OPA1633 [TI]

超低失真、195MHz、全差分音频放大器;
OPA1633
型号: OPA1633
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

超低失真、195MHz、全差分音频放大器

放大器 音频放大器
文件: 总29页 (文件大小:1905K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA1633  
ZHCSRO1 FEBRUARY 2023  
OPA1633 高性能、全差分音频运算放大器  
1 特性  
3 说明  
• 出色音质  
OPA1633 是一款全差分放大器旨在驱动高性能音频  
模数转换器 (ADC) 或用作 D 类放大器的前置驱动器。  
它可实现卓越的音频质量、极低的噪声、大输出电压摆  
幅和高电流驱动。OPA1633 具有 200MHz 的出色增益  
带宽以及 80V/μs 的超快压摆率可实现极低的失  
真。非常低的输入电压噪声 1.1nV/Hz 可进一步确保  
更大信噪比和动态范围。  
• 超低失真0.000026%  
• 低噪声1.1nV/Hz  
• 高速:  
– 压摆率80V/μs  
– 增益带宽积200 MHz  
• 完全差分架构:  
– 平衡输入和输出将单端输入转换为平衡差分输出  
• 宽电源电压范围±2.5V ±17.5V  
• 关断电流0.77 mA (VS = ± 5V)  
全差分架构的灵活性有助于轻松实现单端到全差分输出  
转换。差分输出可减少偶次谐波并最大限度地减少共模  
噪声干扰。OPA1633 在用于驱动高性能音ADC如  
PCM1804时可提供卓越的性能。添加了关断功能以  
在器件未使用时节省电量。  
• 温度范围40°C +85°C  
2 应用  
OPA1633 可在 –40°C +85°C 的温度范围内正常运  
SO-8 装和散热增强型 MSOP-8  
PowerPAD封装。  
专业音频混合器或控制平面  
专业麦克风和无线系统  
专业扬声器系统  
专业音频放大器  
条形音箱  
转盘  
专业摄像机  
吉他和其他乐器放大器  
数据采(DAQ)  
• 引脚兼容型升级OPA1632  
封装信息(1)  
封装尺寸标称值)  
器件型号  
OPA1633  
封装  
DSOIC8)  
4.90mm × 3.91mm  
DGNHVSSOP83.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
.
1E-3  
RL = 600  
RL = 2 k  
1E-4  
1E-5  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
THD+N 与频率间的关系  
应用示意图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSAC7  
 
 
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
Table of Contents  
8.1 Application Information............................................. 12  
8.2 Typical Application.................................................... 13  
8.3 Power Supply Recommendations.............................14  
8.4 Layout....................................................................... 15  
9 Device and Documentation Support............................18  
9.1 Documentation Support............................................ 18  
9.2 第三方产品免责声明..................................................18  
9.3 接收文档更新通知..................................................... 18  
9.4 支持资源....................................................................18  
9.5 Trademarks...............................................................18  
9.6 静电放电警告............................................................ 18  
9.7 Export Control Notice................................................18  
9.8 术语表....................................................................... 19  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics................................................8  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................11  
8 Application and Implementation..................................12  
Information.................................................................... 19  
10.1 Mechanical Data..................................................... 20  
10.2 Tape and Reel Information......................................23  
4 Revision History  
DATE  
REVISION  
NOTES  
February 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA1633  
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
VIN-  
VIN+  
1
2
3
4
8
7
6
5
VOCM  
Enable  
V+  
V-  
VOUT+  
VOUT-  
5-1. D or DGN(1) Package,  
8-Pin SOIC or HVSSOP  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE(2)  
DESCRIPTION  
NAME  
Enable  
V+  
NO.  
7
I
I/O  
I/O  
I
Active high enable pin  
3
Positive supply voltage pin  
Negative supply voltage pin  
Positive input voltage pin  
V-  
6
VIN+  
8
VIN-  
1
I
Negative input voltage pin  
Output common-mode control voltage pin  
Positive output voltage pin  
Negative output voltage pin  
VOCM  
VOUT+  
VOUT-  
2
I
4
O
O
5
(1) Solder the exposed DGN package thermal pad to a heat-spreading power or ground plane. This pad is electrically isolated from the  
die, but must be connected to a power or ground plane and not floated.  
(2) I = input, O = output.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA1633  
 
 
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
±18.5  
1.7  
UNIT  
±VS  
Supply Voltage  
V
V/µs  
V
Supply turn-on/off dV/dT(3)  
VI  
Input Voltage  
±VS  
150  
10  
IO  
Output Current  
mA  
V
IIN  
VID  
TJ  
Continuous Input Current  
Differential Input Voltage  
Maximum Junction Temperature  
Operating Free-Air Temperature Range  
Storage Temperature Range  
±1.5  
150  
85  
40  
65  
°C  
TSTG  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) The OPA1633 MSOP-8 package version incorporates a PowerPAD on the underside of the chip. This acts as a heatsink and must be  
connected to a thermally-dissipative plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction  
temperature, which can permanently damage the device. See TI technical brief SLMA002 for more information about using the  
PowerPAD thermally-enhanced package.  
(3) Staying below this specification ensures that the edge-triggered ESD absorption devices across the supply pins remain off.  
6.2 ESD Ratings  
VALUE  
±2000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
±17.5  
35  
UNIT  
Dual  
±2  
4
V
Supply voltage (V+ V-)  
Single  
C-suffix  
I-suffix  
0
70  
TA  
°C  
-40  
85  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA1633  
 
 
 
 
 
 
 
 
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
6.4 Thermal Information  
OPA1633  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
126.3  
67.3  
DGN (MSOP-PowerPAD)  
UNIT  
8 PINS  
57.3  
82.9  
29.7  
6.3  
RθJA  
RθJC(top)  
RθJB  
69.8  
°C/W  
19.5  
ψJT  
69.0  
29.7  
13.9  
ψJB  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA1633  
 
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics  
VS = ±15 V; RF = 390 Ω, RL = 800 Ω, and G = +1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Offset Voltage  
0.2  
2
mV  
Input Offset  
Voltage  
vs temperature, dc  
vs Power Supply, dc  
dVOS/dT  
PSRR  
±0.6  
μV/°C  
13  
100  
μV/V  
Input Bias Current  
Input Bias Current IB  
Input Offset  
6.8  
11.5  
μA  
IOS  
±20  
±400  
nA  
Current  
Noise  
Input Voltage Noise  
Input Current Noise  
Input Voltage  
1.1  
1.3  
nV/Hz  
pA/Hz  
f = 10 kHz  
(V) +  
Common-Mode Input Range  
V
(V+) 1  
1.5  
Common-Mode Rejection Ratio, dc  
80  
100  
dB  
Input Impedance  
Measured into each input terminal,  
common-mode  
MΩ||  
pF  
320 || 1.3  
12 || 2.3  
Input Impedance  
Measured into each input terminal,  
differential  
kΩ|| pF  
Open-Loop Gain  
Open-Loop Gain, dc  
Frequency Response  
91  
97  
dB  
200  
G = +1, RF= 348 Ω  
G = +2, RF = 602 Ω  
G = +5, RF = 1.5 kΩ  
G = +10, RF = 3.01 kΩ  
G = +1, VO = 100 mVPP  
VO = 100 mVPP  
117  
Small-Signal  
Bandwidth  
MHz  
(VO = 100mVPP, Peaking < 0.5 dB)  
53  
26  
Bandwidth for 0.1dB Flatness  
40  
MHz  
dB  
Peaking at a Gain of 1  
Large-Signal Bandwidth  
Slew Rate (25% to 75% )  
Rise and Fall Time  
0.25  
G = +2, VO = 20 VPP  
G = +1  
3
MHz  
V/μs  
80  
G = +1, VO = 5-V Step  
62  
0.1%  
Settling Time to  
0.01%  
30  
ns  
G = +1, VO = 2-V Step  
40  
0.000028%  
0.000026%  
0.000028%  
0.000026%  
0.000054%  
0.000054%  
0.000057%  
0.000054%  
40  
RL = 600 Ω  
Differential Input/Output  
RL = 2 kΩ  
RL = 600 Ω  
RL = 2 kΩ  
RL = 600 Ω  
RL = 2 kΩ  
RL = 600 Ω  
RL = 2 kΩ  
Total Harmonic  
Distortion + Noise  
G = +1, f = 1  
kHz, VO = 3 VRMS  
Single-Ended In/Differential Out  
Differential Input/Output  
Intermodulation  
Distortion  
G = +1, SMPTE/DIN,  
VO = 2 VPP  
Single-Ended In/Differential Out  
Headroom  
VPP  
THD < 0.01%, RL = 2 kΩ  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA1633  
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
VS = ±15 V; RF = 390 Ω, RL = 800 Ω, and G = +1 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Output  
(V+) −  
(V) +  
V
Voltage Output Swing  
RL = 1 kΩ  
1.9  
1.9  
Output Current  
IO  
65  
85  
mA  
Closed-Loop Output Impedance  
G = +1, f = 100 kHz  
0.1  
Ω
Power-Down(1)  
(V) +  
Enable Voltage Threshold  
Disable Voltage Threshold  
(V) + 1.45  
(V) + 1.4  
1.5  
V
(V) +  
0.8  
0.77  
1.4  
VS = ±5 V, VENABLE = 5 V  
VENABLE = 15 V  
Shutdown Current  
mA  
Turn-On Delay  
0.12  
0.03  
Time for IQ to Reach 50%  
μs  
Turn-Off Delay  
Power Supply  
Quiescent Current IQ  
11  
13.2  
mA  
(1) Amplifier has internal 250-kpull-up resistor to V+ pin. This enables the amplifier with no connection to shutdown pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA1633  
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, VS = ±15 V, RF = 348 Ω, G = +1 and RL = 2 kΩ(unless otherwise noted)  
1E-3  
RL = 600  
RL = 2 k  
1E-4  
1E-5  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
VO = 3 VRMS; Differential Input and Output  
VO = 3 VRMS; Single-ended Input to Differential Output  
6-1. THD + Noise vs Frequency  
6-2. THD + Noise vs Frequency  
1E-1  
1E-1  
1E-2  
1E-3  
1E-4  
1E-5  
RL = 600   
RL = 2 k  
RL = 600   
RL = 2 k  
1E-2  
1E-3  
1E-4  
1E-5  
10m  
100m  
1
10  
100  
10m  
100m  
1
10  
100  
Differential Output Voltage (VRMS  
)
Differential Output Voltage (VRMS  
)
f = 1 kHz; Differential Input and Output  
f = 1 kHz; Single-ended Input to Differential Output  
6-3. THD + Noise vs Output Voltage  
6-4. THD + Noise vs Output Voltage  
1E-2  
1E-3  
1E-4  
1E-5  
1E-2  
1E-3  
1E-4  
1E-5  
RL = 600   
RL = 2 k  
RL = 600   
RL = 2 k  
10m  
100m  
1
10  
100  
10m  
100m  
1
10  
100  
Differential Output Voltage (Vpp  
)
Differential Output Voltage (Vpp  
)
SMPTE 4:1: 60 Hz, 7 kHz; DIN 4:1: 250 Hz, 8 kHz; Differential  
Input and Output  
SMPTE 4:1: 60 Hz, 7 kHz; DIN 4:1: 250 Hz, 8 kHz; Differential  
Input and Output  
6-5. Intermodulation Distortion vs Output Voltage  
6-6. Intermodulation Distortion vs Output Voltage  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA1633  
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±15 V, RF = 348 Ω, G = +1 and RL = 2 kΩ(unless otherwise noted)  
10  
10  
1
10  
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
.
.
6-7. Voltage Noise vs Frequency  
6-8. Current Noise vs Frequency  
15  
10  
5
100  
10  
1
Vcc = 5 V  
Vcc = 15 V  
0
-5  
-10  
-15  
0.1  
100k  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
RL ()  
Frequency (Hz)  
.
RF= 1 kΩ; G = +2  
6-10. Output Impedance vs Frequency  
6-9. Output Voltage vs Differential Load Resistance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA1633  
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
7.1.1 Fully-Differential Amplifiers  
The OPA1633 is a fully differential amplifier (FDA). Differential signal processing offers a number of performance  
advantages in high-speed analog signal processing systems, including immunity to external common-mode  
noise, suppression of even-order non-linearities, and increased dynamic range. FDAs not only serve as the  
primary means of providing gain to a differential signal chain, but also provide a monolithic solution for  
converting single-ended signals into differential signals allowing for easy, high-performance processing. For  
more information on the basic theory of operation for FDAs, refer to the Fully Differential Amplifiers application  
note.  
7.2 Functional Block Diagram  
V+  
Output Buffer  
V
IN−  
x1  
V
OUT+  
C
R
R
V
IN+  
Vcm Error  
+
_
C
x1  
V
OUT−  
Output Buffer  
V+  
30 kW  
V−  
30 kW  
V−  
V
OCM  
7.3 Feature Description  
7-1 and 7-2 depict the differences between the operation of the OPA1633 in two different modes. FDAs  
can work with differential input or can be implemented as single in/differential out.  
RG  
RG  
RF  
V+  
RF  
V+  
VSource  
+
+
VOUT+  
VOUT-  
VOUT+  
VOUT-  
+
+
VOCM  
VSource  
VOCM  
V-  
RF  
V-  
RF  
RG  
RG  
7-2. Amplifying Single-ended Input Signals  
7-1. Amplifying Differential Input Signals  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA1633  
 
 
 
 
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Shutdown Function  
The shutdown (enable) function of the OPA1633 is referenced to the negative supply of the operational amplifier.  
A valid logic low (< 0.8 V above negative supply) applied to the enable pin (pin 7) disables the amplifier output.  
Voltages applied to pin 7 that are greater than 2 V above the negative supply place the amplifier output in an  
active state, and the device is enabled. If pin 7 is left disconnected, an internal pull-up resistor enables the  
device. Turn-on and turn-off times are approximately 2 μs each.  
Quiescent current is reduced to approximately 0.77 mA when the amplifier is disabled. When disabled, the  
output stage is not in a high-impedance state. Thus, the shutdown function cannot be used to create a  
multiplexed switching function in series with multiple amplifiers.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA1633  
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 元件规格TI 不担保其准确性和完整性。TI 的客户负责确定元件是否  
适合其用途以及验证和测试其设计实现以确认系统功能。  
8.1 Application Information  
8.1.1 Output Common-Mode Voltage  
The output common-mode voltage pin sets the dc output voltage of the OPA1633. A voltage applied to the VOCM  
pin from a low-impedance source can be used to directly set the output common-mode voltage. If the VOCM pin  
is left floating it defaults to the mid-rail voltage, defined as:  
V
+ V  
+
(1)  
2
To minimize common-mode noise, connect a 0.1-uF bypass capacitor to the VOCM pin. Output common-mode  
voltage causes additional current to flow in the feedback resistor network. Since this current is supplied by the  
output stage of the amplifier, this creates additional power dissipation. For commonly-used feedback resistance  
values, this current is easily supplied by the amplifier. The additional internal power dissipation created by this  
current may be significant in some applications and may dictate use of the MSOP PowerPAD package to  
effectively control self-heating.  
8.1.1.1 Resistor Matching  
Resistor matching is important in FDAs to maintain good output balance. An ideal differential output signal  
implies the two outputs of the FDA should be exactly equal in amplitude and shifted 180° in phase. Any  
imbalance in amplitude or phase between the two output signals results in an undesirable common-mode signal  
at the output. The output balance error is a measure of how well the outputs are balanced and is defined as the  
ratio of the output common-mode voltage to the output differential signal.  
V
− V  
2
OUT +  
OUT +  
OUT −  
Output Balance Error =  
(2)  
V
− V  
OUT −  
At low frequencies, resistor mismatch is the primary contributor to output balance errors. Additionally CMRR,  
PSRR, and HD2 performance diminish if resistor mismatch occurs. Therefore, it is recommended to use 1%  
tolerance resistors or better to optimize performance. 8-1 provides the recommended resistor values to use  
for a particular gain.  
8-1. Recommended Resistor Values  
Gain (V/V)  
RG (Ω)  
RF (Ω)  
390  
1
2
390  
374  
750  
5
402  
2010  
4020  
10  
402  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA1633  
 
 
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
8.2 Typical Application  
8-1 shows the OPA1633 used as a differential-output driver for the PCM1804 high-performance audio ADC.  
V+  
10mF  
+
0.1mF  
R3  
270W  
C1  
1nF  
R1  
R5  
1kW  
3
40W  
8
2
1
5
+
Balanced or  
Single- Ended  
Input  
VOCM  
C3  
1/2  
R2  
OPA1633  
2.7nF  
PCM1804  
1kW  
-
4
6
R6  
VCOM  
(2.5V)  
C2  
1nF  
7
40W  
R4  
270W  
Enable(1)  
OPA134  
1kW  
0.1mF  
0.1mF  
10mF  
+
V-  
8-1. ADC Driver for Professional Audio  
8.2.1 Design Requirements  
8-2 provides example design parameters and values for the typical application design example shown in 图  
7-1.  
8-2. Design Parameters  
DESIGN PARAMETERS  
VALUE  
Supply voltage  
±2.5 V to ±17.5 V  
Voltage feedback  
Amplifier topology  
DC coupled with output common  
mode control capability  
Output control  
500 kHz, Multiple feedback low  
pass filter  
Filter requirement  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA1633  
 
 
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
Supply voltages of ±15 V are commonly used for the OPA1633. The relatively low input voltage swing required  
by the ADC allows use of lower power-supply voltage, if desired. Power supplies as low as ±8 V can be used in  
this application with excellent performance. This reduces power dissipation and heat rise. Power supplies should  
be bypassed with 10-μF tantalum capacitors in parallel with 0.1-μF ceramic capacitors to avoid possible  
oscillations and instability.  
The VCOM reference voltage output on the PCM1804 ADC provides the proper input common-mode reference  
voltage (2.5 V). This VCOM voltage is buffered with op amp by the OPA134 and drives the output common-mode  
voltage pin of the OPA1633. This biases the average output voltage of the OPA1633 to 2.5 V.  
The signal gain of the circuit is generally set to approximately 0.25 to be compatible with commonly-used audio  
line levels. Gain can be adjusted, if necessary, by changing the values of R1 and R2. The feedback resistor  
values (R3 and R4) should be kept relatively low, as indicated, for best noise performance.  
R5, R6, and C3 provide an input filter and charge glitch reservoir for the ADC. The values shown are generally  
satisfactory. Some adjustment of the values may help optimize performance with different ADCs.  
It is important to maintain accurate resistor matching on R1/R2 and R3/R4 to achieve good differential signal  
balance. Use 1% resistors for highest performance. When connected for single-ended inputs (inverting input  
grounded, as shown in 8-1), the source impedance must be low. Differential input sources must have well-  
balanced or low source impedance.  
Capacitors C1, C2, and C3 should be chosen carefully for good distortion performance. Polystyrene,  
polypropylene, NPO ceramic, and mica types are generally excellent. Polyester and high-K ceramic types such  
as Z5U can create distortion.  
8.2.3 Application Curves  
1E-1  
1E-2  
1E-3  
1E-4  
1E-5  
1E-1  
1E-2  
1E-3  
1E-4  
1E-5  
RL = 600   
RL = 2 k  
RL = 600   
RL = 2 k  
10m  
100m  
1
10  
100  
10m  
100m  
1
10  
100  
Differential Output Voltage (VRMS  
)
Differential Output Voltage (VRMS)  
8-2. THD + Noise vs Output Voltage  
8-3. THD + Noise vs Output Voltage  
8.3 Power Supply Recommendations  
The OPA1633 device was designed to be operated on power supplies ranging from ±2.5 V to ±17.5 V. Single  
power supplies ranging from 5 V to 35 V can also be used. TI recommends using a power-supply accuracy of  
5%, or better. When operated on a board with high-speed digital signals, it is important to provide isolation  
between digital signal noise and the analog input pins. The OPA1633 is connected to power supplies through pin  
3 (V+) and pin 6 (V). Each supply pin should be decoupled to GND as close to the device as possible with a  
low-inductance, surface-mount ceramic capacitor of approximately 10 nF. When vias are used to connect the  
bypass capacitors to a ground plane the vias should be configured for minimal parasitic inductance. One method  
of reducing via inductance is to use multiple vias. For broadband systems, two capacitors per supply pin are  
advised.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA1633  
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
To avoid undesirable signal transients, the OPA1633 device should not be powered on with large inputs signals  
present. Careful planning of system power on sequencing is especially important to avoid damage to ADC inputs  
when an ADC is used in the application.  
8.4 Layout  
8.4.1 Layout Guidelines  
1. The PowerPAD is electrically isolated from the silicon and all leads. Connecting the PowerPAD to any  
potential voltage between the power-supply voltages is acceptable, but it is recommended to tie to ground  
because it is generally the largest conductive plane.  
2. Prepare the PCB with a top-side etch pattern, as shown in 8-4. There should be etch for the leads as well  
as etch for the thermal pad.  
3. Place five holes in the area of the thermal pad. These holes should be 13 mils (0,03302 cm) in diameter.  
Keep them small so that solder wicking through the holes is not a problem during reflow.  
4. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. These vias  
help dissipate the heat generated by the OPA1633 IC, and may be larger than the 13-mil diameter vias  
directly under the thermal pad. They can be larger because they are not in the thermal pad area to be  
soldered so that wicking is not a problem.  
5. Connect all holes to the internal ground plane.  
6. When connecting these holes to the plane, do not use the typical web or spoke via connection methodology.  
Web connections have a high thermal resistance connection that is useful for slowing the heat transfer  
during soldering operations. This makes the soldering of vias that have plane connections easier. In this  
application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the  
holes under the OPA1633 PowerPAD package should make their connection to the internal plane with a  
complete connection around the entire circumference of the plated-through hole.  
7. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five  
holes exposed. The bottom-side solder mask should cover the five holes of the thermal pad area. This  
prevents solder from being pulled away from the thermal pad area during the reflow process.  
8. Apply solder paste to the exposed thermal pad area and all of the IC terminals.  
With these preparatory steps in place, the IC is simply placed in position and runs through the solder reflow  
operation as any standard surface-mount component. This results in a part that is properly installed.  
Single or Dual  
68mils ´ 70mils (0,1727cm ´ 0,1778cm)  
(via diameter = 13mils (0,03302cm)  
8-4. PowerPAD PCB Etch and Via Pattern  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA1633  
 
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
8.4.1.1 Layout Example  
RG–  
RF+  
VIN  
RT–  
V+  
CBYP  
RO+  
+
+
FDA  
VOCM  
CL  
RO–  
PD  
V+  
CBYP  
V–  
RG+  
RF–  
RS+  
RT+  
8-5. Representative Schematic for Example Layout  
RS+  
VIN  
RT+  
RT–  
Remove GND and Power plane  
under output and inverting pins to  
minimize stray PCB capacitance  
1
2
3
4
8
7
6
5
VIN–  
VIN+  
Place the feedback resistors, R, gain  
resistors, RG±, and the isolation  
resistors, R, as close to the device  
pins as possible to minimize parasitics  
Enable  
V–  
VOCM  
V+  
VOUT+  
VOUT–  
Vias to connect supply pins to  
CBYP. Place CBYP capacitors on  
the other side of the PCB as  
close to the vias as possible.  
Ground and power plane exist on  
inner layers.  
CL  
Ground and power plane removed  
from inner layers. Ground fill on  
outer layers also removed.  
8-6. Example Layout  
8.4.1.2 PowerPAD Design Considerations  
The OPA1633 is available in a thermally-enhanced PowerPAD family of packages. These packages are  
constructed using a downset leadframe upon which the die is mounted (see 8-7(a) and 8-7(b)). This  
arrangement results in the lead frame being exposed as a thermal pad on the underside of the package (see 图  
8-7(c)). Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be  
achieved by providing a good thermal path away from the thermal pad.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA1633  
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
DIE  
(a) Side View  
Thermal  
Pad  
DIE  
(b) End View  
(c) Bottom View  
8-7. Views of the Thermally-Enhanced Package  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad must be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat-dissipating device.  
Soldering the PowerPAD to the printed circuit board (PCB) is always required, even with applications that have  
low power dissipation. It provides the necessary thermal and mechanical connection between the lead frame die  
pad and the PCB.  
8.4.1.3 Power Dissipation and Thermal Considerations  
The OPA1633 does not have thermal shutdown protection. Take care to assure that the maximum junction  
temperature is not exceeded. Excessive junction temperature can degrade performance or cause permanent  
damage. For best performance and reliability, assure that the junction temperature does not exceed 125°C.  
The thermal characteristics of the device are dictated by the package and the circuit board. Maximum power  
dissipation for a given package can be calculated using the following formula:  
T
Max - TA  
PDMax  
=
qJA  
where:  
PDMax is the maximum power dissipation in the amplifier (W)  
TMax is the absolute maximum junction temperature (°C)  
TA is the ambient temperature (°C)  
• θJA = θJC + θCA  
• θJC is the thermal coefficient from the silicon junctions to the case (°C/W)  
• θCA is the thermal coefficient from the case to ambient air (°C/W)  
For systems where heat dissipation is more critical, the OPA1633 is offered in an MSOP-8 with PowerPAD. The  
thermal coefficient for the MSOP PowerPAD (DGN) package is substantially improved over the traditional SO  
package.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA1633  
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Fully Differential Amplifiers application note  
Texas Instruments, TI Precision Labs - Fully Differential Amplifiers video series  
Texas Instruments, Maximizing Signal Chain Distortion Performance Using High Speed Amplifiers application  
note  
Texas Instruments, Analog Audio Amplifier Front-end Reference Design with Improved Noise and Distortion  
Texas Instruments, Public Announcement Audio Reference Design utilizing best in class Boost Controller  
Texas Instruments, Motherboard/controller for the AMC1210 reference design  
Texas Instruments,TPA6120A2 Stereo, 9.0 to 33.0-V, analog input headphone amplifier with 128 dB dynamic  
range  
Texas Instruments, OPA2863 Dual, low-power, 110-MHz, 12-V, RRIO voltage feedback amplifier  
Texas Instruments, OPA2834 Ultra-low power, 50MHz rail-to-rail out, negative rail in, voltage-feedback op  
amp  
9.2 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
PowerPADis a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA1633  
 
 
 
 
 
 
 
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
9.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA1633  
 
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
10.1 Mechanical Data  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA1633  
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA1633  
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA1633  
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
10.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
OPA1633  
SOIC  
D
8
3000  
330  
12.4  
6.40  
5.20  
2.10  
8
12  
Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA1633  
 
OPA1633  
ZHCSRO1 FEBRUARY 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
SOIC  
Package Drawing Pins  
SPQ  
Length (mm) Width (mm)  
Length Width  
Height (mm)  
OPA1633  
D
8
3000  
Height  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA1633  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
POPA1633DR  
ACTIVE  
SOIC  
D
8
2500  
TBD  
Call TI  
Call TI  
-40 to 85  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA1637

高保真、高电压 (36V)、低噪声 (3.7nV/rtHz) Burr-Brown™ 音频全差分放大器
TI

OPA1637DGKR

高保真、高电压 (36V)、低噪声 (3.7nV/rtHz) Burr-Brown™ 音频全差分放大器 | DGK | 8 | -40 to 125
TI

OPA1637DGKT

高保真、高电压 (36V)、低噪声 (3.7nV/rtHz) Burr-Brown™ 音频全差分放大器 | DGK | 8 | -40 to 125
TI

OPA1641

High-Performance, JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641-Q1

单通道汽车类 Sound-Plus 高性能、JFET 输入音频运算放大器
TI

OPA1641AID

High-Perforamnce,JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641AIDGKR

High-Perforamnce,JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641AIDGKT

High-Perforamnce,JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641AIDR

High-Perforamnce,JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641AQDGKRQ1

单通道汽车类 Sound-Plus 高性能、JFET 输入音频运算放大器 | DGK | 8 | -40 to 125
TI

OPA1641_1004

High-Performance, JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI

OPA1641_101

High-Perforamnce,JFET-Input AUDIO OPERATIONAL AMPLIFIERS
TI