OPA186DBVT [TI]

具有轨到轨输入和输出的单路 24V、低功耗 (90μA)、5μV 失调电压零漂移运算放大器 | DBV | 5 | -40 to 125;
OPA186DBVT
型号: OPA186DBVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有轨到轨输入和输出的单路 24V、低功耗 (90μA)、5μV 失调电压零漂移运算放大器 | DBV | 5 | -40 to 125

放大器 运算放大器
文件: 总49页 (文件大小:2723K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
OPAx186 精密、轨到轨输入和输出、24V、零漂移运算放大器  
1 特性  
3 说明  
• 高精度  
OPA186OPA2186 OPA4186 (OPAx186) 是低功  
耗、24V、轨到轨输入和输出、零漂移运算放大器。这  
些运算放大器具有仅 10µV 的失调电压最大值和  
0.04µV/°C 的失调电压温漂最大值),非常适合精密  
仪表、信号测量和有源滤波应用。  
– 失调漂移0.01μV/°C  
– 低失调电压1μV  
• 低静态电流90 µA  
• 出色的动态性能:  
– 增益带宽750 kHz  
– 压摆率0.35 V/µs  
• 强大设计:  
RFI/EMI 滤波输入  
• 轨到轨输入/输出  
• 电源电压范围4.5V 24V  
• 温度40°C +125°C  
低静态电流消耗 (90μA) 使 OPAx186 成为功率敏感型  
应用例如电池供电仪表和便携式系统的上佳选择。  
此外高共模架构以及低失调电压可实现正电源轨的高  
侧电流分流监控。这些器件还在运输、装卸和组装期间  
提供强大ESD 保护。  
器件信息  
封装(1)  
器件型号  
OPA186  
通道  
2 应用  
DBVSOT-235)  
DSOIC8)  
单通道  
双通道  
四通道  
PC PSU 和游戏机单元  
商用直流/直流  
流量发送器  
OPA2186  
OPA4186  
DDFSOT-238)  
DSOIC14)  
压力变送器  
商用电池充电器  
电表  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
4
3
RS  
6 V to 24 V  
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
Microcontroller  
ADC  
Battery /  
Power  
Supply  
OPAx186  
+
0 V to 5 V  
-12.5 -10 -7.5 -5 -2.5  
0
2.5  
5
Input Common-mode Voltage (V)  
7.5 10 12.5  
VOS 与输入共模电压  
高侧电流分流监控器应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS968  
 
 
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................18  
7.4 Device Functional Modes..........................................22  
8 Application and Implementation..................................23  
8.1 Application Information............................................. 23  
8.2 Typical Applications.................................................. 25  
8.3 Power Supply Recommendations.............................29  
8.4 Layout....................................................................... 30  
9 Device and Documentation Support............................32  
9.1 Device Support......................................................... 32  
9.2 Documentation Support............................................ 32  
9.3 接收文档更新通知..................................................... 32  
9.4 支持资源....................................................................32  
9.5 Trademarks...............................................................32  
9.6 Electrostatic Discharge Caution................................33  
9.7 术语表....................................................................... 33  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information: OPA186.................................... 6  
6.5 Thermal Information: OPA2186.................................. 6  
6.6 Thermal Information: OPA4186.................................. 6  
6.7 Electrical Characteristics.............................................7  
6.8 Typical Characteristics................................................9  
7 Detailed Description......................................................17  
7.1 Overview...................................................................17  
7.2 Functional Block Diagram.........................................17  
Information.................................................................... 33  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (June 2022) to Revision B (November 2022)  
Page  
• 添加OPA186 OPA4186 器件及相关内容....................................................................................................1  
Changed ESD Ratings table HBM value............................................................................................................ 5  
Changed ESD Ratings table CDM value............................................................................................................5  
Changes from Revision * (June 2022) to Revision A (September 2022)  
Page  
OPA2186 从预告信息预发布更改为量产数据正在供货.................................................................... 1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT  
Vœ  
1
2
3
5
V+  
+IN  
4
œIN  
Not to scale  
5-1. OPA186: DBV Package, 5-Pin SOT-23 (Top View)  
5-1. Pin Functions: OPA186  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN  
+IN  
NO.  
4
Input  
Input  
Inverting input  
3
Noninverting input  
OUT  
V–  
1
Output  
Power  
Power  
Output  
2
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
5
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
5-2. OPA2186: D, 8-Pin SOIC, and DDF, 8-Pin SOT-23, Packages (Top View)  
5-2. Pin Functions: OPA2186  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN A  
+IN A  
IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
Input  
Input  
Inverting input channel A  
Noninverting input channel A  
Inverting input channel B  
Noninverting input channel B  
Output channel A  
3
6
Input  
5
Input  
1
Output  
Output  
Power  
Power  
7
Output channel B  
4
Negative supply  
V+  
8
Positive supply  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA186 OPA2186 OPA4186  
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
Vœ  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
8
Not to scale  
5-3. OPA4186: D Package, 14-Pin SOIC (Top View)  
5-3. Pin Functions: OPA4186  
PIN  
TYPE  
DESCRIPTION  
NAME  
IN A  
+IN A  
IN B  
+IN B  
IN C  
+IN C  
IN D  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
NO.  
2
Input  
Input  
Inverting input channel A  
Noninverting input channel A  
Inverting input channel B  
Noninverting input channel B  
Inverting input channel C  
Noninverting input channel C  
Inverting input channel D  
Noninverting input channel D  
Output channel A  
3
6
Input  
5
Input  
9
Input  
10  
13  
12  
1
Input  
Input  
Input  
Output  
Output  
Output  
Output  
Power  
Power  
7
Output channel B  
8
Output channel C  
14  
11  
4
Output channel D  
Negative supply  
V+  
Positive supply  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
26  
UNIT  
VS  
V
Supply voltage, VS = (V+) (V)  
Common-mode  
Input voltage  
(V+) + 0.5  
(V) 0.5  
V
Differential  
(V+) (V) + 0.2  
Output short-circuit(2)  
Continuous  
TJ  
Operating junction temperature  
Storage temperature  
-40  
-65  
150  
150  
°C  
°C  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
24  
UNIT  
V
Single supply  
Dual supply  
Supply  
voltage  
VS  
TA  
±2.25  
40  
±12  
125  
Specified temperature  
°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
 
 
 
 
 
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Thermal Information: OPA186  
OPA186  
DBV (SOT-23)  
5 PINS  
166.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
62.2  
38.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
12.1  
ΨJT  
38.2  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2186  
OPA2186  
THERMAL METRIC(1)  
DDF (SOT-23)  
8 PINS  
150.4  
85.6  
D (SOIC)  
8 PINS  
128.9  
69.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
70.0  
72.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.1  
20.7  
ΨJT  
69.6  
71.6  
ΨJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4186  
OPA4186  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
84.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
37.4  
41.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
6.7  
ΨJT  
40.8  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
 
 
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Electrical Characteristics  
at TA = 25°C, VS = ±2.25 V to ±12 V, RL = 10 kconnected to VS / 2, VCM = VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
OPA186, OPA2186(1)  
OPA4186(1)  
±1  
±6  
±10  
±40  
VOS  
Input offset voltage  
μV  
OPA186, OPA2186  
OPA4186  
±0.01  
±0.025  
±0.02  
±0.08  
±0.04  
±0.1  
±0.2  
±0.4  
TA = 40to +125(1)  
TA = 40to +125(1)  
μV/°C  
μV/V  
dVOS/dT Input offset voltage drift  
OPA186, OPA2186  
OPA4186  
Power-supply rejection  
PSRR  
ratio  
INPUT BIAS CURRENT  
±5  
±55  
pA  
nA  
TA = 40to +85(1)  
±550  
TA = 40to  
+125(1), OPA186,  
OPA2186  
IB  
Input bias current  
VS = ±12 V  
±4.8  
±6.2  
TA = 40to  
+125(1), OPA4186  
±10  
±100  
±1  
pA  
nA  
TA = 40to +85(1)  
TA = 40to +125(1)  
IOS  
Input offset current  
Input voltage noise  
OPA186, OPA2186  
OPA4186  
±1.25  
±3.8  
NOISE  
f = 0.1 Hz to 10 Hz  
125  
40  
nVRMS  
nV/Hz  
fA/Hz  
eN  
iN  
Input voltage noise density f = 1 kHz  
Input current noise  
f = 1 kHz  
120  
INPUT VOLTAGE  
VCM  
Common-mode voltage  
(V+) + 0.2  
V
(V) 0.2  
120  
OPA2186  
140  
140  
120  
146  
134  
120  
VS = ±2.25 V,  
(V) 0.1 < VCM < (V+) + 0.1 V  
OPA186  
118  
OPA4186  
105  
OPA186, OPA2186  
OPA4186  
120  
VS = ±12 V,  
(V) 0.1 < VCM < (V+) + 0.1 V  
118  
Common-mode rejection  
ratio  
CMRR  
dB  
VS = ±2.25 V,  
OPA186, OPA2186  
106  
(V) 0.1 < VCM < (V+) + 0.1 V,  
TA = 40to +125(1)  
OPA4186  
100  
115  
115  
114  
124  
124  
VS = ±12 V,  
(V) 0.1 < VCM < (V+) + 0.1 V,  
TA = 40to +125(1)  
OPA186, OPA2186  
OPA4186  
FREQUENCY RESPONSE  
GBW  
SR  
tS  
Gain-bandwidth product  
750  
0.35  
7.5  
kHz  
V/μs  
μs  
Slew rate  
1-V step, G = 1  
Settling time  
To 0.1%, 1-V step, G = 1  
VIN × gain > VS  
Overload recovery time  
10  
μs  
INPUT CAPACITANCE  
ZID  
Differential  
100 || 5  
50 || 2.5  
MΩ|| pF  
GΩ|| pF  
ZICM  
Common-mode  
OPEN-LOOP VOLTAGE GAIN  
123  
123  
123  
123  
148  
146  
148  
146  
VS = ±12 V, RL = 10 k,  
(V) + 0.3 V < VO < (V+) 0.3 V  
TA = 40to +125(1)  
TA = 40to +125(1)  
AOL  
Open-loop voltage gain  
dB  
VS = ±12 V, RL = 2 k,  
(V) + 0.65 V < VO < (V+) 0.65 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA186 OPA2186 OPA4186  
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
at TA = 25°C, VS = ±2.25 V to ±12 V, RL = 10 kconnected to VS / 2, VCM = VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
No load  
5
65  
10  
RL = 10 kΩ  
RL = 2 kΩ  
Positive rail  
Negative rail  
345  
425  
120  
10  
RL = 10 kΩ,  
TA = 40to +125(1)  
95  
Voltage output swing from  
the rail  
VO  
mV  
No load  
5
30  
90  
RL = 10 kΩ  
RL = 2 kΩ  
120  
50  
RL = 10 kΩ,  
TA = 40to +125(1)  
35  
ISC  
Short-circuit current  
Capacitive load drive  
±20  
mA  
CLOAD  
See typical curves  
See typical curves  
Open-loop output  
impedance  
RO  
POWER SUPPLY  
90  
130  
150  
Quiescent current per  
amplifier  
IQ  
VS = ±2.25 V to ±12 V  
µA  
TA = 40to +125(1)  
(1) Specification established from device population bench system measurements across multiple lots.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ(unless otherwise noted)  
6-1. Typical Characteristic Graphs  
DESCRIPTION  
FIGURE  
6-1  
Offset Voltage Distribution  
Offset Voltage Drift (-40°C to +125C°C)  
Input Bias Current Distribution  
6-2  
6-3  
Input Offset Current Distribution  
6-4  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Supply Voltage  
6-5  
6-6  
Input Bias Current vs Common-Mode Voltage  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
6-7  
6-8  
6-9  
Input Bias Current and Offset Current vs Temperature  
Output Voltage Swing vs Output Current (Sourcing)  
Output Voltage Swing vs Output Current (Sinking)  
CMRR and PSRR vs Frequency  
6-10  
6-11  
6-12  
6-13  
6-14  
6-15  
6-16  
6-17  
6-18  
6-19  
6-20  
6-21  
6-22  
6-23  
6-24  
CMRR vs Temperature  
PSRR vs Temperature  
0.1-Hz to 10-Hz Voltage Noise  
Input Voltage Noise Spectral Density vs Frequency  
THD+N vs Frequency  
THD+N vs Output Amplitude  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open-Loop Gain vs Temperature (10 kΩ)  
Open-Loop Gain vs Temperature (2 kΩ)  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (Gain = 1, 10-mV  
step)  
6-25  
Small-Signal Overshoot vs Capacitive Load (Gain = 1, 10-mV step)  
No Phase Reversal  
6-26  
6-27  
6-28  
6-29  
6-30  
6-31  
6-32  
6-33  
6-34  
6-35  
6-36  
6-37  
6-38  
6-39  
Positive Overload Recovery  
Negative Overload Recovery  
Small-Signal Step Response (Gain = 1, 10-mV step)  
Small-Signal Step Response (Gain = 1, 10-mV step)  
Large-Signal Step Response (Gain = 1, 10-V step)  
Large-Signal Step Response (Gain = 1, 10-V step)  
Phase Margin vs Capacitive Load  
Settling Time (1-V Step, 0.1% Settling)  
Short Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
EMIRR vs Frequency  
Channel Separation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA186 OPA2186 OPA4186  
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ(unless otherwise noted)  
40  
36  
32  
28  
24  
20  
16  
12  
8
40  
36  
32  
28  
24  
20  
16  
12  
8
4
4
0
0
-50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
-0.1 -0.075 -0.05 -0.025  
0
0.025 0.05 0.075 0.1  
Input Offset Voltage (µV)  
Offset Voltage Drift (µV/°C)  
6-1. Offset Voltage Distribution  
6-2. Offset Voltage Drift (-40°C to 125C°C)  
60  
54  
48  
42  
36  
30  
24  
18  
12  
6
72  
64  
56  
48  
40  
32  
24  
16  
8
0
0
-600  
-400  
-200  
0
200  
400  
600  
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
Input Offset Current (pA)  
Input Bias Current (nA)  
6-4. Input Offset Current Distribution  
6-3. Input Bias Current Distribution  
20  
10  
0
4
2
0
-10  
-2  
-4  
-20  
-12.5 -10 -7.5 -5 -2.5  
0
2.5  
5
7.5 10 12.5  
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
Common-mode Voltage (V)  
Total Supply Voltage (V)  
6-5. Offset Voltage vs Common-Mode Voltage  
6-6. Offset Voltage vs Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ(unless otherwise noted)  
180  
180  
50  
Gain  
Phase  
40  
150  
150  
30  
120  
120  
90  
60  
30  
0
20  
90  
10  
0
60  
-10  
30  
-20  
0
-30  
IB-  
IB+  
-40  
-50  
-30  
10m 100m  
-30  
1
10  
100 1k  
Frequency (Hz)  
10k 100k 1M 10M  
-12.5 -10 -7.5 -5 -2.5  
0
2.5  
5
7.5 10 12.5  
Common-mode Voltage (V)  
6-8. Open-Loop Gain and Phase vs Frequency  
2.5  
6-7. Input Bias Current vs Common-Mode Voltage  
30  
20  
10  
0
G = +1  
IB-  
G= -1  
IB+  
IOS  
2
1.5  
1
G= +10  
0.5  
0
-10  
-20  
-0.5  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
6-9. Closed-Loop Gain vs Frequency  
6-10. Input Bias Current and Offset Current vs Temperature  
12  
12.5  
-40èC  
10  
8
10  
25èC  
85èC  
125èC  
7.5  
6
5
4
2.5  
0
2
0
-2.5  
-5  
-2  
-4  
-6  
-8  
-10  
-40èC  
25èC  
85èC  
125èC  
-7.5  
-10  
-12.5  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Current (mA)  
0
3
6
9
12  
15  
Output Current (mA)  
18  
21  
24  
27  
6-11. Output Voltage Swing vs  
6-12. Output Voltage Swing vs  
Output Current (Sourcing)  
Output Current (Sinking)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ(unless otherwise noted)  
160  
140  
120  
100  
80  
170  
165  
160  
155  
150  
145  
140  
135  
130  
PSRR+  
PSRR-  
CMRR  
0.01  
60  
40  
0.1  
20  
0
100m  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
10M  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 125  
Temperature (°C)  
6-13. CMRR and PSRR vs Frequency  
6-14. CMRR vs Temperature  
190  
180  
170  
160  
0.001  
0.01  
125  
-50  
-25  
0
25  
50  
75  
100  
Time (1 s/div)  
Temperature (°C)  
6-16. 0.1-Hz to 10-Hz Voltage Noise  
6-15. PSRR vs Temperature  
1000  
100  
10  
1
0.1  
-40  
-60  
-80  
-100  
G = +1, RL = 10 kW  
G = +1, RL = 2 kW  
G = -1, RL = 10 kW  
G = -1, RL = 2 kW  
0.01  
0.001  
0.0001  
-120  
10k  
100m  
1
10  
100  
Frequency (Hz)  
1k  
10k  
100k  
100  
1k  
Frequency (Hz)  
6-17. Input Voltage Noise Spectral Density vs Frequency  
6-18. THD+N vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ(unless otherwise noted)  
1
-40  
-60  
-80  
-100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
G = +1, RL = 10 kW  
G = +1, RL = 2 kW  
G = -1, RL = 10 kW  
G = -1, RL = 2 kW  
0.1  
VS Min = 4.5 V  
0.01  
0.001  
10m  
100m  
Output Amplitude (VRMS  
1
10  
0
2
4
6
8
10 12 14 16 18 20 22 24  
Supply Voltage (V)  
)
6-19. THD+N vs Output Amplitude  
6-20. Quiescent Current vs Supply Voltage  
110  
180  
VS = 4.5 V  
VS = 24 V  
100  
90  
80  
70  
60  
160  
140  
120  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
6-21. Quiescent Current vs Temperature  
6-22. Open-Loop Gain vs Temperature  
180  
160  
140  
120  
1000  
100  
10  
1
0.1  
0.01  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
RL = 2 kΩ  
6-24. Open-Loop Output Impedance vs Frequency  
6-23. Open-Loop Gain vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ(unless otherwise noted)  
40  
35  
30  
25  
20  
15  
10  
5
100  
80  
60  
40  
20  
0
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
RISO = 0 W  
RISO = 25 W  
RISO = 50 W  
10  
100  
Capactiance (pF)  
1000  
10  
100  
Capactiance (pF)  
1000  
Gain = 1, 10-mV step  
Gain = 1, 10-mV step  
6-26. Small-Signal Overshoot vs  
6-25. Small-Signal Overshoot vs  
Capacitive Load  
Capacitive Load  
VIN (V)  
VOUT (V)  
VIN  
VOUT  
Time (100 ms/div)  
Time (10 ms/div)  
6-27. No Phase Reversal  
6-28. Positive Overload Recovery  
VIN  
VOUT  
VIN  
VOUT  
Time (10 ms/div)  
Time (10 ms/div)  
Gain = 1, 10-mV step  
6-29. Negative Overload Recovery  
6-30. Small-Signal Step Response  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ(unless otherwise noted)  
VIN  
VOUT  
VIN (V)  
VOUT (V)  
Time (10 ms/div)  
Time (10 ms/div)  
Gain = 1, 10-V step  
Gain = 1, 10-mV step  
6-32. Large-Signal Step Response  
6-31. Small-Signal Step Response  
65  
VIN (V)  
VOUT (V)  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
100  
CLOAD (pF)  
1000  
Time (10 ms/div)  
Gain = 1, 10-V step  
6-34. Phase Margin vs Capacitive Load  
6-33. Large-Signal Step Response  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
Falling  
Rising  
Sinking  
Sourcing  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Time (5 ms/div)  
Temperature (èC)  
1-V step, 0.1% settling  
6-35. Settling Time  
6-36. Short Circuit Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = ±12 V, VCM = VS / 2, RL = 10 kΩ(unless otherwise noted)  
30  
25  
20  
15  
10  
5
175  
150  
125  
100  
75  
VS = ê12 V  
VS = ê2.25 V  
50  
0
25  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
1G  
10G  
6-37. Maximum Output Voltage vs Frequency  
6-38. EMIRR vs Frequency  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
1k  
10k  
100k  
1M  
Frequency (Hz)  
6-39. Channel Separation  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPAx186 operational amplifier combines precision offset and drift with excellent overall performance,  
making the device a great choice for a wide variety of precision applications. The precision offset drift of only  
0.01 µV/°C provides stability over the entire operating temperature range of 40°C to +125°C. In addition, this  
device offers excellent linear performance with high CMRR, PSRR, and AOL. As with all amplifiers, applications  
with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most  
cases, 0.1-µF capacitors are adequate. For details and a layout example, see 8.4.  
The OPAx186 is part of a family of zero-drift, MUX-friendly, rail-to-rail output operational amplifiers. This device  
operates from 4.5 V to 24 V, is unity-gain stable, and is designed for a wide range of general-purpose and  
precision applications. The zero-drift architecture provides ultra-low input offset voltage and near-zero input  
offset voltage drift over temperature and time. This choice of architecture also offers outstanding ac  
performance, such as ultra-low broadband noise, zero flicker noise, and outstanding distortion performance  
when operating at less than the chopper frequency.  
The following section shows a representation of the proprietary OPAx186 architecture.  
7.2 Functional Block Diagram  
C2  
Notch  
Filter  
CHOP1  
CHOP2  
GM2  
GM3  
GM1  
OUT  
+IN  
24-V  
Differential  
Front End  
œIN  
GM_FF  
C1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3 Feature Description  
The OPAx186 operational amplifier has several integrated features to help maintain a high level of precision  
through a variety of applications. These include a rail-to-rail inputs, phase-reversal protection, input bias current  
clock feedthrough, EMI rejection, electrical overstress protection and MUX-friendly Inputs.  
7.3.1 Rail-to-Rail Inputs  
Unlike many chopper amplifiers, the OPAx186 has rail-to-rail inputs that allow the input common-mode voltage to  
not only reach, but exceed the supply voltages by 200 mV. This configuration simplifies power-supply  
requirements by not requiring headroom over the input signal range.  
The OPAx186 is specified for operation from 4.5 V to 24 V (±2.25 V to ±12 V) with rail-to-rail inputs. Many  
specifications apply from 40°C to +125°C.  
7.3.2 Phase-Reversal Protection  
The OPAx186 has internal phase-reversal protection. Some op amps exhibit a phase reversal when the input is  
driven beyond the linear common-mode range. This condition is most often encountered in noninverting circuits  
when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into  
the opposite rail. The OPAx186 input prevents phase reversal with excessive common-mode voltage. Instead,  
the output limits into the appropriate rail. 7-1 shows this performance.  
VIN (V)  
VOUT (V)  
Time (100 ms/div)  
7-1. No Phase Reversal  
7.3.3 Input Bias Current Clock Feedthrough  
Zero-drift amplifiers such as the OPAx186 use a switching architecture on the inputs to correct for the intrinsic  
offset and drift of the amplifier. Charge injection from the integrated switches on the inputs can introduce short  
transients in the input bias current of the amplifier. The extremely short duration of these pulses prevents the  
pulses from amplifying; however, the pulses can be coupled to the output of the amplifier through the feedback  
network. The most effective method to prevent transients in the input bias current from producing additional  
noise at the amplifier output is to use a low-pass filter, such as an RC network.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.4 EMI Rejection  
The OPAx186 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI  
interference from sources such as wireless communications and densely-populated boards with a mix of analog  
signal chain and digital components. EMI immunity can be improved with circuit design techniques; the OPAx186  
benefits from these design improvements. Texas Instruments has developed the ability to accurately measure  
and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to  
6 GHz. 7-2 shows the results of this testing on the OPAx186. 7-1lists the EMIRR +IN values for the  
OPAx186 at particular frequencies commonly encountered in real-world applications. 7-1 lists applications  
that can be centered on or operated near the particular frequency shown. See also the EMI Rejection Ratio of  
Operational Amplifiers application report, available for download from www.ti.com.  
175  
150  
125  
100  
75  
50  
25  
10M  
100M  
Frequency (Hz)  
1G  
10G  
7-2. EMIRR Testing  
7-1. OPAx186 EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION AND ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
48.4 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
52.8 dB  
69.1 dB  
88.9 dB  
82.5 dB  
95.5 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational  
amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF  
signal rectification. An op amp that is more efficient at rejecting this change in offset as a result of EMI has a  
higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this  
section provides the EMIRR +IN, which specifically describes the EMIRR performance when the RF signal is  
applied to the noninverting input pin of the op amp. In general, only the noninverting input is tested for EMIRR for  
the following three reasons:  
Op amp input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the  
supply or output pins.  
The noninverting and inverting op amp inputs have symmetrical physical layouts and exhibit nearly matching  
EMIRR performance  
EMIRR is more simple to measure on noninverting pins than on other pins because the noninverting input  
terminal can be isolated on a PCB. This isolation allows the RF signal to be applied directly to the  
noninverting input terminal with no complex interactions from other components or connecting PCB traces.  
High-frequency signals conducted or radiated to any pin of the operational amplifier can result in adverse effects,  
as there is insufficient amplifier loop gain to correct for signals with spectral content outside the bandwidth.  
Conducted or radiated EMI on inputs, power supply, or output can result in unexpected dc offsets, transient  
voltages, or other unknown behavior. Take care to properly shield and isolate sensitive analog nodes from noisy  
radio signals and digital clocks and interfaces.  
7-2 shows the EMIRR +IN of the OPAx186 plotted versus frequency. The OPAx186 unity-gain bandwidth is  
750 kHz. EMIRR performance less than this frequency denotes interfering signals that fall within the op-amp  
bandwidth.  
7.3.4.1 EMIRR +IN Test Configuration  
7-3 shows the circuit configuration for testing the EMIRR +IN. An RF source is connected to the op-amp  
noninverting input pin using a transmission line. The op amp is configured in a unity-gain buffer topology with the  
output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch at the  
op amp input causes a voltage reflection; however, this effect is characterized and accounted for when  
determining the EMIRR IN+. The multimeter samples and measures the resulting dc offset voltage. The LPF  
isolates the multimeter from residual RF signals that can interfere with multimeter accuracy.  
Ambient temperature: 25˘C  
V+  
œ
+
Low-Pass  
Filter  
50  
RF Source  
DC Bias: 0 V  
Modulation: None (CW)  
Digital  
Multimeter  
Sample /  
Averaging  
Vœ  
Frequency Sweep: 201 pt. Log  
Not shown: 0.1 µF and 10 µF supply decoupling  
7-3. EMIRR +IN Test Configuration  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.5 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect from accidental  
ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is  
helpful. 7-4 shows an illustration of the ESD circuits contained in the OPAx186 (indicated by the dashed line  
area). The ESD protection circuitry involves several current-steering diodes connected from the input and output  
pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device internal  
to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse while discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more  
steering diodes. Depending on the path that the current takes, the absorption device can activate. The  
absorption device has a trigger or threshold voltage that is greater than the normal operating voltage of the  
OPAx186, but less than the device breakdown voltage level. When this threshold is exceeded, the absorption  
device quickly activates and clamps the voltage across the supply rails to a safe level.  
7-4 shows that when the operational amplifier connects into a circuit, the ESD protection components are  
intended to remain inactive, and do not become involved in the application circuit operation. However,  
circumstances can arise where an applied voltage exceeds the operating voltage range of a given pin. If this  
condition occurs, there is a risk that some internal ESD protection circuits are biased on and conduct current.  
Any such current flow occurs through steering-diode paths and rarely involves the absorption device.  
TVS(2)  
RF  
V+  
RI  
ESD Current-  
Steering Diodes  
-IN  
(3)  
OUT  
Op Amp  
Core  
RS  
+IN  
Edge-Triggered ESD  
Absorption Circuit  
RL  
ID  
(1)  
VIN  
Vœ  
TVS(2)  
(1) VIN = (V+) + 500 mV  
(2) TVS: 26 V > VTVSBR (min) > V+, where VTVSBR (min) is the minimum specified value for the transient voltage suppressor breakdown  
voltage.  
(3) Suggested value is approximately 5 kΩin example overvoltage condition.  
7-4. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-4 shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (V+) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the  
current, one of the upper input steering diodes conducts and directs current to +VS. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN can begin sourcing current to the operational amplifier, and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
Another common question involves what happens to the amplifier if an input signal is applied to the input while  
the power supplies V+ or Vare at 0 V. Again, this question depends on the supply characteristic while at 0 V,  
or at a level below the input signal amplitude. If the supplies appear as high impedance, then the operational  
amplifier supply current can be supplied by the input source through the current-steering diodes. This state is not  
a normal biasing condition for the amplifier and can result in specification degradation or abnormal operation. If  
the supplies are low impedance, then the current through the steering diodes can become quite high. The  
current level depends on the ability of the input source to deliver current, and any resistance in the input path.  
If there is any uncertainty about the ability of the supply to absorb this current, add external Zener diodes to the  
supply pins; see also 7-4. The Zener voltage must be selected such that the diode does not turn on during  
normal operation. However, the Zener voltage must be low enough so that the Zener diode conducts if the  
supply pin begins to rise above the safe operating supply voltage level.  
7.3.6 MUX-Friendly Inputs  
The OPAx186 features a proprietary input stage design that allows an input differential voltage to be applied  
while maintaining high input impedance. Typically, high-voltage CMOS or bipolar-junction input amplifiers feature  
antiparallel diodes that protect input transistors from large VGS voltages that can exceed the semiconductor  
process maximum and permanently damage the device. Large VGS voltages can be forced when applying a  
large input step, switching between channels, or attempting to use the amplifier as a comparator.  
The OPAx186 solves these problems with a switched-input technique that prevents large input bias currents  
when large differential voltages are applied. This input architecture addresses many issues seen in switched or  
multiplexed applications, where large disruptions to RC filtering networks are caused by fast switching between  
large potentials. The OPAx186 offers outstanding settling performance as a result of these design innovations  
and built-in slew-rate boost and wide bandwidth. The OPAx186 can also be used as a comparator. Differential  
and common-mode input ranges still apply.  
7.4 Device Functional Modes  
The OPAx186 has a single functional mode, and is operational when the power-supply voltage is greater than  
4.5 V (±2.25 V). The maximum power supply voltage for the OPAx186 is 24 V (±12 V).  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The OPAx186 operational amplifier combines precision offset and drift with excellent overall performance,  
making the device an excellent choice for many precision applications. The precision offset drift of only  
0.01 µV/°C provides stability over the entire temperature range. In addition, the device pairs excellent CMRR,  
PSRR, and AOL dc performance with outstanding low-noise operation. As with all amplifiers, applications with  
noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most cases,  
0.1µF capacitors are adequate.  
8.1.1 Basic Noise Calculations  
Low-noise circuit design requires careful analysis of all noise sources. In many cases, external noise sources  
can dominate; consider the effect of source resistance on overall op-amp noise performance. Total noise of the  
circuit is the root-sum-square combination of all noise components.  
The resistive portion of the source impedance produces thermal noise proportional to the square root of the  
resistance. The source impedance is usually fixed; consequently, select op amp and the feedback resistors that  
minimize the respective contributions to the total noise.  
8-1 shows both noninverting (A) and inverting (B) op-amp circuit configurations with gain. In circuit  
configurations with gain, the feedback network resistors also contribute noise. In general, the current noise of the  
op amp reacts with the feedback resistors to create additional noise components. However, the extremely low  
current noise of the OPAx186 means that the current noise contribution can be ignored.  
The feedback resistor values can generally be chosen to make these noise sources negligible. Low impedance  
feedback resistors load the output of the amplifier. The equations for total noise are shown for both  
configurations.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
(A) Noise in Noninverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
42  
41 42  
2
2
2
2
¨
: ;  
1
:
;
:
;
:
;
>
?
84/5  
'
1
= l1 + p A5 + A0 + kA4 2 o + E0 45 + lE0 d  
hp  
æ4  
1
41  
41 + 42  
GND  
œ
EO  
8
: ;  
2
A = 4 G$ 6(-) 45  
d
h
¥
Thermal noise of RS  
+
5
*V  
¾
RS  
41 42  
8
: ;  
3
A4  
= ¨4 G$ 6(-) d  
2
h
d
h
Thermal noise of R1 || R2  
æ4  
1
41 + 42  
*V  
¾
+
,
h
VS  
Source  
GND  
G$ = 1.38065 10F23  
: ;  
4
d
œ
Boltzmann Constant  
-
Temperature in kelvins  
: ;  
>
?
-
5
6(-) = 237.15 + 6%)  
(B) Noise in Inverting Gain Configuration  
Noise at the output is given as EO, where  
R1  
R2  
2
:
;
42  
45 + 41 42  
'
1
= l1 +  
p A0 2 + kA4  
o2 + FE0 H  
+4 æ4  
5 2  
IG  
¨
: ;  
6
:
;
>
84/5  
?
1
45 + 41  
45 + 41 + 42  
RS  
œ
EO  
:
;
45 + 41 42  
8
+
: ;  
7
¨
4 G$ 6(-) H  
A4  
=
I
d
h
Thermal noise of (R1 + RS) || R2  
+4 æ4  
5
1
2
45 + 41 + 42  
*V  
¾
+
VS  
œ
,
GND  
G$ = 1.38065 10F23  
d
h
: ;  
8
Boltzmann Constant  
Source  
GND  
-
: ;  
9
>
?
6(-) = 237.15 + 6%)  
-
Temperature in kelvins  
Copyright © 2017, Texas Instruments Incorporated  
Where en is the voltage noise spectral density of the amplifier. For the OPAx186 operational amplifier, en = 38 nV/Hz at 1 kHz.  
NOTE: For additional resources on noise calculations, visit TI Precision Labs.  
8-1. Noise Calculation in Gain Configurations  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2 Typical Applications  
8.2.1 High-Side Current Sensing  
RL  
+
24 V  
IL  
Load Current  
R1  
R2  
+ 24 V –  
VO  
+
R3  
OPA2186  
R4  
R1 = R3, R2 = R4  
8-2. High-Side Current Monitor  
8.2.1.1 Design Requirements  
A common systems requirement is to monitor the current being delivered to a load. Monitoring makes sure that  
normal current levels are being maintained, and also provides an alert if an overcurrent condition occurs.  
Fortunately, a relatively simple current monitor solution can be achieved using a precision rail-to-rail input/output  
op amp such as the OPAx186. This device has an input common-mode voltage (VCM) range that extends  
200 mV beyond each power supply rail allowing for operation at the supply rail.  
The OPAx186 is configured as a difference amplifier with a predetermined gain. The difference amplifier inputs  
are connected across a sense resistor through which the load current flows. The sense resistor can be  
connected to the high side or low side of the circuit through which the load current flows. Commonly, high-side  
current sensing is applied. 8-2 shows an applicable OPAx186 configuration. Low-side current sensing can be  
applied as well if the sense resistor can be placed between the load and ground.  
Use the following parameters for this design example:  
Single supply: 24 V  
Linear output voltage range: 0.3 V to 3.3 V  
Load current, IL: 1 A to 11 A  
The following design details and equations can be used to reconfigure this design for different output voltage  
ranges and current loads.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
Designing a high-side current monitor circuit is straightforward, provided that the amplifier electrical  
characteristics are carefully considered so that linear operation is maintained. Other additional characteristics,  
such as the input voltage range of the analog to digital converter (ADC) that follows the current monitor stage,  
must also be considered when configuring the system.  
For example, consider the design of a OPAx186 high-side current monitor with an output voltage range set to be  
compatible with the input of an ADC with an input range of 3.3 V, such as one integrated in a microcontroller.  
The full-scale input range of this converter is 0 V to 3.3 V. Although the OPAx186 is specified as a rail-to-rail  
input/output (RRIO) amplifier, the linear output operating range (like all amplifiers) does not quite extend all the  
way to the supply rails. This linear operating range must be considered.  
In this design example, the OPAx186 is powered by 24 V; therefore, the device is easily capable of providing the  
3.3-V positive level; or even more, if the ADC has a wider input range. However, because the OPAx186 output  
does not swing completely to 0 V, the specified lower swing limit must be observed in the design.  
The best measure of an op-amp linear output voltage range comes from the open-loop voltage gain (AOL  
)
specification listed in the Electrical Characteristics table. The AOL test conditions specify a linear swing range  
300 mV from each supply rail (RL = 10 k). Therefore, the linear swing limit on the low end (VoMIN) is 300 mV,  
and 3.3 V is the VoMAX limit, thus yielding an 11:1 VoMAX to VoMIN ratio. This ratio proves important in determining  
the difference amplifier operating parameters.  
A nominal load current (IL) of 10 A is used in this example. In most applications, however, the ability to monitor  
current levels far less than 10 A is useful. This situation is where the 11:1 VoMAX to VoMIN ratio is crucial. If 11 A is  
set as the maximum current, this current must correspond to a 3.3-V output. Using the 11:1 ratio, the minimum  
current of 1 A corresponds to 300 mV.  
Selection of current sense resistor RS comes down to how much voltage drop can be tolerated at maximum  
current and the permissible power loss or dissipation. A good compromise for a 10-A sense application is an RS  
of 10 m. That value results in a power dissipation of 1 W, and a 0.1-V drop at 10 A.  
Next, determine the gain of the OPAx186 difference amplifier circuit. The maximum current of 11 A flowing  
through a 10-msense resistor results in 110 mV across the resistor. That voltage appears as a differential  
voltage, VR, that is applied across the OPAx186 difference amplifier circuit inputs:  
VS = IL *RS  
VS = 11 A *10 mW = 110 mV  
(1)  
The OPAx186 required voltage gain is determined from:  
VOMAX  
GA  
GA  
=
=
VS  
3.3 V  
0.11 V  
V
V
= 30  
(2)  
(3)  
Now, checking the VoMIN using IL = 1 A:  
VOMIN = GA *ISMIN *RS  
V
VOMIN = 30 *1 A *10 mW = 300 mV  
V
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-3 shows the complete OPAx186 high-side current monitor. The circuit is capable of monitoring a current  
range of < 1 A to 11 A, with a VCM very close to the 24-V supply voltage.  
RL = 10 m  
+
24 V  
IL  
Load Current  
1 A to 11 A  
R1 = 1 k  
R2 = 30 k  
+ 24 V –  
+ 3.3 V –  
+
µController  
ADC  
R3 = 1 k  
OPA2186  
R4 = 30 k  
VO = 300 mV to 3.3 V  
8-3. OPAx186 Configured as a High-Side Current Monitor  
In this example, the OPAx186 output voltage is intentionally limited to 3.3 V. However, because of the 24-V  
supply, the output voltage can be much higher to allow for a higher-voltage data converter with a higher dynamic  
range.  
The circuit in 8-3 was checked using the TINA Spice circuit simulation tool to verify the correct operation of  
the OPAx186 high-side current monitor. The simulation results are seen in 8-4. The performance is exactly as  
expected. Upon careful inspection of the plots, one possible surprise is that VO continues towards zero as the  
sense current drops below 1 A, where VO is 300 mV and less.  
RL = 10 m  
+
24 V  
IL  
Load Current  
1 A to 11 A  
R1 = 1 k  
R2 = 30 k  
+ 24 V –  
+ 3.3 V –  
+
µController  
ADC  
R3 = 1 k  
OPA2186  
R4 = 30 k  
VO = 300 mV to 3.3 V  
8-4. OPAx186 High-Side Current-Monitor Simulation Schematic  
The OPAx186 output, as well as other CMOS output amplifiers, often swing closer to 0 V than the linear output  
parameters suggest. The voltage output swing, VO (see the Electrical Characteristics table), is not an indication  
of the linear output range, but rather how close the output can move towards the supply rail. In that region, the  
amplifier output approaches saturation, and the amplifier ceases to operate linearly. Thus, in the current-monitor  
application, the current-measurement capability can continue to much less than the 300-mV output level.  
However, keep in mind that the linearity errors are becoming large.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Lastly, some notes about maximizing the high-side current monitor performance:  
All resistor values are critical for accurate gain results. Match resistor pairs of [R1 and R3] and [R2 and R4]  
as closely as possible to minimize common-mode mismatch error. Use a 0.1% tolerance, or better. Often,  
selecting two adjacent resistors on a reel provides close matching compared to random selection.  
Keep the closed-loop gain, GA, of the OPAx186 difference amplifier set to a reasonable value to reduce gain  
error and maximize bandwidth. A GA of 30 V/V is used in the example.  
Although current monitoring is often used for monitoring dc supply currents, ac current can also be monitored.  
The 3-dB bandwidth, or upper cutoff frequency, of the circuit is:  
GBW  
fH =  
Noise Gain  
(4)  
where  
GBW is the amplifier unity gain bandwidth; 750 kHz for the OPAx186.  
方程5 shows that the noise gain is equal to the gain as seen looking into the op-amp noninverting input, as  
shown in .  
R2  
GNG = 1+  
R1  
(5)  
For the OPAx186 circuit in 8-3, the results are:  
30 kW  
1 kW  
V
V
GNG = 1+  
= 31  
750 kHz  
fH =  
= 24.2 kHz  
31  
Make sure that the amplifier slew rate is sufficient to support the expected output voltage swing range and  
waveform. Also, if a single power supply (such as 24 V) is used, the ac power source applied to the sense input  
must have a positive dc component to keep the VCM greater than 0 V. To maintain normal operation, the input  
voltage cannot drop to less than 0 V.  
The OPAx186 output can attain a 0 V output level if a small negative voltage is used to power the Vpin  
instead of ground. The LM7705 is a switched capacitor voltage inverter with a regulated, low-noise, 0.23-V  
fixed voltage output. Powering the OPAx186 Vpin at this level approximately matches the 300mV linear  
output voltage swing lower limit, thus extending the output swing to 0 V, or very near 0 V. This configuration  
greatly improves the resolution at low sense current levels.  
The LM7705 requires only about 78 μA of quiescent current, but be aware that the specified supply range is 3 V  
to 5.25 V. The 3.3-V or 5-V supply used by the ADC can be used as a power source.  
For more information about amplifier-based, high-side current monitors, see the TI Analog Engineers Circuit  
Cookbook: Amplifiers.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2.1.3 Application Curve  
4
3.6  
3.2  
2.8  
2.4  
2
24.2  
VOUT  
VLOAD  
24.16  
24.12  
24.08  
24.04  
24  
1.6  
1.2  
0.8  
0.4  
0
23.96  
23.92  
23.88  
23.84  
23.8  
0
1
2
3
4
5
6
Input Current (A)  
7
8
9
10 11  
8-5. High-Side Results  
8.2.2 Bridge Amplifier  
8-6 shows the basic configuration for a bridge amplifier. Click the following link to download the TINA-TI file:  
Bridge Amplifier Circuit.  
VEX  
R1  
R
R
R
R
+5V  
VOUT  
VREF  
Copyright © 2017, Texas Instruments Incorporated  
8-6. Bridge Amplifier  
8.3 Power Supply Recommendations  
The OPAx186 is specified for operation from 4.5 V to 24 V (±2.25 V to ±12 V); many specifications apply from –  
40°C to +125°C.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device (see the Absolute Maximum  
Ratings table).  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or  
highimpedance power supplies. For more detailed information on bypass capacitor placement, see 8.4.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4 Layout  
8.4.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices:  
For the lowest offset voltage, avoid temperature gradients that create thermoelectric (Seebeck) effects in the  
thermocouple junctions formed from connecting dissimilar conductors. Also:  
Use low thermoelectric-coefficient conditions (avoid dissimilar metals).  
Thermally isolate components from power supplies or other heat sources.  
Shield operational amplifier and input circuitry from air currents, such as cooling fans.  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the op amp  
itself. Bypass capacitors reduce the coupled noise by providing low-impedance power sources local to the  
analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current. For more detailed information, see the  
The PCB is a component of op amp design analog application journal.  
To reduce parasitic coupling, run the input traces as far away as possible from the supply or output traces. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed  
to in parallel with the noisy trace.  
Place the external components as close as possible to the device. As 8-7 shows, keep the feedback  
resistor (R3) and gain resistor (R4) close to the inverting input to minimize parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
For best performance, clean the PCB following board assembly.  
Any precision integrated circuit can experience performance shifts due to moisture ingress into the plastic  
package. Following any aqueous PCB cleaning process, bake the PCB assembly to remove moisture  
introduced into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at  
85°C for 30 minutes is sufficient for most circumstances.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4.2 Layout Example  
Place bypass  
capacitors as close to  
device as possible  
Use ground pours for  
shielding the input  
signal pairs  
GND  
(avoid use of vias)  
C3  
C4  
+V  
C3  
R3  
R3  
IN–  
C4  
+V  
1
NC  
–IN  
+IN  
V–  
NC  
V+  
8
7
6
5
1
2
3
4
NC  
–IN  
+IN  
V–  
NC  
V+  
8
7
6
5
R1  
R1  
2
IN–  
+
OUT  
IN+  
R2  
3
4
OUT  
NC  
OUT  
NC  
OUT  
R2  
–V  
C1  
R4  
IN+  
GND  
R4  
–V  
C2  
Place components  
C1  
C2  
Use a low-ESR,  
ceramic bypass  
capacitor  
close to device and to  
each other to reduce  
parasitic errors  
8-7. Operational Amplifier Board Layout for Difference Amplifier Configuration  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 PSpice® for TI  
PSpice® for TI 是可帮助评估模拟电路性能的设计和仿真环境。在进行布局和制造之前创建子系统设计和原型解决  
方案可降低开发成本并缩短上市时间。  
9.1.1.2 TINA-TI™ 仿真软件免费下载)  
TINA-TI仿真软件是一款简单易用、功能强大且基于 SPICE 引擎的电路仿真程序。TINA-TI 仿真软件是 TINA™  
软件的一款免费全功能版本除了一系列无源和有源模型外此版本软件还预先载入了一个宏模型库。TINA-TI 仿  
真软件提供所有传统SPICE 直流、瞬态和频域分析以及其他设计功能。  
TINA-TI 仿真软件提供全面的后处理能力便于用户以多种方式获得结果用户可从设计工具和仿真网页免费下  
。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的能力从而构建一个动态的快速启动工具。  
备注  
必须安装 TINA 软件或者 TINA-TI 软件后才能使用这些文件。请从 TINA-TI™ 软件文件夹中下载免费的  
TINA-TI 仿真软件。  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Zero-drift Amplifiers: Features and Benefits application brief  
Texas Instruments, The PCB is a component of op amp design application note  
Texas Instruments, Operational amplifier gain stability, Part 3: AC gain-error analysis  
Texas Instruments, Operational amplifier gain stability, Part 2: DC gain-error analysis  
Texas Instruments, Using infinite-gain, MFB filter topology in fully differential active filters application note  
Texas Instruments, Op Amp Performance Analysis  
Texas Instruments, Single-Supply Operation of Operational Amplifiers application note  
Texas Instruments, Shelf-Life Evaluation of Lead-Free Component Finishes application note  
Texas Instruments, Feedback Plots Define Op Amp AC Performance application note  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers application note  
Texas Instruments, Analog Linearization of Resistance Temperature Detectors application note  
Texas Instruments, TI Precision Design TIPD102 High-Side Voltage-to-Current (V-I) Converter  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
TINA-TIand TI E2Eare trademarks of Texas Instruments.  
TINAis a trademark of DesignSoft, Inc.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
 
 
 
 
OPA186, OPA2186, OPA4186  
ZHCSPS9B JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
9.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: OPA186 OPA2186 OPA4186  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA186DBVR  
OPA186DBVT  
OPA2186DDFR  
OPA2186DR  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
DDF  
D
5
5
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
31CQ  
31CQ  
2MZ3  
Samples  
Samples  
Samples  
Samples  
Samples  
SN  
ACTIVE SOT-23-THIN  
8
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
8
O2186  
OPA4186DR  
D
14  
OPA4186  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Mar-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA186DBVR  
OPA186DBVT  
OPA2186DDFR  
SOT-23  
SOT-23  
DBV  
DBV  
DDF  
5
5
8
3000  
250  
178.0  
178.0  
180.0  
9.0  
9.0  
8.4  
3.3  
3.3  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
SOT-23-  
THIN  
3000  
OPA2186DR  
OPA4186DR  
SOIC  
SOIC  
D
D
8
3000  
3000  
330.0  
330.0  
12.4  
16.4  
6.4  
6.5  
5.2  
9.0  
2.1  
2.1  
8.0  
8.0  
12.0  
16.0  
Q1  
Q1  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA186DBVR  
OPA186DBVT  
OPA2186DDFR  
OPA2186DR  
SOT-23  
SOT-23  
DBV  
DBV  
DDF  
D
5
5
3000  
250  
190.0  
190.0  
210.0  
356.0  
356.0  
190.0  
190.0  
185.0  
356.0  
356.0  
30.0  
30.0  
35.0  
35.0  
35.0  
SOT-23-THIN  
SOIC  
8
3000  
3000  
3000  
8
OPA4186DR  
SOIC  
D
14  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA187

0.001-μV/°C Drift, Low Power, Rail-to-Rail Output 36-V Operational Amplifiers Zero-Drift Series
TI

OPA187ID

0.001-μV/°C Drift, Low Power, Rail-to-Rail Output 36-V Operational Amplifiers Zero-Drift Series
TI

OPA187IDBVR

0.001-μV/°C Drift, Low Power, Rail-to-Rail Output 36-V Operational Amplifiers Zero-Drift Series
TI

OPA187IDBVT

0.001-μV/°C Drift, Low Power, Rail-to-Rail Output 36-V Operational Amplifiers Zero-Drift Series
TI

OPA187IDGKR

0.001-μV/°C Drift, Low Power, Rail-to-Rail Output 36-V Operational Amplifiers Zero-Drift Series
TI

OPA187IDGKT

0.001-μV/°C Drift, Low Power, Rail-to-Rail Output 36-V Operational Amplifiers Zero-Drift Series
TI

OPA187IDR

0.001-μV/°C Drift, Low Power, Rail-to-Rail Output 36-V Operational Amplifiers Zero-Drift Series
TI

OPA187_19

0.001-μV/°C Drift, Low Power, Rail-to-Rail Output 36-V Operational Amplifiers Zero-Drift Series
TI

OPA188

0.03-uV/C Drift, Low-Noise, Rail-to-Rail Output, 36-V, Zero-Drift OPERATIONAL AMPLIFIERS
TI

OPA188-Q1

通过汽车级认证的精密、低噪声、RRO、36V、零漂移运算放大器
TI

OPA188AID

0.03-uV/C Drift, Low-Noise, Rail-to-Rail Output, 36-V, Zero-Drift OPERATIONAL AMPLIFIERS
TI

OPA188AIDBVR

0.03-uV/C Drift, Low-Noise, Rail-to-Rail Output, 36-V, Zero-Drift OPERATIONAL AMPLIFIERS
TI