OPA2333P [TI]

GBW 大于 300kHz 的业内极致小尺寸、低功耗、高精度双路运算放大器;
OPA2333P
型号: OPA2333P
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

GBW 大于 300kHz 的业内极致小尺寸、低功耗、高精度双路运算放大器

放大器 运算放大器
文件: 总30页 (文件大小:1929K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA2333P  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
OPA2333P 1.8V 微功耗零温漂运算放大器  
1 特性  
3 说明  
1
低失调电压:10μV(最大值)  
OPA2333P 是一款 CMOS 运算放大器,其使用专有自  
动校准技术,可提供极低的失调电压(10μV,最大  
值),同时随时间推移和温度变化实现接近于零的漂  
移。这种高精度、低静态电流的微型放大器可提供高阻  
抗输入(共模范围超出电源轨电压 100mV)和轨至轨  
输出(摆幅在电源轨的 50mV 范围内)。此器件可以  
使用低至 1.8V (±0.9V) 和高达 5.5V (±2.75V) 的单电  
源或双电源,针对低电压、单电源运行情况进行了优  
化。  
零温漂:0.05μV/°C(最大值)  
额定启动时间:500μs(最大值)  
0.01Hz 10Hz 噪声:1.1μVPP  
静态电流:17μA  
单电源供电  
电源电压:1.8V 5.5V  
轨到轨输入/输出  
微型封装尺寸:2mm × 2mm WSON  
此外,OPA2333P 还 具有 额定最大启动时间。该额定  
启动时间可确保放大器供电后 500μs 时间范围内具有  
高精度性能,从而实现动态电源运行下的可靠耐用性。  
2 应用  
智能手机  
可穿戴设备  
健身和保健产品  
电子称  
OPA2333P 提供出色的 CMRR,而不存在与传统互补  
输入级关联的交叉。该设计可在驱动模数转换器  
(ADC) 的过程中实现优异的性能,而不会降低微分线  
性。  
医疗仪表  
电池供电的仪器  
手持测试设备  
断路器  
OPA2333P 采用 2mm × 2mm 8 引脚 WSON 封装以  
及 额定工作温度范围是 –40°C 125°C。  
器件信息(1)  
器件型号  
OPA2333P  
封装  
WSON (8)  
封装尺寸(标称值)  
2.00mm x 2.00mm  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
双向低侧电流分流放大器  
失调电压与温度间的关系  
-40èC  
125èC  
VREF  
10  
8
+5 V  
œ
6
4
OPA2333P  
+
Battery /  
Power  
VMIDSCALE  
2
0
Supply  
-2  
-4  
-6  
-8  
-10  
Microcontroller  
ADC  
+
RSENSE  
OPA2333P  
-55  
-25  
5
35  
65  
95  
125  
150  
Temperature (èC)  
œ
+5 V  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS908  
 
 
 
 
 
 
OPA2333P  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information: OPA2333P.............................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 13  
8
9
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application .................................................. 14  
Power Supply Recommendations...................... 18  
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Example .................................................... 20  
11 器件和文档支持 ..................................................... 21  
11.1 器件支持................................................................ 21  
11.2 文档支持................................................................ 21  
11.3 接收文档更新通知 ................................................. 21  
11.4 社区资源................................................................ 21  
11.5 ....................................................................... 21  
11.6 静电放电警告......................................................... 21  
11.7 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (November 2017) to Revision A  
Page  
已删除 从标题中删除了“CMOS”并更改了措........................................................................................................................ 1  
已添加 向说明中添加了新段落 2 ......................................................................................................................................... 1  
已更改 更改了第 1 页的图................................................................................................................................................... 1  
Changed "DFN" to "DSG" Package ....................................................................................................................................... 3  
Changed footnote reference for Common-mode and "0.5" V to "0.3" V in footnote 2 ........................................................... 4  
Changed "10 mA" to "1 mA" in Abs Max footnotes 2 and 3................................................................................................... 4  
Changed "-40" to "-55" in Abs Max MIN for TA ...................................................................................................................... 4  
Changed "5" to "±5" in PSRR row of Electrical Characteristics ............................................................................................ 5  
Deleted "±400" from second row of IB in Electrical Characteristics ....................................................................................... 5  
Changed "100" Hz to "10" Hz in iN row of Electrical Characteristics ..................................................................................... 5  
Deleted second row for AOL in Electrical Characteristics ..................................................................................................... 5  
Deleted "CL = 100 pF" from Phase margin and Gain-bandwidth product rows of Electrical Characteristics ........................ 5  
Deleted "RL = 2 kohm" rows ................................................................................................................................................. 5  
Deleted from OUTPUT subsection of Electrical Characteristics ........................................................................................... 5  
Deleted "±" from "5" in TYP column of ISC row in Electrical Characteristics ........................................................................ 5  
Changed "Turnon" to "Start-up" in OUTPUT subsection of Electrical Characteristics .......................................................... 5  
已添加 "Quiescent Current Production Distribution" graph ................................................................................................... 6  
已更改 "DFN" to "WSON"; "SON" to "DFN" in WSON Package ......................................................................................... 13  
已删除 "Single-Supply, Very Low Power, ECG Circuit" graphic........................................................................................... 18  
已删除 删除了开发支持 中的“THS4281 极低功耗、高速、轨至轨输入和输出电压反馈运算放大器.................................... 21  
2
Copyright © 2017, Texas Instruments Incorporated  
 
OPA2333P  
www.ti.com.cn  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
5 Pin Configuration and Functions  
DSG Package  
8-Pin WSON With Exposed Thermal Pad  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
V+  
1
2
3
4
8
7
6
5
OUT B  
Thermal  
Pad  
œIN B  
+IN B  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Inverting input, channel A  
Inverting input, channel B  
Output, channel A  
+IN B  
–IN A  
–IN B  
OUT A  
OUT B  
V+  
5
2
I
6
I
1
O
O
7
Output, channel B  
8
Positive (highest) power supply  
Negative (lowest) power supply  
Thermal Pad, Connect to V–  
V–  
4
Thermal Pad  
Copyright © 2017, Texas Instruments Incorporated  
3
OPA2333P  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
7
UNIT  
V
Single-supply  
Dual-supply  
Supply voltage, VS = (V+)  
- (V-)  
±3.5  
Common-mode(2)  
Differential(3)  
(V–) – 0.3  
(V+) + 0.3  
±0.5  
Voltage  
Current  
Signal input pins  
Output short current(4)  
Temperature  
±10  
mA  
Continuous  
Operating, TA  
Junction, TJ  
Storage, Tstg  
–55  
–65  
150  
150  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must  
be current-limited to 1 mA or less.  
(3) Input terminals are anti-parallel diode-clamped to each other. Input signals that can cause differential voltages of swing more than ±0.5  
V must be current-limited to 1 mA or less.  
(4) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
NOM  
MAX  
5.5  
UNIT  
Single supply  
Dual supply  
VS  
Supply voltage, [ (V+) – (V–) ]  
Specified temperature  
V
±0.9  
–40  
±2.75  
125  
°C  
6.4 Thermal Information: OPA2333P  
OPA2333P  
DSG (WSON)  
8 PINS  
74.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
93.5  
41.1  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.3  
ΨJB  
41.2  
RθJC(bot)  
15.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
OPA2333P  
www.ti.com.cn  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
6.5 Electrical Characteristics  
At TA = 25°C, RL= 10 kconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOS  
Input offset voltage  
VS = 5 V  
VS = 5 V  
±2  
0.02  
1
±10  
±0.05  
±5  
µV  
dVOS/dT  
PSRR  
Input offset voltage drift  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
µV/°C  
µV/V  
µV/V  
Power-supply rejection ratio 1.8 V VS 5.5 V  
Channel separation, dc  
0.1  
INPUT BIAS CURRENT  
±70  
±150  
±140  
±200  
±400  
pA  
pA  
pA  
IB  
Input bias current  
TA = –40°C to +125°C  
IOS  
Input offset current  
NOISE  
f = 0.1 Hz to 10 Hz, peak-to-peak  
f = 0.1 Hz to 10 Hz, RMS  
f = 10 Hz  
1.1  
0.2  
55  
µVPP  
EN  
Input voltage noise  
µVRMS  
nV/Hz  
nV/Hz  
fA/Hz  
eN  
iN  
Input voltage noise density  
Input current noise density  
f = 1 kHz  
55  
f = 10 Hz  
100  
INPUT VOLTAGE  
Common-mode voltage  
range  
(V–) –  
0.1  
(V+) +  
0.1  
VCM  
V
Common-mode rejection  
ratio  
CMRR  
(V–) – 0.1 V VCM (V+) + 0.1 V, VS = 5.5 V  
106  
130  
dB  
INPUT IMPEDANCE  
ZID  
Differential  
1013 || 2  
1013 || 4  
Ω || pF  
Ω || pF  
ZICM  
Common-mode  
OPEN-LOOP GAIN  
(V–) + 100 mV VO  
(V+) – 100 mV, RL = 10 kΩ  
AOL  
Open-loop voltage gain  
TA = –40°C to +125°C  
106  
130  
dB  
FREQUENCY RESPONSE  
φm  
Phase margin  
VO = 10 mVPP  
VO = 10 mVPP  
VO = 4-V step  
65  
350  
Degrees  
kHz  
GBW  
SR  
Gain-bandwidth product  
Slew rate  
G = 1  
0.16  
V/µs  
OUTPUT  
30  
50  
70  
mV  
mV  
mA  
Output voltage swing  
TA = –40°C to +125°C  
ISC  
CL  
ZO  
Short-circuit current  
Capactive load drive  
±5  
See Typical Characteristics  
Open-loop output impedance f = 350 kHz, IO = 0 mA  
Start-up time VS = 5 V  
POWER SUPPLY  
2
kΩ  
100  
500  
µs  
VS  
Specified voltage  
1.8  
5.5  
25  
28  
V
17  
Quiescent current (per  
amplifier)  
IQ  
IO = 0 A  
µA  
TA = –40°C to +125°C  
TEMPERATURE RANGE  
TA  
TA  
Specified range  
Operating range  
–40  
–55  
125  
150  
°C  
°C  
Copyright © 2017, Texas Instruments Incorporated  
5
OPA2333P  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
1. List of Typical Characteristics  
TITLE  
FIGURE  
1  
Offset Voltage Production Distribution  
Offset Voltage Drift Production Distribution  
Quiescent Current Production Distribution  
Open-Loop Gain vs Frequency  
2  
3  
4  
Common-Mode Rejection Ratio vs Frequency  
Power-Supply Rejection Ratio vs Frequency  
Output Voltage Swing vs Output Current  
Input Bias Current vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Quiescent Current vs Temperature  
Large-Signal Step Response  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Small-Signal Step Response  
Positive Overvoltage Recovery  
Negative Overvoltage Recovery  
Settling Time vs Closed-Loop Gain  
Small-Signal Overshoot vs Load Capacitance  
0.1-Hz to 10-Hz Noise  
Current and Voltage Noise Spectral Density vs Frequency  
At TA = 25°C, VS = 5 V, and CL = 0 pF, unless otherwise noted.  
Offset Voltage Drift (mV/°C)  
Offset Voltage (mV)  
2. Offset Voltage Drift Production Distribution  
1. Offset Voltage Production Distribution  
6
版权 © 2017, Texas Instruments Incorporated  
 
 
OPA2333P  
www.ti.com.cn  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
At TA = 25°C, VS = 5 V, and CL = 0 pF, unless otherwise noted.  
120  
100  
80  
60  
40  
20  
0
250  
200  
150  
Phase  
100  
50  
0
Gain  
-50  
-20  
-100  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
IQ (mA)  
VS = 5.5 V  
4. Open-Loop Gain and Phase vs Frequency  
3. Quiescent Current Production Distribution  
140  
120  
+PSRR  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
-PSRR  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
5. Common-Mode Rejection Ratio vs Frequency  
6. Power-Supply Rejection Ratio vs Frequency  
100  
3
2
VS = ±2.75 V  
VS = ±0.9 V  
80  
60  
-IB  
-40°C  
40  
1
+25°C  
20  
+125°C  
0
0
+25°C  
-40°C  
-20  
-40  
-60  
-80  
-100  
-1  
-2  
-3  
+125°C  
+25°C  
+IB  
-40°C  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
9
10  
Common-Mode Voltage (V)  
Output Current (mA)  
8. Input Bias Current vs Common-Mode Voltage  
7. Output Voltage Swing vs Output Current  
版权 © 2017, Texas Instruments Incorporated  
7
OPA2333P  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
At TA = 25°C, VS = 5 V, and CL = 0 pF, unless otherwise noted.  
200  
25  
20  
15  
10  
5
VS = 5.5 V  
150  
VS = 1.8 V  
-IB  
100  
-IB  
50  
VS = 5.5 V  
VS = 1.8 V  
0
+IB  
-50  
-100  
+IB  
-150  
-200  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
9. Input Bias Current vs Temperature  
10. Quiescent Current vs Temperature  
G = +1  
RL = 10 kW  
G = 1  
RL = 10 kW  
Time (5 ms/div)  
Time (50 ms/div)  
12. Small-Signal Step Response  
11. Large-Signal Step Response  
0
Input  
Input  
0
0
Output  
10 kW  
10 kW  
+2.5 V  
+2.5 V  
1 kW  
1 kW  
Output  
0
OPA333  
OPA333  
-2.5 V  
-2.5 V  
Time (50 ms/div)  
Time (50 ms/div)  
14. Negative Overvoltage Recovery  
13. Positive Overvoltage Recovery  
8
版权 © 2017, Texas Instruments Incorporated  
OPA2333P  
www.ti.com.cn  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
At TA = 25°C, VS = 5 V, and CL = 0 pF, unless otherwise noted.  
600  
40  
35  
30  
25  
20  
15  
10  
5
4-V Step  
500  
400  
300  
200  
0.001%  
100  
0.01%  
0
0
10  
100  
1000  
1
10  
100  
Load Capacitance (pF)  
Gain (dB)  
16. Small-Signal Overshoot  
15. Settling Time vs Closed-Loop Gain  
vs Load Capacitance  
1000  
100  
10  
1000  
100  
10  
Continues with no 1/f (flicker) noise.  
Current Noise  
Voltage Noise  
1
10  
100  
1k  
10k  
Frequency (Hz)  
1s/div  
17. 0.1-Hz to 10-Hz Noise  
18. Current and Voltage Noise Spectral Density vs  
Frequency  
版权 © 2017, Texas Instruments Incorporated  
9
OPA2333P  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA2333P is a Zero-Drift, low-power, rail-to-rail input and output operational amplifier. The device operates  
from 1.8 V to 5.5 V, is unity-gain stable, and is suitable for a wide range of general-purpose applications. The  
Zero-Drift architecture provides ultra-low offset voltage and near-zero offset voltage drift.  
7.2 Functional Block Diagram  
C2  
Notch  
Filter  
CHOP1  
CHOP2  
GM2  
GM3  
GM1  
OUT  
+IN  
œIN  
GM_FF  
C1  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
The OPA2333P is unity-gain stable and free from unexpected output phase reversal. This device uses a  
proprietary auto-calibration technique to provide low offset voltage and very low drift over time and temperature.  
For lowest offset voltage and precision performance, optimize circuit layout and mechanical conditions. Avoid  
temperature gradients that create thermoelectric (Seebeck) effects in the thermocouple junctions formed from  
connecting dissimilar conductors. Cancel these thermally-generated potentials by assuring they are equal on  
both input terminals. Other layout and design considerations include:  
Use low thermoelectric-coefficient conditions (avoid dissimilar metals).  
Thermally isolate components from power supplies or other heat sources.  
Shield operational amplifier and input circuitry from air currents, such as cooling fans.  
Following these guidelines reduces the likelihood of junctions being at different temperatures, which can cause  
thermoelectric voltages of 0.1 μV/°C or higher, depending on materials used.  
7.3.1 Operating Voltage  
The OPA2333P operational amplifier operates over a power-supply range of 1.8 V to 5.5 V (±0.9 V to ±2.75 V).  
Parameters that vary over supply voltage or temperature are shown in the Typical Characteristics section.  
CAUTION  
Supply voltages higher than +7 V (absolute maximum) can permanently damage the  
device.  
10  
版权 © 2017, Texas Instruments Incorporated  
OPA2333P  
www.ti.com.cn  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
Feature Description (接下页)  
7.3.2 Input Voltage  
The OPA2333P input common-mode voltage range extends 0.1 V beyond the supply rails. The OPA2333P is  
designed to cover the full range without the troublesome transition region found in some other rail-to-rail  
amplifiers.  
Typically, input bias current is approximately 70 pA; however, input voltages that exceed the power supplies can  
cause excessive current to flow into or out of the input pins. Momentary voltages greater than the power supply  
can be tolerated if the input current is limited to 10 mA. This limitation is easily accomplished with an input  
resistor, as shown in 19.  
Current-limiting resistor  
required if input voltage  
exceeds supply rails by  
³ 0.5 V.  
+5 V  
IOVERLOAD  
10 mA max  
VOUT  
VIN  
5 kW  
19. Input Current Protection  
7.3.3 Internal Offset Correction  
The OPA2333P operational amplifier uses an auto-calibration technique with  
a
time-continuous  
350-kHz operational amplifier in the signal path. This amplifier is zero-corrected every 8 μs using a proprietary  
technique. Upon power up, the amplifier requires approximately 100 μs to achieve specified VOS accuracy. This  
design has no aliasing or flicker noise.  
7.3.4 Achieving Output Swing to the Op Amp Negative Rail  
Some applications require output voltage swings from 0 V to a positive full-scale voltage (such as 2.5 V) with  
excellent accuracy. With most single-supply operational amplifiers, problems arise when the output signal  
approaches 0 V, near the lower output swing limit of a single-supply operational amplifier. A good, single-supply  
operational amplifier may swing close to single-supply ground, but does not reach ground. The output of the  
OPA2333P can be made to swing to, or slightly below, ground on a single-supply power source. This swing is  
achieved with the use of the use of another resistor and an additional, more negative power supply than the  
operational amplifier negative supply. A pulldown resistor can be connected between the output and the  
additional negative supply to pull the output down below the value that the output would otherwise achieve, as  
shown in 20.  
V+ = +5 V  
VOUT  
VIN  
RP = 20 kW  
Op Amp V- = GND  
-5 V  
Additional  
Negative  
Supply  
20. VOUT Range to Ground  
版权 © 2017, Texas Instruments Incorporated  
11  
 
 
OPA2333P  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
The OPA2333P has an output stage that allows the output voltage to be pulled to the negative supply rail, or  
slightly below, using the technique previously described. This technique only works with some types of output  
stages. The OPA2333P is characterized to perform with this technique; the recommended resistor value is  
approximately 20 k.  
This configuration increases the current consumption by several hundreds of microamps.  
Accuracy is excellent down to 0 V and as low as –2 mV. Limiting and nonlinearity occur below –2 mV, but  
excellent accuracy returns after the output is again driven above –2 mV. Lowering the resistance of the pulldown  
resistor allows the operational amplifier to swing even further below the negative rail. Resistances as low as  
10 kcan be used to achieve excellent accuracy down to –10 mV.  
7.3.5 Specified Start-Up Performance  
The OPA2333P has a dedicated start-up circuit that ensures a fast, repeatable startup for all supply conditions.  
The OPA2333P is specified to have a maximum start-up time that is production-tested as illustrated in the  
configuration shown in 21. Start-up time is defined as the time from when the power supply reaches the  
minimum specified voltage to the time the output has settled to within 20 mV of the nominal value. See 22.  
10 k  
V+  
10 kꢀ  
œ
Output  
+
V-  
21. OPA2333P Equivalent Start-Up Test Configuration  
Supply  
Voltage  
3.3 V  
Start-up Time  
0 V  
Voltage  
+20 mV  
-20 mV  
Output  
Voltage  
Time  
22. OPA2333P Start-Up Timing  
12  
版权 © 2017, Texas Instruments Incorporated  
 
 
OPA2333P  
www.ti.com.cn  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
Feature Description (接下页)  
7.3.6 WSON Package  
The OPA2333P is offered in an WSON-8 package (also known as DFN). The WSON is a QFN package with lead  
contacts on only two sides of the bottom of the package. This leadless package maximizes board space and  
enhances thermal and electrical characteristics through an exposed pad.  
WSON packages are physically small, have a smaller routing area, improved thermal performance, and improved  
electrical parasitics. Additionally, the absence of external leads eliminates bent-lead issues.  
The WSON package can be easily mounted using standard PCB assembly techniques. See application reports  
QFN/SON PCB Attachment and Quad Flatpack No-Lead Logic Packages, both available for download at  
www.ti.com.  
The exposed leadframe die pad on the bottom of the package should be connected to V–  
or left unconnected.  
7.4 Device Functional Modes  
The OPA2333P device has a single functional mode. The device is powered on as long as the power supply  
voltage is between 1.8 V (±0.9 V) and 5.5 V (±2.75 V).  
版权 © 2017, Texas Instruments Incorporated  
13  
OPA2333P  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPA2333P is a unity-gain stable, precision operational amplifier with very low offset voltage drift; these  
devices are also free from output phase reversal. Applications with noisy or high-impedance power supplies  
require decoupling capacitors close to the device power-supply pins. In most cases, 0.1-μF capacitors are  
adequate.  
8.2 Typical Application  
8.2.1 Bidirectional Current-Sensing  
This single-supply, low-side, bidirectional current-sensing solution detects load currents from –1 A to 1 A. The  
single-ended output spans from 110 mV to 3.19 V. This design uses the OPA2333P because of its low offset  
voltage and rail-to-rail input and output. One of the amplifiers is configured as a difference amplifier and the other  
provides the reference voltage.  
23 shows the solution.  
VCC  
VCC  
VREF  
R5  
+
U1B  
R6  
ILOAD  
R2  
+
R1  
+
VBUS  
+
œ
VSHUNT  
RSHUNT  
VOUT  
U1A  
VCC  
œ
R3  
RL  
R4  
Copyright © 2016, Texas Instruments Incorporated  
23. Bidirectional Current-Sensing Schematic  
14  
版权 © 2017, Texas Instruments Incorporated  
 
OPA2333P  
www.ti.com.cn  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
Typical Application (接下页)  
8.2.1.1 Design Requirements  
This solution has the following requirements:  
Supply voltage: 3.3 V  
Input: –1 A to 1 A  
Output: 1.65 V ±1.54 V (110 mV to 3.19 V)  
8.2.1.2 Detailed Design Procedure  
The load current, ILOAD, flows through the shunt resistor (RSHUNT) to develop the shunt voltage, VSHUNT. The shunt  
voltage is then amplified by the difference amplifier, which consists of U1A and R1 through R4. The gain of the  
difference amplifier is set by the ratio of R4 to R3. To minimize errors, set R2 = R4 and R1 = R3. The reference  
voltage, VREF, is supplied by buffering a resistor divider using U1B. The transfer function is given by 公式 1.  
VOUT = VSHUNT ´ GainDiff_Amp + VREF  
where  
VSHUNT = ILOAD ´ RSHUNT  
R4  
GainDiff_Amp  
=
R3  
R6  
R5 + R6  
VREF = VCC  
´
(1)  
There are two types of errors in this design: offset and gain. Gain errors are introduced by the tolerance of the  
shunt resistor and the ratios of R4 to R3 and, similarly, R2 to R1. Offset errors are introduced by the voltage  
divider (R5 and R6) and how closely the ratio of R4/R3 matches R2/R1. The latter value impacts the CMRR of the  
difference amplifier, which ultimately translates to an offset error.  
Because this is a low-side measurement, the value of VSHUNT is the ground potential for the system load.  
Therefore, it is important to place a maximum value on VSHUNT. In this design, the maximum value for VSHUNT is  
set to 100 mV. 公式 2 calculates the maximum value of the shunt resistor given a maximum shunt voltage of 100  
mV and maximum load current of 1 A.  
VSHUNT(Max)  
100 mV  
1 A  
= 100 mW  
RSHUNT(Max)  
=
=
ILOAD(Max)  
(2)  
The tolerance of RSHUNT is directly proportional to cost. For this design, a shunt resistor with a tolerance of 0.5%  
was selected. If greater accuracy is required, select a 0.1% resistor or better.  
The load current is bidirectional; therefore, the shunt voltage range is –100 mV to 100 mV. This voltage is divided  
down by R1 and R2 before reaching the operational amplifier, U1A. Take care to ensure that the voltage present  
at the noninverting node of U1A is within the common-mode range of the device. Therefore, it is important to use  
an operational amplifier, such as the OPA2333P, that has a common-mode range that extends below the  
negative supply voltage. Finally, to minimize offset error, note that the OPA2333P has a typical offset voltage of  
±2 µV (±10 µV maximum).  
Given a symmetric load current of –1 A to 1 A, the voltage divider resistors (R5 and R6) must be equal. To be  
consistent with the shunt resistor, a tolerance of 0.5% was selected. To minimize power consumption,  
10-kΩ resistors were used.  
To set the gain of the difference amplifier, the common-mode range and output swing of the OPA2333P must be  
considered. 公式 3 and 公式 4 depict the typical common-mode range and maximum output swing, respectively,  
of the OPA2333P given a 3.3-V supply.  
–100 mV < VCM < 3.4 V  
100 mV < VOUT < 3.2 V  
(3)  
(4)  
The gain of the difference amplifier can now be calculated as shown in 公式 5.  
V
OUT_Max - VOUT_Min  
3.2 V - 100 mV  
100 mW ´ [1 A - (- 1A)]  
V
V
= 15.5  
=
GainDiff_Amp  
=
R
SHUNT ´ (IMAX - IMIN  
)
(5)  
15  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
 
OPA2333P  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Application (接下页)  
The resistor value selected for R1 and R3 was 1 kΩ. 15.4 kΩ was selected for R2 and R4 because it is the  
nearest standard value. Therefore, the ideal gain of the difference amplifier is 15.4 V/V.  
The gain error of the circuit primarily depends on R1 through R4. As a result of this dependence, 0.1% resistors  
were selected. This configuration reduces the likelihood that the design requires a two-point calibration. A simple  
one-point calibration, if desired, removes the offset errors introduced by the 0.5% resistors.  
8.2.1.3 Application Curve  
3.30  
1.65  
0
-1.0  
-0.5  
0
0.5  
1.0  
Input Current (A)  
24. Bidirectional Current-Sensing Circuit Performance:  
Output Voltage vs Input Current  
8.2.2 High-Side Voltage-to-Current (V-I) Converter  
The circuit shown in 25 is a high-side voltage-to-current (V-I) converter. It translates to an input voltage of 0 V  
to 2 V and output current of 0 mA to 100 mA. 26 shows the measured transfer function for this circuit. The low  
offset voltage and offset drift of the OPA2333P facilitate excellent dc accuracy for the circuit.  
V+  
RS2  
470  
VRS2  
RS3  
4.7 ꢀ  
IRS2  
IRS3  
R4  
VRS3  
10 kꢀ  
C7  
2200 pF  
R5  
A2  
Q2  
+
330 ꢀ  
V+  
200 ꢀ  
+
Q1  
A1  
R3  
+
VIN  
1000 pF  
C6  
œ
VRS1  
VLOAD  
10 kꢀ  
R2  
RS1  
2 kꢀ  
RLOAD  
ILOAD  
IRS1  
Copyright © 2016, Texas Instruments Incorporated  
25. High-Side Voltage-to-Current (V-I) Converter  
16  
版权 © 2017, Texas Instruments Incorporated  
 
OPA2333P  
www.ti.com.cn  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
Typical Application (接下页)  
8.2.2.1 Design Requirements  
The design requirements are as follows:  
Supply Voltage: 5 V DC  
Input: 0 V to 2 V DC  
Output: 0 mA to 100 mA DC  
8.2.2.2 Detailed Design Procedure  
The V-I transfer function of the circuit is based on the relationship between the input voltage, VIN, and the three  
current sensing resistors, RS1, RS2, and RS3. The relationship between VIN and RS1 determines the current that  
flows through the first stage of the design. The current gain from the first stage to the second stage is based on  
the relationship between RS2 and RS3.  
For a successful design, pay close attention to the dc characteristics of the operational amplifier chosen for the  
application. To meet the performance goals, this application benefits from an operational amplifier with low offset  
voltage, low temperature drift, and rail-to-rail output. The OPA2333P CMOS operational amplifier is a high-  
precision, 2-uV offset, 0.02-μV/°C drift amplifier optimized for low-voltage, single-supply operation with an output  
swing to within 50 mV of the positive rail. The OPA2333P family uses chopping techniques to provide low initial  
offset voltage and near-zero drift over time and temperature. Low offset voltage and low drift reduce the offset  
error in the system, making these devices appropriate for precise dc control. The rail-to-rail output stage of the  
OPA2333P ensures that the output swing of the operational amplifier is able to fully control the gate of the  
MOSFET devices within the supply rails.  
A detailed error analysis, design procedure, and additional measured results are given in TIPD102.  
8.2.2.3 Application Curve  
0.1  
Load  
0.075  
0.05  
0.025  
0
0
0.5  
1
Input Voltage (V)  
1.5  
2
D001  
26. Measured Transfer Function for High-Side V-I Converter  
版权 © 2017, Texas Instruments Incorporated  
17  
OPA2333P  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Application (接下页)  
8.2.3 Other Applications  
Additional application ideas are shown in 27 and 28.  
RG  
zener(1)  
V+  
RSHUNT  
(2)  
R1  
10 kW  
MOSFET rated to  
stand-off supply voltage  
such as BSS84 for  
up to 50 V.  
+5V  
V+  
Two zener  
biasing methods  
are shown.(3)  
Output  
Load  
RBIAS  
RL  
(1) Zener rated for op amp supply capability (that is, 5.1 V for OPA2333P).  
(2) Current-limiting resistor.  
(3) Choose zener biasing resistor or dual N-MOSFETs (FDG6301N, NTJD4001N, or Si1034).  
27. High-Side Current Monitor  
V1  
-In  
INA152  
OPA2333  
2
5
6
R2  
VO  
R1  
R2  
3
1
OPA2333  
V2  
+In  
VO = (1 + 2R2 / R1) (V2 - V1)  
28. Precision Instrumentation Amplifier  
9 Power Supply Recommendations  
The OPA2333P is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications apply from  
–40°C to 125°C. The Typical Characteristics presents parameters that can exhibit significant variance with regard  
to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 7 V can permanently damage the device (see Absolute  
Maximum Ratings).  
18  
版权 © 2017, Texas Instruments Incorporated  
 
 
OPA2333P  
www.ti.com.cn  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
TI recommends placing 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in  
from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement,  
refer to the Layout section.  
版权 © 2017, Texas Instruments Incorporated  
19  
OPA2333P  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
10.1.1 General Layout Guidelines  
Pay attention to good layout practices. Keep traces short and when possible and use a printed-circuit-board  
(PCB) ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1-  
μF capacitor closely across the supply pins. Apply these guidelines throughout the analog circuit to improve  
performance and provide benefits, such as reducing the electromagnetic interference (EMI) susceptibility.  
Operational amplifiers vary in susceptibility to radio frequency interference (RFI). RFI can generally be identified  
as a variation in offset voltage or DC signal levels with changes in the interfering RF signal. The OPA2333P is  
specifically designed to minimize susceptibility to RFI and demonstrates remarkably low sensitivity compared to  
previous generation devices. Strong RF fields may still cause varying offset levels.  
10.1.2 WSON (DFN) Layout Guidelines  
Solder the exposed leadframe die pad on the WSON package to a thermal pad on the PCB. A mechanical  
drawing showing an example layout is attached at the end of this data sheet. Refinements to this layout may be  
necessary based on assembly process requirements. Mechanical drawings located at the end of this data sheet  
list the physical dimensions for the package and pad. The five holes in the landing pattern are optional, and are  
intended for use with thermal vias that connect the leadframe die pad to the heatsink area on the PCB.  
Soldering the exposed pad significantly improves board-level reliability during temperature cycling, key push,  
package shear, and similar board-level tests. Even with applications that have low-power dissipation, the  
exposed pad must be soldered to the PCB to provide structural integrity and long-term reliability.  
10.2 Layout Example  
Place components close  
VOUT A  
to device and to each  
other to reduce parasitic  
errors  
VS+  
V+  
OUT A  
œIN A  
+IN A  
Vœ  
Use a low-ESR,  
ceramic bypass  
capacitor  
VOUT B  
RF  
RG  
RF  
OUT B  
œIN B  
+IN B  
Run the input traces  
as far away from  
the supply lines  
as possible  
VIN A  
RG  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
VSœ  
VIN B  
Run the input traces  
as far away from  
the supply lines  
as possible  
VSœ  
Use low-ESR,  
ceramic bypass  
capacitor  
Connect Exposed  
Pad to VS-  
Copyright © 2017, Texas Instruments Incorporated  
29. Layout Example  
20  
版权 © 2017, Texas Instruments Incorporated  
OPA2333P  
www.ti.com.cn  
ZHCSH14A NOVEMBER 2017REVISED DECEMBER 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
关于此产品的开发支持,请参阅以下内容:  
《高侧电压电流转换器,0V 2V0mA 100mA1% 满量程误差》  
《低电平电压电流转换器参考设计,0V 5V 输入,0µA 5µA 输出》  
ADS8881x 18 位、1MSPS、串行接口、微功耗、微型、真差分输入、SAR 模数转换器》  
《针对最低失真和最低噪声进行了优化的 18 1MSPS 数据采集参考设计》  
ADS1100 自校准 16 位模数转换器》  
REF31xx 15ppm/°C 最大值、100μASOT-23 系列电压基准》  
INA326INA327 精密低漂移 CMOS 仪表放大器》  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
QFN/SON PCB 连接》  
零温漂放大器: 特性 和优势  
11.3 接收文档更新通知  
如需接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2333PIDSGR  
OPA2333PIDSGT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1GFY  
1GFY  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Apr-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2333PIDSGR  
OPA2333PIDSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2333PIDSGR  
OPA2333PIDSGT  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA2333PIDSGR

GBW 大于 300kHz 的业内极致小尺寸、低功耗、高精度双路运算放大器 | DSG | 8 | -40 to 125
TI

OPA2333PIDSGT

GBW 大于 300kHz 的业内极致小尺寸、低功耗、高精度双路运算放大器 | DSG | 8 | -40 to 125
TI

OPA2333SHKJ

1.8-V MICROPOWER CMOS OPERATIONAL AMPLIFIER
TI

OPA2333SHKQ

1.8-V MICROPOWER CMOS OPERATIONAL AMPLIFIER
TI

OPA2333SJD

1.8-V MICROPOWER CMOS OPERATIONAL AMPLIFIER
TI

OPA2333SKGD1

1.8-V MICROPOWER CMOS OPERATIONAL AMPLIFIER
TI

OPA2334

0.05UV/∑C max, SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS
BB

OPA2334

具有关断功能的双路、0.05uV/°C(最大值)、单电源 CMOS 运算放大器
TI

OPA2334AIDGSR

0.05UV/∑C max, SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS
BB

OPA2334AIDGSR

SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS Zero-Drift Series
TI

OPA2334AIDGSRG4

SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS Zero-Drift Series
TI

OPA2334AIDGST

0.05UV/∑C max, SINGLE-SUPPLY CMOS OPERATIONAL AMPLIFIERS
BB