OP37AJGB [TI]

暂无描述;
OP37AJGB
型号: OP37AJGB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

暂无描述

运算放大器
文件: 总21页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
JG OR P PACKAGE  
Direct Replacements for PMI and LTC OP27  
(TOP VIEW)  
and OP37 Series  
Features of OP27A, OP27C, OP37A, and  
OP37C:  
V
TRIM  
IN–  
IN +  
V
V
OUT  
NC  
TRIM  
1
2
3
4
8
7
6
5
IO  
IO  
CC+  
Maximum Equivalent Input Noise Voltage:  
3.8 nV/Hz at 1 kHz  
V
CC –  
5.5 nV/Hz at 10 kHz  
Very Low Peak-to-Peak Noise Voltage at  
FK PACKAGE  
(TOP VIEW)  
0.1 Hz to 10 Hz . . . 80 nV Typ  
Low Input Offset Voltage . . . 25 µV Max  
High Voltage Amplification . . . 1 V/µV Min  
Feature of OP37 Series:  
Minimum Slew Rate . . . 11 V/µs  
3
2
1
20 19  
18  
NC  
NC  
1N–  
NC  
4
5
6
7
8
description  
V
17  
16  
15  
14  
CC+  
The OP27 and OP37 operational amplifiers  
combine outstanding noise performance with  
excellent precision and high-speedspecifications.  
The wideband noise is only 3 nV/Hz and with the  
1/f noise corner at 2.7 Hz, low noise is maintained  
for all low-frequency applications.  
NC  
OUT  
NC  
IN+  
NC  
9 10 11 12 13  
The outstanding characteristics of the OP27 and  
OP37 make these devices excellent choices  
for low-noise amplifier applications requiring  
precision performance and reliability. Additionally,  
the OP37 is free of latch-up in high-gain,  
large-capacitive-feedback configurations.  
NC – No internal connection  
symbol  
3
+
IN+  
IN –  
The OP27 series is compensated for unity gain.  
The OP37 series is decompensated for increased  
bandwidth and slew rate and is stable down to a  
gain of 5.  
6
OUT  
2
1
8
V
IO  
TRIM  
The OP27A, OP27C, OP37A, and OP37C are  
characterized for operation over the full military  
temperature range of 55°C to 125°C. The  
OP27E, OP27G, OP37E, and OP37G are  
characterized for operation from – 25°C to 85°C.  
Pin numbers are for the JG and P packages.  
AVAILABLE OPTIONS  
PACKAGE  
V
max  
STABLE  
GAIN  
IO  
T
A
CERAMIC DIP  
(JG)  
CHIP CARRIER  
(FK)  
PLASTIC DIP  
AT 25°C  
(P)  
OP27EP  
OP37EP  
OP27GP  
OP37GP  
1
5
1
5
1
5
1
5
25 µV  
25°C to 85°C  
55°C to 125°C  
100 µV  
25 µV  
OP27AJG  
OP37AJG  
OP27CJG  
OP37CJG  
OP27AFK  
OP37AFK  
100 µV  
Copyright 1994, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
2–1  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
schematic  
V
IO  
TRIM  
V
IO  
TRIM  
V
CC +  
750  
µA  
260  
µA  
480 µA  
Q6  
C1  
Q22  
Q20  
Q46  
Q21  
Q23  
Q24  
Q1A  
Q19  
OUT  
IN +  
IN –  
Q1B Q2B  
Q2A  
Q3  
Q45  
Q11  
Q26  
Q12  
Q27  
Q28  
340  
µA  
240 µA  
120  
µA  
V
CC –  
C1 = 120 pF for OP27  
C1 = 15 pF for OP37  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 22 V  
CC+  
CC–  
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
I
CC±  
Duration of output short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Differential input current (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range: OP27A, OP27C, OP37A, OP37C . . . . . . . . . . . . . . . – 55°C to 125°C  
OP27E, OP27G, OP37E, OP37G . . . . . . . . . . . . . . . – 25°C to 85°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or FK package . . . . . . . . . . . . . . 300°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds : P package . . . . . . . . . . . . . . . . . . . . 260°C  
NOTES: 1. All voltage values are with respect to the midpoint between V  
CC+  
and V  
unless otherwise noted.  
CC–  
2. The inputs are protected by back-to-back diodes. Current-limiting resistors are not used in order to achieve low noise. Excessive  
input current will flow if a differential input voltage in excess of approximately ± 0.7 V is applied between the inputs unless some  
limiting resistance is used.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 85°C  
T = 125°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
JG  
FK  
P
1050 mW  
1375 mW  
1000 mW  
8.4 mW/°C  
11.0 mW/°C  
8.0 mW/°C  
546 mW  
715 mW  
520 mW  
210 mW  
275 mW  
N/A  
2–3  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
recommended operating conditions  
OP27A, OP37A  
OP27C, OP37C  
MIN NOM MAX  
UNIT  
MIN NOM  
MAX  
Supply voltage, V  
Supply voltage, V  
4
–4  
15  
22  
4
–4  
15  
22  
V
V
CC+  
CC–  
15  
22  
15  
22  
V
V
= ± 15 V,  
= ± 15 V,  
T
= 25°C  
± 11  
± 11  
CC±  
A
Common-mode input voltage, V  
V
IC  
T
A
= – 55°C to 125°C ±10.3  
±10.2  
55  
CC±  
Operating free-air temperature, T  
55  
125  
125  
°C  
A
electrical characteristics at specified free-air temperature, V  
= ±15 V (unless otherwise noted)  
CC±  
OP27A, OP37A  
OP27C, OP37C  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
25°C  
10  
25  
60  
30  
100  
300  
V
R
= 0,  
V
= 0  
O
S
IC  
= 50 , See Note 3  
V
IO  
Input offset voltage  
µV  
Full range  
Average temperature  
coefficient of input  
offset voltage  
α
Full range  
0.2  
0.6  
0.4  
1.8 µV/°C  
VIO  
Long-term drift of input  
offset voltage  
See Note 4  
0.2  
7
1
0.4  
12  
2
µV/mo  
25°C  
Full range  
25°C  
35  
50  
75  
135  
I
I
Input offset current  
Input bias current  
V
= 0,  
= 0,  
V
V
= 0  
= 0  
nA  
IO  
O
O
IC  
±10  
±40  
±60  
±15  
±80  
V
nA  
IB  
IC  
Full range  
±150  
11  
to  
11  
to  
25°C  
11  
11  
Common-mode input  
voltage range  
V
V
A
V
ICR  
10.3  
to  
10.3  
10.5  
to  
10.5  
Full range  
R
R
R
R
R
R
2 kΩ  
0.6 kΩ  
2 kΩ  
2 k,  
1 k,  
±12 ±13.8  
±10 ±11.5  
±11.5 ±13.5  
±10 ±11.5  
10.5  
L
L
L
L
L
Peak output voltage swing  
V
OM  
Full range ±11.5  
V
V
= ±10 V  
= ±10 V  
1000  
800  
1800  
1500  
700  
1500  
1500  
O
O
Large-signal differential  
voltage amplification  
V/mV  
0.6 k, V = ±1 V,  
VD  
L
O
250  
700  
200  
300  
500  
V
CC±  
= ± 4 V  
R
2 k,  
V
O
= ±10 V  
Full range  
600  
L
Common-mode input  
resistance  
r
r
3
2
GΩ  
i(CM)  
Output resistance  
V
V
V
V
V
= 0,  
I
= 0  
O
25°C  
25°C  
70  
70  
o
O
= ±11 V  
= ±10 V  
114  
110  
100  
96  
126  
100  
94  
120  
Common-mode rejection  
ratio  
IC  
CMRR  
dB  
dB  
Full range  
25°C  
IC  
= ±4 V to ±18 V  
120  
94  
118  
Supply voltage rejection  
ratio  
CC±  
CC±  
k
SVR  
= ±4.5 V to ±18 V  
Full range  
86  
Full range is – 55°C to 125°C.  
NOTES: 3. Input offset voltage measurements are performed by automatic test equipment approximately 0.5 seconds after applying power.  
4. Long-term drift of input offset voltage refers to the average trend line of offset voltage versus time over extended periods after the  
first 30 days of operation. Excluding the initial hour of operation, changes in V during the first 30 days are typically 2.5 µV  
IO  
(see Figure 3).  
2–4  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
recommended operating conditions  
MIN NOM  
MAX  
22  
UNIT  
V
Supply voltage, V  
Supply voltage, V  
4
–4  
15  
CC+  
CC –  
15  
22  
V
V
V
= ±15 V,  
= ±15 V,  
T
= 25°C  
±11  
CC±  
A
Common-mode input voltage, V  
V
IC  
T
A
= – 55°C to 125°C  
±10.5  
25  
CC±  
Operating free-air temperature, T  
85  
°C  
A
electrical characteristics at specified free-air temperature, V  
= ±15 V (unless otherwise noted)  
±
CC  
OP27E, OP37E  
OP27G, OP37G  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
25°C  
10  
25  
60  
30  
100  
220  
V
R
= 0,  
V
= 0  
O
S
IC  
= 50 , See Note 3  
V
IO  
Input offset voltage  
µV  
Full range  
Average temperature  
coefficient of input  
offset voltage  
αV  
Full range  
0.2  
0.6  
0.4  
1.8 µV/°C  
IO  
Long-term drift of input  
offset voltage  
See Note 4  
0.2  
7
1
0.4  
12  
2
µV/mo  
25°C  
Full range  
25°C  
35  
50  
75  
135  
I
I
Input offset current  
Input bias current  
V
= 0,  
= 0,  
V
V
= 0  
= 0  
nA  
IO  
O
O
IC  
±10  
±40  
±60  
±15  
±80  
V
nA  
IB  
IC  
Full range  
±150  
11  
to  
11  
to  
25°C  
11  
11  
Common-mode input  
voltage range  
V
V
A
V
ICR  
10.3  
to  
10.3  
10.5  
to  
10.5  
Full range  
R
R
R
R
R
R
2 kΩ  
0.6 kΩ  
2 kΩ  
2 k,  
1 k,  
±12 ±13.8  
±10 ±11.5  
±11.5 ±13.5  
±10 ±11.5  
10.5  
L
L
L
L
L
Peak output voltage swing  
V
OM  
Full range  
Full range  
±11.5  
1000  
V
V
= ±10 V  
= ±10 V  
1800  
1500  
700  
1500  
1500  
O
800  
250  
600  
O
Large-signal differential  
voltage amplification  
V/mV  
0.6 k, V = ±1 V,  
VD  
L
O
700  
200  
450  
500  
V
CC±  
= ± 4 V  
R
2 k,  
V
O
= ± 10 V  
L
Common-mode input  
resistance  
r
r
3
2
GΩ  
i(CM)  
Output resistance  
V
V
V
V
V
= 0,  
I
= 0  
O
25°C  
25°C  
70  
70  
o
O
= ±11 V  
= ±10 V  
114  
110  
100  
96  
126  
100  
96  
120  
Common-mode rejection  
ratio  
IC  
CMRR  
dB  
dB  
Full range  
25°C  
IC  
= ± 4 V to ±18 V  
120  
94  
118  
Supply voltage rejection  
ratio  
CC±  
CC±  
k
SVR  
= ± 4.5 V to ±18 V  
Full range  
90  
Full range is – 25°C to 85°C.  
NOTES: 3. Input offset voltage measurements are performed by automatic test equipment approximately 0.5 seconds after applying power.  
4. Long-term drift of input offset voltage refers to the average trend line of offset voltage versus time over extended periods after the  
first 30 days of operation. Excluding the initial hour of operation, changes in V during the first 30 days are typically 2.5 µV  
IO  
(see Figure 3).  
2–5  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
OP27 operating characteristics over operating free-air temperature range, V  
= ±15 V  
CC±  
OP27A, OP27E  
OP27C, OP27G  
PARAMETER  
TEST CONDITIONS  
1, 2 kΩ  
UNIT  
MIN  
TYP  
MAX  
MIN  
1.7  
TYP  
MAX  
SR  
Slew rate  
A
VD  
R
1.7  
2.8  
2.8  
V/µs  
µV  
L
Peak-to-peak equivalent  
input noise voltage  
f = 0.1 Hz to 10 Hz, R = 20 Ω,  
S
V
0.08  
0.18  
0.09  
0.25  
N(PP)  
n
See Figure 34  
f = 10 Hz,  
R
R
R
= 20 Ω  
= 20 Ω  
= 20 Ω  
3.5  
3.1  
3
5.5  
4.5  
3.8  
4
3.8  
3.3  
3.2  
1.5  
1
8
5.6  
4.5  
S
S
S
V
Equivalent input noise voltage f = 30 Hz,  
nV/Hz  
f = 1 kHz,  
f = 10 Hz,  
See Figure 35  
See Figure 35  
See Figure 35  
1.5  
1
I
n
Equivalent input noise current f = 30 Hz,  
f = 1 kHz,  
2.3  
0.6  
pA/Hz  
0.4  
8
0.4  
8
0.6  
Gain-bandwidth product  
f = 100 kHz  
5
5
MHz  
OP37 operating characteristics over operating free-air temperature range, V  
= ±15 V  
CC±  
OP37A, OP37E  
OP37C, OP37G  
PARAMETER  
TEST CONDITIONS  
5, 2 kΩ  
UNIT  
MIN  
TYP MAX  
MIN  
11  
TYP MAX  
SR  
Slew rate  
A
VD  
R
11  
17  
17  
V/µs  
µV  
L
Peak-to-peak equivalent  
input noise voltage  
f = 0.1 Hz to 10 Hz, R = 20 Ω,  
S
V
0.08  
0.18  
0.09  
0.25  
N(PP)  
n
See Figure 34  
f = 10 Hz,  
f = 30 Hz,  
f = 1 kHz,  
f = 10 Hz,  
R
R
R
= 20 Ω  
= 20 Ω  
= 20 Ω  
3.5  
3.1  
3
5.5  
4.5  
3.8  
4
3.8  
3.3  
3.2  
1.5  
1
8
5.6  
4.5  
S
S
S
Equivalent input noise  
voltage  
V
nV/Hz  
See Figure 35  
See Figure 35  
See Figure 35  
1.5  
1
I
n
Equivalent input noise current f = 30 Hz,  
f = 1 kHz,  
2.3  
0.6  
pA/Hz  
0.4  
63  
40  
0.4  
63  
40  
0.6  
f = 10 kHz  
45  
45  
Gain-bandwidth product  
MHz  
A
V
5,  
f = 1 MHz  
2–6  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
IO  
Input offset voltage  
vs Temperature  
1
vs Time after power on  
vs Time (long-term drift)  
2
3
V  
Change in input offset voltage  
IO  
I
I
Input offset current  
vs Temperature  
vs Temperature  
vs Supply voltage  
vs Load resistance  
vs Frequency  
4
5
IO  
Input bias current  
IB  
V
V
V
Common-mode input voltage range  
Maximum peak output voltage  
Maximum peak-to-peak output voltage  
6
ICR  
7
OM  
8, 9  
O(PP)  
vs Supply voltage  
vs Load resistance  
vs Frequency  
10  
11  
12, 13, 14  
A
VD  
Differential voltage amplification  
CMRR Common-mode rejection ratio  
vs Frequency  
vs Frequency  
15  
16  
k
Supply voltage rejection ratio  
SVR  
vs Temperature  
vs Supply voltage  
vs Load resistance  
17  
18  
19  
SR  
Slew rate  
φ
Phase margin  
Phase shift  
vs Temperature  
vs Frequency  
20, 21  
12, 13  
m
φ
vs Bandwidth  
22  
23  
24  
25  
26  
vs Source resistance  
vs Supply voltage  
vs Temperature  
vs Frequency  
V
n
Equivalent input noise voltage  
I
Equivalent input noise current  
Gain-bandwidth product  
Short-circuit output current  
Supply current  
vs Frequency  
vs Temperature  
vs Time  
27  
20, 21  
28  
n
I
I
OS  
vs Supply voltage  
29  
CC  
Small signal  
Large signal  
30, 32  
31, 33  
Pulse response  
2–7  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE OF  
REPRESENTATIVE INDIVIDUAL UNITS  
vs  
WARM-UP CHANGE IN  
INPUT OFFSET VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
ELAPSED TIME  
100  
80  
V
CC±  
= ±15 V  
V
T
A
= ±15 V  
CC±  
= 25°C  
OP27C/37C  
OP27A/37A  
60  
10  
OP27CP/GP  
OP37CP/GP  
OP27A/37A  
40  
20  
0
OP27E/37E  
– 20  
– 40  
– 60  
– 80  
– 100  
5
OP27G/37G  
OP27AP/EP  
OP37AP/EP  
OP27C/37C  
0
– 50 – 25  
0
25  
50  
75  
100  
125  
1
2
3
4
5
T
A
– Free-Air Temperature – °C  
Time After Power On – minutes  
Figure 1  
Figure 2  
LONG-TERM DRIFT OF INPUT OFFSET VOLTAGE OF  
REPRESENTATIVE INDIVIDUAL UNITS  
6
0.2-µV/mo Trend Line  
4
2
0
– 2  
– 4  
0.2-µV/mo Trend Line  
– 6  
0
1
2
3
4
5
6
7
8
Time – months  
Figure 3  
Data for temperatures below – 25°C and above 85°C are applicable to the OP27A, OP27C, OP37A, and OP37C only.  
2–8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
50  
40  
30  
20  
10  
0
± 50  
± 40  
± 30  
± 20  
± 10  
0
V
CC±  
= ±15 V  
V
CC±  
= ±15 V  
OP27C/G  
OP37C/G  
OP27C/G  
OP37C/G  
OP27A/E  
OP37A/E  
OP27A/E  
OP37A/E  
– 75 – 50 – 25  
0
25  
50  
75  
100 125  
– 75 – 50 – 25  
0
25  
50  
75 100 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 4  
Figure 5  
COMMON-MODE INPUT VOLTAGE RANGE LIMITS  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
16  
vs  
LOAD RESISTANCE  
20  
18  
16  
14  
12  
10  
V
T
A
= ± 15 V  
CC ±  
= 25°C  
T
A
= 55°C  
12  
8
T
A
= 25°C  
Positive  
Swing  
4
T
A
= 125°C  
Negative  
Swing  
0
8
6
– 4  
– 8  
– 12  
– 16  
T
= – 55°C  
A
T
A
= 25°C  
4
2
0
T
= 125°C  
A
0
±5  
±10  
±15  
±20  
0.1  
1
10  
V
CC+  
– Supply Voltage – V  
R
– Load Resistance – kΩ  
L
Figure 6  
Figure 7  
Data for temperatures below – 25°C and above 85°C are applicable to the OP27A, OP27C, OP37A, and OP37C only.  
2–9  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
OP37  
OP27  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE  
vs  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE  
vs  
FREQUENCY  
FREQUENCY  
28  
24  
20  
16  
12  
8
28  
24  
20  
16  
12  
8
V
R
T
A
= ± 15 V  
V
= ± 15 V  
CC ±  
= 1 kΩ  
CC ±  
R = 1 kΩ  
L
L
= 25°C  
T = 25°C  
A
4
4
0
1 k  
0
10 k  
10 k  
100 k  
1 M  
10 M  
100 k  
1 M  
10 M  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 8  
Figure 9  
OP27A, OP27E, OP37A, OP37E  
LARGE-SIGNAL  
OP27A, OP27E, OP37A, OP37E  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
TOTAL SUPPLY VOLTAGE  
LOAD RESISTANCE  
2500  
2000  
1500  
2400  
2200  
2000  
1800  
1600  
1400  
V
T
= ± 10 V  
= 25°C  
V
V
T
A
= ± 15 V  
O
A
CC ±  
= ± 10 V  
O
= 25°C  
R
= 2 kΩ  
L
R
= 1 kΩ  
L
1000  
500  
0
1200  
1000  
800  
600  
400  
1
10  
0
10  
– V  
20  
30  
40  
50  
0.1  
100  
V
– Total Supply Voltage – V  
R – Load Resistance – kΩ  
L
CC+  
CC –  
Figure 10  
Figure 11  
2–10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
OP27  
OP37  
LARGE-SIGNAL DIFFERENTIAL  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION AND PHASE SHIFT  
VOLTAGE AMPLIFICATION AND PHASE SHIFT  
vs  
vs  
FREQUENCY  
FREQUENCY  
25  
20  
15  
10  
5
80°  
60  
80°  
Phase Shift  
V
R
=±15 V  
V
R
T
A
= ±15 V  
CC±  
= 1 kΩ  
CC±  
= 1 kΩ  
L
L
100°  
120°  
140°  
160°  
180°  
200°  
220°  
50  
40  
100°  
120°  
140°  
160°  
180°  
200°  
220°  
T = 25°C  
A
= 25°C  
Phase Shift  
A
VD  
φ
= 70°  
30  
m
φ
= 71°  
m
20  
0
10  
A
VD  
– 5  
– 10  
0
– 10  
1
10  
100  
0.1  
1
10  
100  
f – Frequency – Hz  
f – Frequency – MHz  
Figure 12  
Figure 13  
OP27A, OP27E, OP37A, OP37E  
LARGE-SIGNAL  
OP27A, OP27E, OP37A, OP37E  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
140  
120  
100  
80  
140  
V
V
T
A
= ±15 V  
CC±  
= ± 10 V  
V
R
T
A
= ±15 V  
CC±  
= 2 kΩ  
IC  
= 25°C  
L
= 25°C  
120  
100  
80  
OP37A/E  
OP37A/E  
60  
40  
OP27A/E  
OP27A/E  
20  
60  
0
20  
40  
1 k  
10 k  
100 k  
1 M  
10 M  
0.1  
1
10 100 1 k 10 k  
f – Frequency – Hz  
1 M  
100 M  
f – Frenquency – Hz  
Figure 14  
Figure 15  
2–11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
SUPPLY VOLTAGE REJECTION RATIO  
vs  
SLEW RATE  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
160  
140  
120  
100  
80  
20  
18  
16  
14  
12  
10  
8
V
R
= ±15 V  
2 kΩ  
CC±  
L
V
T
= ±4 V to ±18 V  
CC±  
= 25°C  
A
OP37  
(A  
5)  
VD  
Negative  
Supply  
60  
6
40  
4
Positive  
Supply  
20  
2
OP27  
(A  
1)  
VD  
0
0
1
10  
100 1 k 10 k 100 k 1 M 10 M 100 M  
f – Frequency – Hz  
– 50 – 25  
0
25  
50  
75  
100  
125  
T
A
– Free Air Temperature – °C  
Figure 16  
Figure 17  
OP37  
SLEW RATE  
vs  
OP37  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
LOAD RESISTANCE  
20  
15  
10  
5
19  
18  
17  
16  
15  
V
A
= ±15 V  
= 5  
A
R
T
A
= 5  
= 2 kΩ  
= 25°C  
CC±  
VD  
L
Rise  
VD  
V
= 20 V  
O(PP)  
= 25°C  
T
Fall  
A
0
± 3  
± 6  
± 9  
± 12  
± 15  
± 18  
± 21  
0.1  
1
10  
100  
V
CC±  
– Supply Voltage – V  
f – Frequency – Hz  
Figure 18  
Figure 19  
Data for temperatures below – 25°C and above 85°C are applicable to the OP27A, OP27C, OP37A, and OP37C only.  
2–12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
OP27  
OP37  
PHASE MARGIN AND  
GAIN-BANDWIDTH PRODUCT  
vs  
PHASE MARGIN AND  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
80°  
75°  
70°  
65°  
60°  
55°  
50°  
45°  
40°  
35°  
30°  
85°  
80°  
11  
V
CC±  
= ±15 V  
V
CC±  
= ±15 V  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
10.6  
10.2  
9.8  
9.4  
9
φ
m
75°  
70°  
φ
m
65°  
60°  
GBW (f = 10 kHz)  
55°  
50°  
8.6  
8.2  
7.8  
7.4  
7
GBW (f = 100 kHz)  
45°  
40°  
35°  
– 75 – 50 – 25  
0
25  
50  
75  
100 125  
– 50 – 25  
0
25  
50  
75  
100  
125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 20  
Figure 21  
EQUIVALENT INPUT NOISE VOLTAGE  
TOTAL EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
BANDWIDTH  
SOURCE RESISTANCE  
100  
10  
1
10  
V
R
T
A
= ±15 V  
R1  
V
= ±15 V  
CC±  
= 20 Ω  
CC±  
BW = 1 Hz  
= 25°C  
+
S
= 25°C  
T
A
R2  
R
= R1 + R2  
S
1
f = 10 Hz  
f = 1 kHz  
0.1  
Resistor Noise Only  
0.01  
1 k  
10 k  
100  
0.1  
1
10  
100  
R
– Source Resistance – Ω  
Bandwidth – kHz  
(0.1 Hz to frequency indicated)  
S
Figure 22  
Figure 23  
Data for temperatures below – 25°C and above 85°C are applicable to the OP27A, OP27C, OP37A, and OP37C only.  
2–13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
OP27A, OP27E, OP37A, OP37E  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
OP27A, OP27E, OP37A, OP37E  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
TOTAL SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
20  
15  
10  
5
5
4
3
2
R
= 20 Ω  
V
R
= ±15 V  
S
CC±  
= 20 Ω  
BW = 1 Hz  
T
A
S
= 25°C  
BW = 1 Hz  
f = 10 Hz  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
0
1
0
10  
– V  
20  
30  
40  
– 50 – 25  
0
25  
50  
75  
100  
125  
V
CC+  
– Total Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
CC–  
Figure 24  
Figure 25  
OP27A, OP27E, OP37A, OP37E  
EQUIVALENT INPUT NOISE CURRENT  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
10  
9
8
V
R
= ±15 V  
V
= ±15 V  
CC±  
= 20 Ω  
CC±  
BW = 1 Hz  
T = 25°C  
A
S
7
BW = 1 Hz  
= 25°C  
T
A
6
5
4
1
3
2
1/f Corner = 2.7 Hz  
1/f Corner = 140 Hz  
1
0.1  
10  
100  
1 k  
10 k  
1
10  
100  
1000  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 26  
Figure 27  
Data for temperatures below – 25°C and above 85°C are applicable to the OP27A, OP27C, OP37A, and OP37C only.  
2–14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
SUPPLY CURRENT  
vs  
vs  
ELAPSED TIME  
TOTAL SUPPLY VOLTAGE  
60  
50  
40  
30  
20  
10  
5
4
3
2
1
V
T
A
= ± 15 V  
CC±  
= 25°C  
T
= 125°C  
A
I
I
OS–  
OS+  
T
= 25°C  
A
T
= – 55°C  
A
0
1
2
3
4
5
5
15  
– V  
25  
35  
45  
t – Time – minutes  
V
CC+  
– Total Supply Voltage – V  
CC–  
Figure 28  
Figure 29  
OP27  
OP27  
VOLTAGE FOLLOWER  
SMALL-SIGNAL  
VOLTAGE FOLLOWER  
LARGE-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
80  
60  
8
6
4
2
0
40  
20  
0
– 20  
– 40  
– 60  
– 80  
– 2  
– 4  
– 6  
– 8  
V
= ±15 V  
CC±  
= 1  
V
= ± 15 V  
CC ±  
= – 1  
A
V
A
V
A
C
= 15 pF  
= 25°C  
L
T
= 25°C  
T
A
0
0.5  
1
1.5  
2
2.5  
3
0
2
4
6
8
10  
12  
t – Time – µs  
t – Time – µs  
Figure 30  
Figure 31  
Data for temperatures below – 25°C and above 85°C are applicable to the OP27A, OP27C, OP37A, and OP37C only.  
2–15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
OP37  
OP37  
VOLTAGE-FOLLOWER  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
80  
60  
8
6
40  
4
20  
2
0
0
– 20  
– 40  
– 60  
– 80  
– 2  
– 4  
– 6  
– 8  
V
= ±15 V  
CC±  
= 5  
V
= ±15 V  
CC±  
= 5  
A
V
A
V
A
C
= 15 pF  
= 25°C  
L
T
= 25°C  
T
A
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
0
1
2
3
4
5
6
t – Time – µs  
t – Time – µs  
Figure 32  
Figure 33  
APPLICATION INFORMATION  
general  
The OP27 and OP37 series devices can be inserted directly onto OP07, OP05, µA725, and SE5534 sockets  
with or without removing external compensation or nulling components. In addition, the OP27 and OP37 can  
be fitted to µA741 sockets by removing or modifying external nulling components.  
noise testing  
Figure 34 shows a test circuit for 0.1-Hz to 10-Hz peak-to-peak noise measurement of the OP27 and OP37. The  
frequency response of this noise tester indicates that the 0.1-Hz corner is defined by only one zero. Because  
the time limit acts as an additional zero to eliminate noise contributions from the frequency band below 0.1 Hz,  
the test time to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds.  
Measuring the typical 80-nV peak-to-peak noise performance of the OP27 and OP37 requires the following  
special test precautions:  
1. The device should be warmed up for at least five minutes. As the operational amplifier warms up, the  
offset voltage typically changes 4 µV due to the chip temperature increasing from 10°C to 20°C starting  
from the moment the power supplies are turned on. In the 10-s measurement interval, these  
temperature-induced effects can easily exceed tens of nanovolts.  
2. For similar reasons, the device should be well shielded from air currents to eliminate the possibility of  
thermoelectric effects in excess of a few nanovolts, which would invalidate the measurements.  
3. Sudden motion in the vicinity of the device should be avoided, as it produces a feedthrough effect that  
increases observed noise.  
2–16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
100  
90  
80  
70  
60  
50  
40  
30  
0.01  
0.1  
1
10  
100  
f – Frequency – Hz  
0.1 µF  
100 kΩ  
10 Ω  
LT1001  
+
2 kΩ  
22 µF  
+
4.3 kΩ  
2.2 µF  
Oscilloscope  
R
= 1 MΩ  
Voltage  
in  
100 kΩ  
Gain = 50,000  
OP27/OP37  
Device  
Under  
110 kΩ  
4.7 µF  
24.3 kΩ  
0.1 µF  
Test  
NOTE: All capacitor values are for nonpolarized capacitors only.  
Figure 34. 0.1-Hz to 10-Hz Peak-to-Peak Noise Test Circuit and Frequency Response  
2–17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
When measuring noise on a large number of units, a noise-voltage density test is recommended. A 10-Hz  
noise-voltage density measurement correlates well with a 0.1-Hz to 10-Hz peak-to-peak noise reading since  
both results are determined by the white noise and the location of the 1/f corner frequency.  
Figure 35 shows a circuit measuring current noise and the formula for calculating current noise.  
10kΩ  
100 Ω  
500 kΩ  
500 kΩ  
2
2 1/2  
– (130 nV) ]  
+
[V  
no  
V
no  
I =  
n
1 M× 100  
Figure 35. Current Noise Test Circuit and Formula  
offset voltage adjustment  
The input offset voltage and temperature coefficient of the OP27 and OP37 are permanently trimmed to a low  
level at wafer testing. However, if further adjustment of V is necessary, using a 10-knulling potentiometer  
IO  
as shown in Figure 36 does not degrade the temperature coefficient α  
. Trimming to a value other than zero  
VIO  
creates an α  
of V /300 µV/°C. For example, if V is adjusted to 300 µV, the change in α  
is 1 µV/°C.  
VIO  
IO  
IO  
VIO  
The adjustment range with a 10-kpotentiometer is approximately ±2.5 mV. If a smaller adjustment range is  
needed, the sensitivity and resolution of the nulling can be improved by using a smaller potentiometer in  
conjunction with fixed resistors. The example in Figure 37 has an approximate null range of ±200 µV.  
4.7 kΩ  
10 kΩ  
1 kΩ  
15 V  
15 V  
1
2
3
8
4.7 kΩ  
+
7
6
Input  
Output  
1
2
3
8
4
4
7
6
Input  
Output  
–15 V  
Figure 36. Standard Input Offset  
Voltage Adjustment  
–15 V  
Figure 37. Input Offset Voltage Adjustment With  
Improved Sensitivity  
offset voltage and drift  
Unless proper care is exercised, thermoelectric effects caused by temperature gradients across dissimilar  
metals at the contacts to the input terminals can exceed the inherent temperature coefficient of the  
V
IO  
amplifier. Air currents should be minimized, package leads should be short, and the two input leads should be  
close together and at the same temperature.  
2–18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
offset voltage and drift (continued)  
The circuit shown in Figure 38 measures offset voltage. This circuit can also be used as the burn-in configuration  
for the OP27 and OP37 with the supply voltage increased to 20 V, R1 = R3 = 10 k, R2 = 200 , and  
A
= 100.  
VD  
R1  
50 kΩ  
15 V  
7
2
3
+
6
R2  
100 Ω  
V
O
= 1000 V  
IO  
4
R3  
50 kΩ  
–15 V  
NOTE A: Resistors must have low thermoelectric potential.  
Figure 38. Test Circuit for Offset Voltage and Offset Voltage  
Temperature Coefficient  
unity gain buffer applications  
The resulting output waveform, when R 100 and the input is driven with a fast large-signal pulse (> 1 V),  
f
is shown in the pulsed-operation diagram in Figure 39.  
R
f
2.8 V/µs  
Output  
+
OP27  
Figure 39. Pulsed Operation  
During the initial (fast-feedthrough-like) portion of the output waveform, the input protection diodes effectively  
short the output to the input, and a current, limited only by the output short-circuit protection, is drawn by the  
signal generator. When R 500 , the output is capable of handling the current requirements (load  
f
current 20 mA at 10 V), the amplifier stays in its active mode, and a smooth transition occurs. When  
R > 2 k, a pole is created with R and the amplifier’s input capacitance, creating additional phase shift and  
f
f
reducing the phase margin. A small capacitor (20 pF to 50 pF) in parallel with R eliminates this problem.  
f
2–19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
OP27A, OP27C, OP27E, OP27G  
OP37A, OP37C, OP37E, OP37G  
LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS  
SLOS100B – FEBRUARY 1989 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
120  
100  
80  
60  
40  
20  
0
0
2
4
6
8
10  
t – Time – seconds  
Type S Thermocouples  
5.4 µV/°C at 0°C  
+
#1  
Cold-Junction  
Circuitry  
+
To Gate  
Drive  
+
A
VD  
= 10,000  
#2  
+
Output  
100 kΩ  
OP27  
Typical  
Multiplexing  
0.05 µF  
FET Switches  
+
#24  
High-Quality  
Single-Point Ground  
10 Ω  
NOTE A: If 24 channels are multiplexed per second and the output is required to settle to 0.1 % accuracy, the amplifier’s bandwidth cannot be  
limited to less than 30 Hz. The peak-to-peak noise contribution of the OP27 will still be only 0.11 µV, which is equivalent to an error  
of only 0.02°C.  
Figure 40. Low-Noise, Multiplexed Thermocouple Amplifier and 0.1-Hz To 10-Hz  
Peak-to-Peak Noise Voltage  
2–20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

OP37AL

Operational Amplifier, 1 Func, 25uV Offset-Max, BIPolar, PBCY8, METAL CAN, TO-99, 8 PIN
ROCHESTER

OP37ALB

Operational Amplifier
ROCHESTER

OP37AP

LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI

OP37AZ

Low Noise, Precision, High Speed Operational Amplifier
ADI

OP37AZ

Low-Noise Precision Operaional Amplifiers
MAXIM

OP37AZ

Operational Amplifier, 1 Func, 60uV Offset-Max, BIPolar, CDIP8, HERMETIC SEALED, DIP-8
Linear

OP37AZ/883

IC OP-AMP, 25 uV OFFSET-MAX, 63 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP37AZ/883C

OP-AMP, 25 uV OFFSET-MAX, 63 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8
ROCHESTER

OP37AZ/883C

IC OP-AMP, 25 uV OFFSET-MAX, 63 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP37BIEP

IC OP-AMP, 50 uV OFFSET-MAX, 63 MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8, Operational Amplifier
ADI

OP37BIEZ

IC OP-AMP, 50 uV OFFSET-MAX, 63 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP37BIFJ

OP-AMP, 140uV OFFSET-MAX, 63MHz BAND WIDTH, MBCY8, TO-99, 8 PIN
ROCHESTER