OPA2156 [TI]

低噪声 (3nV/√Hz @10kHz)、高速(25MHz、40V/µs)、CMOS 精密 RRIO 双路运算放大器;
OPA2156
型号: OPA2156
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低噪声 (3nV/√Hz @10kHz)、高速(25MHz、40V/µs)、CMOS 精密 RRIO 双路运算放大器

放大器 运算放大器
文件: 总37页 (文件大小:1761K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
OPA2156 36V 超低噪声、高带宽、CMOS、精密轨至轨  
运算放大器  
1 特性  
3 说明  
1
超低噪声:10kHz 时为 3nV/Hz  
低失调电压:±25µV  
OPA2156 是计划推出的新一代 36V 轨至轨运算放大  
器中的第一款。  
低失调电压温漂:±0.5µV/°C  
低偏置电流:±5pA  
这款器件具有非常低的失调电压 (±25μV)、漂移  
(±0.5μV/°C) 和低偏置电流 (±5pA),同时还具有非常低  
的宽带电压噪声 (3nV/Hz)。  
共模抑制:120dB  
低噪声:10kHz 时为 3nV/Hz  
高带宽:25MHz GBW  
OPA2156 拥有 独特特性,例如轨至轨输入和输出电压  
范围、宽带宽 (25MHz)、高输出电流 (100mA) 和高压  
摆率 (40V/µs),是一款功能强大、性能出色的运算放  
大器,适用于高压精密工业 应用中节省电路板空间。  
开环电压增益:154dB  
高输出电流:100mA  
轨至轨输入和输出  
高压摆率:40V/µs  
OPA2156 运算放大器可提供 8 引脚 SOIC VSSOP  
封装,可在 –40°C +125°C 的工业温度范围内正常  
工作。  
较短的建立时间:600ns10V 阶跃,0.01%)  
宽电源电压范围:±2.25V ±18V4.5V 36V  
行业标准封装:  
器件信息(1)  
SOIC-8 VSSOP-8 双列封装  
器件型号  
OPA2156  
封装  
SOIC (8)  
VSSOP (8)  
封装尺寸(标称值)  
4.90mm × 3.90mm  
3.00mm × 3.00mm  
2 应用  
数据采集 (DAQ)  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
光电二极管跨阻放大器  
振动监控器模块  
模拟输入模块  
高分辨率 ADC 驱动器放大器  
医疗设备  
低输入电压噪声频谱密度  
OPA2156 跨阻配置  
1000  
100  
10  
Vœ  
-
OPA2156  
Vout  
+
1
100m  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
10M  
V+  
D008  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS900  
 
 
 
 
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information: OPA2156 ................................ 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 19  
8
9
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Application .................................................. 21  
Power Supply Recommendations...................... 23  
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Example .................................................... 24  
11 器件和文档支持 ..................................................... 25  
11.1 器件支持................................................................ 25  
11.2 文档支持................................................................ 25  
11.3 接收文档更新通知 ................................................. 25  
11.4 社区资源................................................................ 25  
11.5 ....................................................................... 25  
11.6 静电放电警告......................................................... 26  
11.7 Glossary................................................................ 26  
12 机械、封装和可订购信息....................................... 26  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (December 2018) to Revision B  
Page  
已添加 向数据表中添加了新的 DGK (VSSOP) 封装和相关内............................................................................................. 1  
已更改 Figure 8, Input Voltage Noise Spectral Density, to include frequencies up to 10 MHz.............................................. 8  
已更改 title of input bias and offset current curves (Figures 12 to 14) to specify SOIC package performance .................... 9  
Changes from Original (September 2018) to Revision A  
Page  
首次发布生产数据数据表 ........................................................................................................................................................ 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
5 Pin Configuration and Functions  
D and DGK Packages  
8-Pin SOIC and 8-Pin VSSOP  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
+IN B  
–IN A  
–IN B  
OUT A  
OUT B  
V+  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Inverting input, channel A  
Inverting input, channel B  
Output, channel A  
5
2
I
6
I
1
O
O
7
Output, channel B  
8
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
3
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
±20  
Supply voltage, VS = (V+) – (V–)  
V
(+40, single supply)  
Common-mode  
Voltage  
(V–) – 0.5  
(V+) + 0.5  
0.5  
V
Signal input pins  
Differential  
Current  
±10  
mA  
Output short circuit(2)  
Temperature  
Continuous  
Operating junction  
Storage, Tstg  
–40  
–65  
150  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extendedperiods may affect device reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5 (±2.25)  
–40  
NOM  
MAX  
36 (±18)  
125  
UNIT  
V
Supply voltage, VS = (V+) – (V–)  
Specified temperature (SOIC)(1)  
°C  
(1) Please see Thermal Considerations section for information on ambient vs device junction temperature  
6.4 Thermal Information: OPA2156  
OPA2156  
THERMAL METRIC(1)  
8 PINS  
UNIT  
D (SOIC)  
119.2  
51.1  
DGK (VSSOP)  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
163.8  
52.5  
86.5  
5.1  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
64.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
9.7  
ψJB  
63.5  
84.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
6.5 Electrical Characteristics  
at TA = 25°C, VS = ±2.25V to ±18V, VCM =VOUT = VS / 2, and RL = 2 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±25  
±200  
±300  
µV  
µV  
Input offset voltage,  
PMOS  
VOS  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
VCM = (V+) – 1.25 V  
See Typical Characteristics  
±0.25  
±3  
±5  
mV  
mV  
Input offset voltage,  
NMOS  
VOS  
VCM = (V+) – 1.25 V, TA = –40°C to +125°C (SOIC)  
VCM = (V+) – 1.25 V, TA = –40°C to +105°C (MSOP)  
PMOS, SOIC  
Input offset voltage drift PMOS, MSOP  
NMOS, VCM = (V+) – 1.25 V  
TA = –40°C to +125°C  
±0.5  
±3  
dVOS/dT  
PSRR  
TA = –40°C to +105°C  
TA = –40°C to +125°C  
µV/°C  
µV/V  
±1  
±0.3  
±4.5  
±5  
Power-supply rejection  
ratio  
TA = –40°C to +125°C (SOIC)  
TA = –40°C to +105°C (MSOP)  
INPUT BIAS CURRENT  
SOIC  
±5  
±5  
±40  
±80  
±1.5  
±15  
pA  
pA  
nA  
nA  
nA  
pA  
nA  
nA  
nA  
MSOP  
IB  
Input bias current  
TA = –40°C to +85°C (SOIC)  
TA = –40°C to +85°C (MSOP)  
TA = –40°C to +125°C  
See Typical Characteristics  
±2  
±40  
±1.5  
±2.5  
TA = –40°C to +85°C (SOIC)  
TA = –40°C to +85°C (MSOP)  
TA = –40°C to +125°C  
IOS  
Input offset current  
Input voltage noise  
See Typical Characteristics  
NOISE  
(V–) < VCM < (V+) – 2.25 V  
(V+) – 1.25 V < VCM < (V+)  
f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
1.9  
3.4  
12.0  
4
En  
µVPP  
Input voltage noise  
density  
en  
(V–) < VCM < (V+) – 2.25 V  
f = 1 kHz  
f = 10 kHz  
3.0  
13.0  
9.7  
4.0  
nV/Hz  
f = 100 Hz  
Input voltage noise  
density  
en  
(V+) – 1.25 V < VCM < (V+)  
f = 1 kHz  
f = 1 kHz  
f = 10 kHz  
Input current noise  
density  
in  
19  
fA/Hz  
INPUT VOLTAGE  
Common-mode voltage  
range  
VCM  
(V–) – 0.1  
106  
(V+) + 0.1  
V
Common-mode  
rejection ratio, PMOS  
CMRR  
CMRR  
CMRR  
CMRR  
CMRR  
CMRR  
(V–) < VCM < (V+) – 2.25 V, VS = ±18 V  
TA = –40°C to +125°C (SOIC)  
120  
120  
Common-mode  
rejection ratio, PMOS  
100  
82  
Common-mode  
rejection ratio, PMOS  
TA = –40°C to +105°C (MSOP)  
(V+) – 1.25 V < VCM < (V+), VS = ±18 V  
TA = –40°C to +125°C (SOIC)  
dB  
Common-mode  
rejection ratio, NMOS  
Common-mode  
rejection ratio, NMOS  
74  
Common-mode  
rejection ratio, NMOS  
TA = –40°C to +105°C (MSOP)  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, VS = ±2.25V to ±18V, VCM =VOUT = VS / 2, and RL = 2 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT IMPEDANCE  
ZID  
ZIC  
Differential  
100 || 9.1  
6 || 1.9  
MΩ || pF  
1012Ω ||  
pF  
Common-mode  
OPEN-LOOP GAIN  
(V–) + 0.6 V < VO < (V+) – 0.6 V, VS = ±18 V (SOIC)  
130  
128  
126  
154  
154  
AOL  
Open-loop voltage gain (V–) + 0.6 V < VO < (V+) – 0.6 V, VS = ±18 V (MSOP)  
TA = –40°C to +85°C  
dB  
FREQUENCY RESPONSE  
GBW  
Unity gain bandwidth  
Gain bandwidth product G = 100  
20  
25  
MHz  
MHz  
V/µs  
ns  
SR  
ts  
Slew rate  
VS = ±18 V, G = –1, 10-V step  
To 0.01%, CL = 20 pF  
40  
Settling time  
VS = ±18 V, G = –1, 10-V step  
600  
100  
–132  
tOR  
Overload recovery time G = –10  
ns  
dB  
G = 1, f = 1 kHz, VO = 3.5 VRMS  
0.000025  
%
Total harmonic  
distortion + noise  
THD+N  
–126  
0.00005%  
150  
dB  
G = 1, f = 20 kHz, VO = 3.5 VRMS  
dc  
dB  
dB  
Crosstalk  
f = 100 kHz  
120  
OUTPUT  
Voltage output swing  
from power supply  
VO  
200  
100  
250  
mV  
ISC  
CL  
Short-circuit current  
Capacitive load drive  
VS = ±18 V  
mA  
pF  
See Typical Characteristics  
25  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A  
Ω
POWER SUPPLY  
4.4  
5.2  
5.2  
mA  
mA  
mA  
Quiescent current per  
amplifier  
IQ  
IO = 0 A  
TA = –40°C to +125°C (SOIC)  
TA = –40°C to +105°C (MSOP)  
TEMPERATURE  
Thermal protection  
Thermal hysteresis  
170  
15  
°C  
°C  
6
版权 © 2018–2019, Texas Instruments Incorporated  
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
6.6 Typical Characteristics  
1. Table of Graphs  
DESCRIPTION  
FIGURE  
1  
Offset Voltage Production Distribution  
Offset Voltage vs Temperature (PMOS)  
Offset Voltage vs Temperature (NMOS)  
Offset Voltage vs Power Supply  
2  
3  
4  
Offset Voltage vs Common-Mode Voltage  
5  
Offset Voltage vs Common-Mode Voltage in Transition Region  
Offset Voltage Drift  
6  
7  
Input Voltage Noise Spectral Density  
0.1-Hz to 10-Hz Noise  
8  
9  
THD+N vs Frequency  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
26  
25  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
THD+N vs Output Amplitude  
Input Bias and Offset Current vs Common-Mode Voltage  
Input Bias and Offset Current vs Temperature  
Input Bias and Offset Current vs Temperature  
Open-Loop Output Impedance vs Frequency  
Maximum Output Voltage vs Frequency  
Open-Loop Gain and Phase Vs Frequency  
Open-Loop Gain vs Temperature  
Closed-Loop Gain vs Frequency  
CMRR vs Frequency  
PSRR vs Frequency  
CMRR vs Temperature  
PSRR vs Temperature  
Positive Output Voltage vs Output Current  
Negative Output Voltage vs Output Current  
Short-Circuit Current vs Temperature  
No Phase Reversal  
Phase Margin vs Capacitive Load  
Small-Signal Overshoot vs Capacitive Load (G = –1)  
Small-Signal Overshoot vs Capacitive Load (G= +1)  
Settling Time  
Negative Overload Recovery  
Positive Overload Recovery  
Small-Signal Step Response (Noninverting)  
Small-Signal Step Response (Inverting)  
Large-Signal Step Response (Noninverting)  
Large-Signal Step Response (Inverting)  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Channel Separation vs Frequency  
EMIRR vs Frequency  
版权 © 2018–2019, Texas Instruments Incorporated  
7
 
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 30 pF (unless otherwise noted)  
18%  
15%  
12%  
9%  
6%  
3%  
0
200  
150  
100  
50  
5 Typical Units Shown  
0
-50  
-100  
-150  
-200  
-200 -160 -120 -80 -40  
0
40  
80 120 160 200  
-50  
-25  
0
25  
50  
75  
100  
125  
Offset Voltage (mV)  
Temperature (èC)  
TA = 25°C  
PMOS region  
1. Offset Voltage Production Distribution  
2. Offset Voltage vs Temperature (PMOS)  
1.5  
1
150  
100  
50  
5 Typical Units Shown  
5 Typical Units Shown  
0.5  
0
0
-0.5  
-1  
-50  
-100  
-150  
-1.5  
-50  
-25  
0
25  
50  
75  
100  
125  
4
8
12  
16  
20  
24  
Supply Voltage (V)  
28  
32  
36  
Temperature (èC)  
NMOS region  
3. Offset Voltage vs Temperature (NMOS)  
4. Offset Voltage vs Power Supply  
5 Typical Units Shown  
2.2  
1.8  
1.4  
1
40  
30  
85 èC  
25 èC  
20  
0.6  
0.2  
-0.2  
-0.6  
-1  
10  
0
-10  
-20  
-30  
-40  
Vcm = 15.75V  
Vcm = 16.75V  
-40 èC  
-1.4  
-1.8  
-2.2  
-18  
-14  
-10  
Input Common-mode Voltage (V)  
-6  
-2  
2
6
10  
14  
14  
14.5  
15  
Input Common-mode Voltage (V)  
15.5  
16  
16.5  
17  
17.5  
18  
Transition between PMOS and NMOS regions  
5. Offset Voltage vs Common-Mode Voltage  
6. Offset Voltage vs Common-Mode Voltage in Transition  
Region  
8
版权 © 2018–2019, Texas Instruments Incorporated  
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 30 pF (unless otherwise noted)  
30%  
25%  
20%  
15%  
10%  
5%  
1000  
100  
10  
1
100m  
0
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
10M  
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
3
Offset Voltage Drift (uV/èC)  
D008  
TA = –40°C to +125°C  
7. Offset Voltage Drift  
8. Input Voltage Noise Spectral Density  
0.001  
-100  
G +1, RLoad = 10KW  
G +1, RLoad = 2KW  
G -1, RLoad = 10KW  
G -1, RLoad = 2KW  
0.0001  
-120  
1E-5  
-140  
100  
1k  
Frequency (Hz)  
10k  
Time (1 s/div)  
3.5 VRMS, 80-kHz measurement bandwidth  
9. 0.1-Hz to 10-Hz Noise  
10. THD+N vs Frequency  
0.1  
-60  
100  
80  
G +1, RLoad = 10KW  
G +1, RLoad = 2KW  
G -1, RLoad = 10KW  
G -1, RLoad = 2KW  
Ib+  
60  
0.01  
-80  
Ib-  
40  
20  
0
0.001  
0.0001  
1E-5  
-100  
-120  
-140  
-20  
-40  
-60  
-80  
-100  
Ios  
-20 -16 -12  
-8  
-4  
0
4
8
Input Common-mode Voltage (V)  
12  
16  
20  
10m  
100m 1  
Output Amplitude (VRMS  
10  
)
1 kHz, 80-kHz measurement bandwidth  
12. Input Bias and Offset Current vs Common-Mode  
11. THD+N vs Output Amplitude  
Voltage (SOIC)  
版权 © 2018–2019, Texas Instruments Incorporated  
9
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 30 pF (unless otherwise noted)  
1.4  
1.2  
1
45  
35  
25  
15  
5
Ib+  
0.8  
0.6  
0.4  
0.2  
0
Ib-  
Ios  
-0.2  
-5  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
50  
60  
70  
80  
90  
100  
110  
120  
130  
Temperature (èC)  
Temperature (èC)  
TA = –55°C to +85°C  
TA = –55°C to +125°C  
13. Input Bias and Offset Current vs Temperature (SOIC)  
14. Input Bias and Offset Current vs Temperature (SOIC)  
100  
50  
Vs=ê18 V  
Vs=ê5 V  
Vs=ê2.25 V  
40  
10  
30  
20  
10  
0
1
0.1  
1
10  
100  
1k 10k 100k  
Frequency (Hz)  
1M  
10M 100M  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
15. Open-Loop Output Impedance vs Frequency  
240  
Gain  
16. Maximum Output Voltage vs Frequency  
160  
140  
120  
100  
80  
170  
160  
150  
140  
130  
120  
210  
180  
150  
120  
90  
Phase  
0.01  
0.1  
1
Vs = 36V  
60  
40  
60  
20  
30  
Vs = 4.5V  
0
0
-20  
-30  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
100m  
1
10  
100 1k 10k 100k 1M 10M  
Frequency (Hz)  
Temperature (èC)  
18. Open-Loop Gain vs Temperature  
17. Open-Loop Gain and Phase vs Frequency  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 30 pF (unless otherwise noted)  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
G = +1  
G= -1  
G= +10  
G= +100  
CMRR  
60  
40  
-10  
-20  
20  
0
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
19. Closed-Loop Gain vs Frequency  
20. CMRR vs Frequency  
160  
140  
120  
100  
80  
122  
120  
118  
116  
114  
PSRR+  
PSRR-  
60  
40  
20  
0
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
21. PSRR vs Frequency  
22. CMRR vs Temperature  
25 èC  
140  
135  
130  
125  
120  
0.1  
0.32  
1
18  
17.5  
17  
16.5  
16  
-40 èC  
15.5  
15  
125 èC  
85 èC  
14.5  
14  
13.5  
13  
12.5  
12  
-50  
-25  
0
25  
50  
75  
100  
125  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Output Current (mA)  
Temperature (èC)  
23. PSRR vs Temperature  
24. Positive Output Voltage vs Output Current  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 30 pF (unless otherwise noted)  
-12  
-12.5  
-13  
140  
120  
100  
80  
-13.5  
-14  
85 èC  
125 èC  
-14.5  
-15  
-15.5  
-16  
-16.5  
-17  
-40 èC  
25 èC  
-17.5  
-18  
60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60 80  
Output Current (mA)  
100  
120  
140  
Temperature (èC)  
25. Short-Circuit Current vs Temperature  
26. Negative Output Voltage vs Output Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin (V)  
Vout (V)  
10  
100  
Cload (pF)  
1000  
Time (100 ms/div)  
27. No Phase Reversal  
28. Phase Margin vs Capacitive Load  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
RISO = 0  
RISO = 25  
RISO = 50  
RISO = 0  
RISO = 25  
RISO = 50  
10  
100  
Capactiance (pF)  
1000  
10  
100  
Capactiance (pF)  
1000  
10-mV output step, gain = –1  
10-mV output step, gain = +1  
29. Small Signal Overshoot vs Capacitive Load  
30. Small Signal Overshoot vs Capacitive Load  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 30 pF (unless otherwise noted)  
Falling  
Rising  
VIN  
VOUT  
Time (200 ns/div)  
Time (200 ns/div)  
Vin = 5-Vpp  
Gain = –10  
31. Normalized Settling Time  
32. Negative Overload Recovery  
VIN  
VOUT  
VIN  
VOUT  
Time (200 ns/div)  
Time (1 ms/div)  
Gain = –10  
Vin = 10 mVpp, gain = 1  
33. Positive Overload Recovery  
34. Small-Signal Step Response (Noninverting)  
VIN  
VOUT  
Vin  
Vout  
Time (1 ms/div)  
Time (1 ms/div)  
Vin = 10 mVpp, gain = –1  
Vin = 5 Vpp, gain = 1  
35. Small-Signal Step Response (Inverting)  
36. Large-Signal Step Response (Noninverting)  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RL = 10 kΩ connected to VS / 2, and CL = 30 pF (unless otherwise noted)  
5
Vin  
Vout  
4.5  
4
3.5  
Vs = 4.5V  
3
2.5  
2
Time (1 ms/div)  
0
4
8
12  
16  
20  
Supply Voltage (V)  
24  
28  
32  
36  
Vin = 5 Vpp, gain = –1  
37. Large Signal Step Response (Inverting)  
38. Quiescent Current vs Supply Voltage  
4.44  
4.41  
4.38  
4.35  
4.32  
4.29  
4.26  
4.23  
4.2  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
Vs = 36V  
Vs = 4.5V  
4.17  
4.14  
4.11  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
Temperature (èC)  
39. Quiescent Current vs Temperature  
40. Channel Separation vs Frequency  
120  
100  
80  
60  
40  
20  
10M  
100M  
Frequency (Hz)  
1G  
10G  
Prf =-10 dBm  
41. EMIRR vs Frequency  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
7 Detailed Description  
7.1 Overview  
The OPA2156 is laser trimmed to improve offset and uses a three-gain-stage architecture to achieve very low  
noise and distortion. The Functional Block Diagram shows a simplified schematic of the OPA2156 (one channel  
shown). The device consists of a low noise input stage and feed-forward pathway coupled to a high-current  
output stage. This topology exhibits superior distortion performance under a wide range of loading conditions  
compared to other operational amplifiers.  
7.2 Functional Block Diagram  
Feedforward  
Path  
Ca  
Cb  
+IN  
2nd Gain  
Stage  
High-Current  
Output  
Stage  
Low-Noise  
Input Stage  
OUT  
-IN  
7.3 Feature Description  
7.3.1 Phase Reversal Protection  
The OPA2156 has internal phase-reversal protection. Many op amps exhibit phase reversal when the input is  
driven beyond the linear common-mode range. This condition is most often encountered in noninverting circuits  
when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into  
the opposite rail. The input of the OPA2156 prevents phase reversal with excessive common-mode voltage.  
Instead, the appropriate rail limits the output voltage. This performance is shown in 42.  
20  
15  
10  
5
0
-5  
-10  
-15  
VIN  
VOUT  
-20  
Time (125 s/div)  
C004  
42. Output Waveform Devoid of Phase Reversal During an Input Overdrive Condition  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
 
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
A good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is helpful. 图  
43 illustrates the ESD circuits contained in the OPA2156 (indicated by the dashed line area). The ESD  
protection circuitry involves several current-steering diodes connected from the input and output pins and routed  
back to the internal power-supply lines, where the diodes meet at an absorption device internal to the operational  
amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.  
TVS  
RF  
+VS  
R1  
RS  
250 Ω  
250 Ω  
INœ  
IN+  
+
Power-Supply  
ESD Cell  
ID  
RL  
+
VIN  
œ
œVS  
TVS  
43. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse when discharging through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more  
steering diodes. Depending on the path that the current takes, the absorption device can activate. The absorption  
device has a trigger, or threshold voltage, that is above the normal operating voltage of the OPA2156 but below  
the device breakdown voltage level. When this threshold is exceeded, the absorption device quickly activates  
and clamps the voltage across the supply rails to a safe level.  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
Feature Description (接下页)  
When the operational amplifier connects into a circuit (see 43), the ESD protection components are intended  
to remain inactive and do not become involved in the application circuit operation. However, circumstances may  
arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there  
is a risk that some internal ESD protection circuits can turn on and conduct current. Any such current flow occurs  
through steering-diode paths and rarely involves the absorption device.  
43 shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (V+) by 500  
mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the  
current, one of the upper input steering diodes conducts and directs current to V+. Excessively high current  
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that  
applications limit the input current to 10 mA.  
If the supply is not capable of sinking the current, VIN can begin sourcing current to the operational amplifier and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
Another common question involves what happens to the amplifier if an input signal is applied to the input when  
the power supplies (V+ or V–) are at 0 V. Again, this question depends on the supply characteristic when at 0 V,  
or at a level below the input signal amplitude. If the supplies appear as high impedance, then the input source  
supplies the operational amplifier current through the current-steering diodes. This state is not a normal bias  
condition; most likely, the amplifier does not operate normally. If the supplies are low impedance, then the current  
through the steering diodes can become quite high. The current level depends on the ability of the input source  
to deliver current, and any resistance in the input path.  
If there is any uncertainty about the ability of the supply to absorb this current, add external Zener diodes to the  
supply pins; see 43. Select the Zener voltage so that the diode does not turn on during normal operation.  
However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin begins to rise  
above the safe-operating, supply-voltage level.  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.3 Thermal Considerations  
Through normal operation the OPA2156 will experience self-heating, a natural increase in the die junction  
temperature which occurs in every amplifier. This is a result of several factors including the quiescent power  
consumption, the package’s thermal dissipation, PCB layout and the device operating conditions.  
To fully ensure the amplifier will operate without entering thermal shutdown it is important to calculate the  
approximate junction (die) temperature which can be done using 公式 1.  
T = P  
D
*QJ  
A
+ T  
A
J
(1)  
公式 2 shows the approximate junction temperature for the OPA2156 while unloaded with an ambient  
temperature of 25°C.  
T = (36V *4.4mA)*120èC /W + 25èC  
J
T = 44èC  
J
(2)  
For high voltage, high precision amplifiers such as the OPA2156 the junction temperature can easily be 10s of  
degrees higher than the ambient temperature in a quiescent (unloaded) condition. If the device then begins to  
drive a heavy load the junction temperature may rise and trip the thermal shutdown circuit. The 44 shows the  
maximum output voltage of the OPA2156 without entering thermal shutdown vs ambient temperature in both a  
loaded and unloaded condition.  
20  
15  
10  
5
Vs Max (No Load)  
Vs Max (600W Load)  
0
0
25  
50  
75  
100  
125  
150  
175  
Ambient Temperature (èC)  
44. OPA2156 Thermal Safe Operating Area  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
Feature Description (接下页)  
7.3.4 Thermal Shutdown  
The internal power dissipation of any amplifier causes the internal (junction) temperature to rise. This  
phenomenon is called self heating. The OPA2156 has a thermal protection feature that prevents damage from  
self heating.  
This thermal protection works by monitoring the temperature of the output stage and turning off the op amp  
output drive for temperatures above approximately 170°C. Thermal protection forces the output to a high-  
impedance state. The OPA2156 is also designed with approximately 15°C of thermal hysteresis. Thermal  
hysteresis prevents the output stage from cycling in and out of the high-impedance state. The OPA2156 returns  
to normal operation when the output stage temperature falls below approximately 155°C.  
The absolute maximum junction temperature of the OPA2156 is 150°C. Exceeding the limits shown in the  
Absolute Maximum Ratings table may cause damage to the device. Thermal protection triggers at 170°C  
because of unit-to-unit variance, but does not interfere with device operation up to the absolute maximum ratings.  
This thermal protection is not designed to prevent this device from exceeding absolute maximum ratings, but  
rather from excessive thermal overload.  
7.3.5 Common-Mode Voltage Range  
The OPA2156 is a 36-V, true rail-to-rail input operational amplifier with an input common-mode range that  
extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel  
and P-channel differential input pairs. The N-channel pair is active for input voltages close to the positive rail,  
typically (V+) – 2.25 V to 100 mV above the positive supply. The P-channel pair is active for inputs from 100 mV  
below the negative supply to approximately (V+) – 1.25 V. There is a small transition region, typically (V+) –  
2.25V to (V+) – 1.25 V in which both input pairs are active. This transition region varies modestly with process  
variation. Within this region PSRR, CMRR, offset voltage, offset drift, noise, and THD performance are degraded  
compared to operation outside this region.  
To achieve the best performance for two-stage rail-to-rail input amplifiers, avoid the transition region when  
possible. The OPA2156 uses a precision trim for both the N-channel and P-channel regions. This technique  
enables significantly lower levels of offset than previous-generation devices, causing variance in the transition  
region of the input stages to appear exaggerated relative to offset over the full common-mode range.  
7.3.6 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a  
linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the  
rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
7.4 Device Functional Modes  
The OPA2156 has a single functional mode and is operational when the power-supply voltage is greater than  
4.5 V (±2.25 V). The maximum power supply voltage for the OPA2156 is 36 V (±18 V).  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPA2156 offers excellent dc precision and ac performance. The device operates with up to 36-V supply rails  
offering true rail-to-rail input/output, low offset voltage and offset voltage drift, as well as  
25-MHz bandwidth and low input bias. These features make the OPA2156 a robust, high-performance  
operational amplifier for high-voltage industrial applications.  
8.1.1 Slew Rate Limit for Input Protection  
In control systems for valves or motors, abrupt changes in voltages or currents can cause mechanical damages.  
By controlling the slew rate of the command voltages into the drive circuits, the load voltages ramps up and down  
at a safe rate. For symmetrical slew-rate applications (positive slew rate equals negative slew rate), one  
additional op amp provides slew-rate control for a given analog gain stage. The unique input protection and high  
output current and slew rate of the OPA2156 make the device an optimal amplifier to achieve slew rate control  
for both dual- and single-supply systems.45 shows the OPA2156 in a slew-rate limit design.  
Op Amp Gain Stage  
Slew Rate Limiter  
C1  
R1  
VCC  
VCC  
-
R2  
-
OPA2156  
+
VIN  
OPA2156  
+
VOUT  
VEE  
RL  
VEE  
45. Slew Rate Limiter Uses One Op Amp  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test  
results, refer to TI Precision Design TIDU026, Slew Rate Limiter Uses One Op Amp.  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
8.2 Typical Application  
The combination of low input bias, high slew rate and a rail-to-rail input and output enable the OPA2156 to serve  
as an accurate differential photodiode transimpedance amplifier. This application example shows the design of  
such a system.  
CF 2.7pF  
RF 54.9k  
+12V  
OPA2156  
-
+
+
-12V  
VOUT  
-
+
-
OPA2156  
+12V  
RF 54.9k  
CF 2.7pF  
46. OPA2156 Configured as a Differential Photodiode Transimpedance Amplifier  
8.2.1 Design Requirements  
The design requirements for this design are:  
Photodiode current: 0 µA to 90 µA  
Output voltage: –5 V to 5 V  
Supply voltage: ±12 V  
Filter cutoff frequency: 1 MHz  
8.2.2 Detailed Design Procedure  
In this example the OPA2156 serves as a transimpedance amplifier for a differential photodiode. The differential  
configuration allows for a wider output range (0 to 10-V differential) compared to a single-ended configuration (0  
V to 5 V). This output can be connected to a differential successive approximation register (SAR) analog-to-  
digital converter (ADC). The basic equation for a differential transimpedance amplifier output voltage is shown in  
公式 3.  
VOUT = IPD ì2ì R  
F
(3)  
公式 3 can be rearranged to calculate the value of the feedback resistors as shown in 公式 4.  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Typical Application (接下页)  
V
OUT (MAX ) -VOUT (MIN )  
2 ì IIN (MAX )  
Ç R  
F
5V - (-5V )  
Ç 55.6kW  
2 ì90  
m
A
(4)  
Adding a capacitor to the feedback loop creates a filter which will remove undesired noise beyond its cutoff  
frequency. For this application a 1-MHz cutoff frequency was selected. The equation for an RC filter is provided  
in 公式 5.  
1
fC  
=
2 ì  
p
ì R  
F
ìCF  
(5)  
Rearranging this equation to solve for the capacitor value is show in 公式 6.  
1
CF  
Ç
Ç 2.7pF  
2ìp ì54kWì1MHz  
(6)  
For more information on photodiode transimpedance amplifier system design and for a single-ended example,  
see TIDU535: 1 MHz, Single-Supply, Photodiode Amplifier Reference Design.  
8.2.3 Application Curves  
10  
9
8
7
6
5
4
3
2
1
0
120  
100  
80  
-3dB = 1.6MHz  
60  
40  
20  
0
15  
30  
45  
60  
75  
90  
100  
10k  
Frequency (Hz)  
1M  
100M  
Input Current (mA)  
47. Differential Photodiode DC Transfer  
48. Differential Photodiode AC Transfer  
150  
100  
Phase Margin = 60 deg  
120  
90  
60  
30  
0
80  
60  
40  
20  
0
-30  
-60  
-20  
-40  
Gain  
Phase  
100  
10k  
Frequency (Hz)  
1M  
100M  
49. Differential Photodiode Stability  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
9 Power Supply Recommendations  
The OPA2156 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from  
–40°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature  
are presented in the Typical Characteristics.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close  
as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-supply  
applications.  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources  
local to the analog circuitry.  
Make sure to physically separate digital and analog grounds paying attention to the flow of the ground  
current. Separate grounding for analog and digital portions of circuitry is one of the simplest and most-  
effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to  
ground planes. A ground plane helps distribute heat and reduces EMI noise pickup.  
In order to reduce parasitic coupling, run the input traces as far away as possible from the supply or output  
traces. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as  
opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 50, keeping RF and RG  
close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Clean the PCB following board assembly for best performance.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic  
package. After any aqueous PCB cleaning process, bake the PCB assembly to remove moisture introduced  
into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at 85°C for 30  
minutes is sufficient for most circumstances.  
10.1.1 Power Dissipation  
The OPA2156 op amp is capable of driving a variety of loads with a power-supply voltage up to ±18 V and full  
operating temperature range. Internal power dissipation increases when operating at high supply voltages and/or  
high output currents. Copper leadframe construction used in the OPA2156 improves heat dissipation compared  
to conventional materials. Circuit board layout can also help minimize junction temperature rise. Wide copper  
traces help dissipate the heat by acting as an additional heat sink. Temperature rise can be further minimized by  
soldering the devices to the circuit board rather than using a socket.  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
Layout Guidelines (接下页)  
The OPA2156 has an internal thermal protection feature which prevents it from being damaged due to self  
heating, or the internal heating generated during normal operation. The protection circuitry works by monitoring  
the temperature of the output stage and turns of the output drive if the junction temperature of the device rises to  
approximately 170°C. The device has a thermal hysteresis of approximately 15°C, which allows the device to  
safely cool down before returning to normal operation at approximately 155°C. TI recommends that the system  
design takes into account the thermal dissipation of the OPA2156 to ensure that the recommended operating  
junction temperature of 125°C is not exceeded to avoid decreasing the lifespan of the device or permanently  
damaging the amplifier.  
10.2 Layout Example  
VIN A  
VIN B  
+
+
VOUT A  
VOUT B  
RG  
RG  
RF  
RF  
(Schematic Representation)  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
Output A  
Use low-ESR,  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VS+  
GND  
OUTPUT A  
V+  
RF  
Output B  
GND  
-IN A  
+IN A  
Vœ  
OUTPUT B  
-IN B  
RF  
RG  
GND  
VIN A  
RG  
+IN B  
VIN B  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VSœ  
Ground (GND) plane on another layer  
as possible.  
50. Operational Amplifier Board Layout for Noninverting Configuration  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA2156  
www.ti.com.cn  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。TINA-TI TINA 软件的一  
款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有传  
统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可通过模拟电子实验室设计中心免费下载,该软件提供了丰富的后处理能力,允许用户以各种方式设置结  
果的格式。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的功能,从而构建一个动态的快速入门工  
具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹中下载免费的 TINA-TI 软件(网址为 http://www.ti.com.cn/tool/cn/tina-ti)。  
11.1.1.2 TI 高精度设计  
TI 高精度设计(请访问 http://www.ti.com.cn/ww/analog/precision-designs/ 获取)是由 TI 公司高精度模拟 应用 专  
家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板 (PCB) 电路原理图和  
布局布线、物料清单以及性能测量结果。  
11.2 文档支持  
11.2.1 相关文档  
德州仪器 (TI)《运算放大器的 EMI 抑制比》 应用报告  
德州仪器 (TI)0-1A 单电源低侧电流检测解决方案》 参考设计  
德州仪器 (TI)《适合所有人的运算放大器》 设计参考  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
OPA2156  
ZHCSIQ3B SEPTEMBER 2018REVISED JUNE 2019  
www.ti.com.cn  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2156ID  
OPA2156IDGKR  
OPA2156IDGKT  
OPA2156IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OP2156  
DGK  
DGK  
D
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
1THV  
1THV  
OP2156  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2156IDGKR  
OPA2156IDGKT  
OPA2156IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500  
250  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
5.3  
5.3  
6.4  
3.4  
3.4  
5.2  
1.4  
1.4  
2.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2156IDGKR  
OPA2156IDGKT  
OPA2156IDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
2500  
250  
366.0  
366.0  
356.0  
364.0  
364.0  
356.0  
50.0  
50.0  
35.0  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA2156ID  
D
8
75  
506.6  
8
3940  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

OPA2156ID

低噪声 (3nV/√Hz @10kHz)、高速(25MHz、40V/µs)、CMOS 精密 RRIO 双路运算放大器 | D | 8 | -40 to 125
TI

OPA2156IDGKR

低噪声 (3nV/√Hz @10kHz)、高速(25MHz、40V/µs)、CMOS 精密 RRIO 双路运算放大器 | DGK | 8 | -40 to 125
TI

OPA2156IDGKT

低噪声 (3nV/√Hz @10kHz)、高速(25MHz、40V/µs)、CMOS 精密 RRIO 双路运算放大器 | DGK | 8 | -40 to 125
TI

OPA2156IDR

低噪声 (3nV/√Hz @10kHz)、高速(25MHz、40V/µs)、CMOS 精密 RRIO 双路运算放大器 | D | 8 | -40 to 125
TI

OPA2170

36V, Single-Supply, SOT553, Low-Power OPERATIONAL AMPLIFIERS
TI

OPA2170-Q1

汽车级、双路、36V、1.2MHz、低功耗运算放大器
TI

OPA2170AID

36V, Single-Supply, SOT553, Low-Power OPERATIONAL AMPLIFIERS
TI

OPA2170AIDCUR

36V, Single-Supply, SOT553, Low-Power OPERATIONAL AMPLIFIERS
TI

OPA2170AIDCUT

36V, Single-Supply, SOT553, Low-Power OPERATIONAL AMPLIFIERS
TI

OPA2170AIDGK

36V, Single-Supply, SOT553, Low-Power OPERATIONAL AMPLIFIERS
TI

OPA2170AIDGKR

36V, Single-Supply, SOT553, Low-Power OPERATIONAL AMPLIFIERS
TI

OPA2170AIDR

36V, Single-Supply, SOT553, Low-Power OPERATIONAL AMPLIFIERS
TI