OPA2626IDGKT [TI]

高带宽、高精度、低 THD+N、16 位和 18 位 ADC 驱动器》 | DGK | 8 | -40 to 125;
OPA2626IDGKT
型号: OPA2626IDGKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高带宽、高精度、低 THD+N、16 位和 18 位 ADC 驱动器》 | DGK | 8 | -40 to 125

放大器 驱动 光电二极管 驱动器
文件: 总39页 (文件大小:2644K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
OPA2626 高速、高精度、低失真、16 位和 18 位  
模数转换器 (ADC) 驱动器  
1 特性  
3 说明  
1
出色的动态性能:  
OPA2626 运算放大器是一款 16 位和 18 位、高精度  
逐次逼近寄存器 (SAR) 型模数转换器 (ADC) 驱动器,  
具有低总谐波失真 (THD) 和低噪声。该运算放大器在  
额定工作条件下的 16 位稳定时间为 280ns,可提供真  
正的 16 位有效位数 (ENOB)。该器件具有高直流精度  
(失调电压仅为 100µV)、120MHz 的宽增益带宽积  
以及 2.5nV/Hz 的低宽带噪声,并且经优化可驱动 应  
用 中的高吞吐量、高分辨率的 SAR ADC,如  
ADS88xx 系列 SAR ADC。  
低失真:100kHz 时,HD2 –122dBc,  
HD3 –140dBc  
增益带宽 (G = 100)120MHz  
压摆率:115V/µs  
16 位稳定时间(4V 阶跃):280ns  
低电压噪声:10kHz 时为 2.5nV/Hz  
低输出阻抗:1MHz 时为 1Ω  
出色的直流精度:  
失调电压:±100µV(最大值)  
失调电压温漂:±3µV/ºC(最大值)  
低静态电流:2mA(典型值)  
OPA2626 采用 8 引脚 VSSOP 封装,额定工作温度范  
围为 –40°C +125°C。  
器件信息(1)  
输入共模范围包括负电源轨  
轨至轨输出  
器件型号  
OPA2626  
封装  
封装尺寸(标称值)  
VSSOP (8)  
3.00mm × 3.00mm  
宽额定温度范围:–40°C +125°C  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
2 应用  
精密 SAR ADC 驱动器  
精密电压基准缓冲器  
可编程逻辑控制器  
测试和测量设备  
科学仪表  
高吞吐量数据采集系统  
高密度、多路复用数据采集系统  
空白  
SAR ADC 驱动器  
高保真拓扑  
改善了动态性能  
1 k  
1 kꢀ  
fIN = 10kHz1MSPS FFT)  
0
5 V  
Input  
THD = -110.8 dBc  
SNR = 91.88 dB  
SINAD = 91.86 dB  
ENOB = 14.97  
Voltage  
-25  
-50  
RFLT  
VREF  
REF  
3.3 V  
4.7 ꢀ  
+
VREF / 4  
OPA626  
AVDD  
CFLT  
ADS8860  
GND  
-75  
10 nF  
RFLT  
-115.91 dBc (Third Harmonic)  
-100  
-125  
-150  
-175  
4.7 ꢀ  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (kHz)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS690  
 
 
 
 
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 21  
8.3 Feature Description................................................. 22  
8.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 23  
9.1 Application Information............................................ 23  
9.2 Typical Applications ................................................ 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics: High-Supply .................... 5  
6.6 Electrical Characteristics: Low-Supply...................... 7  
6.7 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 18  
7.1 DC Parameter Measurements ................................ 18  
7.2 Transient Parameter Measurements ...................... 19  
7.3 AC Parameter Measurements ................................ 19  
7.4 Noise Parameter Measurements ............................ 20  
Detailed Description ............................................ 21  
8.1 Overview ................................................................. 21  
9
10 Power Supply Recommendations ..................... 28  
11 Layout................................................................... 28  
11.1 Layout Guidelines ................................................. 28  
11.2 Layout Example .................................................... 29  
12 器件和文档支持 ..................................................... 30  
12.1 器件支持................................................................ 30  
12.2 文档支持................................................................ 30  
12.3 接收文档更新通知 ................................................. 30  
12.4 社区资源................................................................ 30  
12.5 ....................................................................... 30  
12.6 静电放电警告......................................................... 30  
12.7 Glossary................................................................ 31  
13 机械、封装和可订购信息....................................... 31  
7
8
4 修订历史记录  
Changes from Original (July 2016) to Revision A  
Page  
已删除 删除了文档中的 OPA6265 引脚 SOT DBV 封装) ................................................................................................. 1  
已添加 18-bit SAR ADC to amplifier description in Overview section ................................................................................. 21  
已添加 18-bit level to device description in Application Information section ....................................................................... 23  
已添加 (pins 3 and 4) to input terminals in Design Requirements section of first typical application for clarity .................. 24  
已更改 description of slew and settle time in Design Requirements section of second typical application for clarity ........ 26  
2
Copyright © 2016–2019, Texas Instruments Incorporated  
 
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
5 Pin Configuration and Functions  
OPA2626 DGK Package  
8-Pin VSSOP  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
V+  
1
8
7
6
5
OUT B  
œIN B  
+IN B  
2
3
4
Pin Functions: OPA2626  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
NO.  
3
I
I
Noninverting input for channel A  
Inverting input for channel A  
Noninverting input for channel B  
Inverting input for channel B  
Output terminal for channel A  
Output terminal for channel B  
Positive supply voltage  
–IN A  
+IN B  
–IN B  
OUT A  
OUT B  
V+  
2
5
I
6
I
1
O
O
7
8
V–  
4
Negative supply voltage  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
6
UNIT  
Supply voltage, VS  
Input voltage(2)  
Output voltage  
(V+) – (V–)  
V
+IN  
(V–) – 0.3  
(V–) – 0.3  
(V–)  
(V+) + 0.3  
(V+) + 0.3  
(V+)  
10  
V
V
–IN  
OUT  
+IN  
Sink current  
Source current  
Temperature  
–IN  
10  
mA  
mA  
°C  
OUT  
150  
+IN  
10  
–IN  
10  
OUT  
150  
Operating junction  
Operating free-air, TA  
Storage, Tstg  
–40  
–55  
–65  
150  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For input voltages beyond the power-supply rails, voltage or current must be limited.  
6.2 ESD Ratings  
VALUE  
±3000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
5.5  
UNIT  
VS  
VI  
Supply input voltage, (V+) – (V–)  
Input voltage  
V
+IN  
–IN  
(V–)  
(V–)  
(V–)  
–120  
–40  
(V+) – 1.15  
(V+) – 1.15  
(V+)  
V
VO  
IO  
Output voltage  
V
Output current  
120  
mA  
°C  
°C  
TA  
TJ  
Operating free-air temperature  
Operating junction temperature  
125  
–40  
125  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
6.4 Thermal Information  
OPA2626  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
171.7  
68.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
91.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
9.4  
ψJB  
90.5  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application  
report.  
6.5 Electrical Characteristics: High-Supply  
at TA = 25°C, V+ = 5 V, V– = 0 V, VCOM = VO = 2.5 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF, and RLOAD = 2 kΩ  
connected to 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
Unity gain frequency  
Phase margin  
VO = 10 mVPP  
80  
50  
MHz  
Degrees  
MHz  
φm  
GBW  
Gain-bandwidth product G = 100, VO = 10 mVPP  
120  
45  
VO = 1-V step, G = 1  
Slew rate  
SR  
V/µs  
VO = 4-V step, G = 2  
115  
Settling time to 0.1%  
(10-bit accuracy)  
80  
110  
280  
to 0.005%  
(14-bit accuracy)  
tsettle  
Settling time  
VO = 4-V step, G = 2  
ns  
to 0.00153%  
(16-bit accuracy)  
Overshoot  
VO = 4-V step, G = 2  
VO = 4-V step, G = 2  
2.5%  
3%  
144  
122  
80  
Undershoot  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
Second-order harmonic  
distortion  
HD2  
HD3  
VO = 2 VPP, G = 2  
VO = 2 VPP, G = 2  
dBc  
dBc  
155  
140  
80  
Third-order harmonic  
distortion  
Second-order  
intermodulation distortion  
VO = 2 VPP, f = 1 MHz, 200-kHz tone spacing  
VO = 2 VPP, f = 1 MHz, 200-kHz tone spacing  
90  
dBc  
dBc  
Third-order  
intermodulation distortion  
100  
f = 0.1 Hz to 10 Hz, peak-to-peak  
f = 0.1 Hz to 10 Hz, rms  
f = 1 kHz  
0.8  
120  
3.2  
2.5  
6.6  
3.5  
50  
µVPP  
VN  
Vn  
In  
Input noise voltage  
nVRMS  
Input voltage noise  
density  
nV/Hz  
pA/Hz  
f = 10 kHz  
f = 1 kHz  
Input current noise  
density  
f = 10 kHz  
tOR  
Zo  
Overload recovery time  
G = 5  
ns  
Open-loop output  
impedance  
f = 1 MHz  
1
Ω
At DC  
150  
127  
Crosstalk  
dB  
f = 1 MHz  
DC PERFORMANCE  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics: High-Supply (continued)  
at TA = 25°C, V+ = 5 V, V– = 0 V, VCOM = VO = 2.5 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF, and RLOAD = 2 kΩ  
connected to 2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
±100  
±300  
±3  
UNIT  
µV  
15  
VOS  
Input offset voltage  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
0.5  
0.6  
µV/°C  
dVOS/dT  
PSRR  
Input offset voltage drift  
±4  
100  
90  
Power-supply rejection  
ratio  
2.7 V (V+) 5 V  
dB  
TA = –40°C to 125°C  
120  
2
4
5.7  
6.5  
IB  
Input bias current  
µA  
nA/°C  
nA  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
dIB/dT  
IOS  
Input bias current drift  
Input offset current  
Input offset current drift  
15  
20  
120  
150  
350  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
dIOS/dT  
0.6  
nA/°C  
OPEN LOOP GAIN  
(V–) + 0.2 V < VO < (V+) – 0.2 V, RLOAD = 600 Ω  
(V–) + 0.15 V < VO < (V+) – 0.15 V, RLOAD = 10 kΩ  
110  
114  
(V–) + 0.2 V < VO < (V+) – 0.2 V,  
RLOAD = 600 Ω  
AOL  
Open-loop gain  
dB  
106  
110  
128  
132  
TA = –40°C to 125°C  
(V–) + 0.15 V < VO < (V+) – 0.15 V,  
RLOAD = 10 kΩ  
INPUT VOLTAGE  
Common-mode voltage  
range  
(V+) –  
1.15  
VCM  
TA = –40°C to 125°C  
(V–)  
V
100  
90  
117  
115  
Common-mode rejection  
ratio  
CMRR  
(V–) < VCOM < (V+) – 1.15 V  
dB  
TA = –40°C to 125°C  
INPUT IMPEDANCE  
Differential input  
impedance  
ZID  
27 || 1.2  
47 || 1.5  
KΩ || pF  
MΩ || pF  
Common-mode input  
impedance  
ZIC  
OUTPUT  
60  
20  
80  
100  
35  
RLOAD = 600 Ω  
RLOAD = 10 kΩ  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
Output voltage swing to  
the rail  
mV  
mA  
40  
Isc  
Short-circuit current  
Capacitive load drive  
130  
CLOAD  
See Typical Characteristics  
POWER SUPPLY  
2
2.2  
3.1  
Quiescent current per  
amplifier  
IQ  
IO = 0 mA  
mA  
TA = –40°C to 125°C  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
6.6 Electrical Characteristics: Low-Supply  
at TA = 25°C, V+ = 2.7 V, V– = 0 V, VCOM = VO = 1.35 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF, and RLOAD  
=
1 kΩ connected to 1.35 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
Unity gain frequency  
Phase margin  
VO = 10 mVPP  
76  
50  
MHz  
Degrees  
MHz  
φm  
GBW  
SR  
Gain-bandwidth product G = 100, VO = 10 mVPP  
110  
45  
Slew rate  
VO = 1-V step, G = 2  
V/µs  
to 0.1%  
80  
tsettle  
Settling time  
VO = 1-V step, G = 2  
to 0.01%  
170  
250  
6%  
5%  
136  
118  
80  
ns  
to 0.000763% (17-bit accuracy)  
Overshoot  
VO = 1-V step, G = 2  
VO = 1-V step, G = 2  
Undershoot  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
f = 10 kHz  
f = 10 kHz  
f = 100 kHz  
f = 100 kHz  
f = 1 MHz  
f = 1 MHz  
(V+) = 3.3 V, (V–) = 0 V,  
VCOM = 1.1 V,  
VO = 2 VPP  
Second-order harmonic  
distortion  
HD2  
HD3  
dBc  
dBc  
143  
143  
130  
125  
85  
(V+) = 3.3 V, (V–) = 0 V,  
VCOM = 1.1 V,  
VO = 2 VPP  
Third-order harmonic  
distortion  
74  
(V+) = 3.3 V, (V–) = 0 V, VCOM = 1.1 V, VO = 2 VPP  
f = 1 MHz, 200-kHz tone spacing  
,
Second-order  
intermodulation distortion  
95  
dBc  
dBc  
(V+) = 3.3 V, (V–) = 0 V, VCOM = 1.1V, VO = 1 VPP  
,
Third-order  
intermodulation distortion  
104  
f = 1 MHz, 200-kHz tone spacing  
f = 0.1 Hz to 10 Hz, peak-to-peak  
f = 0.1 Hz to 10 Hz, rms  
0.8  
µVPP  
VN  
Vn  
Input noise voltage  
120  
nVRMS  
Input voltage noise  
density  
f = 10 kHz  
2.5  
nV/Hz  
Input current noise  
density  
In  
f = 10 kHz  
G = 5  
3.5  
35  
pA/Hz  
tOR  
Zo  
Overload recovery time  
ns  
Open-loop output  
impedance  
f = 1 MHz  
1.3  
Ω
At DC  
150  
127  
Crosstalk  
dB  
f = 1 MHz  
DC PERFORMANCE  
15  
±100  
±300  
±3.1  
±4  
VOS  
Input offset voltage  
µV  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
0.5  
0.6  
2
dVOS/dT  
Input offset voltage drift  
µV/°C  
4
IB  
Input bias current  
5.7  
µA  
nA/°C  
nA  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
6.5  
dIB/dT  
IOS  
Input bias current drift  
Input offset current  
Input offset current drift  
15  
20  
120  
150  
200  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
dIOS/dT  
80  
pA/°C  
OPEN-LOOP GAIN  
Copyright © 2016–2019, Texas Instruments Incorporated  
7
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics: Low-Supply (continued)  
at TA = 25°C, V+ = 2.7 V, V– = 0 V, VCOM = VO = 1.35 V, gain (G) = 1, RF = 1 kΩ, CF = 2.7 pF, CLOAD = 20 pF, and RLOAD  
1 kΩ connected to 1.35 V (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(V–) + 0.2 V < VO < (V+) – 0.2 V,  
RLOAD = 600 Ω  
110  
(V–) + 0.15 V < VO < (V+) – 0.15 V,  
RLOAD = 10 kΩ  
114  
100  
104  
AOL  
Open-loop gain  
dB  
(V–) + 0.2 V < VO < (V+) – 0.2 V,  
128  
132  
RLOAD = 600 Ω  
TA = –40°C to 125°C  
(V–) + 0.15 V < VO < (V+) – 0.15 V,  
RLOAD = 10 kΩ  
INPUT VOLTAGE  
Common-mode voltage  
range  
(V+) –  
1.15  
VCM  
TA = –40°C to 125°C  
(V–)  
V
100  
90  
117  
115  
Common-mode rejection  
ratio  
CMRR  
(V–) < VCOM < (V+) – 1.15 V  
dB  
TA = –40°C to 125°C  
INPUT IMPEDANCE  
Differential input  
impedance  
ZID  
27 || 0.8  
47 || 1.2  
KΩ || pF  
MΩ || pF  
Common-mode input  
impedance  
ZIC  
OUTPUT  
60  
20  
80  
80  
100  
35  
R LOAD = 600 Ω  
R LOAD = 10 kΩ  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
Output voltage swing to  
the rail  
mV  
mA  
40  
ISC  
Short-circuit current  
Capacitive load drive  
CLOAD  
See Typical Characteristics  
POWER SUPPLY  
2
2.1  
2.8  
Quiescent current per  
amplifier  
IQ  
IO = 0 mA  
mA  
TA = –40°C to 125°C  
8
版权 © 2016–2019, Texas Instruments Incorporated  
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
6.7 Typical Characteristics  
at TA = 25°C, V+ = 5 V, V– = 0 V, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and RLOAD = 2 kΩ  
connected to 2.5 V (unless otherwise noted)  
25  
20  
25  
20  
15  
15  
10  
10  
5
5
0
0
Gain = 1  
Gain = -1  
Gain = 2  
Gain = 5  
Gain = 10  
œ5  
œ5  
Gain = 1  
Gain = -1  
Gain = 2  
Gain = 5  
Gain = 10  
œ10  
œ15  
œ20  
œ25  
œ10  
œ15  
œ20  
œ25  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
C004  
C005  
VO = 10 mVPP  
VO = 2 VPP  
1. Small-Signal Frequency Response for Various Gains  
2. Large-Signal Frequency Response for Various Gains  
2.5  
10  
8
5.5 V  
2.0  
2.7 V  
6
1.5  
1.0  
4
2
0
0.5  
œ2  
œ4  
0 pF  
8.2 pF  
22 pF  
33 pF  
47 pF  
0.0  
œ6  
-0.5  
œ8  
-1.0  
œ10  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
1G  
Frequency (Hz)  
C006  
C007  
VO = 10 mVPP, G = 1  
VO = 10 mVPP , G = 1  
3. Small-Signal Frequency Response for Various Power  
4. Small-Signal Frequency Response for Various  
Supply Voltages  
Capacitive Loads  
2
1
2.5  
2 k  
1 kꢀ  
600 ꢀ  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
0
œ1  
œ2  
œ3  
œ4  
œ5  
œ6  
œ7  
œ8  
0 pF  
8.2 pF  
22 pF  
33 pF  
47 pF  
10k  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
C007  
C007  
VO = 2 VPP, G = 1  
VO = 10 mVPP , G = 1  
5. Large-Signal Frequency Response for Various  
6. Small-Signal Frequency Response for Various  
Capacitive Loads  
Resistive Loads  
版权 © 2016–2019, Texas Instruments Incorporated  
9
 
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, V+ = 5 V, V– = 0 V, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and RLOAD = 2 kΩ  
connected to 2.5 V (unless otherwise noted)  
160  
120  
80  
40  
0
225  
180  
135  
90  
1000  
100  
10  
45  
Gain  
Phase  
0
-40  
1
10  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
100M  
Frequency (Hz)  
C024  
VO = 10 mVPP  
8. Open-Loop Output Impedance vs Frequency  
7. Open-Loop Gain and Phase vs Frequency  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
PSRR+  
PSRR-  
20  
20  
0
0
1
10  
100  
1k  
10k 100k 1M  
10M 100M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
100M  
Frequency (Hz)  
C025  
10. Power-Supply Rejection Ratio vs Frequency  
9. Common-Mode Rejection Ratio vs Frequency  
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
Riso = 0 , 5.5 V  
Riso = 25 , 5.5 V  
Riso = 0 , 2.7 V  
Riso = 25 , 2.7 V  
Riso = 10 , 5.5 V  
Riso = 50 , 5.5 V  
Riso = 10 , 2.7 V  
Riso = 50 , 2.7 V  
0
œ5  
Riso = 10  
Riso = 25 ꢀ  
Riso = 50 ꢀ  
œ10  
œ15  
100k  
1M  
10M  
100M  
10  
100  
1000  
10000  
Frequency (Hz)  
Load Capacitance (pF)  
C024  
C027  
G = 1, CLOAD = 1.2 nF  
G = 1, VO = 10 mVPP  
11. Series Resistance for Capacitive Load Stability  
12. Overshoot vs Capacitive Load, G = 1  
10  
版权 © 2016–2019, Texas Instruments Incorporated  
 
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, V+ = 5 V, V– = 0 V, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and RLOAD = 2 kΩ  
connected to 2.5 V (unless otherwise noted)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
œ20  
Riso = 0 , 5.5 V  
Riso = 25 , 5.5 V  
Riso = 0 , 2.7 V  
Riso = 25 , 2.7 V  
Riso = 10 , 5.5 V  
Riso = 50 , 5.5 V  
Riso = 10 , 2.7 V  
Riso = 50 , 2.7 V  
HD2, Gain = 1  
HD3, Gain = 1  
HD2, Gain = 2  
HD3, Gain = 2  
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
0
10  
100  
1000  
10000  
1k  
10k  
100k  
1M  
Load Capacitance (pF)  
Input Frequency (Hz)  
C027  
C010  
G = –1, VO = 10 mVPP  
VS = 5.5 V, VO = 2 VPP, RLOAD = 600 Ω  
13. Overshoot vs Capacitive Load, G = –1  
14. Distortion vs Frequency for Various Gains  
0
œ20  
0
HD2, Vs = 5.5 V  
HD3, Vs = 5.5 V  
HD2, Vs = 3.3 V  
HD3, Vs = 3.3 V  
HD2, Vs = 5.5 V  
HD3, Vs = 5.5 V  
HD2, Vs = 3.3 V  
HD3, Vs = 3.3 V  
œ20  
œ40  
œ40  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
Input Frequency (Hz)  
Input Frequency (Hz)  
C010  
C010  
G = 1, VO = 2 VPP, RLOAD = 600 Ω  
G = 2, VO = 2 VPP, RLOAD = 600 Ω  
15. Distortion vs Frequency for Various Power Supplies  
16. Distortion vs Frequency for Various Power Supplies  
0
0
f = 1 kHz  
2 k  
œ20  
œ20  
f = 10 kHz  
1 kꢀ  
f = 100 kHz  
œ40  
œ40  
600 ꢀ  
f = 1 MHz  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ100  
œ120  
œ140  
œ160  
1
2
3
4
1k  
10k  
100k  
1M  
Output Voltage (VPP  
)
Input Frequency (Hz)  
C013  
C010  
G = 1, RLOAD = 600 Ω  
G = 1, VO = 2 VPP , RLOAD = 600 Ω  
17. Total Harmonic Distortion vs Output Voltage for  
18. Total Harmonic Distortion vs Frequency for Various  
Various Frequencies  
Loads  
版权 © 2016–2019, Texas Instruments Incorporated  
11  
 
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, V+ = 5 V, V– = 0 V, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and RLOAD = 2 kΩ  
connected to 2.5 V (unless otherwise noted)  
1000  
100  
10  
1000  
100  
10  
1
1
0.1  
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C015  
C015  
19. Voltage Noise Density vs Frequency  
20. Current Noise Density vs Frequency  
-80  
-100  
-120  
-140  
-160  
-180  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
Time (1 s/div)  
C020  
22. 0.1-Hz to 10-Hz Voltage Noise  
21. Crosstalk vs Frequency  
6
5
4
3
2
1
0
180  
160  
140  
120  
100  
80  
VS = 5 V  
VS = 3.3 V  
Rising, Gain = 1  
Falling, Gain = 1  
Rising, Gain = 2  
Falling, Gain = 2  
60  
40  
20  
0
0
1
2
3
4
1k  
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
1G  
Output Voltage Step (V)  
C018  
24. Maximum Output Voltage vs Frequency  
23. Slew Rate vs Output Step Size  
12  
版权 © 2016–2019, Texas Instruments Incorporated  
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, V+ = 5 V, V– = 0 V, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and RLOAD = 2 kΩ  
connected to 2.5 V (unless otherwise noted)  
Time (200 ns/div)  
Time (200 ns/div)  
C020  
C019  
G = 1, VO = 4-V step  
G = –1, VO = 4-V step  
25. Large-Signal Pulse Response  
26. Large-Signal Pulse Response  
Time (200 ns/div)  
Time (200 ns/div)  
C029  
C029  
G = 1, VO = 10-mV step  
G = –1, VO = 10-mV step  
27. Small-Signal Pulse Response  
28. Small-Signal Pulse Response  
200  
150  
100  
50  
200  
150  
100  
50  
16-bit settling  
16-bit settling  
0
0
œ50  
œ100  
œ150  
œ200  
œ50  
œ100  
œ150  
œ200  
16-bit settling  
16-bit settling  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Time (ns)  
Time (ns)  
C032  
C032  
VO = 3.6-V step at t = 0 s  
VO = 3.6-V step at t = 0 s  
29. 16-Bit Negative Settling Time  
30. 16-Bit Positive Settling Time  
版权 © 2016–2019, Texas Instruments Incorporated  
13  
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, V+ = 5 V, V– = 0 V, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and RLOAD = 2 kΩ  
connected to 2.5 V (unless otherwise noted)  
4
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
4
3
2
1
0
3
2
1
0
œ1  
œ2  
œ3  
œ4  
Input  
Input  
Output  
Output  
-1  
Time (200 µs/div)  
Time (100 ns/div)  
C031  
C021  
VS = ±2.75 V, G = 1  
VS = ±2.75 V, G = 5  
31. No Phase Reversal  
32. Positive Overload Recovery  
20  
15  
10  
5
0.2  
0.0  
1
Input  
Output  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-2  
-3  
0
-4  
Time (100 ns/div)  
C021  
Offset Voltage (µV)  
C013  
VS = ±2.75 V, G = 5  
Distribution taken from 3139 amplifiers, TA = 25°C  
34. Input Offset Voltage Distribution  
33. Negative Overload Recovery  
20  
15  
10  
5
20  
15  
10  
5
0
0
Offset Voltage (µV)  
Offset Voltage (µV)  
C013  
C013  
Distribution taken from 80 amplifiers, TA = 125°C  
Distribution taken from 80 amplifiers, TA = –40°C  
35. Input Offset Voltage Distribution  
36. Input Offset Voltage Distribution  
14  
版权 © 2016–2019, Texas Instruments Incorporated  
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, V+ = 5 V, V– = 0 V, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and RLOAD = 2 kΩ  
connected to 2.5 V (unless otherwise noted)  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
Input Bias Current (µA)  
Offset Voltage Drift (µV/°C)  
C013  
C013  
Distribution taken from 75 amplifiers, TA = –40°C to +125°C  
Distribution taken from 3139 amplifiers  
37. Input Offset Voltage Drift Distribution  
38. Input Bias Current Distribution  
5
30  
25  
20  
15  
10  
5
IB -  
IB+  
4
3
2
1
0
0
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
Input Offset Current (nA)  
C013  
Distribution taken from 3139 amplifiers  
40. Input Offset Current Distribution  
39. Input Bias Current vs Temperature  
1000  
100  
10  
30  
20  
VS  
=
2.75 V, (Vœ) ≤ VCM ≤ (V+) œ 1.15  
10  
0
VS  
= 1.35 V, (Vœ) ≤ VCM ≤ (V+) œ 1.15 V  
œ10  
œ20  
œ30  
1
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
41. Input Offset Current vs Temperature  
42. Common-Mode Rejection Ratio vs Temperature  
版权 © 2016–2019, Texas Instruments Incorporated  
15  
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, V+ = 5 V, V– = 0 V, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and RLOAD = 2 kΩ  
connected to 2.5 V (unless otherwise noted)  
30  
20  
10  
0
3.0  
2.0  
VS = 1.35 V  
1.0  
0.0  
VS = 2.5 V  
-10  
-20  
-30  
œ1.0  
œ2.0  
œ3.0  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
2.7 V VS 5.5 V  
RLOAD = 10 kΩ  
43. Power-Supply Rejection Ratio vs Temperature  
44. Open-Loop Gain vs Temperature With 10-kΩ Load  
5.0  
4.0  
3.0  
2.0  
1
0
œ1  
œ2  
œ3  
œ4  
œ5  
VS = 1.35 V  
1.0  
0.0  
œ1.0  
VS = 2.5 V  
œ2.0  
œ3.0  
œ4.0  
œ5.0  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ4  
œ2  
0
VCM (V)  
2
4
Temperature (°C)  
C001  
C001  
RLOAD = 600 Ω  
VS = ±2.5 V  
45. Open-Loop Gain vs Temperature With 600-Ω Load  
46. Input Bias Current vs Input Common-Mode Voltage  
50  
40  
50  
30  
25  
20  
10  
VCM = œ2.5 V  
0
0
VCM = 1.35 V  
œ10  
œ20  
œ25  
œ30  
œ40  
œ50  
VS  
=
2.75 V  
2.6  
VS  
= 1.35 V  
œ50  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.8  
œ3  
œ2  
œ1  
0
1
2
VSUPPLY (V)  
VCM (V)  
C001  
C001  
6 typical units shown, VS = ±1.35 V to ±2.75 V  
6 typical units shown, VS = ±2.5 V  
47. Input Offset Voltage vs Power-Supply Voltage  
48. Input Offset Voltage vs Common-Mode Voltage  
版权 © 2016–2019, Texas Instruments Incorporated  
16  
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, V+ = 5 V, V– = 0 V, VCOM = VO = 2.5 V, gain (G) = 2, RF = 1 kΩ, CF= 2.7 pF, CLOAD= 20 pF, and RLOAD = 2 kΩ  
connected to 2.5 V (unless otherwise noted)  
3
200  
180  
160  
140  
120  
100  
80  
25°C  
2
œ40°C  
ISC, Sink  
1
125°C  
0
ISC, Source  
-1  
-2  
-3  
125°C  
œ40°C  
25°C  
60  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
0
20  
40  
60  
80 100 120 140 160 180 200  
Temperature (°C)  
IO (mA)  
C001  
C001  
50. Short-Circuit Current vs Temperature  
49. Output Voltage vs Output Current  
3
2.5  
2
3
2.5  
2
VS  
= 2.5 V  
VS  
= 1.35 V  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Supply Voltage (V)  
Temperature (°C)  
C001  
C001  
51. Quiescent Current vs Power-Supply Voltage  
52. Quiescent Current vs Temperature  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
0
0.2  
0.4  
0.6  
Time (s)  
0.8  
1
1.2  
D001  
Powered on at t = 0 s, PCB dimensions: 4 in2, 2 layer, FR4  
53. Warm-Up Time  
版权 © 2016–2019, Texas Instruments Incorporated  
17  
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 DC Parameter Measurements  
The circuit shown in 54 measures the dc input offset related parameters of the OPA2626. Input offset voltage,  
power-supply rejection ratio, common-mode rejection ratio, and open-loop gain can be measured with this circuit.  
The basic test procedure requires setting the inputs (the power-supply voltage, VS, and the common-mode  
voltage, VCM), to the desired values. VO is set to the desired value by adjusting the loop-drive voltage while  
measuring VO. After all inputs are configured, measure the input offset at the VX measurement point. Calculate  
the input offset voltage by dividing the measured result by 101. Changing the voltages on the various inputs  
changes the input offset voltage. The input parameters can be measured according to the relationships illustrated  
in 公式 1 through 公式 5.  
RCOMP = 1 k  
CCOMP = 0.1 mF  
RB = 1.26 kꢀ  
+
Loop  
Drive  
30 V  
œ
V+  
VX  
+
VOS  
RA = 12.6 ꢀ  
+
RIN = 12.6 ꢀ  
-30 V  
VO  
RLOAD  
V-  
+
VCM  
œ
54. DC-Parameters Measurement Circuit  
VX  
VOS  
=
101  
(1)  
(2)  
(3)  
(4)  
(5)  
DVOS  
DTemperature  
DVOS  
DVSUPPLY  
DVOS  
DVCM  
VOSDrift  
=
PSRR =  
CMRR =  
DVO  
DVOS  
AOL =  
18  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
 
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
7.2 Transient Parameter Measurements  
The circuit shown in 55 measures the transient response of the OPA2626. Configure V+, V–, RISO, RLOAD, and  
CLOAD as desired. Monitor the input and output voltages on an oscilloscope or other signal analyzer. Use this  
circuit to measure large-signal and small-signal transient response, slew rate, overshoot, and capacitive-load  
stability.  
V+  
RISO  
+
O-Scope  
CLOAD  
V-  
RLOAD  
+
Input  
œ
55. Pulse-Response Measurement Circuit  
7.3 AC Parameter Measurements  
The circuit shown in 56 measures the ac parameters of the OPA2626. Configure V+, V–, and CLOAD as  
desired. The THS4271 family is used to buffer the input and output of the OPA2626 to prevent loading by the  
gain phase analyzer. Monitor the input and output voltages on a gain phase analyzer. Use this circuit to measure  
the gain bandwidth product, and open-loop gain versus frequency versus capacitive load.  
249  
249 ꢀ  
50 ꢀ  
+
Gain/Phase  
Analyzer  
249 ꢀ  
249 ꢀ  
50 ꢀ  
1 kꢀ  
1 kꢀ  
+
+
CLOAD  
56. AC-Parameters Measurement Circuit  
版权 © 2016–2019, Texas Instruments Incorporated  
19  
 
 
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
7.4 Noise Parameter Measurements  
The circuit shown in 57 measures the voltage noise of the OPA2626. Configure V+, V–, and CLOAD as desired.  
10  
1 kꢀ  
Spectrum  
Analyzer  
+
CLOAD  
57. Voltage Noise Measurement Circuit  
The circuit shown in 58 measures the current noise of the OPA2626. Configure V+, V– and CLOAD as desired.  
Spectrum  
Analyzer  
+
CLOAD  
100 k  
58. Current Noise Measurement Circuit  
The circuit shown in 59 measures the 0.1-Hz to 10-Hz voltage noise of the OPA2626. Configure V+, V–, and  
CLOAD as desired.  
0.1 Hz to 10 Hz  
Active Bandpass Filter  
10  
1 kꢀ  
O-Scope  
+
40 db/dec  
-80 db/dec  
CLOAD  
59. 0.1-Hz to 10-Hz Voltage-Noise Measurement Circuit  
20  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
 
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
8 Detailed Description  
8.1 Overview  
The OPA2626 is a fast-settling, high slew rate, high-bandwidth, voltage-feedback operational amplifier. Low  
offset and low offset drift combine with the superior dynamic performance and low output impedance of this  
device, resulting in an amplifier suited for driving 16-bit and 18-bit SAR ADCs, and buffering precision voltage  
references in industrial applications. The OPA2626 includes low-noise input, slew boost, and rail-to-rail output  
stages.  
8.2 Functional Block Diagram  
V+  
Bias  
+IN  
Common  
Mode  
Feedback  
Low Noise Input  
Stage  
Slew  
Boost  
Rail-to-Rail  
Output Stage  
OUT  
-IN  
Frequency  
Compensation  
Network  
V-  
版权 © 2016–2019, Texas Instruments Incorporated  
21  
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 SAR ADC Driver  
The OPA2626 is designed to drive precision (16-bit and 18-bit) SAR ADCs at sample rates up to 1 MSPS. The  
combination of low output impedance, low THD, low noise, and fast settling time make the OPA2626 the ideal  
choice for driving both the SAR ADC inputs, as well as the reference input to the ADC. Internal slew boost  
circuitry increases the slew rate as a function of the input signal magnitude, resulting in settling from a 4-V step  
input to 16-bit levels within 280 ns. Low output impedance (1 Ω at 1 MHz) ensures capacitive load stability with  
minimal overshoot.  
8.3.2 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly. A good understanding of this basic ESD  
circuitry and how the ESD circuitry relates to an electrical overstress event is helpful. 60 provides a diagram of  
the ESD circuits contained in the OPA2626. The ESD protection circuitry involves several current-steering diodes  
connected from the input and output pins and routed back to the internal power-supply lines, where the diodes  
meet at an absorption device or the power-supply ESD cell, internal to the operational amplifier. This protection  
circuitry is intended to remain inactive during normal circuit operation.  
V+  
Power Supply  
ESD Cell  
30 O  
+IN  
+
30 O  
OUT  
– IN  
V–  
60. Simplified ESD Circuit  
22  
版权 © 2016–2019, Texas Instruments Incorporated  
 
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
8.4 Device Functional Modes  
The OPA2626 has a single functional mode and is operational when the power supply voltage, VS, is between  
2.7 V (±1.35 V) and 5.5 V (±2.75 V).  
8.4.1 High-Drive Mode  
The OPA2626 has a 120-MHz gain bandwidth, 2.5-nV/Hz input-referred noise, and consumes 2 mA of  
quiescent current. Additionally, the OPA2626 has an offset voltage of 100 µV (maximum) and an offset voltage  
drift of 1 µV/°C (typical). This combination of high precision, high speed, and low noise makes this device  
suitable for use as an input driver for high-precision, high-throughput SAR ADCs such as the ADS88xx family of  
SAR ADCs, as illustrated in 61.  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The OPA2626 consists of precision, high-speed, voltage-feedback operational amplifiers. Fast settling to 16-bit  
and 18-bit levels, low THD, and low noise make the OPA2626 suitable for driving SAR ADC inputs and buffering  
precision voltage references. With a wide power-supply voltage range from 2.7 V to 5.5 V, and operating from  
–40°C to +125°C, the OPA2626 is suitable for a variety of high-speed, industrial applications. The following  
sections show application information for the OPA2626. For simplicity, power-supply decoupling capacitors are  
not shown in these diagrams.  
9.2 Typical Applications  
9.2.1 Single-Supply, 16-Bit, 1-MSPS SAR ADC Driver  
1 kO  
1 kO  
5 V  
RFLT  
VREF  
3.3 V  
4.7 O  
+
VREF / 4  
OPA626  
REF  
AVDD  
10 nF  
CFLT  
ADS8860  
GND  
4.7 O  
RFLT  
61. Single-Supply, 16-Bit, 1-MSPS SAR ADC Driver  
版权 © 2016–2019, Texas Instruments Incorporated  
23  
 
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
9.2.1.1 Design Requirements  
A SAR ADC, such as the ADS8860 device, uses sampling capacitors on the data converter input. During the  
signal acquisition phase, these sampling capacitors are connected to the ADC analog input terminals AINP and  
AINN (pins 3 and 4), through a set of switches. After the acquisition period has elapsed, the internal sampling  
capacitors are disconnected from the input terminals (pins 3 and 4) and connected to the ADC input through a  
second set of switches, during this period the ADC is performing the analog-to-digital conversion. 62 shows  
this architecture.  
SAR ADC  
RSW  
AINP  
CS/H  
RSW  
CS/H  
AINN  
62. Simplified SAR ADC Input  
The SAR ADC inputs and sampling capacitors must be driven by the OPA2626 to 16-bit levels within the  
acquisition time of the ADC. For the example illustrated in 61, the OPA2626 is used to drive the ADS8860 at a  
sample rate of 1 MSPS.  
9.2.1.2 Detailed Design Procedure  
The circuit illustrated in 61 consists of the SAR ADC driver, a low-pass filter, and the SAR ADC. The SAR  
ADC driver circuit consists of an OPA2626 configured in an inverting gain of 1. The filter consists of RFLT and  
CFLT, connected between the OPA2626 output and the ADS8860 input. Selecting the proper values for each of  
these passive components is critical to obtain the best performance from the ADC. Capacitor CFLT serves as a  
charge reservoir, providing the necessary charge to the ADC sampling capacitors. The dynamic load presented  
by the ADC creates a glitch on the filter capacitor, CFLT. To minimize the magnitude of this glitch, choose a value  
for CFLT large enough to maintain a glitch amplitude of less than 100 mV. Maintaining such a low glitch amplitude  
at the amplifier output makes sure that the amplifier remains in the linear operating region, and results in a  
minimum settling time. Using 公式 6, a 10-nF capacitor is selected for CFLT  
.
CFLT í 15ìCSH  
(6)  
Connecting a 10-nF capacitor directly to the OPA2626 output degrades the OPA2626 phase margin and results  
in stability and settling-time problems. To properly drive the 10-nF capacitor, use a series resistor (RFLT) to  
isolate the capacitor, CFLT, from the OPA2626. RFLT must be sized based upon several constraints. To  
determination a suitable value for RFLT, consider the impact upon the THD resulting from the voltage divider  
effect from RFLT reacting with the switch resistance (RSW) of the ADC input circuit, as well as the impact of the  
output impedance upon amplifier stability. In this example, 4.7-Ω resistors are selected. In this design example,  
13 can be used to estimate a suitable value for RISO. RISO represents the total resistance in series with CFLT  
,
and in this example is equivalent to 2 × RFLT  
.
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files, simulation results, and test results,  
refer to the Power-optimized 16-bit 1MSPS Data Acquisition Block for Lowest Distortion and Noise Reference Design reference guide.  
24  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
9.2.1.3 Application Curve  
63 shows the performance of the circuit in 61.  
0
THD = -110.8 dBc  
-25  
-50  
-75  
SNR = 91.88 dB  
SINAD = 91.86 dB  
ENOB = 14.97  
-115.91 dBc (Third Harmonic)  
-100  
-125  
-150  
-175  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (kHz)  
4096-point FFT at 1 MSPS, fIN = 10 kHz , VIN = 1.5 VRMS  
63. ADC Output FFT for 61  
版权 © 2016–2019, Texas Instruments Incorporated  
25  
 
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
9.2.2 Single-Supply, 16-Bit, 1-MSPS, Multiplexed, SAR ADC Driver  
In order to operate a high-resolution, 16-bit ADC at its maximum throughput, the full-scale voltage step must  
settle to better than 16-bit accuracy at the ADC inputs within the minimum specified acquisition time (tACQ). This  
settling imposes very stringent requirements on the driver amplifier in terms of large-signal bandwidth, slew rate,  
and settling time. 64 shows a typical multiplexed ADC driver application using the OPA2626.  
1.5 pF  
8 k  
2 kꢀ  
5 V  
VREF  
5 V  
RFLT  
4.5 V  
3.3 V  
12.4 ꢀ  
Mux  
10 ꢀ  
10 ꢀ  
+
OPA320  
REF  
AVDD  
+
1 nF  
CFLT  
TS5A3159  
ADS8860  
GND  
100 pF  
22 µF  
Input  
Voltage  
12.4 ꢀ  
RFLT  
64. Single-Supply, 16-Bit, 1-MSPS, Multiplexed, SAR ADC Driver  
9.2.2.1 Design Requirements  
To optimize this circuit for performance, this design does not allow any large signal input transients at the driver  
circuit inputs for a small quiet-time period (tQT) towards the end of the previous conversion. The input step  
voltage can appear anytime from the beginning of conversion (CONVST rising edge) until the elapse of a half  
cycle time (0.5 × tCYC). This timing constraint on the input step allows a minimum settling time of (tQT + tACQ) for  
the ADC input to settle within the required accuracy, in the worst-case scenario. tQT + tACQ is the total time in  
which the output of the amplifier has to slew and settle within the required accuracy before the next conversion  
starts. 65 shows this timing sequence.  
Transients Allowed  
No Transients Allowed  
CONVST  
0.5 x tCYC_MIN = 500 ns  
tQT  
tACQ  
Slewing  
Settling  
VIN  
tCYC_MIN = 1 µs  
Conversion  
Sampling  
65. Timing Diagram for Input Signals  
26  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
9.2.2.2 Detailed Design Procedure  
An ADC input driver circuit consists of two parts: a driving amplifier and a fly-wheel RC filter. The amplifier is  
used for signal conditioning of the input voltage and the low output impedance provides a buffer between the  
signal source and the ADC input. The RC filter helps attenuate the sampling charge-injection from the switched-  
capacitor input stage of the ADC and acts as an antialiasing filter to band-limit the wideband noise contributed by  
the front-end circuit. The design of the ADC input driver involves optimizing the bandwidth of the circuit, driven by  
the following requirements:  
The RFLT and CFLT filter bandwidth must be low to band-limit the noise fed into the input of the ADC, thereby  
increasing the signal-to-noise ratio (SNR) of the system  
The overall system bandwidth must be large enough to accommodate optimal settling of the input signal at  
the ADC input before the conversion starts  
CFLT is chosen based upon 公式 7. CFLT is chosen to be 1 nF.  
CFLT í 15ìCSH  
(7)  
Connecting a 1-nF capacitor directly to the output of the OPA2626 degrades the OPA2626 phase margin and  
results in stability and settling time problems. To properly drive the 1-nF capacitor, a series resistor, RFLT, is used  
to isolate the capacitor, CFLT, from the OPA2626. RFLT must be sized based upon several constraints. To  
determination a suitable value for RFLT, the system designer must consider the impact upon the THD resulting  
from the voltage divider effect from RFLT reacting with the switch resistance, RSW, of the ADC input circuit as well  
as the impact of the output impedance upon amplifier stability. In this example 12.4-Ω resistors are selected. In  
this design example, 12 can be used to estimate a suitable value for RISO. RISO represents the total resistance  
in series with CFLT, which in this example is equivalent to 2 × RFLT  
.
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files, simulation results, and test  
results, refer to the 18-Bit Data Acquisition (DAQ) Block Optimized for 1-μs Full-Scale Step Response reference guide.  
9.2.2.3 Application Curves  
66 and 67 show the performance of the circuit in 64.  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
0
500  
1000  
Time (ns)  
1500  
2000  
0
500  
1000  
Time (ns)  
1500  
2000  
66. Positive Transient Response for 64  
67. Negative Transient Response for 64  
版权 © 2016–2019, Texas Instruments Incorporated  
27  
 
 
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The OPA2626 is specified for operation from 2.7 V to 5.5 V (±1.35 V to ±2.75 V); many specifications apply from  
–40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in the Typical Characteristics section. Place bypass capacitors close to the power-  
supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed  
information on bypass capacitor placement, see the Layout section.  
CAUTION  
Supply voltages larger than 6 V can cause permanent damage to the device. See the  
Absolute Maximum Ratings section.  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Use bypass capacitors to reduce the noise coupled from the power supply. Connect low ESR, ceramic,  
bypass capacitors between the power-supply pins (V+ and V–) and the ground plane. Place the bypass  
capacitors as close to the device as possible with the 100-nF capacitor closest to the device, as indicated in  
68. For single-supply applications, bypass capacitors on the V– pin are not required.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Make sure  
to physically separate digital and analog grounds paying attention to the flow of the ground current. (For more  
details, see the Circuit Board Layout Techniques chapter extract.)  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If the traces cannot be kept separate, crossing the sensitive trace perpendicular is better as  
opposed to in parallel with the noisy trace.  
Minimize parasitic coupling between +IN and OUT for best ac performance.  
Place the external components as close to the device as possible. As illustrated in 68, keeping RF, CF,  
and RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, bake the PCB assembly to remove moisture  
introduced into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at  
85°C for 30 minutes is sufficient for most circumstances.  
28  
版权 © 2016–2019, Texas Instruments Incorporated  
 
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
11.2 Layout Example  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT 1  
Use low-ESR,  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VS+  
GND  
OUT1  
V+  
RF  
OUT 2  
GND  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
RF  
RG  
RG  
VIN 1  
GND  
VIN 2  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VSœ  
Ground (GND) plane on another layer  
as possible .  
68. PCB Layout Example  
版权 © 2016–2019, Texas Instruments Incorporated  
29  
OPA2626  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
12.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。TINA-TI TINA 软件的一  
款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有传  
统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一  
个动态的快速入门工具。  
12.1.1.2 TI 高精度设计  
欲获取 TI 高精度设计,请访问 http://www.ti.com.cn/ww/analog/precision-designs/TI 高精度设计是由 TI 公司高  
精度模拟 应用 专家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板  
(PCB) 电路原理图和布局布线、物料清单以及性能测量结果。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《快速稳定 16 1MSPS 多路复用器数据采集参考设计》 设计指南  
德州仪器 (TI)《针对最低失真和噪声进行功耗优化的 16 1MSPS 数据采集块参考设计》 参考指南  
德州仪器 (TI)《经优化可实现 1μs 满量程阶跃响应的 18 位数据采集 (DAQ) 块》 参考指南  
德州仪器 (TI)《电路板布局技巧》 章节摘录  
德州仪器 (TI)THS427x 低噪声、高压摆率、单位增益稳定电压反馈放大器》 数据表  
德州仪器 (TI)ADS8860 16 位、1MSPS、串行接口、微功耗、微型、单端输入、SAR 模数转换器》 数据表  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
TINA is a trademark of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
30  
版权 © 2016–2019, Texas Instruments Incorporated  
OPA2626  
www.ti.com.cn  
ZHCSF85A JULY 2016REVISED DECEMBER 2019  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2019, Texas Instruments Incorporated  
31  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2626IDGKR  
OPA2626IDGKT  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
16R6  
16R6  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2626IDGKR  
OPA2626IDGKT  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
250  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2626IDGKR  
OPA2626IDGKT  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
250  
366.0  
366.0  
364.0  
364.0  
50.0  
50.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

OPA2631

Dual, Low Power, Single-Supply OPERATIONAL AMPLIFIER
BB

OPA2631U

Dual, Low Power, Single-Supply OPERATIONAL AMPLIFIER
BB

OPA2631U/2K5

Voltage-Feedback Operational Amplifier
ETC

OPA2631UA

IC DUAL AMP
ETC

OPA2634

Dual, Wideband, Single-Supply OPERATIONAL AMPLIFIER
BB

OPA2634U

Dual, Wideband, Single-Supply OPERATIONAL AMPLIFIER
BB

OPA2634U/2K5

Voltage-Feedback Operational Amplifier
ETC

OPA2634UA

IC DUAL AMP
ETC

OPA2650

Dual Wideband, Low Power Voltage Feedback OPERATIONAL AMPLIFIER
BB

OPA2650

Dual Wideband, Low Power Voltage Feedback OPERATIONAL AMPLIFIER
TI

OPA2650E

Dual Wideband, Low Power Voltage Feedback OPERATIONAL AMPLIFIER
BB

OPA2650E

Dual Wideband, Low Power Voltage Feedback OPERATIONAL AMPLIFIER
TI