OP07-W [TI]

精密运算放大器 | YS | 0;
OP07-W
型号: OP07-W
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

精密运算放大器 | YS | 0

放大器 运算放大器
文件: 总24页 (文件大小:1337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
OP07x 精密运算放大器  
1 特性  
3 说明  
• 低噪声  
• 无需外部元件  
• 以更低的成本更换斩波放大器  
• 宽输入电压范围  
0V ±14V典型值±15V 电源)  
• 宽电源电压范围±3V ±18V  
通过低噪声、无斩波、双极输入晶体管放大器电路,  
OP07C OP07D (OP07x) 器件可提供低失调电压和  
长期稳定性。对于大多数应用无需外部元件即可实现  
失调电压归零和频率补偿。真差分输入连同宽输入电压  
范围和出色的共模抑制能力有助于在高噪声环境和同  
相应用中提供出色的灵活性和性能。在整个温度范围  
该类器件可维持低偏置电流和超高的输入阻抗。  
2 应用  
要获得更高的性能和更宽的温度范围请参阅下一代具  
有低功耗的 OPA207 和具有重容性负载驱动能力的  
OPA202。  
模拟输入模块  
电池测试  
实验室和现场仪表  
温度变送器  
封装信息  
商用网络和服务PSU  
封装(1)  
DSOIC8)  
PPDIP8)  
PSSO8)  
封装尺寸标称值)  
4.90mm × 3.91mm  
9.81mm × 6.35mm  
6.20mm × 5.30mm  
器件型号  
OP07COP07D  
(1) 如需了解所有可用封装OP07请参阅数据表末尾的可订购  
产品附录。  
1
3
OFFSET N1  
IN+  
+
6
OUT  
2
8
IN−  
OFFSET N2  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLOS099  
 
 
 
 
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description.....................................................8  
7.4 Device Functional Modes............................................8  
8 Application and Implementation....................................9  
8.1 Application Information............................................... 9  
8.2 Typical Application...................................................... 9  
8.3 Power Supply Recommendations.............................10  
8.4 Layout....................................................................... 12  
9 Device and Documentation Support............................13  
9.1 接收文档更新通知..................................................... 13  
9.2 支持资源....................................................................13  
9.3 Trademarks...............................................................13  
9.4 静电放电警告............................................................ 13  
9.5 术语表....................................................................... 13  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description........................................................8  
7.1 Overview.....................................................................8  
7.2 Functional Block Diagram...........................................8  
Information.................................................................... 13  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision G (November 2014) to Revision H (July 2022)  
Page  
• 向宽输入电压范围特性要点添加了电源条件....................................................................................................... 1  
Changed VCC+ to V+ and VCCto V...............................................................................................................3  
Changed supply voltage abbreviation from VCC+ and VCCto VS in Absolute Maximum Ratings and  
throughout the data sheet...................................................................................................................................4  
Changed note 5 in Absolute Maximum Ratings to include a note that fast-ramping shorts to the positive  
supply can damage the device........................................................................................................................... 4  
Changed Electrostatic discharge Human-body model and Charged-device model from 1000 V to ±1000 V.... 4  
Added new values to Thermal Information ........................................................................................................ 4  
Changed Electrical Characteristics format .........................................................................................................5  
Changed parameter name from supply-voltage sensitivity to power supply rejection ratio in Electrical  
Characteristics ...................................................................................................................................................5  
Changed parameter name from input offset voltage to Input voltage noise density in Electrical Characteristics  
............................................................................................................................................................................5  
Changed input current noise density unit from nV/Hz to pA/Hz in Electrical Characteristics ..................... 5  
Changed parameter name from large-signal differential voltage gain to open-loop voltage gain in Electrical  
Characteristics ...................................................................................................................................................5  
Changed parameter name from peak output voltage to voltage output swing in Electrical Characteristics....... 5  
Changed functional block diagram..................................................................................................................... 8  
Changed text to clarify how to adjust input mismatches using null pins in Application Information ...................9  
Changes from Revision F (January 2014) to Revision G (November 2014)  
Page  
• 添加了应用器件信表、引脚功表、处理等表、热性能信表、典型特性特性说部分、器件功能  
模式应用和实部分、电源相关建部分、部分、器件和文档支部分以及机械、封装和可订购信息  
部分.................................................................................................................................................................... 1  
Changes from Revision E (May 2004) to Revision F (January 2014)  
Page  
• 删除了订购信息 ..............................................................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOS099  
2
Submit Document Feedback  
Product Folder Links: OP07 OP07C OP07D  
 
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
4
8
7
6
5
OFFSET N2  
OFFSET N1  
IN–  
IN+  
V–  
+
V+  
OUT  
NC  
Not to scale  
5-1. D Package, 8-Pin SOIC,  
P Package, 8-Pin PDIP,  
and PS Package, 8-Pin SO  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN+  
NO.  
3
Input  
Input  
Noninverting input  
2
Inverting input  
IN–  
NC  
5
Do not connect  
OFFSET N1  
OFFSET N2  
OUT  
1
Input  
Input  
Output  
External input offset voltage adjustment  
External input offset voltage adjustment  
Output  
8
6
V+  
7
Positive supply  
4
Negative supply  
V–  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OP07 OP07C OP07D  
English Data Sheet: SLOS099  
 
 
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
MAX  
44  
UNIT  
Single supply  
VS  
Supply voltage((2))  
Input voltage  
V
Dual supply  
±22  
±30  
±22  
Differential(3)  
Single-ended(4)  
V
Output short-circuit(5)  
Continous  
55  
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values, unless otherwise noted, are with respect to the midpoint between V+ and V.  
(3) Differential voltages are at IN+ with respect to IN.  
(4) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.  
(5) The output can be shorted to ground or to the negative power supply. Fast ramping shorts to the positive supply can cause permanent  
damage and eventual destruction.  
6.2 ESD Ratings  
VALUE  
±1000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
6
NOM  
MAX  
36  
UNIT  
Single supply  
Dual supply  
VS = ±15 V  
VS  
Supply voltage  
V
±3  
±18  
13  
VCM  
TA  
Common-mode input voltage  
Operating ambient temperature  
V
13  
0
70  
°C  
6.4 Thermal Information  
OP07x  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
127.6  
67.1  
P (PDIP)  
8 PINS  
85  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
68.6  
71.4  
55..6  
38.3  
18.7  
ψJT  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
70.6  
55.2  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOS099  
4
Submit Document Feedback  
Product Folder Links: OP07 OP07C OP07D  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
at TA = 25°C, VS = ±15 V, RL = 2 kconnected to mid-supply, and VCM = VOUT = mid-supply (unless otherwise noted)(1)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±60  
±85  
OP07C  
TA = 0°C to 70°C  
VOS  
Input offset voltage  
μV  
±150  
±250  
OP07D  
TA = 0°C to 70°C  
OP07C  
±0.5  
±0.4  
dVOS/dT  
Input offset voltage drift  
TA = 0°C to 70°C  
μV/°C  
OP07D  
±2.5  
Long-term drift of input  
offset voltage(2)  
µV/mo  
mV  
Offset adjustment range  
±4  
7
Rs = 20 k, see 8.1  
32  
51  
Power supply rejection  
ratio  
PSRR  
VS = ±3 V to ±18 V  
μV/V  
TA = 0°C to 70°C  
10  
INPUT BIAS CURRENT  
±1.8  
±2.2  
OP07C  
OP07D  
TA = 0°C to 70°C  
TA = 0°C to 70°C  
IB  
Input bias current  
nA  
pA/°C  
nA  
±12  
±14  
OP07C  
OP07D  
±18  
Input bias current drift  
Input offset current  
±50  
±0.8  
±1.6  
OP07C  
OP07D  
TA = 0°C to 70°C  
TA = 0°C to 70°C  
IOS  
±6  
±8  
OP07C  
OP07D  
12  
Input offset current drift  
Input voltage noise  
pA/°C  
±50  
NOISE  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
0.38  
10.5  
10.2  
9.8  
μVPP  
nV/Hz  
pApp  
Input voltage noise  
density  
eN  
f = 100 Hz  
f = 1 kHz  
Input current noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
15  
0.35  
0.15  
0.13  
iN  
Input current noise density f = 100 Hz  
f = 1 kHz  
pA/Hz  
INPUT VOLTAGE RANGE  
±13  
±13  
100  
97  
±14  
±13.5  
120  
VCM  
Common-mode voltage  
V
TA = 0°C to 70°C  
OP07C  
VCM = ±13 V  
TA = 0°C to 70°C  
TA = 0°C to 70°C  
120  
Common-mode rejection  
ratio  
CMRR  
dB  
94  
110  
OP07D  
VCM = ±13 V  
94  
106  
INPUT CAPACITANCE  
rI  
Input resistance  
7
33  
MΩ  
OPEN-LOOP GAIN  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OP07 OP07C OP07D  
English Data Sheet: SLOS099  
 
 
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 2 kconnected to mid-supply, and VCM = VOUT = mid-supply (unless otherwise noted)(1)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
400  
400  
400  
MAX  
UNIT  
OP07C  
100  
1.4 V < VO < 11.4 V,  
RL = 500 kΩ  
OP07D  
AOL  
Open-loop voltage gain  
V/mV  
120  
100  
VO = ±10 V  
TA = 40°C to  
+125°C  
400  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOS099  
6
Submit Document Feedback  
Product Folder Links: OP07 OP07C OP07D  
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RL = 2 kconnected to mid-supply, and VCM = VOUT = mid-supply (unless otherwise noted)(1)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
Unity gain bandwidth  
Slew rate  
0.4  
0.6  
0.3  
MHz  
SR  
VS = 5 V, RL = 2 kΩ  
V/μs  
OUTPUT  
±11.5  
±11  
±12.8  
±12.6  
±13  
TA = 0°C to 70°C  
RL = 10 kΩ  
Voltage output swing  
V
±12  
±12  
RL = 1 kΩ  
POWER SUPPLY  
PD Power dissipation  
No load  
80  
4
150  
8
mW  
VS = ±3 V, no load  
(1) The specifications listed in the Electrical Characteristics apply to OP07C and OP07D.  
(2) Because long-term drift cannot be measured on the individual devices before shipment, this specification is not intended to be a  
warranty. This specification is an engineering estimate of the averaged trend line of drift versus time over extended periods after the  
first 30 days of operation.  
6.6 Typical Characteristics  
200  
Low  
Mean  
High  
150  
100  
50  
0
–50  
–50  
0
50  
Temperature (ºC)  
100  
150  
6-1. Input-Offset Voltage vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OP07 OP07C OP07D  
English Data Sheet: SLOS099  
 
 
 
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
These devices offer low offset and long-term stability by means of a low-noise, chopperless, bipolar-input-  
transistor amplifier circuit. For most applications, external components are not required for offset nulling and  
frequency compensation. The true differential input, with a wide input-voltage range and outstanding common-  
mode rejection, provides maximum flexibility and performance in high-noise environments and in noninverting  
applications. Low bias currents and extremely high input impedances are maintained over the entire temperature  
range.  
These devices are characterized for operation from 0°C to 70°C.  
7.2 Functional Block Diagram  
V+  
OFFSET N1  
OFFSET N2  
Input Bias  
Cancellation  
Second Stage  
Amplifier and  
Biasing  
OUT  
IN+  
IN  
V
7.3 Feature Description  
7.3.1 Offset-Voltage Null Capability  
The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the  
differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, current-  
gain betas (β), collector or emitter resistors, and so on. The input offset pins allow the designer to adjust for  
these mismatches by external circuitry. See 8 for more details on design techniques.  
7.3.2 Slew Rate  
The slew rate is the rate at which an operational amplifier can change the output when there is a change on the  
input. The OP07x have a 0.3-V/μs slew rate.  
7.4 Device Functional Modes  
The OP07x are powered on when the supply is connected. The devices can be operated as single-supply  
operational amplifiers or dual-supply amplifiers, depending on the application.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOS099  
8
Submit Document Feedback  
Product Folder Links: OP07 OP07C OP07D  
 
 
 
 
 
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the  
differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, current-  
gain betas (β), collector or emitter resistors, and so on. The input offset pins allow the designer to adjust for  
these mismatches with external circuitry. 8-1 shows how these input mismatches can be adjusted by putting  
resistors or a potentiometer between the null pins. Use a potentiometer to fine tune the circuit during testing or  
for applications that require precision offset control. For more information about designing using the input-offset  
pins, see the Nulling Input Offset Voltage of Operational Amplifiers application report.  
20 k  
V+  
OFFSET  
N2  
8
OFFSET N1  
1
3
IN+  
+
7
4
6
OUT  
2
IN  
V
8-1. Input Offset-Voltage Null Circuit  
8.2 Typical Application  
The voltage follower configuration of the operational amplifier is used for applications where a weak signal is  
used to drive a relatively high current load. This circuit is also called a buffer amplifier or unity gain amplifier. The  
inputs of an operational amplifier have a very high resistance that puts a negligible current load on the voltage  
source. The output resistance of the operational amplifier is almost negligible, so the amplifier can provide as  
much current as necessary to the output load.  
10 k  
12 V  
VOUT  
+
VIN  
8-2. Voltage Follower Schematic  
8.2.1 Design Requirements  
Output range of 2 V to 11 V  
Input range of 2 V to 11 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OP07 OP07C OP07D  
English Data Sheet: SLOS099  
 
 
 
 
 
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Voltage Swing  
The output voltage of an operational amplifier is limited by the internal circuitry to some level less than the supply  
rails. For this amplifier, the output voltage swing is within ±12 V, which accommodates the input and output  
voltage requirements.  
8.2.2.2 Supply and Input Voltage  
For correct operation of the amplifier, neither input must be higher than the recommended positive supply rail  
voltage or lower than the recommended negative supply rail voltage. The chosen amplifier must be able to  
operate at the supply voltage that accommodates the inputs. Because the input for this application goes up to  
11 V, the supply voltage must be 12 V. Using a negative voltage on the lower rail, rather than ground, allows the  
amplifier to maintain linearity for inputs below 2 V.  
8.2.3 Application Curves  
12  
10  
8
0.4  
0.3  
0.2  
0.1  
6
0.0  
4
œ0.1  
œ0.2  
œ0.3  
2
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
VIN (V)  
VIN (V)  
C001  
C002  
8-3. Output Voltage vs Input Voltage  
8-4. Current Drawn by the Input of the Voltage  
Follower (IIO) vs Input Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
2
4
6
8
10  
12  
VIN (V)  
C003  
8-5. Current Drawn from Supply (ICC) vs Input Voltage  
8.3 Power Supply Recommendations  
The OP07x operate from ±3 V to ±18 V supplies; many specifications apply from 0°C to 70°C.  
CAUTION  
Supply voltages larger than ±22 V can permanently damage the device. See also 6.1.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OP07 OP07C OP07D  
English Data Sheet: SLOS099  
 
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more details on bypass capacitor placement, see 8.4.1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OP07 OP07C OP07D  
English Data Sheet: SLOS099  
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
8.4 Layout  
8.4.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the  
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance  
power sources local to the analog circuitry.  
Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. On multilayer PCBs, one or more layers are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds, paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it  
is not possible to keep them separate, it is much better to cross the sensitive trace perpendicularly, as  
opposed to in parallel, with the noisy trace.  
Place the external components as close to the device as possible. Keeping RF and RG close to the inverting  
input minimizes parasitic capacitance, as shown in 8.4.2.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
8.4.2 Layout Example  
RIN  
VIN  
+
VOUT  
RG  
RF  
8-6. Operational Amplifier Schematic for Noninverting Configuration  
Place components close to  
device and to each other to  
reduce parasitic errors  
Run the input traces as far  
away from the supply lines  
as possible  
RF  
VS+  
OFFSET N1  
OFFSET N2  
Use low-ESR, ceramic  
bypass capacitor  
RG  
GND  
VIN  
IN  
IN+  
V−  
V+  
OUT  
NC  
RIN  
GND  
Only needed for  
dual-supply  
operation  
GND  
VS-  
(or GND for single supply)  
VOUT  
Ground (GND) plane on another layer  
8-7. Operational Amplifier Board Layout for Noninverting Configuration  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OP07 OP07C OP07D  
English Data Sheet: SLOS099  
 
 
 
OP07, OP07C, OP07D  
ZHCSRX0H SEPTEMBER 1983 REVISED MARCH 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser based versions of this data sheet, refer to the left hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OP07 OP07C OP07D  
English Data Sheet: SLOS099  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OP-07DP  
OP-07DPS  
OP-07DPSR  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
PDIP  
SO  
P
8
8
8
50  
80  
RoHS & Green  
RoHS & Green  
NIPDAU  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
OP-07DP  
Samples  
Samples  
Samples  
PS  
PS  
NIPDAU  
NIPDAU  
OP-07D  
OP-07D  
OP-07D  
SO  
2000 RoHS & Green  
OP-07DPSRG4  
OP07-W  
SO  
PS  
YS  
8
0
2000 RoHS & Green  
NIPDAU  
Call TI  
Level-1-260C-UNLIM  
Call TI  
ACTIVE WAFERSALE  
3603  
75  
TBD  
Samples  
Samples  
Samples  
Samples  
Samples  
OP07CD  
OP07CDE4  
OP07CDG4  
OP07CDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
OP07C  
OP07C  
OP07C  
OP07C  
75  
75  
NIPDAU  
2500 RoHS & Green  
NIPDAU | SN  
OP07CDRE4  
OP07CDRG4  
OP07CP  
LIFEBUY  
LIFEBUY  
ACTIVE  
SOIC  
SOIC  
PDIP  
D
D
P
8
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
0 to 70  
OP07C  
OP07C  
OP07CP  
50  
RoHS & Green  
Samples  
OP07CPE4  
OP07DD  
LIFEBUY  
ACTIVE  
PDIP  
SOIC  
P
D
8
8
50  
75  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
N / A for Pkg Type  
0 to 70  
0 to 70  
OP07CP  
OP07D  
Level-1-260C-UNLIM  
Samples  
Samples  
OP07DDR  
ACTIVE  
SOIC  
D
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
0 to 70  
OP07D  
OP07DDRE4  
OP07DP  
LIFEBUY  
ACTIVE  
SOIC  
PDIP  
D
P
8
8
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
OP07D  
50  
RoHS & Green  
OP07DP  
Samples  
Samples  
OP07DPE4  
ACTIVE  
PDIP  
P
8
50  
RoHS & Green  
NIPDAU  
N / A for Pkg Type  
0 to 70  
OP07DP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jun-2023  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OP-07DPSR  
OP07CDR  
SO  
PS  
D
8
8
8
8
2000  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
16.4  
12.4  
12.4  
12.4  
8.35  
6.4  
6.4  
6.4  
6.6  
5.2  
5.2  
5.2  
2.4  
2.1  
2.1  
2.1  
12.0  
8.0  
8.0  
8.0  
16.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
SOIC  
SOIC  
SOIC  
OP07CDRG4  
OP07DDR  
D
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OP-07DPSR  
OP07CDR  
SO  
PS  
D
8
8
8
8
2000  
2500  
2500  
2500  
356.0  
340.5  
340.5  
340.5  
356.0  
336.1  
336.1  
336.1  
35.0  
25.0  
25.0  
25.0  
SOIC  
SOIC  
SOIC  
OP07CDRG4  
OP07DDR  
D
D
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OP-07DP  
OP-07DPS  
OP07CD  
P
PS  
D
D
D
P
PDIP  
SOP  
8
8
8
8
8
8
8
8
8
8
8
8
50  
80  
75  
75  
75  
50  
50  
50  
50  
75  
50  
50  
506  
530  
507  
507  
507  
506  
506  
506  
506  
507  
506  
506  
13.97  
10.5  
8
11230  
4000  
4.32  
4.1  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
PDIP  
PDIP  
SOIC  
PDIP  
PDIP  
3940  
4.32  
4.32  
4.32  
4.32  
4.32  
4.32  
4.32  
4.32  
4.32  
4.32  
OP07CDE4  
OP07CDG4  
OP07CP  
8
3940  
8
3940  
13.97  
13.97  
13.97  
13.97  
8
11230  
11230  
11230  
11230  
3940  
OP07CP  
P
OP07CPE4  
OP07CPE4  
OP07DD  
P
P
D
P
OP07DP  
13.97  
13.97  
11230  
11230  
OP07DPE4  
P
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY