OPA2377-Q1 [TI]

通过汽车级认证的轨到轨输入/输出、低噪声、5MHz CMOS 运算放大器;
OPA2377-Q1
型号: OPA2377-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

通过汽车级认证的轨到轨输入/输出、低噪声、5MHz CMOS 运算放大器

放大器 运算放大器
文件: 总33页 (文件大小:1116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
ZHCSF20A MAY 2016REVISED MAY 2016  
OPAx377-Q1 低噪声、低静态电流、汽车级精密运算放大器  
1 特性  
3 说明  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 的下列结果:  
OPAx377-Q1 系列运算放大器属于高带宽 CMOS 放大  
器,同时拥有超低噪声、低输入偏置电流和低偏移电压  
特性,静态工作电流低至 0.76mA(典型值)。  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
OPAx377-Q1 运放针对低电压、单电源应用进行了 优  
化。其交流和直流性能都非常出色,非常适合 诸如小  
信号调节、音频和有源滤波器等各类应用。此外,该系  
列器件还具有较宽的电源范围及优异的电源抑制比  
(PSRR),因此对于不经过稳压而直接由电池供电运行  
的 应用 而言极具吸引力。  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 3A  
器件组件充电模式 (CDM) ESD 分类等级 C6  
低噪声:1kHz 时为 7.5nV/Hz  
0.1Hz 10Hz 噪声:0.8 μVPP  
静态电流:760μA(典型值)  
低偏移电压:250μV(典型值)  
增益带宽积:5.5MHz  
轨到轨输入和输出  
OPA377-Q1 采用 SOT23-5 封装。OPA2377-Q1(双  
通道版本)采用微型小外形尺寸 (MSOP)-8 封  
装,OPA4377-Q1(四通道版本)采用 TSSOP-14 封  
装。所有器件版本的额定工作温度范围均为 -40°C 至  
+125°C。  
单电源供电  
电源电压:2.2V 5.5V  
小型封装:  
器件信息(1)  
小外形尺寸晶体管 (SOT)-23、超薄小外形尺寸  
(VSSOP) 和薄型小外形尺寸 (TSSOP)  
器件型号  
OPA377-Q1  
封装  
SOT-23 (5)  
VSSOP (8)  
TSSOP (14)  
封装尺寸(标称值)  
2.90mm x 1.60mm  
3.00mm × 3.00mm  
5.00mm x 4.40mm  
OPA2377-Q1  
OPA4377-Q1  
2 应用  
主动巡航控制  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
停车辅助  
轮胎气压监视  
信息娱乐系统  
有源滤波  
传感器信号调节  
低侧电流感测放大器  
Load  
VS  
VBAT  
+
VOUT = ISHUNT x RSHUNT x (1 + RF/RG)  
œ
ISHUNT  
RSHUNT  
RG  
RF  
Copyright © 2016, Texas  
Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS797  
 
 
 
 
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
ZHCSF20A MAY 2016REVISED MAY 2016  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application ................................................. 16  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings ............................................................ 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information: OPA377-Q1 ............................ 6  
6.5 Thermal Information: OPA2377-Q1 .......................... 6  
6.6 Thermal Information: OPA4377-Q1 .......................... 7  
6.7 Electrical Characteristics: VS = 2.2 V to 5.5 V .......... 7  
6.8 Typical Characteristics ............................................. 9  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 20  
11.1 器件支持 ............................................................... 20  
11.2 文档支持 ............................................................... 21  
11.3 社区资源................................................................ 21  
11.4 ....................................................................... 21  
11.5 静电放电警告......................................................... 21  
11.6 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
Changes from Original (May 2016) to Revision A  
Page  
已将器件状态由产品预览更改为量产数据.......................................................................................................................... 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
www.ti.com.cn  
ZHCSF20A MAY 2016REVISED MAY 2016  
5 Pin Configuration and Functions  
OPA377-Q1: DBV Package  
5-Pin SOT23  
Top View  
OUT  
1
2
3
5
4
V+  
V-  
+IN  
-IN  
Pin Functions: OPA377-Q1  
PIN  
NO.  
DBV  
3
I/O  
DESCRIPTION  
NAME  
+IN  
–IN  
NC  
OUT  
V–  
I
Noninverting input  
Inverting input  
4
I
1
O
No internal connection (can be left floating)  
Output  
2
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
5
Copyright © 2016, Texas Instruments Incorporated  
3
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
ZHCSF20A MAY 2016REVISED MAY 2016  
www.ti.com.cn  
OPA2377-Q1: DGK Package  
8-Pin VSSOP and SOIC  
Top View  
OUT A  
1
2
3
4
8
7
6
5
V+  
-IN A  
+IN A  
V-  
OUT B  
-IN B  
+IN B  
Pin Functions: OPA2377-Q1  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
–IN A  
DGK  
2
6
3
5
1
7
4
8
I
I
Inverting input, channel A  
Inverting input, channel B  
Noninverting input, channel A  
Noninverting input, channel B  
Output, channel A  
–IN B  
+IN A  
+IN B  
OUT A  
OUT B  
V–  
I
I
O
O
Output, channel B  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
4
Copyright © 2016, Texas Instruments Incorporated  
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
www.ti.com.cn  
ZHCSF20A MAY 2016REVISED MAY 2016  
OPA4377-Q1: PW Package  
14-Pin TSSOP  
Top View  
OUT A  
-IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 -IN D  
12 +IN D  
11 V-  
+IN B  
-IN B  
OUT B  
10 +IN C  
9
8
-IN C  
OUT C  
Pin Functions: OPA4377-Q1  
PIN  
NO.  
PW  
2
I/O  
DESCRIPTION  
NAME  
–IN A  
I
I
Inverting input, channel A  
–IN B  
–IN C  
–IN D  
+IN A  
+IN B  
+IN C  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
6
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Output, channel A  
9
I
13  
3
I
I
5
I
10  
12  
1
I
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
11  
4
Output, channel D  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
Copyright © 2016, Texas Instruments Incorporated  
5
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
ZHCSF20A MAY 2016REVISED MAY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
7
UNIT  
V
VS = (V+) – (V–)  
Supply voltage  
Signal input terminal voltage(2)  
Signal input terminal current(2)  
Output short-circuit current(3)  
Operating temperature  
Junction temperature  
(V–) – 0.5  
–10  
(V+) + 0.5  
10  
V
mA  
Continuous  
150  
TA  
–40  
–65  
°C  
°C  
°C  
TJ  
150  
Tstg  
Storage temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should  
be current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.2  
MAX  
UNIT  
V
Supply voltage  
5.5  
TA  
Operating temperature  
–40  
150  
°C  
6.4 Thermal Information: OPA377-Q1  
OPA377-Q1  
THERMAL METRIC(1)  
DBV (SOT23)  
5 PINS  
273.8  
126.8  
85.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
10.9  
ψJB  
84.9  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Thermal Information: OPA2377-Q1  
OPA2377-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
171.2  
°C/W  
°C/W  
RθJC(top)  
63.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Copyright © 2016, Texas Instruments Incorporated  
 
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
www.ti.com.cn  
ZHCSF20A MAY 2016REVISED MAY 2016  
Thermal Information: OPA2377-Q1 (continued)  
OPA2377-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
UNIT  
8 PINS  
92.8  
9.2  
RθJB  
ψJT  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
91.2  
n/a  
RθJC(bot)  
6.6 Thermal Information: OPA4377-Q1  
OPA4377-Q1  
PW (TSSOP)  
14 PINS  
107.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
29.6  
52.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
ψJB  
51.6  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.7 Electrical Characteristics: VS = 2.2 V to 5.5 V  
At TA = 25°C, RL = 10 kconnected to VS/2, VCM = VS/2, and VOUT = VS/2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
VS = 5 V  
0.25  
5
1
mV  
Input offset voltage  
versus temperature  
At TA = –40°C to +125°C, VS = 2.2 V to 5.5 V,  
VCM < (V+) – 1.3 V  
µV/V  
Input offset voltage  
versus drift  
dVOS/dT  
PSRR  
At TA = –40°C to +125°C  
0.32  
2
μV/°C  
Input offset voltage  
versus power supply  
At TA = 25°C, VS = 2.2 V to 5.5 V,  
VCM < (V+) – 1.3 V  
5
28  
μV/V  
Channel separation, dc (dual, quad)  
0.5  
µV/V  
INPUT BIAS CURRENT  
IIB  
Input bias current  
±0.2  
±10  
±10  
pA  
pA  
pA  
Input bias current  
versus temperature  
See Typical Characteristics  
IOS  
Input offset current  
±0.2  
NOISE  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
0.8  
7.5  
2
μVPP  
nV/Hz  
fA/Hz  
en  
in  
Input voltage noise density  
Input current noise density  
f = 1 kHz  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
Common-mode rejection ratio  
(V–) – 0.1  
70  
(V+) + 0.1  
V
CMRR  
(V–) < VCM < (V+) – 1.3 V  
90  
dB  
INPUT CAPACITANCE  
Differential  
6.5  
13  
pF  
pF  
Common-mode  
OPEN-LOOP GAIN  
50 mV < VO < (V+) – 50 mV, RL = 10 kΩ  
100 mV < VO < (V+) – 100 mV, RL = 2 kΩ  
112  
134  
126  
dB  
dB  
AOL  
Open-loop voltage gain  
FREQUENCY RESPONSE, VS = 5.5 V  
Copyright © 2016, Texas Instruments Incorporated  
7
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
ZHCSF20A MAY 2016REVISED MAY 2016  
www.ti.com.cn  
Electrical Characteristics: VS = 2.2 V to 5.5 V (continued)  
At TA = 25°C, RL = 10 kconnected to VS/2, VCM = VS/2, and VOUT = VS/2, unless otherwise noted.  
PARAMETER  
Gain-bandwidth product  
Slew rate  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
V/μs  
μs  
GBW  
SR  
5.5  
G = +1  
2
1.6  
At 0.1%, 2-V step, G = +1  
At 0.01%, 2-V step, G = +1  
VIN × Gain > VS  
tS  
Settling time  
2
μs  
Overload recovery time  
0.33  
μs  
THD+N  
Total harmonic distortion + noise  
VO = 1 VRMS, G = +1, f = 1 kHz, RL = 10 kΩ  
0.00027%  
OUTPUT  
At TA = 25°C, RL = 10 kΩ  
10  
20  
40  
mV  
mV  
mA  
Voltage output swing from rail  
At TA = –40°C to +125°C, RL = 10 kΩ  
ISC  
Short-circuit current  
+30/–50  
CLOAD  
RO  
Capacitive load drive  
See Typical Characteristics  
Open-loop output impedance  
150  
Ω
POWER SUPPLY  
VS  
Specified voltage  
2.2  
5.5  
1.05  
1.2  
V
At TA = 25°C, IO = 0, VS = 5.5 V  
At TA = –40°C to +125°C  
0.76  
mA  
mA  
Quiescent current  
(per amplifier)  
IQ  
TEMPERATURE  
Specified temperature  
–40  
+125  
°C  
8
Copyright © 2016, Texas Instruments Incorporated  
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
www.ti.com.cn  
ZHCSF20A MAY 2016REVISED MAY 2016  
6.8 Typical Characteristics  
At TA = 25°C, VS = 5 V, RL = 10 kconnected to VS/2, VCM = VS/2, and VOUT = VS/2, unless otherwise noted.  
120  
100  
80  
60  
40  
20  
0
160  
140  
120  
100  
80  
0
V(+) Power-Supply Rejection Ratio  
-20  
-40  
Gain  
-60  
Phase  
Common-Mode  
Rejection Ratio  
-80  
60  
-100  
-120  
-140  
-160  
-180  
40  
V(-) Power-Supply Rejection Ratio  
20  
0
-20  
10  
100  
1k  
10k  
100k  
1M  
10M  
0.1  
1
10  
100  
1k  
10k  
100k 1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 2. Power-Supply and Common-Mode  
Rejection Ratio vs Frequency  
Figure 1. Open-Loop Gain and Phase vs Frequency  
160  
Open-Loop Gain (RL = 10kW)  
140  
120  
100  
80  
Power-Supply Rejection Ratio  
(VS = 2.2V to 5.5V)  
1s/div  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Figure 4. 0.1-Hz to 10-Hz Input Voltage Noise  
Figure 3. Open-Loop Gain and Power-Supply  
Rejection Ratio vs Temperature  
100  
10  
1
1
VS = 5V, VCM = 2V, VOUT = 1VRMS  
0.1  
0.01  
Gain = 10V/V  
Gain = 1V/V  
0.001  
0.0001  
1
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 5. Input Voltage Noise Spectral Density  
Figure 6. Total Harmonic Distortion and Noise  
vs Frequency  
Copyright © 2016, Texas Instruments Incorporated  
9
 
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
ZHCSF20A MAY 2016REVISED MAY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = 5 V, RL = 10 kconnected to VS/2, VCM = VS/2, and VOUT = VS/2, unless otherwise noted.  
110  
100  
90  
1000  
900  
800  
700  
600  
500  
80  
70  
60  
50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Temperature (°C)  
Figure 7. Common-Mode Rejection Ratio  
vs Temperature  
Figure 8. Quiescent Current  
vs Temperature  
75  
50  
1000  
900  
800  
700  
600  
500  
50  
40  
30  
20  
10  
0
VS = ±2.75V  
ISC+  
ISC+  
25  
0
IQ  
-25  
-50  
-75  
-100  
ISC-  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Temperature (°C)  
Supply Voltage (V)  
Figure 10. Short-Circuit Current  
vs Temperature  
Figure 9. Quiescent and Short-Circuit Current  
vs Supply Voltage  
3
2
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VS = ±2.75  
1
+150°C  
+125°C  
+25°C  
-40°C  
0
-1  
-2  
-3  
0
10  
20  
30  
40  
50  
60  
70  
80  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Output Current (mA)  
Temperature (°C)  
Figure 12. Output Voltage vs Output Current  
Figure 11. Input Bias Current vs Temperature  
10  
Copyright © 2016, Texas Instruments Incorporated  
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
www.ti.com.cn  
ZHCSF20A MAY 2016REVISED MAY 2016  
Typical Characteristics (continued)  
At TA = 25°C, VS = 5 V, RL = 10 kconnected to VS/2, VCM = VS/2, and VOUT = VS/2, unless otherwise noted.  
6
VS = 5.5V  
VS = 5V  
5
4
3
VS = 2.5V  
2
1
0
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Offset Voltage (mV)  
Figure 14. Maximum Output Voltage vs Frequency  
Figure 13. Offset Voltage  
Production Distribution  
50  
40  
30  
20  
10  
0
G = +1  
RL = 10kW  
G = +1V/V  
CL = 50pF  
10  
100  
1k  
Time (400ns/div)  
Load Capacitance (pF)  
Figure 16.  
Small-Signal Pulse Response  
Figure 15.  
Small-Signal Overshoot vs Load Capacitance  
100  
10  
1
G = +1  
RL = 2kW  
CL = 50pF  
0.01%  
0.1%  
0.1  
Time (2ms/div)  
1
10  
100  
Closed-Loop Gain (V/V)  
Figure 17. Large-Signal Pulse Response  
Figure 18. Settling Time vs Closed-Loop Gain  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
ZHCSF20A MAY 2016REVISED MAY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS = 5 V, RL = 10 kconnected to VS/2, VCM = VS/2, and VOUT = VS/2, unless otherwise noted.  
140  
120  
100  
80  
1k  
100  
10  
60  
400mA Load  
2mA Load  
40  
1
20  
0
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 19. Channel Separation vs Frequency  
Figure 20. Open-Loop Output Resistance vs Frequency  
2
T = 25°C  
T = 85°C  
T = 125°C  
1.5  
1
VCM = 1.45 V  
VCM = –2.75 V  
0.5  
0
–0.5  
–1  
–1.5  
–2  
–3 –2.8 –2.6 –2.4 –2.2 –2 1.4 1.6 1.8  
VCM (V)  
2
2.2 2.4  
C013  
Figure 21. Input Offset Voltage vs Common-Mode Voltage  
12  
Copyright © 2016, Texas Instruments Incorporated  
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
www.ti.com.cn  
ZHCSF20A MAY 2016REVISED MAY 2016  
7 Detailed Description  
7.1 Overview  
The OPAx377-Q1 family belongs to a new generation of low-noise operational amplifiers, giving customers  
outstanding dc precision and ac performance. Low noise, rail-to-rail input and output, and low offset, drawing a  
low quiescent current, make these devices ideal for a variety of precision and portable applications. In addition,  
this device has a wide supply range with excellent PSRR, making it a suitable option for applications that are  
battery-powered without regulation.  
7.2 Functional Block Diagram  
+V  
-
NCH Input  
Stage  
+
-
+IN  
Output  
Stage  
OUT  
œ IN  
+
+
PCH Input  
Stage  
t
Copyright © 2016, Texas Instruments Incorporated  
œ V  
Copyright © 2016, Texas Instruments Incorporated  
13  
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
ZHCSF20A MAY 2016REVISED MAY 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Operating Characteristics  
The OPAx377-Q1 family of amplifiers has parameters that are fully specified from 2.2 V to 5.5 V (±1.1 V to ±2.75  
V). Many of the specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with  
regard to operating voltage or temperature are presented in the Typical Characteristics section.  
7.3.2 Common-Mode Voltage Range  
The input common-mode voltage range of the OPAx377-Q1 series extends 100 mV beyond the supply rails. The  
offset voltage of the amplifier is low, from approximately (V–) to (V+) – 1 V, as shown in Figure 22. The offset  
voltage increases as common-mode voltage exceeds (V+) – 1 V. Common-mode rejection is specified from (V–)  
to (V+) – 1.3 V.  
3
2
1
0
-1  
-2  
-V  
+V  
-3  
-0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Common-Mode Voltage (V)  
Figure 22. Offset and Common-Mode Voltage  
7.3.3 Input and ESD Protection  
The OPAx377-Q1 family incorporates internal electrostatic discharge (ESD) protection circuits on all pins. In the  
case of input and output pins, this protection primarily consists of current steering diodes connected between the  
input and power-supply pins. These ESD protection diodes also provide in-circuit, input overdrive protection, as  
long as the current is limited to 10 mA as stated in the Absolute Maximum Ratings table.  
Figure 23 shows how a series input resistor may be added to the driven input to limit the input current. The  
added resistor contributes thermal noise at the amplifier input and its value must be kept to a minimum in noise-  
sensitive applications.  
V+  
IOVERLOAD  
10 mA max  
VOUT  
OPA377-Q1  
VIN  
5 kW  
Copyright © 2016, Texas Instruments Incorporated  
Figure 23. Input Current Protection  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
 
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
www.ti.com.cn  
ZHCSF20A MAY 2016REVISED MAY 2016  
Feature Description (continued)  
7.3.4 EMI Susceptibility and Input Filtering  
Operational amplifiers vary in susceptibility to electromagnetic interference (EMI). If conducted EMI enters the  
operational amplifier, the dc offset observed at the amplifier output may shift from the nominal value while the  
EMI is present. This shift is a result of signal rectification associated with the internal semiconductor junctions.  
While all amplifier pin functions can be affected by EMI, the input pins are likely to be the most susceptible. The  
OPAx377-Q1 operational amplifier family incorporates an internal input low-pass filter that reduces the amplifier  
response to EMI. Both common-mode and differential mode filtering are provided by the input filter. The filter is  
designed for a cutoff frequency of approximately 75 MHz (–3 dB), with a roll-off of 20 dB per decade.  
7.3.5 Capacitive Load and Stability  
The OPAx377-Q1 series of amplifiers may be used in applications where driving a capacitive load is required. As  
with all op amps, there may be specific instances where the OPAx377-Q1 can become unstable, leading to  
oscillation. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to  
consider when establishing whether an amplifier will be stable in operation. An op amp in the unity-gain (1 V/V)  
buffer configuration and driving a capacitive load exhibits a greater tendency to be unstable than an amplifier  
operated at a higher noise gain. The capacitive load, in conjunction with the op amp output resistance, creates a  
pole within the feedback loop that degrades the phase margin. The degradation of the phase margin increases  
as the capacitive loading increases.  
The OPAx377-Q1 in a unity-gain configuration can directly drive up to 250-pF pure capacitive load. Increasing  
the gain enhances the ability of the amplifier to drive greater capacitive loads; see the typical characteristic plot,  
Figure 15. In unity-gain configurations, capacitive load drive can be improved by inserting a small (10-to 20-)  
resistor, RS, in series with the output, as shown in Figure 24. This resistor significantly reduces ringing while  
maintaining dc performance for purely capacitive loads. However, if there is a resistive load in parallel with the  
capacitive load, a voltage divider is created, introducing a gain error at the output and slightly reducing the output  
swing. The error introduced is proportional to the ratio RS/RL, and is generally negligible at low output current  
levels.  
V +  
RS  
VOUT  
OPA377-Q1  
10 W to  
20 W  
VIN  
CL  
RL  
Copyright © 2016, Texas Instruments Incorporated  
Figure 24. Improving Capacitive Load Drive  
7.4 Device Functional Modes  
The OPAx377-Q1 has a single functional mode and is operational when the power-supply voltage is greater than  
2.2 V (±1.1 V). The maximum power supply voltage for the OPAx376-Q1 is 5.5 V (±2.75 V).  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
ZHCSF20A MAY 2016REVISED MAY 2016  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPAx377-Q1 family of operational amplifiers is built on a precision analog CMOS technology featuring low  
noise and low offset voltage. The OPAx377-Q1 family delivers excellent offset voltage (250 μV, typical).  
Additionally, the amplifier boasts a fast slew rate, low drift, low noise, and excellent PSRR and AOL. These 5.5-  
MHz CMOS op amps operate on 760 μA (typical) quiescent current.  
8.2 Typical Application  
Low-pass filters are commonly employed in signal processing applications to reduce noise and prevent aliasing.  
The OPA377-Q1 is ideally suited to construct high-speed, high-precision active filters. Figure 25 shows a  
second-order, low-pass filter commonly encountered in signal processing applications.  
R4  
2.94 k  
C5  
1 nF  
œ
R1  
R3  
Output  
590 ꢀ  
499 ꢀ  
+
Input  
C2  
39 nF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 25. Typical Application Schematic  
8.2.1 Design Requirements  
Use the following parameters for this design example:  
Gain = 5 V/V (inverting gain)  
Low-pass cutoff frequency = 25 kHz  
Second-order Chebyshev filter response with 3-dB gain peaking in the passband  
8.2.2 Detailed Design Procedure  
The infinite-gain multiple-feedback circuit for a low-pass network function is shown in Figure 25. Use Equation 1  
to calculate the voltage transfer function.  
-1 R1R3C2C5  
Output  
Input  
s =  
( )  
s2 + s C 1 R +1 R +1 R +1 R R C C  
(
)
(
)
2
1
3
4
3 4 2 5  
(1)  
This circuit produces a signal inversion. For this circuit, the gain at dc and the low-pass cutoff frequency are  
calculated by Equation 2:  
R4  
Gain =  
R1  
1
fC =  
1 R R C C  
(
3 4 2 5  
)
2p  
(2)  
Software tools are readily available to simplify filter design. WEBENCH® Filter Designer is a simple, powerful,  
and easy-to-use active filter design program. The WEBENCH Filter Designer lets you create optimized filter  
designs using a selection of TI operational amplifiers and passive components from TI's vendor partners.  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
www.ti.com.cn  
ZHCSF20A MAY 2016REVISED MAY 2016  
Typical Application (continued)  
Available as a web-based tool from the WEBENCH® Design Center, WEBENCH® Filter Designer allows to  
design, optimize, and simulate complete multi-stage active filter solutions within minutes.  
8.2.3 Application Curve  
20  
0
-20  
-40  
-60  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Figure 26. Low-Pass Filter Transfer Function  
Copyright © 2016, Texas Instruments Incorporated  
17  
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
ZHCSF20A MAY 2016REVISED MAY 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
The OPAx377-Q1 family of devices is specified for operation from 2.2 V to 5.5 V (±1.1 V to ±2.75 V); many  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are presented in the Typical Characteristics section.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices,  
including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground,  
placed as close to the device as possible. A single bypass capacitor from V+ to ground is  
applicable for single-supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-  
effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted  
to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to  
physically separate digital and analog grounds paying attention to the flow of the ground current. For  
more detailed information refer to the application report, Circuit Board Layout Techniques, SLOA089.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces  
as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is  
much better as opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in Figure 28, keeping  
RF and RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the  
most sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit may experience performance shifts due to moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is  
recommended to remove moisture introduced into the device packaging during the cleaning process.  
A low temperature, post cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
10.2 Layout Example  
+
VIN  
VOUT  
œ
RG  
RF  
Copyright © 2016,  
Texas Instruments Incorporated  
Figure 27. Typical Schematic for PCB Layout Example  
18  
Copyright © 2016, Texas Instruments Incorporated  
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
www.ti.com.cn  
ZHCSF20A MAY 2016REVISED MAY 2016  
Layout Example (continued)  
VS+  
VOUT  
VSœ  
V+  
OUT  
GND  
Vœ  
Use a low-ESR,  
ceramic bypass  
Use a low-ESR,  
ceramic bypass  
capacitor.  
capacitor.  
RG  
+IN  
œIN  
VIN  
GND  
GND  
Run the input traces  
as far away from  
the supply lines  
as possible.  
Place components  
close to the device  
and to each other to  
reduce parasitic  
errors.  
RF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. Typical PCB Layout Example  
版权 © 2016, Texas Instruments Incorporated  
19  
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
ZHCSF20A MAY 2016REVISED MAY 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。 TINA-TI™ TINA 软件的  
一款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有  
传统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一  
个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹 中下载免费的 TINA-TI 软件。  
11.1.1.2 DIP 适配器 EVM  
DIP 适配器 EVM 工具提供了一种简单而低成本的方式来针对小型表面贴装 IC 进行原型设计。评估工具适用于以下  
TI 封装:D U (SOIC-8)PW (TSSOP-8)DGK (MSOP-8)DBVSOT23-6SOT23-5 SOT23-3)、DCK  
SC70-6 SC70-5)和 DRL (SOT563-6)DIP 适配器 EVM 也可搭配引脚排使用或直接与现有电路相连。  
11.1.1.3 通用运放 EVM  
通用运放 EVM 是一系列通用空白电路板,可简化采用各种 IC 封装类型的电路板原型设计。借助评估模块电路板设  
计,可以轻松快速地构造多种不同电路。共有  
5
个模型可供选用,每个模型都对应一种特定封装类型。支持  
PDIPSOICMSOPTSSOP SOT23 封装。  
这些电路板均为空白电路板,用户必须自行提供 ICTI 建议您在订购通用运放 EVM 时申请  
几个运放器件样品。  
11.1.1.4 TI 高精度设计  
TI 高精度设计是由 TI 公司的高精度模拟 应用 专家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选  
择、仿真、完整 PCB 电路原理图和布局布线、物料清单以及性能测量结果。欲获取 TI 高精度设计,请访问  
http://www.ti.com.cn/ww/analog/precision-designs/。  
11.1.1.5 WEBENCH®滤波器设计器  
WEBENCH® 滤波器设计器是一款简单、功能强大且便于使用的有源滤波器设计程序。WEBENCH Filter Designer  
通过选择 TI 运算放大器以及 TI 供应商合作伙伴的无源组件来构建优化滤波器设计方案。  
WEBENCH® 设计中心以基于网络的工具形式提供 WEBENCH® Filter Designer。用户通过该工具可在短时间内完  
成多级有源滤波器解决方案的设计、优化和仿真。  
20  
版权 © 2016, Texas Instruments Incorporated  
OPA377-Q1, OPA2377-Q1, OPA4377-Q1  
www.ti.com.cn  
ZHCSF20A MAY 2016REVISED MAY 2016  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
《电路板布局布线技巧》SLOA089  
《运算放大器增益稳定性,第 3 部分:交流增益误差分析》SLYT383  
《运算放大器增益稳定性,第 2 部分:直流增益误差分析》SLYT374  
《运算放大器性能分析》SBOS054  
《无铅组件涂层的保存期评估》SZZA046  
《运算放大器的单电源运行》SBOA059  
《调整放大器》SBOA067  
《在全差分有源滤波器中使用无限增益、MFB 滤波器拓扑》SLYT343  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
TINA-TI, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2377QDGKRQ1  
OPA377QDBVRQ1  
OPA4377AQPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
SOT-23  
TSSOP  
DGK  
DBV  
PW  
8
5
2500 RoHS & Green  
3000 RoHS & Green  
2000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
2377  
377Q  
NIPDAU  
NIPDAU  
14  
4377Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2377QDGKRQ1  
OPA377QDBVRQ1  
OPA4377AQPWRQ1  
VSSOP  
SOT-23  
TSSOP  
DGK  
DBV  
PW  
8
5
2500  
3000  
2000  
330.0  
178.0  
330.0  
12.4  
9.0  
5.3  
3.3  
6.9  
3.4  
3.2  
5.6  
1.4  
1.4  
1.6  
8.0  
4.0  
8.0  
12.0  
8.0  
Q1  
Q3  
Q1  
14  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2377QDGKRQ1  
OPA377QDBVRQ1  
OPA4377AQPWRQ1  
VSSOP  
SOT-23  
TSSOP  
DGK  
DBV  
PW  
8
5
2500  
3000  
2000  
366.0  
180.0  
356.0  
364.0  
180.0  
356.0  
50.0  
18.0  
35.0  
14  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA2377AID

5MHz, Low-Noise, Single, Dual, Quad CMOS Operational Amplifiers
TI

OPA2377AIDGKR

5MHz, Low-Noise, Single, Dual, Quad CMOS Operational Amplifiers
TI

OPA2377AIDGKT

5MHz, Low-Noise, Single, Dual, Quad CMOS Operational Amplifiers
TI

OPA2377AIDR

5MHz, Low-Noise, Single, Dual, Quad CMOS Operational Amplifiers
TI

OPA2377AIDRGT

IC DUAL OP-AMP, 1000 uV OFFSET-MAX, 5.5 MHz BAND WIDTH, PDSO8, PLASTIC, MO-229, SON-8, Operational Amplifier
TI

OPA2377QDGKRQ1

通过汽车级认证的轨到轨输入/输出、低噪声、5MHz CMOS 运算放大器 | DGK | 8 | -40 to 125
TI

OPA2378

Low Noise, 900kHz, 50mV, Rail-to-Rail Input/Output Precision OPERATIONAL AMPLIFIER Zer┆-Drift Series
TI

OPA2378AID

Low-Noise, 900kHz, RRIO, Precision OPERATIONAL AMPLIFIER Zerø-Drift Series
TI

OPA2378AIDCNR

Low-Noise, 900kHz, RRIO, Precision OPERATIONAL AMPLIFIER Zerø-Drift Series
TI

OPA2378AIDCNT

Low-Noise, 900kHz, RRIO, Precision OPERATIONAL AMPLIFIER Zerø-Drift Series
TI

OPA2378AIDR

Low-Noise, 900kHz, RRIO, Precision OPERATIONAL AMPLIFIER Zerø-Drift Series
TI

OPA2379

1.8V, 2.9uA, 90kHz, Rail-to-Rail I/O OPERATIONAL AMPLIFIERS
BB