OPA2376-Q1 [TI]

低噪声、低静态电流精密运算放大器电子微调/交换;
OPA2376-Q1
型号: OPA2376-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低噪声、低静态电流精密运算放大器电子微调/交换

电子 放大器 运算放大器
文件: 总38页 (文件大小:1877K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
OPAx376-Q1 低噪声、低静态电流、  
e-trim™ 运算放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等140°C +125°CTA  
功能安全型  
OPAx376-Q1 系列代表了新一代低噪e-trim运算放  
大器可提供出色的直流精度和交流性能。该器件具有  
轨到轨输出、低失调电压最大值为 25μV、低噪  
(7.5nV/Hz)950μA 的静态电流最大值和  
5.5MHz 带宽对于各类精密和便携式应用极具吸引  
力。此外OPA376-Q1 拥有较宽的电源电压范围和出  
色的 PSRR因此非常适合直接由电池供电而无需调  
节的应用。  
可提供用于功能安全系统设计的文档OPA376-  
Q1 OPA2376-Q1)  
• 低噪声1kHz 7.5nV/Hz  
0.1Hz 10Hz 噪声0.8μVPP  
• 静态电流760μA典型值)  
• 低失调电压5μV典型值)  
• 增益带宽积5.5MHz  
OPA376-Q1单通道版本MicroSIZE SC70-5、  
SOT23-5 SOIC-8 封装。OPA2376-Q1双通道)  
采用 SOIC-8 VSSOP-8 封装。OPA4376-Q1四通  
采用 TSSOP-14 封装。所有器件版本的额定工作  
温度范围均-40°C +125°C。  
• 轨到轨输入和输出  
• 单电源供电  
• 电源电压2.2V 5.5V  
• 节省空间的封装:  
器件信息  
封装(1)  
SC70SOT-23VSSOPTSSOP  
封装尺寸标称值)  
2.00mm × 1.25mm  
2.90mm × 1.60mm  
4.90mm × 3.91mm  
4.90mm × 3.91mm  
3.00mm × 3.00mm  
5.00mm × 4.40mm  
器件型号  
2 应用  
SC70 (5)  
OPA376-Q1  
SOT-23 (5)  
SOIC (8)  
车载充电(OBC) 和无线充电器  
逆变器和电机控制  
直流/直流转换器  
SOIC (8)  
OPA2376-Q1  
OPA4376-Q1  
电池管理系(BMS)  
VSSOP (8)  
TSSOP (14)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
100  
10  
1
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Offset Voltage (mV)  
输入电压噪声频谱密度  
失调电压生产分配  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS549  
 
 
 
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................15  
8 Application and Implementation..................................16  
8.1 Application Information............................................. 16  
8.2 Typical Application.................................................... 19  
9 Power Supply Recommendations................................20  
10 Layout...........................................................................21  
10.1 Layout Guidelines................................................... 21  
10.2 Layout Example...................................................... 21  
11 Device and Documentation Support..........................22  
11.1 Device Support........................................................22  
11.2 Documentation Support.......................................... 22  
11.3 接收文档更新通知................................................... 22  
11.4 支持资源..................................................................22  
11.5 Trademarks............................................................. 23  
11.6 静电放电警告...........................................................23  
11.7 术语表..................................................................... 23  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information: OPA376-Q1.............................. 7  
6.5 Thermal Information: OPA2376-Q1............................ 7  
6.6 Thermal Information: OPA4376-Q1............................ 7  
6.7 Electrical Characteristics.............................................8  
6.8 Typical Characteristics................................................9  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................13  
Information.................................................................... 23  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (May 2016) to Revision C (March 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 删除了HBM CDM 分级等级并将其移ESD .................................................................... 1  
• 向添加了功能安全链接................................................................................................................................1  
• 更改了要点..................................................................................................................................................1  
Changed ESD Ratings to show HBM and CDM classification levels................................................................. 6  
Added Figure 6-8, Common-Mode Voltage vs Temperature ............................................................................. 9  
Added Figure 6-9, Offset Voltage vs Common-Mode Voltage ...........................................................................9  
Changes from Revision A (January 2016) to Revision B (May 2016)  
Page  
• 更新了示例..................................................................................................................................................1  
Updated the Pin Functions Table for OPA4376-Q1............................................................................................ 3  
Updated HBM ESD Rating ................................................................................................................................ 6  
Changed units on Channel Separation ..............................................................................................................8  
Deleted the temperature range parameters from the Electrical Characteristics table........................................ 8  
Removed section regarding WCSP photosensitivity ....................................................................................... 21  
Changes from Revision * (April 2011) to Revision A (January 2016)  
Page  
• 添加了引脚功表、ESD 表、建议运行条表、热性能信表、特性说部分、器件功能模式应用  
和实部分、电源相关建部分、部分、器件和文档支部分以及机械、封装和可订购信部分........ 1  
• 已OPA2376-Q1 器件发布为量产数............................................................................................................1  
Added the Input Offset Voltage and Input Offset Voltage Drift section to the Feature Description ..................13  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT  
V-  
1
2
3
5
4
V+  
+IN  
V-  
1
2
3
5
4
V+  
+IN  
-IN  
-IN  
OUT  
5-1. OPA376-Q1: DBV (5-Pin SOT-23) Package, 5-2. OPA376-Q1: DCK (5-Pin SC70) Package, Top  
Top View  
View  
NC(1)  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
NC(1)  
V+  
-
+
OUT  
NC(1)  
(1) NC denotes no internal connection.  
5-3. OPA376-Q1: D (8-Pin SOIC) Package, Top View  
5-1. Pin Functions: OPA376-Q1  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
+IN  
SOT-23  
SC70  
SOIC  
3
4
1
3
3
I
I
Noninverting input+  
2
Inverting input–  
IN  
NC  
1, 5, 8  
No internal connection  
Output  
1
4
OUT  
V+  
6
7
4
O
5
5
Positive (highest) power supply+  
Negative (lowest) power supply–  
2
2
V–  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT B  
-IN B  
+IN B  
5-4. OPA2376-Q1: D (8-Pin SOIC) and DGK (8-Pin VSSOP) Packages, Top View  
5-2. Pin Functions: OPA2376-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
NO.  
3
I
I
Noninverting input, channel A+  
Inverting input, channel A–  
Noninverting input, channel B+  
Inverting input, channel B–  
Output, channel A  
2
IN A  
+IN B  
IN B  
OUT A  
OUT B  
V–  
5
I
6
I
1
O
O
7
Output, channel B  
4
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
8
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
OUT A  
-IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 -IN D  
12 +IN D  
11 V-  
+IN B  
-IN B  
OUT B  
10 +IN C  
9
8
-IN C  
OUT C  
5-5. OPA4376-Q1: PW (14-Pin TSSOP) Package, Top View  
5-3. Pin Functions: OPA4376-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
NO.  
3
I
I
Noninverting input, channel A+  
Inverting input, channel A–  
Noninverting input, channel B+  
Inverting input, channel B–  
Noninverting input, channel C+  
Inverting input, channel C–  
Noninverting input, channel D+  
Inverting input, channel D–  
Output, channel A  
2
IN A  
+IN B  
IN B  
+IN C  
IN C  
+IN D  
IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
5
I
6
I
10  
9
I
I
12  
13  
1
I
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
4
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
11  
V–  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage  
7
(V+) + 0.5  
10  
VS = (V+) (V)  
Signal input pin voltage(2)  
Signal input pin current(2)  
Output short-circuit current(3)  
Operating temperature  
Junction temperature  
Storage temperature  
V
(V) 0.5  
10  
mA  
Continuous  
TA  
125  
150  
150  
°C  
°C  
°C  
40  
TJ  
Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must  
be current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 3A  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD classification level C6  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.2 (±1.1)  
40  
MAX  
5.5 (±2.75)  
150  
UNIT  
V
Supply voltage  
VS = (V+) (V)  
TA  
Operating temperature  
°C  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
 
 
 
 
 
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
6.4 Thermal Information: OPA376-Q1  
OPA376-Q1  
THERMAL METRIC(1)  
DCK (SC70) DBV (SOT-23)  
D (SOIC)  
8 PINS  
100.1  
42.4  
UNIT  
5 PINS  
267  
5 PINS  
273.8  
126.8  
85.9  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
80.9  
54.8  
1.2  
41  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
10.9  
4.8  
ψJT  
54.1  
n/a  
84.9  
40.3  
ψJB  
RθJC(bot)  
n/a  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: OPA2376-Q1  
OPA2376-Q1  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
111.1  
54.7  
DGK (VSSOP)  
8 PINS  
171.2  
63.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
51.7  
92.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
10.5  
9.2  
ψJT  
51.2  
91.2  
ψJB  
RθJC(bot)  
n/a  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4376-Q1  
OPA4376-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
107.8  
29.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
52.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
ψJT  
51.6  
ψJB  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
 
 
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
6.7 Electrical Characteristics  
at TA = 25°C, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VO UT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
5
0.26  
0.32  
5
25  
1
μV  
TA = 40°C to +85°C  
μV/°C  
μV/°C  
μV/V  
μV/V  
Input offset voltage versus  
temperature  
dVOS/dT  
2
TA = 40°C to +125°C  
TA = 25°C  
20  
VS = 2.2 V to 5.5 V,  
VCM < (V+) 1.3 V  
Input offset voltage versus  
power supply  
PSRR  
5
TA = 40°C to +125°C  
Channel separation, dc (dual,  
quad)  
0.5  
µV/V  
INPUT BIAS CURRENT  
TA = 25°C  
0.2  
See 6.8  
0.2  
10  
10  
pA  
pA  
pA  
IB  
Input bias current  
Input offset current  
TA = 40°C to +125°C  
IOS  
NOISE  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
0.8  
7.5  
2
μVPP  
en  
in  
Input voltage noise density  
Input current noise  
nV/Hz  
fA/Hz  
f = 1 kHz  
INPUT VOLTAGE  
(V) –  
VCM  
Common-mode voltage  
Common-mode rejection ratio  
(V+) + 0.1  
V
See 6-8  
0.1  
CMRR  
76  
90  
dB  
(V) < VCM < (V+) 1.3 V  
INPUT CAPACITANCE  
Differential  
6.5  
13  
pF  
pF  
Common-mode  
OPEN-LOOP GAIN  
120  
120  
134  
126  
dB  
dB  
50 mV < VO < (V+) 50 mV, RL = 10 kΩ  
100 mV < VO < (V+) 100 mV, RL = 2 kΩ  
AOL  
Open-loop voltage gain  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
CL = 100 pF, VS = 5.5 V  
5.5  
MHz  
V/μs  
μs  
Slew rate  
G = 1, CL = 100 pF, VS = 5.5 V  
2
1.6  
0.1%, 2-V Step , G = 1, CL = 100 pF, VS = 5.5 V  
0.01%, 2-V Step , G = 1, CL = 100 pF, VS = 5.5 V  
VIN × Gain > VS  
tS  
Settling time  
2
μs  
Overload recovery time  
THD + noise  
0.33  
μs  
THD+N  
0.00027%  
VO = 1 VRMS, G = 1, f = 1 kHz, RL = 10 kΩ  
OUTPUT  
TA = 25°C  
10  
40  
20  
40  
50  
80  
mV  
mV  
mV  
mV  
mA  
RL = 10 kΩ  
TA = 40°C to +125°C  
Voltage output swing from rail  
TA = 25°C  
RL = 2 kΩ  
TA = 40°C to +125°C  
ISC  
Short-circuit current  
30 / 50  
See 6.8  
150  
CLOAD  
RO  
Capacitive load drive  
Open-loop output impedance  
POWER SUPPLY  
VS Specified voltage  
2.2  
5.5  
V
V
Operating voltage  
2 to 5.5  
760  
TA = 25°C  
950  
1
μA  
mA  
IO = 0, VS = 5.5 V, VCM < (V+) 1.3  
V
IQ  
Quiescent current per amplifier  
TA = 40°C to +125°C  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, VS = 5 V, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
120  
100  
80  
60  
40  
20  
0
160  
140  
120  
100  
80  
0
V(+) Power-Supply Rejection Ratio  
-20  
-40  
Gain  
-60  
Phase  
Common-Mode  
Rejection Ratio  
-80  
60  
-100  
-120  
-140  
-160  
-180  
40  
V(-) Power-Supply Rejection Ratio  
20  
0
-20  
0.1  
1
10  
100  
1k  
10k  
100k 1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
6-2. Power-Supply and Common-Mode Rejection Ratio vs  
6-1. Open-Loop Gain and Phase vs Frequency  
Frequency  
160  
Open-Loop Gain (RL = 2kW)  
140  
120  
Power-Supply Rejection Ratio  
(VS = 2.1V to 5.5V)  
100  
80  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
1s/div  
6-4. 0.1-Hz to 10-Hz Input Voltage Noise  
6-3. Open-Loop Gain and Power-Supply Rejection Ratio vs  
Temperature  
100  
10  
1
1
VS = 5V, VCM = 2V, VOUT = 1VRMS  
0.1  
0.01  
Gain = 10V/V  
0.001  
Gain = 1V/V  
0.0001  
1
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
6-5. Input Voltage Noise Spectral Density  
6-6. Total Harmonic Distortion + Noise vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
110  
100  
90  
80  
70  
60  
50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
VCM range for typical CMRR = 90 dB  
6-8. Common-Mode Voltage vs Temperature  
6-7. Common-Mode Rejection Ratio vs Temperature  
1000  
900  
800  
700  
600  
500  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
TA = 125°C  
6-9. Offset Voltage vs Common-Mode Voltage  
(V) = 0 V  
6-10. Quiescent Current vs Temperature  
75  
50  
1000  
900  
800  
700  
600  
500  
50  
VS = ±2.75V  
40  
30  
20  
10  
0
ISC+  
ISC+  
25  
0
IQ  
-25  
-50  
-75  
-100  
ISC-  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Supply Voltage (V)  
Temperature (°C)  
6-12. Short-Circuit Current vs Temperature  
6-11. Quiescent and Short-Circuit Current vs Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
3
2
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VS = ±2.75  
1
+150°C  
+125°C  
+25°C  
-40°C  
0
-1  
-2  
-3  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
80  
Output Current (mA)  
Temperature (°C)  
6-14. Output Voltage vs Output Current  
6-13. Input Bias Current vs Temperature  
½Offset Voltage Drift½ (mV/°C)  
Offset Voltage (mV)  
6-16. Offset Voltage Drift Production Distribution  
(40°C to +125°C)  
6-15. Offset Voltage Production Distribution  
6
50  
VS = 5.5V  
VS = 5V  
G = +1V/V  
5
4
3
2
1
0
40  
30  
20  
10  
0
VS = 2.5V  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
Frequency (Hz)  
Load Capacitance (pF)  
6-17. Maximum Output Voltage vs Frequency  
6-18. Small-Signal Overshoot vs Load Capacitance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, RL = 10 kΩconnected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)  
G = +1  
RL = 10kW  
G = +1  
RL = 2kW  
CL = 50pF  
CL = 50pF  
Time (400ns/div)  
Time (2ms/div)  
6-19. Small-Signal Pulse Response  
6-20. Large-Signal Pulse Response  
140  
120  
100  
80  
100  
10  
1
0.01%  
60  
40  
0.1%  
20  
0
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1
10  
100  
Frequency (Hz)  
Closed-Loop Gain (V/V)  
6-22. Channel Separation vs Frequency  
6-21. Settling Time vs Closed-Loop Gain  
1k  
100  
10  
1
400mA Load  
2mA Load  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
6-23. Open-Loop Output Resistance vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPAx376-Q1 family belongs to a new generation of low-noise e-trim operational amplifiers, giving  
customers outstanding dc precision and ac performance. Low noise, rail-to-rail input and output, low offset, and  
drawing a low quiescent current, make these devices an excellent choice for a variety of precision and portable  
applications. In addition, these devices have a wide supply range with excellent PSRR, making the OPAx376-Q1  
a great option for applications that are battery powered without regulation.  
7.2 Functional Block Diagram  
V+  
OPAx376  
-IN  
OUT  
+IN  
POR  
e-trim  
V-  
7.3 Feature Description  
The OPAx376-Q1 family of precision amplifiers offers excellent dc performance as well as excellent ac  
performance. Operating from a single power-supply the OPAx376-Q1 is capable of driving large capacitive  
loads, has a wide input common-mode voltage range, and is well-suited to drive the inputs of successive-  
approximation response (SAR) analog-to-digital converters (ADCs) as well as 24-bit and higher resolution  
converters. Including internal ESD protection, the OPAx376-Q1 family is offered in a variety of industry-standard  
packages, including a wafer chip-scale package for applications that require space savings.  
7.3.1 Operating Voltage  
The OPAx376-Q1 family of amplifiers operate over a power-supply range of 2.2 V to 5.5 V (±1.1 V to ±2.75 V).  
Many of the specifications apply from 40°C to +125°C. Parameters that can exhibit significant variance with  
regard to operating voltage or temperature are presented in 6.8.  
7.3.2 Input Offset Voltage and Input Offset Voltage Drift  
The OPAx376-Q1 family of e-trim operational amplifiers is manufactured using TI's proprietary trim technology, a  
method of trimming internal device parameters during either wafer probing or final testing. Each amplifier is  
trimmed in production, thereby minimizing errors associated with input offset voltage and input offset voltage  
drift.  
7.3.3 Capacitive Load and Stability  
The OPAx376-Q1 series of amplifiers may be used in applications where driving a capacitive load is required. As  
with all op amps, there may be specific instances where the OPAx376-Q1 can become unstable, leading to  
oscillation. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to  
consider when establishing whether an amplifier is be stable in operation. An op amp in the unity-gain (1 V/V)  
buffer configuration and driving a capacitive load exhibits a greater tendency to be unstable than an amplifier  
operated at a higher noise gain. The capacitive load, in conjunction with the op amp output resistance, creates a  
pole within the feedback loop that degrades the phase margin. The degradation of the phase margin increases  
as the capacitive loading increases.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
 
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
The OPAx376 in a unity-gain configuration can directly drive up to 250 pF of pure capacitive load. Increasing the  
gain enhances the ability of the amplifier to drive greater capacitive loads; see the typical characteristic plot 图  
6-18, Small-Signal Overshoot vs Load Capacitance. In unity-gain configurations, capacitive load drive can be  
improved by inserting a small (10-to 20-) resistor, RS, in series with the output, as shown in 7-1. This  
resistor significantly reduces ringing while maintaining dc performance for purely capacitive loads. However, if  
there is a resistive load in parallel with the capacitive load, a voltage divider is created, introducing a gain error at  
the output and slightly reducing the output swing. The error introduced is proportional to the ratio RS / RL, and is  
generally negligible at low output current levels.  
V+  
RS  
VOUT  
OPA376  
10W to  
20W  
VIN  
CL  
RL  
7-1. Improving Capacitive Load Drive  
7.3.4 Common-Mode Voltage Range  
The input common-mode voltage range of the OPAx376-Q1 series extends 100 mV beyond the supply rails. The  
offset voltage of the amplifier is very low, from approximately (V) to (V+) 1 V, as shown in 7-2. The offset  
voltage increases as common-mode voltage exceeds (V+) 1 V. Common-mode rejection is specified from  
(V) to (V+) 1.3 V.  
3
2
1
0
-1  
-2  
-V  
+V  
-3  
-0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Common-Mode Voltage (V)  
7-2. Offset and Common-Mode Voltage  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
7.3.5 Input and ESD Protection  
The OPAx376-Q1 family incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the  
case of input and output pins, this protection primarily consists of current steering diodes connected between the  
input and power-supply pins. These ESD protection diodes also provide in-circuit, input overdrive protection, as  
long as the current is limited to 10 mA as stated in 6.1.  
7-3 shows how a series input resistor may be added to the driven input to limit the input current. The added  
resistor contributes thermal noise at the amplifier input and its value must be kept to a minimum in noise-  
sensitive applications.  
V+  
IOVERLOAD  
10mA max  
VOUT  
OPA376  
VIN  
5kW  
7-3. Input Current Protection  
7.4 Device Functional Modes  
The OPAx376-Q1 has a single functional mode and is operational when the power-supply voltage is greater than  
2.2 V (±1.1 V). The maximum power supply voltage for the OPAx376-Q1 is 5.5 V (±2.75 V).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The OPAx376-Q1 family of e-trim operational amplifiers is built using a proprietary technique in which offset  
voltage is adjusted during the final steps of manufacturing. This technique compensates for performance shifts  
that can occur during the molding process. Through e-trim operational amplifier technology, the OPAx376-Q1  
family delivers excellent offset voltage (5 μV, typical). Additionally, the amplifier boasts a fast slew rate, low drift,  
low noise, and excellent PSRR and AOL. These 5.5-MHz CMOS op amps operate on 760 μA (typical) quiescent  
current.  
8.1.1 Basic Amplifier Configurations  
The OPAx376-Q1 family is unity-gain stable. It does not exhibit output phase inversion when the input is  
overdriven. A typical single-supply connection is shown in 8-1. The OPA376-Q1 is configured as a basic  
inverting amplifier with a gain of 10 V/V. This single-supply connection has an output centered on the  
common-mode voltage, VCM. For the circuit shown in 8-1, this voltage is 2.5 V, but may be any value within  
the common-mode input voltage range.  
R2  
10kW  
+5V  
C1  
100nF  
R1  
1kW  
VOUT  
OPA376  
VIN  
VCM = 2.5V  
8-1. Basic Single-Supply Connection  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
8.1.2 Active Filtering  
The OPA376-Q1 series is well-suited for filter applications requiring a wide bandwidth, fast slew rate, low-noise,  
single-supply operational amplifier. 8-2 shows a 50-kHz, second-order, low-pass filter. The components have  
been selected to provide a maximally-flat Butterworth response. Beyond the cutoff frequency, roll-off is 40 dB/  
dec. The Butterworth response is ideal for applications requiring predictable gain characteristics such as the anti-  
aliasing filter used ahead of an ADC.  
R3  
5.49kW  
C2  
150pF  
V+  
R1  
R2  
5.49kW  
12.4kW  
OPA376  
VOUT  
C1  
1nF  
VIN  
(V+)/2  
8-2. Second-Order Butterworth, 50-kHz Low-Pass Filter  
8.1.3 Driving an Analog-to-Digital Converter  
The low noise and wide gain bandwidth of the OPA376-Q1 family make it an ideal driver for ADCs. 8-3  
illustrates the OPA376-Q1 driving an ADS8327, 16-bit, 250-kSPS converter. The amplifier is connected as a  
unity-gain, noninverting buffer.  
+5V  
C1  
0.1mF  
+5V  
(1)  
R1  
100W  
+IN  
ADS8327  
Low Power  
16-Bit  
OPA376  
(1)  
C3  
-IN  
1.2nF  
500kSPS  
VIN  
REF IN  
+5V  
REF5040  
4.096V  
C4  
100nF  
(1) Suggested value; may require adjustment based on specific application.  
8-3. Driving an ADS8327  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
8.1.4 Phantom-Powered Microphone  
The circuit shown in 8-4 depicts how a remote microphone amplifier can be powered by a phantom source on  
the output side of the signal cable. The cable serves double duty, carrying both the differential output signal from  
and dc power to the microphone amplifier stage.  
An OPA2376-Q1 serves as a single-ended input to a differential output amplifier with a 6-dB gain. Common-  
mode bias for the two op amps is provided by the dc voltage developed across the electret microphone element.  
A 48-V phantom supply is reduced to 5.1 V by the series 6.8-kresistors on the output side of the cable, and the  
4.7-kresistors and zener diode on the input side of the cable. AC coupling blocks the different dc voltage levels  
from each other on each end of the cable.  
An INA163 instrumentation amplifier provides differential inputs and receives the balanced audio signals from  
the cable.  
The INA163 gain may be set from 0 dB to 80 dB by selecting the RG value. The INA163 circuit is typical of the  
input circuitry used in mixing consoles.  
Phantom Power  
(Provides power source for microphone)  
48V  
Microphone  
100W  
1mF  
+
33mF  
D1  
5.1V  
R1  
2.7kW  
R8  
R9  
C2  
R6  
4.7kW  
4.7kW  
R10  
R11  
33mF  
+
100W  
+15V  
1/2  
6.8kW  
6.8kW  
OPA2376  
10mF  
2
3
2
3
1kW  
1kW  
RG  
INA163  
10mF  
Panasonic  
WM-034CY  
1
1
C3  
R7  
3.3kW  
3.3kW  
10kW  
33mF  
+
100W  
1/2  
Low-level differential audio signal  
is transmitted differentially on the  
same cable as power to the microphone.  
OPA2376  
-15V  
+
10mF  
Typical microphone input circuit used in mixing consoles.  
8-4. Phantom-Powered Electret Microphone  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
8.1.5 Speech Bandpass-Filtered Data Acquisition System  
8-5 illustrates the OPA2376-Q1 driving a speech bandpass-filtered data acquisition system.  
V+ = +2.7V to 5V  
Passband 300Hz to 3kHz  
R9  
510kW  
R1  
R4  
R2  
1.5kW  
20kW  
1MW  
C3  
C1  
33pF  
1000pF  
R7  
R8  
V+  
8
1
VREF  
51kW  
150kW  
1/2  
7
6
DCLOCK  
DOUT  
OPA2376  
+IN  
2
1/2  
R3  
ADS7822  
Electret  
Serial  
Microphone(1)  
OPA2376  
1MW  
R6  
12-Bit A/D  
Interface  
1000pF  
C2  
5
CS/SHDN  
-IN  
100kW  
3
4
G = 100  
R5  
20kW  
GND  
(1) Electret microphone powered by R1.  
8-5. OPA2376-Q1 as a Speech Bandpass-Filtered Data Acquisition System  
8.2 Typical Application  
Low-pass filters are commonly employed in signal processing applications to reduce noise and prevent aliasing.  
The OPA376-Q1 is ideally suited to construct high-speed, high-precision active filters. 8-6 shows a second-  
order, low-pass filter commonly encountered in signal processing applications.  
R4  
2.94 k  
C5  
1 nF  
œ
R1  
590 ꢀ  
R3  
499 ꢀ  
Output  
+
Input  
OPA376  
C2  
39 nF  
8-6. Typical Application Schematic  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
8.2.1 Design Requirements  
Use the following parameters for this design example:  
Gain = 5 V/V (inverting gain)  
Low-pass cutoff frequency = 25 kHz  
Second-order Chebyshev filter response with 3-dB gain peaking in the passband  
8.2.2 Detailed Design Procedure  
The infinite-gain multiple-feedback circuit for a low-pass network function is shown in 8-6. Use 方程式 1 to  
calculate the voltage transfer function.  
-1 R1R3C2C5  
Output  
Input  
s =  
( )  
s2 + s C 1 R +1 R +1 R +1 R R C C  
(
)
(
)
2
1
3
4
3 4 2 5  
(1)  
This circuit produces a signal inversion. For this circuit, the gain at dc and the low-pass cutoff frequency are  
calculated by 方程2:  
R4  
Gain =  
R1  
1
fC  
=
1 R R C C  
(
3 4 2 5  
)
2p  
(2)  
Software tools are readily available to simplify filter design. WEBENCH® Filter Designer is a simple, powerful,  
and easy-to-use active filter design program. The WEBENCH Filter Designer lets you create optimized filter  
designs using a selection of TI operational amplifiers and passive components from TI's vendor partners.  
Available as a web-based tool from the WEBENCH® Design Center, WEBENCH® Filter Designer allows you to  
design, optimize, and simulate complete multi-stage active filter solutions within minutes.  
8.2.3 Application Curve  
20  
0
-20  
-40  
-60  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
8-7. Low-Pass Filter Transfer Function  
9 Power Supply Recommendations  
The OPAx376-Q1 family of devices is specified for operation from 2.2 V to 5.5 V (±1.1 V to ±2.75 V); many  
specifications apply from 40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are presented in 6.8.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself.  
Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to  
the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current. For more detailed information refer to  
the Circuit Board Layout Techniques application report.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as  
opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in 10-1, keeping RF and RG  
close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic  
package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to  
remove moisture introduced into the device packaging during the cleaning process. A low-temperature, post-  
cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
10.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
(Schematic Representation)  
Place components  
close to device and to  
each other to reduce  
parasitic errors  
Run the input  
traces as far away  
from the supply  
lines as possible  
VS+  
RF  
N/C  
N/C  
V+  
RG  
GND  
GND  
œIN  
+IN  
Vœ  
OUTPUT  
N/C  
VIN  
Use low-ESR, ceramic  
bypass capacitor  
GND  
Use low-ESR,  
ceramic bypass  
capacitor  
VOUT  
VSœ  
Ground (GND) plane on another layer  
10-1. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
 
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 TINA-TI™ Simulation Software (Free Download)  
TINAis a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI™  
simulation software is a free, fully-functional version of the TINA software, preloaded with a library of macro  
models in addition to a range of both passive and active models. TINA-TI simulation software provides all the  
conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI simulation software offers extensive  
post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the  
ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-  
start tool.  
备注  
These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed.  
Download the free TINA-TI software from the TINA-TI folder.  
11.1.1.2 TI Precision Designs  
TI Precision Designs are analog solutions created by TIs precision analog applications experts and offer the  
theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and  
measured performance of many useful circuits. TI Precision Designs are available online at http://  
www.ti.com/ww/en/analog/precision-designs/.  
11.1.1.3 WEBENCH® Filter Designer  
WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The  
WEBENCH® Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers  
and passive components from TI's vendor partners.  
Available as a web-based tool from the WEBENCH® Design Center, WEBENCH® Filter Designer allows you to  
design, optimize, and simulate complete multistage active filter solutions within minutes.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, INA163 Low-Noise, Low-Distortion Instrumentation Amplifier data sheet  
Texas Instruments, Operational Amplifier Gain stability, Part 3: AC Gain-Error Analysis  
Texas Instruments, Operational Amplifier Gain Stability, Part 2: DC Gain-Error Analysis  
Texas Instruments, Op Amp Performance Analysis  
Texas Instruments, Shelf-Life Evaluation of Lead-Free Component Finishes  
Texas Instruments, Single-Supply Operation of Operational Amplifiers  
Texas Instruments, Tuning in Amplifiers  
Texas Instruments, Using Infinite-Gain, MFB Filter Topology in Fully Differential Active Filters  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
 
 
 
OPA376-Q1, OPA2376-Q1, OPA4376-Q1  
ZHCS042C APRIL 2011 REVISED MARCH 2021  
www.ti.com.cn  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
e-trim, TINA-TI, and TI E2Eare trademarks of Texas Instruments.  
TINAand DesignSoftare trademarks of DesignSoft, Inc.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA376-Q1 OPA2376-Q1 OPA4376-Q1  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2376AQDRQ1  
OPA2376QDGKRQ1  
OPA376AQDBVRQ1  
OPA4376AQPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
D
8
8
2500 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2376Q1  
VSSOP  
SOT-23  
TSSOP  
DGK  
DBV  
PW  
NIPDAUAG  
NIPDAU  
2376  
5
OUHQ  
4376Q1  
14  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2376AQDRQ1  
OPA2376QDGKRQ1  
OPA376AQDBVRQ1  
OPA4376AQPWRQ1  
SOIC  
D
8
8
2500  
2500  
3000  
2000  
330.0  
330.0  
179.0  
330.0  
12.4  
12.4  
8.4  
6.4  
5.3  
3.2  
6.9  
5.2  
3.4  
3.2  
5.6  
2.1  
1.4  
1.4  
1.6  
8.0  
8.0  
4.0  
8.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q3  
Q1  
VSSOP  
SOT-23  
TSSOP  
DGK  
DBV  
PW  
5
14  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2376AQDRQ1  
OPA2376QDGKRQ1  
OPA376AQDBVRQ1  
OPA4376AQPWRQ1  
SOIC  
D
8
8
2500  
2500  
3000  
2000  
356.0  
366.0  
213.0  
356.0  
356.0  
364.0  
191.0  
356.0  
35.0  
50.0  
35.0  
35.0  
VSSOP  
SOT-23  
TSSOP  
DGK  
DBV  
PW  
5
14  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA2376AID

Precision, Low Noise, Low Quiescent Current, Operational Amplifier
BB

OPA2376AID

Low-Noise, Low Quiescent Current, Precision Operational Amplifier e-trim Series
TI

OPA2376AIDG4

Precision, Low Noise, Low Quiescent Current, Operational Amplifier
BB

OPA2376AIDG4

Low-Noise, Low Quiescent Current, Precision Operational Amplifier e-trim Series
TI

OPA2376AIDGKR

Precision, Low Noise, Low Quiescent Current, Operational Amplifier
BB

OPA2376AIDGKR

Low-Noise, Low Quiescent Current, Precision Operational Amplifier e-trim Series
TI

OPA2376AIDGKRG4

Precision, Low Noise, Low Quiescent Current, Operational Amplifier
BB

OPA2376AIDGKRG4

Low-Noise, Low Quiescent Current, Precision Operational Amplifier e-trim Series
TI

OPA2376AIDGKT

Precision, Low Noise, Low Quiescent Current, Operational Amplifier
BB

OPA2376AIDGKT

Low-Noise, Low Quiescent Current, Precision Operational Amplifier e-trim Series
TI

OPA2376AIDGKTG4

Precision, Low Noise, Low Quiescent Current, Operational Amplifier
BB

OPA2376AIDGKTG4

Low-Noise, Low Quiescent Current, Precision Operational Amplifier e-trim Series
TI