OP27 [TI]

低噪声高速精确运算放大器;
OP27
型号: OP27
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低噪声高速精确运算放大器

放大器 运算放大器 放大器电路
文件: 总22页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
JG PACKAGE  
(TOP VIEW)  
D
Replacements for ADI, PMI and LTC OP27  
Series  
Features of OP27A and OP27C:  
VIOTRIM  
IN−  
VIOTRIM  
VCC+  
OUT  
1
2
3
4
8
7
6
5
D
Maximum Equivalent Input Noise Voltage:  
3.8 nV/Hz at 1 kHz  
IN +  
VCC −  
5.5 nV/Hz at 10 kHz  
NC  
D
D
Very Low Peak-to-Peak Noise Voltage at  
0.1 Hz to 10 Hz . . . 80 nV Typ  
FK PACKAGE  
(TOP VIEW)  
Low Input Offset Voltage  
OP27A . . . 25 μV Max  
OP27C . . . 100 μV Max  
D
High Voltage Amplification  
OP27A . . . 1 V/μV Min  
3
2
1
20 19  
18  
OP27C . . . 0.7 V/μV Min  
NC  
VCC+  
NC  
OUT  
NC  
NC  
1N−  
NC  
IN+  
NC  
4
5
6
7
8
17  
description  
16  
15  
14  
The OP27 operational amplifiers combine out-  
standing noise performance with excellent  
precision and high-speed specifications. The  
wideband noise is only 3 nV/Hz and with the 1/f  
noise corner at 2.7 Hz, low noise is maintained for  
all low-frequency applications.  
9 10 11 12 13  
NC − No internal connection  
The outstanding characteristics of the OP27 make  
these devices excellent choices for low-noise  
amplifier applications requiring precision  
performance and reliability.  
symbol  
3
+
IN+  
IN −  
6
OUT  
The OP27 series is compensated for unity gain.  
2
The OP27A and OP27C are characterized for  
operation over the full military temperature range  
of −55°C to 125°C.  
1
8
V
TRIM  
IO  
Pin numbers are for the JG packages.  
AVAILABLE OPTIONS  
PACKAGE  
V
max  
STABLE  
GAIN  
IO  
T
A
CERAMIC DIP  
(JG)  
CHIP CARRIER  
(FK)  
AT 25°C  
25 μV  
1
1
OP27AJG  
OP27CJG  
OP27AFK  
55°C to 125°C  
100 μV  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright © 2010, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
schematic  
V
IO  
TRIM  
V
IO  
TRIM  
V
CC +  
750  
μA  
260  
μA  
480 μA  
Q6  
Q22  
C1  
Q20  
Q46  
Q21  
Q23  
Q24  
Q1A  
Q19  
OUT  
IN +  
IN −  
Q1B Q2B  
Q2A  
Q3  
Q45  
Q11  
Q26  
Q12  
Q27  
Q28  
340  
μA  
240 μA  
120  
μA  
V
CC −  
C1 = 120 pF for OP27  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V  
CC+  
CC−  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
I
CC  
Duration of output short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Differential input current (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 mA  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range: OP27A, OP27C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or FK package . . . . . . . . . . . . . . 300°C  
NOTES: 1. All voltage values are with respect to the midpoint between V  
and V  
unless otherwise noted.  
CC+  
CC−  
2. The inputs are protected by back-to-back diodes. Current-limiting resistors are not used in order to achieve low noise. Excessive  
input current will flow if a differential input voltage in excess of approximately 0.7 V is applied between the inputs unless some  
limiting resistance is used.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 85°C  
T = 125°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
JG  
FK  
1050 mW  
1375 mW  
8.4 mW/°C  
11.0 mW/°C  
546 mW  
715 mW  
210 mW  
275 mW  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
recommended operating conditions  
OP27A  
OP27C  
UNIT  
MIN NOM  
MAX  
MIN NOM  
MAX  
22  
Supply voltage, V  
Supply voltage, V  
4
−4  
15  
22  
4
−4  
15  
V
V
CC+  
15  
22  
15  
22  
CC−  
V
V
=
=
15 V, T = 25°C  
11  
11  
CC  
A
Common-mode input voltage, V  
V
IC  
15 V, T = 55°C to 125°C  
10.3  
55  
10.2  
55  
CC  
A
Operating free-air temperature, T  
125  
125  
°C  
A
electrical characteristics at specified free-air temperature, VCC = 15 V (unless otherwise noted)  
OP27A  
TYP  
10  
OP27C  
TYP  
30  
PARAMETER  
TEST CONDITIONS  
= 0, = 0  
T
UNIT  
A
MIN  
MAX  
25  
MIN  
MAX  
100  
25°C  
V
R
V
IC  
O
V
IO  
Input offset voltage  
μV  
= 50 Ω, See Note 3  
S
Full range  
60  
300  
Average temperature  
coefficient of input  
offset voltage  
α
VIO  
Full range  
0.2  
0.6  
0.4  
1.8 μV/°C  
Long-term drift of input  
offset voltage  
See Note 4  
0.2  
7
1
0.4  
12  
2
μV/mo  
nA  
25°C  
Full range  
25°C  
35  
50  
40  
60  
75  
135  
80  
I
I
Input offset current  
Input bias current  
V
= 0,  
= 0,  
V
V
= 0  
= 0  
IO  
O
O
IC  
10  
15  
V
nA  
IB  
IC  
Full range  
150  
11  
to  
11  
11  
to  
11  
25°C  
Common-mode input  
voltage range  
V
ICR  
V
10.3  
to  
10.5  
to  
Full range  
10.3  
10.5  
R
R
R
R
R
R
2 kΩ  
0.6 kΩ  
2 kΩ  
2 kΩ,  
1 kΩ,  
12  
10  
13.8  
11.5  
11.5  
10  
13.5  
11.5  
L
L
L
L
L
V
A
Peak output voltage swing  
V
OM  
Full range  
Full range  
11.5  
1000  
800  
10.5  
700  
V
V
=
10 V  
10 V  
1 V,  
1800  
1500  
1500  
1500  
O
O
O
=
=
Large-signal differential  
voltage amplification  
V/mV  
0.6 kΩ, V  
VD  
L
250  
600  
700  
200  
300  
500  
V
CC  
=
4 V  
R
2 kΩ,  
V
O
=
10 V  
L
Common-mode input  
resistance  
r
r
3
2
GΩ  
i(CM)  
o
Output resistance  
V
= 0,  
I
= 0  
25°C  
25°C  
70  
70  
Ω
O
O
V
V
V
V
=
=
11 V  
10 V  
114  
110  
100  
96  
126  
100  
94  
120  
IC  
IC  
Common-mode rejection  
ratio  
CMRR  
dB  
dB  
Full range  
25°C  
=
=
4 V to 18 V  
120  
94  
118  
CC  
CC  
Supply voltage rejection  
ratio  
k
SVR  
4.5 V to 18 V  
Full range  
86  
Full range is − 55°C to 125°C.  
NOTES: 3. Input offset voltage measurements are performed by automatic test equipment approximately 0.5 seconds after applying power.  
4. Long-term drift of input offset voltage refers to the average trend line of offset voltage versus time over extended periods after the  
first 30 days of operation. Excluding the initial hour of operation, changes in V during the first 30 days are typically 2.5 μV  
IO  
(see Figure 3).  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
OP27 operating characteristics, VCC = 15 V, TA = 255C  
OP27A  
TYP  
OP27C  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/μs  
μV  
MIN  
MAX  
MIN  
MAX  
SR  
V
Slew rate  
A
1, 2 kΩ  
R
1.7  
2.8  
1.7  
2.8  
VD  
L
Peak-to-peak equivalent  
input noise voltage  
f = 0.1 Hz to 10 Hz, R = 20 Ω,  
See Figure 26  
S
0.225 0.375  
0.225 0.375  
N(PP)  
f = 10 Hz,  
f = 1 kHz,  
f = 10 Hz,  
f = 1 kHz,  
f = 100 kHz  
R
R
= 20 Ω  
= 20 Ω  
3.5  
3
8
4
3.8  
3.2  
5
8
4
S
S
V
Equivalent input noise voltage  
nV/Hz  
n
See Figure 27  
See Figure 27  
5
25  
2.5  
25  
2.5  
I
n
Equivalent input noise current  
Gain-bandwidth product  
pA/Hz  
0.7  
8
0.7  
8
5
5
MHz  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
IO  
Input offset voltage  
vs Temperature  
1
vs Time after power on  
vs Time (long-term drift)  
2
3
ΔV  
Change in input offset voltage  
IO  
I
I
Input offset current  
vs Temperature  
vs Temperature  
vs Supply voltage  
vs Load resistance  
vs Frequency  
4
5
6
7
8
IO  
Input bias current  
IB  
V
V
V
Common-mode input voltage range  
Maximum peak output voltage  
Maximum peak-to-peak output voltage  
ICR  
OM  
O(PP)  
vs Supply voltage  
vs Load resistance  
vs Frequency  
9
10  
11, 12  
A
VD  
Differential voltage amplification  
CMRR Common-mode rejection ratio  
vs Frequency  
vs Frequency  
vs Temperature  
vs Temperature  
vs Frequency  
13  
14  
15  
16  
11  
k
Supply voltage rejection ratio  
Slew rate  
SVR  
SR  
φ
m
Phase margin  
φ
Phase shift  
vs Bandwidth  
17  
18  
19  
20  
21  
vs Source resistance  
vs Supply voltage  
vs Temperature  
vs Frequency  
V
n
Equivalent input noise voltage  
Gain-bandwidth product  
Short-circuit output current  
Supply current  
vs Temperature  
vs Time  
16  
22  
23  
I
I
OS  
vs Supply voltage  
CC  
Small signal  
Large signal  
24  
25  
Pulse response  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE OF  
REPRESENTATIVE INDIVIDUAL UNITS  
WARM-UP CHANGE IN  
INPUT OFFSET VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
ELAPSED TIME  
100  
80  
V
CC  
=
15 V  
V
T
A
=
CC  
= 25°C  
15 V  
OP27C  
OP27A  
60  
10  
OP27A  
40  
OP27C  
20  
0
− 20  
− 40  
− 60  
− 80  
− 100  
5
OP27A  
OP27C  
0
− 50 − 25  
0
25  
50  
75  
100  
125  
1
2
3
4
5
T
A
− Free-Air Temperature − °C  
Time After Power On − minutes  
Figure 1  
Figure 2  
LONG-TERM DRIFT OF INPUT OFFSET VOLTAGE OF  
REPRESENTATIVE INDIVIDUAL UNITS  
6
0.2-μV/mo Trend Line  
4
2
0
− 2  
− 4  
0.2-μV/mo Trend Line  
− 6  
0
1
2
3
4
5
6
7
8
Time − months  
Figure 3  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
TYPICAL CHARACTERISTICS  
INPUT OFFSET CURRENT  
vs  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
= 15 V  
CC  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
V
=
15 V  
V
CC  
OP27C  
OP27C  
OP27A  
OP27A  
− 75 − 50 − 25  
0
25  
50  
75  
100 125  
− 75 − 50 − 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 4  
Figure 5  
COMMON-MODE INPUT VOLTAGE RANGE LIMITS  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
16  
vs  
LOAD RESISTANCE  
20  
18  
16  
14  
12  
10  
V
T
=
15 V  
CC  
T
A
= 55°C  
= 25°C  
A
12  
8
T
A
= 25°C  
Positive  
Swing  
4
T
A
= 125°C  
Negative  
Swing  
0
8
6
− 4  
− 8  
− 12  
− 16  
T
= − 55°C  
A
T
A
= 25°C  
4
2
0
T
= 125°C  
A
0
5
10  
15  
20  
0.1  
1
10  
V
CC+  
− Supply Voltage − V  
R − Load Resistance − kΩ  
L
Figure 6  
Figure 7  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
TYPICAL CHARACTERISTICS  
OP27  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE  
vs  
FREQUENCY  
28  
V
CC  
=
15 V  
R = 1 kΩ  
L
24  
20  
16  
12  
8
T
= 25°C  
A
4
0
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 8.  
OP27A  
OP27A  
LARGE-SIGNAL  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
TOTAL SUPPLY VOLTAGE  
LOAD RESISTANCE  
2500  
2000  
1500  
2400  
2200  
2000  
1800  
1600  
1400  
V
T
=
10 V  
V
V
T
=
15 V  
10 V  
= 25°C  
O
CC  
= 25°C  
=
A
O
A
R
= 2 kΩ  
L
R
= 1 kΩ  
L
1000  
500  
0
1200  
1000  
800  
600  
400  
1
10  
0
10  
20  
30  
40  
50  
0.1  
100  
V
CC+  
− V  
− Total Supply Voltage − V  
R − Load Resistance − kΩ  
L
CC −  
Figure 9  
Figure 10  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
TYPICAL CHARACTERISTICS  
OP27  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
25  
20  
80°  
V
=
15 V  
CC  
R = 1 kΩ  
T
A
L
100°  
120°  
140°  
160°  
180°  
200°  
220°  
= 25°C  
15  
Phase Shift  
φ
= 70°  
10  
m
5
0
A
VD  
− 5  
− 10  
1
10  
100  
f − Frequency − Hz  
Figure 11.  
OP27A  
LARGE-SIGNAL  
OP27A  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
140  
120  
100  
80  
140  
120  
100  
80  
V
V
T
=
15 V  
10 V  
= 25°C  
CC  
V
=
15 V  
CC  
=
IC  
R = 2 kΩ  
T
A
L
A
= 25°C  
60  
40  
OP27A  
OP27A  
100 k  
20  
60  
0
20  
40  
1 k  
10 k  
1 M  
10 M  
0.1  
1
10 100 1 k 10 k  
1 M  
100 M  
f − Frequency − Hz  
f − Frenquency − Hz  
Figure 12  
Figure 13  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
TYPICAL CHARACTERISTICS  
SUPPLY VOLTAGE REJECTION RATIO  
SLEW RATE  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
160  
140  
120  
100  
80  
6
4
V
R
=
15 V  
CC  
V
T
=
4 V to 18 V  
CC  
2 kΩ  
L
= 25°C  
A
Negative  
Supply  
OP27  
(A 1)  
VD  
60  
2
0
40  
Positive  
Supply  
20  
0
1
10  
100 1 k 10 k 100 k 1 M 10 M 100 M  
f − Frequency − Hz  
− 50 − 25  
0
25  
50  
75  
100  
125  
T
A
− Free Air Temperature − °C  
Figure 14  
Figure 15  
OP27  
PHASE MARGIN AND  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
85°  
80°  
11  
V
CC  
= 15 V  
10.6  
10.2  
9.8  
9.4  
9
75°  
70°  
φ
m
65°  
60°  
55°  
50°  
8.6  
8.2  
7.8  
7.4  
7
GBW (f = 100 kHz)  
45°  
40°  
35°  
− 75 − 50 − 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
Figure 16.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
TOTAL EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
BANDWIDTH  
SOURCE RESISTANCE  
100  
10  
1
10  
V
= 15 V  
= 20 Ω  
= 25°C  
R1  
V
=
15 V  
BW = 1 Hz  
= 25°C  
CC  
CC  
+
R
T
S
T
A
A
R2  
R
= R1 + R2  
S
1
f = 10 Hz  
f = 1 kHz  
0.1  
Resistor Noise Only  
0.01  
1 k  
10 k  
100  
0.1  
1
10  
100  
R
− Source Resistance − Ω  
Bandwidth − kHz  
(0.1 Hz to frequency indicated)  
S
Figure 17  
Figure 18  
OP27A  
OP27A  
EQUIVALENT INPUT NOISE VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
TOTAL SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
20  
5
4
3
2
R
= 20 Ω  
V
R
=
15 V  
S
CC  
BW = 1 Hz  
= 25°C  
= 20 Ω  
S
T
BW = 1 Hz  
A
f = 10 Hz  
f = 1 kHz  
15  
10  
5
f = 10 Hz  
f = 1 kHz  
0
1
0
10  
− V  
20  
30  
40  
− 50 − 25  
0
25  
50  
75  
100  
125  
V
CC+  
− Total Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
CC−  
Figure 19  
Figure 20  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
TYPICAL CHARACTERISTICS  
OP27A  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
10  
9
8
7
V
R
=
15 V  
CC  
= 20 Ω  
S
BW = 1 Hz  
= 25°C  
T
A
6
5
4
3
1/f Corner = 2.7 Hz  
2
1
1
10  
100  
1000  
f − Frequency − Hz  
Figure 21  
SHORT-CIRCUIT OUTPUT CURRENT  
SUPPLY CURRENT  
vs  
vs  
ELAPSED TIME  
TOTAL SUPPLY VOLTAGE  
60  
50  
40  
30  
20  
10  
5
V
T
=
15 V  
CC  
= 25°C  
A
4
3
2
1
T
= 125°C  
A
I
I
OS−  
OS+  
T
= 25°C  
A
T
= − 55°C  
A
0
1
2
3
4
5
5
15  
− V  
25  
35  
45  
t − Time − minutes  
V
CC+  
− Total Supply Voltage − V  
CC−  
Figure 22  
Figure 23  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
TYPICAL CHARACTERISTICS  
OP27  
OP27  
VOLTAGE FOLLOWER  
SMALL-SIGNAL  
VOLTAGE FOLLOWER  
LARGE-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
80  
60  
8
6
40  
4
20  
2
0
0
− 20  
− 40  
− 60  
− 80  
− 2  
− 4  
− 6  
− 8  
V
=
15 V  
CC  
V
=
15 V  
CC  
A = 1  
V
A = − 1  
V
C = 15 pF  
T
A
L
T
A
= 25°C  
= 25°C  
0
0.5  
1
1.5  
2
2.5  
3
0
2
4
6
8
10  
12  
t − Time − μs  
t − Time − μs  
Figure 24  
Figure 25  
APPLICATION INFORMATION  
general  
The OP27 series devices can be inserted directly onto OP07, OP05, μA725, and SE5534 sockets with or without  
removing external compensation or nulling components. In addition, the OP27 can be fitted to μA741 sockets  
by removing or modifying external nulling components.  
noise testing  
Figure 26 shows a test circuit for 0.1-Hz to 10-Hz peak-to-peak noise measurement of the OP27. The frequency  
response of this noise tester indicates that the 0.1-Hz corner is defined by only one zero. Because the time limit  
acts as an additional zero to eliminate noise contributions from the frequency band below 0.1 Hz, the test time  
to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds.  
Measuring the typical 80-nV peak-to-peak noise performance of the OP27 requires the following special test  
precautions:  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
APPLICATION INFORMATION  
noise testing (continued)  
1. The device should be warmed up for at least five minutes. As the operational amplifier warms up, the  
offset voltage typically changes 4 μV due to the chip temperature increasing from 10°C to 20°C starting  
from the moment the power supplies are turned on. In the 10-s measurement interval, these  
temperature-induced effects can easily exceed tens of nanovolts.  
2. For similar reasons, the device should be well shielded from air currents to eliminate the possibility of  
thermoelectric effects in excess of a few nanovolts, which would invalidate the measurements.  
3. Sudden motion in the vicinity of the device should be avoided, as it produces a feedthrough effect that  
increases observed noise.  
100  
90  
80  
70  
60  
50  
40  
30  
0.01  
0.1  
1
10  
100  
f − Frequency − Hz  
0.1 μF  
100 kΩ  
10 Ω  
LT1001  
+
2 kΩ  
22 μF  
+
4.3 kΩ  
2.2 μF  
Oscilloscope  
R
= 1 MΩ  
Voltage  
Gain = 50,000  
in  
100 kΩ  
OP27  
Device  
Under  
Test  
110 kΩ  
4.7 μF  
24.3 kΩ  
0.1 μF  
NOTE: All capacitor values are for nonpolarized capacitors only.  
Figure 26. 0.1-Hz to 10-Hz Peak-to-Peak Noise Test Circuit and Frequency Response  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
APPLICATION INFORMATION  
noise testing (continued)  
When measuring noise on a large number of units, a noise-voltage density test is recommended. A 10-Hz  
noise-voltage density measurement correlates well with a 0.1-Hz to 10-Hz peak-to-peak noise reading since  
both results are determined by the white noise and the location of the 1/f corner frequency.  
Figure 27 shows a circuit measuring current noise and the formula for calculating current noise.  
10kΩ  
100 Ω  
500 kΩ  
500 kΩ  
2
2 1/2  
+
[V  
no  
− (130 nV) ]  
V
no  
I =  
n
1 MΩ × 100  
Figure 27. Current Noise Test Circuit and Formula  
offset voltage adjustment  
The input offset voltage and temperature coefficient of the OP27 are permanently trimmed to a low level at wafer  
testing. However, if further adjustment of V is necessary, using a 10-kΩ nulling potentiometer as shown in  
IO  
Figure 28 does not degrade the temperature coefficient α . Trimming to a value other than zero creates an  
VIO  
α
VIO  
of V /300 μV/°C. For example, if V is adjusted to 300 μV, the change in α  
is 1 μV/°C.  
IO  
IO  
VIO  
The adjustment range with a 10-kΩ potentiometer is approximately 2.5 mV. If a smaller adjustment range is  
needed, the sensitivity and resolution of the nulling can be improved by using a smaller potentiometer in  
conjunction with fixed resistors. The example in Figure 29 has an approximate null range of 200 μV.  
4.7 kΩ  
10 kΩ  
1 kΩ  
15 V  
15 V  
1
2
3
8
4.7 kΩ  
+
7
6
Input  
Output  
1
2
3
8
4
4
7
6
Input  
Output  
−15 V  
Figure 28. Standard Input Offset  
Voltage Adjustment  
−15 V  
Figure 29. Input Offset Voltage Adjustment With  
Improved Sensitivity  
offset voltage and drift  
Unless proper care is exercised, thermoelectric effects caused by temperature gradients across dissimilar  
metals at the contacts to the input terminals can exceed the inherent temperature coefficient V of the  
IO  
amplifier. Air currents should be minimized, package leads should be short, and the two input leads should be  
close together and at the same temperature.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
APPLICATION INFORMATION  
offset voltage and drift (continued)  
The circuit shown in Figure 30 measures offset voltage. This circuit can also be used as the burn-in configuration  
for the OP27 with the supply voltage increased to 20 V, R1 = R3 = 10 kΩ, R2 = 200 Ω, and  
A
VD  
= 100.  
R1  
50 kΩ  
15 V  
7
2
3
+
6
R2  
100 Ω  
V
O
= 1000 V  
IO  
4
R3  
50 kΩ  
−15 V  
NOTE A: Resistors must have low thermoelectric potential.  
Figure 30. Test Circuit for Offset Voltage and Offset Voltage Temperature Coefficient  
unity gain buffer applications  
The resulting output waveform, when R 100 Ω and the input is driven with a fast large-signal pulse (>1 V),  
f
is shown in the pulsed-operation diagram in Figure 31.  
R
f
2.8 V/μs  
Output  
+
OP27  
Figure 31. Pulsed Operation  
During the initial (fast-feedthrough-like) portion of the output waveform, the input protection diodes effectively  
short the output to the input, and a current, limited only by the output short-circuit protection, is drawn by the  
signal generator. When R 500 Ω, the output is capable of handling the current requirements (load  
f
current 20 mA at 10 V), the amplifier stays in its active mode, and a smooth transition occurs. When  
R > 2 kΩ, a pole is created with R and the amplifier’s input capacitance, creating additional phase shift and  
f
f
reducing the phase margin. A small capacitor (20 pF to 50 pF) in parallel with R eliminates this problem.  
f
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
OP27A, OP27C  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL-AMPLIFIER  
SLOS100E − FEBRUARY 1989 − REVISED FEBRUARY 2010  
APPLICATION INFORMATION  
unity gain buffer applications (continued)  
120  
100  
80  
60  
40  
20  
0
0
2
4
6
8
10  
t − Time − seconds  
Type S Thermocouples  
5.4 μV/°C at 0°C  
+
#1  
Cold-Junction  
Circuitry  
+
To Gate  
Drive  
+
A
VD  
= 10,000  
#2  
+
Output  
100 kΩ  
OP27  
Typical  
Multiplexing  
0.05 μF  
FET Switches  
+
#24  
High-Quality  
Single-Point Ground  
10 Ω  
NOTE A: If 24 channels are multiplexed per second and the output is required to settle to 0.1 % accuracy, the amplifier’s bandwidth cannot be  
limited to less than 30 Hz. The peak-to-peak noise contribution of the OP27 will still be only 0.11 μV, which is equivalent to an error  
of only 0.02°C.  
Figure 32. Low-Noise, Multiplexed Thermocouple Amplifier and  
0.1-Hz to 10-Hz Peak-to-Peak Noise Voltage  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Jan-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
JM38510/13506BPA  
M38510/13506BPA  
OP27AFKB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
CDIP  
CDIP  
LCCC  
CDIP  
CDIP  
JG  
JG  
FK  
JG  
JG  
8
8
1
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
A42  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
20  
8
POST-PLATE N / A for Pkg Type  
OP27AJGB  
A42  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
OP27CJGB  
8
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

OP270

DUAL VERY LOW NOISE PRECISION OPERATIONAL AMPLIFIER
ADI

OP270ARC/883

IC DUAL OP-AMP, 175 uV OFFSET-MAX, 5 MHz BAND WIDTH, CQCC20, LCC-20, Operational Amplifier
ADI

OP270ARC/883C

IC DUAL OP-AMP, 175 uV OFFSET-MAX, 5 MHz BAND WIDTH, CQCC20, CERAMIC, LCC-20, Operational Amplifier
ADI

OP270ARCMDA

IC DUAL OP-AMP, 175 uV OFFSET-MAX, 5 MHz BAND WIDTH, CQCC20, Operational Amplifier
ADI

OP270AZ

Operational Amplifier
ETC

OP270AZ/883

DUAL OP-AMP, 75uV OFFSET-MAX, 5MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8
ROCHESTER

OP270AZ/883

IC DUAL OP-AMP, 75 uV OFFSET-MAX, 5 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP270AZ/883C

IC DUAL OP-AMP, 75 uV OFFSET-MAX, 5 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP270AZMDA

Dual Very Low Noise Precision Operational Amplifier
ADI

OP270BIEZ

DUAL OP-AMP, 150 uV OFFSET-MAX, 5 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8
ROCHESTER

OP270BIEZ

IC DUAL OP-AMP, 150 uV OFFSET-MAX, 5 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP270BIGS

IC DUAL OP-AMP, 400 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO16, PLASTIC, SOL-16, Operational Amplifier
ADI