ONET1130ECRSMT [TI]

具有双 CDR 和集成式调制器驱动器的 11.7Gbps 收发器 | RSM | 32 | -40 to 100;
ONET1130ECRSMT
型号: ONET1130ECRSMT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有双 CDR 和集成式调制器驱动器的 11.7Gbps 收发器 | RSM | 32 | -40 to 100

ATM 异步传输模式 驱动 CD 电信 电信集成电路 驱动器
文件: 总64页 (文件大小:3255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
ONET1130EC 具有双 CDR 和调制器驱动器的 11.7Gbps 收发器  
1 特性  
发送路径包含 1 个可调节输入均衡器(用于均衡长达  
300mm  
1
双时钟和数据恢复 (CDR) 功能,支持 9.80-  
11.7Gbps 无参考运行  
12 英寸)的 FR4 印刷电路板的微带传输线或带状传  
输线)、1 个多速率 CDR 1 个输出调制器驱动器。  
该器件以交叉点调节和去加重的形式提供输出波形控  
制,从而增加光学眼图波罩余量。 该器件提供激光二  
极管偏置电流,并且包含集成自动功率控制 (APC) 回  
路,用于对平均光学功率随电压、温度和时间的变化进  
行补偿。  
两线制数字接口搭配集成的数模转换器 (DAC) 和模  
数转换器 (ADC) 进行控制和诊断管理  
TX RX 输出极性选择  
可编程的抖动传输带宽  
电气和光学环回  
CDR 旁路模式,支持以低数据速率运行  
集成调制器驱动器,输出幅值最高可达 2 VPP(单  
端),偏置电流最高可达 150mA(拉电流)。  
接收路径包含 1 个具有可编程均衡和阈值调节功能的  
限幅放大器、1 个多速率 CDR 和输出去加重功能(用  
于对器件输出端所连接的连接器、微带传输线或带状传  
输线上与频率相关的损耗进行补偿)。接收器输出幅值  
和信号损失有效电平都是可以调节的。  
具有可选监视器光电二极管 (PD) 范围的自动功率  
控制 (APC) 回路  
可编程的 TX 输入均衡器  
TX 交叉点调节和去加重功能  
包括激光安全特性  
器件信息  
具有可编程信号损耗 (LOS) 阈值的集成限幅放大器  
可调节的 RX 均衡和输入阈值  
可编程的 RX 输出电压和去加重功能  
电源监视器和温度传感器  
订货编号  
封装(引脚)  
封装尺寸  
ONET1130EC  
VQFN (32)  
4.00mm x 4.00mm  
简化电路原理图  
VCC_T  
VCC  
2.5V 单电源  
工作温度范围:-40°C 100°C  
4.7k  
4.7kꢁ  
4.7kꢁ  
to10kꢁ  
to10kꢁ  
to10kꢁ  
表面贴装 4mm x 4mm 32 引脚四方扁平无引线  
(QFN) 封装(间距为 0.4mm)  
0.1F  
0.1F  
RXOUT-  
RXOUT+  
2.2nF  
VCC_R  
TX_FLT  
TX_DIS  
2 应用  
0.1F  
0.1F  
VCC_RX  
XFP SFP+ 10Gbps SONET OC-192 光学收发  
4.7kꢁ  
to10kꢁ  
LOL  
RX_LOS  
LOS  
LOL  
0.01F  
XFP SFP+ 10 GBASE-ER/ZR 光学收发器  
MONB  
GND  
TXIN+  
TXIN-  
GND  
PD  
COMP  
GND  
MONB  
0.1F  
0.1F  
0.1F  
RXIN-  
RXIN+  
GND  
SCK  
3 说明  
RXIN-  
RXIN+  
TXIN+  
TXIN-  
ONET1130EC  
ONET1130EC 是一款具有收发时钟和数据恢复 (CDR)  
功能的 2.5V 集成调制器驱动器和限幅放大器,无需参  
考时钟即可以 9.80Gbps 11.7Gbps 范围内的速率运  
行。 该器件包含光学和电气环回。 在 CDR 旁路模式  
下,器件可以较低的数据速率运行。器件可利用两线制  
串行接口进行数字控制。  
0.1F  
PD  
SCK  
SDA  
MONP  
SDA  
MONP  
4.7kꢁ  
to10kꢁ  
4.7kꢁ  
to10kꢁ  
VCC  
VDD  
VCC_TX  
0.1F  
Modulator Anode  
0.1F  
2.2nF  
0.1F  
0.1F  
50ꢁ  
Laser  
PD  
PD  
EA BIAS  
EML TOSA  
0.1F  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEJ3  
 
 
 
 
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 20  
8.3 Feature Description................................................. 21  
8.4 Device Functional Modes........................................ 31  
8.5 Programming .......................................................... 31  
8.6 Register Mapping.................................................... 32  
Application Information and Implementations . 49  
9.1 Application Information............................................ 49  
9.2 Typical Application, Transmitter Differential Mode.. 49  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明(续............................................................... 3  
Pin Configuration and Function........................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ..................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 DC Electrical Characteristics .................................... 6  
7.6 Transmitter AC Electrical Characteristics ................. 8  
7.7 Receiver AC Electrical Characteristics ..................... 9  
7.8 Timing Requirements.............................................. 10  
7.9 Typical Characteristics............................................ 13  
Detailed Description ............................................ 19  
8.1 Overview ................................................................. 19  
9
10 Power Supply Recommendations ..................... 53  
11 Layout................................................................... 54  
11.1 Layout Guidelines ................................................. 54  
11.2 Layout Example .................................................... 54  
12 器件和文档支持 ..................................................... 55  
12.1 社区资源................................................................ 55  
12.2 ....................................................................... 55  
12.3 静电放电警告......................................................... 55  
12.4 Glossary................................................................ 55  
13 机械、封装和可订购信息....................................... 55  
8
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (June 2015) to Revision A  
Page  
已从产品预览更改为量产数据” ............................................................................................................................................ 1  
2
版权 © 2015, Texas Instruments Incorporated  
 
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
5 说明(续)  
ONET1130EC 内置模数转换器和数模转换器,可对收发器进行管理并且消除了对专用微控制器的需求。  
收发器的额定工作温度范围为 –40°C 100°C(外壳温度),并且采用符合 RoHS 标准的小型 4mm × 4mm 32 引  
脚超薄型四方扁平无引线 (VQFN) 封装。  
6 Pin Configuration and Function  
RSM PACKAGE  
32 PIN VQFN  
(TOP VIEW)  
32 31 30 29 28 27 26  
25  
LOL  
MONB  
GND  
1
2
3
4
5
6
7
8
24 RX_LOS  
23 COMP  
22 GND  
21 RXINœ  
20 RXIN+  
19 GND  
18 SCK  
TXIN+  
TXINœ  
GND  
PD  
EP  
MONP  
17 SDA  
11  
13  
10  
12  
14 15  
9
16  
Pin Functions  
NUMBER  
AMP  
NAME  
Type  
DESCRIPTION  
Output amplitude control. Output amplitude can be adjusted by applying a voltage of  
0 to 2 V to this pin. Leave open when not used.  
16  
10  
Analog-in  
Analog  
Analog  
Supply  
BIAS  
COMP  
GND  
Sinks or sources the bias current for the laser in both APC and open loop modes.  
Compensation pin used to control the bandwidth of the APC loop. Connect a 0.01-µF  
capacitor to ground.  
23  
3, 6, 19, 22  
Circuit ground.  
Transmitter and receiver loss of lock indicator. High level indicates the transmitter or  
the receiver is out of lock. Open drain output. Requires an external 4.7 kΩ to 10 kΩ  
pull-up resistor to VCC for proper operation. This pin is 3.3 V tolerant.  
LOL  
1
Digital-out  
MONB  
MONP  
PD  
2
8
7
Analog-out  
Analog-out  
Analog  
Bias current monitor.  
Photodiode current monitor.  
Photodiode input. Pin can source or sink current dependent on register setting.  
Disables the receiver output buffer when set to a high level. Includes a 250-kΩ pull-  
up resistor to VCC. Ground the pin to enable the output. This is an ORed function  
with the RXOUT_DIS bit (bit 6 in register 4). This pin is 3.3-V tolerant.  
RX_DIS  
RX_LF  
26  
25  
24  
Digital-in  
Analog-in  
Digital-out  
Receiver loop filter capacitor.  
Receiver loss of signal. High level indicates that the receiver input signal amplitude is  
below the programmed threshold level. Open drain output. Requires an external 4.7-  
kΩ to 10-kΩ pull-up resistor to VCC for proper operation. This pin is 3.3-V tolerant.  
RX_LOS  
Non-inverted receiver data input. On-chip differentially 100 Ω terminated to RXIN–.  
Must be AC coupled.  
RXIN+  
RXIN-  
20  
21  
Analog-in  
Analog-in  
Inverted receiver data input. On-chip differentially 100 Ω terminated to RXIN+. Must  
be AC coupled.  
RXOUT–  
RXOUT+  
28  
29  
CML-out  
CML-out  
Inverted receiver data output. 45 Ω back-terminated to VCC.  
Non-inverted data output. 45 Ω back-terminated to VCC.  
Copyright © 2015, Texas Instruments Incorporated  
3
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
Pin Functions (continued)  
NUMBER  
SDA  
NAME  
Type  
DESCRIPTION  
2-wire interface serial data input. Requires an external 4.7-kΩ to10-kΩ pull-up resistor  
17  
Digital-in/out  
to VCC. This pin is 3.3-V tolerant.  
2-wire interface serial clock input. Requires an external 4.7-kΩ to10-kΩ pull-up  
resistor to VCC. This pin is 3.3-V tolerant.  
SCK  
18  
32  
4
Digital-in  
Digital-in  
Analog-in  
Disables both bias and modulation currents when set to high state. Includes a 250-kΩ  
pull-up resistor to VCC. Requires an external 4.7 kΩ to 10 kΩ pull-up resistor to VCC  
for proper operation Toggle to reset a fault condition. This is an ORed function with  
the TXBIASEN bit (bit 2 in register 1). This pin is 3.3-V tolerant.  
TX_DIS  
TXIN+  
Non-inverted transmitter data input. On-chip differentially 100 Ω terminated to TXIN–.  
Must be AC coupled.  
Inverted transmitter data input. On-chip differentially 100 Ω terminated to TXIN+. Must  
be AC coupled.  
TXIN–  
TX_LF  
5
9
Analog-in  
Analog-in  
Transmitter loop filter capacitor.  
Transmitter fault detection flag. High level indicates that a fault has occurred. Open  
drain output. Requires an external 4.7 kΩ to 10 kΩ pull-up resistor to VCC for proper  
operation. This pin is 3.3-V tolerant.  
TX_FLT  
31  
Digital-out  
Inverted transmitter data output. Internally terminated in single-ended operation  
mode.  
TXOUT–  
12  
CML-out  
TXOUT+  
VCC_RX  
VCC_TX  
VDD  
13  
27, 30  
11, 14  
15  
CML-out  
Supply  
Supply  
Supply  
Non-Inverted transmitter data output.  
2.5 V ± 5% supply for the receiver.  
2.5 V ± 5% supply for the transmitter.  
2.5 V ± 5% supply for the digital circuitry.  
Exposed die pad. Solder to the PCB.  
Exposed Pad  
EP  
4
Copyright © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1)(2)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
Supply voltage  
Voltage  
at VCC_TX, VCC_RX, VDD  
–0.5  
3
at 3.3-V tolerant pins LOL, SDA, SCK, RX_LOS, RX_DIS,  
TX_FLT, TX_DIS  
V
–0.5  
3.6  
at all other pins MONB, TXIN+, TXIN–, PD, MONP, TX_LF,  
BIAS, TXOUT–, TXOUT+, AMP, RXIN+, RXIN–, COMP,  
RX_LF, RXOUT–, RXOUT+,  
–0.5  
3
V
Maximum current at transmitter input pins TXIN+, TXIN–  
Maximum current at transmitter output  
pins  
10  
mA  
mA  
TXOUT+, TXOUT–  
125  
Maximum current at receiver input pins  
RXIN+, RXIN–  
10  
30  
mA  
mA  
°C  
Maximum current at receiver output pins RXOUT+, RXOUT–  
Maximum junction temperature, TJ  
125  
150  
Storage temperature, Tstg  
–65  
°C  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.37  
2
TYP  
MAX  
UNIT  
VCC  
VIH  
VIL  
Supply Voltage  
2.5  
2.63  
V
V
V
Digital input high voltage  
Digital input low voltage  
TX_DIS, RX_DIS, SCK, SDA, 3.3-V tolerant IOs  
0.8  
Control bit TXPDRNG = 1x, step size = 3 µA  
Control bit TXPDRNG = 01, step size = 1.5 µA  
Control bit TXPDRNG = 00, step size = 0.75 µA  
TXCDR_DIS = 0 and RXCDR_DIS = 0  
3080  
1540  
770  
Photodiode current range  
µA  
9.8  
1
11.7  
11.7  
2
Serial Data rate  
Gbps  
TXCDR_DIS = 1 and RXCDR_DIS = 1  
VAMP  
tR-IN  
tF-IN  
TC  
Amplitude control input voltage range  
0
V
Input rise time  
20%–80%  
20%–80%  
30  
30  
45  
ps  
ps  
°C  
Input fall time  
45  
Temperature at thermal pad  
–40  
100  
Copyright © 2015, Texas Instruments Incorporated  
5
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
UNIT  
7.4 Thermal Information  
RSM (VQFN)  
32 PINS  
37.2  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
30.1  
7.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
7.6  
RθJCbot  
2.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 DC Electrical Characteristics  
Over recommended operating conditions, open loop operation, VOUT = 2 VPP single-ended, I(BIAS) = 80 mA, unless otherwise  
noted. Typical operating condition is at VCC = 2.5 V and TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC  
Supply voltage  
2.37  
2.5  
2.63  
V
Supply current in single-ended TX  
mode with CDRs enabled  
225  
563  
270  
675  
161  
403  
206  
266  
699  
310  
815  
185  
487  
242  
636  
mA  
mW  
mA  
mW  
mA  
mW  
mA  
TXMODE = 1, TXCDR_DIS = 0, TX VOUT = 2 VPP single-  
ended, I(BIAS) = 0 mA; RXCDR_DIS = 0, 600 mVPP  
differential RX output  
Power dissipation in single-ended TX  
mode with CDRs enabled  
Supply current in differential TX  
mode with CDRs enabled  
TXMODE = 0, TXCDR_DIS = 0, TX VOUT = 1.8 VPP  
single-ended, I(BIAS) = 0 mA; RXCDR_DIS = 0, 600 mVPP  
differential RX output  
Power dissipation in differential TX  
mode with CDRs enabled  
IVCC  
Supply current in single-ended TX  
mode with CDRs disabled  
TXMODE = 1, TXCDR_DIS = 1, TX VOUT = 2 VPP single-  
ended, I(BIAS) = 0 mA; RXCDR_DIS = 1, 600 mVPP  
differential RX output  
Power dissipation in single-ended TX  
mode with CDRs disabled  
Supply current in differential TX  
mode with CDRs disabled  
TXMODE = 0, TXCDR_DIS = 1, TX VOUT = 1.8 VPP  
single-ended, I(BIAS) = 0 mA; RXCDR_DIS = 1, 600 mVPP  
differential RX output  
Power dissipation in differential TX  
mode with CDRs disabled  
515  
100  
mW  
R(TXIN)  
Transmitter data input resistance  
Differential between TXIN+ / TXIN–  
Ω
Transmitter data input termination  
mismatch  
5%  
R(RXIN)  
R(OUT)  
Receiver data input resistance  
Transmitter output resistance  
Receiver data output resistance  
Differential between RXIN+ / RXIN–  
Single-ended at TXOUT+ or TXOUT–  
Differential between RXOUT+ or RXOUT–  
100  
60  
Ω
Ω
Ω
R(RXOUT)  
90  
Receiver data output termination  
mismatch  
5%  
20  
Digital input current  
TX_DIS, RX_DIS pull up to VCC  
–20  
2.1  
µA  
V
LOL, TX_FLT, RX_LOS, pull-up to VCC  
ISOURCE = 37.5 μA  
,
VOH  
Digital output high voltage  
LOL, TX_FLT, RX_LOS, pull-up to VCC  
ISINK = 350 μA  
,
VOL  
Digital output low voltage  
Minimum bias current  
0.4  
5
V
(1)  
I(BIAS-MIN)  
See  
mA  
Source. BIASPOL = 0, DAC set to maximum, open and  
closed loop  
145  
95  
150  
100  
I(BIAS-MAX)  
Maximum bias current  
mA  
Sink. BIASPOL = 1, DAC set to maximum, open and  
closed loop  
I(BIAS-DIS)  
Bias current during disable  
Average power stability  
100  
µA  
dB  
V
APC loop enabled  
±0.5  
Source. TXBIASPOL = 0  
Sink. TXBIASPOL = 1  
VCC-0.45  
Bias pin compliance voltage  
Temperature sensor accuracy  
0.45  
With 1-point external mid-scale calibration  
±3  
°C  
(1) The bias current can be set below the specified minimum according to the corresponding register setting; however, in closed loop  
operation settings below the specified value may trigger a fault.  
6
Copyright © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
DC Electrical Characteristics (continued)  
Over recommended operating conditions, open loop operation, VOUT = 2 VPP single-ended, I(BIAS) = 80 mA, unless otherwise  
noted. Typical operating condition is at VCC = 2.5 V and TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Photodiode reverse bias voltage  
Photodiode fault current level  
APC active, I(PD) = 1500 μA  
1.3  
2.3  
V
(2)  
Percent of target I(PD)  
150%  
12.5%  
25%  
V(PD)  
I(MONP) / I(PD) with control bit PDRNG = 1X  
I(MONP) / I(PD) with control bit PDRNG = 01  
I(MONP) / I(PD) with control bit TXPDRNG = 00  
With external mid-scale calibration  
10%  
20%  
40%  
15%  
30%  
60%  
Photodiode current monitor ratio  
50%  
Monitor diode DMI accuracy  
Bias current monitor ratio  
Bias current DMI accuracy  
Power supply monitor accuracy  
VCC reset threshold voltage  
±10%  
1%  
I(MONB) / I(BIAS) (nominal 1/100 = 1%), V(MONB) < 1.5V  
0.9%  
–15%  
–2%  
1.1%  
15%  
2%  
I(BIAS) 20 mA  
With external mid-scale calibration  
V(CC-RST)  
VCC voltage level which triggers power-on reset  
1.8  
2.1  
V
V(CC-  
VCC reset threshold voltage  
hysteresis  
100  
mV  
RSTHYS)  
TXFLTEN = 1, TXDMONB = 0, Fault occurs if voltage at  
MONB exceeds this value  
V(MONB-FLT) Fault voltage at MONB  
V(MONP-FLT) Fault voltage at MONP  
1.15  
1.15  
1.2  
1.2  
1.25  
1.25  
V
V
TXFLTEN = 1, TXMONPFLT = 1, TXDMONP = 0, Fault  
occurs if voltage at MONP exceeds this value  
(2) Assured by design over process, supply and temperature variation  
Copyright © 2015, Texas Instruments Incorporated  
7
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
7.6 Transmitter AC Electrical Characteristics  
Over recommended operating conditions, open loop operation, VOUT = 2 VPP single-ended, I(BIAS) = 80 mA unless otherwise  
noted. Typical operating condition is at VCC = 2.5 V and TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Gbps  
dB  
TX INPUT SPECIFICATIONS  
CDR lock range  
CPRI, Ethernet, SONET, Fibre Channel  
0.05 GHz < f 0.1 GHz  
0.1 GHz < f 5.5 GHz  
9.80  
20  
12  
8
11.7  
Differential input return loss  
15  
15  
5.5 GHz < f < 12 GHz  
Differential to common mode conversion  
Common mode input return loss  
Input AC common mode voltage tolerance  
Total Non-DDJ  
0.1 GHz < f < 12 GHz  
10  
3
dB  
dB  
0.1 GHz < f < 12 GHz  
15  
mV  
Total jitter less ISI  
0.45  
0.65  
UIPP  
UIPP  
UIPP  
mVPP  
dB  
T(J_TX)  
S(J_TX)  
VIN  
Total Jitter  
Sinusoidal Jitter Tolerance  
Differential input voltage swing  
EQ high freq boost  
With addition of input jitter, See 1  
Maximum setting; 7 GHz  
100  
6
1000  
EQ(boost)  
9
TX OUTPUT SPECIFICATIONS  
Differential output return loss  
Minimum output amplitude  
0.01 GHz < f < 12 GHz  
12  
dB  
VO(MIN)  
AC Coupled Outputs, 50-Ω single-ended load  
0.5  
VPP  
TX OUTPUT SPECIFICATIONS in SINGLE-ENDED MODE of OPERATION (TXMODE = 1)  
VO(MAX)  
Maximum output amplitude  
Output amplitude stability  
High Cross Point Control Range  
Low Cross Point Control Range  
Cross Point Stability  
AC Coupled Outputs, 50-Ω load, single-ended  
AC Coupled Outputs, 50-Ω load, single-ended  
50-Ω load, single-ended  
2
70%  
-5  
VPP  
230  
75%  
35%  
mVPP  
50-Ω load, single-ended  
40%  
5
50-Ω load, single-ended  
pp  
dB  
TXDEADJ[0..3] = 1111, TXPKSEL = 0  
TXDEADJ[0..3] = 1111, TXPKSEL = 1  
5
6
Output de-emphasis  
TX OUTPUT SPECIFICATIONS in DIFFERENTIAL MODE of OPERATION (TXMODE = 0)  
VO(MAX)  
Maximum output amplitude  
Output amplitude stability  
High Cross Point Control Range  
Low Cross Point Control Range  
Cross Point Stability  
AC Coupled Outputs, 100-Ω differential load  
AC Coupled Outputs, 100-Ω differential load  
100-Ω differential load  
3.6  
65%  
–5  
VPP  
230  
75%  
35%  
mVPP  
100-Ω differential load  
40%  
5
100-Ω differential load  
pp  
dB  
TXDEADJ[0..3] = 1111, TXPKSEL = 0  
TXDEADJ[0..3] = 1111, TXPKSEL = 1  
5
6
Output de-emphasis  
TX CDR SPECIFICATIONS  
BW(TX)  
J(P_TX)  
Jitter Transfer Bandwidth  
9.95 Gbps, PRBS31  
8
1
MHz  
dB  
Jitter Peaking  
> 120 kHz  
JGEN(rms)  
JGEN(PP)  
Random RMS jitter generation  
Total jitter generation  
Clock pattern, 50 kHz to 80 MHz  
Clock pattern, 50 kHz to 80 MHz, BER = 10-12  
6
mUIrms  
mUIPP  
60  
8
Copyright © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
7.7 Receiver AC Electrical Characteristics  
Over recommended operating conditions, outputs connected to a 50-Ω load, VOD = 600 mVpp differential unless otherwise  
noted. Typical operating condition is at VCC = 2.5 V and TA = 25°C  
PARAMETER  
RX INPUT SPECIFICATIONS  
CDR lock range  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CPRI, Ethernet, SONET, Fibre Channel  
0.01 GHz < f 5 GHz  
9.8  
11.7  
Gbps  
dB  
15  
8
Differential input return loss  
5 GHz < f < 12 GHz  
Differential to common mode  
conversion  
0.1 GHz < f < 12 GHz  
15  
6
dB  
TXOUT_DIS = 1, PRBS31 pattern at 11.7Gbps,  
BER < 10-12  
VI(RX,MIN)  
VI(RX,MAX)  
Data input sensitivity  
Data input overload  
9
mVPP  
mVPP  
800  
1.5  
0.4  
0.4  
9.95 Gbps, BER = 10-12, f = 400kHz  
9.95 Gbps, BER = 10-12, f = 4MHz  
9.95 Gbps, BER = 10-12, f = 80MHz  
J(T_RX)  
Sinusoidal jitter tolerance  
UIPP  
RX OUTPUT SPECIFICATIONS  
0.05 GHz < f 0.1 GHz  
0.1 GHz < f < 5.5 GHz  
20  
8
Differential output return loss  
15  
20  
dB  
5.5 GHz < f < 12 GHz  
8
Common mode input return loss  
0.1 GHz < f < 12 GHz  
3
dB  
mVrms  
kHz  
CMOV(RX) Output AC common mode voltage  
PRBS31 pattern, RXAMP[0..3] = 0001  
7
50  
f3dB-L  
Low frequency –3dB bandwidth  
Deterministic output jitter  
Total output jitter  
D(J_RX)  
T(J_RX)  
0.1  
0.2  
UIPP  
UIPP  
mVPP  
mVPP  
mVrms  
dB  
VIN > 25 mVPP, RX_DIS = 0, RXAMP[0..3] = 0000  
VIN > 25 mVPP, RX_DIS = 0, RXAMP[0..3] = 1111  
RX_DIS = 1  
300  
900  
VOD  
Differential data output voltage  
5
Output De-emphasis  
RXDADJ[0..1] = 11  
1
RX LOS SPECIFICATIONS  
LOW LOS assert threshold range  
PRBS7 pattern at 11.3Gbps, RXLOSRNG = 1  
PRBS7 pattern at 11.3Gbps, RXLOSRNG = 1  
PRBS7 pattern at 11.3Gbps, RXLOSRNG = 0  
PRBS7 pattern at 11.3Gbps, RXLOSRNG = 0  
10  
50  
min  
VTH  
mVPP  
LOW LOS assert threshold range  
max  
HIGH LOS assert threshold range  
min  
40  
VTH  
mVPP  
HIGH LOS assert threshold range  
max  
130  
LOS hysteresis (electrical)  
2
4
1.5  
1
6
dB  
dB  
Versus temperature  
Versus supply voltage  
Versus data rate  
LOS threshold variation  
1.5  
RX CDR SPECIFICATIONS  
BW(RX)  
J(P_TX)  
Jitter Transfer Bandwidth  
Jitter Peaking  
9.95 Gbps, PRBS31  
> 50 kHz  
8
1
MHz  
dB  
Copyright © 2015, Texas Instruments Incorporated  
9
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
7.8 Timing Requirements  
Over recommended operating conditions, open loop operation, TXOUT+ = 2 VPP singled-ended, I(BIAS) = 80 mA, VOD = 600  
mVPP differential (unless otherwise noted). Typical operating condition is at VCC = 2.5 V and TA = 25°C  
MIN  
TYP  
MAX  
UNIT  
CAPC 0.01 µF, IPD = 500 µA, PD coupling ratio CR = 150,  
PDRNG = 01  
t(APC)  
APC time constant  
50  
µs  
t(INIT1)  
t(INIT2)  
t(OFF)  
Power-on to initialize  
Initialize to transmit  
Transmitter disable time  
Disable negate time  
TX_DIS pulse width  
Fault assert time  
Power-on to registers ready to be loaded  
0.2  
1
2
5
1
ms  
ms  
µs  
Register load STOP command to part ready to transmit valid data  
Rising edge of TX_DIS to I(BIAS) 0.1 × I(BIAS-NOMINAL)  
Falling edge of TX_DIS to I(BIAS) 0.9 × I(BIAS-NOMINAL)  
Time TX_DIS must held high to reset part  
1
t(ON)  
ms  
ns  
t(RESET)  
t(FAULT)  
100  
Time from fault condition to FLT high  
50  
µs  
TX OUTPUT SPECIFICATIONS in SINGLE-ENDED MODE of OPERATION (TXMODE = 1)  
tR(OUTTX)  
tF(OUTTX)  
Output rise time  
Output fall time  
20% - 80%, AC Coupled Outputs, 50-Ω load, single-ended  
20% - 80%, AC Coupled Outputs, 50-Ω load, single-ended  
30  
30  
42  
42  
ps  
ps  
TXEQ_DIS = 1, 11.3 Gbps, PRBS9 pattern, 150-mVpp,  
600-mVpp, 1200-mVpp differential input voltage  
4
7
12  
ISI(TX)  
Intersymbol interference  
ps  
TXEQ_DIS = 0, 11.3 Gbps, PRBS9 pattern, 150-mVpp,  
600-mVpp, 1200-mVpp differential input voltage, maximum  
equalization with 18-inch transmission line at the input.  
Serial data output random  
jitter  
R(J_TX)  
0.4  
0.7.5  
psRMS  
ps  
TXPKSEL = 0  
TXPKSEL = 1  
28  
35  
Output de-emphasis width  
TX OUTPUT SPECIFICATIONS in DIFFERENTIAL MODE of OPERATION (TXMODE = 0)  
tR(OUTTX)  
tF(OUTTX)  
Output rise time  
Output fall time  
20%–80%, AC Coupled Outputs, 100-Ω differential load  
20%–80%, AC Coupled Outputs, 100-Ω differential load  
30  
30  
42  
42  
ps  
ps  
TXEQ_DIS = 1, 11.3 Gbps, PRBS9 pattern, 150-mVpp,  
600-mVpp, 1200-mVpp differential input voltage  
4
7
10  
ISI(TX)  
Intersymbol interference  
ps  
TXEQ_DIS = 0, 11.3 Gbps, PRBS9 pattern, 150-mVpp,  
600-mVpp, 1200-mVpp differential input voltage, maximum  
equalization with 18-inch transmission line at the input.  
Serial data output random  
jitter  
R(J_TX)  
0.4  
0.75  
psRMS  
ps  
TXPKSEL = 0  
TXPKSEL = 1  
28  
35  
Output Peaking Width  
TX CDR SPECIFICATIONS  
t(Lock,TX) CDR Acquisition time  
LOL assert time  
RX OUTPUT SPECIFICATIONS  
2
ms  
500  
μs  
tR(OUTRX)  
tF(OUTRX)  
Output rise time  
Output fall time  
20%–80%, 100-Ω differential load, adjustable  
20%–80%, 100-Ω differential load, adjustable  
30  
30  
40  
40  
ps  
ps  
Serial data output  
deterministic jitter  
PRBS9 pattern 11.3 Gbps, VIN = 15 mVpp to 900 mVpp  
3
10  
ps  
RX LOS SPECIFICATIONS  
t(LOS_AST)  
t(LOS, DEA)  
LOS assert time  
2.5  
2.5  
10  
10  
50  
50  
μs  
μs  
LOS deassert time  
RX CDR SPECIFICATIONS  
t(Lock,RX) CDR Acquisition time  
LOL assert time  
2
ms  
500  
μs  
10  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
1. Transmitter Input Sinusoidal Jitter Tolerance (INF-8077i Rev. 4.5 XFP MSA)  
SDA  
tBUFœ  
tLOW  
tf  
tHDSTA  
tr  
tHIGH  
SCK  
P
S
S
P
tHDDAT  
tSUDAT  
tHDSTA  
tSUSTA  
tSUSTO  
2. 2-Wire Interface Diagram  
版权 © 2015, Texas Instruments Incorporated  
11  
 
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
1. Timing Diagram Definitions  
Symbol  
Description  
Min  
Max  
Unit  
kHz  
µs  
fSCK  
tBUF  
SCK clock frequency  
400  
Bus free time between START and STOP conditions  
1.3  
0.6  
Hold time after repeated START condition. After this period, the first clock pulse is  
generated  
tHDSTA  
µs  
tLOW  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
Low period of the SCK clock  
High period of the SCK clock  
Setup time for a repeated START condition  
Data HOLD time  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
Data setup time  
100  
Rise time of both SDA and SCK signals  
Fall time of both SDA and SCK signals  
Setup time for STOP condition  
300  
300  
tF  
tSUSTO  
0.6  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
7.9 Typical Characteristics  
Typical operating condition is at VCC = 2.5 V, TA = 25°C, TXOUT+ = 2 VPP Single-ended, RXOUT = 600 mVPP differential,  
TXIN = 600 mVPP differential, TX and RX CDRs enabled (unless otherwise noted).  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
0
20  
40  
60  
80 100 120 140 160 180 200  
0
20  
40  
60  
80 100 120 140 160 180 200  
TXMOD Register 12 Setting (Decimal)  
TXMOD Register 12 Setting (Decimal)  
D010  
D011  
TXMODE = 0  
TXMODE = 1  
Figure 3. TX Deterministic Jitter vs Modulation Current  
Figure 4. TX Deterministic Jitter vs Modulation Current  
8
8
6
4
2
0
6
4
2
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Free-Air Temperature (°C)  
Free-Air Temperature (°C)  
D012  
D013  
TXMODE = 0  
TXMODE = 1  
Figure 5. TX Deterministic Jitter vs Temperature  
Figure 6. TX Deterministic Jitter vs Temperature  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
20 40 60 80 100 120 140 160 180 200 220  
Modulation Current Register Setting (Decimal)  
-40  
-20  
0
20  
40  
60  
80  
100  
Free-Air Temperature (°C)  
D014  
D015  
TXMODE = 1  
Figure 7. TX Random Jitter vs Modulation Current  
TXMODE = 1  
Figure 8. TX Random Jitter vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
13  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 2.5 V, TA = 25°C, TXOUT+ = 2 VPP Single-ended, RXOUT = 600 mVPP differential,  
TXIN = 600 mVPP differential, TX and RX CDRs enabled (unless otherwise noted).  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
Rise Time  
Fall Time  
Rise Time  
Fall Time  
0
0
0
20 40 60 80 100 120 140 160 180 200 220  
TXMOD Register 12 Setting - Decimal  
-40  
-20  
0
20  
40  
60  
80  
100  
Free-Air Temperature (°C)  
D016  
D017  
TXMODE = 1  
TXMODE = 1  
Figure 9. TX Rise-Time and Fall-Time vs Modulation Current  
Figure 10. TX Rise-Time and Fall-Time vs Temperature  
180  
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
200  
400  
600  
800  
1000  
1200  
0
200  
400  
600  
800  
1000  
1200  
TXBIAS Register 15 and 16 Setting (Decimal)  
TXBIAS Register 15 and 16 Setting (Decimal)  
D018  
D019  
Figure 11. Source Bias Current in Open Loop Mode vs Bias  
Register Setting  
Figure 12. Sink Bias Current in Open Loop Mode vs Bias  
Register Setting  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
20  
40  
60  
80  
100 120 140 160 180  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Photodiode Current (mA)  
1
Bias Current (mA)  
D020  
D021  
TXPDRNG[0..1] = 00  
Figure 13. Bias-Monitor Current I(MONB) vs Bias Current  
Figure 14. Photodiode-Monitor Current I(MONP) vs PD Current  
14  
Copyright © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 2.5 V, TA = 25°C, TXOUT+ = 2 VPP Single-ended, RXOUT = 600 mVPP differential,  
TXIN = 600 mVPP differential, TX and RX CDRs enabled (unless otherwise noted).  
4.5  
2.5  
4
2
3.5  
3
1.5  
1
2.5  
2
1.5  
1
0.5  
0
0.5  
0
0
20 40 60 80 100 120 140 160 180 200 220  
TXMOD Register 12 Setting (Decimal)  
0
20 40 60 80 100 120 140 160 180 200 220  
TXMOD Register 12 Setting (Decimal)  
D022  
D023  
TXMODE = 0  
TXMODE = 1  
Figure 15. Output Voltage vs Modulation Current  
Figure 16. Output Voltage vs Modulation Current  
300  
290  
280  
270  
260  
250  
240  
230  
220  
260  
250  
240  
230  
220  
210  
200  
190  
180  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Free Air Temperature (°C  
Free Air Temperature (°C)  
D024  
D025  
TXMODE = 0  
Bias Current = 0  
TXMODE = 1  
Bias Current = 0  
Figure 17. Supply Current vs Temperature  
Figure 18. Supply Current vs Temperature  
180  
160  
140  
120  
100  
80  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
60  
40  
20  
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
TXBMF Register 17 Setting (Decimal)  
TXPMF Register 18 Setting (Decimal)  
D026  
D027  
Figure 19. Bias Current Monitor Fault vs TXBMF Register  
Setting  
Figure 20. Photodiode Current Monitor Fault vs TXPMF  
Register Setting  
Copyright © 2015, Texas Instruments Incorporated  
15  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 2.5 V, TA = 25°C, TXOUT+ = 2 VPP Single-ended, RXOUT = 600 mVPP differential,  
TXIN = 600 mVPP differential, TX and RX CDRs enabled (unless otherwise noted).  
TXMODE = 0  
15 ps/Div  
TXMODE = 1  
15 ps/Div  
Figure 21. TX Eye-Diagram at 11.3 Gbps  
Figure 22. TX Eye-Diagram at 11.3 Gbps  
800  
700  
600  
500  
400  
300  
200  
100  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0.1  
1
10  
100  
0
50  
100  
150  
200  
250  
300  
Frequency (GHz)  
Input Voltage (mVPP  
)
D001  
D002  
Figure 23. RX Frequency Response (CDR Disabled)  
Figure 24. RX Transfer Function  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (GHz)  
Frequency (GHz)  
D003  
D004  
Figure 25. RX Differential Input Return Gain vs Frequency  
Figure 26. RX Differential Output Return Gain vs Frequency  
16  
Copyright © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 2.5 V, TA = 25°C, TXOUT+ = 2 VPP Single-ended, RXOUT = 600 mVPP differential,  
TXIN = 600 mVPP differential, TX and RX CDRs enabled (unless otherwise noted).  
8
7
6
5
4
3
2
1
0
1E-3  
1E-4  
1E-5  
1E-6  
1E-7  
1E-8  
1E-9  
1E-10  
1E-11  
1E-12  
0
1
2
3
4
5
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Input Voltage (mVPP  
Input Voltage (mVPP  
)
)
D005  
D006  
11.3 Gbps  
TX Disabled  
Figure 27. RX Bit-Error Ratio vs Input Amplitude  
Figure 28. RX Deterministic Jitter vs Input Amplitude  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
1
0.8  
0.6  
0.4  
0.2  
0
60  
40  
LOS Assert Voltage  
LOS Deassert Voltage  
20  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
Input Voltage (mVPP  
)
Register Setting (Decimal)  
D007  
D008  
RX LOSRNG = 0  
Figure 29. RX Random Jitter vs Input Amplitude  
Figure 30. LOS Assert / Deassert Voltage vs Register 7  
Setting  
160  
8
LOS Assert Voltage  
LOS Deassert Voltage  
140  
120  
100  
80  
7
6
5
4
3
2
1
0
60  
40  
20  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
Register Setting (Decimal)  
Register Setting (Decimal)  
D009  
D028  
RX LOSRNG = 1  
RX LOSRNG = 0  
Figure 32. LOS Hysteresis vs Register 7 Setting  
Figure 31. LOS Assert / Deassert Voltage vs Register 7  
Setting  
Copyright © 2015, Texas Instruments Incorporated  
17  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 2.5 V, TA = 25°C, TXOUT+ = 2 VPP Single-ended, RXOUT = 600 mVPP differential,  
TXIN = 600 mVPP differential, TX and RX CDRs enabled (unless otherwise noted).  
8
7
6
5
4
3
2
1
0
0
10  
20  
30  
40  
50  
Register Setting (Decimal)  
VI = 20 mVPP  
D028  
RX LOSRNG = 1  
Figure 33. LOS Hysteresis vs Register Setting  
Figure 34. RX Output Eye-Diagram at 11.3 Gbps  
Pin = –20 dBm  
CDR Disabled  
Pin = –20 dBm  
CDR Enabled  
Figure 36. RX Output Eye-diagram at 10.71 Gbps  
Figure 35. RX Output Eye-diagram at 10.71 Gbps  
18  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
8 Detailed Description  
8.1 Overview  
A simplified block diagram of the ONET1130EC is shown in Functional Block Diagram.  
The ONET1130EC consists of a transmitter path, a receiver path, an analog reference block, an analog to digital  
converter and a 2-wire serial interface and control logic block with power-on reset.  
The transmit path consists of an adjustable input equalizer, a multi-rate CDR and an output modulator driver. The  
output driver provides a differential output voltage but can be operated in a single-ended mode to reduce the  
power consumption. Output waveform control, in the form of cross-point adjustment and de-emphasis are  
available to improve the optical eye mask margin. Bias current for the laser is provided and an integrated  
automatic power control (APC) loop to compensate for variations in average optical power over voltage,  
temperature and time is included.  
The receive path consists of a limiting amplifier with programmable equalization and threshold adjustment, a  
multi-rate CDR and an output driver with de-emphasis to compensate for frequency dependent loss of  
connectors and transmission lines. The receiver output amplitude, de-emphasis and loss of signal assert level  
can be adjusted.  
The ONET1130EC contains an analog to digital converter to support transceiver digital diagnostics and can  
report the supply voltage, laser bias current, laser photodiode current and internal temperature.  
The 2-wire serial interface is used to control the operation of the device and read the status of the control  
registers.  
The device contains internal EEPROM for trimming purposes only.  
版权 © 2015, Texas Instruments Incorporated  
19  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.2 Functional Block Diagram  
VCC_TX  
Modulator  
Driver  
60  
60ꢀ  
TX_LF  
TXIN+  
Referenceless  
CDR and  
EQ  
100ꢀ  
Retimer  
TXIN-  
TXOUT+  
TXOUT-  
AMP  
AMP  
BIAS  
FLT  
Modulation  
and Bias  
Current  
BIAS  
CDR_CTRL  
2-Wire Interface  
& Control Logic  
VDD  
TX_FLT  
Generator &  
APC  
TX_LOL  
PD  
PD  
EEPROM  
COMP  
MONB  
COMP  
Electrical  
Loopback  
Optical  
Loopback  
MONB  
MONP  
MONB  
MONP  
Power-On  
Reset  
MONP  
Band-Gap, Analog  
References, Power  
Supply Monitor &  
Temperature Sensor  
Analog to  
Digital  
Conversion  
SCK  
SDA  
PSM  
TS  
TX_DIS  
RX_DIS  
RX_LOL  
CDR_CTRL  
LOL  
VCC_RX  
Limiting  
Amplifier  
Threshold  
45ꢀ  
LOS  
RX_LOS  
45ꢀ  
RXOUT+  
RXOUT-  
RXIN+  
RXIN-  
Referenceless  
CDR and  
Retimer  
EQ  
100ꢀ  
RX_LF  
Offset  
Cancellation  
with  
Threshold  
Adjust  
20  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
8.3 Feature Description  
8.3.1 Transmitter  
8.3.1.1 Equalizer  
The data signal is applied to an input equalizer by means of the input signal pins TXIN+ / TXIN–, which provide  
on-chip differential 100-Ω line termination. The equalizer is enabled by default and can be disabled by setting the  
transmitter equalizer disable bit TXEQ_DIS = 1 (bit 1 of register 10). Equalization of up to 300 mm (12 inches) of  
microstrip or stripline transmission line on FR4 printed circuit boards can be achieved. The amount of  
equalization is set through register settings TXCTLE [0..3] (register 11). The device can accept input amplitude  
levels from 100 mVpp up to 1000 mVpp.  
8.3.1.2 CDR  
The clock and data recovery function consists of a Phase-Locked Loop (PLL) and retimer. The CDR can be  
operated without a reference clock and the Voltage Controlled Oscillator (VCO) can cover 9.8 Gbps to 11.7 Gbps  
data rates. The PLL is phase locked to the incoming data stream and attenuates the high frequency jitter on the  
data, producing a recovered clean clock with substantially reduced jitter. An external capacitor for the PLL loop  
filter is connected to the TX_LF pin. A value of 2.2 nF is recommended. The clean clock is used to retime the  
incoming data, producing an output signal with reduced jitter, and in effect, resetting the jitter budget for the  
transmitter.  
The CDR is enabled by default. The CDR can be disabled and bypassed by setting the transmitter CDR disable  
bit TXCDR_DIS = 1 (bit 4 of register 10). Alternatively, the CDR can be left powered on but bypassed by setting  
the transmitter CDR bypass bit TX_CDRBP = 1 (bit 3 of register 10); however, this function only works if the  
receiver CDR bypass bit RX_CDRBP (bit 3 of register 4) is also set to 1.  
The CDR is designed to meet the XFP Datacom requirements and Telecom requirements for a maximum of 1-dB  
jitter peaking at a frequency greater than 120 kHz. The CDR is not designed to meet the Telecom regenerator  
requirements of jitter peaking less than 0.03 dB at a frequency less than 120 kHz. The default CDR bandwidth is  
typically 4.5 MHz and can be adjusted using the SEL_RES[0..2] bits (bits 5 to 7 of register 51). Adjusting these  
bits changes the bandwidth of both the transmitter and receiver CDRs.  
For the majority of applications, the default settings in register 19 for the transmitter CDR can be used. However,  
for some applications or for test purposes, some modes of operation may be useful. The frequency detector for  
the PLL is set to an automatic mode of operation by default. When a signal is applied to the transmitter input the  
frequency detector search algorithm will be initiated to determine the frequency of the data. The default algorithm  
ensures a fast CDR lock time of less than 2 ms. The fast lock can be disabled by setting the transmitter CDR fast  
lock disable bit TXFL_DIS = 1 (bit 3 of register 19). Once the frequency has been detected then the frequency  
detector will be disabled and the supply current will decrease by approximately 10mA. In some applications, such  
as when there are long periods of idle data, it may be advantageous to keep the frequency detector permanently  
enabled by setting the transmitter frequency detector enable bit TXFD_EN = 1 (bit 5 of register 19). For test  
purposes, the frequency detector can be permanently disabled by setting the transmitter frequency detector  
disable bit TXFD_DIS = 1 (bit 4 of register 19). For fast lock times the frequency detector can be set to one of  
two preselected data rates using the transmitter frequency detection mode selection bits TXFD_MOD[0..1] (bits 6  
and 7 of register 19). If it is desired to use the retimer at lower data rates than the standard 9.8 to 11.7Gbps then  
the transmitter divider ratio should be adjusted accordingly through TXDIV[0..2] (bits 0 to 2 of register 19). For  
example, for re-timed operation at 2.5 Gbps the divider should be set to divide by 4.  
8.3.1.3 Modulator Driver  
The modulation current is sunk from the common emitter node of the limiting output driver differential pair by  
means of a modulation current generator, which is digitally controlled by the 2-wire serial interface.  
The collector nodes of the output stages are connected to the transmitter output pins TXOUT+ and TXOUT–.  
The collectors have internal 50Ω back termination resistors to VCC_TX. The outputs are optimized to drive a 50  
Ω single-ended load and to obtain the maximum single-ended output voltage of 2.0Vpp, AC coupling and  
inductive pull-ups to VCC are required. For reduced power consumption the DC resistance of the inductive pull-  
ups should be minimized to provide sufficient headroom on the TXOUT+ and TXOUT– pins.  
版权 © 2015, Texas Instruments Incorporated  
21  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
Feature Description (接下页)  
The polarity of the output pins can be inverted by setting the transmitter output polarity switch bit, TXOUTPOL  
(bit 5 of register 10) to 1. In addition, the output driver can be disabled by setting the transmitter output driver  
disable bit TXOUT_DIS = 1 (bit 6 of register 10).  
The output driver is set to differential output by default. In order to reduce the power consumption for single-  
ended applications driving an electroabsorptive modulated laser (EML) the output drive register 13 should be set  
to single-ended mode. The single-ended output signal is enabled by setting the transmitter mode select bit  
TXMODE = 1 (bit 6 of register 13). The positive output is active by default. To enable the negative output and  
disable the positive output set TXOUTSEL = 1 (bit 7 of register 13).  
Output de-emphasis can be applied to the signal by adjusting the transmitter de-emphasis bits TXDEADJ[0..3]  
(bits 0 to 3 of register 13). In addition, the width of the applied de-emphasis can be increased by setting the  
transmitter output peaking width TXPKSEL = 1 (bit 6 of register 11). The wide peaking width would typically be  
useful for a more capacitive transmitter load. How de-emphasis is applied is controlled through the TXSTEP bit  
(bit 5 of register 13). Setting TXSTEP = 1 delays the time of the applied de-emphasis and has more of an impact  
on the falling edge. A graphical representation of the two de-emphasis modes is shown in 37. Using de-  
emphasis can help to optimize the transmitted output signal; however, it will add to the power consumption.  
The output edge speed can be set to slow mode of operation through the TXSLOW bit (bit 4 of register 13). For  
transmitter modulation output settings (TXMOD - register 12) below 0xC0 it is recommended to set TXSLOW = 1  
to reduce the output jitter.  
Register 13  
Register 13  
Bits 0œ3  
Bits 0œ3  
Register 11  
Bit 6  
Register 11  
Bit 6  
Transmitter De-Emphasis  
Register 13 Bit 5 = 0  
Transmitter De-Emphasis  
Register 13 Bit 5 = 1  
37. Transmitter De-Emphasis Modes  
8.3.1.4 Modulation Current Generator  
The modulation current generator provides the current for the high speed output driver described above. The  
circuit can be digitally controlled through the 2-wire interface block or controlled by applying an analog voltage in  
the range of 0 to 2V to the AMP pin. The default method of control is through the 2-wire interface. To use the  
AMP pin set the transmitter amplitude control bit TXAMPCTRL = 1 (bit 0 of register 10).  
An 8-bit wide control bus, TXMOD[0..7] (register 12), is used to set the desired modulation current and the output  
voltage.  
The entire transmitter signal path, including CDR, can be disabled and powered down by setting TX_DIS = 1 (bit  
7 of register 10).  
22  
版权 © 2015, Texas Instruments Incorporated  
 
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
Feature Description (接下页)  
8.3.1.5 DC Offset Cancellation and Cross Point Control  
The ONET1130EC transmitter has DC offset cancellation to compensate for internal offset voltages. The offset  
cancellation can be disabled by setting TXOC_DIS = 1 (bit 2 of register 10).  
The crossing point can be moved toward the one level by setting TXCPSGN = 1 (bit 7 of register 14) and it can  
be moved toward the zero level by setting TXCPSGN = 0. The percentage of shift depends upon the register  
settings of the transmitter cross-point adjustment bits TXCPADJ[0..6] (register 14).  
8.3.1.6 Transmitter Loopback (Electrical Loopback)  
The signal input to the TXIN+ and TXIN– pins can be looped back to the receiver output after the retimer as  
shown in 38 by setting TX_LBMUX = 1 (bit 0 of register 2). Loopback from the receiver input to the transmitter  
output (optical loopback) can be enabled at the same time.  
If it is desired to loopback the signal input to the TXIN+ and TXIN– pins to the receiver output with the CDR  
disabled then the transmit CDR must be disabled and bypassed by setting TXCDR_DIS = 1 (bit 4 of register 10)  
and the receiver CDR must also be disabled and bypassed by setting RXCDR_DIS =1 (bit 4 of register 4).  
版权 © 2015, Texas Instruments Incorporated  
23  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
Feature Description (接下页)  
VCC_TX  
Modulator  
Driver  
60  
60ꢀ  
TX_LF  
TXIN+  
Referenceless  
CDR and  
EQ  
100ꢀ  
Retimer  
TXIN-  
TXOUT+  
TXOUT-  
AMP  
BIAS  
FLT  
AMP  
BIAS  
Modulation  
and Bias  
Current  
Generator &  
APC  
CDR_CTRL  
2-Wire Interface  
& Control Logic  
VDD  
TX_FLT  
TX_LOL  
PD  
PD  
EEPROM  
COMP  
MONB  
COMP  
Electrical  
Loopback  
Optical  
Loopback  
MONB  
MONP  
MONB  
MONP  
Power-On  
Reset  
MONP  
Band-Gap, Analog  
References, Power  
Supply Monitor &  
Temperature Sensor  
Analog to  
Digital  
Conversion  
SCK  
SDA  
PSM  
TS  
TX_DIS  
RX_DIS  
RX_LOL  
CDR_CTRL  
LOL  
VCC_RX  
Limiting  
Amplifier  
Threshold  
45ꢀ  
LOS  
RX_LOS  
RXIN+  
45ꢀ  
RXOUT+  
RXOUT-  
Referenceless  
EQ  
CDR and  
Retimer  
100ꢀ  
RXIN-  
RX_LF  
Offset  
Cancellation  
with  
Threshold  
Adjust  
38. Electrical Loopback  
24  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
Feature Description (接下页)  
8.3.1.7 Bias Current Generation and APC Loop  
The bias current for the laser is turned off by default and has to be enabled by setting the laser bias current  
enable bit TXBIASEN = 1 (bit 2 of register 1). In open loop operation, selected by setting TXOLENA = 1 (bit 4 of  
register 1), the bias current is set directly by the 10-bit wide control word TXBIAS[0..9] (register 15 and register  
16). In Automatic Power Control (APC) mode, selected by setting TXOLENA = 0, the bias current depends on  
the register settings TXBIAS[0..9] and the coupling ratio (CR) between the laser bias current and the photodiode  
current. CR = IBIAS/IPD. If the photodiode cathode is connected to VCC and the anode is connected to the PD pin  
(PD pin is sinking current) set TXPDPOL = 1 (bit 0 of register 1). If the photodiode anode is connected to ground  
and the cathode is connected to the PD pin (PD pin is sourcing current), set TXPDPOL = 0.  
Three photodiode current ranges can be selected by means of the photodiode current range bits TXPDRNG[0..1]  
(bits 5 and 6 of register 1). The photodiode range should be chosen to keep the laser bias control DAC,  
TXBIAS[0..9], close to the center of its range. This keeps the laser bias current set point resolution high. For  
details regarding the bias current setting in open-loop mode as well as in closed-loop mode, see the Register  
Mapping table.  
The ONET1130EC has the ability to source or sink the bias current. The default condition is for the BIAS pin to  
source the current (TXBIASPOL = 0). To act as a sink, set TXBIASPOL = 1 (bit 1 of register 1).  
The bias current is monitored using a current mirror with a gain equal to 1/100. By connecting a resistor between  
MONB and GND, the bias current can be monitored as a voltage across the resistor. A low temperature  
coefficient precision resistor should be used. The bias current can also be monitored as a 10 bit unsigned digital  
word by setting the transmitter bias current digital monitor selection bit TXDMONB = 1 (bit 5 of register 16) and  
removing the resistor from MONB to ground.  
The photodiode current is monitored using a current mirror with various gains that are dependent upon the  
photodiode current range being used. By connecting a resistor between MONP and GND, the photodiode current  
can be monitored as a voltage across the resistor. A low temperature coefficient precision resistor should be  
used. The photodiode current can also be monitored as a 10 bit unsigned digital word by setting the transmitter  
photodiode current digital monitor selection bit TXDMONP = 1 (bit 6 of register 16) and removing the resistor  
from MONP to ground.  
8.3.1.8 Laser Safety Features and Fault Recovery Procedure  
The ONET1130EC provides built in laser safety features. The following fault conditions are detected if the  
transmitter fault detection enable bit TXFLTEN = 1 (bit 3 of register 1):  
1. Voltage at MONB exceeds the bandgap voltage (1.2 V) or, alternately, if TXDMONB = 1 and the bias current  
exceeds the bias current monitor fault threshold set by TXBMF[0..7] (register 17). When using the digital  
monitor, the resistor from the MONB pin to ground must be removed.  
2. Voltage at MONP exceeds the bandgap voltage (1.2 V) and the analog photodiode current monitor fault  
trigger bit, TXMONPFLT (bit 7 of register 1), is set to 1. Alternately, a fault can be triggered if TXDMONP = 1  
and the photodiode current exceeds the photodiode current monitor fault threshold set by TXPMF[0..7]  
(register 18). When using the digital monitor, the resistor from the MONP pin to ground must be removed.  
3. Photodiode current exceeds 150% of its set value,  
4. Bias control DAC drops in value by more than 50% in one step.  
If the fault detection is being used then to avoid a fault from occurring at start-up it is recommended to set up the  
required bias current and APC loop conditions first and enable the laser bias current (TXBIASEN = 1) as the last  
step in the sequence of commands.  
If one or more fault conditions occur and the transmitter fault enable bit TXFLTEN is set to 1, the ONET1130EC  
responds by:  
1. Setting the bias current to zero.  
2. Asserting and latching the TX_FLT pin.  
3. Setting the TX_FLT bit (bit 5 of register 43) to 1.  
Fault recovery is performed by the following procedure:  
1. The transmitter disable pin TX_DIS and/or the transmitter bias current enable bit TXBIASEN are toggled for  
at least the fault latch reset time.  
版权 © 2015, Texas Instruments Incorporated  
25  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
Feature Description (接下页)  
2. The TX_FLT pin de-asserts while the transmitter disable pin TX_DIS is asserted or the transmitter bias  
current enable bit TXBIASEN is de-asserted.  
3. If the fault condition is no longer present, the part will return to normal operation with its prior output settings  
after the disable negate time.  
4. If the fault condition is still present, TX_FLT re-asserts once TX_DIS is set to a low level and/or TXBIASEN is  
set to 0 and the part will not return to normal operation.  
8.3.2 Receiver  
8.3.2.1 Equalizer  
The data signal is applied to an input equalizer by means of the input signal pins RXIN+ / RXIN–, which provide  
on-chip differential 100 Ω line-termination. The equalizer is enabled by default and can be disabled by setting the  
receiver equalizer disable bit RXEQ_DIS = 1 (bit 1 of register 4). Equalization is provided for bandwidth  
compensation of the optical receiver. The amount of equalization is set through the register settings RXCTLE  
[0..2] (register 5). The device can accept input amplitude levels from 6 mVpp up to 800 mVpp.  
8.3.2.2 DC Offset Cancellation and Cross Point Control  
Receiver offset cancellation compensates for internal offset voltages and thus ensures proper operation even for  
very small input data signals. The offset cancellation is enabled by default and the input threshold voltage can be  
adjusted using register settings RXTHADJ[0..3] (register 6) to optimize the bit error rate or change the eye  
crossing point to compensate for input signal pulse width distortion. The offset cancellation can be disabled by  
setting RXOC_DIS = 1 (bit 2 of register 4) and this also disables the cross point adjustment.  
8.3.2.3 CDR  
The receiver clock and data recovery function consists of a Phase-Locked Loop (PLL) and retimer. The CDR can  
be operated without a reference clock and the Voltage Controlled Oscillator (VCO) can cover 9.8Gbps to 11.7  
Gbps data rates. The PLL is phase locked to the incoming data stream and attenuates the high frequency jitter  
on the data, producing a recovered clean clock with substantially reduced jitter. An external capacitor for the PLL  
loop filter is connected to the RX_LF pin. A value of 2.2 nF is recommended. The clean clock is used to retime  
the incoming data, producing an output signal with reduced jitter, and in effect, resetting the jitter budget for the  
receiver.  
The CDR is enabled by default. The CDR can be disabled and bypassed by setting the receiver CDR disable bit  
RXCDR_DIS = 1 (bit 4 of register 4). Alternatively, the CDR can be left powered on but bypassed by setting the  
receiver CDR bypass bit RX_CDRBP = 1 (bit 3 of register 4); however, this only works if the transmitter CDR  
bypass bit TX_CDRBP (bit 3 of register 10) is also set to 1.  
The CDR is designed to meet the XFP Datacom requirements and Telecom requirements for a maximum of 1 dB  
jitter peaking at a frequency greater than 120 kHz. The CDR is not designed to meet the Telecom regenerator  
requirements of jitter peaking less than 0.03 dB at a frequency less than 120 kHz.The default CDR bandwidth is  
typically 4.5 MHz and can be adjusted using the SEL_RES[0..2] bits (bits 5 to 7 of register 51). Adjusting these  
bits changes the bandwidth of both the receiver and transmitter CDRs.  
For the majority of applications the default settings in register 9 for the receiver CDR can be used. However, for  
some applications or for test purposes, some modes of operation may be useful. The frequency detector for the  
PLL is set to an automatic mode of operation by default. When a signal is applied to the receiver input the  
frequency detector search algorithm will be initiated to determine the frequency of the data. The default algorithm  
ensures a fast CDR lock time of less than 2 ms. The fast lock can be disabled by setting the receiver CDR fast  
lock disable bit RXFL_DIS = 1 (bit 3 of register 9). Once the frequency has been detected then the frequency  
detector will be disabled and the supply current will decrease by approximately 10 mA. In some applications,  
such as when there are long periods of idle data, it may be advantageous to keep the frequency detector  
permanently enabled by setting the receiver frequency detector enable bit RXFD_EN = 1 (bit 5 of register 9). For  
test purposes, the frequency detector can be permanently disabled by setting the receiver frequency detector  
26  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
Feature Description (接下页)  
disable bit RXFD_DIS = 1 (bit 4 of register 9). For fast lock times the frequency detector can be set to one of two  
preselected data rates using the receiver frequency detection mode selection bits RXFD_MOD[0..1] (bits 6 and 7  
of register 9). If it is desired to use the retimer at lower data rates than the standard 9.8 to 11.7 Gbps then the  
receiver divider ratio should be adjusted accordingly through RXDIV[0..2] (bits 0 to 2 of register 9). For example,  
for retimed operation at 2.5 Gbps the divider should be set to divide by 4.  
8.3.2.4 Output Driver  
The output amplitude of the driver can be varied from 300 mVpp to 900 mVpp using the register settings  
RXAMP[0..3] (register 8). The default amplitude setting is 300 mVpp. To compensate for frequency dependent  
losses of transmission lines connected to the output, adjustable de-emphasis is provided. The de-emphasis can  
be adjusted using RXDADJ[0..2] (register 8). The polarity of the output pins can be inverted by setting the  
receiver output polarity switch bit RXOUTPOL = 1 (bit 5 of register 4).  
In addition, the output driver can be disabled by setting the receiver output driver disable bit RXOUT_DIS = 1 (bit  
6 of register 4) or the receiver signal path can be disabled and powered down by setting RX_DIS = 1 (bit 7 of  
register 4).  
8.3.2.5 Receiver Loopback (Optical Loopback)  
The signal input to the RXIN+ and RXIN– pins can be looped back to the transmitter output after the retimer as  
shown in 39 by setting RX_LBMUX = 1 (bit 1 of register 2). Loopback from the transmitter input to the receiver  
output (electrical loopback) can be enabled at the same time.  
If it is desired to loopback the signal input to the RXIN+ and RXIN– pins to the transmitter output with the CDR  
disabled then the receive CDR must be disabled and bypassed by setting RXCDR_DIS = 1 (bit 4 of register 4)  
and the transmit CDR must also be disabled and bypassed by setting TXCDR_DIS =1 (bit 4 of register 10).  
版权 © 2015, Texas Instruments Incorporated  
27  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
Feature Description (接下页)  
VCC_TX  
Modulator  
Driver  
60  
60ꢀ  
TX_LF  
TXIN+  
Referenceless  
CDR and  
EQ  
100ꢀ  
Retimer  
TXIN-  
TXOUT+  
TXOUT-  
AMP  
BIAS  
FLT  
AMP  
BIAS  
Modulation  
and Bias  
Current  
Generator &  
APC  
CDR_CTRL  
2-Wire Interface  
& Control Logic  
VDD  
TX_FLT  
TX_LOL  
PD  
PD  
EEPROM  
COMP  
MONB  
COMP  
Electrical  
Loopback  
Optical  
Loopback  
MONB  
MONP  
MONB  
MONP  
Power-On  
Reset  
MONP  
Band-Gap, Analog  
References, Power  
Supply Monitor &  
Temperature Sensor  
Analog to  
Digital  
Conversion  
SCK  
SDA  
PSM  
TS  
TX_DIS  
RX_DIS  
RX_LOL  
CDR_CTRL  
LOL  
VCC_RX  
Limiting  
Amplifier  
Threshold  
45ꢀ  
LOS  
RX_LOS  
RXIN+  
45ꢀ  
RXOUT+  
RXOUT-  
Referenceless  
EQ  
CDR and  
Retimer  
100ꢀ  
RXIN-  
RX_LF  
Offset  
Cancellation  
with  
Threshold  
Adjust  
39. Optical Loopback  
28  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
Feature Description (接下页)  
8.3.2.6 Loss of Signal Detection  
The loss of signal (LOS) detection is done by 2 separate level detectors to cover a wide dynamic range. The  
peak values of the input signal are monitored by a peak detector and compared to a pre-defined loss of signal  
threshold voltage inside the loss of signal detection block. As a result of the comparison, the LOS signal, which  
indicates that the input signal amplitude is below the defined threshold level, is generated. There are 2 LOS  
ranges settable with the RXLOSRNG bit (bit 0 of register 4). With RXLOSRNG = 0 the high range of the LOS  
assert values are used (40 mVPP to 130 mVPP) and by setting RXLOSRNG = 1 the low range of the LOS assert  
values are used (10 mVPP to 50 mVPP). There are 64 possible internal LOS settings set with RXLOSA[0..5]  
(register 7) for each LOS range to adjust the LOS assert level.  
The typical LOS hysteresis, as defined by 20log(LOS de-assert voltage/LOS assert voltage) is 4 dB. This can be  
reduced by approximately 2 dB by setting receiver hysteresis RXHYS = 1 (bit 7 of register 6). In addition, the  
LOS detection time can be reduced by setting the receiver fast LOS bit RXFLOS = 1 (bit 3 of register 5);  
however, this may result in chatter (LOS bounce).  
8.3.3 Analog Block  
8.3.3.1 Analog Reference and Temperature Sensor  
The ONET1130EC is supplied by a single 2.5 V ±5% supply voltage connected to the VCC_TX, VCC_RX and  
VDD pins. This voltage is referred to ground (GND) and can be monitored as a 10 bit unsigned digital word  
through the 2-wire interface.  
On-chip bandgap voltage circuitry generates a reference voltage, independent of the supply voltage, from which  
all other internally required voltages and bias currents are derived.  
In order to minimize the module component count, the ONET1130ECprovides an on-chip temperature sensor.  
The temperature can be monitored as a 10 bit unsigned digital word through the 2-wire interface.  
8.3.3.2 Power-On Reset  
The ONET1130EC has power on reset circuitry which ensures that all registers are reset to default values during  
startup. After the power-on to initialize time (tINIT1), the internal registers are ready to be loaded. The part is ready  
to transmit data after the initialize to transmit time (tINIT2), assuming that the enable chip bit EN_CHIP = 1 (bit 0 of  
register 0). In addition, the transmitter disable pin TX_DIS and receiver disable pin RX_DIS must be set to zero.  
The ONET1130EC bias current can be disabled by setting the TX_DIS pin high. The internal registers are not  
reset. After the transmitter disable pin TX_DIS is set low the part returns to its prior output settings.  
8.3.3.3 Analog to Digital Converter  
The ONET1130EC has an internal 10 bit analog to digital converter (ADC) that converts the analog monitors for  
temperature, power supply voltage, bias current and photodiode current into a 10 bit unsigned digital word. The  
first 8 most significant bits (MSBs) are available in register 40 and the 2 least significant bits (LSBs) are available  
in register 41. Depending on the accuracy required, 8 bits or 10 bits can be read. However, due to the  
architecture of the 2-wire interface, in order to read the 2 registers, 2 separate read commands have to be sent.  
The ADC is enabled by default so to monitor a particular parameter, select the parameter with ADCSEL[0..2]  
(bits 0 to 2 of register 3). 2 shows the ADCSEL bits and the parameter that is monitored.  
2. ADC Selection Bits and the Monitored Parameter  
ADCSEL2  
ADCSEL1  
ADCSEL0  
MONITORED PARAMETER  
Temperature  
0
0
0
0
0
0
1
1
0
1
0
1
Supply voltage  
Bias current  
Photodiode current  
版权 © 2015, Texas Instruments Incorporated  
29  
 
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
To digitally monitor the photodiode current, ensure that TXDMONP = 1 (bit 6 of register 16) and that a resistor is  
not connected to the MONP pin. To digitally monitor the bias current, ensure that TXDMONB = 1 (bit 5 of register  
16) and that a resistor is not connected to the MONB pin. The ADC is disabled by default. To enable the ADC,  
set the ADC oscillator enable bit OSCEN = 1 (bit 6 of register 3) and set the ADC enable bit ADCEN = 1 (bit 7 of  
register 3).  
The digital word read from the ADC can be converted to its analog equivalent through the following formulas.  
Temperature (°C) = (0.5475 × ADCx) – 273  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
Power supply voltage (V) = (1.36m × ADCx) + 1.76  
IPD(μA) = 2 x [ (0.62 × ADCx) – 16] for TXPDRNG00  
IPD(μA) = 4 x [ (0.62 × ADCx) – 16] for TXPDRNG01  
IPD(μA) = 8 x [ (0.62 × ADCx) – 16] for TXPDRNG1x  
IBIAS (mA) = (0.2 × ADCx) – 4.5  
Where: ADCx = the decimal value read from the ADC  
8.3.3.4 2-Wire Interface and Control Logic  
The ONET1130EC uses a 2-wire serial interface for digital control. The two circuit inputs, SDA and SCK, are  
driven, respectively, by the serial data and serial clock from a microprocessor, for example. The SDA and SCK  
pins require external 4.7-kΩ to 10-kΩ pull-up resistor to VCC for proper operation.  
The 2-wire interface allows write access to the internal memory map to modify control registers and read access  
to read out the control signals. The ONET1130EC is a slave device only which means that it cannot initiate a  
transmission itself; it always relies on the availability of the SCK signal for the duration of the transmission. The  
master device provides the clock signal as well as the START and STOP commands. The protocol for a data  
transmission is as follows:  
1. START command  
2. Seven (7) bit slave address (0001000) followed by an eighth bit which is the data direction bit (R/W). A zero  
indicates a WRITE and a 1 indicates a READ.  
3. 8 bit register address  
4. 8 bit register data word  
5. STOP command  
Regarding timing, the ONET1130EC is I2C compatible. The typical timing is shown in 2 and a complete data  
transfer is shown in 40. Parameters for 2 are defined in 1.  
8.3.3.5 Bus Idle  
Both SDA and SCK lines remain HIGH  
8.3.3.6 Start Data Transfer  
A change in the state of the SDA line, from HIGH to LOW, while the SCK line is HIGH, defines a START  
condition (S). Each data transfer is initiated with a START condition.  
8.3.3.7 Stop Data Transfer  
A change in the state of the SDA line from LOW to HIGH while the SCK line is HIGH defines a STOP condition  
(P). Each data transfer is terminated with a STOP condition; however, if the master still wishes to communicate  
on the bus, it can generate a repeated START condition and address another slave without first generating a  
STOP condition.  
8.3.3.8 Data Transfer  
Only one data byte can be transferred between a START and a STOP condition. The receiver acknowledges the  
transfer of data.  
30  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
8.3.4 Acknowledge  
Each receiving device, when addressed, is obliged to generate an acknowledge bit. The transmitter releases the  
SDA line and a device that acknowledges must pull down the SDA line during the acknowledge clock pulse in  
such a way that the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse. Setup and  
hold times must be taken into account. When a slave-receiver doesn’t acknowledge the slave address, the data  
line must be left HIGH by the slave. The master can then generate a STOP condition to abort the transfer. If the  
slave-receiver does acknowledge the slave address but some time later in the transfer cannot receive any more  
data bytes, the master must abort the transfer. This is indicated by the slave generating the not acknowledge on  
the first byte to follow. The slave leaves the data line HIGH and the master generates the STOP condition, see  
2.  
8.4 Device Functional Modes  
The ONET1130EC has two main functional modes of operation: differential transmitter output and single-ended  
transmitter output.  
8.4.1 Differential Transmitter Output  
Operation with differential output is the default mode of operation. This mode is intended for externally modulated  
lasers requiring differential drive such as Mach Zehnder modulators.  
8.4.2 Single-Ended Transmitter Output  
In order to reduce the power consumption for single-ended EML applications the output driver should be set to  
single-ended mode. The single-ended output signal can be enabled by setting the transmitter mode select bit  
TXMODE = 1 (bit 6 of register 13). The positive output is active by default. To enable the negative output and  
disable the positive output set TXOUTSEL = 1 (bit 7 of register 13).  
8.5 Programming  
Write Sequence  
1
1
1
8
1
8
1
1
7
S
Slave Address  
Wr  
A
Register Address  
A
Data Byte  
A
P
Read Sequence  
1
1
1
8
1
1
1
1
8
1
1
7
7
S
Slave Address  
Wr  
A
Register Address  
A
S
Slave Address  
Rd  
A
Data Byte  
N
P
Legend  
S
Start Condition  
Wr  
Rd  
A
Write Bit (Bit Value = 0)  
Read Bit (Bit Value = 1)  
Acknowledge  
N
Not Acknowledge  
Stop Condition  
P
40. Programming Sequence  
版权 © 2015, Texas Instruments Incorporated  
31  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.6 Register Mapping  
8.6.1 R/W Control Registers  
8.6.1.1 Core Level Register 0 (offset = 0100 0001 [reset = 41h]  
41. Core Level Register 0  
7
0
6
5
4
3
2
1
0
0
1
Reserved  
RWSC  
RW  
RWSC  
RWSC  
RW  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset. RWSC = Read/Write self clearing (always reads back to zero)  
3. Core Level Register 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GLOBAL SW_PIN RESET  
RWSC 0h  
Global Reset SW  
1 = reset, resets all I2C and EEPROM modules to default  
0 = normal operation (self-clearing, always reads back ‘0’)  
6 :2  
1
R/W  
4h  
Reserved  
I2C RESET  
RWSC 0h  
Chip reset bit  
1 = resets all I2C registers to default  
0 = normal operation (self-clearing, always reads back ‘0’)  
0
EN_CHIP  
R/W  
1h  
Enable chip bit  
1 = Chip enabled  
8.6.1.2 Core Level Register 1 (offset = 0000 0000) [reset = 0h]  
42. Core Level Register 1  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
4. Core Level Register 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Analog photodiode current monitor fault trigger bit  
1 = Fault trigger on MONP pin is enabled  
0 = Fault trigger on MONP pin is disabled  
7
TXMONPFLT  
R/W  
0
Photodiode current range bits  
1X: up to 3080μA / 3μA resolution  
01: up to 1540μA / 1.5μA resolution  
00: up to 770μA / 0.75μA resolution  
6
5
TXPDRNG1  
TXPDRNG0  
R/W  
0
Open loop enable bit  
4
3
2
1
TXOLENA  
TXFLTEN  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
1 = Open loop bias current control  
0 = Closed loop bias current control  
Fault detection enable bit  
1 = Fault detection on  
0 = Fault detection off  
Laser Bias current enable bit  
1 = Bias current enabled. Toggle to 0 to reset a fault condition.  
0 = Bias current disabled  
TXBIASEN  
TXBIASPOL  
Laser Bias current polarity bit  
1 = Bias pin sinks current  
0 = Bias pin sources current  
32  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
4. Core Level Register 1 Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
Photodiode polarity bit  
0
TXPDPOL  
R/W  
0
1 = Photodiode cathode connected to VCC  
0 = Photodiode anode connected to GND  
8.6.1.3 Core Level Register 2 (offset = 0000 0000 ) [reset = 0h]  
43. Core Level Register 2  
7
6
5
4
3
2
1
0
0
0
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
5. Core Level Register 2 Field Descriptions  
Bit  
7:4  
3
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
0h  
2
0h  
1
RX_LBMUX  
0h  
RX-Loopback MUX Setting (optical LB)  
1 = Loopback from TX-CDR output selected.  
0 = Normal operation: RX-CDR output selected  
0
TX_LBMUX  
R/W  
0h  
TX-Loopback MUX Setting (electrical LB)  
1 = Loopback from RX-CDR output selected.  
0 = Normal operation: TX-CDR output selected  
8.6.1.4 Core Level Register 3 (offset = 0000 0000) [reset = 0h]  
44. Core Level Register 3  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
6. Core Level Register 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
ADC enabled bit  
1 = ADC enabled  
0 = ADC disabled  
7
ADCEN  
R/W  
0h  
ADC oscillator bit  
6
5
4
OSCEN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
1 = Oscillator enabled  
0 = Oscillator disabled  
Reserved  
ADC reset  
1 = ADC reset  
0 = ADC no reset  
ADCRST  
3
2
1
R/W  
R/W  
R/W  
0h  
0h  
0h  
Reserved  
ADCSEL2  
ADCSEL1  
ADC input selection bits <2:0>  
000 selects the temperature sensor  
001 selects the power supply monitor  
010 selects IMONB  
0
ADCSEL0  
R/W  
0h  
011 selects IMONP  
1XX are reserved  
版权 © 2015, Texas Instruments Incorporated  
33  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.6.2 RX Registers  
8.6.2.1 RX Register 4 (offset = 0000 0000) [reset = 0h]  
45. RX Register 4  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7. RX Register 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RX disable bit  
7
RX_DIS  
R/W  
0h  
1 = RX disabled (power-down)  
0 = RX enabled  
RX Output Driver disable bit  
1 = output driver is disabled  
0 = output driver is enabled  
6
5
4
RXOUT_DIS  
RXOUTPOL  
RXCDR_DIS  
R/W  
R/W  
R/W  
0h  
0h  
0h  
RX Output polarity switch bit  
1 = inverted polarity  
0 = normal polarity  
RX CDR disable bit  
1 = RX CDR is disabled and bypassed  
0 = RX CDR is enabled  
RX CDR bypass bit  
1 = RX-CDR bypassed. TX_CDRBP must be set to 1 for this function to  
operate.  
3
RX_CDRBP  
R/W  
0h  
0 = RX-CDR not bypassed  
RX Offset cancellation disable bit  
2
1
0
RXOC_DIS  
RXEQ_DIS  
RXLOSRNG  
R/W  
R/W  
R/W  
0h  
0h  
0h  
1 = offset cancellation and threshold adjust is disabled  
0 = offset cancellation and threshold adjust is enabled  
RX Equalizer disable bit  
1 = RX Equalizer is disabled and bypassed  
0 = RX Equalizer is enabled  
LOS range bit  
1 = low LOS assert voltage range  
0 = high LOS assert voltage range  
34  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
8.6.2.2 RX Register 5 (offset = 0000 0000) [reset = 0h]  
46. RX Register 5  
7
6
5
4
3
0
2
0
1
0
0
0
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8. RX Register 5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
R/W  
0h  
Reserved  
Receiver fast LOS bit  
1 = Fast LOS  
3
RXFLOS  
R/W  
0h  
0 = normal operation  
2
1
0
RXCTLE2  
RXCTLE1  
RXCTLE0  
R/W  
R/W  
R/W  
0h  
0h  
0h  
RX input CTLE setting  
000 = minimum  
111 = maximum  
8.6.2.3 RX Register 6 (offset = 0000 0000) [reset = 0h]  
47. RX Register 6  
7
0
6
5
4
0
3
0
2
0
1
0
0
0
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9. RX Register 6 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Receiver Hysteresis  
7
RXHYS  
R/W  
0h  
1 = Reduce hysteresis level by approximately 2dB  
0 = default level of hysteresis (approximately 4dB)  
6:5  
4
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
Reserved  
RXTHSGN  
RXTHADJ3  
RXTHADJ2  
RXTHADJ1  
RX Eye cross-point adjustment setting  
RXTHSGN = 1 (positive shift)  
3
Maximum shift for 1111  
2
Minimum shift for 0000  
RXTHSGN = 0 (negative shift)  
1
Maximum shift for 1111  
Minimum shift for 0000  
0
RXTHADJ0  
R/W  
0h  
版权 © 2015, Texas Instruments Incorporated  
35  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.6.2.4 RX Register 7 (offset = 0000 0000) [reset = 0h]  
48. RX Register 7  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
10. RX Register 7 Field Descriptions  
Bit  
7:6  
5
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
RXLOSA5  
RXLOSA4  
RXLOSA3  
RXLOSA2  
RXLOSA1  
RXLOSA0  
0h  
LOS assert level  
Minimum LOS assert level for 000000  
Maximum LOS assert level for 111111  
4
0h  
3
0h  
2
0h  
1
0h  
0
0h  
8.6.2.5 RX Register 8 (offset = 0000 0000) [reset = 0h]  
49. RX Register 8  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
11. RX Register 8 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
6
RXDADJ1  
0h  
RX output de-emphasis setting  
00 = minimum de-emphasis  
11 = maximum de-emphasis  
5
RXDADJ0  
R/W  
0h  
RX driver short circuit protection  
1 = short circuit protection enabled  
0 = normal operation  
4
RXDRVSC  
R/W  
0h  
3
2
1
0
RXAMP3  
RXAMP2  
RXAMP1  
RXAMP0  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
RX output amplitude adjustment  
0000 = minimum amplitude  
1111 = maximum amplitude  
36  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
8.6.2.6 RX Register 9 (offset = 0000 0000) [reset = 0h]  
50. RX Register 9  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
12. RX Register 9 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RXFD_MOD1  
R/W  
0h  
RX frequency detection mode selection  
00 = auto selection enabled  
01 = Pre-selected to 10.3Gbps  
10 = Pre-select to 11.1Gbps  
6
RXFD_MOD0  
R/W  
0h  
11 = test mode (do not use)  
RX frequency detector enable bit  
5
4
3
RXFD_EN  
RXFD_DIS  
RXFL_DIS  
R/W  
R/W  
R/W  
0h  
0h  
0h  
1 = RX frequency detector is always enabled  
0 = RX frequency detector in automatic mode  
RX frequency detector disable bit  
1 = RX frequency detector is always disabled  
0 = RX frequency detector is in automatic mode  
RX CDR fast lock disable bit  
1 = RX CDR fast lock disabled  
0 = RX CDR in fast lock mode  
2
1
RXDIV2  
RXDIV1  
R/W  
R/W  
0h  
0h  
RX Divider Ratio  
000: Full-Rate,  
001: Divide by 2  
010: Divide by 4  
011: Divide by 8  
100: Divide by 16  
101: Divide by 32  
0
RXDIV0  
R/W  
0h  
版权 © 2015, Texas Instruments Incorporated  
37  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.6.3 TX Registers  
8.6.3.1 TX Register 10 (offset = 0000 0000) [reset = 0h]  
51. TX Register 10  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
13. TX Register 10 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
TX disable bit  
7
TX_DIS  
R/W  
0h  
1 = TX disabled (power-down)  
0 = TX enabled  
TX Output Driver disable bit  
1 = output disabled  
0 = output enabled  
6
5
4
TXOUT_DIS  
TXOUTPOL  
TXCDR_DIS  
R/W  
R/W  
R/W  
0h  
0h  
0h  
TX Output polarity switch bit  
1 = inverted polarity  
0 = normal polarity  
TX CDR disable bit  
1 = TX CDR is disabled and bypassed  
0 = TX CDR is enabled  
TX CDR bypass bit  
1 = TX-CDR bypassed. RX_CDRBP must be set to 1 for this function to  
operate.  
3
TX_CDRBP  
R/W  
0h  
0 = TX-CDR not bypassed  
TX OC disable bit  
2
1
0
TXOC_DIS  
TXEQ_DIS  
TXAMPCTRL  
R/W  
R/W  
R/W  
0h  
0h  
0h  
1 = TX Offset Cancellation disabled  
0 = TX Offset Cancellation enabled  
TX Equalizer disable bit  
1 = TX Equalizer is disabled and bypassed  
0 = TX Equalizer is enabled  
TX AMP Ctrl  
1 = TX AMP Control is enabled (analog amplitude control)  
0 = TX AMP Control is disabled (digital amplitude control)  
38  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
8.6.3.2 TX Register 11 (offset = 0000 0000) [reset = 0h]  
52. TX Register 11  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
14. TX Register 11 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
TX output AMP range  
7
TXAMPRNG  
R/W  
0h  
1 = Half TX output amplitude range  
0 = Full TX output amplitude range  
TX output peaking width  
1 = wide peaking width  
0 = narrow peaking width  
6
TXPKSEL  
R/W  
0h  
5
4
3
2
1
0
TXTCSEL1  
TXTCSEL0  
TXCTLE3  
TXCTLE2  
TXCTLE1  
TXCTLE0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
TXOUT temperature compensation select bit 1  
TXOUT temperature compensation select bit 0  
TX input CTLE setting  
0000 = minimum  
1111 = maximum  
8.6.3.3 TX Register 12 (offset = 0000 0000) [reset = 0h]  
53. TX Register 12  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
15. TX Register 12 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
TXMOD7  
TXMOD6  
TXMOD5  
TXMOD4  
TXMOD3  
TXMOD2  
TXMOD1  
TXMOD0  
6
0h  
5
0h  
4
0h  
TX Modulation current setting: sets the output voltage  
Output Voltage: 2.4 Vpp / 9.5 mVpp steps  
3
0h  
2
0h  
1
0h  
0
0h  
版权 © 2015, Texas Instruments Incorporated  
39  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.6.3.4 TX Register 13 (offset = 0h) [reset = 0]  
54. TX Register 13  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
16. TX Register 13 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
TX output selection bit  
7
TXOUTSEL  
R/W  
0h  
1 = The negative output TXOUT– is active if TXMODE = 1  
0 = The positive output TXOUT+ is active if TXMODE = 1  
TX output mode selection bit  
1 = Single-ended mode  
0 = Differential mode  
6
5
4
TXMODE  
TXSTEP  
TXSLOW  
R/W  
R/W  
R/W  
0h  
0h  
0h  
TX output de-emphasis mode selection bit  
1 = Delayed de-emphasis  
0 = Normal de-emphasis  
TX edge speed selection bit  
1 = Slow edge speed  
0 = Normal operation  
3
2
1
0
TXDEADJ3  
TXDEADJ2  
TXDEADJ1  
TXDEADJ0  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
TX de-emphasis setting  
0000 = minimum  
1111 = maximum  
8.6.3.5 TX Register 14 (offset = 0000 0000) [reset = 0h]  
55. TX Register 14  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
17. TX Register 14 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
TXCPSGN  
TXCPADJ6  
TXCPADJ5  
TXCPADJ4  
TXCPADJ3  
TXCPADJ2  
TXCPADJ1  
TXCPADJ0  
TX Eye cross-point adjustment setting  
TXCPSGN = 1 (positive shift)  
6
0h  
Maximum shift for 1111111  
5
0h  
Minimum shift for 0000000  
TXCPSGN = 0 (negative shift)  
4
0h  
3
0h  
Maximum shift for 1111111  
Minimum shift for 0000000  
2
0h  
1
0h  
0
0h  
40  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
8.6.3.6 TX Register 15 (offset = 0000 0000) [reset = 0h]  
56. TX Register 15  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
18. TX Register 15 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
TXBIAS9  
TXBIAS8  
TXBIAS7  
TXBIAS6  
TXBIAS5  
TXBIAS4  
TXBIAS3  
TXBIAS2  
Bias current settings (8MSB; 2LSBs are in register 16)  
Closed loop (APC):  
Coupling ratio CR = IBIAS / IPD, TXBIAS = 0..1023, IBIAS 150mA:  
TXPDRNG = 00; IBIAS = 0.75μA x CR x TXBIAS  
TXPDRNG = 01; IBIAS = 1.5μA x CR x TXBIAS  
TXPDRNG = 1X; IBIAS = 3μA x CR x TXBIAS  
6
0h  
5
0 h  
0h  
4
3
0h  
Open Loop:  
IBIAS ~ 156μA x TXBIAS in source mode  
IBIAS ~ 156μA x TXBIAS in sink mode  
2
0h  
1
0h  
0
0h  
8.6.3.7 TX Register 16 (offset = 0000 0000) [reset = 0h]  
57. TX Register 16  
7
6
0
5
0
4
3
2
1
0
0
0
Reserved  
R/W  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
19. TX Register 16 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
R/W  
0h  
Reserved  
Digital photodiode current monitor selection bit (MONP)  
6
5
TXDMONP  
TXDMONB  
R/W  
R/W  
0h  
0h  
1 = Digital photodiode monitor is active (no external resistor is needed)  
0 = Analog photodiode monitor is active (external resistor is required)  
Digital bias current monitor selection bit (MONB)  
1 = Digital bias current monitor is active (no external resistor is needed)  
0 = Analog bias current monitor is active (external resistor is required)  
4:2  
1
R/W  
R/W  
R/W  
0h  
0h  
0h  
Reserved  
TXBIAS1  
TXBIAS0  
Bias current setting (2 LSBs)  
0
版权 © 2015, Texas Instruments Incorporated  
41  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.6.3.8 TX Register 17 (offset = 0000 0000) [reset = 0h]  
58. TX Register 17  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
20. TX Register 17 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
TXBMF7  
TXBMF6  
TXBMF5  
TXBMF4  
TXBMF3  
TXBMF2  
TXBMF1  
TXBMF0  
Bias current monitor fault threshold  
With TXDMONB = 1  
Register sets the value of the bias current that will trigger a fault.  
The external resistor on the MONB pin must be removed to use this  
feature.  
6
0h  
5
0h  
4
0h  
3
0h  
2
0h  
1
0h  
0
0h  
8.6.3.9 TX Register 18 (offset = 0000 0000) [reset = 0h]  
59. TX Register 18  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
21. TX Register 18 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
TXPMF7  
TXPMF6  
TXPMF5  
TXPMF4  
TXPMF3  
TXPMF2  
TXPMF1  
TXPMF0  
Power monitor fault threshold  
With TXDMONP = 1  
Register sets the value of the photodiode current that will trigger a fault.  
The external resistor on the MONP pin must be removed to use this  
feature.  
6
0h  
5
0h  
4
0h  
3
0h  
2
0h  
1
0h  
0
0h  
42  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
8.6.3.10 TX Register 19 (offset = 0000 0000) [reset = 0h]  
60. TX Register 19  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
22. TX Register 19 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TXFD_MOD1  
R/W  
0
TX frequency detection mode selection  
00 = auto selection enabled  
01 = Pre-selected to 10.3Gbps  
10 = Pre-select to 11.1Gbps  
6
TXFD_MOD0  
R/W  
0
11 = test mode (do not use)  
TX frequency detector enable bit  
5
4
3
TXFD_EN  
TXFD_DIS  
TXFL_DIS  
R/W  
R/W  
R/W  
0
0
0
1 =TX frequency detector is always enabled  
0 = TX frequency detector in automatic mode  
TX frequency detector disable bit  
1 = TX frequency detector is always disabled  
0 = TX frequency detector is in automatic mode  
TX CDR fast lock disable bit  
1 = TX CDR fast lock disabled  
0 = TX CDR in fast lock mode  
2
1
TXDIV2  
TXDIV1  
R/W  
R/W  
0
0
TX Divider Ratio  
000: Full-Rate,  
001: Divide by 2  
010: Divide by 4  
011: Divide by 8  
100: Divide by 16  
101: Divide by 32  
0
TXDIV0  
R/W  
0
版权 © 2015, Texas Instruments Incorporated  
43  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.6.4 Reserved Registers  
8.6.4.1 Reserved Registers 20-39  
61. Reserved Registers 20-39  
7
6
5
4
3
2
1
0
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
23. Reserved Registers 20-39 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Reserved  
44  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
8.6.5 Read Only Registers  
8.6.5.1 Core Level Register 40 (offset = 0000 0000) [reset = 0h]  
62. Core Level Register 40  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
24. Core Level Register 40 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Digital representation of the ADC input source (read only)  
ADC9 (MSB)  
ADC8  
6
R
0h  
5
ADC7  
R
0h  
4
ADC6  
R
0h  
3
ADC5  
R
0h  
2
ADC4  
R
0h  
1
ADC3  
R
0h  
0
ADC2  
R
0h  
8.6.5.2 Core Level Register 41 (offset = 0000 0000) [reset = 0h]  
63. Core Level Register 41  
7
6
5
4
3
2
1
0
0
0
Reserved  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
25. Core Level Register 41 Field Descriptions  
Bit  
7:2  
1
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
ADC1  
ADC0 (LSB)  
R
0h  
Digital representation of the ADC input source (read only)  
0
R
0h  
版权 © 2015, Texas Instruments Incorporated  
45  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.6.5.3 RX Registers 42 (offset = 0000 0000) [reset = 0h]  
64. RX Registers 42  
7
0
6
0
5
0
4
0
3
2
1
0
Reserved  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; RCLR = Read clear  
26. RX Registers 42 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
RX CDR lock status bit  
1 = RX CDR is not locked  
0 = RX CDR is locked  
7
RXCDRLock  
R
0
Latched low status of bit 7. Cleared when read.  
6
5
RXCDRlock (latched LOW)  
RXLOS  
RCLR  
R
0
0
Latched low bit set to 0 when raw status goes low and keep it low even if  
raw status goes high.  
RX LOS status bit  
1 = RX LOS asserted  
0 = RX LOS de-asserted  
Latched high status of RXLOS(bit5). Cleared when read.  
Latched high status set to 1 when raw status goes high and keep it high  
even if raw status goes low.  
4
RX_LOS (latched high)  
RCLR  
R
0
0
3:0  
Reserved  
46  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
8.6.5.4 TX Register 43 (offset = 0000 0000) [reset = 0h]  
65. Core Level Register 43  
7
0
6
0
5
0
4
0
3
2
1
0
Reserved  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; RCLR = Read clear  
27. TX Registers 43 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
TX CDR lock status bit  
1 = TX CDR is not locked  
0 = TX CDR is locked  
7
TXCDRLock  
R
0
Latched low status of bit 7. Cleared when read.  
6
5
TXCDRLock (latched Low)  
TX_FLT  
RCLR  
R
0
0
Latched low bit set to 0 when raw status goes low and keep it low even if  
raw status goes high.  
TX fault status bit  
1 = TX fault detected  
0 = TX fault not detected  
TX driver disable status bit  
4
TX_DRVDIS  
R
R
0
0
1 = TX fault logic disables the driver  
0 = TX fault logic does not disable the driver  
3:0  
Reserved  
版权 © 2015, Texas Instruments Incorporated  
47  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
8.6.6 Adjustment Registers  
8.6.6.1 Adjustment Registers 44-50  
66. Adjustment Registers 44-50  
7
6
5
4
3
2
1
0
Reserved  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
28. Adjustment Registers 44-50 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Reserved  
8.6.6.2 Adjustment Register 51 (offset = 0100 0000) [reset = 40h]  
67. Adjustment Register 51  
7
0
6
1
5
0
4
3
2
Reserved  
R
1
0
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
29. Adjustment Register 51 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
SEL_RES_2  
SEL_RES_1  
0
1
TX and RX CDR Loop Filter Resistor  
000: 75,  
6
001: 150  
010: 225  
011: 300  
100: 375  
101: 450  
110: 525  
111: 600  
Default = 225  
5
SEL_RES_0  
R/W  
R/W  
0
0
4:0  
Reserved  
48  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
9 Application Information and Implementations  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ONET1130EC is designed to be used in conjunction with a Transmitter Optical Sub-Assembly (TOSA) and a  
Receiver Optical Sub-Assembly (ROSA). The ONET1130EC, TOSA, ROSA, microcontroller and power  
management circuitry will typically be used in an XFP or SFP+ 10 Gbps optical transceiver. 68 shows the  
ONET1130EC in differential mode of operation modulating a differentially driven Mach Zehnder (MZ) modulator  
TOSA and 70 and 71 show the device in single-ended output mode with an Electroabsorptive Modulated  
Laser (EML) TOSA. 70 has the photodiode cathode available and 71 has the photodiode anode available.  
9.2 Typical Application, Transmitter Differential Mode  
VCC_T  
VCC  
4.7k  
4.7kꢁ  
4.7kꢁ  
to10kꢁ  
to10kꢁ  
to10kꢁ  
0.1F  
0.1F  
RXOUT-  
RXOUT+  
2.2nF  
VCC_R  
TX_FLT  
TX_DIS  
0.1F  
0.1F  
VCC_RX  
4.7kꢁ  
to10kꢁ  
LOL  
RX_LOS  
COMP  
GND  
LOS  
LOL  
0.01F  
MONB  
GND  
TXIN+  
TXIN-  
GND  
PD  
MONB  
0.1F  
0.1F  
0.1F  
RXIN-  
RXIN+  
GND  
SCK  
RXIN-  
RXIN+  
TXIN+  
TXIN-  
ONET1130EC  
0.1F  
SCK  
SDA  
MONP  
SDA  
MONP  
4.7kꢁ  
to10kꢁ  
4.7kꢁ  
to10kꢁ  
VCC  
2.2nF  
VDD  
0.1F  
VCC_TX  
0.1F  
0.1F  
0.1F  
MZ MOD+  
MZ MOD-  
68. Typical Application Circuit in Differential Mode  
版权 © 2015, Texas Instruments Incorporated  
49  
 
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
Typical Application, Transmitter Differential Mode (接下页)  
9.2.1 Design Requirements  
30. Design Parameters  
PARAMETER  
VALUE  
Supply voltage  
2.5 V  
Transmitter input voltage  
Transmitter output voltage  
Receiver input voltage  
Receiver output voltage  
100 mVpp to 1000 mVpp differential  
1 Vpp to 3.6 Vpp differential  
6 mVpp to 800 mVpp differential  
300 mVpp to 900 mVpp differential  
9.2.2 Detailed Design Procedure  
In the transmitter differential mode of operation, the output driver is intended to be used with a differentially  
driven Mach Zehnder (MZ) modulator TOSA. On the input side, the TXIN+ and TXIN- pins are required to be AC  
coupled to the signal from the host system and the input voltage should be between 100 mVpp and 1000 mVpp  
differential. On the output side, the TXOUT+ pin is AC coupled to the modulator positive input and the TXOUT–  
pin is AC coupled to the modulator negative input. A bias-T from VCC to both the TXOUT+ and TXOUT– pins is  
required to supply sufficient headroom voltage for the output driver transistors. It is recommended that the  
inductance in the bias-T have low DC resistance to limit the DC voltage drop and maximize the voltage supplied  
to the TXOUT+ and TXOUT– pins. If the voltage on these pins drops below approximately 2.1V then the output  
rise and fall times can be adversely affected.  
The receiver inputs, RXIN+ and RXIN–, are AC coupled to the output of ROSA and the input voltage should be  
between 6 mVpp and 800 mVpp differential. The receiver outputs, RXOUT+ and RXOUT–, are AC coupled to the  
receiver input of the host system.  
9.2.3 Application Curve  
69. Differential Mode Transmitter Output Eye Diagram  
50  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
9.2.4 Typical Application, Transmitter Single-Ended Mode  
VCC_T  
VCC  
4.7k  
to10kꢁ  
4.7kꢁ  
to10kꢁ  
4.7kꢁ  
to10kꢁ  
0.1F  
0.1F  
RXOUT-  
RXOUT+  
2.2nF  
VCC_R  
TX_FLT  
TX_DIS  
0.1F  
0.1F  
VCC_RX  
4.7kꢁ  
to10kꢁ  
LOL  
RX_LOS  
LOS  
LOL  
0.01F  
MONB  
GND  
TXIN+  
TXIN-  
GND  
PD  
COMP  
GND  
MONB  
0.1F  
0.1F  
RXIN-  
RXIN+  
GND  
SCK  
RXIN-  
RXIN+  
TXIN+  
TXIN-  
ONET1130EC  
0.1F  
0.1F  
PD  
SCK  
SDA  
MONP  
SDA  
MONP  
4.7kꢁ  
to10kꢁ  
4.7kꢁ  
to10kꢁ  
VCC  
VDD  
VCC_TX  
0.1F  
Modulator Anode  
0.1F  
2.2nF  
0.1F  
0.1F  
50ꢁ  
Laser  
PD  
PD  
EA BIAS  
EML TOSA  
0.1F  
70. Typical Application Circuit in Single-Ended Mode with an EML and the PD Monitor Cathode  
Available  
版权 © 2015, Texas Instruments Incorporated  
51  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
VCC_T  
VCC  
4.7kto  
10kꢁ  
4.7kꢁ  
to10kꢁ  
4.7kto  
10kꢁ  
0.1F  
RXOUT-  
RXOUT+  
0.1F  
2.2nF  
VCC_R  
TX_FLT  
TX_DIS  
0.1F  
0.1F  
VCC_RX  
4.7kto  
10kꢁ  
LOL  
RX_LOS  
COMP  
GND  
LOS  
LOL  
0.01F  
MONB  
GND  
TXIN+  
TXIN-  
GND  
PD  
MONB  
0.1F  
0.1F  
0.1F  
RXIN-  
RXIN+  
GND  
SCK  
RXIN-  
RXIN+  
TXIN+  
TXIN-  
ONET1130EC  
0.1F  
PD  
SCK  
SDA  
MONP  
SDA  
MONP  
4.7kꢁ  
to10kꢁ  
4.7kꢁ  
to10kꢁ  
VCC  
VDD  
VCC_TX  
0.1F  
Modulator Anode  
0.1F  
PD  
2.2nF  
0.1F  
0.1F  
50ꢁ  
Laser  
PD  
EA BIAS  
EML TOSA  
0.1F  
-3V  
71. Typical Application Circuit in Single-Ended Mode with an EML and the PD Monitor Anode  
Available  
52  
版权 © 2015, Texas Instruments Incorporated  
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
9.2.4.1 Design Requirements  
31. Design Parameters  
PARAMETER  
VALUE  
Supply voltage  
2.5 V  
Transmitter input voltage  
Transmitter output voltage  
Receiver input voltage  
Receiver output voltage  
100 mVpp to 1000 mVpp differential  
0.5 Vpp to 2 Vpp single-ended  
6 mVpp to 800 mVpp differential  
300 mVpp to 900 mVpp differential  
9.2.4.2 Detailed Design Procedure  
In the transmitter single-ended mode of operation, the output driver is intended to be used with a single-ended  
driven Electroabsorptive Modulated Laser (EML) TOSA. On the input side, the TXIN+ and TXIN– pins are  
required to be AC coupled to the signal from the host system and the input voltage should be between 100mVpp  
and 1000mVpp differential. On the output side, it is recommended that the TXOUT+ pin is AC coupled to the  
modulator input and the TXOUT– pin can be left unterminated or terminated to VCC through a 50Ω resistor. A  
bias-T from VCC to the TXOUT+ pin is required to supply sufficient headroom voltage for the output driver  
transistors. It is recommended that the inductance in the bias-T have low DC resistance to limit the DC voltage  
drop and maximize the voltage supplied to the TXOUT+ pin. If the voltage on this pins drops below  
approximately 2.1V then the output rise and fall times can be adversely affected.  
The receiver inputs, RXIN+ and RXIN–, are AC coupled to the output of ROSA and the input voltage should be  
between 6mVpp and 800mVpp differential. The receiver outputs, RXOUT+ and RXOUT–, are AC coupled to the  
receiver input of the host system.  
9.2.4.3 Application Curves  
72. Single-Ended Mode Transmitter Output Eye Diagram  
10 Power Supply Recommendations  
The ONET1130EC is designed to operate from an input supply voltage range between 2.37 V and 2.63 V. To  
reduce transmitter and receiver power supply coupling, as well as digital coupling into the analog circuitry, there  
are separate supplies for the transmitter, receiver and digital circuitry. VCC_TX is used to supply power to the  
transmitter, VCC_RX is used to supply power to the receiver and VDD is used to supply power to the digital  
block. Power supply decoupling capacitors should be placed as close as possibly to the respective power supply  
pins.  
版权 © 2015, Texas Instruments Incorporated  
53  
ONET1130EC  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For optimum performance, use 50-Ω transmission lines (100-Ω differential) for connecting the high speed inputs  
and outputs. The length of transmission lines should be kept as short as possible to reduce loss and pattern-  
dependent jitter. It is recommended to maximize the separation of the TXOUT+ and TXOUT- transmission lines  
from the RXIN+ and RXIN- transmission lines to minimize transmitter to receiver crosstalk.  
If the single-ended mode of operation is being used (TXMODE = 1) then it is recommended to terminate the  
unused output with a 50-Ω resistor to VCC. 73 shows a typical layout for the high speed inputs and outputs.  
11.2 Layout Example  
!/-coupling  
capacitors  
ÇóLb+  
ÇóLb-  
wóLb-  
wóLb+  
Crom  
Iost  
Crom  
wh{!  
ÇóhÜÇ-  
.ias-Ç  
Cerrites  
50O to ë//  
Çermination  
73. Board Layout  
54  
版权 © 2015, Texas Instruments Incorporated  
 
ONET1130EC  
www.ti.com.cn  
ZHCSDW5A JUNE 2015REVISED JULY 2015  
12 器件和文档支持  
12.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
55  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ONET1130ECRSMR  
ONET1130ECRSMT  
ACTIVE  
VQFN  
VQFN  
RSM  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 100  
-40 to 100  
ONET  
1130EC  
ACTIVE  
RSM  
NIPDAU  
ONET  
1130EC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ONET1130ECRSMR  
ONET1130ECRSMT  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ONET1130ECRSMR  
ONET1130ECRSMT  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.45  
0.25  
0.25  
0.15  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
4.1  
3.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.8 0.05  
2X 2.8  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
SEE SIDE WALL  
DETAIL  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.45  
0.25  
32X  
4219108/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.8)  
SYMM  
32  
25  
32X (0.55)  
1
32X (0.2)  
24  
(
0.2) TYP  
VIA  
(1.15)  
SYMM  
33  
(3.85)  
28X (0.4)  
17  
8
(R0.05)  
TYP  
9
16  
(1.15)  
(3.85)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219108/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.715)  
4X ( 1.23)  
(R0.05) TYP  
25  
32  
32X (0.55)  
1
24  
32X (0.2)  
(0.715)  
(3.85)  
33  
SYMM  
28X (0.4)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(3.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219108/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY