi_da9  
rfbi_da10  
rfbi_da11  
rfbi_da12  
rfbi_da13  
rfbi_da14  
rfbi_da15  
rfbi_rd  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
AG22  
AH22  
AG23  
AH23  
AG24  
AH24  
E26  
AE21  
AE22  
AE23  
AE24  
AD23  
AD24  
G26  
RFBI data bus 1  
RFBI data bus 2  
RFBI data bus 3  
RFBI data bus 4  
RFBI data bus 5  
RFBI data bus 6  
RFBI data bus 7  
F28  
H25  
RFBI data bus 8  
F27  
H26  
RFBI data bus 9  
G26  
J26  
RFBI data bus 10  
RFBI data bus 11  
RFBI data bus 12  
RFBI data bus 13  
RFBI data bus 14  
RFBI data bus 15  
Read enable for RFBI  
Write Enable for RFBI  
AD28  
AD27  
AB28  
AB27  
AA28  
AA27  
D28  
AC26  
AD26  
AA25  
Y25  
AA26  
AB26  
G25  
rfbi_wr  
O
D27  
M25  
dss_vsync  
dss_data16  
rfbi_te_vsync0 tearing effect removal and Vsync input  
from 1st LCD  
I
G25  
L25  
rfbi_hsync0  
Hsync for 1st LCD  
I
H27  
L26  
dss_data17  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
(2) The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-3  
72  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-10. Video Interfaces – TV Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
tv_out1  
tv_out2  
tv_vfb1  
TV analog output Composite: tv_out1  
TV analog output S-VIDEO: tv_out2  
O
O
Y28  
W28  
Y27  
W26  
V26  
tv_vfb1: Feedback through external  
AO  
W25  
resistorto composite  
tv_vfb2  
tv_vref  
tv_vfb2: Feedback through external  
resistorto S-VIDEO  
AO  
AO  
W27  
W26  
U24  
V23  
External capacitor  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
73  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
2.4.3 Serial Communication Interfaces  
Table 2-11. Serial Communication Interfaces – HDQ/1-Wire Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
hdq_sio  
Bidirectional HDQ 1-Wire control and data  
Interface. Output is open drain.  
IOD  
J25  
J23  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
Table 2-12. Serial Communication Interfaces – I2C Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
INTER-INTEGRATED CIRCUIT INTERFACE (I2C1)  
i2c1_scl  
I2C Master Serial clock. Output is open  
drain.  
I2C Serial Bidirectional Data. Output is open  
drain.  
IOD  
IOD  
K21  
J21  
J25  
J24  
i2c1_sda  
INTER-INTEGRATED CIRCUIT INTERFACE (I2C3)  
i2c3_scl  
I2C Master Serial clock. Output is open  
drain.  
I2C Serial Bidirectional Data. Output is open  
drain.  
IOD  
IOD  
O
AF14  
AG14  
J25  
C2  
C1  
i2c3_sda  
i2c3_sccbe  
Serial Camera Control Bus Enable  
J23  
INTER-INTEGRATED CIRCUIT INTERFACE (I2C2)  
i2c2_scl  
I2C Master Serial clock. Output is open  
drain.  
I2C Serial Bidirectional Data. Output is open  
drain.  
IOD  
IOD  
O
AF15  
AE15  
J25  
AB4  
AC4  
J23  
i2c2_sda  
i2c2_sccbe  
Serial Camera Control Bus Enable  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
Table 2-13. Serial Communication Interfaces – SmartReflex Signals Description(1)  
SIGNAL NAME  
DESCRIPTION  
TYPE(2)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
INTER-INTEGRATED CIRCUIT INTERFACE (I2C4)  
i2c4_scl  
I2C Master Serial clock. Output is open  
drain.  
I2C Serial Bidirectional Data. Output is open  
drain.  
IOD  
IOD  
AD26  
AE26  
AD15  
W16  
i2c4_sda  
(1) For more information on SmartReflex voltage control, see the PRCM chapter of the OMAP35x Technical Reference Manual (TRM)  
[literature number SPRUFA5].  
(2) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).  
Table 2-14. Serial Communication Interfaces – McBSP LP Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
MULTICHANNEL SERIAL (McBSP LP 1)  
mcbsp1_dr  
mcbsp1_clkr  
mcbsp1_fsr  
mcbsp1_dx  
mcbsp1_clkx  
Received serial data  
Receive Clock  
I
U21  
Y8 / Y21  
AA21  
V21  
T20  
U19 / H3  
V17  
IO  
IO  
IO  
IO  
Receive frame synchronization  
Transmitted serial data  
Transmit clock  
U17  
W21  
T17  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
74 TERMINAL DESCRIPTION Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-14. Serial Communication Interfaces – McBSP LP Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
mcbsp1_fsx  
mcbsp_clks  
Transmit frame synchronization  
IO  
I
K26  
T21  
P20  
T19  
External clock input (shared by McBSP1, 2,  
3, 4, and 5)  
MULTICHANNEL SERIAL (McBSP LP 2)  
mcbsp2_dr  
mcbsp2_dx  
mcbsp2_clkx  
mcbsp2_fsx  
Received serial data  
I
R21  
M21  
N21  
P21  
T18  
R19  
R18  
U18  
Transmitted serial data  
Combined serial clock  
IO  
IO  
IO  
Combined frame synchronization  
MULTICHANNEL SERIAL (McBSP LP 3)  
mcbsp3_dr  
mcbsp3_dx  
mcbsp3_clkx  
mcbsp3_fsx  
Received serial data  
I
AE6 / AB25 / U21  
AF6 / AB26 / V21  
AF5 / AA25 / W21  
AE5 / AD25 / K26  
T20 / AA24 / N3  
U17 / Y24 / P3  
T17 / AD22 / U3  
P20 / AD21 / W3  
Transmitted serial data  
Combined serial clock  
IO  
IO  
IO  
Combined frame synchronization  
MULTICHANNEL SERIAL (McBSP LP 4)  
mcbsp4_dr  
mcbsp4_dx  
mcbsp4_clkx  
mcbsp4_fsx  
Received serial data  
I
R8 / AD1  
P8 / AD2  
T8 / AE1  
N8 / AC1  
C4 / U4  
B5 / R3  
B4 / V3  
C5 / T3  
Transmitted serial data  
Combined serial clock  
IO  
IO  
IO  
Combined frame synchronization  
MULTICHANNEL SERIAL (McBSP LP 5)  
mcbsp5_dr  
mcbsp5_dx  
mcbsp5_clkx  
mcbsp5_fsx  
Received serial data  
I
AE11  
AF13  
AF10  
AH9  
Y3  
Transmitted serial data  
Combined serial clock  
IO  
IO  
IO  
AE3  
AB2  
AB1  
Combined frame synchronization  
Table 2-15. Serial Communication Interfaces – McSPI Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
MULTICHANNEL SERIAL PORT INTERFACE (McSPI1)  
mcspi1_clk  
SPI Clock  
IO  
IO  
IO  
IO  
AB3  
AB4  
AA4  
AC2  
P9  
P8  
P7  
R7  
mcspi1_simo  
mcspi1_somi  
mcspi1_cs0  
Slave data in, master data out  
Slave data out, master data in  
SPI Enable 0, polarity configured by  
software  
mcspi1_cs1  
mcspi1_cs2  
mcspi1_cs3  
SPI Enable 1, polarity configured by  
software  
O
O
O
AC3  
AB1  
AB2  
R8  
R9  
T8  
SPI Enable 2, polarity configured by  
software  
SPI Enable 3, polarity configured by  
software  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
75  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-15. Serial Communication Interfaces – McSPI Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
MULTICHANNEL SERIAL PORT INTERFACE (McSPI2)  
mcspi2_clk  
SPI Clock  
IO  
IO  
IO  
IO  
AA3  
Y2  
W7  
W8  
U8  
V8  
mcspi2_simo  
mcspi2_somi  
mcspi2_cs0  
Slave data in, master data out  
Slave data out, master data in  
Y3  
SPI Enable 0, polarity configured by  
software  
Y4  
mcspi2_cs1  
SPI Enable 1, polarity configured by  
software  
O
V3  
V9  
MULTICHANNEL SERIAL PORT INTERFACE (McSPI3)  
mcspi3_clk  
SPI Clock  
IO  
IO  
IO  
IO  
H26 / AE2 / AE13  
H25 / AG5 / AF11  
E28 / AH5 / AG12  
J26 / AF4 / AH12  
W10 / M24 / AA3  
R10 / M26 / AC3  
F25 / T10 / AD4  
U9 / N24 / AD3  
mcspi3_simo  
mcspi3_somi  
mcspi3_cs0  
Slave data in, master data out  
Slave data out, master data in  
SPI Enable 0, polarity configured by  
software  
mcspi3_cs1  
SPI Enable 1, polarity configured by  
software  
O
AC27 / AG4 / AH14  
AC25 / U10 / AD2  
MULTICHANNEL SERIAL PORT INTERFACE (McSPI4)  
mcspi4_clk  
SPI Clock  
IO  
IO  
IO  
IO  
Y8 / Y21  
V21  
U19 / H3  
U17  
mcspi4_simo  
mcspi4_somi  
mcspi4_cs0  
Slave data in, master data out  
Slave data out, master data in  
U21  
T20  
SPI Enable 0, polarity configured by  
software  
K26  
P20  
Table 2-16. Serial Communication Interfaces – UARTs Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART1)  
uart1_cts  
uart1_rts  
uart1_rx  
uart1_tx  
UART1 Clear To Send  
UART1 Request To Send  
UART1 Receive data  
UART1 Transmit data  
I
AG22 / W8 / T21  
AH22 / AA9  
AE21 / T19 / W2  
AE22 / R2  
O
I
F28 / Y8 / AE7  
E26 / AA8  
H3 / H25 / AE4  
L4 / G26  
O
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART2)  
uart2_cts  
uart2_rts  
uart2_rx  
uart2_tx  
UART2 Clear To Send  
UART2 Request To Send  
UART2 Receive data  
UART2 Transmit data  
I
AF6 / AB26  
AE6 / AB25  
AE5 / AD25  
AF5 / AA25  
Y24  
O
I
AA24  
AD21  
AD22  
O
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART3) / IrDA  
uart3_cts_rctx  
UART3 Clear To Send (input), Remote  
TX (output)  
IO  
H18 / U26  
W20 / F23  
uart3_rts_sd  
uart3_rx_irrx  
UART3 Request To Send, IR enable  
O
I
H19 / U27  
V18 / F24  
UART3 Receive data, IR and Remote  
RX  
AG24 / H20 / U28  
AD23 / Y20 / H24  
uart3_tx_irtx  
UART3 Transmit data, IR TX  
O
AH24 / H21 / T27  
AD24 / V20 / G24  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
76  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-17. Serial Communication Interfaces – USB Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
HIGH-SPEED UNIVERSAL SERIAL BUS INTERFACE (HSUSB0)  
hsusb0_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
I
T28  
W19  
hsusb0_stp  
hsusb0_dir  
Dedicated for external transceiver Stop signal  
O
I
T25  
R28  
U20  
V19  
Dedicated for external transceiver Data direction control from  
PHY  
hsusb0_nxt  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
I
T26  
T27  
U28  
U27  
U26  
U25  
W18  
V20  
Y20  
V18  
W20  
W17  
hsusb0_data0  
hsusb0_data1  
hsusb0_data2  
hsusb0_data3  
hsusb0_data4  
IO  
IO  
IO  
IO  
IO  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
hsusb0_data5  
hsusb0_data6  
hsusb0_data7  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
IO  
IO  
V28  
V27  
V26  
Y18  
Y19  
Y17  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
MM_FSUSB3  
mm3_rxdm  
mm3_rxdp  
Vminus receive data (not used in 3- or 4-pin configurations)  
Vplus receive data (not used in 3- or 4-pin configurations)  
Differential receiver signal input (not used in 3-pin mode)  
Single-ended zero. Used as VM in 4-pin VP_VM mode.  
USB data. Used as VP in 4-pin VP_VM mode.  
Transmit enable  
IO  
IO  
IO  
IO  
IO  
IO  
AE3  
AH3  
AD1  
AE1  
AD2  
AC1  
AE3  
M3  
U4  
V3  
mm3_rxrcv  
mm3_txse0  
mm3_txdat  
mm3_txen_n  
MM_FSUSB2  
mm2_rxdm  
mm2_rxdp  
R3  
T3  
Vminus receive data (not used in 3- or 4-pin configurations)  
Vplus receive data (not used in 3- or 4-pin configurations)  
Differential receiver signal input (not used in 3-pin mode)  
Single-ended zero. Used as VM in 4-pin VP_VM mode.  
USB data. Used as VP in 4-pin VP_VM mode.  
Transmit enable  
IO  
IO  
IO  
IO  
IO  
IO  
AH7  
AF7  
AG8  
AH8  
AB2  
V3  
AF7  
AF6  
AF9  
AE9  
T8  
mm2_rxrcv  
mm2_txse0  
mm2_txdat  
mm2_txen_n  
MM_FSUSB1  
mm1_rxdm  
mm1_rxdp  
V9  
Vminus receive data (not used in 3- or 4-pin configurations)  
Vplus receive data (not used in 3- or 4-pin configurations)  
Differential receiver signal input (not used in 3-pin mode)  
Single-ended zero. Used as VM in 4-pin VP_VM mode.  
USB data. Used as VP in 4-pin VP_VM mode.  
Transmit enable  
IO  
IO  
IO  
IO  
IO  
IO  
AG9  
AF10  
AF11  
AG12  
AH12  
AH14  
V2  
AB2  
AC3  
AD4  
AD3  
AD2  
mm1_rxrcv  
mm1_txse0  
mm1_txdat  
mm1_txen_n  
HSUSB3_TLL  
hsusb3_tll_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
O
W8  
W2  
hsusb3_tll_stp  
hsusb3_tll_dir  
Dedicated for external transceiver Stop signal  
I
AH3  
AF3  
M3  
L3  
dedicated for external transceiver Data direction control from  
PHY  
O
hsusb3_tll_nxt  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
O
AE3  
AD1  
K3  
U4  
hsusb3_tll_data0  
IO  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Submit Documentation Feedback TERMINAL DESCRIPTION  
77  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-17. Serial Communication Interfaces – USB Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
hsusb3_tll_data1  
hsusb3_tll_data2  
hsusb3_tll_data3  
hsusb3_tll_data4  
hsusb3_tll_data5  
hsusb3_tll_data6  
hsusb3_tll_data7  
HSUSB2  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AE1  
AD2  
AC1  
AF6  
AE6  
AF5  
AE5  
V3  
R3  
T3  
P3  
N3  
U3  
W3  
hsusb2_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
O
AE7  
AE4  
hsusb2_stp  
hsusb2_dir  
Dedicated for external transceiver Stop signal  
O
I
AF7  
AG7  
AF6  
AE6  
Dedicated for external transceiver Data direction control from  
PHY  
hsusb2_nxt  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
I
AH7  
AG8  
AH8  
AB2  
V3  
AF7  
AF9  
AE9  
T8  
hsusb2_data0  
hsusb2_data1  
hsusb2_data2  
hsusb2_data3  
hsusb2_data4  
IO  
IO  
IO  
IO  
IO  
V9  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Y2  
W8  
hsusb2_data5  
hsusb2_data6  
hsusb2_data7  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
IO  
IO  
Y3  
Y4  
U8  
V8  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
AA3  
W7  
HSUSB2_TLL  
hsusb2_tll_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
O
AE7  
AE4  
hsusb2_tll_stp  
hsusb2_tll_dir  
Dedicated for external transceiver Stop signal  
I
AF7  
AG7  
AF6  
AE6  
Dedicated for external transceiver data direction control from  
PHY  
O
hsusb2_tll_nxt  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
O
AH7  
AG8  
AH8  
AB2  
V3  
AF7  
AF9  
AE9  
T8  
hsusb2_tll_data0  
hsusb2_tll_data1  
hsusb2_tll_data2  
hsusb2_tll_data3  
hsusb2_tll_data4  
IO  
IO  
IO  
IO  
IO  
V9  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Y2  
W8  
hsusb2_tll_data5  
hsusb2_tll_data6  
hsusb2_tll_data7  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
IO  
IO  
Y3  
Y4  
U8  
V8  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
AA3  
W7  
HSUSB1  
hsusb1_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
O
AE10  
AB3  
hsusb1_stp  
hsusb1_dir  
Dedicated for external transceiver Stop signal  
O
I
AF10  
AF9  
AB2  
AA4  
Dedicated for external transceiver data direction control from  
PHY  
78  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-17. Serial Communication Interfaces – USB Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
hsusb1_nxt  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
I
AG9  
AF11  
AG12  
AH12  
AH14  
AE11  
V2  
hsusb1_data0  
hsusb1_data1  
hsusb1_data2  
hsusb1_data3  
hsusb1_data4  
IO  
IO  
IO  
IO  
IO  
AC3  
AD4  
AD3  
AD2  
Y3  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
hsusb1_data5  
hsusb1_data6  
hsusb1_data7  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
IO  
IO  
AH9  
AF13  
AE13  
AB1  
AE3  
AA7  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
HSUSB1_TLL  
hsusb1_tll_clk  
Dedicated for external transceiver 60-MHz clock input from  
PHY  
O
AE10  
AB3  
hsusb1_tll_stp  
hsusb1_tll_dir  
Dedicated for external transceiver Stop signal  
I
AF10  
AF9  
AB2  
AA4  
Dedicated for external transceiver data direction control from  
PHY  
O
hsusb1_tll_nxt  
Dedicated for external transceiver Next signal from PHY  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
Dedicated for external transceiver Bidirectional data bus  
O
AG9  
AF11  
AG12  
AH12  
AH14  
AE11  
V2  
hsusb1_tll_data0  
hsusb1_tll_data1  
hsusb1_tll_data2  
hsusb1_tll_data3  
hsusb1_tll_data4  
IO  
IO  
IO  
IO  
IO  
AC3  
AD4  
AD3  
AD2  
Y3  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
hsusb1_tll_data5  
hsusb1_tll_data6  
hsusb1_tll_data7  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
IO  
IO  
IO  
AH9  
AF13  
AE13  
AB1  
AE3  
AA3  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Dedicated for external transceiver Bidirectional data bus  
additional signals for 12-pin ULPI operation  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
79  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
2.4.4 Removable Media Interfaces  
Table 2-18. Removable Media Interfaces – MMC/SDIO Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
MULTIMEDIA MEMORY CARD (MMC1) / SECURE DIGITAL IO (SDIO1)  
mmc1_clk  
MMC/SD Output Clock  
O
N28  
M27  
N27  
N26  
N25  
P28  
P27  
P26  
R27  
R25  
N19  
L18  
mmc1_cmd  
mmc1_dat0  
mmc1_dat1  
mmc1_dat2  
mmc1_dat3  
mmc1_dat4  
mmc1_dat5  
mmc1_dat6  
mmc1_dat7  
MMC/SD command signal  
MMC/SD Card Data bit 0 / SPI Serial Input  
MMC/SD Card Data bit 1  
MMC/SD Card Data bit 2  
MMC/SD Card Data bit 3  
MMC/SD Card Data bit 4  
MMC/SD Card Data bit 5  
MMC/SD Card Data bit 6  
MMC/SD Card Data bit 7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
M19  
M18  
K18  
N20  
M20  
P17  
P18  
P19  
MULTIMEDIA MEMORY CARD (MMC2) / SECURE DIGITAL IO (SDIO2)  
mmc2_clk  
MMC/SD Output Clock  
O
O
AE2  
AE4  
W10  
V10  
mmc2_dir_dat0  
Direction control for DAT0 signal case an external  
transceiver used  
mmc2_dir_dat1  
mmc2_dir_dat2  
mmc2_dir_dat3  
Direction control for DAT1 and DAT3 signals case an  
external transceiver used  
O
O
O
AH3  
AF19  
AE21  
M3  
E4  
G3  
Direction control for DAT2 signal case an external  
transceiver used  
Direction control for DAT4, DAT5, DAT6, and DAT7 signals  
case an external transceiver used  
mmc2_clkin  
mmc2_dat0  
mmc2_dat1  
mmc2_dat2  
mmc2_dat3  
mmc2_dat4  
mmc2_dat5  
mmc2_dat6  
mmc2_dat7  
mmc2_dir_cmd  
MMC/SD input Clock  
I
AE3  
AH5  
K3  
T10  
T9  
MMC/SD Card Data bit 0  
MMC/SD Card Data bit 1  
MMC/SD Card Data bit 2  
MMC/SD Card Data bit 3  
MMC/SD Card Data bit 4  
MMC/SD Card Data bit 5  
MMC/SD Card Data bit 6  
MMC/SD Card Data bit 7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
AH4  
AG4  
U10  
U9  
AF4  
AE4 / AB3  
AH3 / AB4  
AF3 / AA4  
AE3 / AC2  
AF3  
P9 / V10  
P8  
P7  
R7  
Direction control for CMD signal case an external  
transceiver is used  
L3  
mmc2_cmd  
MMC/SD command signal  
IO  
AG5  
R10  
MULTIMEDIA MEMORY CARD (MMC3) / SECURE DIGITAL IO (SDIO3)  
mmc3_clk  
MMC/SD Output Clock  
O
AB1 / AF10  
AC3 / AE10  
AE4 / AE11  
AH3 / AH9  
AF3 / AF13  
AE3 / AE13  
AF11  
R9 / AB2  
R8 / AB3  
V10 / Y3  
AB1  
mmc3_cmd  
mmc3_dat0  
mmc3_dat1  
mmc3_dat2  
mmc3_dat3  
mmc3_dat4  
mmc3_dat5  
mmc3_dat6  
mmc3_dat7  
MMC/SD command signal  
MMC/SD Card Data bit 0 / SPI Serial Input  
MMC/SD Card Data bit 1  
MMC/SD Card Data bit 2  
MMC/SD Card Data bit 3  
MMC/SD Card Data bit 4  
MMC/SD Card Data bit 5  
MMC/SD Card Data bit 6  
MMC/SD Card Data bit 7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AE3  
AA3  
AC3  
AG9  
V2  
AF9  
AA4  
AH14  
AD2  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
80  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
2.4.5 Test Interfaces  
Table 2-19. Test Interfaces – ETK Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
etk_ctl  
etk_clk  
etk_d0  
etk_d1  
etk_d2  
etk_d3  
etk_d4  
etk_d5  
etk_d6  
etk_d7  
etk_d8  
etk_d9  
etk_d10  
etk_d11  
etk_d12  
etk_d13  
etk_d14  
etk_d15  
ETK trace ctl  
ETK trace clock  
ETK data 0  
ETK data 1  
ETK data 2  
ETK data 3  
ETK data 4  
ETK data 5  
ETK data 6  
ETK data 7  
ETK data 8  
ETK data 9  
ETK data 10  
ETK data 11  
ETK data 12  
ETK data 13  
ETK data 14  
ETK data 15  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
AE10  
AF10  
AF11  
AG12  
AH12  
AE13  
AE11  
AH9  
AB2  
AB3  
AC3  
AD4  
AD3  
AA3  
Y3  
AB1  
AE3  
AD2  
AA4  
V2  
AF13  
AH14  
AF9  
AG9  
AE7  
AE4  
AF6  
AE6  
AF7  
AF9  
AE9  
AF7  
AG7  
AH7  
AG8  
AH8  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
81  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-20. Test Interfaces – JTAG Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
jtag_ntrst  
jtag_tck  
Test Reset  
Test Clock  
I
AA17  
AA13  
AA12  
AA18  
AA20  
AA19  
AA11  
AA10  
U15  
I
V14  
jtag_rtck  
ARM Clock Emulation  
Test Mode Select  
Test Data Input  
Test Data Output  
Test emulation 0  
Test emulation 1  
O
IO  
I
W13  
V15  
jtag_tms_tmsc  
jtag_tdi  
U16  
jtag_tdo  
O
IO  
IO  
Y13  
jtag_emu0  
jtag_emu1  
Y15  
Y14  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Table 2-21. Test Interfaces – SDTI Signals Description  
SIGNAL  
NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
SUBSYSTEM  
SIGNAL  
MULTIPLEXING(2)  
sdti_clk  
sdti_txd0  
sdti_txd1  
sdti_txd2  
sdti_txd3  
Serial clock dual edge  
O
O
O
O
O
AF7 / AA11 / AG8  
AG7 / AA10 / AA11  
AH7 / AA10  
AG8  
AF6 / Y15 / AF9  
AE6 / Y14 / Y15  
AF7 / Y14  
AF9  
etk_d11 / jtag_emu0 /  
etk_d14  
Serial data out (System Trace  
messages)  
etk_d12 / jtag_emu1 /  
jtag_emu0  
Serial data out (System Trace  
messages)  
etk_d13 / jtag_emu1  
Serial data out (System Trace  
messages)  
etk_d14  
Serial data out (System Trace  
messages)  
AH8  
AE9  
etk_d15  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
(2) The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-3  
Table 2-22. Test Interfaces – HWDBG Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
hw_dbg0  
hw_dbg1  
hw_dbg2  
hw_dbg3  
hw_dbg4  
hw_dbg5  
hw_dbg6  
hw_dbg7  
hw_dbg8  
hw_dbg9  
hw_dbg10  
hw_dbg11  
hw_dbg12  
hw_dbg13  
hw_dbg14  
hw_dbg15  
hw_dbg16  
hw_dbg17  
Debug signal 0  
Debug signal 1  
Debug signal 2  
Debug signal 3  
Debug signal 4  
Debug signal 5  
Debug signal 6  
Debug signal 7  
Debug signal 8  
Debug signal 9  
Debug signal 10  
Debug signal 11  
Debug signal 12  
Debug signal 13  
Debug signal 14  
Debug signal 15  
Debug signal 16  
Debug signal 17  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
A24 / AF10  
A23 / AE10  
C27/ AF11  
C23 / AG12  
B24 / AH12  
C24 / AE13  
D24 / AE11  
A25 / AH9  
B25 / AF13  
C26 / AH14  
B23 / AF9  
D25 / AG9  
D28 / AE7  
D26 / AF7  
E26 / AG7  
F28 / AH7  
F27 / AG8  
G26 / AH8  
C23/AB2  
D23/AB3  
C26/AC3  
B23/AD4  
A24/AD3  
B24/AA3  
D24/Y3  
C24/AB1  
D25/AE3  
E26/AD2  
A23/AA4  
D26/V2  
G25/AE4  
K24/AF6  
G26/AE6  
H25/AF7  
H26/AF9  
J26/AE9  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
82 TERMINAL DESCRIPTION Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
2.4.6 Miscellaneous  
Table 2-23. Miscellaneous – GP Timer Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
gpt8_pwm_evt  
gpt9_pwm_evt  
gpt10_pwm_evt  
gpt11_pwm_evt  
PWM or event for GP  
timer 8  
IO  
IO  
IO  
IO  
N8 / AD25 / V3  
T8 / AB26 / Y2  
R8 / AB25 / Y3  
P8 / AA25 / Y4  
C5 / AD21/ V9  
B4 / W8 / Y24  
C4 / U8 / AA24  
B5 / V8 / AD22  
PWM or event for GP  
timer 9  
PWM or event for GP  
timer 10  
PWM or event for GP  
timer 11  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
Table 2-24. Miscellaneous - Reserved Pins  
BALL BOTTOM  
(CBB Pkg.)  
SIGNAL NAME  
DESCRIPTION  
TYPE  
rsv01  
Reserved pin. Leave unconnected  
NA  
AH20  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
83  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
2.4.7 General-Purpose IOs  
Table 2-25. General-Purpose IOs Signals Description(1)  
SIGNAL NAME  
DESCRIPTION  
TYPE(2)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
V16  
W15  
F3  
gpio_0  
gpio_1  
General-purpose IO 0  
General-purpose IO 1  
General-purpose IO 2  
General-purpose IO 3  
General-purpose IO 4  
General-purpose IO 5  
General-purpose IO 6  
General-purpose IO 7  
General-purpose IO 8  
General-purpose IO 9  
General-purpose IO 10  
General-purpose IO 11  
General-purpose IO 12  
General-purpose IO 13  
General-purpose IO 14  
General-purpose IO 15  
General-purpose IO 16  
General-purpose IO 17  
General-purpose IO 18  
General-purpose IO 19  
General-purpose IO 20  
General-purpose IO 21  
General-purpose IO 22  
General-purpose IO 23  
General-purpose IO 24  
General-purpose IO 25  
General-purpose IO 26  
General-purpose IO 27  
General-purpose IO 28  
General-purpose IO 29  
General-purpose IO 30  
General-purpose IO 31  
General-purpose IO 34  
General-purpose IO 35  
General-purpose IO 36  
General-purpose IO 37  
General-purpose IO 38  
General-purpose IO 39  
General-purpose IO 40  
General-purpose IO 41  
General-purpose IO 42  
General-purpose IO 43  
General-purpose IO 44  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AF26  
AF25  
AH26  
AG26  
AE14  
AF18  
AF19  
AE21  
AF21  
AF22  
AG25  
AA11  
AF10  
AE10  
AF11  
AG12  
AH12  
AE13  
AE11  
AH9  
AF13  
AH14  
AF9  
gpio_2  
gpio_3  
D3  
gpio_4  
C3  
gpio_5  
E3  
gpio_6  
E4  
gpio_7  
G3  
gpio_8  
D4  
gpio_9  
V12  
AE14  
Y15  
AB2  
AB3  
AC3  
AD4  
AD3  
AA3  
Y3  
gpio_10  
gpio_11  
gpio_12  
gpio_13  
gpio_14  
gpio_15  
gpio_16  
gpio_17  
gpio_18  
gpio_19  
gpio_20  
gpio_21  
gpio_22  
gpio_23  
gpio_24  
gpio_25  
gpio_26  
gpio_27  
gpio_28  
gpio_29  
gpio_30  
gpio_31  
gpio_34  
gpio_35  
gpio_36  
gpio_37  
gpio_38  
gpio_39  
gpio_40  
gpio_41  
gpio_42  
gpio_43  
gpio_44  
AB1  
AE3  
AA2  
AA4  
V2  
AG9  
AE7  
AF7  
AE4  
AF6  
AE6  
AF7  
AF9  
AE9  
AD7  
Y14  
J2  
AG7  
AH7  
AG8  
AH8  
AF24  
AA10  
N4  
M4  
H1  
L4  
H2  
K4  
G2  
T3  
F1  
R3  
F2  
N3  
E1  
M3  
E2  
L3  
D1  
K3  
D2  
H2  
V1  
(1) NA in table stands for Not Applicable.  
(2) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
84  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-25. General-Purpose IOs Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(2)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
gpio_45  
gpio_46  
gpio_47  
gpio_48  
gpio_49  
gpio_50  
gpio_51  
gpio_52  
gpio_53  
gpio_54  
gpio_55  
gpio_56  
gpio_57  
gpio_58  
gpio_59  
gpio_60  
gpio_61  
gpio_62  
gpio_63  
gpio_64  
gpio_65  
gpio_66  
gpio_67  
gpio_68  
gpio_69  
gpio_70  
gpio_71  
gpio_72  
gpio_73  
gpio_74  
gpio_75  
gpio_76  
gpio_77  
gpio_78  
gpio_79  
gpio_80  
gpio_81  
gpio_82  
gpio_83  
gpio_84  
gpio_85  
gpio_86  
gpio_87  
gpio_88  
gpio_89  
gpio_90  
General-purpose IO 45  
General-purpose IO 46  
General-purpose IO 47  
General-purpose IO 48  
General-purpose IO 49  
General-purpose IO 50  
General-purpose IO 51  
General-purpose IO 52  
General-purpose IO 53  
General-purpose IO 54  
General-purpose IO 55  
General-purpose IO 56  
General-purpose IO 57  
General-purpose IO 58  
General-purpose IO 59  
General-purpose IO 60  
General-purpose IO 61  
General-purpose IO 62  
General-purpose IO 63  
General-purpose IO 64  
General-purpose IO 65  
General-purpose IO 66  
General-purpose IO 67  
General-purpose IO 68  
General-purpose IO 69  
General-purpose IO 70  
General-purpose IO 71  
General-purpose IO 72  
General-purpose IO 73  
General-purpose IO 74  
General-purpose IO 75  
General-purpose IO 76  
General-purpose IO 77  
General-purpose IO 78  
General-purpose IO 79  
General-purpose IO 80  
General-purpose IO 81  
General-purpose IO 82  
General-purpose IO 83  
General-purpose IO 84  
General-purpose IO 85  
General-purpose IO 86  
General-purpose IO 87  
General-purpose IO 88  
General-purpose IO 89  
General-purpose IO 90  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
K2  
P1  
Y1  
T1  
R1  
U2  
R2  
U1  
T2  
P1  
W1  
L2  
Y1  
M2  
H3  
AD1  
A3  
V8  
U8  
B6  
T8  
B4  
R8  
C4  
P8  
B5  
N8  
C5  
T4  
N1  
G3  
K2  
U3  
J1  
H1  
AC6  
AC8  
B3  
L8  
K8  
J8  
C6  
D28  
D26  
D27  
E27  
AG22  
AH22  
AG23  
AH23  
AG24  
AH24  
E26  
F28  
F27  
G26  
AD28  
AD27  
G25  
K24  
M25  
F26  
AE21  
AE22  
AE23  
AE24  
AD23  
AD24  
G26  
H25  
H26  
J26  
AC26  
AD26  
AA25  
Y25  
AA26  
AB26  
L25  
L26  
M24  
M26  
F25  
G25  
H27  
H26  
H25  
E28  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
85  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-25. General-Purpose IOs Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(2)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
gpio_91  
gpio_92  
General-purpose IO 91  
General-purpose IO 92  
General-purpose IO 93  
General-purpose IO 94  
General-purpose IO 95  
General-purpose IO 96  
General-purpose IO 97  
General-purpose IO 98  
General-purpose IO 99  
General-purpose IO 100  
General-purpose IO 101  
General-purpose IO 102  
General-purpose IO 103  
General-purpose IO 104  
General-purpose IO 105  
General-purpose IO 106  
General-purpose IO 107  
General-purpose IO 108  
General-purpose IO 109  
General-purpose IO 110  
General-purpose IO 111  
General-purpose IO 112  
General-purpose IO 113  
General-purpose IO 114  
General-purpose IO 115  
General-purpose IO 116  
General-purpose IO 117  
General-purpose IO 118  
General-purpose IO 119  
General-purpose IO 120  
General-purpose IO 121  
General-purpose IO 122  
General-purpose IO 123  
General-purpose IO 124  
General-purpose IO 125  
General-purpose IO 126  
General-purpose IO 127  
General-purpose IO 128  
General-purpose IO 129  
General-purpose IO 130  
General-purpose IO 131  
General-purpose IO 132  
General-purpose IO 133  
General-purpose IO 134  
General-purpose IO 135  
General-purpose IO 136  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
J26  
AC27  
AC28  
A24  
N24  
AC25  
AB25  
C23  
gpio_93  
gpio_94  
gpio_95  
A23  
D23  
gpio_96  
C25  
C25  
gpio_97  
C27  
C26  
gpio_98  
C23  
B23  
gpio_99  
AG17  
AH17  
B24  
AE16  
AE15  
A24  
gpio_100  
gpio_101  
gpio_102  
gpio_103  
gpio_104  
gpio_105  
gpio_106  
gpio_107  
gpio_108  
gpio_109  
gpio_110  
gpio_111  
gpio_112  
gpio_113  
gpio_114  
gpio_115  
gpio_116  
gpio_117  
gpio_118  
gpio_119  
gpio_120  
gpio_121  
gpio_122  
gpio_123  
gpio_124  
gpio_125  
gpio_126  
gpio_127  
gpio_128  
gpio_129  
gpio_130  
gpio_131  
gpio_132  
gpio_133  
gpio_134  
gpio_135  
gpio_136  
I
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
C24  
B24  
D24  
D24  
A25  
C24  
K28  
P25  
L28  
P26  
K27  
N25  
L27  
N26  
B25  
D25  
C26  
E26  
B26  
E25  
AG19  
AH19  
AG18  
AH18  
P21  
AD17  
AD16  
AE18  
AE17  
U18  
I
I
I
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
N21  
R18  
R21  
T18  
M21  
R19  
N28 / T28  
M27 / T25  
N27 / R28  
N26  
W19 / N19  
U20 / L18  
V19 / M19  
M18  
N25 / T26  
P28 / T27  
D25 / P27  
P26  
W18 / K18  
V20 / N20  
M20 / D26  
P17  
R27  
P18  
R25  
P19  
AE2 / U28  
AG5 / U27  
AH5  
Y20 / W10  
V18 / R10  
T10  
AH4  
T9  
AG4  
U10  
AF4  
U9  
AE4  
V10  
86  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 2-25. General-Purpose IOs Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(2)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
gpio_137  
gpio_138  
gpio_139  
gpio_140  
gpio_141  
gpio_142  
gpio_143  
gpio_144  
gpio_145  
gpio_146  
gpio_147  
gpio_148  
gpio_149  
gpio_150  
gpio_151  
gpio_152  
gpio_153  
gpio_154  
gpio_155  
gpio_156  
gpio_157  
gpio_158  
gpio_159  
gpio_160  
gpio_161  
gpio_162  
gpio_163  
gpio_164  
gpio_165  
gpio_166  
gpio_167  
gpio_168  
gpio_169  
gpio_170  
gpio_171  
gpio_172  
gpio_173  
gpio_174  
gpio_175  
gpio_176  
gpio_177  
gpio_178  
gpio_179  
gpio_180  
gpio_181  
gpio_182  
General-purpose IO 137  
General-purpose IO 138  
General-purpose IO 139  
General-purpose IO 140  
General-purpose IO 141  
General-purpose IO 142  
General-purpose IO 143  
General-purpose IO 144  
General-purpose IO 145  
General-purpose IO 146  
General-purpose IO 147  
General-purpose IO 148  
General-purpose IO 149  
General-purpose IO 150  
General-purpose IO 151  
General-purpose IO 152  
General-purpose IO 153  
General-purpose IO 154  
General-purpose IO 155  
General-purpose IO 156  
General-purpose IO 157  
General-purpose IO 158  
General-purpose IO 159  
General-purpose IO 160  
General-purpose IO 161  
General-purpose IO 162  
General-purpose IO 163  
General-purpose IO 164  
General-purpose IO 165  
General-purpose IO 166  
General-purpose IO 167  
General-purpose IO 168  
General-purpose IO 169  
General-purpose IO 170  
General-purpose IO 171  
General-purpose IO 172  
General-purpose IO 173  
General-purpose IO 174  
General-purpose IO 175  
General-purpose IO 176  
General-purpose IO 177  
General-purpose IO 178  
General-purpose IO 179  
General-purpose IO 180  
General-purpose IO 181  
General-purpose IO 182  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AH3  
AF3  
AE3  
AF6  
AE6  
AF5  
AE5  
AB26  
AB25  
AA25  
AD25  
AA8  
AA9  
W8  
-
-
-
-
-
-
-
Y24  
AA24  
AD22  
AD21  
L4  
R2  
-
Y8  
H3  
-
AE1  
AD1  
AD2  
AC1  
Y21  
AA21  
V21  
U21  
T21  
K26  
W21  
H18  
H19  
H20  
H21  
B23  
AF15  
U26  
J25  
-
-
-
U19  
V17  
U17  
T20  
T19  
P20  
T17  
F23  
F24  
H24  
G24  
A23  
C2  
W20  
J23  
P9  
P8  
P7  
R7  
R8  
R9  
T8  
AB3  
AB4  
AA4  
AC2  
AC3  
AB1  
AB2  
AA3  
Y2  
W7  
W8  
U8  
V8  
V9  
Y3  
Y4  
V3  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
87  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-25. General-Purpose IOs Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(2)  
BALL BOTTOM  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
gpio_183  
gpio_184  
gpio_185  
gpio_186  
gpio_188  
gpio_189  
gpio_190  
gpio_191  
General-purpose IO 183  
General-purpose IO 184  
General-purpose IO 185  
General-purpose IO 186  
General-purpose IO 188  
General-purpose IO 189  
General-purpose IO 190  
General-purpose IO 191  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
AE15  
AF14  
AG14  
AE22  
U25  
C1  
AB4  
AC4  
W11  
W17  
Y18  
V28  
V27  
Y19  
V26  
Y17  
88  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
2.4.8 Power Supplies  
Table 2-26. Power Supplies Signals Description(1)  
SIGNAL NAME  
DESCRIPTION  
BALL BOTTOM  
(CBB Pkg.)  
BALL TOP  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
BALL TOP  
(CBC Pkg.)  
vdd_mpu_iva  
ARM/IVA power  
domain  
Y9 / W9 / T9 / R9 /  
M9 / L9 / J9 / Y10 /  
U10 / T10 / R10 /  
N10 / M10 / L10 /  
J10 / Y11 / W11 /  
K11 / J11 / W12 /  
K13 / Y14 / K14 /  
J14 / Y15 / W15 /  
J15  
NA  
H7/ N7/ U7/ V7/ N8/  
G9/ L9/ M9/ W9/ Y9/  
M10/ P10/ K11/ U11/  
V11/ Y11/ G12/ D13/  
U13  
NA  
vdd_core  
Core power domain  
AC4 / J4 / H4 / D8 /  
AE9 / D9 / D15 /  
Y16 / AE18 / Y18 /  
W18 / K18 / J18 /  
AE19 / Y19 / U19 /  
T19 / N19 / M19 /  
J19 / Y20 / W20 /  
V20 / U20 / P20 /  
N20 / K20 / J20 /  
D22 / D23 / AE24 /  
M25 / L25 / E25  
NA  
M7/ T7/ Y8/ G11/ Y12/  
D15/ M17/ G18/ H20/  
R20/ AC21  
NA  
cap_vdd_wkup  
Wakeup/EMU/memor  
y domains, connect  
capacitor  
AA15  
NA  
NA  
NA  
bg_testout(2)  
vdds_dpll_dll  
Used for band gap  
test  
U4  
NA  
NA  
D6  
NA  
NA  
DLL IO power domain  
(1.8 V): internal  
connection to  
K15  
K13  
PLL_VDDS, power  
supply for 3PLL (1.8  
V)  
vpp  
eFuse programmation  
G1  
NA  
NA  
D5  
NA  
NA  
vdda_dac  
Video DAC power  
plane  
V25  
V25  
vssa_dac  
vdds  
Video DAC ground  
plane  
Y26  
NA  
NA  
V24  
NA  
-
IO power plane  
AD3 / AD4 / W4 /  
AF8 / AE8 / AF16 /  
AE16 / AF23 / AE23  
/ F25 / F26 / AG27/  
AE27/ AG20/ H28/  
AG21  
G4/ M4/ T4/ Y4/ L7/  
AC7/ D9/ AE10/ C11/  
J15/ AC15/ A18/ J18/  
AC18/ AD20/ E24/ L24/  
T24/ W24/ AC24  
vdds_mem  
Memory IO power  
plane  
U1 / J1 / F1 / J2 / F2 AC5 / P1 / H1 / F23  
/ R4 / B5 / A5 / AH6 / E1 / C23 / A4 / A7 /  
/ B8 / A8 / B12 / A12  
/ D16 / C16 / B18 /  
A18 / B22 / A22 /  
G28 / C28  
A10 / A15 / A18  
vdds_dpll_per  
vdds_wkup_bg  
Peripheral DPLLs  
power rail  
AA16  
NA  
NA  
U14  
NA  
NA  
For wakeup LDO and  
VDDA (2 LDOs  
AA14  
W14  
SRAM and BG)  
(1) NA = Not Applicable.  
(2) For proper device operation, this pin must be left unconnected.  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
89  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-26. Power Supplies Signals Description (continued)  
SIGNAL NAME  
vss  
DESCRIPTION  
BALL BOTTOM  
(CBB Pkg.)  
BALL TOP  
(CBB Pkg.)  
BALL BOTTOM  
(CBC Pkg.)  
BALL TOP  
(CBC Pkg.)  
Ground  
AG2 / U2 / B2 / AG3  
/ W3 / P3 / J3 / E3 / AB5 / AB14 / AB20 / H4/ N4/ R4/ W4/ AB5/  
A3 / P4 / E4 / AG6 / P2 / F22 / E2 / C22 /  
H2 / B18 / AC20 /  
G1/ K1/ R1/ W1/ B2/  
C1/ F1/ H2/ M2/ R2/  
Y6/AA7/ Y11/ AA16/  
W20/P20/ L21/ H20/  
F20/ B14/A13/ A7  
A6/ D7/ Y7/AE7/ A8/  
G8/ D10/ G10/ L10/  
N10/ Y10/ AC10/ C12/  
D12/A13/ D14/ AD14/  
K15/ Y16/ L17/ N17/  
R17/ D18/ D20/G20/  
E22/ AB22/ G23/ L23/  
T23/ W23/ AF23/ B25/  
K25/U25/ AD25  
D7 / C7 / V9 / U9 /  
P9 / N9 / K9 / W10 /  
V10 / P10 / K10 /  
D10 / C10 / AF12 /  
AE12 / Y12 / K12 /  
J12 / Y13 / W13 /  
J13 / D13 / C13 /  
W14 / K16 / J16 /  
Y17 / W17 / K17 /  
J17 / W19 / V19 /  
R19 / P19 / L19 /  
K19 / D19 / C19 /  
AF20 / AE20 / T20 /  
R20 / M20 / L20 /  
D21 / C22 / AC25 /  
Y25 / W25 / AC26 /  
R26 / L26 / A26 /  
G27 / B27/ AA26/  
M28/ AG16/ AH21=  
B4 / B7 / B10 / B15  
vdds_sram  
SRAM LDOs  
W16  
K25  
NA  
NA  
U12  
N23  
NA  
NA  
vdds_mmc1  
MMC IO power  
domain for CMD,  
CLK, and DAT(0..3)  
pbias_mmc1(3)  
vdds_mmc1a  
MMC1 Pbias  
NA  
NA  
NA  
N18  
P23  
NA  
NA  
Power supply for  
MMC DAT [4..7]  
P25  
(4)  
pbias_mmc1a  
MMC1a Pbias  
NA  
V4  
NA  
NA  
K23  
N9(2)  
NA  
NA  
cap_vdd_sram_mp SRAM LDO  
u_iva  
capacitance for  
VDDRAM1  
cap_vdd_sram_cor SRAM LDO  
L21  
NA  
K20(2)  
NA  
e
capacitance for  
VDDRAM2  
pop_ddr_vdd_ft  
POPed SDRAM  
power  
A15 / J28 / M1 /  
AF28 / AE28  
AA23 / Y23 / K1 /  
H23 / A12  
L1/AF13/AF17/AF18/A J1/AA11/Y14/AA17/B1  
20/U26/K26  
6/P21/H21  
pop_flash_vpp_ft  
pop_flash_vdd_ft  
POPed flash vpp  
AH13  
AC11  
AF13  
AA11  
POPed flash power  
N1 / AA1 / AF1 /  
AH10 / AH15  
AC8 / AC13 / AA1 / AF16/AF22/T2/Y2/AF8/ AA14/AA19/N2/T2/Y7/  
U1 / L1  
AF5  
AA6  
pop_vss_ft  
POPed devices  
ground  
B15 / J27 / M2 /  
M26 / N2 / AA2 /  
AF2 / AF27 / AG10 /  
AG15  
AB8 / AB13 / AA2 /  
AA22 / U2 / L2 / K2 /  
K22 / H22 / B12  
AF15/AF21/AF24  
AA13/Y17/Y19  
(3) The recommended configuration is pbias_mmc1 = vdds_mmc1.  
(4) The recommended configuration is pbias_mmc1a = vdds_mmc1a  
90  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
2.4.9 System and Miscellaneous Terminals  
Table 2-27. System and Miscellaneous Signals Description  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL  
BOTTOM  
(CBB Pkg.)  
BALL TOP  
(CBB Pkg.)  
BALL  
BOTTOM  
(CBC Pkg.)  
BALL TOP  
(CBC Pkg.)  
sys_32k  
32-kHz clock input  
I
I
AE25  
AE17  
NA  
NA  
AE20  
AF19  
-
-
sys_xtalin  
Main input clock. Oscillator input or LVCMOS at  
19.2, 13, or 12 MHz.  
sys_xtalout  
sys_altclk  
Output of oscillator  
O
I
AF17  
J25  
NA  
NA  
AF20  
J23  
-
-
Alternate clock source selectable for GPTIMERs  
(maximum 54 MHz), USB (48 MHz), or  
NTSC/PAL (54 MHz)  
sys_clkreq  
Request from OMAP3525/30 device for system  
clock (open source type)  
IO  
AF25  
NA  
W15  
-
sys_clkout1  
sys_clkout2  
sys_boot0  
Configurable output clock1  
Configurable output clock2  
Boot configuration mode bit 0  
Boot configuration mode bit 1  
Boot configuration mode bit 2  
Boot configuration mode bit 3  
Boot configuration mode bit 4  
Boot configuration mode bit 5  
Boot configuration mode bit 6  
Power On Reset  
O
AG25  
AE22  
AH26  
AG26  
AE14  
AF18  
AF19  
AE21  
AF21  
AH25  
AF24  
AF26  
AD26  
AE26  
AF22  
U8  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
AE14  
W11  
F3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
O
I
sys_boot1  
I
D3  
sys_boot2  
I
C3  
sys_boot3  
I
E3  
sys_boot4  
I
E4  
sys_boot5  
I
G3  
sys_boot6  
I
I
D4  
sys_nrespwron  
sys_nreswarm  
sys_nirq  
V13  
AD7  
V16  
AD15  
W16  
V12  
B6  
Warm Boot Reset (open drain output)  
External FIQ input  
IOD  
I
sys_nvmode1  
sys_nvmode2  
sys_off_mode  
sys_ndmareq0  
Indicates the voltage mode  
Indicates the voltage mode  
Indicates the voltage mode  
O
O
O
I
External DMA request 0 (system expansion).  
Level (active low) or edge (falling) selectable.  
sys_ndmareq1  
sys_ndmareq2  
sys_ndmareq3  
External DMA request 1 (system expansion).  
Level (active low) or edge (falling) selectable.  
I
I
T8 / J8  
L3 / R8  
K3 / P8  
AG9  
NA  
NA  
NA  
NA  
NA  
B4 / C6  
D1 / C4  
D2 / B5  
V2  
-
-
-
-
-
External DMA request 2 (system expansion).  
Level (active low) or edge (falling) selectable.  
External DMA request 3 (system expansion).  
Level (active low) or edge (falling) selectable.  
I
sys_secure_  
indicator  
MSECURE transactions indicator  
O
O
sys_drm_  
msecure  
MSECURE output  
AF9  
AA4  
sys_ipmcsws(2) Reserved  
sys_opmcsws(2) Reserved  
AI  
AO  
O
B1  
NA  
NA  
B1  
A2  
-
-
A1  
pop_int0_ft(3)  
pop_int1_ft(3)  
POP dedicated control signal  
AG11  
AH11  
AH16  
AB9  
AC9  
AC14  
AF10  
AE2  
AF14  
Y9  
POP dedicated control signal  
POP dedicated control signal  
O
W2  
AA12  
pop_tq_temp_  
sense_ft(3)  
NA  
(1) Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)  
(2) sys_ipmcsws and sys_opmcsws pins must be left unconnected.  
(3) Top feed-through pop_int0_ft, pop_int1_ft are routed as feed-through for loopback to a GPIO to detect the POP OneNAND die event  
and respond accordingly. Top pop_tq_temp_sense_ft is routed as feed-through for loopback to a GPIO to monitor the temperature of the  
POP DDR. Top pop_reset_rp_ft is typically looped back to sys_nreswarm to reset the flash memories when a warm reset event occurs  
on the processor side.  
Submit Documentation Feedback  
TERMINAL DESCRIPTION  
91  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 2-27. System and Miscellaneous Signals Description (continued)  
SIGNAL NAME  
DESCRIPTION  
TYPE(1)  
BALL  
BOTTOM  
(CBB Pkg.)  
BALL TOP  
(CBB Pkg.)  
BALL  
BOTTOM  
(CBC Pkg.)  
BALL TOP  
(CBC Pkg.)  
pop_reset_rp_ft( POP dedicated control signal  
NA  
AG13  
AB11  
-
AA5  
3)  
92  
TERMINAL DESCRIPTION  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
3 ELECTRICAL CHARACTERISTICS  
3.1 Power Domains  
The OMAP3525 and OMAP3530 devices integrate enhanced features that dynamically adapt energy  
consumption according to application needs and performance requirements.  
The OMAP3525 and OMAP3530 devices includes an enhanced power-management scheme based on:  
Nine independent functional voltage domains on chip partitioning  
Multiple voltage domains  
Voltage scaling support  
Enhanced memory retention support  
Optimized device off mode  
Centralized management of power, reset, and clock  
The external power supplies of OMAP3525 and OMAP3530 are:  
vdd_mpu_iva for the ARM and IVA2.2 processors  
vdd_core for macros  
vdds for IO macros  
vdds_mem for memory macros  
vdds_sram for SRAM LDOs  
vdds_dpll_dll for DLL IO  
vdds_dpll_per for peripheral DPLLs  
vdds_wkup_bg for wakeup LDO and VDDA (2 LDOs: SRAM and BandGap)  
vdda_dac for video DAC  
vdds_mmc1 for MMC IO  
vpp for eFuse  
The supply voltages are detailed in Table 3-3.  
Figure 3-1 illustrates the power domains:  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
93  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
vdd_mpu_iva  
vdds_dpll_dll  
DLL/DCDL  
BandGap  
vdds_wkup_bg  
LDO3  
1.0 V/1.2 V  
LDO  
in 1.8 V  
out 1.2 V  
IVA2  
SRAM1  
ARRAY  
WKUP  
cap_vdd_wkup  
EMU  
BCK  
DPLL_IVA  
MEM  
cap_vdd_sram_mpu_iva  
vdds_mem  
SRAM 1 LDO  
0 V/1.0 V/1.2 V  
LDO  
in 1.8 V  
out 1.2 V  
MPU  
DPLL_MPU  
vdds  
vdd_mpu_iva1 domain  
vdds_sram  
vpp  
eFUSE  
LDO  
in 1.8 V  
out 1.2 V  
SRAM2  
ARRAY  
SRAM 2 LDO  
0 V/1.0 V/1.2 V  
vdd_core  
Core  
cap_vdd_sram_core  
DPLL_CORE  
vdds_mmc1  
MMC1  
vdds_mmc1a  
LDO  
in 1.8 V  
out 1.2 V  
LDO  
tv_ref  
(for capacitor)  
HSDIVIDER  
Periph1  
DPLL4  
vdds_dpll_per  
vdda_dac  
LDO  
HSDIVIDER  
Dual Video DAC  
LDO  
in 1.8 V  
out 1.2 V  
Periph2  
DPLL5  
vdd_core domain  
vss  
OMAP Device  
vssa_dac  
030-003  
Figure 3-1. OMAP3525/30 Power Domains  
This power domain segmentation switches off (or places in retention state) domains that are unused while  
keeping others active. This implementation is based on internal switches that independently control each  
power domain.  
A power domain regular logic is attached to one of the device VDD supplies through a primary domain  
switch. When the primary switch is open, most of the logic supply is off, resulting in a low-leakage state of  
the domain. Embedded switches are implemented for all power domains except the wake-up domain. This  
allows the domain to be powered off, if not being used, to give maximum power savings. For more  
information, see the PRCM chapter of the OMAP35x Technical Reference Manual (TRM) [literature  
number SPRUFA5].  
All domain output signals at the interface between power domains are connected through isolation latch  
cells. These cells ensure a proper electrical isolation between the domains and an appropriate interface  
state at the domain boundaries.  
94  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
3.2 Absolute Maximum Ratings  
The following table specifies the absolute maximum ratings over the operating junction temperature range  
of OMAP commercial and extended temperature devices. Stresses beyond those listed under absolute  
maximum ratings may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under  
recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for  
extended periods may affect device reliability.  
Notes:  
Logic functions and parameter values are not assured out of the range specified in the recommended  
operating conditions.  
The OMAP3525 and OMAP3530 devices adhere to EIA/JESD22–A114, Electrostatic Discharge (ESD)  
Sensitivity Testing Human Body Model (HBM). Minimum pass level for HBM is ±2 kV.  
Table 3-1. Absolute Maximum Ratings Over Operating Junction Temperature Range  
PARAMETER  
MIN  
MAX  
UNIT  
vdd_mpu_iva  
vdd_core  
Supply voltage range for core macros  
–0.5  
1.6  
V
vdds  
vdds_mem  
Second supply voltage range for 1.8-V I/O macros  
–0.5  
2.25  
V
V
vdds_mmc1  
Supply voltage range for MMC1 CMD, CLK and  
DAT[3:0] and for memory stick I/Os  
1.8-V mode  
3.0-V mode  
1.8-V mode  
3.0-V mode  
–0.5  
-0.5  
–0.5  
-0.5  
–0.5  
2.45  
3.50  
2.45  
3.50  
2.10  
vdds_vdds_mm Second supply voltage range for =MMC1 DAT[7:4]  
c1a  
V
vdds_dpll_dll  
vdds_dpll_per  
Supply voltage for DLL DPLL  
Supply voltage for Per DPLL  
V
V
vdds_sram  
Supply voltage for SRAM LDOs  
–0.5  
2.25  
vdds_wkup_bg Supply voltage for wakeup LDO and VDDA (2 LDOs SRAM and BG)  
VPAD  
Voltage range MMC1, MS (Balls N28, M27, N27,  
Supply voltage range  
for 1.8-V IOs  
–0.54(1)  
–0.45(2)  
–0.63(1)  
2.34(1)  
3.45(2)  
2.73(1)  
at PAD  
N26, N25, P28)  
MMC1(Balls P27, P26, R27, R25)  
Supply voltage range  
for 3.0-V IOs  
I2C1, I2C2, I2C3, I2C4 (Balls K21, J21, AF15, AE15, AF14,  
AG14, AD26, AE26)  
Crystal (xtalin/xtalout) (Balls AE17, AF17)  
Other balls  
–0.5  
–0.5  
–0.5  
2.71  
vddsx(3) + 0.5  
2.43  
vdda_dac  
VESD  
Supply voltage range for analog macros  
V
V
ESD stress  
voltage(4)  
HBM (human body model)(5)  
CDM (charged device model)(6)  
2000  
500  
IIOI  
Current-pulse injection on each I/O pin(7)  
Clamp current for an input or output  
Storage temperature range(8)  
200  
mA  
mA  
°C  
Iclamp  
Tstg  
–20  
–65  
20  
150  
(1) For a maximum time of 30% time period.  
(2) For a maximum time of 15% time period.  
(3) ) Depending on ball, vddsx can be vdds_mem or vdds.  
(4) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.  
(5) JEDEC JESD22–A114 D with the following exception-no connect pins are not stressed. 2000V Human Body Model (HBM)  
(6) JEDEC JESD22–C101C with the following exception-split out pin groupings to eliminate cumulative stress effect  
(7) Each device is tested with I/O pin injection of 200 mA with a stress voltage of 1.5 times maximum vdd at room temperature.  
(8) These temperatures extreme do not simulate actual operating conditions but exaggerate any faults that might exist.  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
95  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
This section includes the maximum power consumption for each power domain (core, IVA2, etc.).  
Table 3-2 summarizes the power consumption at the ball level.  
Table 3-2. Estimated Maximum Power Consumption At Ball Level  
PARAMETER  
MAX  
MAX  
UNIT  
( T = 90°C)  
( T = 105°C)  
Signal  
Description=  
vdd_mpu_iva  
Processors  
OMAP3525/30 (SmartReflex™ Enabled)  
1137  
1384  
1209  
1520  
mA  
mA  
OMAP35=25/30 (SmartReflex™  
Disabled)  
vdd_core  
vdd_core  
Core  
OMAP3530 (SmartReflex™ Enabled)  
OMAP3530 (SmartReflex™ Disabled)  
OMAP3525 (SmartReflex™ Enabled)  
OMAP3525(SmartReflex™ Disabled)  
OMAP3515 (SmartReflex™ Enabled)  
OMAP3515 (SmartReflex™ Disabled)  
OMAP3503 (SmartReflex™ Enabled)  
OMAP3503(SmartReflex™ Disabled)  
433  
509  
328  
378  
433  
509  
328  
378  
65  
490  
599  
382  
485  
490  
599  
382  
485  
65  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Core  
vdda_dac  
Video DAC  
vdss_dpll_dll  
vdds_dpll_per  
vdds_sram  
vdds_wkup_bg  
vdds_mem  
vdds  
DLL + DPLL MPU, DSP, and core  
DPLL peripheral 1 and peripheral 2  
Processors and core LDO (LDO1 and LDO2)  
Bandgap, wakeup + LDO, EMU off  
Standard I/Os (SDRC+GPMC)  
Standard I/Os (all excluding SDRC and GPMC)  
MMC I/O(1)  
25  
25  
15  
15  
41  
41  
6
6
37  
37  
63  
63  
mA  
mA  
mA  
mA  
vdds_mmc1  
vdds_mmc1a  
vpp  
20  
20  
Power supply for MMC IO [DAT4 – DAT7]  
eFuse  
2
2
50  
50  
(1) MMC card and I/O card are not included.  
96  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
3.3 Recommended Operating Conditions  
All OMAP3525 and OMAP3530 modules are used under the operating conditions contained in Table 3-3.  
Note:  
To avoid significant device degradation for commercial temperature OMAP3530/OMAP3525 devices  
(–40°C TJ 90°C), the device power-on hours (POH) must be limited to one of the following:  
100K total POH when operating across all OPPs and keeping the time spent at OPP5 to less than 23K  
POH.  
50K total POH when operating exclusively at OPP5.  
44K total POH with no restrictions to the proportion of these POH at operating points OPP1 - OPP5.  
Note: Logic functions and parameter values are not assured out of the range specified in the  
recommended operating conditions.  
Table 3-3. Recommended Operating Conditions  
PARAMETER  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
VDD1  
OMAP processor logic supply  
OPP5: Overdrive  
VDD1NOM  
-
1.35  
VDD1NOM  
+
V
(vdd_mpu_iva),  
SmartReflex  
Disabled  
(0.05*VDD1NOM  
VDD1NOM  
(0.05*VDD1NOM  
VDD1NOM  
(0.05*VDD1NOM  
VDD1NOM  
(0.05*VDD1NOM  
VDD1NOM  
(0.05*VDD1NOM  
VDD2NOM  
(0.05*VDD2NOM  
VDD2NOM  
(0.05*VDD2NOM  
VDD2NOM  
)
)
)
)
)
)
)
)
(0.05*VDD1NOM  
VDD1NOM  
(0.05*VDD1NOM  
VDD1NOM  
(0.05*VDD1NOM  
VDD1NOM  
(0.05*VDD1NOM  
VDD1NOM  
(0.05*VDD1NOM  
VDD2NOM  
(0.05*VDD2NOM  
VDD2NOM  
(0.05*VDD2NOM  
VDD2NOM  
)
)
)
)
)
)
)
)
OPP4: Mid-Overdrive  
OPP3: Nominal  
-
1.27  
1.20  
1.05  
0.975  
1.15  
1.05  
0.975  
1.8  
+
V
V
V
V
V
V
V
-
+
OPP2: Low-Power  
OPP1: Ultra Low-Power  
OPP3: Nominal  
-
+
-
+
VDD2 (vdd_core) OMAP core logic supply(1)  
SmartReflex  
Disabled  
-
+
OPP2: Low-Power  
OPP1: Ultra Low-Power  
-
+
-
+
(0.05*VDD2NOM  
(0.05*VDD2NOM  
vdds  
Supply voltage for I/O macros  
Noise (peak-peak)  
1.71  
1.91  
90  
V
mVpp  
V
vdds_mem  
vdds_mmc1  
Supply voltage for memory I/O macros  
Noise (peak-peak)  
1.71  
1.8  
1.89  
90  
mVpp  
V
Supply voltage range for MMC1  
CMD, CLK and DAT[3:0] and for  
memory stick I/Os  
1.8-V mode  
3.0-V mode  
1.71  
2.7  
1.8  
3.0  
1.89  
3.3  
V
Noise (peak-peak)  
1.8-V mode  
3.0-V mode  
1.8-V mode  
3.0-V mode  
1.8-V mode  
3.0-V mode  
90  
150  
1.89  
3.3  
mVpp  
V
vdds_mmc1a  
Second supply voltage range for  
SIM I/Os and MMC1 DAT[7:4]  
1.71  
2.7  
1.8  
3.0  
Noise (peak-peak)  
90  
mVpp  
150  
1.89  
50  
vdds_wkup_bg Wakeup LDO  
Noise (peak-peak)  
1.71  
1.71  
1.8  
1.8  
V
mVpp  
V
vdda_dac  
Analog supply voltage for video DAC  
Noise (peak-peak)  
1.89  
30  
For a frequency of 0 to  
100 kHz  
mVpp  
(For a frequency < 100  
kHz, decreases 20dB /  
sec)  
(1) Core logic includes interconnect, graphics processor, and peripherals.  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
97  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 3-3. Recommended Operating Conditions (continued)  
PARAMETER  
DESCRIPTION  
MIN  
NOM  
MAX  
1.89  
50  
UNIT  
V
vdds_sram  
SRAM LDOs  
1.71  
1.8  
Noise (peak-peak)  
mVpp  
V
vdds_dpll_per  
vdds_dpll_dll  
vdds_csi2  
vdds_csib  
vdds_sdi  
Peripherals DPLLs power supply  
Noise (peak-peak)  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.89  
36  
mVpp  
V
Supply voltage for DPLLs I/Os  
Noise (peak-peak)  
1.89  
30  
mVpp  
V
VDDS for serial camera interface  
Noise (peak-peak)  
1.89  
25  
mVpp  
V
VDDS for serial camera interface  
Noise (peak-peak) for a frequency from dc to 10 MHz  
Dedicated VDDS for SDI IO cell  
Noise (peak-peak)  
1.89  
20  
mVpp  
V
1.89  
20  
mVpp  
V
vdds_dsi  
1.8-V analog supply pad for the module  
1.89  
50  
Noise (peak-peak)  
For a frequency from 0  
mVpp  
to 10 MHz  
For any frequency > 400  
MHz  
2.5  
vpp(2)  
vss  
eFuse programming  
Ground  
V
V
0
0
0
0
-
0
0
vssa_dac  
TJ  
Dedicated ground for DAC  
Operating junction temperature(3)  
V
-40  
90  
°C  
(2) It is recommended not to connect this pin. It is just used for eFuse programming on package unit.  
(3) For proper device operation, Tj must be within the specified range.  
98  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
3.4 DC Electrical Characteristics  
Table 3-4 summarizes the DC electrical characteristics.  
Table 3-4. DC Electrical Characteristics  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
LVCMOS Pin Buffers - CBB: N28, M27, N27, N26, N25, P28,P27, P26, R27, R25/ CBC: N19, L18, M19, M18, K18, N20, M20, P17, P18,  
P19  
VIH  
High-level input voltage  
vdds(1) = 1.8 V  
vdds(1) = 3.0 V  
0.65 × vdds(1)  
vdds + 0.3  
vdds + 0.3  
V
0.625 ×  
vdds(1)  
VIL  
VOH  
VOL  
Low-level input voltage  
vdds(1) = 1.8 V  
vdds(1) = 3.0 V  
vdds(1) = 1.8 V  
vdds(1) = 3.0 V  
vdds(1) = 1.8 V  
vdds(1) = 3.0 V  
–0.3  
–0.3  
vdds(1) – 0.2  
0.75 × vdds(1)  
0.35 × vdds  
0.25 × vdds  
V
V
V
High-level output voltage(2)  
Low-level output voltage(2)  
0.2  
0.125 ×  
vdds(1)  
tT  
Input transition time (rise time, tR or fall time, Normal Mode  
10  
3
ns  
tF evaluated between 10% and 90% at PAD)  
High-Speed  
Mode  
LVDS/CMOS Pin Buffers - CBB: AG19, AH19, AG18, AH18, AG17, AH17/ CBC: AE16, AE15, AD17, AE18, AD16, AE17  
Low-Power Receiver (LP-RX)  
VIL  
VIH  
Low-level input threshold  
High-level input threshold  
Input hysteresis  
500  
300  
mV  
mV  
mV  
800  
25  
VHYS  
Ultralow-Power Receiver (ULP-RX)  
VIL-ULPM Low-level input threshold, ULPM  
mV  
mV  
VIH  
High-level input threshold  
880  
High-Speed Receiver (HS-RX)  
70  
VIDTH  
VIDTL  
Differential input high threshold  
Differential input low threshold  
Maximum differential input voltage  
Single-ended input low voltage  
Single-ended input high voltage  
mV  
mV  
mV  
mV  
mV  
mV  
–70  
270  
VIDMAX  
VILHS  
–40  
70  
VIHHS  
460  
330  
VCMRXDC Common-mode voltage  
LVDS/CMOS Pin Buffers - CBB: K28, L28, K27, L27/ CBC: P25, P26, N25, N26  
VCM  
Vos  
Vid  
tT  
Input common mode voltage range  
Receiver Input dc offset  
600  
–20  
70  
900  
1200  
20  
mV  
mV  
mV(3)  
Receiver input differential amplitude  
100  
200  
533  
Input transition time (rise time, tR or fall time, tF evaluated  
between 10% and 90% at PAD)  
267  
ps  
LVDS/CMOS Pin Buffers - CBB: AG22, AH22, AG23, AH23, AG24, AH24/ CBC: AE21, AE22, AE23, AE24, AD23, AD24  
High-Speed Transceiver (HS-TX)  
VOHHS  
|VOD  
VCMTX  
HS output high voltage  
360  
270  
250  
mV  
mV  
mV  
|
HS transmit differential voltage  
HS transmit static common mode voltage  
140  
150  
200  
200  
Low-Power Transceiver (LP-TX)  
–50  
VOL  
Thevenin output low level  
50  
mV  
(1) This global value may be overridden on a per interface basis if another value is explicitly defined for that interface (for example, I2C).  
(2) With 100 µA sink / source current at vddsxmin.  
(3) Corresponds to peak-to-peak values: minimum = 140 mVpp; nominal = 200 mVpp; maximum = 400 mVpp  
.
Submit Documentation Feedback ELECTRICAL CHARACTERISTICS  
99  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 3-4. DC Electrical Characteristics (continued)  
PARAMETER  
Thevenin output high level  
MIN  
NOM  
MAX  
UNIT  
VOH  
1.1  
1.2  
1.3  
V
Low-Power Receiver (LP-RX)  
VIL  
VIH  
Low-level input threshold  
High-level input threshold  
Input hysteresis  
550  
300  
mV  
mV  
mV  
880  
25  
VHYST  
Ultralow-Power Receiver (ULP-RX)  
VIL-ULPS Low-level input threshold, ULPM  
VIH High-level input threshold  
mV  
mV  
880  
subLVDS/CMOS Pin Buffers - CBB: AA27, AA28, AB27, AB28, AD27, AD28, AC28, AC27/ CBC: AC26, AD26, AA25, Y25, AA26,  
AB26, AC25, AB25  
Vod  
Vocm  
tT  
Differential voltage range @ RL = 100 Ω  
100  
0.8  
150  
0.9  
200  
1
mV  
V
Common mode voltage range  
Input transition time (Vod rise time, tR or Vod fall time, tF  
evaluated between 20% and 80% at PAD)  
200  
500  
ps  
Standard LVCMOS Pin Buffers  
(4)  
VIH  
High-level input voltage (Standard LVCMOS)  
Low-level input voltage (Standard LVCMOS)  
Hysteresis voltage at an input(5)  
0.65 × vdds  
vdds + 0.3  
V
V
V
V
(4)  
VIL  
- 0.3  
0.35 × vdds  
VHYS  
VOH  
0.1  
High-level output voltage, driver enabled,  
pullup or pulldown disabled  
IO = IOH or  
IO = –2 mA  
vdds – 0.45  
vdds – 0.40  
IO = IOH < |–2|  
mA  
VOL  
Low-level output voltage with , driver enabled, IO = IOL or  
0.45  
V
pullup or pulldown disabled  
IO = 2 mA  
IO = IOL < 2 mA  
0.40  
10(1)  
tT  
Input transition time (rise time, tR or fall time, tF evaluated  
between 10% and 90% at PAD)  
0
ns  
II  
Input current with VI = VI max  
–1  
1
µA  
µA  
IOZ  
Off-state output current for output in high impedance with driver  
only, driver disabled  
–20  
20  
Off-state output current for output in high impedance with  
driver/receiver/pullup only, driver disabled, pullup not inhibited  
–100  
100  
Off-state output current for output in high impedance with  
driver/receiver/pulldown only, driver disabled, pulldown not  
inhibited  
IZ  
Total leakage current through the PAD connection of a  
driver/receiver combination that may include a pullup or pulldown.  
The driver output is disabled and the pullup or pulldown is  
inhibited.  
– 20  
20  
µA  
LVCMOS Open-Drain Pin Buffers Dedicated to I2C IOs - CBB: K21, J21, AF14, AG14, AF15, AE15, AD26, AE26/ CBC: J25, J24, C2,  
C1, AB4, AC4, AD15, W16, A21, C21  
VIH  
VIL  
VOL  
II  
High level input voltage  
0.7 x vdds  
vdds + 0.5  
0.3 x vdds  
0.2 x vdds  
10  
V
V
Low level input voltage  
- 0.5  
0
Low-level output voltage open-drain at 3-mA sink current  
V
Input current at each I/O pin with an input voltage between 0.1 x  
vdds to 0.9 x vdds  
- 10  
µA  
CI  
Capacitance for each I/O pin  
10  
pF  
(4) VIH/VIL (Standard LVCMOS) parameters are applicable for sys_altclk input clocks.  
(5) Vhys is the magnitude of the difference between the positive-going threshold voltage VT+ and the negative-going voltage VT-  
.
100  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 3-4. DC Electrical Characteristics (continued)  
PARAMETER  
MIN  
NOM  
MAX  
250  
250  
40  
UNIT  
TOF  
Output fall time from VIHmin to VILmax with a  
bus capacitance CB from 10 pF to 400 pF  
Fast mode  
20 + 0.1CB  
ns  
Standard mode  
Output fall time with a capacitive load from 10 High-speed mode  
pF to 100 pF at 3-mA sink current  
10  
20  
Output fall time with a capacitive load of 400  
pF at 3-mA sink current  
80  
20  
Output fall time with a capacitive load of 40  
pF (for CBUS compatibility)  
LVCMOS Open-Drain Pin Buffers Dedicated in GPIO mode - CBB: AF15, AE15, AF14, AG14, AD26, AE26 / CBC: C2, C1, AB4, AC4,  
AD15, W16, A21, C21  
VIH  
VIL  
High-level input voltage  
0.7 x vdds  
- 0.5  
vdds + 0.5  
0.3 x vdds  
V
V
V
V
Low-level input voltage  
VOH  
VOL  
High-level output voltage at 4-mA sink current  
Low-level output voltage at 4-mA sink current  
vdds - 0.45  
0.45  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
101  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
3.5 Core Voltage Decoupling  
For module performance, decoupling capacitors are required to suppress the switching noise generated  
by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it is  
close to the device because this minimizes the inductance of the circuit board wiring and interconnects.  
Table 3-5 summarizes the power supplies decoupling characteristics.  
Table 3-5. Core Voltage Decoupling Characteristics  
PARAMETER  
MIN  
50  
TYP  
100  
100  
100  
1.0  
MAX  
120  
UNIT  
nF  
nF  
nF  
µF  
µF  
µF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
Cvdd_mpu_iva(1)  
Cvdd_core(1)  
Cvdds_sram  
50  
120  
Ccap_vdd_sram_mpu_iva  
Ccap_vdd_sram_core  
Ccap_vdd_wkup  
Cvdds_wkup_bg  
Cvdds_dpll_dll  
Cvdds_dpll_per  
Cvdda_dac  
0.7  
0.7  
0.7  
1.3  
1.3  
1.3  
1.0  
1.0  
100  
100  
100  
100  
100  
100  
100  
100  
Cvdds_mmc1  
Cvdds_mmca  
Cvdds  
Cvdds_mem  
(1) 1 capacitor per 2 to 4 balls  
102  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Figure 3-2 illustrates an example of power supply decoupling.  
OMAP Device  
vdds_sram  
Cvdds_sram  
vdds_sram  
vdda_dac  
Cvdda_dac  
vdda_dac  
vssa_dac  
Video DAC  
cap_vdd_sram_mpu_  
iva  
Ccap_vdd_sram_mpu_iva  
Ccap_vdd_sram_core  
SRAM_LDO1  
cap_vdd_sram_core  
vdds_wkup_bg  
SRAM_LDO2  
BG  
vdds_wkup_bg  
Cvdds_wkup_bg  
WKUP_LDO  
vdds_mmc1  
Cvdds_mmc1  
vdds_mmc1  
cap_vdd_wkup  
MMC IOs  
Cvdd_wkup  
DPLL_MPU  
DPLL_IVA  
vdds_dpll_dll  
vdds_dpll_dll  
Cvdds_dpll_dll  
DPLL_CORE  
vdds_dpll_per  
vdds_dpll_per  
DPLL5  
Cvdds_dpll_per  
DPLL4  
Core  
Vdd_core  
vdd_mpu_iva  
Cvdd_mpu_iva  
Vdd_mpu_iva  
vdd_core  
VSS  
MPU  
Cvdd_core  
030-004  
(1) Decoupling capacitors must be placed as closed as possible to the power ball. Choose the ground located closest to the power pin  
for each decoupling capacitor. Place the decoupling capacitor Ci in a group of 1, 2, or 3 balls; the total must be equal to the  
decoupling requirement. In case you interconnect powers, first insert the decoupling capacitor and then interconnect the powers.  
(2) The decoupling capacitor value depends on the board characteristics.  
Figure 3-2. Power Supply Decoupling  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
103  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
3.6 Power-up and Power-down  
This section provides the timing requirements for the OMAP3525 and OMAP3530 hardware signals.  
3.6.1 Power-up Sequence  
The following steps give an example of power-up sequence supported by the OMAP3525 and OMAP3530  
devices.  
1. vdds and vdds_mem are ramped ensuring a level on the IO domain and sys_nrespwron must be low.  
At the same time, vdds_sram and vdds_wkup_bg can also be ramped.  
2. Once vdds_wkup_bg rail is stabilized, vdd_core can be ramped.  
3. Once vdd_core is stabilized, then vdd_mpu_iva can be ramped.  
4. vdds_dpll_dll and vdds_dpll_per rails can be ramped at any time during the above sequence.  
5. sys_nrespwron can be released as soon as the vdds_pll_dll rail is stabilized, and sys_xtalin and  
sys_32k clocks are stabilized.  
6. During the whole sequence above, sys_nreswarm is held low by OMAP3525 and OMAP3530.  
sys_nreswarm is released after the eFuse check has been performed; that is, after sys_nrespwron is  
released.  
7. The other power supplies can then be turned on upon software request.  
Figure 3-3 shows the power-up sequence.  
Notes:  
If an external square clock is provided, it could be started after sys_nrespwron release provided it is  
clean: no glitch, stable frequency, and duty cycle.  
Higher voltage can be used. See the operating condition addendum for values. OPP voltage values  
may change following the silicon characterization result.  
104  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
1.8 V  
vdds_wkup_bg  
1.8 V  
vdds_mem,vdds,  
vdds_sram  
ldo3 (internal)  
(2)  
vdd_core  
vdd_mpu_iva  
vdds_dpll_dll  
vdds_dpll_per  
(2)  
1.8 V  
1.8 V  
sys_32k  
sys_nrespwron  
sys_xtalin  
EFUSE.RSTPWRON(internal)  
sys_nreswarm  
vdds_mmc1,vdds_sim,  
vdda_dac(1), vpp  
030-005  
Figure 3-3. Power-up Sequence  
Submit Documentation Feedback  
ELECTRICAL CHARACTERISTICS  
105  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
3.6.2 Power-down Sequence  
The OMAP3525 and OMAP3530 devices proceed with the power-down sequence shown in Figure 3-4.  
sys_nrespwron  
vdds_mmc1,  
vdda_dac,  
vdds_wkup_bg  
vdd_mpu_iva  
vdd_core  
vdds_mem, vdds,  
vdds_sram  
vdds_dpll_dll,  
vdds_dpll_per  
sys_32kin  
sys.clk  
030-006  
Figure 3-4. Power-down Sequence  
106  
ELECTRICAL CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
4 CLOCK SPECIFICATIONS  
The OMAP3525 and OMAP3530 devices have three external input clocks, a low frequency (sys_32k), a  
high frequency (sys_xtalin), and an optional (sys_altclk). The OMAP3525 and OMAP3530 devices haver  
two configurable output clocks, sys_clkout1 and sys_clkout2.  
Figure 4-1 shows the interface to the external clock sources and clock outputs.  
OMAP  
sys_32k  
Power IC  
Alternate Clock Source Selectable (54, 48 MHz or other [up  
to 59 MHz])  
sys_altclk  
To Peripherals (From OSC_CLK: 12, 13,16.8, 19.2, 26, or  
38.4 MHz)  
sys_clkout1  
sys_clkout2  
sys_xtalout  
To Peripherals (From OSC_CLK: 12,13, 16.8, 19.2, 26, or  
38.4 MHz, core_clk [DPLL, up to 332 MHz], DPLL-96 MHz  
or DPLL-54 MHz outputs with a divider of 1, 2, 4, 8, or 16)  
To Quartz (Oscillator output) or Unconnected  
sys_xtalin  
sys_clkreq  
sys_xtalout  
sys_xtalin  
To Quartz (Oscillator input) or Square Clock  
Clock Request. To Square Clock Source or from Peripherals  
sys_xtalout  
Unconnected  
Oscillator  
is Bypassed  
Oscillator  
is Used  
sys_xtalin  
Square  
Clock  
Source  
sys_clkreq  
sys_clkreq  
GPin  
030-007  
Figure 4-1. Clock Interface  
The OMAP3525 and OMAP3530 devices operation requires the following three input clocks:  
The 32-kHz frequency is used for low frequency operation. It supplies the wake-up domain for  
operation in lowest power mode (off mode). This clock is provided through the sys_32k pin.  
The system alternative clock can be used (through the sys_altclk pin) to provide alternative 48 or 54  
MHz or other clock source (up to 59 MHz).  
The system clock input (12, 13, 16.8, 19.2, 26, or 38.4 MHz) is used to generate the main source clock  
of the OMAP3525 and OMAP3530 devices. It supplies the DPLLs as well as several OMAP modules.  
The system clock input can be connected to either:  
A crystal oscillator clock managed by sys_xtalin and sys_xtalout. In this case, the sys_clkreq is  
used as an input (GPIN).  
A CMOS digital clock through the sys_xtalin pin. In this case, the sys_clkreq is used as an output to  
request the external system clock.  
The OMAP3525 and OMAP3530 outputs externally two clocks:  
sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can be  
controlled by software or externally using sys_clkreq control. When the device is in the off state, the  
sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the  
device. The off state polarity of sys_clkout1 is programmable.  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
107  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
sys_clkout2 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz), core_clk (core DPLL  
output), 96 MHz or 54 MHz. It can be divided by 2, 4, 8, or 16 and its off state polarity is  
programmable. This output is active only when the core power domain is active.  
For more information on the OMAP3525 and OMAP3530 Applications Processors clocking structure, see  
the Power, Reset, and Clock management (PRCM) chapter of the OMAP35x Applications Processor TRM  
(literature number SPRUFA5).  
4.1 Input Clock Specifications  
The clock system accepts three input clock sources:  
32-kHz digital CMOS clock  
Crystal oscillator clock or CMOS digital clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz)  
Alternate clock (48 or 54 MHz, or other up to 59 MHz)  
4.1.1 Clock Source Requirements  
Table 4-1 illustrates the requirements to supply a clock to the OMAP3525 and OMAP3530 devices.  
Table 4-1. Clock Source Requirements  
PAD  
CLOCK FREQUENCY  
STABILITY  
± 25 ppm  
± 50 ppm  
± 50 ppm  
DUTY CYCLE  
na  
JITTER  
na  
TRANSITION  
na  
sys_xtalout  
sys_xtalin  
12, 13, 16.8, or 19.2 MHz  
Crystal  
12, 13, 16.8, 19.2, 26, or 38.4 MHz Square  
48,54 or up to 59 MHz  
45% to 55%  
40% to 60%  
< 1%  
< 1%  
< 3.6 ns  
< 5 ns  
sys_altclk  
4.1.2 External Crystal Description  
To supply a 12-, 13-, 16.8-, or 19.2-MHz clock to the OMAP3525 and OMAP3530, an external crystal can  
be connected to the sys_xtalin and sys_xtalout pins. Figure 4-2 describes the crystal implementation.  
OMAP Device  
sys_xtalin  
sys_xtalout  
Optional Rbias  
Optional Rd  
Cf2  
Cf1  
Crystal  
030-008  
Figure 4-2. Crystal Implementation(1)(2)(3)(4)  
(1) On the PCB, the oscillator components (crystal, foot capacitors, optional Rbias and Rd) must be located close to the package. All these  
components must be routed first with the lowest possible number of board vias.  
(2) An optional resistor Rd can be added in series with the crystal to debug or filter the harmonics; a footprint must be reserved on the PCB  
for use with 10-MHz crystals and feature low-drive levels.  
(3) A 120-kinternal bias resistor Rbias is used. The feedback resistor Rbias provides negative feedback to the oscillator to put it in the  
108  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
linear operating region; thus oscillation begins when power is applied.  
(4) Cf1 and Cf2 represent the total capacitance of the PCB and components excluding the power IC and crystal. Their values in fact depend  
on the crystal datasheet. In the datasheet of the crystal, the frequency is specified at a specific load capacitor value which is the  
equivalent capacitor of the two capacitors Cf1 and Cf2 connected to sys_xtalin and sys_xtalout. The frequency of the oscillations  
depends on the value of the capacitors (10 pF corresponds to a load capacitor of 5 pF for the crystal).  
The crystal must be in the fundamental mode of operation and parallel resonant. Table 4-2 summarizes  
the required electrical constraints.  
Table 4-2. Crystal Electrical Characteristics  
NAME  
DESCRIPTION  
Parallel resonance crystal frequency(1)  
Load capacitance for crystal parallel resonance  
Crystal ESR (12 and 13 MHz)(1)  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
fp  
12, 13, 16.8, or 19.2  
CL  
5
20  
80  
ESR12&13  
ESR16.8&19.2 Crystal ESR (16.8 and 19.2 MHz)(1)  
50  
Co  
Crystal shunt capacitance  
Crystal motional inductance for fp = 12 MHz  
Crystal motional capacitance  
Crystal drive level  
1
5
7
pF  
Lm  
35  
mH  
fF  
Cm  
DL  
Rbias  
100  
0.5  
300  
mW  
kΩ  
Internal bias resistor  
30  
120  
(1) Measured with the load capacitance specified by the crystal manufacturer. This load is defined by the foot capacitances tied in series. If  
CL = 20 pF, then both foot capacitors will be Cf1 = Cf2 = 40 pF. Parasitic capacitance from package and board must also be taken in  
account.  
2
C
0
ESR=R 1+  
m
C
L
When selecting a crystal, the system design must take into account the temperature and aging  
characteristics of a crystal versus the user environment and expected lifetime of the system. Table 4-3  
details the switching characteristics of the oscillator and the input requirements of the 12-, 13-, 16.8-, or  
19.2-MHz input clock.  
Table 4-3. Base Oscillator Switching Characteristics  
NAME  
fp  
tsX  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
ms  
Oscillation frequency  
Start-up time(1)(2)  
12, 13, 16.8, or 19.2  
8
(1) Start-up time defined as time interval between oscillator control signal release and sys_xtalin amplitude at 50% of its final value (vdd and  
vdds supplies ramped and stable). The start-up time can be performed in function of the crystal characteristics. 8-ms minimum only  
when using the internal oscillator; it is programmable after reset for wake-up. At power-on reset, the time is adjustable using the pin  
itself. The reset must be released when the oscillator or clock source is stable. Before the processor boots up and the oscillator is set to  
bypass mode, there is a start-up time when the internal oscillator is in application mode and receives a square wave. The start-up time  
in this case is about 100 µs.  
(2) For fp = 12 or 13 MHz: CL = 13.5 pF and Lm = 35 mH  
For fp = 16.8 or 19.2 MHz: CL = 9 pF and Lm = 15 mH  
4.1.3 Clock Squarer Input Description  
A 1.8-V CMOS clock squarer is another source that can supply a 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz  
clock to the OMAP3525 and OMAP3530. An analog clock squarer function converts a low-amplitude  
sinusoidal clock into a low-jitter digital signal. It can be connected to input pin sys_xtalin (sys_xtalout  
unconnected). Figure 4-3 illustrates the effective connections.  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
109  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
OMAP Device  
Oscillator  
In Bypass Mode  
sys_clkreq  
sys_xtalin  
sys_xtalout  
Clock Squarer Source  
030-010  
Figure 4-3. Clock Squarer Source Connection  
To connect a digital clock source, the oscillator is configured in bypass mode(1). The sys_clkreq(2) pin is an  
OMAP3525 and OMAP3530 output which can be used to switch the clock source on or off.  
1. Pin sys_xtalout is not used in this mode. It must be left unconnected.  
2. Once the system is powered up, the clock squarer source or crystal oscillator source can be applied;  
however, this affects the performance. The input source must be configured after power up to attain  
the desired system requirements.  
Table 4-4 summarizes the electrical constraints required by the clock squarer used in the fundamental  
mode of operation.  
Note: There is an internal pulldown resistor of 5k (max.) on sys_xtalin when the oscillator is disabled.  
Table 4-4. Base Oscillator Electrical Characteristics (in Bypass Mode)  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
ms  
f
Frequency(1)  
Start-up time  
12, 13, 16.8, 19.2, 26, or 38.4  
(2)  
tsX  
IDDQ  
Current consumption on VDDS when sys_xtalin = 0 and in  
power-down mode  
1
µA  
(1) Measured with the load capacitance specified by the manufacturer. Parasitic capacitance from package and board must also be taken in  
account.  
(2) Before the processor boots up and the oscillator is set to bypass mode, there is a start-up time when the internal oscillator is in  
application mode and receives a square wave. The start-up time in this case is about 100 µs.  
Table 4-5 details the input requirements of the 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz input clock.  
Table 4-5. 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz Input Clock Squarer Timing Requirements  
NAME  
OCS0  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
1 / tc(xtalin)  
tw(xtalin)  
tJ(xtalin)  
Frequency, sys_xtalin  
12, 13, 16.8, 19.2, 26, or 38.4  
OCS1  
OCS2  
OCS3  
OCS4  
OCS5  
Pulse duration, sys_xtalin low or high  
Peak-to-peak jitter(1), sys_xtalin  
Rise time, sys_xtalin  
0.45 * tc(xtalin)  
–1%  
0.55 * tc(xtalin)  
1%  
3.6  
3.6  
±25  
tR(xtalin)  
tF(xtalin)  
tJ(xtalin)  
ns  
ns  
Fall time, sys_xtalin  
Frequency stability, sys_xtalin  
ppm  
(1) Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300  
period samples. The sinusoidal noise is added on top of the vdds supply voltage.  
110  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
OCS0  
OCS1  
OCS1  
sys.xtalin  
030-011  
Figure 4-4. Crystal Oscillator in Bypass Mode  
4.1.4 External 32-kHz CMOS Input Clock  
A 32.768-kHz clock signal (often abbreviated to 32-kHz) can be supplied by an external 1.8-V CMOS  
signal on pin sys_32k.  
Table 4-6 summarizes the electrical constraints imposed to the clock source.  
Table 4-6. 32-kHz Input Clock Source Electrical Characteristics  
NAME  
DESCRIPTION  
Frequency  
MIN  
TYP  
MAX  
UNIT  
kHz  
pF  
f
32.768  
CI  
RI  
Input capacitance  
Input resistance  
0.44  
0.25  
106  
GΩ  
Table 4-7 details the input requirements of the 32-kHz input clock.  
Table 4-7. 32-kHz Input Clock Source Timing Requirements(1)  
NAME  
DESCRIPTION  
Frequency, sys_32k  
MIN  
TYP  
MAX  
UNIT  
CK0  
CK3  
CK4  
CK5  
1 / tc(32k)  
tR(32k)  
tF(32k)  
32.768  
kHz  
ns  
Rise time, sys_32k  
20  
20  
Fall time, sys_32k  
ns  
tJ(32k)  
Frequency stability, sys_32k  
±200  
ppm  
(1) See Table 3-4, Electrical Characteristics, Standard LVCMOS IOs part for sys_32k VIH/VIL parameters.  
CK0  
CK1  
CK1  
sys_32k  
030-012  
Figure 4-5. 32-kHz CMOS Clock  
4.1.5 External sys_altclk CMOS Input Clock  
A 48-, 54-, or up to 59- MHz clock signal can be supplied by an external 1.8-V CMOS signal on pin  
sys_altclk.  
Table 4-8 summarizes the electrical constraints imposed by the clock source.  
Table 4-8. 48-, 54-, or up to 59- MHz Input Clock Source Electrical Characteristics  
NAME  
DESCRIPTION  
Frequency , sys_altclk  
Input capacitance  
MIN  
TYP  
48-, 54-, or up to 59- MHz  
0.74  
MAX  
UNIT  
MHz  
pF  
f
CI  
RI  
Input resistance  
0.25  
106  
GΩ  
Table 4-9 details the input requirements of the input clock.  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
111  
 
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 4-9. 48- or 54-MHz Input Clock Source Timing Requirements(1)(2)  
NAME  
ALT0  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
1 / tc(altclk)  
tw(altclk)  
Frequency, sys_altclk  
48-, 54-, or up to 59- MHz  
MHz  
ns  
ALT1  
Pulse duration, sys_altclk low or  
high  
0.40 * tc(altclk)  
0.60 * tc(altclk)  
ALT2  
ALT3  
ALT4  
ALT5  
tJ(altclk)  
tR(altclk)  
tF(altclk)  
tJ(altclk)  
Peak-to-peak jitter(1), sys_altclk  
–1%  
1%  
10  
Rise time, sys_altclk  
ns  
ns  
Fall time, sys_altclk  
10  
Frequency stability, sys_altclk  
± 50  
ppm  
(1) Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300  
period samples. The sinusoidal noise is added on top of the vdds supply voltage.  
(2) See Table 3-4, Electrical Characteristics, for sys_altclk VIH/VIL parameters.  
ALT0  
ALT1  
ALT1  
sys_altclk  
030-013  
Figure 4-6. Alternate CMOS Clock  
112  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
4.2 Output Clock Specifications  
Two output clocks (pin sys_clkout1 and pin sys_clkout2) are available:  
sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can be  
controlled by software or externally using sys_clkreq control. When the device is in the off state, the  
sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the  
device. The off state polarity of sys_clkout1 is programmable.  
sys_clkout2 can output sys_clk (12, 13, 16.8, 19.2, 26, or 38.4 MHz), CORE_CLK (core DPLL output,  
332 MHz maximum), APLL-96 MHz, or APLL-54 MHz. It can be divided by 2, 4, 8, or 16 and its off  
state polarity is programmable. This output is active only when the core domain is active.  
Table 4-10 summarizes the sys_clkout1 output clock electrical characteristics.  
Table 4-10. sys_clkout1 Output Clock Electrical Characteristics  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
MHz  
pF  
f
Frequency  
Load capacitance(1)  
12, 13, 16.8, 19.2, 26, or 38.4=  
CI  
f(max) = 38.4 MHz  
f(max) = 26 MHz  
37  
50  
(1) The load capacitance is adapted to a frequency.  
Table 4-11 details the sys_clkout1 output clock timing characteristics.  
Table 4-11. sys_clkout1 Output Clock Switching Characteristics  
NAME  
DESCRIPTION  
Frequency  
MIN  
TYP  
12, 13, 16.8, 19.2, 26, or 38.4  
0.60 *  
tc(CLKOUT1)  
5.5  
MAX  
UNIT  
MHz  
ns  
f
1 / CO0  
CO1  
tw(CLKOUT1)  
Pulse duration, sys_clkout1 low or high  
0.40 *  
tc(CLKOUT1)  
CO2  
CO3  
tR(CLKOUT1)  
tF(CLKOUT1)  
Rise time, sys_clkout1(1)  
Fall time, sys_clkout1(1)  
ns  
ns  
5.5  
(1) With a load capacitance of 50 pF.  
CO0  
CO1  
CO1  
sys_clkout  
030-014  
Figure 4-7. sys_clkout1 System Output Clock  
Table 4-12 summarizes the sys_clkout2 output clock electrical characteristics.  
Table 4-12. sys_clkout2 Output Clock Electrical Characteristics  
NAME  
DESCRIPTION  
Frequency, sys_clkout2  
Load capacitance(1)  
MIN  
TYP  
MAX  
322  
12  
UNIT  
MHz  
pF  
f
CL  
f(max) = 166 MHz  
2
8
(1) The load capacitance is adapted to a frequency.  
Table 4-13 details the sys_clkout2 output clock timing characteristics.  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
113  
 
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 4-13. sys_clkout2 Output Clock Switching Characteristics  
NAME  
DESCRIPTION  
Frequency  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
f
1 / CO0  
322  
CO1  
CO2  
CO3  
tw(CLKOUT2)  
tR(CLKOUT2)  
tF(CLKOUT2)  
Pulse duration, sys_clkout2 low or high  
Rise time, sys_clkout2(1)  
Fall time, sys_clkout2(1)  
0.40 * tc(CLKOUT2)  
0.60 * tc(CLKOUT2)  
3.7  
4.3  
ns  
ns  
(1) With a load capacitance of 12 pF.  
CO0  
CO1  
CO1  
sys_clkout  
030-015  
Figure 4-8. sys_clkout2 System Output Clock  
114  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
4.3 DPLL and DLL Specifications  
The OMAP3525 and OMAP3530 integrate seven DPLLs and a DLL. The PRM and CM drive five of them,  
while the sixth (not supported) and the seventh (not supported) are controlled by the display subsystem.  
The five main DPLLs are:  
DPLL1 (MPU)  
DPLL2 (IVA2)  
DPLL3 (Core)  
DPLL4 (Peripherals)  
DPLL5 (Second Peripherals DPLL)  
Figure 4-10Figure 4-9 illustrates the DLL and DPLL implementation.  
OMAP  
vdds_dpll_dll Power Rail  
DPLL1  
DLL  
DPLL2  
DPLL3  
DPLL4  
DPLL5  
vdds_dpll_per  
SDI DPLL  
vdds_sdi  
DSI DPLL  
vdds_dsi  
Figure 4-9. DPLL and DLL Implementation  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
115  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
OMAP  
vdds_dpll_dll  
Power Rail  
DPLL1  
DPLL2  
DPLL3  
DPLL4  
DLL  
DPLL5  
vdds_dpll_per  
030-016  
Figure 4-10. DPLL and DLL Implementation  
For more information on the OMAP3525 and OMAP3530 Applications Processors DPLLs and clocking  
structure, see the Power, Reset, and Clock management (PRCM) chapter of the OMAP35x Applications  
Processor TRM (literature number SPRUFA5).  
4.3.1 Digital Phase-Locked Loop (DPLL)  
The DPLL provides all interface clocks and some functional clocks (such as the processor clocks) of the  
OMAP3525 and OMAP3530 devices.  
DPLL1 and DPLL2 get an always-on clock used to produce the synthesized clock. They get a high-speed  
bypass clock used to switch the DPLL output clock on this high-speed clock during bypass mode.  
The high-speed bypass clock is an L3 divided clock (programmable by 1 or 2) that saves DPLL processor  
power consumption when the processor does not need to run faster than the L3 clock speed, or optimizes  
performance during frequency scaling.  
Each DPLL synthesized frequency is set by programming M (multiplier) and N (divider) factors. In addition,  
all DPLL outputs can be controlled by an independent divider (M2 to M6).  
The clock generating DPLLs of the OMAP3525 and OMAP3530 devices have following features:  
Independent power domain per DPLL  
Controlled by clock-manager (CM)  
Fed with always-on system clock with independent gating control per DPLL  
Analog part supplied through dedicated power supply (1.8 V) and an embedded LDO to get rid of  
1-MHz noise  
Up to five independent output dividers for simultaneous generation of multiple clock frequencies  
4.3.1.1 DPLL1 (MPU)  
DPLL1 is located in the MPU subsystem and supplies all clocks of the subsystem. All MPU subsystem  
clocks are internally generated in the subsystem. When the core domain is on, it can use the DPLL3  
(CORE DPLL) output as a high-frequency bypass input clock.  
4.3.1.2 DPLL2 (IVA2)  
DPLL2 is located in the IVA subsystem and supplies all clocks of the subsystem. All IVA subsystem clocks  
are internally generated in the subsystem. When the core domain is on, it can use the DPLL3 (CORE  
DPLL) output as a high-frequency bypass input clock.  
116  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
4.3.1.3 DPLL3 (CORE)  
DPLL3 supplies all interface clocks and also a few module functional clocks. It can be also source of the  
emulation trace clock. It is located in the core domain area. All interface clocks and a few module  
functional clocks are generated in the CM. When the core domain is on, it can be used as a bypass input  
to DPLL1 and DPLL2.  
4.3.1.4 DPLL4 (Peripherals)  
DPLL4 generates clocks for the peripherals. It supplies five clock sources: 96-MHz functional clocks to  
subsystems and peripherals, 54 MHz to TV DAC, display functional clock, camera sensor clock, and  
emulation trace clock. It is located in the core domain area. All interface clocks and few module functional  
clocks are generated in the CM. Its outputs to the DSS, PER, and EMU domains are propagated with  
always-on clock trees.  
4.3.1.5 DPLL5 (Second peripherals DPLL)  
DPLL5 supplies the 120-MHz functional clock to the CM.  
4.3.2 Delay-Locked Loops (DLL)  
The SDRC includes analog-controlled delay technology for interfacing high-speed mobile DDR memory  
components. For more information, see the SDRC-GPMC chapter of the OMAP35x Technical Reference  
Manual (TRM) [literature number SPRUF98]. A DLL is a calibration module used on dynamic track of  
voltage and temperature variations, as well as to compensate the silicon process dispersion.  
The SDRC DLL has four modes of operation:  
1. APPLICATION MODE 0: used to generate 72° delay  
2. APPLICATION MODE 1: used to generate 90° delay  
3. MODEMAXDELAY: used for low frequency operation where we do not have the requirement of  
accurate 72° or 90° phase shift  
4. IDLE MODE: a low-power state that allows the DLL to gain lock quickly on exit from this mode  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
117  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
4.3.3 DPLLs and DLL Characteristics  
Several specifications characterize the seven DPLLs.  
Table 4-14 summarizes the DPLL characteristics and assumes testing over recommended operating  
conditions.  
Table 4-14. DPLL Characteristics  
NAME  
vdds_dpll_per  
vdds_dpll_dll  
TJ  
PARAMETER  
MIN  
1.71  
1.71  
–40  
TYP  
1.8  
1.8  
25  
MAX  
1.89  
1.89  
107  
UNIT  
V
COMMENTS(1)  
At ball level (+5%, +10%)  
V
Junction temperature  
°C  
Will not unlock after lock over this range for  
slow temperature drifts  
finput  
Input reference frequency(2)  
Internal reference frequency  
0.75  
0.75  
7.5  
25  
65  
2.1  
MHz  
MHz  
MHz  
MHz  
MHz  
FINP  
finternal  
FREQSEL3 = 0; FINT = FINP/(N+1)  
FREQSEL3 = 1; FINT = FINP/(N+1)  
21  
foutput  
CLKOUT output frequency  
900  
1800  
foutput*2  
CLKOUTx2 output  
frequency  
50  
tlock  
Frequency lock time(3)  
71.4  
37.1  
166.7  
46.7  
4.8  
200  
104  
µs  
µs  
µs  
µs  
µs  
150 FINT cycles; FREQSEL3 = 0  
780 FINT cycles; FREQSEL3 = 1  
350 FINT cycles; FREQSEL3 = 0  
980 FINT cycles; FREQSEL3 = 1  
10 FINT cycles  
plock  
Phase lock time  
466.7  
130.7  
13.3  
trelock  
Relock time – frequency  
lock(4)  
Lowcurrstby = 0; FREQSEL3 = 0  
100 FINT cycles  
4.8  
19  
13.3  
53.3  
53.3  
200  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Lowcurrstby = 0; FREQSEL3 = 1  
40 FINT cycles  
Lowcurrstby = 1; FREQSEL3 = 0  
400 FINT cycles  
19  
Lowcurrstby = 1; FREQSEL3 = 1  
150 FINT cycles  
prelock  
Relock time – Phase lock(4)  
71.4  
11.9  
95.2  
26.7  
Lowcurrstby = 0; FREQSEL3 = 0  
250 FINT cycles  
33.3  
266.7  
74.7  
Lowcurrstby = 0; FREQSEL3 = 1  
200 FINT cycles  
Lowcurrstby = 1; FREQSEL3 = 0  
560 FINT cycles  
Lowcurrstby = 1; FREQSEL3 = 1  
Table 4-15 and Table 4-16 show the DPLL1 and DPLL2 clock frequency ranges.  
Note: The DPLL1 and DPLL2 clock frequency ranges depend on the VDD1 (vdd_mpu_iva) operating point.  
(1) freqsel needs to be programmed accordingly to reference clock and DPLL divider (register setting), Lowcurrstdby depends on the targeted  
DPLL power state (dynamic).  
Lowcurrstdby = 0 then DPLL is in normal mode  
Lowcurrstdby = 1 then DPLL is in low-power mode  
(2) Input frequencies below 0.75 MHz are possible with performance penalty.  
(3) Maximum frequency for nominal conditions. Speed binning possible above fmax.  
(4) Relock time assumes typical operating conditions, 4°C maximum temperature drift (see the Functional Specification for more detailed  
information).  
118  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 4-15. DPLL1 Clock Frequency Ranges  
Clock Signal  
Description  
Max  
600  
550  
500  
250  
125  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
OPP5  
OPP4  
OPP3  
OPP2  
OPP1  
ARM_CLK  
DPLL1 output clock.  
Table 4-16. DPLL2 Clock Frequency Ranges  
Clock Signal  
Description  
Max  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
OPP5  
OPP4  
OPP3  
OPP2  
OPP1  
430  
400  
360  
180  
90  
Generated from DPLL2 output  
clock.  
IVA2_CLK  
Table 4-17 through Table 4-19 show the DPLL3 clock frequency ranges.  
Note: The DPLL3 clock frequency ranges depend on the VDD2 (vdd_core) operating point and the L3  
clock speed configuration.  
Table 4-17. DPLL3 Clock Frequency Ranges, VDD2 OPP3  
Config 1  
Config 2  
Config 3  
(166 MHz)  
(133 MHz)  
(100 MHz)  
Unit  
Clock Signal  
Description  
Min  
Max  
Min  
Max  
Min  
Max  
Output of clock manager (CM),  
generated directly from DPLL3.  
CM: CORE_CLK  
-
-
332  
166  
-
-
266  
133  
-
-
200  
100  
MHz  
MHz  
Output of clock manager (CM),  
generated using DPLL3.  
CM: L3_ICLK  
CM: L4_ICLK  
Output of clock manager (CM),  
generated using CM L3_ICLK and  
divider.  
-
83  
-
66.5  
-
50  
MHz  
SGX input clock, taken from CM  
CORE_CLK.  
SGX  
-
-
-
110.67  
166  
-
-
-
88.67  
133  
-
-
-
66.67  
100  
MHz  
MHz  
MHz  
SDRC input clock, taken from CM  
L3_ICLK.  
SDRC  
GPMC  
GPMC input clock, taken from CM  
L3_ICLK.  
83  
66.5  
100  
Table 4-18. DPLL3 Clock Frequency Ranges, VDD2 OPP2  
Config 1  
(83 MHz)  
Config 2  
(100 MHz)  
Unit  
Clock Signal  
Description  
Min  
Max  
Min  
Max  
Output of clock manager (CM), generated  
directly from DPLL3.  
CM: CORE_CLK  
-
166  
-
-
-
200  
100  
50  
MHz  
MHz  
MHz  
Output of clock manager (CM), generated using  
DPLL3.  
CM: L3_ICLK  
CM: L4_ICLK  
-
-
83  
Output of clock manager (CM), generated using  
CM L3_ICLK and divider.  
41.5  
SGX  
SGX input clock, taken from CM CORE_CLK.  
SDRC input clock, taken from CM L3_ICLK.  
GPMC input clock, taken from CM L3_ICLK.  
-
-
-
55.53  
83  
-
-
-
66.67  
100  
50  
MHz  
MHz  
MHz  
SDRC  
GPMC  
83  
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
119  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 4-19. DPLL3 Clock Frequency Ranges, VDD2 OPP1  
Config 1  
(40 MHz)  
Unit  
Clock Signal  
CM: CORE_CLK  
Description  
Min  
Max  
83  
Output of clock manager (CM), generated directly from DPLL3.  
Output of clock manager (CM), generated using DPLL3.  
-
-
MHz  
MHz  
CM: L3_ICLK  
41.5  
Output of clock manager (CM), generated using CM L3_ICLK  
and divider.  
CM: L4_ICLK  
-
20.75  
MHz  
SGX  
SGX input clock, taken from CM CORE_CLK.  
SDRC input clock, taken from CM L3_ICLK.  
GPMC input clock, taken from CM L3_ICLK.  
-
-
-
N/A  
41.5  
41.5  
MHz  
MHz  
MHz  
SDRC  
GPMC  
Table 4-20 summarizes the DLL characteristics.  
Table 4-20. DLL Characteristics  
PARAMETER  
MIN  
1.71  
–40  
66  
NOM  
1.8  
MAX  
1.89  
107  
133  
166  
15  
UNIT  
V
COMMENTS  
Supply voltage vdds_dpll_dll  
Junction operating temperature  
Input clock frequency  
25  
°C  
120  
120  
MHz  
APPLICATION MODE 0  
APPLICATION MODE 1  
83  
Input load(1)  
Lock time(2)  
fF  
Clocks  
ns  
500  
500  
372  
2
Relock time  
IDLE to MODEMAXDELAY  
(Mode transitions through idle mode)  
150  
1
Clocks  
µs  
IDLE to APPLICATION MODE 1 or 0  
IDLE to APPLICATION MODE @133 MHz  
IDLE to APPLICATION MODE @166 MHz  
1
1.5  
µs  
(1) This parameter is design goal and is not tested on silicon.  
(2) Lock signal would go high from power down within 500 clocks. Lock signal switches to low state when the input clock is switched off  
after 3 µs.  
120  
CLOCK SPECIFICATIONS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
4.3.4 DPLL and DLL Noise Isolation  
The DPLL and DLL require dedicated power supply pins to isolate the core analog circuit from the  
switching noise generated by the core logic that can cause jitter on the clock output signal. Guard rings  
are added to the cell to isolate it from substrate noise injection.  
The vdd supplies are the most sensitive to noise; decoupling capacitance is recommended below the  
supply rails. The maximum input noise level allowed is 30 mVPP for frequencies below 1 MHz.  
Figure 4-11= illustrates an example of a noise filter.  
OMAP Device  
Noise Filter  
vdds_dpll_dll  
C
DPLL_MPU  
DPLL_IVA  
DPLL_CORE  
DLL  
Noise Filter  
vdds_dpll_per  
C
DPLL5  
DPLL4  
030-017  
Figure 4-11. DPLL and DLL Noise Filter  
Table 4-21 specifies the noise filter requirements.  
Table 4-21. DPLL and DLL Noise Filter Requirements  
NAME  
MIN  
TYP  
MAX  
UNIT  
nF  
Filtering capacitor  
100  
(1) The capacitors must be inserted between power and ground as close as possible.  
(2) This circuit is provided only as an example.  
(3) The filter must be located as close as possible to the device.  
(4) No filtering required if noise is below 10 mVPP  
.
Submit Documentation Feedback  
CLOCK SPECIFICATIONS  
121  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
5 VIDEO DAC SPECIFICATIONS  
A dual-display interface equips the OMAP3525 and OMAP3530 processors. This display subsystem  
provides the necessary control signals to interface the memory frame buffer directly to the external  
displays (TV-set). Two (one per channel) 10-bit current steering DACs are inserted between the DSS and  
the TV set to generate the video analog signal. One of the video DACs also includes TV detection and  
power-down mode. Figure 5-1 illustrates the OMAP3525 and OMAP3530 DAC architecture. For more  
information, see the DSS chapter of the OMAP35x Technical Reference Manual (TRM) [literature number  
SPRUF98].  
OMAP Device  
TV DCT  
tv_vfb1  
DIN1[9:0]  
TVOUT  
BUFFER  
Video DAC 1  
tv_out1  
DSS  
tv_vfb2  
DIN2[9:0]  
TVOUT  
BUFFER  
Video DAC 2  
tv_out2  
V_ref  
vdda_dac  
vssa_dac  
tv_vref  
CBG  
030-018  
Figure 5-1. Video DAC Architecture  
The following paragraphs detail the 10-bit DAC interface pinout, static and dynamic specifications, and  
noise requirements. The operating conditions and absolute maximum ratings are detailed in Table 5-2 and  
Table 5-4.  
5.1 Interface Description  
Table 5-1 summarizes the external pins of the video DAC.  
Table 5-1. External Pins of 10-bit Video DAC  
PIN NAME  
I/O  
DESCRIPTION  
tv_out1  
O
TV analog output composite  
DAC1 video output. An external resistor is connected between this  
node and tv_vfb1. The nominal value of ROUT1 is 1650 . Finally,  
note that this is the output node that drives the load (75 ).  
122  
VIDEO DAC SPECIFICATIONS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 5-1. External Pins of 10-bit Video DAC (continued)  
PIN NAME  
I/O  
DESCRIPTION  
tv_out2  
O
TV analog output S-VIDEO  
DAC2 video output. An external resistor is connected between this  
node and tv_vfb2. The nominal value of ROUT2 is 1650 . Finally,  
note that this is the output node that drives the load (75 ).  
tv_vref  
tv_vfb1  
tv_vfb2  
I
Reference output voltage from internal  
bandgap  
A decoupling capacitor (CBG) needs to be connected for optimum  
performance.  
O
O
Amplifier feedback node  
Amplifier feedback node. An external resistor is connected between  
this node and tv_out1. The nominal value of ROUT1 is 1650 (1%).  
Amplifier feedback node  
Amplifier feedback node. An external resistor is connected between  
this node and tv_out2. The nominal value of ROUT2 is 1650 (1%).  
Submit Documentation Feedback  
VIDEO DAC SPECIFICATIONS  
123  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
5.2 Electrical Specifications Over Recommended Operating Conditions  
(TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650 , RLOAD = 75 , unless otherwise noted)  
Table 5-2. DAC – Static Electrical Specification  
PARAMETER  
Resolution  
DC ACCURACY  
CONDITIONS/ASSUMPTIONS  
MIN  
TYP  
MAX  
UNIT  
R
10  
Bits  
INL(1)  
DNL(2)  
Integral nonlinearity  
–1  
–1  
1
1
LSB  
LSB  
Differential nonlinearity  
ANALOG OUTPUT  
-
Full-scale output voltage  
RLOAD = 75 Ω  
0,7  
0.88  
50  
1
V
mV  
-
Output offset voltage  
Output offset voltage drift  
Gain error  
-
20  
mV/°C  
% FS  
-
–17  
19  
RVOUT  
Output impedance  
67.5  
75  
82.5  
REFERENCE  
VREF  
-
Reference voltage range  
Reference noise density  
0.525  
3700  
0.55  
129  
0.575  
4200  
V
100-kHz reference noise  
bandwidth  
RSET  
PSRR  
Full-scale current adjust resistor  
Reference PSRR(3) (Up to 6 MHz)  
4000  
40  
dB  
POWER CONSUMPTION  
Ivdda-up  
Analog Supply Current(4)  
-
2 channels, no load  
2 channels  
8
mA  
mA  
Analog supply driving a 75-load  
50  
(RMS)  
Ivdda-up (peak) Peak analog supply current:  
Lasts less than 1 ns  
60  
2
mA  
mA  
Ivdd-up  
Digital supply current(5)  
Measured at fCLK = 54 MHz, fOUT  
= 2 MHz sine wave, vdd = 1.3 V  
Ivdd-up (peak)  
Ivdda-down  
Ivdd-down  
Peak digital supply current(6)  
Analog power at power-down  
Digital power at power-down  
Lasts less than 1 ns  
T = 30°C, vdda = 1.8 V  
T = 30°C, vdd = 1.3 V  
2.5  
1.5  
1
mA  
mA  
mA  
(1) The INL is measured at the output of the DAC (accessible at an external pin during bypass mode).  
(2) The DNL is measured at the output of the DAC (accessible at an external pin during bypass mode).  
(3) Assuming a capacitor of 0.1 µF at the tv_ref node.  
(4) The analog supply current Ivdda is directly proportional to the full-scale output current IFS and is insensitive to fCLK  
(5) The digital supply current IVDD is dependent on the digital input waveform, the DAC update rate fCLK, and the digital supply VDD.  
(6) The peak digital supply current occurs at full-scale transition for duration less than 1 ns.  
124  
VIDEO DAC SPECIFICATIONS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
(TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650 , RLOAD = 75 , unless otherwise noted)  
Table 5-3. Video DAC – Dynamic Electrical Specification  
PARAMETER  
Output update rate  
Clock jitter  
CONDITIONS/ASSUMPTIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ps  
(1)  
fCLK  
Equal to input clock frequency  
54  
rms clock jitter required in order to assure  
10-bit accuracy  
40  
Attenuation at 5.1 MHz  
Attenuation at 54 MHz(1)  
Output settling time  
Corner frequency for signal  
Image frequency  
0.1  
25  
0.5  
30  
85  
1.5  
33  
dB  
dB  
ns  
tST  
Time from the start of the output transition to  
output within ± 1 LSB of final value.  
tRout  
tFout  
BW  
Output rise time  
Output fall time  
Measured from 10% to 90% of full-scale  
transition  
25  
25  
ns  
ns  
Measured from 10% to 90% of full-scale  
transition  
Signal bandwidth  
Differential gain(2)  
Differential phase(2)  
Within bandwidth  
6
1.5%  
1
MHz  
deg.  
dB  
SFDR  
SNR  
fCLK = 54 MHz, fOUT = 1 MHz  
fCLK = 54 MHz, fOUT = 1 MHz  
45  
55(3)  
Signal-to-noise ratio  
dB  
1 kHz to 6 MHz bandwidth  
PSRR  
Power supply rejection ratio Up to 6 MHz  
20(4)  
–50  
dB  
dB  
Crosstalk Between the two video  
channels  
–40  
(1) For internal input clock information, For more information, see the DSS chapter of the OMAP35x Technical Reference Manual (TRM)  
[literature number SPRUF98].  
(2) The differential gain and phase value is for dc coupling. Note that there is degradation for the ac coupling.  
(3) The SNR value is for dc coupling. Note that there is a 6-dB degradation for ac coupling.  
(4) The PSSR value is for dc coupling. Note that there is a 10-dB degradation for ac coupling.  
Submit Documentation Feedback  
VIDEO DAC SPECIFICATIONS  
125  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
5.3 Analog Supply (vdda_dac) Noise Requirements  
In order to assure 10-bit accuracy of the DAC analog output, the analog supply vdda_dac has to meet the  
noise requirements stated in this section.  
The DAC Power Supply Rejection Ratio is defined as the relative variation of the full-scale output current  
divided by the supply variation. Thus, it is expressed in percentage of Full-Scale Range (FSR) per volt of  
DIOUT  
100×  
IOUTFS  
% FSR  
PSRRDAC  
=
V
VAC  
supply variation as shown in the following equation:  
Depending on frequency, the PSRR is defined in Table 5-4.  
Table 5-4. Video DAC – Power Supply Rejection Ratio  
Supply Noise Frequency  
PSRR % FSR/V  
0 to 100 kHz  
> 100 kHz  
1
The rejection decreases 20 dB/dec.  
Example: at 1 MHz the PSRR is 10% of FSR/V  
A graphic representation is shown in Figure 5-2.  
PSRR (% FSR/V)  
First pole of  
DAC output load  
10  
1
f
1 MHz  
100 kHz  
030-019  
Figure 5-2. Video DAC – Power Supply Rejection Ratio  
To ensure that the DAC SFDR specification is met, the PSRR values and the clock jitter requirements  
translate to the following limits on vdda_dac (for the Video DAC).  
The maximum peak-to-peak noise on vdda (ripple) is defined in Table 5-5:  
Table 5-5. Video DAC – Maximum Peak-to-Peak Noise on vdda_dac  
Tone Frequency  
0 to 100 kHz  
> 100 kHz  
Maximum Peak-to-Peak Noise on vdda_dac  
< 30 mVpp  
Decreases 20 dB/dec.  
Example: at 1 MHz the maximum is 3 mVpp  
The maximum noise spectral density (white noise) is defined in Table 5-6:  
Table 5-6. Video DAC – Maximum Noise Spectral Density  
Supply Noise Bandwidth  
0 to 100 kHz  
Maximum Supply Noise Density  
< 20 µV / Hz  
> 100 kHz  
Decreases 20 dB/dec.  
Example: at 1 MHz the maximum noise density is 2 µ / Hz  
126  
VIDEO DAC SPECIFICATIONS  
Submit Documentation Feedback  
 
 
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Because the DAC PSRR deteriorates at a rate of 20 dB/dec after 100 kHz, it is highly recommended to  
have vdda_dac low pass filtered (proper decoupling) (see the illustrated application: Section 5.4, External  
Component Value Choice).  
5.4 External Component Value Choice  
The full-scale output voltage VOUTMAX is regulated by the reference amplifier, and is set by an internal  
resistor RSET. IOUTMAX can be expressed as:  
IOUTMAX = IREF /8 * (63 + 15/16)  
Where:  
VREF = 0.55V  
IREF = VREF/ (2* RSET  
)
The output current IOUT appearing at DAC output is a function of both the input code and IOUTMAX and can  
be expressed as:  
IOUT = (DAC_CODE/1023) * IOUTMAX  
Where:  
DAC_CODE = 0 to 1023 is the DAC input code in decimal.  
The output voltage is:  
VOUT = IOUT *N* RCABLE  
Where:  
(N = amplifier gain = 21)  
RCABLE = 75 (cable typical impedance)  
The TV-out buffer requires a per channel external resistors: ROUT1/2. The equation below can be used to  
select different resistor values (if necessary):  
ROUT = (N+1) RCABLE = 1650 Ω  
Recommended parameter values are:  
Table 5-7. Video DAC – Recommended External Components Values  
Recommended Value  
UNIT  
nF  
CBG  
100  
ROUT1/2  
1650  
In order to limit the reference noise bandwidth and to suppress transients on VREF, it is necessary to  
connect a large decoupling capacitor BG) between the tv_vref and vssa_dac pins.  
Submit Documentation Feedback  
VIDEO DAC SPECIFICATIONS  
127  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
6 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
6.1 Timing Test Conditions  
All timing requirements and switching characteristics are valid over the recommended operating conditions  
of Table 3-3, unless otherwise specified.  
6.2 Interface Clock Specifications  
6.2.1 Interface Clock Terminology  
The Interface clock is used at the system level to sequence the data and/or control transfers accordingly  
with the interface protocol.  
6.2.2 Interface Clock Frequency  
The two interface clock characteristics are:  
The maximum clock frequency  
The maximum operating frequency  
The interface clock frequency documented in this document is the maximum clock frequency, which  
corresponds to the maximum frequency programmable on this output clock. This frequency defines the  
maximum limit supported by the OMAP3525 and OMAP3530 IC and doesn’t take into account any system  
consideration (PCB, peripherals).  
The system designer will have to consider these system considerations and OMAP3525 and OMAP3530  
IC timings characteristics as well, to define properly the maximum operating frequency, which corresponds  
to the maximum frequency supported to transfer the data on this interface.  
6.2.3 Clock Jitter Specifications  
Jitter is a phase noise, which may alter different characteristics of a clock signal. The jitter specified in this  
document is the time difference between the typical cycle period and the actual cycle period affected by  
noise sources on the clock. The cycle (or period) jitter terminology identifies this type of jitter.  
Cycle (or Period) Jitter  
Tn-1  
Tn  
Tn+1  
Max. Cycle Jitter = Max (Ti)  
Min. Cycle Jitter = Min (Ti)  
Jitter Standard Deviation (or rms Jitter) = Standard Deviation (Ti)  
030-020  
Figure 6-1. Cycle (or Period) Jitter  
6.2.4 Clock Duty Cycle Error  
The duty cycle error is the ratio between either the high-level pulse duration or the low-level pulse duration  
and the cycle time of a clock signal.  
128  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
6.3 Timing Parameters  
The timing parameter symbols used in the timing requirement and switching characteristic tables are  
created in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and other  
related terminologies have been abbreviated as follows:  
Table 6-1. Timing Parameters  
LOWERCASE SUBSCRIPTS  
Symbols  
Parameter  
Cycle time (period)  
Delay time  
c
d
dis  
en  
h
Disable time  
Enable time  
Hold time  
su  
START  
t
Setup time  
Start bit  
Transition time  
Valid time  
v
w
Pulse duration (width)  
Unknown, changing, or don’t care level  
High  
X
H
L
Low  
V
Valid  
IV  
AE  
FE  
LE  
Z
Invalid  
Active Edge  
First Edge  
Last Edge  
High impedance  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
129  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
6.4 External Memory Interfaces  
The OMAP3525 and OMAP3530 processors include the following external memory interfaces:  
General-purpose memory controller (GPMC)  
SDRAM controller (SDRC)  
6.4.1 General-Purpose Memory Controller (GPMC)  
The GPMC is the OMAP3525 and OMAP3530 unified memory controller used to interface external  
memory devices such as:  
Asynchronous SRAM-like memories and ASIC devices  
Asynchronous page mode and synchronous burst NOR flash  
NAND flash  
6.4.1.1 GPMC/NOR Flash Interface Synchronous Timing  
Table 6-3 and Table 6-4 assume testing over the recommended operating conditions (see Figure 6-2  
through Figure 6-5) and electrical characteristic conditions.  
Table 6-2. GPMC/NOR Flash Synchronous Mode Timing Conditions  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
1.8  
1.8  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.94  
pF  
Table 6-3. GPMC/NOR Flash Interface Timing Requirements – Synchronous Mode(1)  
NO.  
PARAMETER  
OPP3  
OPP2  
OPP1  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
F12 tsu(DV-CLKH)  
F13 th(CLKH-DV)  
F21 tsu(WAITV-CLKH)  
F22 th(CLKH-WAITV)  
Setup time, read gpmc_d[15:0]  
valid before gpmc_clk high  
1.9  
1.9  
3.2  
ns  
ns  
ns  
ns  
Hold time, read gpmc_d[15:0]  
valid after gpmc_clk high  
Setup time, gpmc_waitx(2) valid  
before gpmc_clk high  
Hold Time, gpmc_waitx(2) valid  
after gpmc_clk high  
1.9  
1.9  
2.5  
1.9  
1.9  
2.5  
1.9  
3.2  
2.5  
(1) For VDD2 (vdd_core) OPP voltages, see Table 3-3, Recommended Operating Conditions.  
(2) Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see the OMAP35x  
Technical Reference Manual (literature number SPRUF988).  
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics – Synchronous Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
F0  
F1  
tc(CLK)  
Cycle time(15), output  
clock gpmc_clk period  
10  
12.05  
25  
ns  
ns  
tw(CLKH)  
Typical pulse duration,  
output clock gpmc_clk  
high  
0.5 P(12)  
0.5 P(12)  
0.5 P(12)  
0.5 P(12)  
0.5 P(12)  
0.5 P(12)  
F1  
tw(CLKL)  
tdc(CLK)  
Typical pulse duration,  
output clock gpmc_clk low  
0.5 P(12)  
–500  
0.5 P(12)  
500  
0.5 P(12)  
–602  
0.5 P(12)  
602  
0.5 P(12)  
–1250  
0.5 P(12)  
1250  
ns  
ps  
Duty cycle error, output  
clk gpmc_clk  
130  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics – Synchronous Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
tj(CLK)  
Jitter standard  
33.3  
33.3  
33.3  
ps  
deviation(16), output clock  
gpmc_clk  
tR(CLK)  
tF(CLK)  
Rise time, output clock  
gpmc_clk  
1.6  
1.6  
2
2
2
2
ns  
ns  
Fall time, output clock  
gpmc_clk  
tR(DO)  
Rise time, output data  
Fall time, output data  
2
2
2
2
2
2
ns  
ns  
ns  
tF(DO)  
F2  
F3  
F4  
F5  
F6  
td(CLKH-nCSV)  
Delay time, gpmc_clk  
rising edge to  
F(6) – 1.9  
E(5) – 1.9  
B(2) – 4.1  
–2.1  
F(6) + 3.3  
F(6) – 1.8  
E(5) – 1.8  
B(2) – 4.1  
–2.1  
F(6) + 4.1  
F(6) – 2.6  
E(5) – 2.6  
B(2) – 4.9  
–2.6  
F(6) + 4.9  
gpmc_ncsx(11) transition  
td(CLKH-nCSIV)  
td(ADDV-CLK)  
td(CLKH-ADDIV)  
td(nBEV-CLK)  
Delay time, gpmc_clk  
rising edge to  
E(5) + 3.3  
B(2) + 2.1  
E(5) + 4.1  
B(2) + 2.1  
E(5) + 4.9  
B(2) + 2.6  
ns  
ns  
ns  
ns  
gpmc_ncsx(11) invalid  
Delay time, address bus  
valid to gpmc_clk first  
edge  
Delay time, gpmc_clk  
rising edge to  
gpmc_a[16:1] invalid  
Delay time,  
B(2) – 1.1  
B(2) + 2.1  
B(2) – 0.9  
B(2) + 1.9  
B(2) – 2.6  
B(2) + 2.6  
gpmc_nbe0_cle,  
gpmc_nbe1 valid to  
gpmc_clk first edge  
F7  
td(CLKH-nBEIV)  
Delay time, gpmc_clk  
rising edge to  
D(4) – 2.1 D(4) + 1.1 D(4) – 1.9 D(4) + 0.9 D(4) – 2.6 D(4) + 2.6  
ns  
gpmc_nbe0_cle,  
gpmc_nbe1 invalid  
F8  
td(CLKH-nADV)  
Delay time, gpmc_clk  
rising edge to  
gpmc_nadv_ale transition  
G(7) – 1.9 G(7) + 4.1 G(7) – 2.1 G(7) + 4.1 G(7) – 2.6 G(7) + 4.9  
D(4) – 1.9 D(4) + 4.1 D(4) – 2.1 D(4) + 4.1 D(4) – 2.6 D(4) + 4.9  
H(8) – 2.1 H(8) + 2.1 H(8) – 2.1 H(8) + 2.1 H(8) – 2.6 H(8) + 4.9  
ns  
ns  
ns  
F9  
td(CLKH-nADVIV) Delay time, gpmc_clk  
rising edge to  
gpmc_nadv_ale invalid  
F10  
td(CLKH-nOE)  
Delay time, gpmc_clk  
rising edge to gpmc_noe  
transition  
F11  
F14  
td(CLKH-nOEIV)  
td(CLKH-nWE)  
Delay time, gpcm rising  
edge to gpmc_noe invalid  
E(5) – 2.1  
I(9) – 1.9  
E(5) + 2.1  
I(9) + 4.1  
E(5) – 2.1  
I(9) – 2.1  
E(5) + 2.1  
I(9) + 4.1  
E(5) – 2.6  
I(9) – 2.6  
E(5) + 4.9  
I(9) + 4.9  
ns  
ns  
Delay time, gpmc_clk  
rising edge to gpmc_nwe  
transition  
F15  
F17  
F18  
F19  
F20  
td(CLKH-Data)  
td(CLKH-nBE)  
tW(nCSV)  
Delay time, gpmc_clk  
rising edge to data bus  
transition  
J(10) – 2.1 J(10) + 1.1 J(10) – 1.9 J(10) + 0.9 J(10) – 2.6 J(10) + 2.6  
ns  
ns  
Delay time, gpmc_clk  
rising edge to  
gpmc_nbex_cle transition  
J(10) – 2.1 J(10) + 1.1 J(10) – 1.9 J(10) + 0.9 J(10) – 2.6 J(10) + 2.6  
Pulse duration, Read  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
ns  
ns  
gpmc_ncsx(11)  
Write  
low  
tW(nBEV)  
Pulse duration, Read  
C(3)  
C(3)  
C(3)  
C(3)  
C(3)  
C(3)  
ns  
ns  
gpmc_nbe0_cle,  
gpmc_nbe1 low  
Write  
tW(nADVV)  
Pulse duration, Read  
K(13)  
K(13)  
K(13)  
K(13)  
K(13)  
K(13)  
ns  
ns  
gpmc_nadv_ale  
Write  
low  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
131  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics – Synchronous Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
F23  
td(CLKH-IODIR)  
Delay time, gpmc_clk  
rising edge to gpmc_io_dir  
high (IN direction)  
H(8) – 2.1 H(8) + 4.1 H(8) – 2.1 H(8) + 4.1 H(8) – 2.6 H(8) + 4.9  
ns  
F24  
td(CLKH-IODIV)  
Delay time, gpmc_clk  
rising edge to gpmc_io_dir  
low (OUT direction)  
M(17) – 2.1 M(17) + 4.1 M(17) – 2.1 M(17) + 4.1 M(17) – 2.6 M(17) + 4.9  
ns  
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK period  
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period  
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period  
with n being the page burst access number.  
(2) B = ClkActivationTime * GPMC_FCLK  
(3) For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst read: C = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst write: C = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n being the  
page burst access number.  
(4) For single read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst write: D = (WrCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
(5) For single read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst write: E = (CSWrOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
(6) For nCS falling edge (CS activated):  
Case GpmcFCLKDivider = 0:  
F = 0.5 * CSExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
F = 0.5 * CSExtraDelay * GPMC_FCLK if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime  
are even)  
F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
F = 0.5 * CSExtraDelay * GPMC_FCLK if ((CSOnTime – ClkActivationTime) is a multiple of 3)  
F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime – ClkActivationTime – 1) is a multiple of 3)  
F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime – ClkActivationTime – 2) is a multiple of 3)  
(7) For ADV falling edge (ADV activated):  
Case GpmcFCLKDivider = 0:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and  
ADVOnTime are even)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVOnTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime – ClkActivationTime – 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Reading mode:  
Case GpmcFCLKDivider = 0:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and  
ADVRdOffTime are even)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Writing mode:  
Case GpmcFCLKDivider = 0:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and  
ADVWrOffTime are even)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
132  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 1) is a multiple of 3)  
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 2) is a multiple of 3)  
(8) For OE falling edge (OE activated) / IO DIR rising edge (Data Bus input direction):  
Case GpmcFCLKDivider = 0:  
H = 0.5 * OEExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
H = 0.5 * OEExtraDelay * GPMC_FCLK if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime  
are even)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOnTime – ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime – ClkActivationTime – 1) is a multiple of 3)  
H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime – ClkActivationTime – 2) is a multiple of 3)  
For OE rising edge (OE deactivated):  
GpmcFCLKDivider = 0:  
H = 0.5 * OEExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
H = 0.5 * OEExtraDelay * GPMC_FC if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are  
even)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOffTime – ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime – ClkActivationTime – 1) is a multiple of 3)  
H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime – ClkActivationTime – 2) is a multiple of 3)  
(9) For WE falling edge (WE activated):  
Case GpmcFCLKDivider = 0:  
I = 0.5 * WEExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime  
are even)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOnTime – ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime – ClkActivationTime – 1) is a multiple of 3)  
I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime – ClkActivationTime – 2) is a multiple of 3)  
For WE rising edge (WE deactivated):  
Case GpmcFCLKDivider = 0:  
I = 0.5 * WEExtraDelay * GPMC_FCLK  
Case GpmcFCLKDivider = 1:  
I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime  
are even)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise  
Case GpmcFCLKDivider = 2:  
I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOffTime – ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime – ClkActivationTime – 1) is a multiple of 3)  
I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime – ClkActivationTime – 2) is a multiple of 3)  
(10) J = GPMC_FCLK period  
(11) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
(12) P = gpmc_clk period  
(13) For read: K = (ADVRdOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For write: K = (ADVWrOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
(14) GPMC_FCLK is General-Purpose Memory Controller internal functional clock.  
(15) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the I/F module by setting the  
GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.  
(16) The jitter probability density can be approximated by a Gaussian function.  
(17) M = (RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both  
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses  
performed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR  
behavior is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the OMAP35x Technical  
Reference Manual (TRM) [literature number SPRUF98].  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
133  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
F1  
F0  
F1  
gpmc_clk  
F2  
F3  
F7  
F18  
gpmc_ncsx  
F4  
F6  
gpmc_a[10:1]  
Valid Address  
F19  
gpmc_nbe0_cle  
gpmc_nbe1  
F19  
F6  
F8  
F8  
F20  
F9  
gpmc_nadv_ale  
gpmc_noe  
F10  
F11  
F13  
F12  
D 0  
gpmc_d[15:0]  
gpmc_waitx  
gpmc_io_dir  
F23  
F24  
OUT  
IN  
OUT  
030-021  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-2. GPMC/NOR Flash – Synchronous Single Read – (GpmcFCLKDivider = 0)  
134  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
F1  
F1  
F0  
gpmc_clk  
F2  
F3  
gpmc_ncsx  
F4  
F6  
gpmc_a[10:1]  
gpmc_nbe0_cle  
gpmc_nbe1  
Valid Address  
F7  
F7  
F9  
F6  
F8  
F8  
gpmc_nadv_ale  
gpmc_noe  
F10  
F11  
F13  
F13  
F12  
D 0  
F22  
F12  
D 3  
gpmc_d[15:0]  
gpmc_waitx  
gpmc_io_dir  
D 1  
D 2  
F21  
F23  
F24  
OUT  
IN  
OUT  
030-022  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-3. GPMC/NOR Flash – Synchronous Burst Read – 4x16-bit (GpmcFCLKDivider = 0)  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
135  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
F1  
F1  
F0  
gpmc_clk  
gpmc_ncsx  
F2  
F3  
F4  
F6  
gpmc_a[10:1]  
Valid Address  
F17  
F17  
F17  
F17  
F17  
F17  
gpmc_nbe0_cle  
gpmc_nbe1  
gpmc_nadv_ale  
gpmc_nwe  
F6  
F8  
F8  
F9  
F14  
F14  
F15  
D 1  
F15  
D 2  
F15  
gpmc_d[15:0]  
gpmc_waitx  
D 0  
D 3  
gpmc_io_dir  
OUT  
030-023  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-4. GPMC/NOR Flash – Synchronous Burst Write – (GpmcFCLKDivider = 0)  
136  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
F1  
F0  
F1  
gpmc_clk  
gpmc_ncsx  
F2  
F3  
F6  
F6  
F4  
F7  
gpmc_nbe0_cle  
gpmc_nbe1  
Valid  
F7  
Valid  
gpmc_a[26:17]  
Address (MSB)  
F5  
F12  
F13  
D1 D2  
F4  
F12  
gpmc_a[16:1]_d[15:0]  
gpmc_nadv_ale  
gpmc_noe  
Address (LSB)  
F8  
D0  
D3  
F8  
F9  
F10  
F11  
gpmc_waitx  
F24  
F23  
gpmc_io_dir  
OUT  
IN  
OUT  
030-024  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-5. GPMC/Multiplexed NOR Flash – Synchronous Burst Read  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
137  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
F1  
F1  
F0  
gpmc_clk  
gpmc_ncsx  
F2  
F3  
F4  
F6  
gpmc_a[26:17]  
Address (MSB)  
F17  
F17  
F17  
F17  
F17  
F17  
gpmc_nbe0_cle  
gpmc_nbe1  
gpmc_nadv_ale  
gpmc_nwe  
F6  
F8  
F8  
F9  
F14  
F14  
F15  
D 1  
F15  
D 2  
F15  
gpmc_d[15:0]  
gpmc_waitx  
Address (LSB)  
D 0  
D 3  
gpmc_io_dir  
OUT  
030-025  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-6. GPMC/Multiplexed NOR Flash – Synchronous Burst Write  
6.4.1.2 GPMC/NOR Flash Interface Asynchronous Timing  
Table 6-7 and Table 6-8 assume testing over the recommended operating conditions (see Figure 6-7  
through Figure 6-12) and electrical characteristic conditions.  
Table 6-5. GPMC/NOR Flash Asynchronous Mode Timing Conditions  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
1.8  
1.8  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.94  
pF  
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters(1)(2)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
0.9 V  
UNIT  
MIN  
MIN  
MAX  
MIN  
MAX  
FI1  
FI2  
FI3  
Maximum output data generation delay from internal  
functional clock  
6.5  
9.1  
13.7  
ns  
ns  
ns  
Maximum input data capture delay by internal  
functional clock  
4
5.6  
9.1  
8.1  
Maximum device select generation delay from internal  
functional clock  
6.5  
13.7  
(1) The internal parameters table must be used to calculate Data Access Time stored in the corresponding CS register bit field.  
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.  
138  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters (continued)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
0.9 V  
UNIT  
MIN  
MIN  
MAX  
MIN  
MAX  
FI4  
FI5  
FI6  
FI7  
FI8  
FI9  
Maximum address generation delay from internal  
functional clock  
6.5  
6.5  
6.5  
6.5  
6.5  
100  
9.1  
13.7  
ns  
ns  
ns  
ns  
ns  
ps  
Maximum address valid generation delay from internal  
functional clock  
9.1  
9.1  
9.1  
9.1  
170  
13.7  
13.7  
13.7  
13.7  
200  
Maximum byte enable generation delay from internal  
functional clock  
Maximum output enable generation delay from internal  
functional clock  
Maximum write enable generation delay from internal  
functional clock  
Maximum functional clock skew  
Table 6-7. GPMC/NOR Flash Interface Timing Requirements – Asynchronous Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN MAX  
MIN  
MAX  
MIN  
MAX  
FA5(1)  
tacc(DAT)  
Data maximum access  
time  
H(2)  
P(4)  
H(2)  
H(2)  
GPMC_FCLK cycles  
GPMC_FCLK cycles  
FA20(3) tacc1-pgmode(DAT) Page mode successive  
P(4)  
P(4)  
data maximum access  
time  
FA21(5) tacc2-pgmode(DAT) Page mode first data  
maximum access time  
H(2)  
H(2)  
H(2)  
GPMC_FCLK cycles  
(1) The FA5 parameter illustrates the amount of time required to internally sample input Data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data is internally sampled by active functional clock  
edge. FA5 value must be stored inside the AccessTime register bit field.  
(2) H = AccessTime * (TimeParaGranularity + 1)  
(3) The FA20 parameter illustrates amount of time required to internally sample successive input Page Data. It is expressed in number of  
GPMC functional clock cycles. After each access to input Page Data, next input Page Data is internally sampled by active functional  
clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.  
(4) P = PageBurstAccessTime * (TimeParaGranularity + 1)  
(5) The FA21 parameter illustrates amount of time required to internally sample first input Page Data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, First input Page Data is internally sampled by  
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.  
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
2.0  
MIN  
MAX  
2.0  
MIN  
MAX  
2.0  
tR(DO)  
Rise time, output data  
ns  
ns  
ns  
ns  
tF(DO)  
Fall time, output data  
Pulse duration, Read  
2.0  
2.0  
2.0  
FA0  
tW(nBEV)  
N(12)  
N(12)  
N(12)  
N(12)  
N(12)  
N(12)  
gpmc_nbe0_cl  
e, gpmc_nbe1  
Write  
valid time  
FA1  
FA3  
tW(nCSV)  
Pulse duration, Read  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
A(1)  
ns  
ns  
gpmc_ncsx(13)  
Write  
v low  
td(nCSV-nADVIV)  
Delay time,  
gpmc_ncsx(13)  
valid to  
Read  
Write  
B(2) – 0.2  
B(2) – 0.2  
B(2) + 2.0  
B(2) + 2.0  
B(2) – 0.2  
B(2) – 0.2  
B(2) + 2.6  
B(2) + 2.6  
B(2) – 0.2  
B(2) – 0.2  
B(2) + 3.7  
B(2) + 3.7  
ns  
ns  
gpmc_nadv_al  
e invalid  
FA4  
td(nCSV-nOEIV)  
Delay time,  
C(3) – 0.2  
C(3) + 2.0  
C(3) – 0.2  
C(3) + 2.6  
C(3) – 0.2  
C(3) + 3.7  
ns  
gpmc_ncsx(13) valid to  
gpmc_noe invalid  
(Single read)  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
139  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
FA9  
td(AV-nCSV)  
Delay time, address  
J(9) – 0.2  
J(9) + 2.0  
J(9) – 0.2  
J(9) + 2.6  
J(9) – 0.2  
J(9) + 3.7  
ns  
bus valid to  
gpmc_ncsx(13) valid  
FA10 td(nBEV-nCSV)  
Delay time,  
J(9) – 0.2  
J(9) + 2.0  
J(9) – 0.2  
J(9) + 2.6  
J(9) – 0.2  
J(9) + 3.7  
ns  
gpmc_nbe0_cle,  
gpmc_nbe1 valid to  
gpmc_ncsx(13) valid  
FA12 td(nCSV-nADVV)  
FA13 td(nCSV-nOEV)  
FA14 td(nCSV-IODIR)  
FA15 td(nCSV-IODIR)  
FA16 tw(AIV)  
Delay time,  
K(10) – 0.2 K(10) + 2.0 K(10) – 0.2 K(10) + 2.6 K(10) – 0.2 K(10) + 3.7  
L(11) – 0.2 L(11) + 2.0 L(11) – 0.2 L(11) + 2.6 L(11) – 0.2 L(11) + 3.7  
L(11) – 0.2 L(11) + 2.0 L(11) – 0.2 L(11) + 2.6 L(11) – 0.2 L(11) + 3.7  
M(14) – 0.2 M(14) + 2.0 M(14) – 0.2 M(14) + 2.6 M(14) – 0.2 M(14) + 3.7  
ns  
ns  
ns  
ns  
ns  
gpmc_ncsx(13) valid to  
gpmc_nadv_ale valid  
Delay time,  
gpmc_ncsx(13) valid to  
gpmc_noe valid  
Delay time,  
gpmc_ncsx(13) valid to  
gpmc_io_dir high  
Delay time,  
gpmc_ncsx(13) valid to  
gpmc_io_dir low  
Address invalid  
duration between 2  
successive R/W  
accesses  
G(7)  
G(7)  
G(7)  
FA18 td(nCSV-nOEIV)  
Delay time,  
I(8) – 0.2  
I(8) + 2.0  
I(8) – 0.2  
I(8) + 2.6  
I(8) – 0.2  
I(8) + 3.7  
ns  
gpmc_ncsx(13) valid to  
gpmc_noe invalid  
(Burst read)  
FA20 tw(AV)  
Pulse duration, address  
valid – 2nd, 3rd, and  
4th accesses  
D(4)  
D(4)  
D(4)  
ns  
ns  
ns  
FA25 td(nCSV-nWEV)  
Delay time,  
E(5) – 0.2  
F(6) – 0.2  
E(5) + 2.0  
F(6) + 2.0  
E(5) – 0.2  
F(6) – 0.2  
E(5) + 2.6  
F(6) + 2.6  
E(5) – 0.2  
F(6) – 0.2  
E(5) + 3.7  
F(6) + 3.7  
gpmc_ncsx(13) valid to  
gpmc_nwe valid  
FA27 td(nCSV-nWEIV)  
Delay time,  
gpmc_ncsx(13) valid to  
gpmc_nwe invalid  
FA28 td(nWEV-DV)  
FA29 td(DV-nCSV)  
Delay time, gpmc_ new  
valid to data bus valid  
2.0  
2.6  
3.7  
ns  
ns  
Delay time, data bus  
valid to gpmc_ncsx(13)  
valid  
J(9) – 0.2  
J(9) + 2.0  
J(9) – 0.2  
J(9) + 2.6  
J(9) – 0.2  
J(9) + 3.7  
FA37 td(nOEV-AIV)  
Delay time, gpmc_noe  
valid to  
2.0  
2.6  
3.7  
ns  
gpmc_a[16:1]_d[15:0]  
address phase end  
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For single write: A = (CSWrOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n  
being the page burst access number  
(2) For reading: B = ((ADVRdOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK  
For writing: B = ((ADVWrOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(3) C = ((OEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK  
(5) E = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(6) F = ((WEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(7) G = Cycle2CycleDelay * GPMC_FCLK  
(8) I = ((OEOffTime + (n – 1) * PageBurstAccessTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) *  
GPMC_FCLK  
140  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
(9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK  
(10) K = ((ADVOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(11) L = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK  
For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst read: N = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst write: N = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.  
(14) M = ((RdCycleTime - CSOnTime) * (TimeParaGranularity + 1) - 0.5 * CSExtraDelay) * GPMC_FCLK  
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both  
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses  
performed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR  
behavior is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the OMAP35x Technical  
Reference Manual (TRM) [literature number SPRUF98].  
GPMC_FCLK  
gpmc_clk  
FA5  
FA1  
gpmc_ncsx  
FA9  
gpmc_a[10:1]  
Valid Address  
FA0  
FA10  
gpmc_nbe0_cle  
gpmc_nbe1  
Valid  
FA0  
Valid  
FA10  
FA3  
FA12  
gpmc_nadv_ale  
FA4  
FA13  
gpmc_noe  
gpmc_d[15:0]  
Data IN 0  
Data IN 0  
gpmc_waitx  
gpmc_io_dir  
FA15  
FA14  
OUT  
IN  
OUT  
030-026  
Figure 6-7. GPMC/NOR Flash – Asynchronous Read – Single Word Timing(1)(2)(3)  
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.  
FA5 value must be stored inside AccessTime register bit field.  
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
141  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
GPMC_FCLK  
gpmc_clk  
FA5  
FA5  
FA1  
FA1  
gpmc_ncsx  
FA16  
FA9  
FA9  
gpmc_a[10:1]  
Address 0  
FA0  
Address 1  
FA0  
FA10  
FA10  
gpmc_nbe0_cle  
gpmc_nbe1  
Valid  
FA0  
Valid  
FA0  
Valid  
Valid  
FA10  
FA10  
FA3  
FA12  
FA3  
FA12  
gpmc_nadv_ale  
FA4  
FA4  
FA13  
FA13  
gpmc_noe  
Data Upper  
gpmc_d[15:0]  
gpmc_waitx  
gpmc_io_dir  
FA15  
FA15  
FA14  
OUT  
FA14  
OUT  
IN  
IN  
030-027  
Figure 6-8. GPMC/NOR Flash – Asynchronous Read – 32-bit Timing(1)(2)(3)  
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.  
FA5 value must be stored inside AccessTime register bit field.  
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
142  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
GPMC_FCLK  
gpmc_clk  
FA21  
FA20  
Add1  
FA20  
Add3  
FA20  
FA1  
gpmc_ncsx  
FA9  
gpmc_a[10:1]  
Add0  
Add2  
Add4  
FA0  
FA10  
FA10  
gpmc_nbe0_cle  
FA0  
gpmc_nbe1  
FA12  
gpmc_nadv_ale  
FA18  
FA13  
gpmc_noe  
D3  
gpmc_d[15:0]  
D0  
D1  
D2  
D3  
gpmc_waitx  
gpmc_io_dir  
FA15  
FA14  
OUT  
OUT  
IN  
030-028  
Figure 6-9. GPMC/NOR Flash – Asynchronous Read – Page Mode 4x16-bit Timing(1)(2)(3)(4)  
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
(2) FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by  
active functional clock edge. FA21 value must be stored inside AccessTime register bit field.  
(3) FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC  
functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock edge  
after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first input  
page data). FA20 value must be stored in PageBurstAccessTime register bit field.  
(4) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
143  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
gpmc_fclk  
gpmc_clk  
FA1  
gpmc_ncsx  
FA9  
gpmc_a[10:1]  
gpmc_nbe0_cle  
gpmc_nbe1  
Valid Address  
FA0  
FA10  
FA10  
FA0  
FA3  
FA12  
gpmc_nadv_ale  
FA27  
FA25  
gpmc_nwe  
gpmc_d[15:0]  
gpmc_waitx  
gpmc_io_dir  
FA29  
Data OUT  
OUT  
030-029  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-10. GPMC/NOR Flash – Asynchronous Write – Single Word Timing  
144  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
GPMC_FCLK  
gpmc_clk  
FA1  
FA5  
gpmc_ncsx  
FA9  
gpmc_a[26:17]  
Address (MSB)  
FA0  
FA10  
FA10  
gpmc_nbe0_cle  
gpmc_nbe1  
Valid  
FA0  
Valid  
FA3  
FA12  
gpmc_nadv_ale  
gpmc_noe  
FA4  
FA13  
FA29  
FA37  
Data IN  
Data IN  
gpmc_a[16:1]_d[15:0]  
gpmc_io_dir  
Address (LSB)  
FA15  
FA14  
OUT  
OUT  
IN  
gpmc_waitx  
030-030  
Figure 6-11. GPMC/Multiplexed NOR Flash – Asynchronous Read – Single Word Timing(1)(2)(3)  
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.  
FA5 value must be stored inside AccessTime register bit field.  
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
145  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
gpmc_fclk  
gpmc_clk  
FA1  
gpmc_ncsx  
FA9  
gpmc_a[26:17]  
gpmc_nbe0_cle  
gpmc_nbe1  
Address (MSB)  
FA0  
FA10  
FA10  
FA0  
FA3  
FA12  
gpmc_nadv_ale  
FA27  
FA25  
gpmc_nwe  
gpmc_a[16:1]_d[15:0]  
gpmc_waitx  
FA29  
FA28  
Valid Address (LSB)  
Data OUT  
gpmc_io_dir  
OUT  
030-031  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.  
Figure 6-12. GPMC/Multiplexed NOR Flash – Asynchronous Write – Single Word Timing  
6.4.1.3 GPMC/NAND Flash Interface Timing  
Table 6-10 through Table 6-12 assume testing over the recommended operating conditions (see  
Figure 6-13 through Figure 6-16) and electrical characteristic conditions.  
Table 6-9. GPMC/NAND Flash Asynchronous Mode Timing Conditions  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
1.8  
1.8  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.94  
pF  
Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing – Internal Parameters(1)(2)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
GNFI1  
GNFI2  
Maximum output data generation delay from  
internal functional clock  
6.5  
9.1  
13.7  
ns  
ns  
Maximum input data capture delay by internal  
functional clock  
4
5.6  
8.1  
(1) Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.  
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.  
146  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing – Internal Parameters (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
GNFI3  
GNFI4  
GNFI5  
GNFI6  
GNFI7  
GNFI8  
Maximum device select generation delay from  
internal functional clock  
6.5  
9.1  
13.7  
ns  
ns  
ns  
ns  
ns  
ps  
Maximum address latch enable generation delay  
from internal functional clock  
6.5  
6.5  
6.5  
6.5  
100  
9.1  
9.1  
9.1  
9.1  
170  
13.7  
13.7  
13.7  
13.7  
200  
Maximum command latch enable generation  
delay from internal functional clock  
Maximum output enable generation delay from  
internal functional clock  
Maximum write enable generation delay from  
internal functional clock  
Maximum functional clock skew  
Table 6-11. GPMC/NAND Flash Interface Timing Requirements  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
J(2)  
MIN  
MAX  
J(2)  
MIN  
MAX  
J(2)  
GNF12(1) tacc(DAT)  
Data maximum access time  
GPMC_FCLK  
cycles  
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the  
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.  
(2) J = AccessTime * (TimeParaGranularity + 1)  
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
tR(DO)  
Rise time, output  
data  
2.0  
2.0  
2.0  
ns  
ns  
ns  
tF(DO)  
Fall time, output  
data  
2.0  
2.0  
2.0  
GNF0  
GNF1  
tw(nWEV)  
Pulse duration,  
gpmc_nwe valid  
time  
A(1)  
A(1)  
A(1)  
td(nCSV-nWEV)  
tw(CLEH-nWEV)  
tw(nWEV-DV)  
Delay time,  
gpmc_ncsx(13)  
valid to  
B(2) – 0.2  
C(3) – 0.2  
D(4) – 0.2  
E(5) – 0.2  
F(6) – 0.2  
B(2) + 2.0  
C(3) + 2.0  
D(4) + 2.0  
E(5) + 2.0  
F(6) + 2.0  
B(2) – 0.2  
C(3) – 0.2  
D(4) – 0.2  
E(5) – 0.2  
F(6) – 0.2  
B(2) + 2.6  
C(3) + 2.6  
D(4) + 2.6  
E(5) + 2.6  
F(6) + 2.6  
B(2) – 0.2  
C(3) – 0.2  
D(4) – 0.2  
E(5) – 0.2  
F(6) – 0.2  
B(2) + 3.7  
C(3) + 3.7  
D(4) + 3.7  
E(5) + 3.7  
F(6) + 3.7  
ns  
ns  
ns  
ns  
ns  
gpmc_nwe valid  
GNF2  
GNF3  
GNF4  
GNF5  
Delay time,  
gpmc_nbe0_cle  
high to gpmc_nwe  
valid  
Delay time,  
gpmc_d[15:0]  
valid to  
gpmc_nwe valid  
tw(nWEIV-DIV)  
Delay time,  
gpmc_nwe invalid  
to gpmc_d[15:0]  
invalid  
tw(nWEIV-CLEIV)  
Delay time,  
gpmc_nwe invalid  
to  
gpmc_nbe0_cle  
invalid  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
147  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
0.9 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
GNF6  
tw(nWEIV-nCSIV)  
tw(ALEH-nWEV)  
tw(nWEIV-ALEIV)  
Delay time,  
G(7) – 0.2 G(7) + 2.0  
G(7) – 0.2  
G(7) + 2.6 G(7) – 0.2 G(7) + 3.7  
ns  
gpmc_nwe invalid  
to gpmc_ncsx(13)  
invalid  
GNF7  
GNF8  
Delay time,  
gpmc_nadv_ale  
High to  
C(3) – 0.2  
F(6) – 0.2  
C(3) + 2.0  
F(6) + 2.0  
C(3) – 0.2  
F(6) – 0.2  
C(3) + 2.6  
F(6) + 2.6  
C(3) – 0.2  
F(6) – 0.2  
C(3) + 3.7  
F(6) + 3.7  
ns  
ns  
gpmc_nwe valid  
Delay time,  
gpmc_nwe invalid  
to  
gpmc_nadv_ale  
invalid  
GNF9  
tc(nWE)  
Cycle time, Write  
cycle time  
H(8)  
H(8)  
H(8)  
ns  
ns  
GNF10  
td(nCSV-nOEV)  
Delay time,  
gpmc_ncsx(13)  
valid to gpmc_noe  
valid  
I(9) – 0.2  
I(9) + 2.0  
I(9) – 0.2  
I(9) + 2.6  
I(9) – 0.2  
I(9) + 3.7  
GNF13  
tw(nOEV)  
Pulse duration,  
gpmc_noe valid  
time  
K(10)  
K(10)  
K(10)  
ns  
GN F14  
GNF15  
tc(nOE)  
Cycle time, Read  
cycle time  
L(11)  
L(11)  
L(11)  
ns  
ns  
tw(nOEIV-nCSIV)  
Delay time,  
M(12) – 0.2 M(12) + 2.0 M(12) – 0.2 M(12) + 2.6 M(12) – 0.2 M(12) + 3.7  
gpmc_noe invalid  
to gpmc_ncsx(13)  
invalid  
(1) A = (WEOffTime – WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK  
(2) B = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(3) C = ((WEOnTime – ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – ADVExtraDelay)) * GPMC_FCLK  
(4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay ) * GPMC_FCLK  
(5) E = ((WrCycleTime – WEOffTime) * (TimeParaGranularity + 1) – 0.5 * WEExtraDelay ) * GPMC_FCLK  
(6) F = ((ADVWrOffTime – WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – WEExtraDelay )) * GPMC_FCLK  
(7) G = ((CSWrOffTime – WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – WEExtraDelay )) * GPMC_FCLK  
(8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK  
(9) I = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK  
(10) K = (OEOffTime – OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK  
(11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK  
(12) M = ((CSRdOffTime – OEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – OEExtraDelay )) * GPMC_FCLK  
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.  
148  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
GPMC_FCLK  
gpmc_ncsx  
GNF1  
GNF2  
GNF6  
GNF5  
gpmc_nbe0_cle  
gpmc_nadv_ale  
gpmc_noe  
GNF0  
gpmc_nwe  
GNF3  
GNF4  
gpmc_a[16:1]_d[15:0]  
Command  
030-032  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.  
Figure 6-13. GPMC/NAND Flash – Command Latch Cycle Timing  
GPMC_FCLK  
gpmc_ncsx  
GNF1  
GNF7  
GNF6  
GNF8  
gpmc_nbe0_cle  
gpmc_nadv_ale  
gpmc_noe  
GNF9  
GNF0  
gpmc_nwe  
GNF3  
GNF4  
gpmc_a[16:1]_d[15:0]  
Address  
030-033  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.  
Figure 6-14. GPMC/NAND Flash – Address Latch Cycle Timing  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
149  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
GPMC_FCLK  
GNF12  
GNF10  
GNF15  
gpmc_ncsx  
gpmc_nbe0_cle  
gpmc_nadv_ale  
GNF14  
GNF13  
gpmc_noe  
gpmc_a[16:1]_d[15:0]  
DATA  
gpmc_waitx  
030-034  
Figure 6-15. GPMC/NAND Flash – Data Read Cycle Timing(1)(2)(3)  
(1) The GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data is internally sampled by active functional clock  
edge. The GNF12 value must be stored inside AccessTime register bit field.  
(2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
(3) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 ,1, 2, or 3.  
GPMC_FCLK  
GNF1  
GNF6  
gpmc_ncsx  
gpmc_nbe0_cle  
gpmc_nadv_ale  
gpmc_noe  
GNF9  
GNF0  
gpmc_nwe  
GNF3  
GNF4  
gpmc_a[16:1]_d[15:0]  
DATA  
030-035  
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 or 1.  
Figure 6-16. GPMC/NAND Flash – Data Write Cycle Timing  
150  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
6.4.2 SDRAM Controller Subsystem (SDRC)  
The SDRAM controller subsystem (SDRC) module provides connectivity between the OMAP3525 and  
OMAP3530 Applications Processors and external DRAM memory components. The SDRC module only  
supports low-power double-data-rate (LPDDR) SDRAM devices. Memory devices can be interfaced to the  
SDRC using a stacked-memory approach or through the printed circuit board (PCB). The stacked-memory  
approach uses the package on package interface pins (available on CBB & CBC package).  
6.4.2.1 SDRAM Controller Subsystem Device-Specific Information  
The approach to specifying interface timing for the SDRC memory bus is different than on other interfaces  
such as the general-purpose memory controller (GPMC) and the multi-channel buffered serial ports  
(McBSPs). For these other interfaces the device timing was specified in terms of data manual  
specifications and I/O buffer information specification (IBIS) models.  
For the SDRC memory bus, the approach is to specify compatible memory devices and provide the  
printed circuit board (PCB) solution and guidelines directly to the user. Texas Instruments (TI) has  
performed the simulation and system characterization to ensure all interface timings in this solution are  
met.  
6.4.2.2 LPDDR Interface  
The LPDDR interface is balled out on the bottom side of all OMAP35x packages and on the top side of  
OMAP35x POP packages. The LPDDR interface on the top of the POP package has been designed for  
compatibility any POP LPDDR device with a matching footprint and compliance with the JEDEC  
LPDDR-266 specification.  
This section provides the timing specification for the bottom-side LPDDR interface as a PCB design and  
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal  
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable LPDDR memory  
system without the need for a complex timing closure process. For more information regarding guidelines  
for using this LPDDR specification, see the Understanding TI's PCB Routing Rule-Based DDR Timing  
Specification Application Report (literature number SPRAAV0).  
6.4.2.2.1 LPDDR Interface Schematic  
Figure 6-17 and Figure 6-18 show the LPDDR interface schematics for a LPDDR memory system. The 1  
x16 LPDDR system schematic is identical to Figure 6-17 except that the high word LPDDR device is  
deleted.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
151  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
OMAP35x  
LPDDR  
DQ0  
T
sdrc_d0  
T
sdrc_d7  
DQ7  
T
sdrc_dm0  
LDM  
LDQS  
DQ8  
T
sdrc_dqs0  
T
sdrc_d8  
T
sdrc_d15  
DQ15  
UDM  
T
sdrc_dm1  
T
sdrc_dqs1  
UDQS  
LPDDR  
T
sdrc_d16  
DQ0  
T
T
T
T
sdrc_d23  
sdrc_dm2  
sdrc_dqs2  
sdrc_d24  
DQ7  
LDM  
LDQS  
DQ8  
T
T
T
sdrc_d31  
sdrc_dm3  
sdrc_dqs3  
sdrc_ba0  
sdrc_ba1  
sdrc_a0  
DQ15  
UDM  
UDQS  
BA0  
BA1  
A0  
T
T
T
BA0  
BA1  
A0  
T
T
sdrc_a14  
sdrc_ncs0  
sdrc_ncs1  
sdrc_ncas  
sdrc_nras  
sdrc_nwe  
sdrc_cke0  
sdrc_cke1  
sdrc_clk  
A14  
CS  
A14  
CS  
N/C  
T
T
T
T
CAS  
RAS  
WE  
CAS  
RAS  
WE  
CKE  
CKE  
N/C  
T
CK  
CK  
CK  
CK  
T
sdrc_nclk  
Figure 6-17. OMAP35x LPDDR High Level Schematic (x16 memories)  
152  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
OMAP35x  
sdrc_d0  
LPDDR  
T
DQ0  
T
sdrc_d7  
sdrc_dm0  
sdrc_dqs0  
sdrc_d8  
DQ7  
T
DM0  
T
DQS0  
T
DQ8  
T
sdrc_d15  
sdrc_dm1  
sdrc_dqs1  
DQ15  
T
DM1  
T
DQS1  
T
sdrc_d16  
DQ16  
T
sdrc_d23  
sdrc_dm2  
sdrc_dqs2  
sdrc_d24  
DQ23  
T
DM2  
T
DQS2  
T
DQ24  
T
sdrc_d31  
sdrc_dm3  
sdrc_dqs3  
sdrc_ba0  
sdrc_ba1  
sdrc_a0  
DQ31  
T
DM3  
T
DQS3  
T
BA0  
T
BA1  
T
A0  
T
sdrc_a14  
sdrc_ncs0  
sdrc_ncs1  
sdrc_ncas  
sdrc_nras  
sdrc_nwe  
sdrc_cke0  
sdrc_cke1  
sdrc_clk  
A14  
T
CS  
N/C  
T
CAS  
T
RAS  
T
WE  
T
CKE  
N/C  
T
CK  
T
sdrc_nclk  
CK  
Figure 6-18. OMAP35x LPDDR High Level Schematic (x32 memory)  
6.4.2.2.2 Compatible JEDEC LPDDR Devices  
Table 6-13 shows the parameters of the JEDEC LPDDR devices that are compatible with this interface.  
Generally, the LPDDR interface is compatible with x16 and x32 LPDDR266 and LPDDR333 speed grade  
LPDDR devices.  
Table 6-13. Compatible JEDEC LPDDR Devices  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
NOTES  
JEDEC LPDDR Device Speed  
Grade  
(1)  
(2)  
1
LPDDR-266  
See Note  
2
3
JEDEC LPDDR Device Bit Width  
JEDEC LPDDR Device Count  
16  
1
32  
2
Bits  
Devices  
See Note  
JEDEC LPDDR Device Ball  
Count  
4
60  
90  
Balls  
(1) Higher LPDDR speed grades are supported due to inherent JEDEC LPDDR backwards compatibility.  
(2) 1 x16 LPDDR device is used for 16 bit LPDDR memory system. 1x32 or 2x16 LPDDR devices are used for a 32-bit LPDDR memory  
system.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
153  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
6.4.2.2.3 PCB Stackup  
The minimum stackup required for routing the OMAP35x is a six layer stack as shown in Table 6-14.  
Additional layers may be added to the PCB stack up to accommodate other circuity or to reduce the size  
of the PCB footprint.  
Table 6-14. OMAP35x Minimum PCB Stack Up  
LAYER  
TYPE  
Signal  
Plane  
Plane  
Signal  
Plane  
Signal  
DESCRIPTION  
Top Routing Mostly Horizontal  
Ground  
1
2
3
4
5
6
Power  
Internal Routing  
Ground  
Bottom Routing Mostly Vertical  
Table 6-15. PCB Stack Up Specifications  
NO.  
1
PARAMETER  
MIN  
6
TYP  
MAX  
UNIT  
NOTES  
PCB Routing/Plane Layers  
Signal Routing Layers  
2
3
3
Full ground layers under LPDDR routing region  
2
4
Number of ground plane cuts allowed within LPDDR routing region  
0
0
Number of ground reference planes required for each LPDDR routing 1  
layer  
5
6
1
Number of layers between LPDDR routing layer and reference ground 0  
plane  
7
PCB Routing Feature Size  
PCB Trace Width w  
4
4
Mils  
Mils  
Mils  
Mils  
8
9
PCB BGA escape via pad size  
PCB BGA escape via hole size  
Device BGA Pad Size  
18  
8
10  
11  
12  
13  
14  
See Note(1)  
See Note(2)  
LPDDR Device BGA Pad Size  
Single Ended Impedance, ZO  
Impedance Control  
50  
75  
Z-5  
Z
Z + 5  
See Note(3)  
(1) Please see the Flip Chip Ball Grid Array Package Reference Guide (literature number SPRU811) for device BGA pad size.  
(2) Please see the LPDDR device manufacturer documentation for the LPDDR device BGA pad size.  
(3) Z is the nominal singled ended impedance selected for the PCB specified by item 12.  
6.4.2.3 Placement  
Figure 6-19 shows the required placement for the OMAP35x device as well as the LPDDR devices. The  
dimensions for Figure 6-19 are defined in Table 6-16. The placement does not restrict the side of the PCB  
that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace  
lengths and allow for proper routing space. For 1x16 and 1x32 LPDDR memory systems, the second  
LPDDR device is omitted from the placement.  
154  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
X
A1  
Y
OFFSET  
LPDDR  
Device  
Y
Y
OMAP  
OFFSET  
A1  
Recommended LPDDR Device  
Orientation  
Figure 6-19. OMAP35x and LPDDR Device Placement  
Table 6-16. Placement Specifications  
NO.  
1
PARAMETER  
MIN  
MAX  
1440  
1030  
525  
UNIT  
Mils  
Mils  
Mils  
NOTES  
See Notes(1)  
See Notes(1)  
(2)  
(2)  
X
,
,
2
Y
3
Y Offset  
See Notes(1) (2) (3)  
, ,  
4
LPDDR Keepout Region  
See Note(4)  
Clearance from non-LPDDR signal to LPDDR  
Keepout Region  
5
4
w
See Note(5)  
(1) See Figure 6-17 for dimension definitions.  
(2) Measurements from center of device to center of LPDDR device.  
(3) For 16 bit memory systems it is recommended that Y Offset be as small as possible.  
(4) LPDDR keepout region to encompass entire LPDDR routing area.  
(5) Non-LPDDR signals allowed within LPDDR keepout region provided they are separated from LPDDR routing layers by a ground plane.  
6.4.2.4 LPDDR Keep Out Region  
The region of the PCB used for the LPDDR circuitry must be isolated from other signals. The LPDDR  
keep out region is defined for this purpose and is shown in Figure 6-20. The size of this region varies with  
the placement and LPDDR routing. Additional clearances required for the keep out region are shown in  
Table 6-16.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
155  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
A1  
LPDDR Device  
A1  
Region should encompass all LPDDR circuitry and varies depending  
on placement. Non-LPDDR signals should not be routed on the  
LPDDR signal layers within the LPDDR keep out region. Non-LPDDR  
signals may be routed in the region provided they are routed on  
layers separated from LPDDR signal layers by a ground layer. No  
breaks should be allowed in the reference ground layers in this  
region. In addition, the 1.8 V power plane should cover the entire keep  
out region.  
Figure 6-20. LPDDR Keepout Region  
6.4.2.5 Net Classes  
Table 6-17 lists the clock net classes for the LPDDR interface. Table 6-18 lists the signal net classes, and  
associated clock net classes, for the signals in the LPDDR interface. These net classes are used for the  
termination and routing rules that follow.  
Table 6-17. Clock Net Class Definitions  
CLOCK NET CLASS  
OMAP PIN NAMES  
sdrc_clk/sdrc_nclk  
sdrc_dqs0  
CK  
DQS0  
DQS1  
DQS2  
DQS3  
sdrc_dqs1  
sdrc_dqs2  
sdrc_dqs3  
Table 6-18. Signal Net Class Definitions  
CLOCK NET CLASS  
ASSOCIATED CLOCK NET CLASS  
OMAP PIN NAMES  
sdrc_ba, sdrc_a, sdrc_ncs0, sdrc_ncas,  
sdrc_nras, sdrc_nwe, sdrc_cke0  
ADDR_CTRL  
CK  
DQ0  
DQ1  
DQ2  
DQ3  
DQS0  
DQS1  
DQS2  
DQS3  
sdrc_d, sdrc_dm0  
sdrc_d, sdrc_dm1  
sdrc_d, sdrc_dm2  
sdrc_d, sdrc_dm3  
6.4.2.6 LPDDR Signal Termination  
No terminations of any kind are required in order to meet signal integrity and overshoot requirements.  
Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only  
type permitted. Table 6-19 shows the specifications for the series terminators.  
Table 6-19. LPDDR Signal Terminations  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
NOTES  
1
CK Net Class  
0
10  
See Note(1)  
(1) Only series termination is permitted, parallel or SST specifically disallowed.  
156 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-19. LPDDR Signal Terminations (continued)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
NOTES  
See Notes(1) (2) (3)  
2
ADDR_CTRL Net Class  
0
22  
Zo  
,
,
Data Byte Net Classes  
(DQS0-DQS3, DQ0-DQ3)  
3
0
22  
Zo  
See Notes(1) (2) (3)  
, ,  
(2) Terminator values larger than typical only recommended to address EMI issues.  
(3) Termination value should be uniform across net class.  
6.4.2.7 LPDDR CK and ADDR_CTRL Routing  
Figure 6-21 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a  
balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A  
should be maximized.  
A1  
T
A
OMAP  
A1  
Figure 6-21. CK and ADDR_CTRL Routing and Topology  
Table 6-20. CK and ADDR_CTRL Routing Specification  
NO.  
1
PARAMETER  
MIN  
TYP  
MAX  
2w  
UNIT  
NOTES  
Center to Center CK-CK spacing  
CK A to B/A to C Skew Length Mismatch  
CK B to C Skew Length Mismatch  
2
25  
Mils  
Mils  
See Note(1)  
3
25  
Center to Center CK to other  
LPDDR trace spacing  
4
4w  
See Note(2)  
See Note(3)  
5
6
CK/ADDR_CTRL nominal trace length  
CACLM-50  
CACLM  
CACLM+50  
100  
Mils  
Mils  
ADDR_CTRL to CK Skew Length Mismatch  
ADDR_CTRL to ADDR_CTRL  
Skew Length Mismatch  
7
8
9
100  
Mils  
Center to Center ADDR_CTRL to other  
LPDDR trace 4w spacing  
4w  
3w  
See Note(2)  
See Note(2)  
See Note(1)  
Center to Center ADDR_CTRL to other  
ADDR_CTRL 3w trace spacing  
ADDR_CTRL A to B/A to C Skew Length  
Mismatch  
10  
11  
100  
100  
Mils  
Mils  
ADDR_CTRL B to C Skew Length Mismatch  
(1) Series terminator, if used, should be located closest to device.  
(2) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing  
congestion.  
(3) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
157  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Figure 6-22 shows the topology and routing for the DQS and DQ net classes; the routes are point to point.  
Skew matching across bytes is not needed nor recommended.  
T
E0  
A1  
T
E1  
OMAP  
T
E2  
A1  
T
E3  
Figure 6-22. DQS and DQ Routing and Topology  
Table 6-21. DQS and DQ Routing Specification(1)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
NOTES  
2
DQS E Skew Length Mismatch  
25  
Mils  
Center to Center DQS to other LPDDR  
trace spacing  
3
4w  
See Note(2)  
See Note(3)  
4
5
6
DQS/DQ nominal trace length  
DQ to DQS Skew Length Mismatch  
DQ to DQ Skew Length Mismatch  
DQLM - 50  
DQLM  
DQLM + 50  
100  
Mils  
Mils  
Mils  
100  
Center to Center DQ to other LPDDR  
trace spacing  
7
4w  
3w  
See Note(2)  
Center to Center DQ to other DQ trace  
spacing  
8
9
See Note(2) (4)  
,
DQ E Skew Length Mismatch  
100  
Mils  
(1) Series terminator, if used, should be located closest to LPDDR.  
(2) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing  
congestion.  
(3) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing  
congestion.  
(4) DQLM is the longest Manhattan distance of the DQS and DQ net classes.  
158  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
6.5 Video Interfaces  
6.5.1 Camera Interface  
The camera subsystem provides the system interfaces and the processing capability to connect raw, YUV,  
or JPEG image sensor modules to the OMAP3525 and OMAP3530 devices for video-preview,  
video-record, and still-image-capture applications. The camera subsystem supports up to two  
simultaneous pixel flows but only one of them can use the video processing hardware:  
PARALLEL: the parallel interface data must go through the video processing hardware.  
6.5.1.1 First Camera Serial Interface (CSI2) Timing  
First camera serial interface is a MIPI (MIPI CSI2) D-PHY compliant interface connecting a digital camera  
module and a mobile phone application. This interface is made of three differential lanes, each of them  
being configurable for carrying data or clock. The polarity of each wire of a lane is also configurable.  
6.5.1.1.1 Camera Serial Interface in High-Speed Mode  
Table 6-23 assumes testing over the recommended operating conditions and electrical characteristic  
conditions (see Figure 6-23).  
Table 6-22. Camera Serial Intrerface Timing Conditions – High-Speed Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
MIN  
MAX  
Input Conditions  
(1)  
(1)  
tR  
tF  
Input signal rise time  
Input signal fall time  
0.15  
0.15  
0.4*tUIINST  
0.4*tUIINST  
ns  
ns  
(1) For tUIINST timing, please refer to the CS2, CS3, and CS6 parameters defined in Table 6-23  
Table 6-23. Camera Serial Interface Timing Requirements – High-Speed Mode(1)  
NO.  
PARAMETER=  
OPP3  
OPP2  
UNIT  
MIN  
2.5  
MAX  
MIN  
2.5  
MAX  
CS1  
tc(clk)  
Cycle time(2), input clock period  
25.0  
25.0  
ns  
ns  
CS2,  
CS3  
tUI(INST,MIN)  
Minimum instantaneous unit interval  
1.15  
1.15  
CS4  
CS5  
CS6  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, data valid before clock rising edge  
Hold time, data valid after clock rising edge  
Minimum instantaneous bit duration  
0.172  
0.172  
1.15  
0.172  
0.172  
1.15  
ns  
ns  
ns  
tUI(INST,MIN)  
(1) The timing requirements are assured up to the minimum instantaneous bit duration.  
(2) Related with the input maximum frequency supported by the CSI2 module.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
159  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
CS1  
CS3  
CS2  
csi2a_dwi  
CS4  
CS4  
CS5  
CS5  
CS6  
csi2a_dwi  
csi2a_dwi  
Data (j-1)  
Data_j  
Data_k  
Data_(j+1)  
CS6  
Data_(k-1)  
Data_(k+1)  
030-053  
Figure 6-23. Camera Serial Interface Timing Requirements – High-Speed Mode(1)(2)(3)(4)  
(1) w = x and y  
(2) I = 0 to 2  
(3) The use of each csi2_dwi(1) lane (clock or data) is software programmable with the CSI2_COMPLEXIO_CFG1 register, by setting bit  
field CLOCK_POSITION to 0x1, 0x2, or 0x3.  
(4) The polarity of each csi2_dwi(1) lane is software programmable with the CSI2_COMPLEXIO_CFG1 register, DATAi_POL(2) bit field.  
6.5.1.1.2 Camera Serial Interface in Low-Power Mode and Ultralow-Power Mode  
Table 6-25 assumes testing over the recommended operating conditions and electrical characteristic  
conditions (see Figure 6-24).  
Table 6-24. Camera Serial Interface Timing Conditions – Low-Power Mode and Ultralow-Power Mode(1)  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
tF  
Input signal rise time  
Input signal fall time  
25  
25  
ns  
ns  
(1) Low-power and ultralow-power communication modes are asynchronous, data is Spaced-One-Hot bit encoded, data transfer clock is  
recovered by means of an XOR between csi2a_dxi and csi2a_dxi.  
Table 6-25. Camera Serial Interface Timing Requirements – Low-Power and Ultralow-Power Mode(1)  
NO.  
PARAMETER=  
1.35 V  
1.20 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
CS7  
tv(LPsate)  
Duration of a low-Power  
state(1)  
50  
50  
ns  
(1) Low-power and ultralow-power communication modes are asynchronous, data is Spaced-One-Hot bit encoded, data transfer clock is  
recovered by means of an XOR between csi2a_dxi and csi2a_dxi.  
CS7  
CS7  
csi2a_dxi  
mark_j-1  
space_j-1  
mark_j  
space_j  
mark_j+1  
CS7  
mark_k  
csi2a_dyi  
mark_k-1  
space_k-1  
space_k  
mark_k+1  
030-054  
Figure 6-24. Camera Serial Interface Timing Requirements – Low-Power and Ultralow-Power Mode(1)(2)  
(1) I = 0, 1, or 2  
(2) Low-power and ultralow-power communication modes are asynchronous, data is Spaced-One-Hot bit encoded, data transfer clock is  
recovered by means of an XOR between csi2a_dxi and csi2a_dyi.  
160  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
6.5.1.2 Second Camera Serial Interface (CSIb) Timing  
Second camera serial interface is a MIPI serial interface supporting following input data formats: YUV420,  
YUV422, RGB444, RGB565, RGB888, RAW8, RAW10, RAW12, and JPEG8. Clock and data are  
transferred on a differential SubLVDS link.  
Table 6-27 assumes testing over the recommended operating conditions and electrical characteristic  
conditions (see Figure 6-25).  
Table 6-26. CSIb Timing Conditions  
TIMING CONDITION PARAMETER  
CSIb – Class 0 Input Conditions  
VALUE  
UNIT  
tR  
tF  
Input signal rise time  
Input signal fall time  
0.50  
0.50  
ns  
ns  
CSIb – Class 1 Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
0.40  
0.40  
ns  
ns  
CSIb – Class 2 Input Conditions  
tR  
Input signal rise time  
0.40  
0.40  
ns  
ns  
tF  
Input signal fall time  
Output Condition  
CLOAD  
Output load capacitance  
20  
pF  
Table 6-27. CSIb Timing Requirements(3)(4)  
NO.  
PARAMETER  
OPP3  
OPP2  
UNIT  
MIN  
MAX  
MIN  
MAX  
CSIb – Class 0  
CS0  
tc(STRB)  
tw(STRB)  
Cycle time, csib_strbp/csib_strbn(2)  
4.8  
0.45*P(1)  
4.8  
0.45*P(1)  
ns  
ns  
CS1/  
CS2  
Pulse duration, csib_strbp/csib_strbn high/low  
duration  
0.55*P(1)  
0.55*P(1)  
CS3  
tsu(DATV-STRBH) Setup time, csib_datp/csib_datn valid before  
csib_strbp/csib_strbn rising edge  
0.6  
2
0.6  
2
ns  
ns  
CS4  
th(STRBH-DATV) Hold time, csib_datp/csib_datn valid after  
csib_strbp/csib_strbn rising edge  
CSIb – Class 1  
Cycle time, csib_strbp/csib_strbn(2)  
Stable duration, csib_strbp/csib_strbn  
CS10  
CS11  
CS12  
tc(STRB)  
tw(STRB)  
4.8  
0.45*P(1)  
1.3  
4.8  
0.45*P(1)  
1.3  
ns  
ns  
ns  
0.55*P(1)  
0.55*P(1)  
ts(DATV-STRBH) Skew time, csib_datp/csib_datn valid before  
csib_strbp/csib_strbn rising edge  
CS13  
ts(STRBF-DATV) Skew time, csib_datp/csib_datn valid after  
csib_strbp/csib_strbn falling edge  
1.3  
1.3  
ns  
CSIb – Class 2  
Cycle time, csib_strbp/csib_strbn(2)  
Stable duration, csib_strbp/csib_strbn  
CS10  
CS11  
CS12  
tc(STRB)  
tw(STRB)  
3.1  
0.45*P(1)  
0.7  
3.1  
0.45*P(1)  
0.7  
ns  
ns  
ns  
0.55*P(1)  
0.55*P(1)  
ts(DATV-STRBH) Skew time, csib_datp/csib_datn valid before  
csib_strbp/csib_strbn rising edge  
CS13  
ts(STRBF-DATV) Skew time, csib_datp/csib_datn valid after  
csib_strbp/csib_strbn falling edge  
0.7  
0.7  
ns  
(1) P = csib_strbp/csib_strbn period in ns.  
(2) The maximum clock frequency of the CSI must be chosen to be the lowest possible for the application / transmitting device in order to  
reduce the power consumption of the sensor, the IO pad of the device and the camera core module itself.  
(3) The input timing requirements are given by considering a rising, or a falling, time of 0.50 ns for Class 0, 0.40 ns for Class 1 and Class 2.  
(4) See DM Operating Condition Addendum for OPP voltages.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
161  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-28. CSIb Switching Characteristics(3)(4)  
NO.  
PARAMETER  
OPP3  
OPP2  
UNIT  
MIN  
MAX  
MIN  
MAX  
CSIb – Class 0  
CS5  
tc(XCLK)  
tw(XCLK)  
Cycle time, cam_xclkb(2)  
Pulse duration, cam_xclkb(2) high or low duration  
4.6  
4.6  
ns  
ns  
CS6/CS7  
0.45*PO(1) 0.55*PO(1) 0.45*PO(1) 0.55*PO(1)  
CSIb – Class =  
CS14  
tc(XCLK)  
Cycle time, cam_xclkb(2)  
Pulse duration, cam_xclkb(2) high or low duration  
4.6  
4.6  
ns  
ns  
CS15/CS16 tw(XCLK)  
0.45*PO(1) 0.55*PO(1) 0.45*PO(1) 0.55*PO(1)  
(1) PO = cam_xclkb period in ns. The duty cycle generated depends on the mode selected with the register TCTRL_CTRL[9:5] DIVB. For  
more information, see the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98  
(2) The cam_xclkb frequency is programmable by setting the configuration register TCTRL_CTRL[9:5] DIVB.  
Caution: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see  
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98  
(3) The capacitive load is equilvalent to 20 pf.  
(4) See DM Operating Condition Addendum for OPP voltages.  
CS0  
CS1  
CS2  
csib_strb  
csib_dat  
CS3  
CS4  
Bit 0  
Bit 6  
Bit 7  
CS5  
CS6  
CS7  
cam_xclkb  
030-055  
Figure 6-25. Camera Serial Interface (CSIb) – Class 0(1)(2)(3)  
(1) csib_strb and csib_dat are the result of low-voltage differential data signal converters (see the Camera Subsystem section of the  
OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98).  
(2) The CSI receives up to 208 Mbps data rate or data/clock transmission.  
(3) The CSI supports YUV422, YUV420, Bayer RGB444, RGB565, RGB888, RAW Bayer 6-, 7-, 8-, 10-, and 12-bit, and JPEG8 input data  
formats.  
CS10  
CS11  
csib_strb  
csib_dat  
CS12  
CS13  
CS14  
CS15  
CS16  
cam_xclkb  
030-119  
Figure 6-26. Camera Serial Interface (CSIb) – Class 1/2(1)(2)(3)  
(1) csib_strb and csib_dat are the result of low-voltage differential data signal converters (see the Camera Subsystem section of the  
OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98).  
162  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
(2) The CSI receives up to 208 Mbps data rate or data/clock transmission and up to 416 or 650 Mbps data rate for data/strobe  
transmission.  
(3) The CSI supports YUV422, YUV420, Bayer RGB444, RGB565, RGB888, RAW Bayer 6-, 7-, 8-, 10-, and 12-bit, and JPEG8 input data  
format.  
6.5.1.3 Parallel Camera Interface Timing  
The parallel camera interface is a 12-bit interface which can be used in two modes:  
1. SYNC mode: progressive and interlaced image sensor modules for 8-, 10-, 11-, and 12-bit data. The  
pixel clock can be up to 75 MHz in 12-bit mode. The pixel clock can be up to 130 MHz in 8-bit packed  
mode.  
2. ITU mode provides an ITU-R BT 656 compatible data stream with progressive image sensor modules  
only in 8- and 10-bit configurations. The pixel clock can be up to 75 MHz.  
6.5.1.3.1 SYNC Normal Mode  
6.5.1.3.1.1 12-Bit SYNC Normal – Progressive Mode  
Table 6-30 and Table 6-31 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-27).  
Table 6-29. ISP Timing Conditions – 12-Bit SYNC Normal – Progressive Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2.7  
2.7  
ns  
ns  
tF  
Output Condition  
CLOAD  
Output load capacitance  
8.6  
pF  
Table 6-30. ISP Timing Requirements – 12-Bit SYNC Normal – Progressive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
ISP17  
ISP18  
ISP18  
tc(pclk)  
Cycle time(2), cam_pclk period  
Typical pulse duration, cam_pclk high  
Typical pulse duration, cam_pclk low  
Duty cycle error, cam_pclk  
13.3  
22.2  
ns  
ns  
ns  
ps  
ps  
ns  
tW(pclkH)  
tW(pclkL)  
tdc(pclk)  
tj(pclk)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
667  
133  
1111  
200  
Cycle jitter(4), cam_pclk  
ISP19  
ISP20  
ISP21  
tsu(dV-pclkH)  
Setup time, cam_d[11:0] valid before cam_pclk rising  
edge  
1.82  
1.82  
1.82  
3.25  
3.25  
3.25  
th(pclkH-dV)  
tsu(dV-vsH)  
Hold time, cam_d[11:0] valid after cam_pclk rising  
edge  
ns  
ns  
Setup time, cam_vs valid before cam_pclk rising  
edge  
ISP22  
ISP23  
th(pclkH-vsV)  
tsu(dV-hsH)  
Hold time, cam_vs valid after cam_pclk rising edge  
1.82  
1.82  
3.25  
3.25  
ns  
ns  
Setup time, cam_hs valid before cam_pclk rising  
edge  
ISP24  
ISP25  
th(pclkH-hsV)  
tsu(dV-hsH)  
Hold time, cam_hs valid after cam_pclk rising edge  
1.82  
1.82  
3.25  
3.25  
ns  
ns  
Setup time, cam_wen valid before cam_pclk rising  
edge  
ISP26  
th(pclkH-hsV)  
Hold time, cam_wen valid after cam_pclk rising edge  
1.82  
3.25  
ns  
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
(2) Related with the input maximum frequency supported by the ISP module.  
(3) P = cam_pclk period in ns  
(4) Maximum cycle jitter supported by cam_pclk input clock.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
163  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-31. ISP Switching Characteristics – 12-Bit SYNC Normal – Progressive Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP15  
ISP16  
ISP16  
tc(xclk)  
Cycle time(1), cam_xclk period  
Typical pulse duration, cam_xclk high  
Typical pulse duration, cam_xclk low  
Duty cycle error, cam_xclk  
4.6  
4.6  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
tW(xclkH)  
tW(xclkL)  
tdc(xclk)  
tj(xclk)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
231  
231  
Jitter standard deviation(3), cam_xclk  
33  
33  
tR(xclk)  
tF(xclk)  
Rise time, cam_xclk  
0.93  
0.93  
0.93  
0.93  
Fall time, cam_xclk  
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.  
Warning: The camera sensor or the camera module must be disabled to change the frequency configuration. For more information, see  
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98]  
(2) PO = cam_xclk period in ns  
(3) The jitter probability density can be approximated by a Gaussian function.  
ISP16  
ISP15  
ISP16  
cam_xclki  
cam_pclk  
cam_vs  
ISP17  
ISP18  
ISP18  
ISP19  
ISP20  
ISP22  
ISP21  
cam_hs  
ISP23  
D(n-1)  
ISP24  
D(1)  
cam_d[11:0]  
D(0)  
D(n-3) D(n-2)  
D(0)  
D(n-1)  
ISP25  
ISP26  
cam_wen  
cam_fld  
030-056  
Figure 6-27. ISP – 12-Bit SYNC Normal – Progressive Mode(1)(2)(3)(4)(5)(6)(7)(8)  
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, the  
signal length can be set.  
(2) The parallel camera in SYNC mode supports progressive image sensor modules and 8-, 10-, 11-, or 12-bit data.  
(3) When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must be  
grounded.  
(4) However, it is possible to shift the data to 0, 2, or 4 data internal lanes.  
164  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit  
mode, and cam_d[11:0] in 12-bit mode.  
(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.  
(7) The cam_wen signal can be used as a external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and  
cam_wen signals are asserted.  
(8) In cam_xclki; I is equal to a or b.  
6.5.1.3.1.2 8-bit Packed SYNC – Progressive Mode  
Table 6-33 and Table 6-34 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-28).  
Table 6-32. ISP Timing Conditions – 8-bit Packed SYNC – Progressive Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2.5  
2.5  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
8.6  
pF  
Table 6-33. ISP Timing Requirements – 8-bit Packed SYNC – Progressive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
ISP3  
ISP4  
ISP4  
tc(pclk)  
Cycle time(2), cam_pclk period  
Typical pulse duration, cam_pclk high  
Typical pulse duration, cam_pclk low  
Duty cycle error, cam_pclk  
7.7  
15.4  
ns  
ns  
ns  
ps  
ps  
ns  
tW(pclkH)  
tW(pclkL)  
tdc(pclk)  
tj(pclk)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
385  
83  
769  
167  
Cycle jitter(4), cam_pclk  
ISP5  
ISP6  
ISP7  
tsu(dV-pclkH)  
Setup time, cam_d[11:0] valid before cam_pclk  
rising edge  
1.08  
1.08  
1.08  
2.27  
2.27  
2.27  
th(pclkH-dV)  
tsu(dV-vsH)  
Hold time, cam_d[11:0] valid after cam_pclk rising  
edge  
ns  
ns  
Setup time, cam_vs valid before cam_pclk rising  
edge  
ISP8  
ISP9  
th(pclkH-vsV)  
tsu(dV-hsH)  
Hold time, cam_vs valid after cam_pclk rising edge  
1.08  
1.08  
2.27  
2.27  
ns  
ns  
Setup time, cam_hs valid before cam_pclk rising  
edge  
ISP10  
ISP11  
th(pclkH-hsV)  
tsu(dV-hsH)  
Hold time, cam_hs valid after cam_pclk rising edge  
1.08  
1.08  
2.27  
2.27  
ns  
ns  
Setup time, cam_wen valid before cam_pclk rising  
edge  
ISP12  
th(pclkH-hsV)  
Hold time, cam_wen valid after cam_pclk rising edge  
1.08  
2.27  
ns  
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
(2) Related with the input maximum frequency supported by the ISP module.  
(3) P = cam_pclk period in ns.  
(4) Maximum cycle jitter supported by cam_pclk input clock.  
Table 6-34. ISP Switching Characteristics – 8-bit packed SYNC – Progressive Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP1  
ISP2  
tc(xclk)  
Cycle time(1), cam_xclk period  
4.6  
4.6  
ns  
ns  
tW(xclkH)  
Typical pulse duration, cam_xclk high  
0.5*PO(2)  
0.5*PO(2)  
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.  
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see  
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98  
(2) PO = cam_xclk period in ns  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
165  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-34. ISP Switching Characteristics – 8-bit packed SYNC – Progressive Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
0.5*PO(2)  
MIN  
MAX  
0.5*PO(2)  
ISP2  
tW(xclkL)  
tdc(xclk)  
tj(xclk)  
Typical pulse duration, cam_xclk low  
Duty cycle error, cam_xclk  
Jitter standard deviation(3), cam_xclk  
Rise time, cam_xclk  
ns  
ps  
ps  
ns  
ns  
231  
67  
231  
67  
tR(xclk)  
tF(xclk)  
0.93  
0.93  
0.93  
0.93  
Fall time, cam_xclk  
(3) The jitter probability density can be approximated by a Gaussian function.  
ISP1  
ISP2  
ISP2  
cam_xclki  
ISP4  
ISP3  
ISP4  
cam_pclk  
cam_vs  
ISP5  
ISP6  
ISP8  
ISP7  
cam_hs  
ISP9  
D(n-1)  
ISP10  
D(1)  
cam_d[7:0]  
D(0)  
D(n-3) D(n-2)  
D(0)  
D(n-1)  
ISP12  
ISP11  
cam_wen  
cam_fld  
030-059  
Figure 6-28. ISP – 8-bit Packed SYNC – Progressive Mode(1)(2)(3)(4)(5)  
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.  
(2) The image sensor must be connected to the lower data lines and the unused lines must be grounded. However, it is possible to shift the  
data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.  
(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a external  
memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted. The polarity of  
cam_fld is programmable.  
(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfer  
a YCbCr data stream or compressed stream to memory at very high speed.  
(5) In cam_xclki; I is equal to a or b.  
166  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
6.5.1.3.1.3 12-Bit SYNC Normal – Interlaced Mode  
Table 6-36 and Table 6-37 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-29).  
Table 6-35. ISP Timing Conditions – 12-Bit SYNC Normal – Interlaced Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2.7  
2.7  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
8.6  
pF  
Table 6-36. ISP Timing Requirements – 12-Bit SYNC Normal – Interlaced Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP17  
ISP18  
ISP18  
tc(pclk)  
Cycle time(2), cam_pclk period  
Typical pulse duration, cam_pclk high  
Typical pulse duration, cam_pclk low  
Duty cycle error, cam_pclk  
13.3  
22.2  
ns  
ns  
ns  
ps  
ps  
ns  
tW(pclkH)  
tW(pclkL)  
tdc(pclk)  
tj(pclk)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
667  
133  
1111  
200  
Cycle jitter(4), cam_pclk  
ISP19  
ISP20  
ISP21  
tsu(dV-pclkH)  
Setup time, cam_d[11:0] valid before cam_pclk  
rising edge  
1.82  
1.82  
1.82  
3.25  
th(pclkH-dV)  
tsu(dV-vsH)  
Hold time, cam_d[11:0] valid after cam_pclk rising  
edge  
3.25  
3.25  
ns  
ns  
Setup time, cam_vs valid before cam_pclk rising  
edge  
ISP22  
ISP23  
th(pclkH-vsV)  
tsu(dV-hsH)  
Hold time, cam_vs valid after cam_pclk rising edge  
1.82  
1.82  
3.25  
3.25  
ns  
ns  
Setup time, cam_hs valid before cam_pclk rising  
edge  
ISP24  
ISP25  
th(pclkH-hsV)  
tsu(dV-hsH)  
Hold time, cam_hs valid after cam_pclk rising edge  
1.82  
1.82  
3.25  
3.25  
ns  
ns  
Setup time, cam_wen valid before cam_pclk rising  
edge  
ISP26  
ISP27  
ISP28  
th(pclkH-hsV)  
tsu(dV-fldH)  
th(pclkH-fldV)  
Hold time, cam_wen valid after cam_pclk rising  
edge  
1.82  
1.82  
1.82  
3.25  
3.25  
3.25  
ns  
ns  
ns  
Setup time, cam_fld valid before cam_pclk rising  
edge  
Hold time, cam_fld valid after cam_pclk rising edge  
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
(2) Related with the input maximum frequency supported by the ISP module.  
(3) P = cam_lclk period in ns.  
(4) Maximum cycle jitter supported by cam_pclk input clock.  
Table 6-37. ISP Switching Characteristics – 12-Bit SYNC Normal – Interlaced Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP15  
ISP16  
ISP16  
tc(xclk)  
Cycle time(1), cam_xclk period  
Typical pulse duration, cam_xclk high  
Typical pulse duration, cam_xclk low  
Duty cycle error, cam_xclk  
4.6  
4.6  
ns  
ns  
ns  
ps  
tW(xclkH)  
tW(xclkL)  
tdc(xclk)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
231  
231  
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.  
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see  
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98  
(2) PO = cam_xclk period in ns.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
167  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-37. ISP Switching Characteristics – 12-Bit SYNC Normal – Interlaced Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
33  
MIN  
MAX  
33  
tj(xclk)  
tR(xclk)  
tF(xclk)  
Jitter standard deviation(3), cam_xclk  
Rise time, cam_xclk  
ps  
ns  
ns  
0.93  
0.93  
0.93  
0.93  
Fall time, cam_xclk  
(3) The jitter probability density can be approximated by a Gaussian function.  
ISP16  
ISP15  
ISP16  
cam_xclki  
cam_pclk  
ISP18  
ISP18  
ISP17  
ISP20  
ISP19  
cam_vs  
cam_hs  
FRAME(0)  
FRAME(0)  
ISP21  
ISP22  
L(0)  
L(n-1)  
L(0)  
ISP23  
D(1)  
ISP24  
D(n-1)  
cam_d[11:0]  
cam_wen  
D(0)  
D(n-3) D(n-2)  
D(n-1)  
D(0)  
D(2)  
ISP25  
ISP26  
ISP28  
ISP27  
cam_fld  
PAIR  
IMPAIR  
030-057  
Figure 6-29. ISP – 12-Bit SYNC Normal – Interlaced Mode(1)(2)(3)(4)(5)(6)(7)(8)  
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, the  
signal length can be set.  
(2) The parallel camera in SYNC mode supports interlaced image sensor modules and 8-, 10-, 11-, or 12-bit data.  
(3) When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must be  
grounded.  
(4) It is possible to shift the data to 0, 2, or 4 data internal lanes.  
(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit  
mode, and cam_d[11:0] in 12-bit mode.  
(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.  
(7) The cam_wen signal can be used as a external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and  
168  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
cam_wen signals are asserted.  
(8) In cam_xclki; I is equal to a or b.  
6.5.1.3.1.4 8-bit Packed SYNC – Interlaced Mode  
Table 6-39 and Table 6-40 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-30).  
Table 6-38. ISP Timing Conditions – 8-bit Packed SYNC – Interlaced Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2.5  
2.5  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
8.6  
pF  
Table 6-39. ISP Timing Requirements – 8-bit Packed SYNC – Interlaced Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP3  
ISP4  
ISP4  
tc(pclk)  
Cycle time(2), cam_pclk period  
Typical pulse duration, cam_pclk high  
Typical pulse duration, cam_pclk low  
Duty cycle error, cam_pclk  
7.7  
15.4  
ns  
ns  
ns  
ps  
ps  
ns  
tW(pclkH)  
tW(pclkL)  
tdc(pclk)  
tj(pclk)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
385  
83  
769  
167  
Cycle jitter(4), cam_pclk  
ISP5  
ISP6  
ISP7  
tsu(dV-pclkH)  
Setup time, cam_d[11:0] valid before cam_pclk  
rising edge  
1.08  
1.08  
1.08  
2.27  
2.27  
2.27  
th(pclkH-dV)  
tsu(dV-vsH)  
Hold time, cam_d[11:0] valid after cam_pclk rising  
edge  
ns  
ns  
Setup time, cam_vs valid before cam_pclk rising  
edge  
ISP8  
ISP9  
th(pclkH-vsV)  
tsu(dV-hsH)  
Hold time, cam_vs valid after cam_pclk rising edge  
1.08  
1.08  
2.27  
2.27  
ns  
ns  
Setup time, cam_hs valid before cam_pclk rising  
edge  
ISP10 th(pclkH-hsV)  
ISP11 tsu(dV-hsH)  
Hold time, cam_hs valid after cam_pclk rising edge  
1.08  
1.08  
2.27  
2.27  
ns  
ns  
Setup time, cam_wen valid before cam_pclk rising  
edge  
ISP12 th(pclkH-hsV)  
ISP13 tsu(dV-fldH)  
Hold time, cam_wen valid after cam_pclk rising edge  
1.08  
1.08  
2.27  
2.27  
ns  
ns  
Setup time, cam_fld valid before cam_pclk rising  
edge  
ISP14 th(pclkH-fldV)  
Hold time, cam_fld valid after cam_pclk rising edge  
1.08  
2.27  
ns  
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
(2) Related with the input maximum frequency supported by the ISP module.  
(3) P = cam_lclk period in ns.  
(4) Maximum cycle jitter supported by cam_pclk input clock.  
Table 6-40. ISP Switching Characteristics – 8-bit Packed SYNC – Interlaced Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP16  
ISP2  
tc(xclk)  
Cycle time(1), cam_xclk period  
4.6  
4.6  
ns  
ns  
tW(xclkH)  
Typical pulse duration, cam_xclk high  
0.5*PO(2)  
0.5*PO(2)  
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.  
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see  
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98  
(2) PO = cam_xclk period in ns.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
169  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-40. ISP Switching Characteristics – 8-bit Packed SYNC – Interlaced Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
0.5*PO(2)  
231  
MAX  
MIN  
0.5*PO(2)  
231  
MAX  
ISP2  
tW(xclkL)  
tdc(xclk)  
tj(xclk)  
Typical pulse duration, cam_xclk low  
Duty cycle error, cam_xclk  
Jitter standard deviation(3), cam_xclk  
Rise time, cam_xclk  
ns  
ps  
ps  
ns  
ns  
67  
67  
tR(xclk)  
tF(xclk)  
0.93  
0.93  
0.93  
0.93  
Fall time, cam_xclk  
(3) The jitter probability density can be approximated by a Gaussian function.  
ISP2  
ISP1  
ISP2  
cam_xclki  
cam_pclk  
ISP4  
ISP3  
ISP4  
ISP6  
ISP5  
cam_vs  
cam_hs  
FRAME(0)  
FRAME(0)  
ISP7  
ISP8  
L(0)  
L(n-1)  
L(0)  
ISP9  
D(1)  
ISP10  
D(n-1)  
cam_d[7:0]  
cam_wen  
D(0)  
D(n-3)  
D(n-2)  
D(n-1)  
D(0)  
D(2)  
ISP11  
ISP12  
ISP14  
ISP13  
cam_fld  
PAIR  
IMPAIR  
030-060  
Figure 6-30. ISP – 8-bit Packed SYNC – Interlaced Mode(1)(2)(3)(4)(5)  
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.  
(2) The image sensor must be connected to the lower data lines and the unused lines must be grounded. However, it is possible to shift the  
data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.  
(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a external  
memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted.  
(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfer  
a YCbCr data stream or compressed stream to memory at very high speed.  
170  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
(5) In cam_xclki; I is equal to a or b.  
6.5.1.3.2 ITU Mode  
Table 6-42 and Table 6-43 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-31).  
Table 6-41. ISP Timing Conditions – ITU Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2.7  
2.7  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
8.6  
pF  
Table 6-42. ISP Timing Requirements – ITU Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP17  
ISP18  
ISP18  
tc(pclk)  
Cycle time(2), cam_pclk period  
Typical pulse duration, cam_pclk high  
Typical pulse duration, cam_pclk low  
Duty cycle error, cam_pclk  
13.3  
22.2  
ns  
ns  
ns  
ps  
ps  
ns  
tW(pclkH)  
tW(pclkL)  
tdc(pclk)  
tj(pclk)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
667  
133  
1111  
200  
Cycle jitter(4), cam_pclk  
ISP23  
ISP24  
tsu(dV-pclkH)  
Setup time, cam_d[9:0] valid before cam_pclk  
rising edge  
1.82  
1.82  
3.25  
3.25  
th(pclkH-dV)  
Hold time, cam_d[9:0] valid after cam_pclk rising  
edge  
ns  
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
(2) Related with the input maximum frequency supported by the ISP module.  
(3) P = cam_lclk period in ns.  
(4) Maximum cycle jitter supported by cam_lclk input clock.  
Table 6-43. ISP Switching Characteristics – ITU Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
ISP15  
ISP16  
ISP16  
tc(xclk)  
Cycle time(1), cam_xclk period  
Typical pulse duration, cam_xclk high  
Typical pulse duration, cam_xclk low  
Duty cycle error, cam_xclk  
4.6  
4.6  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
tW(xclkH)  
tW(xclkL)  
tdc(xclk)  
tj(xclk)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
231  
231  
Jitter standard deviation(3), cam_xclk  
33  
33  
tR(xclk)  
tF(xclk)  
Rise time, cam_xclk  
0.93  
0.93  
0.93  
0.93  
Fall time, cam_xclk  
(1) Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.  
Warning: The camera sensor or the camera module must be disabled to change the frequency configuration. For more information, see  
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98  
(2) PO = cam_xclk period in ns  
(3) The jitter probability density can be approximated by a Gaussian function.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
171  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
ISP16  
ISP15  
ISP16  
cam_xclki  
cam_pclk  
ISP17  
ISP18  
ISP18  
ISP23  
D (0)  
ISP24  
D(0)  
D(n-1)  
D(n-1)  
cam_d[9:0]  
SOF  
EOF  
SOF  
EOF  
030-058  
Figure 6-31. ISP – ITU Mode(1)(2)  
(1) The unused lines must be grounded and the data bus must be connected to the lower data lines. It is possible to shift the data to 0, 2, or  
4 data internal lanes. The different configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode and cam_d[11:2] or cam_d[9:0] in 10-bit  
mode.  
(2) The parallel camera in ITU mode supports progressive camera modules.  
172  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
6.5.2 Display Subsystem (DSS)  
The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) or  
internal (SRAM) memory on an LCD panel or a TV set. The DSS integrates a display controller, a remote  
frame buffer module (RFBI), and a TV-out module. It can be used in two configurations:  
LCD display in:  
Bypass mode (RFBI module bypassed)  
RFBI mode (through RFBI module)  
TV display (not discussed in this document because of its analog IO signals)  
The two displays can be active at the same time.  
NOTE  
For more information, see Display Subsystem / Display Subsystem Functional Description  
section of the OMAP35x Technical Reference Manual (TRM) [literature number  
SPRUF98.  
6.5.2.1 LCD Display in Bypass Mode  
Two types of LCD panel are supported:  
Thin film transistor (TFT) or active matrix technology  
Supertwisted nematic (STN) or passive matrix technology  
Both configurations are discussed in the following paragraphs.  
6.5.2.1.1 LCD Display in TFT Mode  
6.5.2.1.1.1 LCD Display in TFT Mode – HDTV Application  
Table 6-44 assumes testing over the recommended operating conditions (see Figure 6-32).  
Table 6-44. LCD Display Switching Characteristics in TFT Mode – HDTV Application(3)(4)(5)  
NO.  
PARAMETER  
OPP3  
OPP2  
UNIT  
MIN  
MAX  
MIN  
MAX  
DL0  
DL1  
DL2  
DL3  
td(PCLKA-HSYNCT) Delay time, dss_pclk active edge to dss_hsync  
transition  
–4.2  
4.2  
–4.7  
4.7  
ns  
ns  
ns  
ns  
td(PCLKA-VSYNCT) Delay time, dss_pclk active edge to dss_vsync  
transition  
–4.2  
–4.2  
4.2  
4.2  
4.2  
–4.7  
–4.7  
4.7  
4.7  
4.7  
td(PCLKA-ACBIASA) Delay time, dss_pclk active edge to  
dss_acbias active level  
td(PCLKA-DATAV)  
Delay time, dss_pclk active edge to dss_data  
bus valid  
–4.2  
–4.7  
DL4  
DL5  
tc(PCLK)  
tw(PCLK)  
Cycle time(2), dss_pclk  
13.468  
0.45*P(1)  
15.152  
0.45*P(1)  
ns  
ns  
Pulse duration, dss_pclk low or high  
0.55*P(1)  
0.55*P(1)  
(1) P = dss_pclk period.  
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the  
DISPC_DIVISOR register.  
(3) The capacitive load is equivalent to 25 pF at 1.15 V and 30 pF at 1.0 V.  
(4) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.  
(5) See DM Operating Condition Addendum for OPP voltages.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
173  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
DL5  
DL4  
dss_pclk  
DL1  
dss_vsync  
DL0  
dss_hsync  
DL2  
dss_acbias  
DL3  
dss_data[23:0]  
030-061  
Figure 6-32. LCD Display in TFT Mode – HDTV Application(1)(2)(3)(4)  
(1) The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins.  
(2) The pixel clock frequency is programmable.  
(3) All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.  
(4) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.  
6.5.2.1.2 LCD Display in STN Mode  
Table 6-45 assumes testing over the recommended operating conditions (see Figure 6-33).  
Table 6-45. LCD Display Switching Characteristics in STN Mode(3)(4)(5)(6)  
NO.  
PARAMETER  
OPP3  
OPP2  
UNIT  
MIN  
MAX  
MIN  
MAX  
DL3  
td(PCLKA-DATAV)  
Delay time, dss_pclk active edge to dss_data  
bus valid  
–6.9  
6.9  
–6.9  
6.9  
ns  
DL4  
DL5  
tc(PCLK)  
tw(PCLK)  
Cycle time(2), dss_pclk  
22.727  
22.727  
ns  
ns  
Pulse duration, dss_pclk low or high  
0.45*P(1) 0.55*P(1) 0.45*P(1) 0.55*P(1)  
(1) P = dss_pclk period.  
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the  
DISPC_DIVISOR register.  
(3) The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low.  
(4) The capacitive load is equivalent to 40 pF.  
(5) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.  
(6) See DM Operating Condition Addendum for OPP voltages.  
174  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
DL5  
DL4  
dss_pclk  
dss_vsync  
dss_hsync  
dss_acbias  
DL3  
dss_data[23:0]  
030-062  
Figure 6-33. LCD Display in STN Mode(1)(2)(3)(4)(5)  
(1) The pixel data bus depends on the use 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins.  
(2) All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.  
(3) dss_vsync width must be programmed to be as small as possible.  
(4) The pixel clock frequency is programmable.  
(5) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.  
6.5.2.2 LCD Display in RFBI Mode  
Table 6-47 and Table 6-48 assume testing over the recommended operating conditions (see Figure 6-34  
through Figure 6-36).  
Table 6-46. LCD Timing Conditions – RFBI Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
MIN  
MAX  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
15  
15  
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
30  
pF  
Table 6-47. LCD Display Timing Requirements in RFBI Mode(2)  
NO.  
PARAMETER  
OPP3  
MAX  
OPP2  
MAX  
OPP1  
MIN MAX  
UNIT  
MIN  
MIN  
DR0  
DR1  
tsu(DAV-RDH)  
th(RDH-DAIV)  
Setup time, rfbi_da[15:0] valid to rfbi_rd  
high  
7.0  
9.0  
ns  
ns  
ns  
Hold time, rfbi_rd high to rfbi_da[15:0]  
invalid  
5.0  
5.0  
td(Data sampled) rfbi_da[15:0] are sampled at the end off  
the access time  
N(1)  
N(1)  
(1) N = (AccessTime) * (TimeParaGranularity + 1) * L4CLK  
(2) See DM Operating Condition Addendum for OPP voltages.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
175  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-48. LCD Display Switching Characteristics in RFBI Mode(15)  
PARAMETER  
OPP3  
OPP2  
OPP1  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
tw(rfbi_wrH)  
Pulse duration, rfbi_wr high  
Pulse duration, rfbi_wr low  
A(1)  
B(2)  
C(3)  
A(1)  
B(2)  
C(3)  
ns  
ns  
ns  
tw(rfbi_wrL)  
td(rfbi_a0-rfbi_wrL)  
Delay time, rfbi_a0 transition to rfbi_wr  
low  
td(rfbi_wrH-rfbi_a0)  
Delay time, rfbi_wr high to rfbi_a0  
transition  
D(4)  
D(4)  
ns  
td(rfbi_csx-rfbi_wrL)  
td(rfbi_wrH-rfbi_csxH)  
Delay time, rfbi_csx(14) low to rfbi_wr low  
Delay time, rfbi_wr high to rfbi_csx(14)  
high  
E(5)  
F(6)  
E(5)  
F(6)  
ns  
ns  
td(dataV)  
rfbi_da[15:0] valid  
G(7)  
H(8)  
I(9)  
G(7)  
H(8)  
I(9)  
ns  
ns  
ns  
td(rfbi_a0H-rfbi_rdL)  
td(rfbi_rdlH-rfbi_a0)  
Delay time, rfbi_a0 high to rfbi_rd low  
Delay time, rfbi_rd high to rfbi_a0  
transition  
tw(rfbi_rdH)  
Pulse duration, rfbi_rd high  
J(10)  
K(11)  
L(12)  
M(13)  
J(10)  
K(11)  
L(12)  
M(13)  
ns  
ns  
ns  
ns  
tw(rfbi_rdL)  
Pulse duration, rfbi_rd low  
Delay time, rfbi_rd low to rfbi_csx(14) low  
Delay time, rfbi_rd high to rfbi_csx(14)  
high  
td(rfbi_rdL-rfbi_csxL)  
td(rfbi_rdH-rfbi_csxH)  
tR(rfbi_wr)  
Rise time, rfbi_wr  
Fall time, rfbi_wr  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tF(rfbi_wr)  
tR(rfbi_a0)  
tF(rfbi_a0)  
Rise time, rfbi_a0  
Fall time, rfbi_a0  
tR(rfbi_csx)  
tF(rfbi_csx)  
tR(rfbi_da[15:0])  
tF(rfbi_da[15:0])  
tR(rfbi_rd)  
Rise time, rfbi_csx(14)  
Fall time, rfbi_csx(14)  
Rise time, rfbi_da[15:0]  
Fall time, rfbi_da[15:0]  
Rise time, rfbi_rd  
tF(rfbi_rd)  
Fall time, rfbi_rd  
(1) A = (WECycleTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK  
(2) B = (WEOffTime – WEOntime) * (TimeParaGranularity + 1) * L4CLK  
(3) C = WEOnTime * (TimeParaGranularity + 1) * L4CLK  
(4) D = (WECycleTime + CSPulseWidth – WEOffTime) * (TimeParaGranularity + 1) * L4CLK  
if mode Write to Read or Read to Write is enabled  
(5) E = (WEOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK  
(6) F = (CSOffTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK  
(7) G = (WECycleTime) * (TimeParaGranularity + 1) * L4CLK  
(8) H = (REOnTime) * (TimeParaGranularity + 1) * L4CLK  
(9) I = (RECycleTime + CSPulseWidth – REOffTime) * (TimeParaGranularity + 1) * L4CLK  
if mode Write to Read or Read to Write is enabled  
(10) J = (RECycleTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK  
(11) K = (REOffTime – REOntime) * (TimeParaGranularity + 1) * L4CLK  
(12) L = (REOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK  
(13) M = (CSOffTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK  
(14) In rfbi_csx, x stands for 0 or 1.  
(15) See DM Operating Condition Addendum for OPP voltages.  
176  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
CsPulseWidth  
WeCycleTime  
WeCycleTime  
CsOffTime  
rfbi_a0  
CsOffTime  
CsOnTime  
CsOnTime  
rfbi_csx  
WeOffTime  
WeOnTime  
WeOffTime  
WeOnTime  
rfbi_wr  
rfbi_da[15:0]  
rfbi_rd  
DATA0  
DATA1  
034-002  
Figure 6-34. LCD Display in RFBI Mode – Command / Data Write Mode(1)(2)  
(1) In rfbi_csx, x is equal to 0 or 1.  
(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 .  
AccessTime  
ReCycleTime  
CsPulseWidth  
AccessTime  
ReCycleTime  
rfbi_a0  
CsOffTime  
CsOnTime  
CsOffTime  
CsOnTime  
rfbi_csx  
rfbi_rd  
ReOffTime  
ReOnTime  
ReOffTime  
ReOnTime  
DR1  
DR0  
DATA0  
rfbi_da[15:0]  
rfbi_wr  
DATA1  
034-003  
Figure 6-35. LCD Display in RFBI Mode – Data Read Mode(1)(2)  
(1) In rfbi_csx, x is equal to 0 or 1.  
(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
177  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
WeCycleTime  
ReCycleTime  
AccessTime  
WeCycleTime  
rfbi_a0  
CsOffTime  
CsOnTime  
CsOffTime  
CsOnTime  
CsOffTime  
CsOnTime  
rfbi_csx  
rfbi_wr  
WeOffTime  
WeOnTime  
WeOffTime  
WeOnTime  
ReOffTime  
ReOnTime  
rfbi_rd  
CsPulseWidth  
CsPulseWidth  
WRITE  
READ  
rfbi_da[15:0]  
WRITE  
034-004  
Figure 6-36. LCD Display in RFBI Mode – Command / Data Write-to-Read and Read-to-Write Timing  
Modes(1)(2)  
(1) In rfbi_csx, x is equal to 0 or 1.  
(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number =SPRUF98.  
178  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
6.6 Serial Communications Interfaces  
6.6.1 Multichannel Buffered Serial Port (McBSP) Timing  
There are five McBSP modules called McBSP1 through McBSP5. McBSP provides a full-duplex, direct  
serial interface between the OMAP3525 and OMAP3530 devices and other devices in a system such as  
other application devices or codecs. It can accommodate a wide range of peripherals and clocked  
frame-oriented protocols (I2S, PCM, and TDM) due to its high level of versatility.  
The McBSP1-5 modules may support two types of data transfer at the system level:  
The full-cycle mode, for which one clock period is used to transfer the data, generated on one edge  
and captured on the same edge (one clock period later).  
The half-cycle mode, for which one half clock period is used to transfer the data, generated on one  
edge and captured on the opposite edge (one half clock period later). Note that a new data is  
generated only every clock period, which secures the required hold time.  
The interface clock (CLKX/CLKR) activation edge (data/frame sync capture and generation) has to be  
configured accordingly with the external peripheral (activation edge capability) and the type of data  
transfer required at the system level.  
The OMAP3525 and OMAP3530 McBSP1-5 timing characteristics are described for both rising and falling  
activation edges. McBSP1 supports:  
6-pin mode: dx and dr as data pins; clkx, clkr, fsx, and fsr as control pins.  
4-pin mode: dx and dr as data pins; clkx and fsx pins as control pins. The clkx and fsx pins are  
internally looped back via software configuration, respectively, to the clkr and fsr internal signals for  
data receive.  
McBSP2, 3, 4, and 5 support only the 4-pin mode.  
The following sections describe the timing characteristics for applications in normal mode (that is,  
OMAP3525 and OMAP3530 McBSPx connected to one peripheral) and TDM applications in multipoint  
mode.  
6.6.1.1 McBSP in Normal Mode  
Table 6-49. McBSP Timing Conditions—Normal Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
10  
pF  
Table 6-50. McBSP Output Clock Pulse Duration(3)  
NO.  
PARAMETER  
OPP3  
OPP2  
UNIT  
MIN  
MAX  
MIN  
MAX  
Inputs and Outputs  
McBSP1 tc(CLK)  
Cycle time, mcbsp1_clkx / mcbsp1_clkr (multiplexing mode  
0)  
20.83  
41.67  
ns  
McBSP2 tc(CLK)  
McBSP3 tc(CLK)  
Cycle time, mcbsp2_clkx (multiplexing mode 0)  
20.83  
31.25  
20.83  
20.83  
20.83  
31.25  
41.67  
62.50  
41.67  
41.67  
41.67  
62.50  
ns  
ns  
Cycle time,  
IO set 1 (multiplexing mode 0)  
IO set 2 (multiplexing mode 1)  
IO set 3 (multiplexing mode 2)  
IO set 1 (multiplexing mode 0)  
IO set 2 (multiplexing mode 2)  
mcbsp3_clkx  
McBSP4 tc(CLK)  
Cycle time,  
ns  
mcbsp4_clkx  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
179  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-50. McBSP Output Clock Pulse Duration(3) (continued)  
NO.  
PARAMETER  
OPP3  
OPP2  
UNIT  
MIN  
MAX  
MIN  
MAX  
McBSP5 tc(CLK)  
Outputs  
Cycle time, mcbsp5_clkx (multiplexing mode 1)  
31.25  
62.50  
ns  
tw(CLKH)  
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx high(2)  
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx low(2)  
Duty cycle error, mcbsp1_clkr / mcbspx_clkx(2)  
0.5*P(1)  
0.5*P(1)  
0.5*P(1)  
0.5*P(1)  
ns  
ns  
ns  
tw(CLKL)  
tdc(CLK)  
–0.75  
0.75  
–0.75  
0.75  
(1) P = mcbsp1_clkr / mcbspx_clkx clock period.  
(2) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.  
(3) See DM Operating Condition Addendum for OPP voltages.  
6.6.1.1.1 Receive Timing with Rising Edge as Activation Edge  
Table 6-51 through Table 6-56 assume testing over the recommended operating conditions (see  
Figure 6-37 through Figure 6-38).  
Table 6-51. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Rising Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MIN MAX  
1.0 V  
MIN MAX  
UNIT  
B3  
tsu(DRV-CLKAE)  
Setup time, mcbspx_dr valid before mcbsp1_clkr /  
mcbspx_clkx active edge  
Master  
Slave  
3.5  
3.7  
1
7.7  
7.9  
1
ns  
ns  
ns  
ns  
ns  
B4  
th(CLKAE-DRV)  
Hold time, mcbspx_dr valid after mcbsp1_clkr /  
mcbspx_clkx active edge  
Master  
Slave  
0.4  
3.7  
0.4  
7.9  
B5  
B6  
tsu(FSV-CLKAE)  
th(CLKAE-FSV)  
Setup time, mcbsp1_fsr / mcbspx_fsx valid before mcbsp1_clkr /  
mcbspx_clkx active edge  
Hold time, mcbsp1_fsr / mcbspx_fsx valid after mcbsp1_clkr /  
mcbspx_clkx active edge  
0.5  
0.5  
ns  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Table 6-52. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Rising Edge and Receive  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
0.7  
MAX  
MIN  
0.7  
MAX  
B2  
td(CLKAE-FSV)  
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to mcbsp1_fsr /  
mcbspx_fsx valid  
14.8  
29.6  
ns  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Table 6-53. McBSP4 (Set #1) Timing Requirements – Rising Edge and Receive Mode(1)  
NO.  
B3  
PARAMETER  
1.15 V  
MIN MAX  
1.0 V  
MIN MAX  
UNIT  
tsu(DRV-CLKXAE)  
Setup time, mcbspx_dr valid before  
mcbspx_clkx active edge  
Master  
Slave  
2.7  
3.7  
1
7.7  
7.9  
1
ns  
ns  
ns  
ns  
ns  
ns  
B4  
th(CLKXAE-DRV)  
Hold time, mcbspx_dr valid after mcbspx_clkx  
active edge  
Master  
Slave  
0.4  
3.7  
0.5  
0.4  
7.9  
0.5  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time mcbspx_fsx valid before mcbspx_clkx active edge  
Hold Time mcbspx_fsx valid after mcbspx_clkx active edge  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-55 and Table 6-56  
180  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-54. McBSP4 (Set #1) Switching Characteristics – Rising Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
0.7  
MAX  
MIN MAX  
B2  
td(CLKXAE-FSXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid  
16.6  
0.7  
33.1  
ns  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-55 and Table 6-56  
Table 6-55. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MIN MAX  
1.0 V  
MIN MAX  
UNIT  
B3  
tsu(DRV-CLKXAE)  
Setup time, mcbspx_dr valid before  
mcbspx_clkx active edge  
Master  
Slave  
5.6  
5.8  
1
12  
12.2  
1
ns  
ns  
ns  
ns  
ns  
ns  
B4  
th(CLKXAE-DRV)  
Hold time, mcbspx_dr valid after mcbspx_clkx Master  
active edge  
Slave  
0.4  
5.8  
0.5  
0.4  
12.2  
0.5  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before mcbspx_clkx active edge  
Hold time, mcbspx_fsx valid after mcbspx_clkx active edge  
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode  
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are  
specified in Table 6-53 and Table 6-54.  
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).  
Table 6-56. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Rising Edge and Receive  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
MAX  
44.4  
UNIT  
MIN  
0.7  
MAX  
MIN  
B2  
td(CLKXAE-FSXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid  
22.2  
0.7  
ns  
mcbspx_clkr  
B2  
B2  
mcbspx_fsr  
mcbspx_dr  
B3  
B4  
D7  
D6  
D5  
030-068  
Figure 6-37. McBSP Rising Edge Receive Timing in Master Mode  
mcbspx_clkr  
mcbspx_fsr  
mcbspx_dr  
B5  
B6  
B3  
B4  
D7  
D6  
D5  
030-069  
Figure 6-38. McBSP Rising Edge Receive Timing in Slave Mode  
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode  
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are  
specified in Table 6-53 and Table 6-54.  
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
181  
 
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
6.6.1.1.2 Transmit Timing with Rising Edge as Activation Edge  
Table 6-57 through Table 6-62 assume testing over the recommended operating conditions (see  
Figure 6-39 and Figure 6-40).  
Table 6-57. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Rising Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before mcbspx_clkx  
active edge  
3.7  
7.9  
ns  
ns  
Hold time, mcbspx_fsx valid after mcbspx_clkx active  
edge  
0.5  
0.5  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Table 6-58. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Rising Edge and Transmit  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx  
valid  
0.7  
14.8  
0.7  
29.6  
ns  
Delay time, mcbspx_clkx active edge to Master  
0.6  
0.6  
14.8  
14.8  
0.6  
0.6  
29.6  
29.6  
ns  
ns  
mcbspx_dx valid  
Slave  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Table 6-59. McBSP4 (Set #1) Timing Requirements – Rising Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before mcbspx_clkx  
active edge  
3.7  
7.9  
ns  
ns  
Hold time, mcbspx_fsx valid after mcbspx_clkx active  
edge  
0.5  
0.5  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-61.  
Table 6-60. McBSP4 (Set #1) Switching Characteristics – Rising Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to  
mcbspx_fsx valid  
0.7  
16.6  
0.7  
33.1  
ns  
Delay time, mcbspx_clkx active edge  
to mcbspx_dx valid  
Master  
Slave  
0.6  
0.6  
16.6  
17.3  
0.6  
0.6  
33.1  
33.1  
ns  
ns  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-61.  
Table 6-61. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B5  
tsu(FSXV-CLKXAE)  
Setup time, mcbspx_fsx valid before mcbspx_clkx  
active edge  
5.8  
12.2  
ns  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-61.  
182  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-61. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Transmit Mode  
(continued)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B6  
th(CLKXAE-FSXV)  
Hold time, mcbspx_fsx valid after mcbspx_clkx active  
edge  
0.5  
0.5  
ns  
Table 6-62. McBSP 3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Rising Edge and Transmit  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx  
valid  
0.7  
22.2  
0.7  
44.4  
ns  
Delay time, mcbspx_clkx active edge to Master  
0.6  
0.6  
22.2  
22.2  
0.6  
0.6  
44.4  
44.4  
ns  
ns  
mcbspx_dx valid  
Slave  
mcbspx_clkx  
B2  
B2  
B8  
mcbspx_fsx  
mcbspx_dx  
D7  
D6  
D5  
030-070  
Figure 6-39. McBSP Rising Edge Transmit Timing in Master Mode  
mcbspx_clkx  
mcbspx_fsx  
mcbspx_dx  
B5  
B6  
B8  
D7  
D6  
D5  
030-071  
Figure 6-40. McBSP Rising Edge Transmit Timing in Slave Mode  
(1) In mcbspx, x identifies the McBSP number: 3, 4 or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode  
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are  
specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).  
6.6.1.1.3 Receive Timing with Falling Edge as Activation Edge  
Table 6-63 through Table 6-68 assume testing over the recommended operating conditions (see  
Figure 6-41 and Figure 6-42).  
Table 6-63. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Falling Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
3.5  
3.7  
1
MIN  
7.7  
7.9  
1
MAX  
B3  
tsu(DRV-CLKAE)  
th(CLKAE-DRV)  
tsu(FSV-CLKAE)  
Setup time, mcbspx_dr valid before  
mcbsp1_clkr / mcbspx_clkx active edge  
Master  
Slave  
ns  
ns  
ns  
ns  
ns  
B4  
Hold time, mcbspx_dr valid after  
mcbsp1_clkr / mcbspx_clkx active edge  
Master  
Slave  
0.4  
3.7  
0.4  
7.9  
B5  
Setup time, mcbsp1_fsr / mcbspx_fsx valid before  
mcbsp1_clkr /mcbspx_clkx active edge  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
183  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-63. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Falling Edge and Receive Mode  
(continued)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B6  
th(CLKAE-FSV)  
Hold time, mcbsp1_fsr / mcbspx_fsx valid after  
mcbsp1_clkr /mcbspx_clkx active edge  
0.5  
0.5  
ns  
Table 6-64. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Falling Edge and Receive  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
td(CLKAE-FSV)  
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to  
mcbsp1_fsr / mcbspx_fsx valid  
0.7  
14.8  
0.7  
29.6  
ns  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Table 6-65. McBSP4 (Set #1) Timing Requirements – Falling Edge and Receive Mode(1)  
NO.  
B3  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
2.7  
3.7  
1
MIN  
7.7  
7.9  
1
MAX  
tsu(DRV-CLKXAE)  
Setup time, mcbspx_dr valid before  
mcbspx_clkx active edge  
Master  
Slave  
ns  
ns  
ns  
ns  
ns  
B4  
th(CLKXAE-DRV)  
Hold time, mcbspx_dr valid after  
mcbspx_clkx active edge  
Master  
Slave  
0.4  
3.7  
0.4  
7.9  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time mcbspx_fsx valid before mcbspx_clkx active  
edge  
Hold time mcbspx_fsx valid after mcbspx_clkx active  
edge  
0.5  
0.5  
ns  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-67  
Table 6-66. McBSP4 (Set #1) Switching Characteristics – Falling Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
16.6  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B2  
td(CLKXAE-FSXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid  
0.7  
0.7  
33.1  
ns  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-67  
Table 6-67. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Falling Edge and Receive Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
5.6  
5.8  
1
MIN  
12  
MAX  
B3  
tsu(DRV-CLKXAE)  
Setup time, mcbspx_dr valid before  
mcbspx_clkx active edge  
Master  
Slave  
ns  
ns  
ns  
ns  
ns  
12.2  
1
B4  
th(CLKXAE-DRV)  
Hold time, mcbspx_dr valid after mcbspx_clkx Master  
active edge  
Slave  
0.4  
5.8  
0.4  
12.2  
B5  
B6  
tsu(FSXV-CLKXAE) Setup time, mcbspx_fsx valid before mcbspx_clkx active  
edge  
th(CLKXAE-FSXV)  
Hold time, mcbspx_fsx valid after mcbspx_clkx active  
edge  
0.5  
0.5  
ns  
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode  
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are  
specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).  
184  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-68. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Falling Edge and Receive  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
td(CLKXAE-FSXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx  
valid  
0.7  
22.2  
0.7  
44.4  
ns  
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode  
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are  
specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).  
mcbspx_clkr  
B2  
B2  
mcbspx_fsr  
mcbspx_dr  
B3  
B4  
D7  
D6  
D5  
030-072  
Figure 6-41. McBSP Falling Edge Receive Timing in Master Mode  
mcbspx_clkr  
mcbspx_fsr  
mcbspx_dr  
B5  
B6  
B3  
B4  
D7  
D6  
D5  
030-073  
Figure 6-42. McBSP Falling Edge Receive Timing in Slave Mode  
6.6.1.1.4 Transmit Timing with Falling Edge as Activation Edge  
Table 6-69 through Table 6-74 assume testing over the recommended operating conditions (see  
Figure 6-43 and Figure 6-44).  
Table 6-69. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Falling Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before mcbspx_clkx  
active edge  
3.7  
7.9  
ns  
ns  
Hold time, mcbspx_fsx valid after mcbspx_clkx  
active edge  
0.5  
0.5  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Table 6-70. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Falling Edge and Transmit  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx  
valid  
0.7  
14.8  
0.7  
29.6  
ns  
Delay time, mcbspx_clkx active edge to Master  
0.6  
0.6  
14.8  
14.8  
0.6  
0.6  
29.6  
29.6  
ns  
ns  
mcbspx_dx valid  
Slave  
(1) In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode  
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
185  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-71. McBSP4 (Set #1) Timing Requirements – Falling Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before  
mcbspx_clkx active edge  
3.7  
7.9  
ns  
ns  
Hold time, mcbspx_fsx valid after mcbspx_clkx  
active edge  
0.5  
0.5  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-73.  
Table 6-72. McBSP4 (Set #1) Switching Characteristics – Falling Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx  
valid  
0.7  
16.6  
0.7  
33.1  
ns  
Delay time, mcbspx_clkx active edge to  
mcbspx_dx valid  
Master  
Slave  
0.6  
0.6  
16.6  
17.3  
0.6  
0.6  
33.1  
33.1  
ns  
ns  
(1) In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by  
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-73.  
Table 6-73. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Falling Edge and Transmit Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
B5  
B6  
tsu(FSXV-CLKXAE)  
th(CLKXAE-FSXV)  
Setup time, mcbspx_fsx valid before mcbspx_clkx  
active edge  
5.8  
12.2  
ns  
ns  
Hold time, mcbspx_fsx valid after mcbspx_clkx  
active edge  
0.5  
0.5  
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode  
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are  
specified in Table 6-73. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).  
Table 6-74. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Falling Edge and Transmit  
Mode(1)  
NO.  
PARAMETER  
1.15 V  
MIN  
1.0 V  
MAX  
UNIT  
MAX  
22.2  
22.2  
22.2  
MIN  
0.7  
0.6  
0.6  
B2  
B8  
td(CLKXAE-FSXV)  
td(CLKXAE-DXV)  
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid  
0.7  
0.6  
0.6  
44.4  
44.4  
44.4  
ns  
ns  
ns  
Delay time, mcbspx_clkx active edge to  
mcbspx_dx valid  
Master  
Slave  
(1) In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode  
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are  
specified in Table 6-73. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).  
mcbspx_clkx  
B2  
B2  
mcbspx_fsx  
mcbspx_dx  
B8  
D7  
D6  
D5  
030-074  
Figure 6-43. McBSP Falling Edge Transmit Timing in Master Mode  
186  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
mcbspx_clkx  
B5  
B6  
mcbspx_fsx  
mcbspx_dx  
B8  
D7  
D6  
D5  
030-075  
Figure 6-44. McBSP Falling Edge Transmit Timing in Slave Mode  
6.6.1.2 McBSP in TDM—Multipoint Mode (McBSP3)  
For TDM application in multipoint mode, OMAP3525 and OMAP3530 are considered as a slave.  
Table 6-76 and Table 6-77 assume testing over the operating conditions and electrical characteristic  
conditions described below.  
Table 6-75. McBSP3 Timing Conditions—TDM in Multipoint Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
MIN  
MAX  
Input Conditions  
tR  
tF  
Input signal rising time  
Input signal falling time  
1.0  
1.0  
8.5  
8.5  
ns  
ns  
Output Conditions  
CLOAD Output Load Capacitance  
40  
pF  
Table 6-76. McBSP3 Timing Requirements—TDM in Multipoint Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
tW(CLKH)  
Cycle Time, mcbsp3_clkx  
162.8  
162.8  
ns  
ns  
ns  
ns  
ns  
tW(CLKH)  
Typical Pulse duration, mcbsp3_clkx high  
Typical Pulse duration, mcbsp3_clkx low  
Duty cycle error, mcbsp3_clkx  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
0.5*P(2)  
tW(CLKL)  
tdc(CLK)  
–8.14  
8.14  
–8.14  
8.14  
B3(3)  
B4(3)  
B5(3)  
B6(3)  
tsu(DRV-CLKAE)  
Setup time, mcbsp3_dr valid before  
mcbsp3_clkx active edge  
9
9
th(CLKAE-DRV)  
tsu(FSV-CLKAE)  
th(CLKAE-FSV)  
Hold time, mcbsp3_dr valid after mcbsp3_clkx  
active edge  
2.4  
9
2.4  
9
ns  
ns  
ns  
Setup time, mcbsp3_fsx valid before  
mcbsp3_clkx active edge  
Hold time, mcbsp3_fsx valid after  
mcbsp3_clkx active edge  
2.4  
2.4  
(1) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).  
(2) P = mcbsp3_clkx period in ns  
(3) See Section 6.6.1.1, McBSP in Normal Mode for corresponding figures.  
Table 6-77. McBSP3 Switching Characteristics—TDM in Multipoint Mode(1)  
NO.  
B8(2)  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
td(CLKXAE-DXV) Delay time, mcbsp3_clkx active edge to  
mcbsp3_dx valid  
0.6  
16.8  
0.6  
29.6  
ns  
(1) For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).  
(2) See Section 6.6.1.1, McBSP in Normal Mode for corresponding figures.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
187  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
6.6.2 Multichannel Serial Port Interface (McSPI) Timing  
The multichannel SPI is a master/slave synchronous serial bus. The McSPI1 module supports up to four  
peripherals and the others (McSPI2, McSPI3, and McSPI4) support up to two peripherals. The following  
timings are applicable to the different configurations of McSPI in master/slave mode for any McSPI and  
any channel (n).  
6.6.2.1 McSPI in Slave Mode  
Table 6-78 and Table 6-79 assume testing over the recommended operating conditions (see Figure 6-45).  
Table 6-78. McSPI Interface Timing Requirements – Slave Mode(1)(2)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
1/SS 1/tc(CLK)  
0
Frequency, mcspix_clk  
24  
12  
MHz  
tj(CLK)  
Cycle jitter(3), mcspix_clk  
-200  
200  
-200  
200  
0.55*P(4)  
ps  
ns  
ns  
SS1 tw(CLK)  
Pulse duration, mcspix_clk high or low  
0.45*P(4) 0.55*P(4) 0.45*P(4)  
SS2 tsu(SIMOV-CLKAE)  
Setup time, mcspix_simo valid before mcspix_clk  
active edge  
4.2  
9.5  
SS3 th(SIMOV-CLKAE)  
SS4 tsu(CS0V-CLKFE)  
SS5 th(CS0I-CLKLE)  
Hold time, mcspix_simo valid after mcspix_clk active  
edge  
4.6  
9.9  
ns  
ns  
ns  
Setup time, mcspix_cs0 valid before mcspix_clk first  
edge  
13.8  
13.8  
28.6  
28.6  
Hold time, mcspix_cs0 invalid after mcspix_clk last  
edge  
(1) The input timing requirements are given by considering a rise time and a fall time of 4 ns.  
(2) In mcspix, x is equal to 1, 2, 3, or 4.  
(3) Maximum cycle jitter supported by mcspix_clk input clock.  
(4) P = mcspix_clk clock period  
Table 6-79. McSPI Interface Switching Requirements(1)(2)(3)(4)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
SS6 td(CLKAE-SOMIV)  
SS7 td(CS0AE-SOMIV)  
Delay time, mcspix_clk active edge to mcspix_somi  
shifted  
1.8  
15.9  
3.2  
31.7  
ns  
ns  
Delay time, mcspix_cs0 active edge to Modes 0 and 2  
mcspix_somi shifted  
15.9  
31.7  
(1) The capacitive load is equivalent to 20 pF.  
(2) In mcspix, x is equal to 1, 2, 3, or 4.  
(3) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all  
software configurable.  
(4) This timing applies to all configurations regardless of mcspix_clk polarity and which clock edges are used to drive output data and  
capture input data.  
188  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Mode 0 & 2  
mcspix_cs0(EPOL=1)  
SS0  
SS4  
SS1  
SS5  
mcspix_clk(POL=0)  
mcspix_clk(POL=1)  
SS0  
SS1  
SS2  
SS3  
Bit n-1  
SS7  
Bit n-1  
mcspix_simo  
mcspix_somi  
Bit n-2  
SS6  
Bit n-3  
Bit n-4  
Bit n-4  
Bit 0  
Bit n-2  
Bit n-3  
Bit 0  
Mode 1 & 3  
mcspix_cs0(EPOL=1)  
mcspix_clk(POL=0)  
mcspix_clk(POL=1)  
SS0  
SS1  
SS0  
SS1  
SS4  
SS5  
SS3  
SS2  
Bit n-1  
SS6  
Bit n-1  
mcspix_simo  
mcspix_somi  
Bit n-2  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
Bit 0  
Bit n-3  
Bit 1  
030-076  
Figure 6-45. McSPI Interface – Transmit and Receive in Slave Mode(1)(2)  
(1) The active clock edge (rising or falling) on which mcspi_somi is driven and mcspi_simo data is latched is software configurable with the  
bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.  
(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL In mcspix, x is equal to 1, 2, 3, or 4.  
6.6.2.2 McSPI in Master Mode  
Table 6-80 and Table 6-81 assume testing over the recommended operating conditions (see Figure 6-46).  
Table 6-80. McSPI1, 2, and 4 Interface Timing Requirements – Master Mode(1)(2)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
SM2 tsu(SOMIV-CLKAE)  
SM3 th(SOMIV-CLKAE)  
Setup time, mcspix_somi valid before mcspix_clk  
active edge  
1.1  
1.5  
ns  
ns  
Hold time, mcspix_somi valid after mcspix_clk active  
edge  
1.9  
2.8  
(1) The input timing requirements are given by considering a rise time and a fall time of 4 ns.  
(2) In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
189  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-81. McSPI1, 2, and 4 Interface Switching Characteristics – Master Mode(1)(2)(3)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
48  
MIN  
MAX  
24  
1/SM0 1/tc(CLK)  
tj(CLK)  
Frequency, mcspix_clk  
Cycle jitter(4), mcspix_clk  
MHz  
ps  
-200  
200  
-200  
200  
SM1  
SM4  
SM5  
tw(CLK)  
Pulse duration, mcspix_clk high or low  
0.45*P(5) 0.55*P(5) 0.45*P( 0.55*P(5)  
ns  
5)  
td(CLKAE-SIMOV)  
td(CSnA-CLKFE)  
Delay time, mcspix_clk active edge to mcspix_simo  
shifted  
–2.1  
5
–2.1  
11.3  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, mcspix_csi active to  
mcspix_clk first edge  
Modes 1  
and 3  
A(6) – 3.1  
B(7) – 3.1  
B(7) – 3.1  
A(6) – 3.1  
A(6)  
4.4  
B(7)  
4.4  
B(7)  
4.4  
A(6)  
4.4  
Modes 0  
and 2  
SM6  
SM7  
td(CLKLE-CSnI)  
Delay time, mcspix_clk last edge to  
mcspix_csi inactive  
Modes 1  
and 3  
Modes 0  
and 2  
td(CSnAE-SIMOV)  
Delay time, mcspix_csi active edge to Modes 0  
mcspix_simo shifted and 2  
5.0  
11.3  
(1) Timings are given for a maximum load capacitance of 20 pF for spix_csn signals, 30 pF for spix_clk and spix_simo signals with x = 1 or  
2, and 20 pF for spi4_clk and spi4_simo signals.  
(2) In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.  
(3) The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all  
software configurable.  
(4) Maximum cycle jitter supported by mcspix_clk input clock.  
(5) P = mcspix_clk clock period  
(6) Case P = 20.8 ns, A = (TCS+0.5)*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P (TCS is a  
bitfield of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x Technical Reference Manual  
(TRM) [literature number SPRUF98].  
(7) B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x  
Technical Reference Manual (TRM) [literature number SPRUF98].  
Table 6-82 and Table 6-83 assume testing over the recommended operating conditions (see Figure 6-46).  
Table 6-82. McSPI 3 Interface Timing Requirements – Master Mode(1)(2)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
SM2 tsu(SOMIV-CLKAE)  
SM3 th(SOMIV-CLKAE)  
Setup time, mcspi3_somi valid before  
mcspi3_clk active edge  
1.5  
4.3  
ns  
ns  
Hold time, mcspi3_somi valid after mcspi3_clk  
active edge  
2.8  
5.9  
(1) The input timing requirements are given by considering a rise time and a fall time of 4 ns.  
(2) In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and  
mcspi3_somi is latched is all software configurable.  
Table 6-83. McSPI3 Interface Switching Requirements – Master Mode(1)(2)(3)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
1/SM 1/tc(CLK)  
0
Frequency, mcspix_clk  
Cycle jitter(4), mcspix_clk  
24  
12  
MHz  
ps  
tj(CLK)  
-200  
200  
-200  
200  
(1) The capacitive load is equivalent to 20 pF.  
(2) In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and  
mcspi3_somi is latched is all software configurable.  
(3) This timing applies to all configurations regardless of McSPI3_CLK polarity and which clock edges are used to drive output data and  
capture input data.  
(4) Maximum cycle jitter supported by mcspix_clk input clock.  
190  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-83. McSPI3 Interface Switching Requirements – Master Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
0.45*P(5)  
MAX  
0.55*P(5)  
11.3  
MIN  
0.45*P(5)  
–5.3  
MAX  
0.55*P(5)  
23.6  
SM1 tw(CLK)  
Pulse duration, mcspix_clk high or low  
ns  
ns  
SM4 td(CLKAE-SIMOV)  
Delay time, mcspix_clk active edge to  
mcspix_simo shifted  
–2.1  
SM5 td(CSnA-CLKFE)  
Delay time, mcspix_csi active Modes 1  
–4.4 + A(6)  
–4.4 + B(7)  
B – 4.4(7)  
A(6) – 4.4  
–10.1 + A(6)  
–10.1 + B(7)  
B – 10.1(7)  
A(6) – 10.1  
ns  
ns  
ns  
ns  
ns  
to mcspix_clk first edge  
and 3  
Modes 0  
and 2  
SM6 td(CLK-CSn)  
Delay time, mcspix_clk last  
edge to mcspix_csi inactive  
Modes 1  
and 3  
Modes 0  
and 2  
SM7 td(CSnAE-SIMOV)  
Delay time, mcspix_csi active Modes 0  
edge to mcspix_simo shifted and 2  
11.3  
23.6  
(5) P = mcspi3_clk clock period  
(6) Case P = 20.8 ns, A = (TCS + 0.5)*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P (TCS is a bit  
field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x Technical Reference Manual  
(TRM) [literature number SPRUF98].  
(7) B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x  
Technical Reference Manual (TRM) [literature number SPRUF98].  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
191  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Mode 0 & 2  
mcspix_csn(EPOL=1)  
SM0  
SM5  
SM1  
SM6  
mcspix_clk(POL=0)  
mcspix_clk(POL=1)  
mcspix_simo  
SM0  
SM1  
SM7  
SM4  
Bit n-2  
Bit n-1  
SM2  
Bit n-3  
Bit n-4  
Bit n-4  
Bit 0  
SM3  
Bit n-1  
mcspix_somi  
Bit n-2  
Bit n-3  
Bit 0  
Mode 1 & 3  
mcspix_csn(EPOL=1)  
mcspix_clk(POL=0)  
SM0  
SM1  
SM0  
SM1  
SM5  
SM6  
mcspix_clk(POL=1)  
mcspix_simo  
SM4  
Bit n-1  
SM2  
Bit n-2  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
Bit 0  
SM3  
mcspix_somi  
Bit n-1  
Bit n-3  
Bit 1  
030-077  
Figure 6-46. McSPI Interface – Transmit and Receive in Master Mode(1)(2)(3)  
(1) The active clock edge (rising or falling) on which mcspix_simo is driven and mcspi_somi data is latched is software configurable with the  
bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.  
(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL.  
(3) In mcspix, x is equal to 1. In mcspix_csn, n is equal to 0, 1, 2, or 3.  
192  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
6.6.3 Multiport Full-Speed Universal Serial Bus (USB) Interface  
The OMAP3525 and OMAP3530 processors provide three USB ports working in full- and low-speed data  
transactions (up to 12Mbit/s).  
Connected to either a serial link controller (TLL modes) or a serial PHY (PHY interface modes) it supports:  
6-pin (Tx: Dat/Se0 or Tx: Dp/Dm) unidirectional mode  
4-pin bidirectional mode  
3-pin bidirectional mode  
6.6.3.1 Multiport Full-Speed Universal Serial Bus (USB) – Unidirectional Standard 6-pin Mode  
Table 6-85 and Table 6-86 assume testing over the recommended operating conditions (see Figure 6-47).  
Table 6-84. Low-/Full-Speed USB Timing Conditions – Unidirectional Standard 6-pin Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2.0  
2.0  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.0  
pF  
Table 6-85. Low-/Full-Speed USB Timing Requirements – Unidirectional Standard 6-pin Mode  
NO.  
PARAMETER  
1.15 V  
MIN MAX  
1.0 V  
UNIT  
MIN  
MAX  
FSU1  
FSU2  
FSU3  
FSU4  
td(Vp,Vm)  
td(Vp,Vm)  
td(RCVU0)  
td(RCVU1)  
Time duration, mmx_rxdp and mmx_rxdm low together during  
transition  
14.0  
14.0  
ns  
ns  
ns  
ns  
Time duration, mmx_rxdp and mmx_rxdm high together during  
transition  
8.0  
8.0  
14.0  
8.0  
Time duration, mmx_rrxcv undefine during a single end 0  
(mmx_rxdp and mmx_rxdm low together)  
14.0  
8.0  
Time duration, mmx_rxrcv undefine during a single end 1  
(mmx_rxdp and mmx_rxdm high together)  
Table 6-86. Low-/Full-Speed USB Switching Characteristics – Unidirectional Standard 6-pin Mode  
NO.  
PARAMETER  
1.15 V  
MIN  
1.0 V  
UNIT  
MAX  
84.8  
84.8  
1.5  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
FSU5  
FSU6  
FSU7  
FSU8  
FSU9  
td(TXENL-DATV)  
td(TXENL-SE0V)  
ts(DAT-SE0)  
td(DATI-TXENH)  
td(SE0I-TXENH)  
tR(do)  
Delay time, mmx_txen_n low to mmx_txdat valid  
Delay time, mmx_txen_n low to mmx_txse0 valid  
Skew between mmx_txdat and mmx_txse0 transition  
Delay time, mmx_txdat invalid to mmx_txen_n high  
Delay time, mmx_txse0 invalid to mmx_txen_n high  
Rise time, mmx_txen_n  
81.8  
81.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
81.8  
81.8  
81.8  
81.8  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
tF(do)  
Fall time, mmx_txen_n  
tR(do)  
Rise time, mmx_txdat  
tF(do)  
Fall time, mmx_txdat  
tR(do)  
Rise time, mmx_txse0  
tF(do)  
Fall time, mmx_txse0  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
193  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Transmit  
mmx_txen_n  
Receive  
FSU5  
FSU6  
FSU8  
FSU9  
mmx_txdat  
mmx_txse0  
mmx_rxdp  
mmx_rxdm  
mmx_rxrcv  
FSU7  
FSU1  
FSU2  
FSU2  
FSU4  
FSU1  
FSU3  
030-080  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-47. Low-/Full-Speed USB – Unidirectional Standard 6-pin Mode  
6.6.3.2 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 4-pin Mode  
Table 6-88 and Table 6-89 assume testing over the recommended operating conditions (see Figure 6-48).  
Table 6-87. Low-/Full-Speed USB Timing Conditions – Bidirectional Standard 4-pin Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2.0  
2.0  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.0  
pF  
Table 6-88. Low-/Full-Speed USB Timing Requirements – Bidirectional Standard 4-pin Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
FSU10 td(DAT,SE0)  
FSU11 td(DAT,SE0)  
FSU12 td(RCVU0)  
FSU13 td(RCVU1)  
Time duration, mmx_txdat and mmx_txse0 low together  
during transition  
14.0  
14.0  
ns  
ns  
ns  
ns  
Time duration, mmx_txdat and mmx_txse0 high together  
during transition  
8.0  
8.0  
14.0  
8.0  
Time duration, mmx_rrxcv undefine during a single end 0  
(mmx_txdat and mmx_txse0 low together)  
14.0  
8.0  
Time duration, mmx_rxrcv undefine during a single end 1  
(mmx_txdat and mmx_txse0 high together)  
Table 6-89. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 4-pin Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
81.8  
81.8  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
FSU14  
FSU15  
FSU16  
td(TXENL-DATV)  
td(TXENL-SE0V)  
ts(DAT-SE0)  
Delay time, mmx_txen_n low to mmx_txdat valid  
Delay time, mmx_txen_n low to mmx_txse0 valid  
84.8  
84.8  
1.5  
ns  
ns  
ns  
Skew between mmx_txdat and mmx_txse0  
transition  
FSU17  
td(DATV-TXENH)  
Delay time, mmx_txdat invalid before mmx_txen_n  
high  
81.8  
81.8  
ns  
194  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-89. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 4-pin Mode  
(continued)  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
FSU18  
td(SE0V-TXENH)  
Delay time, mmx_txse0 invalid before mmx_txen_n  
high  
81.8  
81.8  
ns  
tR(txen)  
tF(txen)  
tR(dat)  
tF(dat)  
tR(se0)  
tF(se0)  
Rise time, mmx_txen_n  
Fall time, mmx_txen_n  
Rise time, mmx_txdat  
Fall time, mmx_txdat  
Rise time, mmx_txse0  
Fall time, mmx_txse0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
Transmit  
FSU14  
mmx_txen_n  
Receive  
FSU10  
FSU17  
FSU18  
FSU11  
FSU11  
FSU13  
mmx_txdat  
mmx_txse0  
mmx_rxrcv  
FSU15  
FSU16  
FSU10  
FSU12  
030-081  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-48. Low-/Full-Speed USB – Bidirectional Standard 4-pin Mode  
6.6.3.3 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 3-pin Mode  
Table 6-91 and Table 6-92 assume testing over the recommended operating conditions below (see  
Figure 6-49).  
Table 6-90. Low-/Full-Speed USB Timing Conditions – Bidirectional Standard 3-pin Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2.0  
2.0  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15.0  
pF  
Table 6-91. Low-/Full-Speed USB Timing Requirements – Bidirectional Standard 3-pin Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
FSU19  
FSU20  
td(DAT,SE0)  
td(DAT,SE0)  
Time duration, mmx_txdat and mmx_txse0 low together  
during transition  
14.0  
14.0  
ns  
ns  
Time duration, mmx_tsdat and mmx_txse0 high  
together during transition  
8.0  
8.0  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
195  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-92. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 3-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
FSU21  
FSU22  
FSU23  
td(TXENL-DATV)  
td(TXENL-SE0V)  
ts(DAT-SE0)  
Delay time, mmx_txen_n low to mmx_txdat valid  
Delay time, mmx_txen_n low to mmx_txse0 valid  
ns  
ns  
ns  
Skew between mmx_txdat and mmx_txse0  
transition  
FSU24  
FSU25  
td(DATI-TXENH)  
td(SE0I-TXENH)  
Delay time, mmx_txdat invalid to mmx_txen_n  
high  
81.8  
81.8  
81.8  
81.8  
ns  
ns  
Delay time, mmx_txse0 invalid to mmx_txen_n  
high  
tR(do)  
tF(do)  
tR(do)  
tF(do)  
tR(do)  
tF(do)  
Rise time, mmx_txen_n  
Fall time, mmx_txen_n  
Rise time, mmx_txdat  
Fall time, mmx_txdat  
Rise time, mmx_txse0  
Fall time, mmx_txse0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
Transmit  
mmx_txen_n  
mmx_txdat  
mmx_txse0  
Receive  
FSU21  
FSU24  
FSU19  
FSU20  
FSU20  
FSU22  
FSU23  
FSU25  
FSU19  
030-082  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-49. Low-/Full-Speed USB – Bidirectional Standard 3-pin Mode  
6.6.3.4 Multiport Full-Speed Universal Serial Bus (USB) – Unidirectional TLL 6-pin Mode  
Table 6-94 and Table 6-95 assume testing over the recommended operating conditions (see Figure 6-50).  
Table 6-93. Low-/Full-Speed USB Timing Conditions – Unidirectional TLL 6-pin Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15  
pF  
Table 6-94. Low-/Full-Speed USB Timing Requirements – Unidirectional TLL 6-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
FSUT1  
FSUT2  
td(SE0,DAT)  
td(SE0,DAT)  
Time duration, mmx_txse0 and mmx_txdat low  
together during transition  
14  
14  
ns  
ns  
Time duration, mmx_txse0 and mmx_txdat high  
together during transition  
8
8
196  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-95. Low-/Full-Speed USB Switching Characteristics – Unidirectional TLL 6-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
81.8  
81.8  
81.8  
81.8  
MAX  
84.8  
84.8  
MIN  
81.8  
81.8  
81.8  
81.8  
MAX  
84.8  
84.8  
FSUT3  
FSUT4  
FSUT5  
FSUT6  
FSUT7  
td(TXENH-DPV)  
td(TXENH-DMV)  
td(DPI-TXENL)  
td(DMI-TXENL)  
ts(DP-DM)  
Delay time, mmx_txen_n high to mmx_rxdp valid  
Delay time, mmx_txen_n high to mmx_rxdm valid  
Delay time, mmx_rxdp invalid mmx_txen_n low  
Delay time, mmx_rxdm invalid mmx_txen_n low  
ns  
ns  
ns  
ns  
ns  
Skew between mmx_rxdp and mmx_rxdm  
transition  
1.5  
1.5  
1.5  
1.5  
FSUT8  
ts(DP,DM-RCV)  
Skew between mmx_rxdp, mmx_rxdm, and  
mmx_rxrcv transition  
ns  
tR(rxrcv)  
tF(rxrcv)  
tR(dp)  
Rise time, mmx_rxrcv  
Fall time, mmx_rxrcv  
Rise time, mmx_rxdp  
Fall time, mmx_rxdp  
Rise time, mmx_rxdm  
Fall time, mmx_rxdm  
4
4
4
4
4
4
4
4
4
4
4
4
ns  
ns  
ns  
ns  
ns  
ns  
tF(dp)  
tR(dm)  
tF(dm)  
mmx_txen_n  
Transmit  
Receive  
FSUT1  
FSUT2  
mmx_txdat  
mmx_txse0  
mmx_rxdp  
mmx_rxdm  
mmx_rxrcv  
FSUT1  
FSUT2  
FSUT3  
FSUT5  
FSUT6  
FSUT4  
FSUT7  
FSUT8  
030-083  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-50. Low-/Full-Speed USB – Unidirectional TLL 6-pin Mode  
6.6.3.5 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional TLL 4-pin Mode  
Table 6-97 and Table 6-98 assume testing over the recommended operating conditions (see Figure 6-51).  
Table 6-96. Low-/Full-Speed USB Timing Conditions – Bidirectional TLL 4-pin Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
15  
pF  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
197  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-97. Low-/Full-Speed USB Timing Requirements – Bidirectional TLL 4-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
FSUT9  
td(DAT,SE0)  
Time duration, mmx_txdat and mmx_txse0 low  
together during transition  
14  
14  
ns  
ns  
FSUT10 td(DAT,SE0)  
Time duration, mmx_tsdat and mmx_txse0 high  
together during transition  
8
8
Table 6-98. Low-/Full-Speed USB Switching Characteristics – Bidirectional TLL 4-pin Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
81.8  
81.8  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
FSUT11 td(TXENL-DATV)  
FSUT12 td(TXENL-SE0V)  
FSUT13 ts(DAT-SE0)  
Delay time, mmx_txen_n active to mmx_txdat valid  
Delay time, mmx_txen_n active to mmx_txse0 valid  
84.8  
84.8  
1.5  
ns  
ns  
ns  
Skew between mmx_txdat and mmx_txse0  
transition  
FSUT14 ts(DP,DM-RCV)  
Skew between mmx_rxdp, mmx_rxdm, and  
mmx_rxrcv transition  
1.5  
1.5  
ns  
FSUT15 td(DATI-TXENL)  
Delay time, mmx_txse0 invalid to mmx_txen_n Low  
Delay time, mmx_txdat invalid to mmx_txen_n Low  
Rise time, mmx_rxrcv  
81.8  
81.8  
81.8  
81.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FSUT16 td(SE0I-TXENL)  
tR(rcv)  
tF(rcv)  
tR(dat)  
tF(dat)  
tR(se0)  
tF(se0)  
4
4
4
4
4
4
4
4
4
4
4
4
Fall time, mmx_rxrcv  
Rise time, mmx_txdat  
Fall time, mmx_txdat  
Rise time, mmx_txse0  
Fall time, mmx_txse0  
mmx_txen_n  
mmx_txdat  
mmx_txse0  
mmx_rxrcv  
Transmit  
FSUT11  
Receive  
FSUT9  
FSUT15  
FSUT16  
FSUT10  
FSUT12  
FSUT13  
FSUT14  
FSUT9  
FSUT10  
030-084  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-51. Low-/Full-Speed USB – Bidirectional TLL 4-pin Mode  
6.6.3.6 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional TLL 3-pin Mode  
Table 6-100 and Table 6-101 assume testing over the recommended operating conditions (see  
Figure 6-52).  
Table 6-99. Low-/Full-Speed USB Timing Conditions – Bidirectional TLL 3-pin Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
2
ns  
198  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-99. Low-/Full-Speed USB Timing Conditions – Bidirectional TLL 3-pin Mode (continued)  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
tF  
Input signal fall time  
2
ns  
Output Conditions  
CLOAD  
Output load capacitance  
15  
pF  
Table 6-100. Low-/Full-Speed USB Timing Requirements – Bidirectional TLL 3-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
FSUT17 td(DAT,SE0) Time duration, mmx_txdat and mmx_txse0 low  
together during transition  
14  
14  
ns  
ns  
FSUT18 td(DAT,SE0) Time duration, mmx_tsdat and mmx_txse0 high  
together during transition  
8
8
Table 6-101. Low-/Full-Speed USB Switching Characteristics – Bidirectional TLL 3-pin Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
MIN  
81.8  
81.8  
MAX  
84.8  
84.8  
1.5  
FSUT19 td(TXENH-DATV)  
FSUT20 td(TXENH-SE0V)  
FSUT21 ts(DAT-SE0)  
Delay time, mmx_txen_n high to mmx_txdat valid  
Delay time, mmx_txen_n high to mmx_txse0 valid  
ns  
ns  
ns  
Skew between mmx_txdat and mmx_txse0  
transition  
FSUT22 td(DATI-TXENL)  
Delay time, mmx_txdat invalid mmx_txen_n low  
Delay time, mmx_txse0 invalid mmx_txen_n low  
Rise time, mmx_txdat  
81.8  
81.8  
81.8  
81.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FSUT23 td(SE0I-TXENL)  
tR(dat)  
tF(dat)  
tR(se0)  
tF(se0)  
tR(do)  
tF(do)  
4
4
4
4
4
4
4
4
4
4
4
4
Fall time, mmx_txdat  
Rise time, mmx_txse0  
Fall time, mmx_txse0  
Rise time, mmx_txse0  
Fall time, mmx_txse0  
Receive  
FSUT17  
mmx_txen_n  
mmx_txdat  
mmx_txse0  
Transmit  
FSUT19  
FSUT22  
FSUT23  
FSUT18  
FSUT20  
FSUT21  
FSUT17  
FSUT18  
030-085  
In mmx, x is equal to 0, 1, or 2.  
Figure 6-52. Low-/Full-Speed USB – Bidirectional TLL 3-pin Mode  
6.6.4 Multiport High-Speed Universal Serial Bus (USB) Timing  
In addition to the full-speed USB controller, a high-speed (HS) USB OTG controller is instantiated inside  
OMAP3525 and OMAP3530. It allows high-speed transactions (up to 480 Mbit/s) on the USB ports 0, 1, 2,  
and 3.  
Port 0:  
12-bit slave mode (SDR)  
Port 1 and port 2:  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
199  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
12-bit master mode (SDR)  
12-bit TLL master mode (SDR)  
8-bit TLL master mode (DDR)  
Port 3:  
12-bit TLL master mode (SDR)  
8-bit TLL master mode (DDR)  
6.6.4.1 High-Speed Universal Serial Bus (USB) on Port 0 – 12-bit Slave Mode  
Table 6-103 and Table 6-104 assume testing over the recommended operating conditions (see  
Figure 6-53).  
Table 6-102. High-Speed USB Timing Conditions – 12-bit Slave Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tr  
Input Signal Rising Time  
Input Signal Falling Time  
2.00  
2.00  
ns  
ns  
tf  
Output Conditions  
Cload  
Output Load Capacitance  
3.50  
pF  
Table 6-103. High-Speed USB Timing Requirements – 12-bit Slave Mode(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
60.03  
500.00  
HSU0fp(CLK)  
hsusb0_clk clock frequency(2)(3)  
Cycle Jitter(3), hsusb0_clk  
MHz  
ps  
tj(CLK)  
HSU3  
HSU4  
ts(DIRV-CLKH)  
ts(NXTV-CLKH)  
th(CLKH-DIRIV)  
th(CLKH-NXT/IV)  
ts(DATAV-CLKH)  
th(CLKH-DATIV)  
Setup time, hsusb0_dir valid before hsusb0_clk rising edge  
Setup time, hsusb0_nxt valid before hsusb0_clk rising edge  
Hold time, hsusb0_dir valid after hsusb0_clk rising edge  
Hold time, hsusb0_nxt valid after hsusb0_clk rising edge  
Setup time, hsusb0_data[0:7] valid before hsusb0_clk rising edge  
Hold time, hsusb0_data[0:7] valid after hsusb0_clk rising edge  
6.7  
6.7  
0.0  
0.0  
6.7  
0.0  
ns  
ns  
ns  
ns  
HSU5  
HSU6  
ns  
ns  
(1) The timing requirements are assured for the cycle jitter error condition specified.  
(2) Related with the input maximum frequency supported by the I/F module.  
(3) Maximum cycle jitter supported by clk input clock.  
Table 6-104. High-Speed USB Switching Characteristics – 12-bit Slave Mode  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
0.5  
MAX  
HSU1 td(clkL-STPV)  
td(clkL-STPIV)  
HSU2 td(clkL-DV)  
td(clkL-DIV)  
Delay time, hsusb0_clk high to output usb0_stp valid  
Delay time, hsusb0_clk high to output usb0_stp invalid  
Delay time, hsusb0_clk high to output hsusb0_data[0:7] valid  
Delay time, hsusb0_clk high to output hsusb0_data[0:7] invalid  
Rising time, output signals  
9.0  
ns  
ns  
ns  
ns  
ns  
ns  
9.0  
0.5  
tr(do)  
2.0  
2.0  
tf(do)  
Falling time, output signals  
200  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
HSU0  
hsusb0_clk  
HSU1  
HSU1  
hsusb0_stp  
hsusb0_dir_&_nxt  
hsusb0_data[7:0]  
HSU3  
HSU4  
HSU5  
HSU2  
HSU2  
HSU6  
Data_OUT  
Data_IN  
030-086  
Figure 6-53. High-Speed USB – 12-bit Slave Mode  
6.6.4.2 High-Speed Universal Serial Bus (USB) on Ports 1 and 2 – 12-bit Master Mode  
Table 6-106 and Table 6-107 assume testing over the recommended operating conditions (see  
Figure 6-54).  
Table 6-105. High-Speed USB Timing Conditions – 12-bit Master Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
3
pF  
Table 6-106. High-Speed USB Timing Requirements – 12-bit Master Mode(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
9.3  
9.3  
0.2  
0.2  
9.3  
0.2  
MAX  
HSU3 ts(DIRV-CLKH)  
ts(NXTV-CLKH)  
HSU4 th(CLKH-DIRIV)  
th(CLKH-NXT/IV)  
Setup time, hsusbx_dir valid before hsusbx_clk rising edge  
Setup time, hsusbx_nxt valid before hsusbx_clk rising edge  
Hold time, hsusbx_dir valid after hsusbx_clk rising edge  
Hold time, hsusbx_nxt valid after hsusbx_clk rising edge  
Setup time, hsusbx_data[0:7] valid before hsusbx_clk rising edge  
Hold time, hsusbx_data[0:7] valid after hsusbx_clk rising edge  
ns  
ns  
ns  
ns  
ns  
ns  
HSU5 ts(DATAV-CLKH)  
HSU6 th(CLKH-DATIV)  
(1) In hsusbx, x is equal to 1 or 2.  
Table 6-107. High-Speed USB Switching Characteristics – 12-bit Master Mode(1)  
N O.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
60  
HSU0  
HSU1  
HSU2  
fp(CLK)  
hsusbx_clk clock frequency  
Jitter standard deviation(2), hsusbx_clk  
MHz  
ps  
tj(CLK)  
200  
13  
td(clkL-STPV)  
td(clkL-STPIV)  
td(clkL-DV)  
td(clkL-DIV)  
Delay time, hsusbx_clk high to output hsusbx_stp valid  
Delay time, hsusbx_clk high to output hsusbx_stp invalid  
Delay time, hsusbx_clk high to output hsusbx_data[0:7] valid  
Delay time, hsusbx_clk high to output hsusbx_data[0:7] invalid  
ns  
2
2
ns  
13  
ns  
ns  
(1) In hsusbx, x is equal to 1 or 2.  
(2) The jitter probability density can be approximated by a Gaussian function.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
201  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-107. High-Speed USB Switching Characteristics – 12-bit Master Mode (continued)  
N O.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
tR(do)  
tF(do)  
Rise time, output signals  
Fall time, output signals  
2
2
ns  
ns  
HSU0  
hsusbx_clk  
hsusbx_stp  
HSU1  
HSU1  
HSU3  
HSU4  
HSU6  
hsusbx_dir_&_nxt  
hsusbx_data[7:0]  
HSU5  
HSU2  
HSU2  
Data_OUT  
Data_IN  
030-087  
In hsusbx, x is equal to 1 or 2.  
Figure 6-54. High-Speed USB – 12-bit Master Mode  
6.6.4.3 High-Speed Universal Serial Bus (USB) on Ports 1, 2, and 3 – 12-bit TLL Master Mode  
Table 6-109 and Table 6-110 assume testing over the recommended operating conditions (see  
Figure 6-55).  
Table 6-108. High-Speed USB Timing Conditions – 12-bit TLL Master Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
3
pF  
Table 6-109. High-Speed USB Timing Requirements – 12-bit TLL Master Mode(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
6
MAX  
HSU2 ts(STPV-CLKH)  
HSU3 ts(CLKH-STPIV)  
HSU4 ts(DATAV-CLKH)  
HSU5 th(CLKH-DATIV)  
Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge  
Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge  
Setup time, hsusbx_tll_data[7:0] valid before hsusbx_tll_clk rising edge  
Hold time, hsusbx_tll_data[7:0] valid after hsusbx_tll_clk rising edge  
ns  
ns  
ns  
ns  
0
6
0
(1) In hsusbx, x is equal to 1, 2, or 3.  
Table 6-110. High-Speed USB Switching Characteristics – 12-bit TLL Master Mode(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
HSU0 fp(CLK)  
hsusbx_tll_clk clock frequency  
60  
MHz  
(1) In hsusbx, x is equal to 1, 2, or 3.  
202 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-110. High-Speed USB Switching Characteristics – 12-bit TLL Master Mode (continued)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
200  
9
tj(CLK)  
Jitter standard deviation(2), hsusbx_tll_clk  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HSU6 td(CLKL-DIRV)  
td(CLKL-DIRIV)  
td(CLKL-NXTV)  
td(CLKL-NXTIV)  
HSU7 td(CLKL-DV)  
td(CLKL-DIV)  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] invalid  
Rise time, output signals  
0
0
0
9
9
tR(do)  
2
2
tF(do)  
Fall time, output signals  
(2) The jitter probability density can be approximated by a Gaussian function.  
HSU0  
hsusbx_tll_clk  
HSU3  
HSU2  
hsusbx_tll_stp  
HSU6  
HSU6  
HSU7  
hsusbx_tll_dir_&_nxt  
HSU4  
HSU7  
HSU5  
Data_IN  
Data_OUT  
hsusbx_tll_data[7:0]  
030-088  
In hsusbx, x is equal to 1, 2, or 3.  
Figure 6-55. High-Speed USB – 12-bit TLL Master Mode  
6.6.4.4 High-Speed Universal Serial Bus (USB) on Ports 1, 2, and 3 – 8-bit TLL Master Mode  
Table 6-112 and Table 6-113 assume testing over the recommended operating conditions (see  
Figure 6-56).  
Table 6-111. High-Speed USB Timing Conditions – 8-bit TLL Master Mode  
TIMING CONDITION PARAMETER  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
2
2
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
3
pF  
Table 6-112. High-Speed USB Timing Requirements – 8-bit TLL Master Mode(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
6
MAX  
HSU2 ts(STPV-CLKH)  
HSU3 ts(CLKH-STPIV)  
HSU4 ts(DATAV-CLKH)  
Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge  
Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge  
Setup time, hsusbx_tll_data[3:0] valid before hsusbx_tll_clk rising edge  
ns  
ns  
ns  
0
3
(1) In hsusbx, x is equal to 1, 2, or 3.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
203  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-112. High-Speed USB Timing Requirements – 8-bit TLL Master Mode (continued)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
HSU5 th(CLKH-DATIV)  
Hold time, hsusbx_tll_data[3:0] valid after hsusbx_tll_clk rising edge  
–0.8  
ns  
Table 6-113. High-Speed USB Switching Characteristics – 8-bit TLL Master Mode(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
60  
HSU0  
fp(CLK)  
hsusbx_tll_clk clock frequency  
Jitter standard deviation(2), hsusbx_tll_clk  
MHz  
ps  
tj(CLK)  
200  
52.4%  
9
HSU1  
HSU6  
tj(CLK)  
Duty cycle, hsusbx_tll_clk pulse duration (low and high)  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] valid  
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] invalid  
Rise time, output signals  
47.6%  
td(CLKL-DIRV)  
td(CLKL-DIRIV)  
td(CLKL-NXTV)  
td(CLKL-NXTIV)  
td(CLKL-DV)  
td(CLKL-DIV)  
tR(do)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
0
9
4
HSU7  
HSU8  
2
2
tF(do)  
Fall time, output signals  
(1) In hsusbx, x is equal to 1, 2, or 3.  
(2) The jitter probability density can be approximated by a Gaussian function.  
HSU0  
HSU1  
HSU1  
hsusbx_tll_clk  
HSU3  
HSU2  
hsusbx_tll_stp  
HSU6  
HSU6  
hsusbx_tll_dir_&_nxt  
HSU5  
HSU4  
HSU5  
HSU8  
HSU7  
HSU4  
HSU7  
Data_IN  
Data_IN_(n+1)  
Data_IN_(n+2)  
Data_OUT  
Data_OUT_(n+1)  
hsusbx_tll_data[3:0]  
030-089  
In hsusbx, x is equal to 1, 2, or 3.  
Figure 6-56. High-Speed USB – 8-bit TLL Master Mode  
204  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
6.6.5 I2C Interface  
The multimaster I2C peripheral provides an interface between two or more devices via an I2C serial bus.  
The I2C controller supports the multimaster mode which allows more than one device capable of  
controlling the bus to be connected to it. Each I2C device is recognized by a unique address and can  
operate as either transmitter or receiver, according to the function of the device. In addition to being a  
transmitter or receiver, a device connected to the I2C bus can also be considered as master or slave when  
performing data transfers. This data transfer is carried out via two serial bidirectional wires:  
An SDA data line  
An SCL clock line  
The following sections illustrate the data transfer is in master or slave configuration with 7-bit addressing  
format. The I2C interface is compliant with Philips I2C specification version 2.1. It supports standard mode  
(up to 100K bits/s), fast mode (up to 400K bits/s) and high-speed mode (up to 3.4Mb/s) .  
6.6.5.1 I2C Standard/Fast-Speed Mode  
Table 6-114. I2C Standard/Fast-Speed Mode Timings  
NO.  
PARAMETER(1)  
Standard Mode  
Fast Mode  
UNIT  
MIN  
MAX  
MIN  
MAX  
fSCL  
Clock Frequency, i2cX_scl  
100  
400  
kHz  
µs  
µs  
ns  
I1  
I2  
I3  
I4  
I5  
tw(SCLH)  
Pulse Duration, i2cX_scl high  
4
0.6  
1.3  
100(2)  
0(3)  
tw(SCLL)  
Pulse Duration, i2cX_scl low  
4.7  
250  
0(3)  
4.7  
tsu(SDAV-SCLH)  
th(SCLH–SDAV)  
tsu(SDAL-SCLH)  
Setup time, i2cX_sda valid before i2cX_scl active level  
Hold time, i2cX_sda valid after i2cX_scl active level  
3.45(4)  
0.9(4)  
µs  
µs  
Setup time, i2cX_scl high after i2cX_sda low (for a  
START(5) condition or a repeated START condition)  
0.6  
I6  
I7  
I8  
th(SCLH–SDAH)  
th(SCLH–RSTART)  
tw(SDAH)  
Hold time, i2cX_sda low level after i2cX_scl high level  
(STOP condition)  
4
4
0.6  
0.6  
1.3  
µs  
µs  
µs  
Hold time, i2cX_sda low level after i2cX_scl high level (for  
a repeated START condition)  
Pulse duration, i2cX_sda high between STOP and START  
conditions  
4.7  
tR(SCL)  
tF(SCL)  
tR(SDA)  
tF(SDA)  
CB  
Rise time, i2cX_scl  
1000  
300  
300  
300  
300  
300  
60(6)  
ns  
ns  
ns  
ns  
pF  
Fall time, i2cX_scl  
Rise time, i2cX_sda  
Fall time, i2cX_sda  
1000  
300  
60(6)  
Capacitive load for each bus line  
(1) In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.  
(2) A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDAV-SCLH) 250 ns must then be  
met. This is automatically the case if the device does not stretch the low period of the i2cx_scl. If such a device does stretch the low  
period of the i2cx_scl, it must output the next data bit to the i2cx_sda line tr(SDA) max + tsu(SDAV-SCLH) = 1000 + 250 = 1250 ns (according  
to the standard-mode I2C-bus specification) before the i2cx_scl line is released.  
(3) The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) to  
bridge the undefined region of the falling edge of i2cx_scl.  
(4) The maximum th(SCLH-SDA) has only to be met if the device does not stretch the low period of the i2cx_scl signal.  
(5) After this time, the first clock is generated.  
(6) Maximum reference load for i2c4_scl and i2c4_sda is CB = 15 pF.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
205  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
START  
START REPEAT  
START  
STOP  
i2cX_sda  
i2cX_scl  
I2  
I5  
I8  
I7  
I6  
I1  
I3  
I4  
I6  
030-093  
Figure 6-57. I2C – Standard/Fast Mode  
206  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
6.6.5.2 I2C High-Speed Mode  
Table 6-115. I2C HighSpeed Mode Timings(1)(2)  
NO.  
PARAMETER  
CB = 100 pF MAX  
CB = 400 pF MAX  
UNIT  
MIN  
MAX  
MIN  
MAX  
fSCL  
Clock frequency, i2cX_scl  
Pulse duration, i2cX_scl high  
Pulse duration, i2cX_scl low  
3.4  
1.7  
MHz  
µs  
I1  
I2  
I3  
tw(SCLH)  
tw(SCLL)  
60(3)  
160(3)  
10  
120(3)  
320(3)  
10  
µs  
tsu(SDAV-SCLH)  
Setup time, i2cX_sda valid before i2cX_scl  
active level  
ns  
I4  
I5  
th(SCLH–SDAV)  
tsu(SDAL-SCLH)  
Hold time, i2cX_sda valid after i2cX_scl active  
level  
0(2)  
160  
70  
0(2)  
160  
150  
µs  
µs  
Setup time, i2cX_scl high after i2cX_sda low  
(for a START(4) condition or a repeated START  
condition)  
I6  
I7  
th(SCLH–SDAH)  
Hold time, i2cX_sda low level after i2cX_scl high  
level (STOP condition)  
160  
160  
160  
160  
µs  
th(SCLH–RSTART)  
Hold time, i2cX_sda low level after i2cX_scl high  
level (for a repeated START condition)  
ns  
tR(SCL)  
tR(SCL)  
Rise time, i2cX_scl  
40  
80  
80  
ns  
ns  
Rise time, i2cX_scl after a repeated START  
condition and after a bit acknowledge  
160  
tF(SCL)  
tR(SDA)  
tF(SDA)  
CB  
Fall time, i2cX_scl  
40  
80  
80  
ns  
ns  
ns  
Rise time, i2cX_sda  
160  
160  
Fall time, i2cX_sda  
80  
60(5)  
Capacitive load for each bus line  
pF  
(1) In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.  
(2) The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) to  
bridge the undefined region of the falling edge of i2cx_scl.  
(3) HS-mode master devices generate a serial clock signal with a high to low ratio of 1 to 2. tw(SCLL) > 2 × tw(SCLH)  
.
(4) After this time, the first clock is generated.  
(5) Maximum reference load for i2c4_scl and i2c4_sda is CB = 15 pF.  
START REPEAT  
STOP  
I7  
i2cX_sda  
I5  
I6  
I1  
I2  
I3  
I4  
i2cX_scl  
030-094  
Figure 6-58. I2C – High-Speed Mode(1)(2)(3)  
(1) HS-mode master devices generate a serial clock signal with a high-to-low ratio of 1 to 2. tw(SCLL) > 2 x tw(SCLH)  
(2) In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.  
(3) After this time, the first clock is generated.  
.
Table 6-116. Correspondence Standard vs. TI Timing References  
TI-OMAP  
STANDARD-I2C  
S/F Mode  
FSCL  
HS Mode  
FSCLH  
fSCL  
I1  
I2  
I3  
I4  
I5  
tw(SCLH)  
THIGH  
THIGH  
tw(SCLL)  
TLOW  
TLOW  
tsu(SDAV-SCLH)  
th(SCLH-SDAV)  
tsu(SDAL-SCLH)  
TSU;DAT  
TSU;DAT  
TSU;STA  
TSU;DAT  
TSU;DAT  
TSU;STA  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
207  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-116. Correspondence Standard vs. TI Timing References (continued)  
TI-OMAP  
STANDARD-I2C  
S/F Mode  
THD;STA  
TSU;STO  
TBUF  
HS Mode  
THD;STA  
TSU;STO  
I6  
I7  
I8  
th(SCLH-SDAH)  
th(SCLH-RSTART)  
tw(SDAH)  
6.6.6 HDQ / 1-Wire Interfaces  
This module is intended to work with both the HDQ and the 1-Wire protocols. The protocols use a single  
wire to communicate between the master and the slave. The protocols employ an asynchronous return to  
1 mechanism where, after any command, the line is pulled high.  
6.6.6.1 HDQ Protocol  
Table 6-117 and Table 6-118 assume testing over the recommended operating conditions (see  
Figure 6-59 through Figure 6-62).  
Table 6-117. HDQ Timing Requirements  
PARAMETER  
tCYCD  
DESCRIPTION  
Bit window  
MIN  
MAX  
UNIT  
253  
µs  
tHW1  
Reads 1  
68  
tHW0  
Reads 0  
180  
tRSPS  
Command to host respond time(1)  
(1) Defined by software.  
Table 6-118. HDQ Switching Characteristics  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
193  
63  
MAX  
UNIT  
tB  
Break timing  
Break recovery  
Bit window  
µs  
tBR  
tCYCH  
tDW1  
tDW0  
253  
1.3  
Sends1 (write)  
Sends0 (write)  
101  
tB  
tBR  
HDQ  
030-095  
Figure 6-59. HDQ Break (Reset) Timing  
tCYCH  
tHW0  
tHW1  
HDQ  
030-096  
Figure 6-60. HDQ Read Bit Timing (Data)  
208  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
tCYCD  
tDW0  
tDW1  
HDQ  
030-097  
Figure 6-61. HDQ Write Bit Timing (Command/Address or Data)  
Command _byte_written  
0_(LSB)  
Data_byte_received  
tRSPS  
1
Break  
1
6
7_(MSB)  
0_(LSB)  
6
HDQ  
030-098  
Figure 6-62. HDQ Communication Timing  
6.6.6.2 1-Wire Protocol  
Table 6-119 and Table 6-120 assume testing over the recommended operating conditions (see  
Figure 6-63 through Figure 6-65).  
Table 6-119. 1-Wire Timing Requirements  
PARAMETER  
tPDH  
DESCRIPTION  
MIN  
MAX  
UNIT  
Presence pulse delay high  
Presence pulse delay low  
Read bit-zero time  
68  
µs  
tPDL  
68 – tPDH  
tRDV + tREL  
102  
Table 6-120. 1-Wire Switching Characteristics  
PARAMETER  
tRSTL  
DESCRIPTION  
MIN  
TYP  
484  
484  
102  
1.3  
MAX  
UNIT  
Reset time low  
µs  
tRSTH  
Reset time high  
Write bit cycle time  
Write bit-one time  
Write bit-zero time  
Recovery time  
tSLOT  
tLOW1  
tLOW0  
101  
134  
13  
tREC  
tLOWR  
Read bit strobe time  
tRSTH  
tPDL  
tRTSL  
tPDH  
1-WIRE  
030-099  
Figure 6-63. 1-Wire Break (Reset) Timing  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
209  
 
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
tSLOT_and_ tREC  
tRDV_and_ tREL  
tLOWR  
1-WIRE  
030-100  
Figure 6-64. 1-Wire Read Bit Timing (Data)  
tSLOT_and_tREC  
tLOW0  
1-WIRE  
tLOW1  
030-101  
Figure 6-65. 1-Wire Write Bit Timing (Command/Address or Data)  
6.6.7 UART IrDA Interface  
The IrDA module can operate in three different modes:  
Slow infrared (SIR) (115.2 Kbits/s)  
Medium infrared (MIR) (0.576 Mbits/s and 1.152 Mbits/s)  
Fast infrared (FIR) (4 Mbits/s)  
For more information about this interface, see the UART/IrDA chapter in the OMAP35x Technical  
Reference Manual (TRM) [literature number SPRUF98].  
Pulse duration  
90%  
90%  
50%  
50%  
10%  
10%  
tr  
tf  
030-118  
Figure 6-66. UART IrDA Pulse Parameters  
6.6.7.1 IrDA—Receive Mode  
Table 6-121. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode  
ELECTRICAL PULSE DURATION  
SIGNALING RATE  
UNIT  
MIN  
NOMINAL  
SIR  
MAX  
2.4 Kbit/s  
9.6 Kbit/s  
19.2 Kbit/s  
1.41  
1.41  
1.41  
78.1  
19.5  
9.75  
88.55  
22.13  
11.07  
µs  
µs  
µs  
210  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-121. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode  
(continued)  
ELECTRICAL PULSE DURATION  
SIGNALING RATE  
UNIT  
MIN  
1.41  
1.41  
1.41  
NOMINAL  
4.87  
MAX  
5.96  
4.34  
2.23  
38.4 Kbit/s  
57.6 Kbit/s  
115.2 Kbit/s  
µs  
µs  
µs  
3.25  
1.62  
MIR  
0.576 Mbit/s  
1.152 Mbit/s  
297.2  
149.6  
416  
208  
518.8  
258.4  
ns  
ns  
FIR  
4.0 Mbit/s (Single pulse)  
4.0 Mbit/s (Double pulse)  
67  
125  
250  
164  
289  
ns  
ns  
190  
Table 6-122. UART IrDA—Rise and Fall Time—Receive  
Mode  
PARAMETER  
MAX  
UNIT  
tR  
tF  
Rising time,  
uart3_rx_irrx  
200  
ns  
Falling time,  
uart3_rx_irrx  
200  
ns  
6.6.7.2 IrDA—Transmit Mode  
Table 6-123. UART IrDA—Signaling Rate and Pulse Duration—Transmit Mode  
SIGNALING RATE  
ELECTRICAL PULSE DURATION  
UNIT  
MIN  
NOMINAL  
SIR  
MAX  
2.4 Kbit/s  
9.6 Kbit/s  
78.1  
19.5  
9.75  
4.87  
3.25  
1.62  
78.1  
19.5  
9.75  
4.87  
3.25  
1.62  
MIR  
78.1  
19.5  
9.75  
4.87  
3.25  
1.62  
µs  
µs  
µs  
µs  
µs  
µs  
19.2 Kbit/s  
38.4 Kbit/s  
57.6 Kbit/s  
115.2 Kbit/s  
0.576 Mbit/s  
1.152 Mbit/s  
414  
206  
416  
419  
211  
ns  
ns  
208  
FIR  
4.0 Mbit/s (Single pulse)  
4.0 Mbit/s (Double pulse)  
123  
248  
125  
128  
253  
ns  
ns  
250  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
211  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
6.7 Removable Media Interfaces  
6.7.1 High-Speed Multimedia Memory Card (MMC) and Secure Digital IO Card (SDIO) Timing  
The MMC/SDIO host controller provides an interface to high-speed and standard MMC, SD memory  
cards, or SDIO cards. The application interface is responsible for managing transaction semantics. The  
MMC/SDIO host controller deals with MMC/SDIO protocol at transmission level, packing data, adding  
CRC, start/end bit, and checking for syntactical correctness.  
There are three MMC interfaces on the OMAP3525 and OMAP3530:  
MMC/SD/SDIO Interface 1:  
1.8 V/3 V support  
8 bits  
MMC/SD/SDIO Interface 2:  
1.8 V support  
8 bits  
4 bits with external transceiver allowing to support 3 V peripherals. Transceiver direction control  
signals are multiplexed with the upper four data bits.  
MMC/SD/SDIO Interface 3:  
1.8 V support  
8 bits  
6.7.1.1 MMC/SD/SDIO in SD Identification Mode  
Table 6-125 and Table 6-126 assume testing over the recommended operating conditions and electrical  
characteristic conditions.  
Table 6-124. MMC/SD/SDIO Timing Conditions – SD Identification Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
SD Identification Mode  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
10  
10  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
40  
pF  
Table 6-125. MMC/SD/SDIO Timing Requirements – SD Identification Mode(1)(2)(3)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
SD Identification Mode  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
HSSD3/SD3 tsu(CMDV-CLKIH)  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
1198.4  
1249.2  
1198.4  
1249.2  
ns  
ns  
HSSD4/SD4 tsu(CLKIH-CMDIV)  
Hold time, mmc1_cmd valid after  
mmc1_clk rising clock edge  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
HSSD3/SD3 tsu(CMDV-CLKIH)  
HSSD4/SD4 tsu(CLKIH-CMDIV)  
MMC/SD/SDIO Interface 2  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
1198.4  
1249.2  
1198.4  
1249.2  
ns  
ns  
Hold time, mmc1_cmd valid after  
mmc1_clk rising clock edge  
(1) Timing parameters are referred to output clock specified in Table 6-126.  
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-126.  
(3) Corresponding figures showing timing parameters are common with other interface modes. (See SD and HS SD modes).  
212  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-125. MMC/SD/SDIO Timing Requirements – SD Identification Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
HSSD3/SD3 tsu(CMDV-CLKIH)  
HSSD4/SD4 tsu(CLKIH-CMDIV)  
Setup time, mmc2_cmd valid before  
mmc2_clk rising clock edge  
1198.4  
1198.4  
ns  
ns  
Hold time, mmc2_cmd valid after  
mmc2_clk rising clock edge  
1249.2  
1249.2  
MMC/SD/SDIO Interface 3  
HSSD3/SD3 tsu(CMDV-CLKIH)  
Setup time, mmc3_cmd valid before  
mmc3_clk rising clock edge  
1198.4  
1249.2  
1198.4  
1249.2  
ns  
ns  
HSSD4/SD4 tsu(CLKIH-CMDIV)  
Hold time, mmc3_cmd valid after  
mmc3_clk rising clock edge  
Table 6-126. MMC/SD/SDIO Switching Characteristics – SD Identification Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
SD Identification Mode  
(3)  
1 /  
1/tc(clk)  
Frequency(2), mmcx_ clk  
0.4  
0.4  
MHz  
(HSSD1/SD1  
)
HSSD2/SD2 tW(clkH)  
HSSD2/SD2 tW(clkL)  
tdc(clk)  
Typical pulse duration, output clk high  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
X(4)*PO(5)  
Y(6)*PO(5)  
X(4)*PO(5)  
Y(6)*PO(5)  
ns  
ns  
ns  
ps  
125  
125  
tj(clk)  
Jitter standard deviation(7), output clk  
200  
200  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
tc(clk)  
Rise time, output clk  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
10  
10  
HSSD5/SD5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
6.3  
6.3  
6.3  
2492.7  
6.3  
6.3  
6.3  
2492.7  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
0
0
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
10  
10  
10  
10  
HSSD5/SD5 td(CLKOH-CMD) Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
2492.7  
2492.7  
MMC/SD/SDIO Interface 2  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
10  
10  
10  
10  
HSSD5/SD5 td(CLKOH-CMD) Delay time, mmc2_clk rising clock edge to  
mmc2_cmd transition  
2492.7  
2492.7  
MMC/SD/SDIO Interface 3  
tc(clk)  
Rise time, output clk  
10  
10  
ns  
(1) Corresponding figures showing timing parameters are common with other interface modes (see SD and HS SD modes).  
(2) Related with the output clk maximum and minimum frequencies programmable in I/F module.  
(3) In mmcx_clk, 'x' is equal to 1, 2, or 3.  
(4) The X parameter is defined as shown in Table 6-127.  
(5) PO = output clk period in ns.  
(6) The Y parameter is defined as shown in Table 6-128.  
(7) The jitter probability density can be approximated by a Gaussian function.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
213  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-126. MMC/SD/SDIO Switching Characteristics – SD Identification Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
10  
MIN  
MAX  
10  
tW(clkH)  
tW(clkL)  
tdc(clk)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
ns  
ns  
ns  
ns  
10  
10  
10  
10  
HSSD5/SD5 td(CLKOH-CMD) Delay time, mmc3_clk rising clock edge to  
mmc3_cmd transition  
6.3  
2492.7  
6.3  
2492.7  
Table 6-127. X Parameter  
CLKD  
1 or Even  
Odd  
X
0.5  
(trunk[CLKD/2]+1)/CLKD  
Table 6-128. Y Parameter  
CLKD  
1 or Even  
Odd  
Y
0.5  
(trunk[CLKD/2])/CLKD  
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)  
[literature number SPRUF98].  
6.7.1.2 MMC/SD/SDIO in High-Speed MMC Mode  
Table 6-130 and Table 6-131 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-67 and Figure 6-68).  
Table 6-129. MMC/SD/SDIO Timing Conditions – High-Speed MMC Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
High-Speed MMC Mode  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
3
3
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
30  
pF  
Table 6-130. MMC/SD/SDIO Timing Requirements – High-Speed MMC Mode(1)(2)(3)(4)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
High-Speed MMC Mode  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
MMC3 tsu(CMDV-CLKIH)  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before mmc1_clk  
rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before mmc1_clk  
rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
1.9  
(1) Timing parameters are referred to output clock specified in Table 6-131.  
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-131.  
(3) Corresponding figures showing timing parameters are common with Standard MMC mode (See Figure 6-67 and Figure 6-68)  
(4) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
214  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-130. MMC/SD/SDIO Timing Requirements – High-Speed MMC Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
MMC3 tsu(CMDV-CLKIH)  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before mmc1_clk  
rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before mmc1_clk  
rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
1.9  
MMC/SD/SDIO Interface 2  
MMC3 tsu(CMDV-CLKIH)  
Setup time, mmc2_cmd valid before mmc2_clk  
rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Hold time, mmc2_cmd valid after mmc2_clk  
rising clock edge  
Setup time, mmc2_datx valid before mmc2_clk  
rising clock edge  
Hold time, mmc2_datx valid after mmc2_clk  
rising clock edge  
1.9  
MMC/SD/SDIO Interface 3  
MMC3 tsu(CMDV-CLKIH)  
Setup time, mmc3_cmd valid before mmc3_clk  
rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Hold time, mmc3_cmd valid after mmc3_clk  
rising clock edge  
Setup time, mmc3_datx valid before mmc3_clk  
rising clock edge  
Hold time, mmc3_datx valid after mmc3_clk  
rising clock edge  
1.9  
Table 6-131. MMC/SD/SDIO Switching Characteristics – High-Speed MMC Mode(1)  
N O.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
High-Speed MMC Mode  
(3)  
1/MMC 1/tc(clk)  
1
Frequency(2), mmcx_ clk  
48  
24  
MHz  
MMC2  
MMC2  
tW(clkH)  
tW(clkL)  
tdc(clk)  
tj(clk)  
Typical pulse duration, output clk high  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
X(4)*PO(5)  
Y(6)*PO(5)  
X(4)*PO(5)  
Y(6)*PO(5)  
ns  
ns  
ps  
ps  
1041.7  
200  
2083.3  
200  
Jitter standard deviation(7), output clk  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
tc(clk)  
Rise time, output clk  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
tdc(clk)  
3
3
MMC5  
td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
3.7  
14.1  
4.1  
34.5  
(1) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
(2) Related with the output clk maximum and minimum frequencies programmable in I/F module.  
(3) In mmcx_clk, 'x' is equal to 1, 2, or 3.  
(4) The X parameter is defined as shown in Table 6-132.  
(5) PO = output clk period in ns.  
(6) The Y parameter is defined as shown in Table 6-133.  
(7) The jitter probability density can be approximated by a Gaussian function.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
215  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-131. MMC/SD/SDIO Switching Characteristics – High-Speed MMC Mode (continued)  
N O.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MMC6  
td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
3.7  
14.1  
4.1  
34.5  
ns  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
tc(clk)  
Rise time, output clk  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
tdc(clk)  
3
3
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
14.1  
34.5  
ns  
MMC/SD/SDIO Interface 2  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
3
3
3
3
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc2_clk rising clock edge to  
mmc2_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
td(CLKOH-DATx)  
Delay time, mmc2_clk rising clock edge to  
mmc2_datx transition  
16.5  
36.9  
ns  
MMC/SD/SDIO Interface 3  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
3
3
3
3
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc3_clk rising clock edge to  
mmc3_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
td(CLKOH-DATx)  
Delay time, mmc3_clk rising clock edge to  
mmc3_datx transition  
14.1  
34.5  
ns  
Table 6-132. X Parameter  
CLKD  
1 or Even  
Odd  
X
0.5  
(trunk[CLKD/2]+1)/CLKD  
Table 6-133. Y Parameter  
CLKD  
1 or Even  
Odd  
Y
0.5  
(trunk[CLKD/2])/CLKD  
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)  
[literature number SPRUF98].  
6.7.1.3 MMC/SD/SDIO in Standard MMC Mode and MMC Identification Mode  
Table 6-135 and Table 6-136 assume testing over the recommended operating conditions and electrical  
characteristic conditions.  
216  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-134. MMC/SD/SDIO Timing Conditions – Standard MMC Mode and MMC Identification Mode  
TIMING CONDITION PARAMETER  
Standard MMC Mode and MMC Identification Mode  
Input Conditions  
VALUE  
UNIT  
tR  
Input signal rise time  
Input signal fall time  
10  
10  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
30  
pF  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
217  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-135. MMC/SD/SDIO Timing Requirements – Standard MMC Mode and MMC Identification  
Mode(1)(2)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
Standard MMC Mode and MMC Identification Mode  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
MMC3 tsu(CMDV-CLKIH)  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before  
mmc1_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
MMC3 tsu(CMDV-CLKIH)  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before  
mmc1_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
MMC/SD/SDIO Interface 2  
MMC3 tsu(CMDV-CLKIH)  
Setup time, mmc2_cmd valid before  
mmc2_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
ns  
ns  
ns  
ns  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Hold time, mmc2_cmd valid after mmc2_clk  
rising clock edge  
Setup time, mmc2_datx valid before  
mmc2_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
Hold time, mmc2_datx valid after mmc2_clk  
rising clock edge  
MMC/SD/SDIO Interface 3  
MMC3 tsu(CMDV-CLKIH)  
Setup time, mmc3_cmd valid before  
mmc3_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
ns  
ns  
ns  
ns  
MMC4 tsu(CLKIH-CMDIV)  
MMC7 tsu(DATxV-CLKIH)  
MMC8 tsu(CLKIH-DATxIV)  
Hold time, mmc3_cmd valid after mmc3_clk  
rising clock edge  
Setup time, mmc3_datx valid before  
mmc3_clk rising clock edge  
13.6  
8.9  
65.7  
8.9  
Hold time, mmc3_datx valid after mmc3_clk  
rising clock edge  
(1) Timing parameters are referred to output clock specified in Table 6-136.  
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-136.  
Table 6-136. MMC/SD/SDIO Switching Characteristics – Standard MMC Mode and MMC Identification  
Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MMC Identification Mode  
(2)  
1/MMC 1/tc(clk)  
1
Frequency(1), mmcx_ clk  
0.4  
0.4  
MHz  
ns  
MMC2  
tW(clkH)  
Typical pulse duration, output clk high  
X(3)*PO(4)  
X(3)*PO(4)  
(1) Related with the output clk maximum and minimum frequencies programmable in I/F module.  
(2) In mmcx_clk, 'x' is equal to 1, 2, or 3.  
(3) The X parameter is defined as shown in Table 6-137.  
(4) PO = output clk period in ns.  
218  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-136. MMC/SD/SDIO Switching Characteristics – Standard MMC Mode and MMC Identification  
Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
MMC2  
tW(clkL)  
tdc(clk)  
tj(clk)  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
Jitter standard deviation(5), output clk  
Y*PO(4)  
Y*PO(4)  
ns  
ns  
ps  
125  
200  
125  
200  
Standard MMC Mode  
(2)  
1/MMC 1/tc(clk)  
1
Frequency(1), mmcx_ clk  
19.2  
9.6  
MHz  
MMC2  
MMC2  
tW(clkH)  
tW(clkL)  
tdc(clk)  
tj(clk)  
Typical pulse duration, output clk high  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
X(3)*PO(4)  
Y*PO(4)  
X(3)*PO(4)  
Y*PO(4)  
ns  
ns  
ps  
ps  
2604.2  
200  
5208.3  
200  
Jitter standard deviation(5), output clk  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
tc(clk)  
Rise time, output clk  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
tdc(clk)  
10  
10  
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
4.3  
4.3  
47.8  
4.3  
4.3  
99.9  
td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
47.8  
99.9  
ns  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
tc(clk)  
Rise time, output clk  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
tdc(clk)  
10  
10  
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
4.3  
4.3  
47.8  
4.3  
4.3  
99.9  
td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
47.8  
99.9  
ns  
MMC/SD/SDIO Interface 2  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
10  
10  
10  
10  
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc2_clk rising clock edge to  
mmc2_cmd transition  
4.3  
4.3  
47.8  
4.3  
4.3  
99.9  
td(CLKOH-DATx)  
Delay time, mmc2_clk rising clock edge to  
mmc2_datx transition  
47.8  
99.9  
ns  
MMC/SD/SDIO Interface 3  
tc(clk)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
tW(clkH)  
tW(clkL)  
tdc(clk)  
10  
10  
10  
10  
MMC5  
MMC6  
td(CLKOH-CMD)  
Delay time, mmc3_clk rising clock edge to  
mmc3_cmd transition  
4.3  
4.3  
47.8  
4.3  
4.3  
99.9  
td(CLKOH-DATx)  
Delay time, mmc3_clk rising clock edge to  
mmc3_datx transition  
47.8  
99.9  
ns  
(5) The jitter probability density can be approximated by a Gaussian function.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
219  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-137. X Parameter  
CLKD  
1 or Even  
Odd  
X
0.5  
(trunk[CLKD/2]+1)/CLKD  
Table 6-138. Y Parameter  
CLKD  
1 or Even  
Odd  
Y
0.5  
(trunk[CLKD/2])/CLKD  
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)  
[literature number SPRUF98].  
MMC1  
MMC2  
mmcx_clk  
MMC3  
MMC7  
MMC4  
mmcx_cmd  
MMC8  
mmcx_dat[3:0]  
030-104  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-67. MMC/SD/SDIO – High-Speed and Standard MMC Modes – Data/Command Receive  
MMC1  
MMC2  
mmcx_clk  
MMC5  
MMC6  
MMC5  
mmcx_cmd  
MMC6  
mmcx_dat[3:0]  
030-105  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-68. MMC/SD/SDIO – High-Speed and Standard MMC Modes – Data/Command Transmit  
6.7.1.4 MMC/SD/SDIO in High-Speed SD Mode  
Table 6-140 and Table 6-141 assume testing over the recommended operating conditions and electrical  
characteristic conditions.  
Table 6-139. MMC/SD/SDIO Timing Conditions – High-Speed SD Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
High-Speed SD Mode  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
3
3
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
40  
pF  
220  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-140. MMC/SD/SDIO Timing Requirements – High-Speed SD Mode(1)(2)(3)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
High-Speed SD Mode  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
HSSD3 tsu(CMDV-CLKIH)  
HSSD4 tsu(CLKIH-CMDIV)  
HSSD7 tsu(DATxV-CLKIH)  
HSSD8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before  
mmc1_clk rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
1.9  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
HSSD3 tsu(CMDV-CLKIH)  
HSSD4 tsu(CLKIH-CMDIV)  
HSSD7 tsu(DATxV-CLKIH)  
HSSD8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before  
mmc1_clk rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before  
mmc1_clk rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
1.9  
MMC/SD/SDIO Interface 2  
HSSD3 tsu(CMDV-CLKIH)  
Setup time, mmc2_cmd valid before  
mmc2_clk rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
HSSD4 tsu(CLKIH-CMDIV)  
HSSD7 tsu(DATxV-CLKIH)  
HSSD8 tsu(CLKIH-DATxIV)  
Hold time, mmc2_cmd valid after mmc2_clk  
rising clock edge  
Setup time, mmc2_datx valid before  
mmc2_clk rising clock edge  
Hold time, mmc2_datx valid after mmc2_clk  
rising clock edge  
1.9  
MMC/SD/SDIO Interface 3  
HSSD3 tsu(CMDV-CLKIH)  
Setup time, mmc3_cmd valid before  
mmc3_clk rising clock edge  
5.6  
2.3  
5.6  
2.3  
26  
1.9  
26  
ns  
ns  
ns  
ns  
HSSD4 tsu(CLKIH-CMDIV)  
HSSD7 tsu(DATxV-CLKIH)  
HSSD8 tsu(CLKIH-DATxIV)  
Hold time, mmc3_cmd valid after mmc3_clk  
rising clock edge  
Setup time, mmc3_datx valid before  
mmc3_clk rising clock edge  
Hold time, mmc3_datx valid after mmc3_clk  
rising clock edge  
1.9  
(1) Timing Parameters are referred to output clock specified in Table 6-141.  
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-141.  
(3) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
Table 6-141. MMC/SD/SDIO Switching Characteristics – High-Speed SD Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
High-Speed SD Mode  
(2)  
1/HSSD 1/tc(clk)  
1
Frequency(1), mmcx_ clk  
48  
24  
ns  
ns  
HSSD2 tW(clkH)  
Typical pulse duration, output clk high  
X(3)*PO(4)  
X(3)*PO(4)  
(1) Related with the output clk maximum and minimum frequencies programmable in I/F module.  
(2) In mmcx_clk, 'x' is equal to 1, 2, or 3.  
(3) The X parameter is defined as shown in Table 6-142.  
(4) PO = output clk period in ns.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
221  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-141. MMC/SD/SDIO Switching Characteristics – High-Speed SD Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
HSSD2 tW(clkL)  
tdc(clk)  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
Jitter standard deviation(6), output clk  
Y(5)*PO(4)  
Y(5)*PO(4)  
ns  
ps  
ps  
1041.7  
200  
2083.3  
200  
tj(clk)  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
tc(clk) Rise time, output clk  
tW(clkH)  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
tW(clkL)  
3
3
tdc(clk)  
3
3
HSSD5 td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
HSSD6 td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
14.1  
34.5  
ns  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
tc(clk) Rise time, output clk  
tW(clkH)  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
tW(clkL)  
3
3
tdc(clk)  
3
3
HSSD5 td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
HSSD6 td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
14.1  
34.5  
ns  
MMC/SD/SDIO Interface 2  
tc(clk)  
tW(clkH)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkL)  
3
3
tdc(clk)  
3
3
HSSD5 td(CLKOH-CMD)  
Delay time, mmc2_clk rising clock edge to  
mmc2_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
HSSD6 td(CLKOH-DATx)  
Delay time, mmc2_clk rising clock edge to  
mmc2_datx transition  
14.1  
34.5  
ns  
MMC/SD/SDIO Interface 3  
tc(clk)  
tW(clkH)  
Rise time, output clk  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tW(clkL)  
3
3
tdc(clk)  
3
3
HSSD5 td(CLKOH-CMD)  
Delay time, mmc3_clk rising clock edge to  
mmc3_cmd transition  
3.7  
3.7  
14.1  
4.1  
4.1  
34.5  
HSSD6 td(CLKOH-DATx)  
Delay time, mmc3_clk rising clock edge to  
mmc3_datx transition  
14.1  
34.5  
ns  
(5) The Y parameter is defined as shown in Table 6-143.  
(6) The jitter probability density can be approximated by a Gaussian function.  
Table 6-142. X Parameters  
CLKD  
1 or Even  
Odd  
X
0.5  
(trunk[CLKD/2]+1)/CLKD  
222  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-143. Y Parameters  
CLKD  
1 or Even  
Odd  
Y
0.5  
(trunk[CLKD/2])/CLKD  
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)  
[literature number SPRUF98].  
HSSD1  
HSSD2  
mmcx_clk  
HSSD3  
HSSD7  
HSSD4  
mmcx_cmd  
HSSD8  
mmcx_dat[3:0]  
030-106  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-69. MMC/SD/SDIO – High-Speed SD Mode – Data/Command Receive  
HSSD1  
HSSD2  
mmcx_clk  
HSSD5  
HSSD6  
HSSD5  
mmcx_cmd  
HSSD6  
mmcx_dat[3:0]  
030-107  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-70. MMC/SD/SDIO – High-Speed SD Mode – Data/Command Transmit  
6.7.1.5 MMC/SD/SDIO in Standard SD Mode  
Table 6-145 and Table 6-146 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-71).  
Table 6-144. MMC/SD/SDIO Timing Conditions – Standard SD Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Standard SD Mode  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
10  
10  
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
40  
pF  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
223  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-145. MMC/SD/SDIO Timing Requirements – Standard SD Mode(1)(2)(3)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
Standard SD Mode  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
SD3 tsu(CMDV-CLKIH)  
SD4 tsu(CLKIH-CMDIV)  
SD7 tsu(DATxV-CLKIH)  
SD8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before mmc1_clk  
rising clock edge  
6.2  
19.4  
6.2  
47.7  
19.2  
47.7  
19.2  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before mmc1_clk  
rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
19.4  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
SD3 tsu(CMDV-CLKIH)  
SD4 tsu(CLKIH-CMDIV)  
SD7 tsu(DATxV-CLKIH)  
SD8 tsu(CLKIH-DATxIV)  
Setup time, mmc1_cmd valid before mmc1_clk  
rising clock edge  
6.2  
19.4  
6.2  
47.7  
19.2  
47.7  
19.2  
ns  
ns  
ns  
ns  
Hold time, mmc1_cmd valid after mmc1_clk  
rising clock edge  
Setup time, mmc1_datx valid before mmc1_clk  
rising clock edge  
Hold time, mmc1_datx valid after mmc1_clk  
rising clock edge  
19.4  
MMC/SD/SDIO Interface 2  
SD3 tsu(CMDV-CLKIH)  
Setup time, mmc2_cmd valid before mmc2_clk  
rising clock edge  
6.2  
19.4  
6.2  
47.7  
19.2  
47.7  
19.2  
ns  
ns  
ns  
ns  
SD4 tsu(CLKIH-CMDIV)  
SD7 tsu(DATxV-CLKIH)  
SD8 tsu(CLKIH-DATxIV)  
Hold time, mmc2_cmd valid after mmc2_clk  
rising clock edge  
Setup time, mmc2_datx valid before mmc2_clk  
rising clock edge  
Hold time, mmc2_datx valid after mmc2_clk  
rising clock edge  
19.4  
MMC/SD/SDIO Interface 3  
SD3 tsu(CMDV-CLKIH)  
Setup time, mmc3_cmd valid before mmc3_clk  
rising clock edge  
6.2  
19.4  
6.2  
47.7  
19.2  
47.7  
19.2  
ns  
ns  
ns  
ns  
SD4 tsu(CLKIH-CMDIV)  
SD7 tsu(DATxV-CLKIH)  
SD8 tsu(CLKIH-DATxIV)  
Hold time, mmc3_cmd valid after mmc3_clk  
rising clock edge  
Setup time, mmc3_datx valid before mmc3_clk  
rising clock edge  
Hold time, mmc3_datx valid after mmc3_clk  
rising clock edge  
19.4  
(1) Timing parameters are referred to output clock specified in Table 6-146.  
(2) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-146.  
(3) In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.  
Table 6-146. MMC/SD/SDIO Switching Characteristics – Standard SD Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
Standard SD Mode  
1/SD 1/tc(clk)  
1
Frequency (1), mmcx_clk(2)  
24  
12  
MHz  
ns  
SD2 tW(clkH)  
Typical pulse duration, output clk high  
X(3)*PO(4)  
X(3)*PO(4)  
(1) Related with the output clk maximum and minimum frequencies programmable in I/F module.  
(2) In mmcx_clk, 'x' is equal to 1, 2, or 3.  
(3) The X parameter is defined as shown in Table 6-147.  
(4) PO = output clk period in ns.  
224  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-146. MMC/SD/SDIO Switching Characteristics – Standard SD Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
SD2 tW(clkL)  
tdc(clk)  
Typical pulse duration, output clk low  
Duty cycle error, output clk  
Jitter standard deviation(6), output clk  
Y(5)*PO(4)  
Y(5)*PO(4)  
ns  
ps  
ps  
2083.3  
200  
4166.7  
200  
tj(clk)  
MMC/SD/SDIO Interface 1 (1.8 V IO)  
tc(clk) Rise time, output clk  
tW(clkH)  
10  
10  
10  
10  
10  
10  
77  
ns  
ns  
ns  
ns  
ns  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
tW(clkL)  
10  
tdc(clk)  
10  
SD5 td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
6.1  
6.1  
35.5  
6.3  
6.3  
SD6 td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
35.5  
77  
ns  
MMC/SD/SDIO Interface 1 (3.0 V IO)  
tc(clk) Rise time, output clk  
tW(clkH)  
10  
10  
10  
10  
10  
10  
77  
ns  
ns  
ns  
ns  
ns  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
tW(clkL)  
10  
tdc(clk)  
10  
SD5 td(CLKOH-CMD)  
Delay time, mmc1_clk rising clock edge to  
mmc1_cmd transition  
6.1  
6.1  
35.5  
6.3  
6.3  
SD6 td(CLKOH-DATx)  
Delay time, mmc1_clk rising clock edge to  
mmc1_datx transition  
35.5  
77  
ns  
MMC/SD/SDIO Interface 2  
tc(clk) Rise time, output clk  
tW(clkH)  
10  
10  
10  
10  
10  
10  
77  
ns  
ns  
ns  
ns  
ns  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
tW(clkL)  
10  
tdc(clk)  
10  
SD5 td(CLKOH-CMD)  
Delay time, mmc2_clk rising clock edge to  
mmc2_cmd transition  
6.1  
6.1  
35.5  
6.3  
6.3  
SD6 td(CLKOH-DATx)  
Delay time, mmc2_clk rising clock edge to  
mmc2_datx transition  
35.5  
77  
ns  
MMC/SD/SDIO Interface 3  
tc(clk) Rise time, output clk  
tW(clkH)  
10  
10  
10  
10  
10  
10  
77  
ns  
ns  
ns  
ns  
ns  
Fall time, output clk  
Rise time, output data  
Fall time, output data  
tW(clkL)  
10  
tdc(clk)  
10  
SD5 td(CLKOH-CMD)  
Delay time, mmc3_clk rising clock edge to  
mmc3_cmd transition  
6.1  
6.1  
35.5  
6.3  
6.3  
SD6 td(CLKOH-DATx)  
Delay time, mmc3_clk rising clock edge to  
mmc3_datx transition  
35.5  
77  
ns  
(5) The Y parameter is defined as shown in Table 6-148.  
(6) The jitter probability density can be approximated by a Gaussian function.  
Table 6-147. X Parameter  
CLKD  
1 or Even  
Odd  
X
0.5  
(trunk[CLKD/2]+1)/CLKD  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
225  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-148. Y Parameter  
CLKD  
1 or Even  
Odd  
Y
0.5  
(trunk[CLKD/2])/CLKD  
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)  
[literature number SPRUF98].  
SD1  
SD2  
mmcx_clk  
SD3  
SD4  
mmcx_cmd  
SD7  
SD8  
mmcx_dat[3:0]  
030-108  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-71. MMC/SD/SDIO – Standard SD Mode – Data/Command Receive  
SD1  
SD2  
mmcx_clk  
SD5  
SD6  
SD5  
mmcx_cmd  
SD6  
mmcx_dat[3:0]  
030-109  
In mmcx, x is equal to 1, 2, or 3.  
Figure 6-72. MMC/SD/SDIO – Standard SD Mode – Data/Command Transmit  
226  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
6.8 Test Interfaces  
The emulation and trace interfaces allow tracing activities of the following CPUs:  
ARM1136JF-STM through an Embedded Trace Macro-cell (ETM11) dedicated to enable real-time  
trace of the ARM subsystem operations and a Serial Debug Trace Interface (SDTI)  
IVA2 DSP through a high-speed real-time data exchange (HS-RTDX) controller  
All processors can be emulated via JTAG ports.  
6.8.1 Embedded Trace Macro Interface (ETM)  
Table 6-149 assumes testing over the recommended operating conditions (see Figure 6-73).  
Table 6-149. Embedded Trace Macro Interface Switching Characteristics(1)  
NO.  
PARAMETER  
1.15 V  
UNIT  
MIN  
MAX  
f
1/tc(CLK)  
Frequency, etk_clk  
Cycle time(2), etk_clk  
166  
MHz  
ns  
ETM0 tc(CLK)  
6
ETM1 tW(CLK)  
ETM2 td(CLK-CTL)  
ETM3 td(CLK-D)  
Clock pulse width, etk_clk  
2.7  
ns  
Delay time, etk_clk clock edge to etk_ctl transition  
Delay time, etk_clk clock high to etk_d[15:0] transition  
–0.5  
–0.5  
0.5  
0.5  
ns  
ns  
(1) The capacitive load is equivalent to 25 pF.  
(2) Cycle time is given by considering a jitter of 5%.  
ETM0  
ETM1  
etk_clk  
ETM2  
etk_ctl  
ETM2  
ETM3  
ETM3  
etk_d[15:0]  
030-110  
Figure 6-73. Embedded Trace Macro Interface  
6.8.2 System Debug Trace Interface (SDTI)  
The system debug trace interface (SDTI) module provides real-time software tracing functionality to the  
OMAP3525 and OMAP3530 devices.  
The trace interface has four trace data pins and a trace clock pin.  
This interface is a dual-edge interface: the data are available on rising and falling edges of sdti_clk but can  
be also configured in single edge mode where data are available on falling edge of sdti_clk.  
Serial interface operates in clock stop regime: serial clock is not free running, when there is no trace data  
there is no trace clock.  
6.8.2.1 System Debug Trace Interface in Dual-Edge Mode  
Table 6-151 assumes testing over the recommended operating conditions and electrical characteristic  
conditions (see Figure 6-74).  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
227  
 
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-150. System Debug Trace Interface Timing Conditions – Dual-Edge Mode  
TIMING CONDITION PARAMETER  
Output Conditions  
VALUE  
UNIT  
CLOAD  
Output load capacitance  
25  
pF  
Table 6-151. System Debug Trace Interface Switching Characteristics – Dual-Edge Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
SD1 tc(CLK)  
SD2 tw(CLK)  
tdc(CLK)  
Cycle time, sdti_clk period  
29  
29  
ns  
ns  
ns  
ns  
ns  
ns  
Typical pulse duration, sdti_clk high or low  
Duty cycle error, sdti_clk  
Rise time, sdti_clk  
0.5*P(1)  
0.5*P(1)  
–1.2  
1.2  
5
–1.2  
1.2  
5
tR(CLK)  
tF(CLK)  
Fall time, sdti_clk  
5
5
SD3 td(CLK-TxD)  
Delay time, sdti_clk  
transition to sdti_txd[3:0]  
transition  
Multiplexing mode on etk pins  
2.3  
2.3  
10.9  
13.9  
2.3  
2.3  
10.9  
13.9  
Multiplexing mode on  
jtag_emu pins  
tR(CLK)  
tF(CLK)  
Rise time, sdti_txd[3:0]  
Fall time, sdti_txd[3:0]  
5
5
5
5
ns  
ns  
(1) P = sdti_clk clock period  
SD1  
SD2  
sdti_clk  
SD3  
SD3  
sdti_txd[3:0]  
Header Header Ad[7:4]  
Ad[3:0] Da[15:12] Da[11:8] Da[7:4]  
Da[3:0]  
030-111  
Figure 6-74. System Debug Trace Interface – Dual-Edge Mode  
6.8.2.2 System Debug Trace Interface in Single-Edge Mode  
Table 6-153 assumes testing over the recommended operating conditions and electrical characteristic  
conditions (see Figure 6-75).  
Table 6-152. System Debug Trace Interface Timing Conditions – Single-Edge Mode  
TIMING CONDITION PARAMETER  
Output Conditions  
VALUE  
UNIT  
CLOAD  
Output load capacitance  
25  
pF  
Table 6-153. System Debug Trace Interface Switching Characteristics – Single-Edge Mode  
NO.  
PARAMETER  
1.15 V  
MAX  
1.0 V  
UNIT  
MIN  
MIN  
MAX  
SD1 tc(CLK)  
SD2 tw(CLK)  
tdc(CLK)  
Cycle time, sdti_clk period  
29  
29  
ns  
ns  
ns  
ns  
ns  
ns  
Typical pulse duration, sdti_clk high or low  
Duty cycle error, sdti_clk  
Rise time, sdti_clk  
0.5*P(1)  
0.5*P(1)  
–1.2  
1.2  
5
–1.2  
1.2  
5
tR(CLK)  
tF(CLK)  
Fall time, sdti_clk  
5
5
SD3 td(CLK-TxD)  
Delay time, sdti_clk  
transition to sdti_txd[3:0]  
transition  
Multiplexing mode on etk pins  
2.3  
2.3  
26.5  
33.2  
2.3  
2.3  
26.5  
33.2  
Multiplexing mode on jtag_emu  
pins  
tR(CLK)  
Rise time, sdti_txd[3:0]  
5
5
ns  
(1) P = sdti_clk clock period.  
228 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-153. System Debug Trace Interface Switching Characteristics – Single-Edge Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
tF(CLK)  
Fall time, sdti_txd[3:0]  
5
5
ns  
SD1  
SD2  
sdti_clk  
SD3  
SD3  
Ad[7:4]  
sdti_txd[3:0]  
Header  
Header  
Ad[3:0]  
Da[15:12]  
Da[11:8]  
Da[7:4]  
Da[3:0]  
030-112  
Figure 6-75. System Debug Trace Interface – Single-Edge Mode  
6.8.3 JTAG Interfaces  
OMAP3525 and OMAP3530 JTAG TAP controllers handle standard IEEE JTAG interfaces. The following  
sections define the timing requirements for several tools used to test the OMAP3525 and OMAP3530  
processors as:  
Free running clock tool, like XDS560 and XDS510 tools  
Adaptive clock tool, like RealView® ICE tool and Lauterbach™ tool  
6.8.3.1 JTAG – Free Running Clock Mode  
Table 6-155 and Table 6-156 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-76).  
Table 6-154. JTAG Timing Conditions – Free Running Clock Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
5
5
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
30  
pF  
Table 6-155. JTAG Timing Requirements – Free Running Clock Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
JT4 tc(tck)  
Cycle time(2), jtag_tck period  
25  
33  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
JT5 tw(tckL)  
JT6 tw(tckH)  
tdc(tck)  
Typical pulse duration, jtag_tck low  
Typical pulse duration, jtag_tck high  
Duty cycle error, jtag_tck  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
–1250  
–1250  
1.8  
1250  
1250  
–1667  
–1667  
1.8  
1667  
1667  
tj(tck)  
Cycle jitter(4), jtag_tck  
JT7 tsu(tdiV-rtckH)  
JT8 th(tdiV-rtckH)  
JT9 tsu(tmsV-rtckH)  
JT10 th(tmsV-rtckH)  
JT12 tsu(emuxV-rtckH)  
Setup time, jtag_tdi valid before jtag_rtck high  
Hold time, jtag_tdi valid after jtag_rtck high  
Setup time, jtag_tms valid before jtag_rtck high  
Hold time, jtag_tms valid after jtag_rtck high  
Setup time, jtag_emux(5) valid before jtag_rtck  
high  
0.7  
1
1.8  
1.8  
0.7  
1
14.6  
19.8  
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
(2) Related with the input maximum frequency supported by the JTAG module.  
(3) P = jtag _tck period in ns.  
(4) Maximum cycle jitter supported by jtag _tck input clock.  
(5) x = 0 to 1  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
229  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
Table 6-155. JTAG Timing Requirements – Free Running Clock Mode (continued)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
JT13 th(emuxV-rtckH)  
Hold time,jtag_emux(5) valid after jtag_rtck high  
2
2.7  
ns  
Table 6-156. JTAG Switching Characteristics – Free Running Clock Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT=  
MIN  
MAX  
MIN  
MAX  
JT1 tc(rtck)  
JT2 tw(rtckL)  
JT3 tw(rtckH)  
tdc(rtck)  
Cycle time(1), jtag_rtck period  
Typical pulse duration, jtag_rtck low  
Typical pulse duration, jtag_rtck high  
Duty cycle error, jtag_rtck  
25  
33  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
–1250  
1250  
–1667  
1667  
tj(rtck)  
Jitter standard deviation(3), jtag_rtck  
33.3  
4
33.3  
4
tR(rtck)  
Rise time, jtag_rtck  
tF(rtck)  
Fall time, jtag_rtck  
4
4
JT11 td(rtckL-tdoV)  
tR(tdo)  
Delay time, jtag_rtck low to jtag_tdo valid  
Rise time, jtag_tdo  
–5.8  
2.7  
5.8  
4
–7.9  
2.7  
7.9  
4
tF(tdo)  
Fall time, jtag_tdo  
4
4
JT14 td(rtckH-emuxV)  
tR(emux)  
Delay time, jtag_rtck high to ,jtag_emux(4) valid  
Rise time, jtag_emux(4)  
Fall time, jtag_emux(4)  
15.1  
6
20.4  
6
tF(emux)  
6
6
(1) Related with the jtag_rtck maximum frequency.  
(2) PO = jtag _rtck period in ns.  
(3) The jitter probability density can be approximated by a Gaussian function.  
(4) x = 0 to 1  
JT4  
JT1  
JT5  
JT6  
JT3  
jtag_tck  
JT2  
jtag_rtck  
JT7  
JT8  
jtag_tdi  
JT9  
JT10  
JT13  
jtag_tms  
JT12  
jtag_emux(IN)  
JT11  
jtag_tdo  
JT14  
jtag_emux(OUT)  
030-113  
In jtag_emux, x is equal to 0 to 1.  
Figure 6-76. JTAG Interface Timing – Free Running Clock Mode  
6.8.3.2 JTAG – Adaptive Clock Mode  
Table 6-158 and Table 6-159 assume testing over the recommended operating conditions and electrical  
characteristic conditions (see Figure 6-77):  
230  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Table 6-157. JTAG Timing Conditions – Adaptive Clock Mode  
TIMING CONDITION PARAMETER  
VALUE  
UNIT  
Input Conditions  
tR  
Input signal rise time  
Input signal fall time  
5
5
ns  
ns  
tF  
Output Conditions  
CLOAD  
Output load capacitance  
30  
pF  
Table 6-158. JTAG Timing Requirements – Adaptive Clock Mode(1)  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
JA4  
JA5  
JA6  
tc(tck)  
Cycle time(2), jtag_tck period  
50  
50  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
tw(tckL)  
Typical pulse duration, jtag_tck low  
Typical pulse duration, jtag_tck high  
Duty cycle error, jtag_tck  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
0.5*P(3)  
tw(tckH)  
tdc(lclk)  
–2500  
–1500  
13.8  
2500  
1500  
–2500  
–1500  
13.8  
2500  
1500  
tj(lclk)  
Cycle jitter(4), jtag_tck  
JA7  
JA8  
JA9  
tsu(tdiV-tckH)  
th(tdiV-tckH)  
tsu(tmsV-tckH)  
Setup time, jtag_tdi valid before jtag_tck high  
Hold time, jtag_tdi valid after jtag_tck high  
Setup time, jtag_tms valid before jtag_tck high  
Hold time, jtag_tms valid after jtag_tck high  
13.8  
13.8  
13.8  
13.8  
JA10 th(tmsV-tckH)  
13.8  
13.8  
(1) The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.  
(2) Related with the input maximum frequency supported by the JTAG module.  
(3) P = jtag _tck period in ns.  
(4) Maximum cycle jitter supported by jtag _tck input clock.  
Table 6-159. JTAG Switching Characteristics – Adaptive Clock Mode  
NO.  
PARAMETER  
1.15 V  
1.0 V  
UNIT  
MIN  
MAX  
MIN  
MAX  
JA1  
JA2  
JA3  
tc(rtck)  
Cycle time(1), jtag_rtck period  
Typical pulse duration, jtag_rtck low  
Typical pulse duration, jtag_rtck high  
Duty cycle error, jtag_rtck  
Jitter standard deviation(3), jtag_rtck  
Rise time, jtag_rtck  
50  
50  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
tw(rtckL)  
tw(rtckH)  
tdc(rtck)  
tj(rtck)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
0.5*PO(2)  
2500  
–2500  
–14.6  
2500  
–2500  
–14.6  
33.3  
4
33.3  
4
tR(rtck)  
tF(rtck)  
Fall time, jtag_rtck  
4
4
JA11 td(rtckL-tdoV)  
Delay time, jtag_rtck low to jtag_tdo valid  
Rise time, jtag_tdo,  
14.6  
4
14.6  
4
tR(tdo)  
tF(tdo)  
Fall time, jtag_tdo  
4
4
(1) Related with the jtag _rtck maximum frequency programmable.  
(2) PO = jtag _rtck period in ns.  
(3) The jitter probability density can be approximated by a Gaussian function.  
Submit Documentation Feedback  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
231  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
JA4  
JA5  
JA6  
jtag_tck  
JA7  
JA8  
JA10  
JA1  
jtag_tdi  
JA9  
jtag_tms  
JA2  
JA3  
jtag_rtck  
JA11  
jtag_tdo  
030-114  
Figure 6-77. JTAG Interface Timing – Adaptive Clock Mode  
232  
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
7 PACKAGE CHARACTERISTICS  
7.1 Package Thermal Resistance  
Table 7-1 provides the thermal resistance characteristics for the recommended package types used on the  
OMAP3525 and OMAP3530 Applications Processors.  
Table 7-1. OMAP3525/30 Thermal Resistance Characteristics(1) (2)  
Package  
Power (W)(3)  
RθJA(°C/W)  
RθJB(°C/W)  
R
θJC(°C/W)(4)  
Board Type  
OMAP3525/30  
(CBB Pkg.)  
0.92871  
24.46  
10.94  
0.01(5)  
2S2P(6)  
(5)  
OMAP3525/30  
(CBC Pkg.)  
0.92871  
21.89  
6.23  
2S2P(6)  
(1) RθJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, °C/W  
(2) This table provides simulation data and may not represent actual use-case values.  
RθJB (Theta-JB) = Thermal Resistance Junction-to-Board, °C/W  
RθJC (Theta-JC) = Thermal Resistance Junction-to-Case, °C/W  
(3) These numbers are based on simulation results and don’t necessarily represent the wattage that the part will take in actual use.  
(4) It is recommended to dissipate the heat to the board instead of attempting to remove it from the top of the chip; therefore, top-side heat  
sinks should not be used for package.  
(5) Not applicable if the POP package has a memory package on top; no heat sink can be used.  
(6) The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Area Array Surface Mount Package  
Thermal Measurements).  
7.2 Device Support  
7.2.1 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
OMAP processors and support tools. Each OMAP device has one of three prefixes: X, P, or null (no  
prefix). Texas Instruments recommends two of three possible prefix designators for its support tools:  
TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMDX) through fully qualified production devices/tools (TMDS).  
Device development evolutionary flow:  
X
Experimental device that is not necessarily representative of the final device’s electrical  
specifications and may not use production assembly flow. (TMX definition)  
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet  
final electrical specifications. (TMP definition)  
null  
Production version of the silicon die that is fully qualified. (TMS definition)  
Support tool development evolutionary flow:  
TMDX  
TMDS  
Development support product that has not yet completed Texas Instruments internal  
qualification testing.  
Fully qualified development support product.  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
“Developmental product is intended for internal evaluation purposes.”  
Production devices and TMDS development-support tools have been characterized fully, and the quality  
and reliability of the device have been demonstrated fully. TI’s standard warranty applies.  
Predictions show that prototype devices (X or P), have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be  
used.  
Submit Documentation Feedback  
PACKAGE CHARACTERISTICS  
233  
 
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
SPRS599JUNE 2009  
www.ti.com  
For additional description of the device nomenclature markings, see the OMAP35x Applications Processor  
Silicon Errata (literature number SPRZ278).  
X
OMAP3530  
D
CBB  
( ) ( )( )  
Z
60 = 600 MHz Cortex - A8  
PREFIX  
X = Experimental Device  
P = Prototype Device  
blank= Production Device  
blank = Tray  
R
= Tape and Reel  
blank = -40° C to 90° C  
= -40° C to 105° C (preview)  
A
DEVICE  
PACKAGE TYPE  
SILICON REVISION  
TI HIREL RELEASE  
CBB = 515 pin s-PBGA  
CBC = 515 pin s-PBGA  
CUS = 423 pin s-PBGA  
A. For more information on the silicon revision, please see the OMAP3530/25/15/03 Applications Processor Silicon  
Errata (literature number SPRZ278).  
Figure 7-1. Device Nomenclature(A)  
7.2.2 Documentation Support  
7.2.2.1 Related Documentation from Texas Instruments  
The following documents describe the OMAP3525 and OMAP3530 Applications Processors. Copies of  
these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the  
search box provided at www.ti.com.  
The current documentation that describes the OMAP3525 and OMAP3530 Applications Processors,  
related peripherals, and other technical collateral, is available in the product folder at: www.ti.com.  
SPRUF98 OMAP35x Technical Reference Manual. Collection of documents providing detailed  
information on the OMAP3 architecture including power, reset, and clock control, interrupts,  
memory map, and switch fabric interconnect. Detailed information on the microprocessor unit  
(MPU) subsystem, the image, video, and audio (IVA2.2) subsystem, as well a functional  
description of the peripherals supported on OMAP35x devices is also included.  
SPRU732  
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide.Describes the CPU  
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+  
digital signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP  
generation comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an  
enhancement of the C64x DSP with added functionality and an expanded instruction set.  
SPRU871  
SPRU889  
TMS320C64x+ DSP Megamodule Reference Guide.Describes the TMS320C64x+ digital  
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory  
access (IDMA) controller, the interrupt controller, the power-down controller, memory  
protection, bandwidth management, and the memory and cache.  
High-Speed DSP Systems Design Reference Guide. Provides recommendations for  
meeting the many challenges of high-speed DSP system design. These recommendations  
include information about DSP audio, video, and communications systems for the C5000 and  
C6000 DSP platforms.  
7.2.2.2 Related Documentation from Other Sources  
The following documents are related to the OMAP3525 and OMAP3530 Applications Processors. Copies  
of these documents can be obtained directly from the internet or from your Texas Instruments  
representative.  
234  
PACKAGE CHARACTERISTICS  
Submit Documentation Feedback  
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors  
www.ti.com  
SPRS599JUNE 2009  
Cortex™-A8 Technical Reference Manual. This is the technical reference manual for the Cortex-A8  
processor. A copy of this document can be obtained via the internet at http://infocenter.arm.com. Please  
see the OMAP35x Applications Processor Silicon Errata (literature number SPRZ278) to determine the  
revision of the Cortex-A8 core used on your device.  
ARM Core CortexTM-A8 (AT400/AT401) Errata Notice. Provides a list of advisories for the different  
revisions of the Cortex-A8 processor. Contact your TI representative for a copy of this document. Please  
see the OMAP35x Applications Processor Silicon Errata (literature number SPRZ278) to determine the  
revision of the Cortex-A8 core used on your device.  
Submit Documentation Feedback  
PACKAGE CHARACTERISTICS  
235  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jun-2009  
PACKAGING INFORMATION  
Orderable Device  
OMAP3525DZCBC  
OMAP3530DZCBB  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
POP-  
CBC  
515  
Pb-Free  
(RoHS)  
Call TI  
Level-3-260C-168 HR  
FCBGA  
POP-  
CBB  
515  
119 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
FCBGA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

OMAP3530ECBB72

应用处理器 | CBB | 515 | 0 to 90
TI

OMAP3530ECBBA

应用处理器 | CBB | 515 | -40 to 105
TI

OMAP3530ECBBALPD

暂无描述
TI

OMAP3530ECBBAR

应用处理器 | CBB | 515
TI

OMAP3530ECBBLPD

暂无描述
TI

OMAP3530ECUS

Applications Processor 423-FCBGA 0 to 90
TI

OMAP3530ECUS72

应用处理器 | CUS | 423 | 0 to 90
TI

OMAP3530ECUSA

应用处理器 | CUS | 423 | -40 to 105
TI

OMAP3530EZCBB

暂无描述
TI

OMAP3530_08

Applications Processor
TI

OMAP3530_14

Applications Processors
TI

OMAP4430

Multimedia Device Engineering Sample ES2.0 ES2.1 ES2.2 ES2.3 Version D
TI