OPA2197-Q1 [TI]

汽车类双路 36V、精密轨到轨输入/输出、低失调电压运算放大器;
OPA2197-Q1
型号: OPA2197-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类双路 36V、精密轨到轨输入/输出、低失调电压运算放大器

放大器 运算放大器
文件: 总45页 (文件大小:3136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
OPAx197-Q1 36V 精密轨到轨输入/输出、低失调电压、  
低输入偏置电e-trim™ 运算放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
OPAx197-Q1 OPA197-Q1OPA2197-Q1 和  
OPA4197-Q1是新一代 36V e-trim运算放大器的一  
部分。OPAx197-Q1 系列 e-trim 运算放大器使用专有  
的封装级修整方法在塑模成型工艺之后的最后制造步  
骤中实现失调和失调温度漂移。该方法可更大限度地减  
少固有的输入晶体管不匹配的影响和在封装成型过程中  
引入的误差。  
– 温度等140°C +125°CTA  
• 低失调电压±250µV最大值)  
• 低失调电压漂移±0.2µV/°C  
• 低噪声1 kHz 5.5nV/Hz  
• 高共模抑制140 dB  
• 低偏置电流±5pA  
• 轨至轨输入和输出  
• 宽带宽10 MHz GBW  
• 高压摆率20V/µs  
• 低静态电流每个放大1 mA  
• 宽电源电压±2.25V ±18V4.5V 36V  
EMI/RFI 滤波输入  
• 电源轨的差分输入电压范围  
• 高容性负载驱动能力1nF  
• 行业标准封装:  
这些器件具有出色的直流精度和交流性能包括轨至轨  
输入/输出、低失调电压典型值为 ±5µV、低温漂  
典型值±0.2µV/°C10MHz 带宽。  
OPAx197-Q1 具有独特功能例如电源轨的差分输入  
电压范围、高输出电流 (±65mA)、高达 1nF 的高容性  
负载驱动以及高压摆率 (20V/µs)是一款稳定可靠的  
高性能运算放大器适用于各种高电压工业应用。  
器件信息  
封装(1)  
VSSOP (8)  
TSSOP (14)  
封装尺寸标称值)  
3.00mm × 3.00mm  
5.00mm × 4.40mm  
– 采用超小8 VSSOP 封装的单通道和双通  
14 TSSOP 四通道  
器件型号  
OPA197-Q1  
OPA2197-Q1  
OPA4197-Q1  
2 应用  
(1) 要了解所有可用封装请参见数据表末尾的封装选项附录。  
逆变器和电机控制  
直流/直流转换器  
车载充电(OBC) 和无线充电器  
电池管理系(BMS)  
100  
66 Typical Units Shown  
75  
50  
25  
0
œ25  
œ50  
œ75  
œ100  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
OPAx197-Q1 在整个温度范围内保持超低的输入失调电压  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS918  
 
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................22  
7.4 Device Functional Modes..........................................28  
8 Application and Implementation..................................29  
8.1 Application Information............................................. 29  
8.2 Typical Applications.................................................. 29  
9 Power Supply Recommendations................................33  
10 Layout...........................................................................33  
10.1 Layout Guidelines................................................... 33  
10.2 Layout Examples.................................................... 34  
11 Device and Documentation Support..........................35  
11.1 Device Support........................................................35  
11.2 Documentation Support.......................................... 35  
11.3 接收文档更新通知................................................... 35  
11.4 支持资源..................................................................35  
11.5 Trademarks............................................................. 36  
11.6 静电放电警告...........................................................36  
11.7 术语表..................................................................... 36  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings ....................................... 6  
6.2 ESD Ratings .............................................................. 6  
6.3 Recommended Operating Conditions ........................6  
6.4 Thermal Information: OPA197-Q1 ............................. 7  
6.5 Thermal Information: OPA2197-Q1 ........................... 7  
6.6 Thermal Information: OPA4197-Q1 ........................... 7  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V  
(VS = 8 V to 36 V) .........................................................8  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V  
(VS = 4.5 V to 8 V) ......................................................10  
6.9 Typical Characteristics..............................................12  
7 Detailed Description......................................................21  
7.1 Overview...................................................................21  
7.2 Functional Block Diagram.........................................21  
Information.................................................................... 36  
4 Revision History  
Changes from Revision * (March 2018) to Revision A (January 2021)  
Page  
• 添加OPA4197-Q1 和相关内容........................................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
NC  
IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
+
OUT  
NC  
Not to scale  
5-1. OPA197-Q1 DGK Package, 8-Pin VSSOP, Top View  
Pin Functions: OPA197-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN  
NO.  
3
I
I
Noninverting input  
Inverting input  
2
IN  
NC  
1, 5, 8  
No internal connection (can be left floating)  
Output  
OUT  
V+  
6
7
4
O
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
OUT A  
IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OUT B  
IN B  
+IN B  
Not to scale  
5-2. OPA2197-Q1 DGK Package, 8-Pin VSSOP, Top View  
Pin Functions: OPA2197-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
+IN B  
IN A  
IN B  
OUT A  
OUT B  
V+  
DGK (VSSOP)  
3
5
2
6
1
7
8
4
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Inverting input, channel A  
Inverting input, channel B  
Output, channel A  
I
I
O
O
Output, channel B  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
OUT A  
IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
IN D  
+IN D  
V–  
+IN B  
IN B  
OUT B  
+IN C  
IN C  
OUT C  
8
Not to scale  
5-3. OPA4197-Q1 PW Package, 14-Pin TSSOP, Top View  
Pin Functions: OPA4197-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
+IN B  
+IN C  
+IN D  
IN A  
IN B  
IN C  
IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Inverting input, channel A  
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Output, channel A  
5
10  
12  
2
I
I
I
6
I
9
I
13  
1
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
4
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
11  
V–  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Single supply, VS = (V+)  
40  
±20  
VS  
Supply voltage  
V
Dual supply, VS = (V+) (V)  
Common-mode  
(V+) + 0.5  
(V) 0.5  
Signal input voltage  
V
(V+) (V) +  
Differential  
0.2  
Signal input current  
Output short circuit(2)  
Latch-up per JESD78D  
Operating temperature  
Junction temperature  
Storage temperature  
±10  
mA  
Continuous  
Class IIA  
TA  
150  
150  
150  
°C  
°C  
°C  
55  
TJ  
Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
OPA197-Q1, OPA2197-Q1  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 3A  
±4000  
±500  
V(ESD)  
Electrostatic discharge  
V
Charge device model (CDM), per AEC Q100-011  
CDM ESD classification level C4A  
OPA4197-Q1  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±2000  
±750  
V(ESD)  
Electrostatic discharge  
V
Charge device model (CDM), per AEC Q100-011  
CDM ESD classification level C5  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
36  
UNIT  
V
Single supply, VS = (V+)  
VS  
TA  
Supply voltage  
±2.25  
±18  
125  
Dual supply, VS = (V+) (V)  
Operating temperature  
°C  
40  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
 
 
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.4 Thermal Information: OPA197-Q1  
OPA197-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
180.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
67.9  
102.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
10.4  
ψJT  
100.3  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2197-Q1  
OPA2197-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
158  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
48.6  
78.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
3.9  
ψJT  
77.3  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4197-Q1  
OPA4197-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
108.1  
26.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
54.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
1.4  
ψJT  
53.3  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
MAX UNIT  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
OFFSET VOLTAGE  
±25  
±30  
±50  
±10  
±25  
±50  
±0.5  
±0.8  
±250  
±350  
TA = 0°C to 85°C  
±400  
µV  
±250  
TA = 40°C to +125°C  
VOS  
Input offset voltage  
TA = 0°C to 85°C  
±350  
±500  
VCM = (V+) 1.5 V  
TA = 40°C to +125°C  
TA = 0°C to 85°C  
±2.5  
µV/°C  
±4.5  
Input offset voltage  
drift  
dVOS/dT  
PSRR  
TA = 40°C to +125°C  
Power-supply  
rejection ratio  
±0.3  
±1.0 µV/V  
TA = 40°C to +125°C  
INPUT BIAS CURRENT  
±5  
±2  
±20  
±5  
pA  
nA  
pA  
nA  
IB  
Input bias current  
Input offset current  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
±20  
±2  
IOS  
NOISE  
(V) 0.1 V < VCM < (V+) 3  
V
f = 0.1 Hz to 10 Hz  
f = 0.1 Hz to 10 Hz  
1.3  
4
En  
Input voltage noise  
µVPP  
(V+) 1.5 V < VCM < (V+) + 0.1  
V
f = 100 Hz  
f = 1 kHz  
f = 100 Hz  
f = 1 kHz  
10.5  
5.5  
(V) 0.1 V < VCM < (V+) 3  
V
Input voltage noise  
density  
en  
nV/Hz  
32  
(V+) 1.5 V < VCM < (V+) + 0.1  
V
12.5  
Input current noise  
density  
in  
f = 1 kHz  
1.5  
fA/Hz  
INPUT VOLTAGE  
Common-mode  
voltage  
(V) –  
VCM  
(V+) + 0.1  
V
0.1  
120  
114  
100  
86  
140  
126  
120  
100  
(V) 0.1 V < VCM < (V+) 3 V  
(V) < VCM < (V+) 3 V, TA = 40°C to +125°C  
Common-mode  
rejection ratio  
CMRR  
dB  
(V+) 1.5 V < VCM < (V+)  
TA = 40°C to +125°C  
INPUT IMPEDANCE  
MΩ||  
pF  
ZID  
ZIC  
Differential  
100 || 1.6  
1 || 6.4  
1013Ω||  
Common-mode  
pF  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = 8 V to 36 V) (continued)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OPEN-LOOP GAIN  
120  
114  
126  
120  
134  
126  
140  
134  
(V) + 0.6 V < VO < (V+) 0.6  
V,  
RL = 2 kΩ  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
Open-loop voltage  
gain  
AOL  
dB  
(V) + 0.3 V < VO < (V+) 0.3  
V,  
RL = 10 kΩ  
FREQUENCY RESPONSE  
GBW  
SR  
Unity gain bandwidth  
Slew rate  
10  
20  
MHz  
V/µs  
G = 1, 10-V step  
To 0.01%  
G = 1, 10-V step  
G = 1, 5-V step  
G = 1, 10-V step  
G = 1, 5-V step  
1.4  
0.9  
2.1  
1.8  
µs  
ts  
Settling time  
To 0.001%  
µs  
ns  
Overload recovery  
time  
tOR  
VIN × G = VS  
200  
Total harmonic  
distortion + noise  
THD+N  
G = 1, f = 1 kHz, VO = 3.5 VRMS  
0.00008%  
OPA4197-Q1 at dc  
150  
130  
dB  
dB  
Crosstalk  
OPA4197-Q1, f = 100 kHz  
OUTPUT  
No load  
5
15  
95  
110  
Positive rail  
Negative rail  
RL = 10 kΩ  
RL = 2 kΩ  
No load  
430  
500  
mV  
15  
Voltage output swing  
from rail  
VO  
5
95  
110  
500  
mA  
RL = 10 kΩ  
RL = 2 kΩ  
430  
ISC  
Short-circuit current  
Capacitive load drive  
±65  
CLOAD  
See 6.9  
Open-loop output  
impedance  
ZO  
375  
f = 1 MHz, IO = 0 A; see 6-29  
POWER SUPPLY  
1
1.2  
mA  
1.5  
Quiescent current per  
IQ  
IO = 0 A  
amplifier  
TEMPERATURE  
Thermal protection  
TA = 40°C to +125°C  
140  
°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
MAX UNIT  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
OFFSET VOLTAGE  
±5  
±8  
±250  
±350  
±400  
µV  
TA = 0°C to 85°C  
VCM = (V+) 3 V  
±10  
TA = 40°C to +125°C  
VOS  
Input offset voltage  
(V+) 3.5 V < VCM < (V+) 1.5 V  
See 7.3.6  
±10  
±250  
±350  
±500  
TA = 0°C to 85°C  
±25  
VCM = (V+) 1.5 V  
±50  
TA = 40°C to +125°C  
Input offset voltage  
drift  
dVOS/dT  
dVOS/dT  
PSRR  
±0.5  
±0.8  
±2  
±2.5  
VCM = (V+) 3 V  
µV/°C  
±4.5  
TA = 40°C to +125°C  
Input offset voltage  
drift  
VCM = (V+) 1.5 V  
TA = 40°C to +125°C  
Power-supply  
rejection ratio  
µV/V  
INPUT BIAS CURRENT  
±5  
±2  
±20  
±5  
pA  
nA  
pA  
nA  
IB  
Input bias current  
Input offset current  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
±20  
±2  
IOS  
NOISE  
En  
1.3  
4
(V) 0.1 V < VCM < (V+) 3 V, f = 0.1 Hz to 10 Hz  
(V+) 1.5 V < VCM < (V+) + 0.1 V, f = 0.1 Hz to 10 Hz  
Input voltage noise  
µVPP  
f = 100 Hz  
10.5  
5.5  
32  
(V) 0.1 V < VCM < (V+) 3  
V
f = 1 kHz  
f = 100 Hz  
f = 1 kHz  
Input voltage noise  
density  
en  
nV/Hz  
(V+) 1.5 V < VCM < (V+) + 0.1  
V
12.5  
Input current noise  
density  
in  
f = 1 kHz  
1.5  
fA/Hz  
INPUT VOLTAGE  
Common-mode  
voltage range  
(V) –  
VCM  
(V+) + 0.1  
V
0.1  
94  
90  
110  
104  
(V) 0.1 V < VCM < (V+) 3  
V
TA = 40°C to +125°C  
TA = 40°C to +125°C  
dB  
Common-mode  
rejection ratio  
100  
84  
120  
CMRR  
(V+) 1.5 V < VCM < (V+)  
100  
(V+) 3 V < VCM < (V+) 1.5 V  
See 6.9  
INPUT IMPEDANCE  
MΩ||  
pF  
ZID  
ZIC  
Differential  
100 || 1.6  
1 || 6.4  
1013Ω||  
Common-mode  
pF  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = 4.5 V to 8 V) (continued)  
at TA = +25°C, VCM = VOUT = VS / 2, and RL = 10 kΩconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OPEN-LOOP GAIN  
110  
100  
110  
110  
120  
114  
126  
120  
(V) + 0.6 V < VO < (V+) 0.6  
V,  
RL = 2 kΩ  
dB  
dB  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
Open-loop voltage  
gain  
AOL  
(V) + 0.3 V < VO < (V+) 0.3  
V,  
RL = 10 kΩ  
FREQUENCY RESPONSE  
GBW  
SR  
ts  
Unity gain bandwidth  
Slew rate  
10  
20  
1
MHz  
V/µs  
µs  
G = 1, 5-V step  
Settling time  
To 0.01%, VS = ±3 V, G = 1, 5-V step  
VIN × G = VS  
Overload recovery  
time  
tOR  
200  
ns  
OPA4197-Q1 at dc  
150  
130  
dB  
dB  
Crosstalk  
OPA4197-Q1, f = 100 kHz  
OUTPUT  
No load  
5
15  
95  
110  
Positive rail  
Negative rail  
RL = 10 kΩ  
RL = 2 kΩ  
No load  
430  
500  
mV  
15  
Voltage output swing  
from rail  
VO  
5
95  
110  
500  
mA  
RL = 10 kΩ  
RL = 2 kΩ  
430  
ISC  
Short-circuit current  
Capacitive load drive  
±65  
CLOAD  
See 6.9  
Open-loop output  
impedance  
ZO  
375  
f = 1 MHz, IO = 0 A; see 6-29  
POWER SUPPLY  
1
1.2  
mA  
1.5  
Quiescent current per  
IQ  
IO = 0 A  
amplifier  
TEMPERATURE  
Thermal protection  
TA = 40°C to +125°C  
140  
°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.9 Typical Characteristics  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
6-1. Table of Graphs  
DESCRIPTION  
Offset Voltage Production Distribution  
FIGURE  
6-1 to 6-6  
6-7 to 6-8  
6-9  
Offset Voltage Drift Distribution  
Offset Voltage vs Temperature  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Power Supply  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain and Phase vs Frequency  
Input Bias Current vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current (maximum supply)  
CMRR and PSRR vs Frequency  
CMRR vs Temperature  
6-10 to 6-12  
6-13  
6-14  
6-15  
6-16  
6-17  
6-18  
6-19  
6-20  
PSRR vs Temperature  
6-21  
0.1-Hz to 10-Hz Noise  
6-22  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
6-23  
6-24  
THD+N vs Output Amplitude  
6-25  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open Loop Gain vs Temperature  
Open Loop Output Impedance vs Frequency  
Small Signal Overshoot vs Capacitive Load (100-mV Output Step)  
No Phase Reversal  
6-26  
6-27  
6-28  
6-29  
6-30, 6-31  
6-32  
Positive Overload Recovery  
6-33  
Negative Overload Recovery  
6-34  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
6-35, 6-36  
6-37  
Settling Time  
6-38 to 6-41  
6-42  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
Propagation Delay Rising Edge  
Propagation Delay Falling Edge  
Crosstalk vs Frequency  
6-43  
6-44  
6-45  
6-46  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
50  
40  
30  
20  
10  
0
22  
20  
18  
16  
14  
12  
10  
8
Distribution Taken From 190 Amplifiers  
6
4
2
0
Offset Voltage (µV)  
Offset Voltage (V)  
C013  
TA = 125°C  
6-1. Offset Voltage Production Distribution at 25°C  
6-2. Offset Voltage Production Distribution at 125°C  
Distribution Taken From 190 Amplifiers  
Distribution Taken From 190 Amplifiers  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Offset Voltage (µV)  
Offset Voltage (µV)  
TA = 85°C  
TA = 0°C  
6-3. Offset Voltage Production Distribution at 85°C  
6-4. Offset Voltage Production Distribution at 0°C  
50  
50  
Distribution Taken From 190 Amplifiers  
Distribution Taken From 190 Amplifiers  
45  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
Offset Voltage (µV)  
Offset Voltage (µV)  
TA = 25°C  
TA = 40° C  
6-5. Offset Voltage Production Distribution at 25°C  
6-6. Offset Voltage Production Distribution at 40°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
Distribution Taken From 75 Amplifiers  
Distribution Taken From 75 Amplifiers  
0
Offset Voltage Drift (µV/ƒC)  
TA = 40°C to +125°C  
Offset Voltage Drift (µV/ƒC)  
TA = 0°C to 85°C  
6-8. Offset Voltage Drift Distribution from 0°C to 85°C  
6-7. Offset Voltage Drift Distribution from  
40°C to +125°C  
50  
100  
75  
25  
0
50  
25  
0
–25  
–50  
–75  
–100  
VCM = –18.1 V  
–25  
–50  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
–75 –50 –25  
0
25  
50  
75  
100 125 150  
Common-Mode Voltage (V)  
C001  
Temperature (°C)  
6-10. Offset Voltage vs Common-Mode Voltage  
6-9. Offset Voltage vs Temperature  
200  
100  
75  
5 Typical Units Shown  
150  
100  
50  
VCM = +18.1 V  
50  
VCM = –18.1 V  
P-Channel  
25  
0
0
–50  
–100  
–150  
–200  
–25  
–50  
–75  
–100  
N-Channel  
VCM = +2.35 V  
N-Channel  
VCM = –2.35 V  
Transition  
Transition  
P-Channel  
–2.5 –2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5  
12.5  
13.5  
14.5  
15.5  
16.5  
17.5  
18.5  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
VS = ±2.25 V  
6-12. Offset Voltage vs Common-Mode Voltage  
6-11. Offset Voltage vs Common-Mode Voltage  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
180  
135  
90  
45  
0
50  
40  
10 Typical Units Shown  
Open-Loop Gain  
30  
20  
10  
Phase  
0
–10  
–20  
–30  
–40  
–50  
–20.0  
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0  
Power Supply Voltage (V)  
1
10  
100  
1k  
10k 100k 1M  
10M 100M  
Frequency (Hz)  
CLOAD = 15 pF  
VS = ±2.25 V to ±18 V  
6-14. Open-Loop Gain and Phase vs Frequency  
6-13. Offset Voltage vs Power Supply  
20  
15  
60.0  
G = -100  
G = +1  
G = -1  
10  
5
IB–  
40.0  
G = -10  
0
20.0  
0.0  
IB+  
–5  
–10  
–15  
–20  
œ20.0  
18.0  
9.0  
0.0  
9.0  
18.0  
1000  
10k  
100k  
1M  
10M  
Common-Mode Voltage (V)  
C001  
C003  
Frequency (Hz)  
6-16. Input Bias Current vs Common-Mode Voltage  
6-15. Closed-Loop Gain and Phase vs Frequency  
(V–) + 5  
6000  
IB+  
IB -  
Ios  
5000  
4000  
3000  
2000  
1000  
0
(V–) + 4  
+125°C  
(V–) + 3  
(V–) + 2  
– 40°C  
(V–) + 1  
(V–)  
Ios  
(V–) – 1  
œ1000  
0
10  
20  
30  
40  
50  
60  
70  
80  
œ75 œ50 œ25  
0
25  
50  
75 100 125 150 175  
Output Current (mA)  
Temperature (°C)  
C001  
C001  
6-18. Output Voltage Swing vs Output Current (Maximum  
6-17. Input Bias Current vs Temperature  
Supply)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
160.0  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
10  
8
6
4
VS  
= 2.25 V, VCM = V+ - 3 V  
2
0
œ2  
œ4  
œ6  
œ8  
œ10  
VS  
= 18 V, VCM = 0 V  
+PSRR  
CMRR  
-PSRR  
1
10  
100  
1k  
10k  
100k  
1M  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
C012  
Frequency (Hz)  
Temperature (°C)  
C001  
6-19. CMRR and PSRR vs Frequency  
6-20. CMRR vs Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
µV  
Peak-to-Peak Noise = VRMS × 6.6 = 1.30  
Time (1 s/div)  
pp  
–75 –50 –25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
C001  
6-21. PSRR vs Temperature  
6-22. 0.1-Hz to 10-Hz Noise  
1000  
0.1  
0.01  
–60  
G = +1 V/V, RL = 10 kΩ  
G = +1 V/V, RL = 2 kΩ  
G = –1 V/V, RL = 10 kΩ  
G = –1 V/V, RL = 2 kΩ  
–80  
VCM = V+ 100 mV  
N-Channel Input  
100  
10  
1
0.001  
–100  
–120  
–140  
0.0001  
0.00001  
VCM = 0 V  
P-Channel Input  
10  
100  
1k  
10k  
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C002  
VOUT = 3.5 VRMS  
BW = 80 kHz  
6-24. THD+N Ratio vs Frequency  
6-23. Input Voltage Noise Spectral Density vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
1.2  
1.1  
1.0  
0.9  
0.8  
0.1  
0.01  
–60  
–80  
0.001  
–100  
–120  
–140  
0.0001  
G = +1 V/V, RL = 10 kΩ  
G = +1 V/V, RL = 2 kΩ  
G = –1 V/V, RL = 10 kΩ  
G = –1 V/V, RL = 2 kΩ  
0.00001  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0.01  
0.1  
1
10  
Supply Voltage (V)  
Output Amplitude (VRMS  
)
f = 1 kHz, BW = 80 kHz  
6-26. Quiescent Current vs Supply Voltage  
6-25. THD+N vs Output Amplitude  
1.2  
3.0  
2.0  
VS = 4.5 V  
VS = 36 V  
1.1  
1
1.0  
VS = 18 V  
0.0  
VS = 2.25 V  
–1.0  
–2.0  
–3.0  
0.9  
0.8  
75  
50  
25  
0
25  
50  
75  
100 125 150  
–75 –50 –25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature(°C)  
C001  
RL = 10 kΩ  
6-27. Quiescent Current vs Temperature  
6-28. Open-Loop Gain vs Temperature  
10k  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
+ 18 V  
-
RISO  
+
-
OPA197-Q1  
VIN  
+
1k  
100  
10  
CL  
-18 V  
0
RISO = 0 Ω  
RISO = 25 Ω25  
RISO = 50 Ω  
0
10p  
100p  
1n  
0
1
10  
100  
1k  
10k 100k 1M  
10M  
Capacitive Load (F)  
Frequency (Hz)  
C016  
RI = 1 kΩ  
RF = 1 kΩ  
G = 1  
6-30. Small-Signal Overshoot vs Capacitive Load (100-mV  
6-29. Open-Loop Output Impedance vs Frequency  
Output Step)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
50  
VIN  
+ 18 V  
+ 18 V  
45  
-
-
RISO  
OPA197-Q1  
VOUT  
OPA197-Q1  
40  
35  
30  
25  
20  
15  
10  
5
+
+
+
-
+
-
RL  
CL  
VIN  
-18 V  
-18 V  
37 VPP  
Sine Wave  
18.5 V)  
(
VOUT  
RISO = 0 Ω  
0
RISO = 25 Ω  
25  
RISO = 50 Ω  
50  
0
Time (200μs/div)  
10p  
100p  
1n  
Capacitive Load (F)  
G = 1  
6-32. No Phase Reversal  
6-31. Small-Signal Overshoot vs Capacitive Load (100-mV  
Output Step)  
+ 18  
V
VOUT  
-
+
VOUT  
OPA197-Q1  
VIN  
+
VOUT  
+ 18  
V
-
-18  
V
-
+
-
VOUT  
OPA197-Q1  
VIN  
+
- 18  
V
VIN  
VIN  
Time (200 ns/div)  
Time (200 ns/div)  
RI = 1 kΩ  
RF = 10 kΩ  
G = 10  
RI = 1 kΩ  
G = 10  
RF = 10 kΩ  
6-33. Positive Overload Recovery  
6-34. Negative Overload Recovery  
+ 18 V  
-
+
OPA197-Q1  
VIN  
+
CL  
-
- 18 V  
+ 18 V  
-
OPA197-Q1  
+
+
VIN  
RL  
CL  
-18 V  
-
Time (100 ns/div)  
Time (120 ns/div)  
CL = 10 pF  
G = 1  
CL = 10 pF  
RL = 1 kΩ  
G = 1  
6-35. Small-Signal Step Response (100 mV)  
6-36. Small-Signal Step Response (100 mV)  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
4
3
2
1
0
–1  
+ 18 V  
0.01% Settling = 1 mV  
-
–2  
+
-
OPA197-Q1  
VIN  
+
CL  
3  
–4  
-18 V  
Step Applied at t = 0  
1.25 1.5 1.75 2  
0
0.25  
0.5  
0.75  
1
Time (300 ns/div)  
Time (μs)  
CL = 10 pF  
RL = 1 kΩ  
G = 1  
G = 1  
6-38. Settling Time (10-V Positive Step)  
6-37. Large-Signal Step Response  
4
3
4
3
2
1
0
2
1
0
0.01% Settling = 500 μV  
–1  
–2  
3  
–4  
–1  
0.01% Settling = 1 mV  
–2  
3  
–4  
Step Applied at t = 0  
1.2 1.4 1.6  
Step Applied at t = 0  
1.2 1.4 1.6 1.8 2  
0
0.2  
0.4  
0.6  
0.8  
1
1.8  
0
0.2 0.4 0.6 0.8  
1
Time (μs)  
Time (μs)  
G = 1  
G = 1  
6-39. Settling Time (5-V Positive Step)  
6-40. Settling Time (10-V Negative Step)  
80  
60  
40  
20  
0
4
3
ISC, Source  
ISC, Sink  
2
1
0
0.01% Settling = 500 μV  
–1  
–2  
3  
–4  
Step Applied at t = 0  
–75 –50 –25  
0
25  
50  
75  
100 125 150  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
Temperature (°C)  
Time (μs)  
C001  
G = 1  
6-42. Short-Circuit Current vs Temperature  
6-41. Settling Time (5-V Negative Step)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
at TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 100 pF, (unless otherwise noted)  
30  
Maximum output voltage without  
slew-rate induced distortion.  
VS  
= 15 V  
Overdrive = 100 mV  
25  
20  
15  
10  
5
tpLH = 0.97 s  
VS  
= 5 V  
VOUT Voltage  
VS  
=
2.25 V  
0
Time (200 ns/div)  
10k  
100k  
1M  
Frequency (Hz)  
10M  
C033  
C025  
6-43. Maximum Output Voltage vs Frequency  
6-44. Propagation Delay Rising Edge  
-80  
-100  
-120  
-140  
-160  
-180  
VOUT Voltage  
tpLH = 1.1 s  
Overdrive = 100 mV  
Time (200 ns/div)  
1k  
10k  
100k  
1M  
C026  
Frequency (Hz)  
6-45. Propagation Delay Falling Edge  
6-46. Crosstalk vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPAx197-Q1 family of e-trim operational amplifiers use a proprietary method of package-level trim for offset  
and offset temperature drift implemented during the final steps of manufacturing after the plastic molding  
process. This method minimizes the influence of inherent input transistor mismatch, as well as errors induced  
during package molding. The trim communication occurs on the output pin of the standard pinout, and after the  
trim points are set, further communication to the trim structure is permanently disabled. 7.2 shows the  
simplified diagram of the OPAx197-Q1.  
Unlike previous e-trim op amps, the OPAx197-Q1 uses a patented two-temperature trim architecture to achieve  
a very-low offset voltage of 25 µV (maximum) and low voltage offset drift of 0.5 µV/°C (maximum) over the full  
specified temperature range. This level of precision performance at wide supply voltages makes these amplifiers  
especially useful for high-impedance industrial sensors, filters, and high-voltage data acquisition.  
7.2 Functional Block Diagram  
+
NCH Input  
Stage  
œ
IN+  
+
High Capacitive  
Load  
Compensation  
VOUT  
36-V  
Differential  
Front End  
Output  
Stage  
Slew  
Boost  
œ
INœ  
+
PCH Input  
Stage  
œ
e-trim™  
Package Level Trim  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Input Protection Circuitry  
The OPAx197-Q1 use a unique input architecture to eliminate the need for input protection diodes but still  
provide robust input protection under transient conditions. Conventional input diode protection schemes shown  
in 7-1 can be activated by fast transient step responses, and can introduce signal distortion and settling-time  
delays because of alternate current paths, as shown in 7-2. For low-gain circuits, these fast-ramping input  
signals forward-bias back-to-back diodes, causing an increase in input current, and resulting in extended settling  
time, as shown in 7-3.  
V+  
V+  
+
VIN+  
VIN+  
+
VOUT  
VOUT  
OPAx197-Q1  
~0.7 V  
36 V  
-
VIN-  
VIN-  
-
V-  
V-  
Conventional Input Protection  
Limits Differential Input Range  
OPA197-Q1 Provides Full 36-V  
Differential Input Range  
Copyright © 2018, Texas Instruments Incorporated  
7-1. OPAx197-Q1 Input Protection Does Not Limit Differential Input Capability  
1
Ron_mux  
Vn = +10 V  
RFILT  
+10 V  
Sn  
D
1
2
~œ9.3 V  
+10 V  
CFILT  
CS  
CD  
Vinœ  
2
Ron_mux  
Sn+1  
Vn+1 = œ10 V RFILT  
œ10 V  
~0.7 V  
Vout  
CFILT  
CS  
Idiode_transient  
Vin+  
œ10 V  
Input Low Pass Filter  
Simplified Mux Model  
Buffer Amplifier  
7-2. Back-to-Back Diodes Create Settling Issues  
100  
Standard Input Diode Structure  
80  
Extends Settling Time  
60  
40  
0.1% Settling = 10 mV  
20  
0
–20  
OPA197-Q1 Input Structure  
Offers Fast Settling  
–40  
–60  
–80  
–100  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Time (µs)  
C040  
7-3. OPAx197-Q1 Protection Circuit Maintains Fast-Settling Transient Response  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
The OPAx197-Q1 family of operational amplifiers provides a true high-impedance differential input capability for  
high-voltage applications. This patented input protection architecture does not introduce additional signal  
distortion or delayed settling time, making these devices the optimal op amps for multichannel, high-switched,  
input applications. The OPAx197-Q1 tolerate a maximum differential swing (voltage between inverting and  
noninverting pins of the op amp) of up to 36 V, making these devices an excellent choice for use as comparators  
or in applications with fast-ramping input signals, such as multiplexed data-acquisition systems; see 8-1.  
7.3.2 EMI Rejection  
The OPAx197-Q1 use integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the OPAx197-Q1 benefit from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz  
to 6 GHz. 7-4 shows the results of this testing on the OPAx197-Q1. 7-1 shows the EMIRR IN+ values for  
the OPAx197-Q1 at particular frequencies commonly encountered in real-world applications. Applications listed  
in 7-1 may be centered on or operated near the particular frequency shown. Detailed information can also be  
found in the TI application report EMI Rejection Ratio of Operational Amplifiers available for download from  
www.ti.com.  
160.0  
PRF = -10 dBm  
VSUPPLY = 18 V  
VCM = 0 V  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
10M  
100M  
Frequency (Hz)  
1G  
10G  
C017  
7-4. EMIRR Testing  
7-1. OPAx197-Q1 EMIRR IN+ For Frequencies of Interest  
APPLICATION OR ALLOCATION  
FREQUENCY  
EMIRR IN+  
400 MHz  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications  
44.1 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (to  
1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
52.8 dB  
61.0 dB  
69.5 dB  
88.7 dB  
105.5 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
7.3.3 Phase Reversal Protection  
The OPAx197-Q1 family has internal phase-reversal protection. Many op amps exhibit a phase reversal when  
the input is driven beyond its linear common-mode range. This condition is most often encountered in  
noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the  
output to reverse into the opposite rail. The OPAx197-Q1 is a rail-to-rail input op amp; therefore, the common-  
mode range can extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the  
output limits into the appropriate rail. This performance is shown in 7-5.  
VIN  
+ 18 V  
-
OPA197-Q1  
VOUT  
+
+
-
-18 V  
37 VPP  
Sine Wave  
18.5 V)  
(
VOUT  
Time (200μs/div)  
7-5. No Phase Reversal  
7.3.4 Thermal Protection  
The internal power dissipation of any amplifier causes the internal (junction) temperature to rise. This  
phenomenon is called self heating. The absolute maximum junction temperature of the OPAx197-Q1 is 150°C  
and exceeding this maximum temperature causes damage to the device. The OPAx197-Q1 have a thermal  
protection feature that prevents damage from self heating. The protection works by monitoring the temperature  
of the device and turning off the op amp output drive for temperatures above 140°C. 7-6 shows an application  
example for the OPAx197-Q1 that has significant self heating (159°C) because of the power dissipation (0.81  
W). Thermal calculations indicate that for an ambient temperature of 65°C, the device junction temperature must  
reach 187°C. The actual device, however, turns off the output drive to maintain a safe junction temperature. 图  
7-6 shows how the circuit behaves during thermal protection. During normal operation, the device acts as a  
buffer so the output is 3 V. When self heating causes the device junction temperature to increase above 140°C,  
the thermal protection forces the output to a high-impedance state and the output is pulled to ground through  
resistor RL.  
Normal  
Operation  
3 V  
TA = 65°C  
+30 V  
PD = 0.81W  
Output  
High-Z  
RJA = 116°C/W  
TJ = 116°C/W × 0.81W + 65°C  
TJ = 159°C (expected)  
0 V  
-
150°C  
OPAx197-Q1  
140ºC  
+
IOUT = 30 mA  
+
3 V  
œ
RL  
100 Ω  
+
VIN  
3 V  
œ
Copyright © 2017, Texas Instruments Incorporated  
7-6. Thermal Protection  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
7.3.5 Capacitive Load and Stability  
The OPAx197-Q1 feature a patented output stage capable of driving large capacitive loads, and in a unity-gain  
configuration, directly drive up to 1 nF of pure capacitive load. Increasing the gain enhances the ability of these  
amplifiers to drive greater capacitive loads; see 7-7 and 7-8. The particular op-amp circuit configuration,  
layout, gain, and output loading are some of the factors to consider when establishing whether an amplifier is  
stable in operation.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
+ 18 V  
-
+ 18 V  
RISO  
OPA197-Q1  
-
RISO  
+
+
-
RL  
CL  
+
-
OPA197-Q1  
VIN  
-18 V  
VIN  
+
CL  
-18 V  
0
RISO = 0 Ω  
RISO = 25 Ω25  
RISO = 50 Ω  
RISO = 0 Ω  
0
RISO = 25 Ω  
25  
RISO = 50 Ω  
50  
0
0
10p  
100p  
Capacitive Load (F)  
1n  
10p  
100p  
Capacitive Load (F)  
1n  
7-7. Small-Signal Overshoot vs Capacitive Load 7-8. Small-Signal Overshoot vs Capacitive Load  
(100-mV Output Step) (100-mV Output Step)  
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small (10-  
Ωto 20-Ω) resistor, RISO, in series with the output, as shown in 7-9. This resistor significantly reduces ringing  
and maintains dc performance for purely capacitive loads. However, if a resistive load is in parallel with the  
capacitive load, then a voltage divider is created, thus introducing a gain error at the output and slightly reducing  
the output swing. The error introduced is proportional to the ratio RISO / RL, and is generally negligible at low  
output levels. A high capacitive load drive makes the OPAx197-Q1 a great choice for applications such as  
reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in 7-9 uses an isolation  
resistor, RISO, to stabilize the output of an op amp. RISO modifies the open-loop gain of the system for increased  
phase margin, and results using the OPAx197-Q1 are summarized in 7-2. For additional information on  
techniques to optimize and design using this circuit, TI Precision Design TIPD128 details complete design goals,  
simulation, and test results.  
+Vs  
Vout  
Riso  
+
Cload  
+
Vin  
-Vs  
œ
7-9. Extending Capacitive Load Drive With the OPAx197-Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
7-2. OPAx197-Q1 Capacitive Load Drive Solution Using Isolation Resistor Comparison of Calculated  
and Measured Results  
PARAMETER  
Capacitive Load  
Phase Margin  
RISO (Ω)  
VALUE  
100 pF  
1000 pF  
0.01 µF  
0.1 µF  
1 µF  
45°  
47  
60°  
45°  
24  
60°  
45°  
20  
60°  
51  
45°  
6.2  
60°  
45°  
2
60°  
4.7  
360  
100  
15.8  
Measured  
Overshoot (%)  
23.2 8.6  
45.1°  
10.4  
22.5  
9
22.1  
8.7  
23.1  
8.6  
21  
8.6  
Calculated PM  
58.1°  
45.8°  
59.7°  
46.1°  
60.1°  
45.2°  
60.2°  
47.2°  
60.2°  
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files, simulation results, and test  
results, see TI Precision Design TIPD128Capacitive Load Drive Solution using an Isolation Resistor.  
7.3.6 Common-Mode Voltage Range  
The OPAx197-Q1 are 36-V, true rail-to-rail input operational amplifiers with an input common-mode range that  
extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel  
and P-channel differential input pairs, as shown in 7-10. The N-channel pair is active for input voltages close  
to the positive rail, typically (V+) 3 V to 100 mV above the positive supply. The P-channel pair is active for  
inputs from 100 mV below the negative supply to approximately (V+) 1.5 V. There is a small transition region,  
typically ( V+) 3 V to (V+) 1.5 V, in which both input pairs are on. This transition region can vary modestly  
with process variation, and within this region, PSRR, CMRR, offset voltage, offset drift, noise, and THD  
performance may be degraded compared to operation outside this region.  
+Vsupply  
IS1  
VINœ  
PCH1  
NCH4  
NCH3  
PCH2  
VIN+  
e-trimTM  
FUSE BANK  
VOS TRIM  
VOS DRIFT TRIM  
œVsupply  
7-10. Rail-to-Rail Input Stage  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
To achieve the best performance for two-stage rail-to-rail input amplifiers, avoid the transition region when  
possible. The OPAx197-Q1 use a precision trim for both the N-channel and P-channel regions. This technique  
enables significantly lower levels of offset than previous-generation devices, causing variance in the transition  
region of the input stages to appear exaggerated relative to offset over the full common-mode range, as shown  
in 7-11.  
P-Channel  
Region  
Transition  
Region  
N-Channel  
Region  
P-Channel  
Region  
Transition  
Region  
N-Channel  
Region  
200  
100  
200  
100  
0
0
œ100  
œ100  
œ200  
œ300  
OPA197 e-Trim  
Input Offset Voltage vs Vcm  
œ200  
œ300  
Input Offset Voltage vs Vcm  
without e-Trim Input  
œ15.0 œ14.0  
11.0  
12.0  
Common-Mode Voltage (V)  
13.0  
14.0  
15.0  
œ15.0 œ14.0  
11.0  
12.0  
Common-Mode Voltage (V)  
13.0  
14.0  
15.0  
7-11. Common-Mode Transition vs Standard Rail-to-Rail Amplifiers  
7.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage  
breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to  
the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them  
from accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is  
helpful. 7-12 shows an illustration of the ESD circuits contained in the OPAx197-Q1 (indicated by the dashed  
line area). The ESD protection circuitry involves several current-steering diodes connected from the input and  
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or  
the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain  
inactive during normal circuit operation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
TVS  
RF  
+VS  
VDD  
OPAx197-Q1  
100 Ω  
100 Ω  
R1  
INœ  
œ
RS  
IN+  
+
Power Supply  
ESD Cell  
RL  
+
VIN  
œ
VSS  
œVS  
TVS  
Copyright © 2017, Texas Instruments Incorporated  
7-12. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event is very short in duration and very high voltage (for example, 1 kV, 100 ns), whereas an EOS event  
is long duration and lower voltage (for example, 50 V, 100 ms). The ESD diodes are designed for out-of-circuit  
ESD protection (that is, during assembly, test, and storage of the device before being soldered to the PCB).  
During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit  
(labeled ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level.  
Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if  
activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent against damage caused by  
turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting  
resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.  
7.3.8 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a  
linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the  
rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
The overload recovery time for the OPAx197-Q1 is approximately 200 ns.  
7.4 Device Functional Modes  
The OPAx197-Q1 have a single functional mode and is operational when the power-supply voltage is greater  
than 4.5 V (±2.25 V). The maximum power supply voltage for the OPAx197-Q1 is 36 V (±18 V).  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The OPAx197-Q1 family offers outstanding dc precision and ac performance. These devices operate up to 36-V  
supply rails and offer true rail-to-rail input and output, ultra-low offset voltage and offset voltage drift, as well as  
10-MHz bandwidth and high capacitive load drive. These features make the OPAx197-Q1 a robust, high-  
performance operational amplifier for high-voltage industrial applications.  
8.2 Typical Applications  
8.2.1 16-Bit Precision Multiplexed Data-Acquisition System  
8-1 shows a 16-bit, differential, 4-channel, multiplexed data-acquisition system. This example is typical in  
industrial applications that require low distortion and a high-voltage differential input. The circuit uses the  
ADS8864, a 16-bit, 400-kSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along  
with a precision, high-voltage, signal-conditioning front end, and a 4-channel differential multiplexer (mux). This  
TI Precision Design details the process for optimizing the precision, high-voltage, front-end drive circuit using the  
OPAx197-Q1 and OPA140 to achieve excellent dynamic performance and linearity with the ADS8864.  
1
2
3
4
High-Impedance Inputs  
No Differential Input Clamps  
Fast Settling-Time Requirements  
Attenuate High-Voltage Input Signal  
Fast-Settling Time Requirements  
Stability of the Input Driver  
Attenuate ADC Kickback Noise  
VREF Output: Value and Accuracy  
Low Temp and Long-Term Drift  
Very Low Output Impedance  
Input-Filter Bandwidth  
Voltage  
Reference  
OPAx197-Q1  
+
CH0+  
CH0-  
RC Filter  
Buffer  
RC Filter  
20-V,  
10-kHz  
Sine Wave  
Reference Driver  
+
Gain  
Network  
Gain  
Network  
OPAx197-Q1  
OPAx197-Q1  
+
4:2  
Mux  
REFP  
+
VINP  
OPAx197-Q1  
Gain  
Network  
OPAx197-Q1  
+
CH3+  
OPAx197-Q1  
+
Antialiasing  
Filter  
SAR  
ADC  
20-V,  
10-kHz  
Sine Wave  
+
VINM  
OPAx197-Q1  
CH3-  
n
CONV  
16 Bits  
400 kSPS  
High-Voltage Level Translation  
High-Voltage Multiplexed Input  
Voltage  
Divider  
REF3240  
OPA350  
Shmidtt  
Trigger  
VCM Generation Circuit  
Counter  
Delay  
n
Digital Counter For Multiplexer  
5
Fast logic transition  
Copyright © 2017, Texas Instruments Incorporated  
8-1. OPAx197-Q1 in 16-Bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition System for High-  
Voltage Inputs With Lowest Distortion  
8.2.1.1 Design Requirements  
The primary objective is to design a ±20-V, differential, 4-channel, multiplexed data acquisition system with  
lowest distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10-kHz, full-scale, pure sine-wave  
input. The design requirements for this block design are:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
System supply voltage: ±15 V  
ADC supply voltage: 3.3 V  
ADC sampling rate: 400 kSPS  
ADC reference voltage (REFP): 4.096 V  
System input signal: A high-voltage differential input signal with a peak amplitude of 10 V and frequency (fIN)  
of 10 kHz are applied to each differential input of the multiplexer.  
8.2.1.2 Detailed Design Procedure  
The purpose of this precision design is to design an optimal high voltage multiplexed data acquisition system for  
highest system linearity and fast settling. The overall system block diagram is illustrated in 8-1. The circuit is a  
multichannel data acquisition signal chain consisting of an input low-pass filter, mux, mux output buffer,  
attenuating SAR ADC driver, digital counter for mux and the reference driver. The architecture allows fast  
sampling of multiple channels using a single ADC, providing a low-cost solution. The two primary design  
considerations to maximize the performance of a precision multiplexed data acquisition system are the mux input  
analog front-end and the high-voltage level translation SAR ADC driver design. However, carefully design each  
analog circuit block based on the ADC performance specifications in order to achieve the fastest settling at 16-bit  
resolution and lowest distortion system. 8-1 includes the most important specifications for each individual  
analog block.  
This design systematically approaches each analog circuit block to achieve a 16-bit settling for a full-scale input  
stage voltage and linearity for a 10-kHz sinusoidal input signal at each input channel. The first step in the design  
is to understand the requirement for extremely low impedance input-filter design for the mux. This understanding  
helps in the decision of an appropriate input filter and selection of a mux to meet the system settling  
requirements. The next important step is the design of the attenuating analog front-end (AFE) used to level  
translate the high-voltage input signal to a low-voltage ADC input when maintaining amplifier stability. The next  
step is to design a digital interface to switch the mux input channels with minimum delay. The final design  
challenge is to design a high-precision, reference-driver circuit that provides the required REFP reference  
voltage with low offset, drift, and noise contributions.  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results, refer to TI  
Precision Design TIPD151, 16-bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition System for High Voltage Inputs with Lowest  
Distortion.  
8.2.1.3 Application Curve  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
ADC Differential Input (V)  
8-2. ADC 16-Bit Linearity Error for the Multiplexed Data Acquisition Block  
8.2.2 Slew-Rate Limit for Input Protection  
In control systems for valves or motors, abrupt changes in voltages or currents can cause mechanical damages.  
By controlling the slew rate of the command voltages into the drive circuits, the load voltages ramps up and  
down at a safe rate. For symmetrical slew-rate applications (positive slew rate equals negative slew rate), one  
additional op amp provides slew-rate control for a given analog gain stage. The unique input protection and high  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
output current and slew rate of the OPAx197-Q1 make these devices the optimal amplifiers to achieve slew-rate  
control for both dual- and single-supply systems.8-3 shows the OPAx197-Q1 in a slew-rate limit design.  
Op Amp Gain Stage  
Slew Rate Limiter  
C1  
470 nF  
R1  
1.69 kΩ  
VEE  
VEE  
R2  
1.6 MΩ  
-
OPAx197-Q1  
V+  
-
OPAx197-Q1  
V+  
VIN  
+
VOUT  
+
VCC  
RL  
10 kΩ  
VCC  
Copyright © 2017, Texas Instruments Incorporated  
8-3. Slew-Rate Limiter Uses One Op Amp  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results, see TI  
Precision Design TIPD140, Slew Rate Limiter Uses One Op Amp.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
8.2.3 Precision Reference Buffer  
The OPAx197-Q1 feature high output-current-drive capability and low input offset voltage, making these devices  
an excellent reference buffer to provide an accurate buffered output with ample drive current for transients. For  
the 10-µF ceramic capacitor shown in 8-4, a 37.4-Ω isolation resistor (RISO), provides separation of two  
feedback paths for optimal stability. Feedback path number one is through RF and is directly at the output  
(VOUT). Feedback path number two is through RFx and CF and is connected at the output of the op amp. The  
optimized stability components shown for the 10-µF load give a closed-loop signal bandwidth at VOUT of 4 kHz  
and still provide a loop gain phase margin of 89°. Any other load capacitances require recalculation of the  
stability components: RF, RFx , CF , and RISO  
.
RF  
1 k  
CF  
39 nF  
RFx  
10 kΩ  
RISO  
37.4 Ω  
-
VOUT  
OPAx197-Q1  
V+  
+
CL  
10 µF  
+
VCC  
VREF  
2.5 V  
Copyright © 2017, Texas Instruments Incorporated  
8-4. Precision Reference Buffer  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The OPAx197-Q1 are specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply  
from 40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in 6.9.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see Absolute Maximum  
Ratings.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see 10.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself.  
Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to  
the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away as possible from the supply or output traces. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than in  
parallel with the noisy trace.  
Place the external components as close as possible to the device. As illustrated in 10-2, keep RF and RG  
close to the inverting input to minimize parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
For best performance, clean the PCB following board assembly.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic  
package. Following any aqueous PCB cleaning process, bake the PCB assembly to remove moisture  
introduced into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at  
85°C for 30 minutes is sufficient for most circumstances.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
10.2 Layout Examples  
VIN  
+
VOUT  
RG  
RF  
10-1. Schematic Representation  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
RF  
VS+  
N/C  
N/C  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
N/C  
VIN  
GND  
GND  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitors  
10-2. Operational Amplifier Board Layout for Noninverting Configuration  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 TINA-TI™ Simulation Software (Free Download)  
TINAis a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI™  
simulation software is a free, fully functional version of the TINA software, preloaded with a library of macro  
models in addition to a range of both passive and active models. TINA-TI simulation software provides all the  
conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI simulation software offers extensive  
post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the  
ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-  
start tool.  
备注  
These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed.  
Download the free TINA-TI software from the TINA-TI folder.  
11.1.1.2 TI Precision Designs  
The OPA197 is featured in several Texas Instruments (TI) Precision Designs, available online at http://  
www.ti.com/ww/en/analog/precision-designs/. TI Precision Designs are analog solutions created by TIs  
precision analog applications experts and offer the theory of operation, component selection, simulation,  
complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers application report  
Texas Instruments, Capacitive Load Drive Solution using an Isolation Resistor reference design  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
 
 
OPA197-Q1, OPA2197-Q1, OPA4197-Q1  
ZHCSHU3A MARCH 2018 REVISED JANUARY 2021  
www.ti.com.cn  
11.5 Trademarks  
e-trim, TINA-TI, and TI E2Eare trademarks of Texas Instruments.  
TINAand DesignSoftare trademarks of DesignSoft, Inc.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: OPA197-Q1 OPA2197-Q1 OPA4197-Q1  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA197QDGKRQ1  
OPA2197QDGKRQ1  
OPA4197QPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
TSSOP  
DGK  
DGK  
PW  
8
8
2500 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
197  
Samples  
Samples  
Samples  
NIPDAUAG  
NIPDAU  
2197  
14  
O4197Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jan-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF OPA197-Q1, OPA2197-Q1, OPA4197-Q1 :  
Catalog : OPA197, OPA2197, OPA4197  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA197QDGKRQ1  
OPA2197QDGKRQ1  
OPA4197QPWRQ1  
VSSOP  
VSSOP  
TSSOP  
DGK  
DGK  
PW  
8
8
2500  
2500  
2000  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
5.3  
5.3  
6.9  
3.4  
3.4  
5.6  
1.4  
1.4  
1.6  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA197QDGKRQ1  
OPA2197QDGKRQ1  
OPA4197QPWRQ1  
VSSOP  
VSSOP  
TSSOP  
DGK  
DGK  
PW  
8
8
2500  
2500  
2000  
366.0  
366.0  
356.0  
364.0  
364.0  
356.0  
50.0  
50.0  
35.0  
14  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA2197ID

双路 36V 精密轨到轨输入/输出、低失调电压运算放大器 | D | 8 | -40 to 125
TI

OPA2197IDGKR

双路 36V 精密轨到轨输入/输出、低失调电压运算放大器 | DGK | 8 | -40 to 125
TI

OPA2197IDGKT

双路 36V 精密轨到轨输入/输出、低失调电压运算放大器 | DGK | 8 | -40 to 125
TI

OPA2197IDR

双路 36V 精密轨到轨输入/输出、低失调电压运算放大器 | D | 8 | -40 to 125
TI

OPA2197QDGKRQ1

汽车类双路 36V、精密轨到轨输入/输出、低失调电压运算放大器 | DGK | 8 | -40 to 125
TI

OPA21E

Low-Power Precision OPERATIONAL AMPLIFIER
BB

OPA21EZ

Operational Amplifier, 1 Func, 200uV Offset-Max, BIPolar, CDIP8,
BB

OPA21G

Low-Power Precision OPERATIONAL AMPLIFIER
BB

OPA21GD

Operational Amplifier, 1 Func, 1300uV Offset-Max, BIPolar,
BB

OPA21GJ

Operational Amplifier, 1 Func, 1000uV Offset-Max, BIPolar, MBCY8,
BB

OPA21GZ

Operational Amplifier, 1 Func, 1000uV Offset-Max, BIPolar, CDIP8,
BB

OPA21MD-B

Operational Amplifier, 1 Func, 2000uV Offset-Max, BIPolar,
BB