OPA2863A [TI]

双路、高精度、低功耗、105MHz、12V RRIO 电压反馈放大器;
OPA2863A
型号: OPA2863A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、高精度、低功耗、105MHz、12V RRIO 电压反馈放大器

放大器
文件: 总31页 (文件大小:1697K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA2863A  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
OPAx863A 105MHz、轨到轨输入和输出高精度放大器  
1 特性  
3 说明  
• 增益带宽积50 MHz  
• 高精度  
OPAx863A 器件是具有轨到轨输入和输出的单位增益  
稳定、电压反馈、低功耗运算放大器通过封装修整可  
提供高精度性能、95μV 最大输入失调电压和  
1.2μV/℃ 的温漂从而在整个温度范围内进行高精度  
测量。  
– 输入失调电压95 µV最大值)  
– 失调漂移1.2 μV/°C最大值)  
• 低功耗  
– 静态电流800 µA/通道典型值)  
– 电源电压2.7V 12.6V  
• 输入电压噪声6.3 nV/Hz  
• 压摆率100V/µs  
• 轨到轨输入和输出  
HD2/HD320 kHz (2VPP) 129dBc/–  
138dBc  
OPAx863A 器件每通道仅消耗 800µA可提供 50MHz  
的增益带宽积、100V/µs 的压摆率和 6.3nV/Hz 的电  
压噪声密度。具有 2.7V 电源电压的轨至轨输入级在便  
携式电池供电型应用中非常有用。轨到轨输入级可在整  
个输入共模电压范围内很好地适应增益带宽积和噪声,  
从而在宽输入动态范围内实现出色的性能。  
OPAx863A 器件包括过载功率限制功能可限制输出  
饱和时 IQ 的增加从而避免电池供电的功率敏感型系  
统中出现过度功率耗散。输出级具有短路保护功能使  
得该器件适用于恶劣的环境。  
• 工作温度范围:  
40°C +125°C  
• 其他特性:  
– 过载功率限制  
– 输出短路保护  
封装信息(1)(3)  
封装尺寸标称值)  
器件型号  
OPA863A  
OPA2863A  
封装  
2 应用  
DBVSOT235)  
2.90mm × 1.60mm  
(2)  
低功SAR Δ-ΣADC 驱动器  
ADC 基准缓冲器  
低侧电流感测  
DSNUSON103.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 预发布封装。  
(3) 请参阅器件比较表  
光电二极TIA 接口  
电感式传感  
电池供电仪表  
增益和有源滤波器级  
5V  
20  
16  
12  
8
REF1933  
3.3 V  
Reference  
3.3V  
CFILT  
RF  
RG  
3.3V  
AVDD  
RS  
Sensor  
OPAx863A  
+
ZOUT  
ADS7057  
14-bit  
CCB  
4
2.5 MSPS  
RS  
0
-0.8  
-0.6  
-0.4  
-0.2  
0
0.2  
0.4  
0.6  
0.8  
Input Offset Drift (V/C)  
OPAx863A 用作精SAR ADC 输入驱动器  
具有低输入失调电压漂移的高精度性能  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSA95  
 
 
 
 
 
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
Table of Contents  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................21  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Applications.................................................. 22  
10 Power Supply Recommendations..............................24  
11 Layout...........................................................................24  
11.1 Layout Guidelines................................................... 24  
11.2 Layout Example...................................................... 25  
12 Device and Documentation Support..........................26  
12.1 Documentation Support.......................................... 26  
12.2 接收文档更新通知................................................... 26  
12.3 支持资源..................................................................26  
12.4 Trademarks.............................................................26  
12.5 Electrostatic Discharge Caution..............................26  
12.6 术语表..................................................................... 26  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics: VS = ±5 V ..........................6  
7.6 Electrical Characteristics: VS = 3 V.............................8  
7.7 Typical Characteristics: VS = ±5 V............................ 10  
7.8 Typical Characteristics: VS = 3 V.............................. 15  
7.9 Typical Characteristics: VS = 3 V to 10 V..................17  
8 Detailed Description......................................................19  
8.1 Overview...................................................................19  
8.2 Functional Block Diagram.........................................19  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (December 2022) to Revision B (December 2022)  
Page  
Changed the description for the PD1 and PD2 pins from: high/floating = enabled to: high = enabled ..............3  
Changes from Revision * (May 2022) to Revision A (December 2022)  
Page  
• 将数据表的状态从预告信更改为“量产数据.............................................................................................. 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA2863A  
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
5 Device Comparison Table  
VOLTAGE NOISE  
IQ / CHANNEL GBWP SLEW RATE  
DEVICE  
±VS (V)  
AMPLIFIER DESCRIPTION  
(mA)  
0.80  
2.7  
(MHz)  
(V/µs)  
(nV/Hz)  
OPAx863A  
LMH6643  
OPAx810  
OPAx837  
±6.3  
±6.4  
50  
100  
6.3  
17  
Unity-gain stable RRIO Bipolar Amplifier  
Unity-gain stable NRI/RRO Bipolar Amplifier  
Unity-gain stable RRIO FET-Input Amplifier  
Unity-gain stable NRI/RRO Bipolar Amplifier  
65  
130  
±13.5  
±2.7  
3.6  
70  
200  
6.3  
4.7  
0.6  
50  
105  
Decompensated Gain of 6 V/V stable CMOS  
Amplifier  
OPAx607  
±2.75  
0.9  
50  
24  
3.8  
6 Pin Configuration and Functions  
VOUT  
VS+  
5
1
2
3
VS-  
VIN+  
VIN-  
4
6-1. OPA863A DBV Package (Preview),  
5-Pin SOT-23  
(Top View)  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Power down.  
Low = disabled, high = enabled  
PD  
I
VIN+  
VIN–  
VOUT  
VS–  
VS+  
3
4
1
2
5
I
Noninverting input pin  
Inverting input pin  
I
O
P
P
Output pin  
Negative power-supply pin  
Positive power-supply pin  
(1) I = input, O = output, and P = power.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA2863A  
 
 
 
 
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
VOUT1  
1
2
10 VS+  
VIN1-  
VIN1+  
+
9
8
7
6
VOUT2  
VIN2-  
A
+
3
4
B
VS-  
VIN2+  
PD2  
PD1  
5
6-2. OPA2863A DSN Package,  
10-Pin USON with Exposed Power Pad  
(Top View)  
6-2. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Amplifier 1 power down.  
Low = disabled, high = enabled  
PD1  
5
I
I
Amplifier 2 power down.  
Low = disabled, high = enabled  
PD2  
6
2
3
I
I
Amplifier 1 inverting input pin  
Amplifier 1 noninverting input pin  
Amplifier 2 inverting input pin  
Amplifier 2 noninverting input pin  
Amplifier 1 output pin  
VIN1–  
VIN1+  
VIN2–  
VIN2+  
VOUT1  
VOUT2  
VS–  
8
I
7
I
1
O
O
P
P
9
Amplifier 2 output pin  
4
Negative power-supply pin  
Positive power-supply pin  
VS+  
10  
Power pad. Electrically isolated from the device. Recommended connection to a  
heat spreading plane, typically GND.  
Power Pad  
(1) I = input, O = output, and P = power.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA2863A  
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage  
VSto VS+  
13  
1
Supply turn-on/off maximum dV/dt  
V/µs  
V
VI  
VID  
II  
Input voltage  
VS+ + 0.5  
±1  
VS0.5  
Differential input voltage  
Continuous input current(2)  
Continuous output current(3)  
Continuous power dissipation  
Maximum junction temperature  
Operating free-air temperature  
Storage temperature  
V
±10  
mA  
mA  
IO  
±30  
See Thermal Information  
150  
TJ  
°C  
°C  
°C  
TA  
125  
150  
40  
65  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Continuous input current limit for both the ESD diodes to supply pins and amplifier differential input clamp diode. The differential input  
clamp diode limits the voltage across it to 1 V with this continuous input current flowing through it.  
(3) Long-term continuous current for electromigration limits.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
10  
MAX  
12.6  
125  
UNIT  
V
VS+ - VSTotal supply voltage  
TA Ambient temperature  
25  
°C  
40  
7.4 Thermal Information  
OPA2863A  
THERMAL METRIC  
DSN (USON)  
10 PINS  
52.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
41.7  
Junction-to-board thermal resistance  
25.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ΨJT  
YJB  
25.5  
RθJC(bot)  
8.1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA2863A  
 
 
 
 
 
 
 
 
 
 
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.5 Electrical Characteristics: VS = ±5 V  
at G = 1 V/V, RF = 0 Ωfor G = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced to mid-supply,  
input and output common-mode is at mid-supply, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
GBWP  
LSBW  
Small-signal bandwidth  
Gain-bandwidth product  
Large-signal bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
VOUT = 20 mVPP, G = 1  
105  
50  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
VOUT = 2 VPP  
14  
VOUT = 20 mVPP  
15  
SR  
100  
9
VOUT = 2V step  
Rise, fall time  
VOUT = 200mV step  
VOUT = 2V step  
Settling time to 0.1%  
50  
ns  
Settling time to 0.01%  
70  
ns  
VOUT = 2V step  
Overshoot/undershoot  
Overdrive recovery time  
Overdrive recovery time  
Second-order harmonic distortion  
Third-order harmonic distortion  
Second-order harmonic distortion  
Third-order harmonic distortion  
Input voltage noise  
1
%
VOUT = 2V step  
70  
ns  
G = 1, 0.5 V overdrive beyond supplies  
G = 1, 0.5 V overdrive beyond supplies  
90  
ns  
HD2  
HD3  
HD2  
HD3  
eN  
129  
138  
107  
125  
6.3  
f = 20 kHz, VOUT = 2 VPP  
f = 100 kHz, VOUT = 2 VPP  
dBc  
dBc  
nV/Hz  
pA/Hz  
iN  
Input current noise  
0.5  
Closed-loop output impedance  
Channel-to-channel crosstalk  
f = 1 MHz  
0.2  
Ω
f = 1 MHz, VOUT = 2 VPP  
dBc  
120  
DC PERFORMANCE  
AOL  
VOS  
Open-loop voltage gain  
VOUT = ±2.5 V  
110  
95  
1.2  
128  
±10  
±0.3  
0.3  
dB  
µV  
Input-referred offset voltage  
Input offset voltage drift  
95  
1.2 µV/°C  
0.73  
1.2  
TA = 40°C to +125°C  
TA 25°C  
Input bias current  
µA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
1.6  
Input bias current drift  
Input offset current  
±3  
nA/°C  
nA  
-30  
±10  
30  
INPUT  
Input common-mode voltage range  
Common-mode rejection ratio  
VS++0.2  
V
VS0.2  
CMRR  
95  
120  
650 || 0.8  
200 || 0.5  
dB  
VCM=VS0.2 V to VS+ 1.6 V  
Input impedance common-mode  
Input impedance differential mode  
MΩ|| pF  
kΩ|| pF  
OUTPUT  
VS+0.14  
VS+0.2  
TA 25°C  
VOL  
Output voltage, low  
Output voltage, high  
V
V
VS+0.15 VS+0.22  
TA = 40°C to +125°C  
TA 25°C  
VS+0.2 VS+0.14  
VS+0.2 VS+0.15  
VOH  
TA = 40°C to +125°C  
Linear output drive (sourcing/  
sinking)  
VOUT = ±2.5 V, ΔVOS < 1 mV(2)  
23  
30  
45  
mA  
mA  
Short-circuit current  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA2863A  
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.5 Electrical Characteristics: VS = ±5 V (continued)  
at G = 1 V/V, RF = 0 Ωfor G = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced to mid-supply,  
input and output common-mode is at mid-supply, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
800  
925  
TA 25°C  
IQ  
Quiescent current per amplifier  
Power-supply rejection ratio  
µA  
dB  
1040  
TA = 40°C to +125°C  
ΔVS = ±2 V(1)  
PSRR  
100  
3.5  
120  
11  
POWER DOWN  
Enable voltage threshold  
4.5  
V
V
Specified on above VS+0.5 V  
Specified off below VS+1.5 V  
VPD VS+1.5 V  
Disable voltage threshold  
28  
35  
Power-down quiescent current per  
channel  
µA  
VPD VS+ 1.5 V, TA = 40°C to  
+125°C  
Power-down pin bias current  
Turn-on time delay  
1
8
2.5  
µA  
µs  
µs  
Turn-off time delay  
3.5  
AUXILIARY INPUT STAGE  
Gain-bandwidth product  
Input voltage noise  
50  
6.3  
0.5  
±10  
0.2  
MHz  
nV/Hz  
pA/Hz  
μV  
Input current noise  
Input-referred offset voltage  
95  
0.6  
1.3  
95  
TA 25°C  
Input bias current  
µA  
TA = 40°C to +125°C  
VCM = 4.1 V to 5.2 V  
ΔVS = ±0.6 V  
Common-mode rejection ratio  
Power supply rejection ratio  
120  
120  
dB  
dB  
(1) Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to  
+PSRR and PSRR.  
(2) Change in input offset voltage from no-load condition.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA2863A  
 
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.6 Electrical Characteristics: VS = 3 V  
at G = 1, RF = 0 Ωfor G =1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected to 1 V, input and  
output VCM = 1 V, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
GBWP  
LSBW  
Small-signal bandwidth  
Gain-bandwidth product  
Large-signal bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
VOUT = 20 mVPP, G = 1  
85  
50  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
VOUT = 1 VPP  
23  
VOUT = 20 mVPP  
VOUT = 1V step  
VOUT = 200mV step  
10  
SR  
53  
Rise, fall time  
10  
Settling time to 0.1%  
58  
ns  
%
VOUT = 1V step  
VOUT = 1V step  
Settling time to 0.01%  
Overshoot  
90  
2
Undershoot  
16  
Overdrive recovery time  
Overdrive recovery time  
Second-order harmonic distortion  
Third-order harmonic distortion  
Second-order harmonic distortion  
Third-order harmonic distortion  
Input voltage noise  
85  
ns  
ns  
G = 1, 0.5V overdrive beyond supplies  
G = 1, 0.5V overdrive beyond supplies  
130  
123  
132  
109  
129  
6.3  
HD2  
HD3  
HD2  
HD3  
eN  
f = 20 kHz, VOUT = 1 VPP  
f = 100 kHz, VOUT = 1 VPP  
dBc  
dBc  
nV/Hz  
pA/Hz  
iN  
Input current noise  
0.5  
Closed-loop output impedance  
Channel-to-channel crosstalk  
f = 1 MHz  
0.2  
Ω
f = 1 MHz, VOUT = 1 VPP  
dBc  
120  
DC PERFORMANCE  
AOL  
VOS  
Open-loop voltage gain  
VOUT = 1 V to 2 V  
104  
95  
1.2  
123  
±10  
±0.3  
0.3  
dB  
μV  
Input-referred offset voltage  
Input offset voltage drift  
95  
1.2  
TA = 40°C to +125°C  
TA 25°C  
μV/°C  
0.73  
1.2  
Input bias current  
µA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
1.56  
Input bias current drift  
Input offset current  
±3  
nA/°C  
nA  
-30  
±10  
30  
INPUT  
Input common-mode voltage range  
Common-mode rejection ratio  
VS++0.2  
V
VS0.2  
CMRR  
92  
115  
360 || 0.9  
200 || 0.5  
dB  
VCM = VS0.2 V to VS+ 1.6 V  
Input impedance common-mode  
Input impedance differential mode  
MΩ|| pF  
kΩ|| pF  
OUTPUT  
VS+ 0.13 VS+ 0.15  
VS+ 0.13 VS+ 0.16  
TA 25°C  
VOL  
Output voltage, low  
Output voltage, high  
V
TA = 40°C to +125°C  
TA 25°C  
VS+0.15 VS+0.13  
VS+0.15 VS+0.13  
VOH  
V
TA = 40°C to +125°C  
Linear output drive (sourcing/  
sinking)  
VOUT = ±0.7 V, ΔVOS < 1 mV(2)  
23  
33  
mA  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA2863A  
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.6 Electrical Characteristics: VS = 3 V (continued)  
at G = 1, RF = 0 Ωfor G =1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected to 1 V, input and  
output VCM = 1 V, and TA 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Short-circuit current  
45  
mA  
POWER SUPPLY  
770  
120  
890  
995  
TA 25°C  
IQ  
Quiescent current per amplifier  
µA  
dB  
TA = 40°C to +125°C  
ΔVS = ±1 V(1)  
PSRR  
Power-supply rejection ratio  
100  
1.5  
POWER DOWN  
Enable voltage threshold  
2.5  
V
V
Specified on above VS+ 0.5 V  
Specified off below VS+ 1.5 V  
VPD VS+ 1.5 V  
Disable voltage threshold  
8.5  
20  
30  
Power-down quiescent current per  
channel  
µA  
VPD VS+ 1.5 V, TA = 40°C to  
+125°C  
Power-down pin bias current  
Turn-on time delay  
1
8
2.5  
µA  
µs  
µs  
Turn-off time delay  
3.5  
AUXILIARY INPUT STAGE  
Gain-bandwidth product  
Input voltage noise  
50  
6.3  
0.5  
±10  
0.2  
MHz  
nV/Hz  
pA/Hz  
μV  
Input current noise  
Input-referred offset voltage  
95  
0.6  
1.2  
95  
TA 25°C  
Input bias current  
µA  
TA = 40°C to +125°C  
VCM = 2.1 V to 3.2 V  
ΔVS = ±0.6 V  
Common-mode rejection ratio  
Power supply rejection ratio  
115  
115  
dB  
dB  
(1) Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to  
+PSRR and PSRR.  
(2) Change in input offset voltage from no-load condition.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA2863A  
 
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.7 Typical Characteristics: VS = ±5 V  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kΩfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
3
0
3
0
-3  
-3  
-6  
-6  
-9  
-9  
-12  
-15  
-18  
-21  
-12  
-15  
-18  
-21  
G = 1 V/V  
G = -1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 10 V/V  
RL = 2 k  
RL = 500   
100k  
1M  
10M  
Frequency (Hz)  
100M  
100k  
1M  
10M  
Frequency  
100M  
VOUT = 20 mVPP  
VOUT = 20 mVPP  
7-1. Small-Signal Frequency Response vs Gain  
7-2. Small-Signal Frequency Response vs Output Load  
VOUT = 20 mVPP  
.
7-3. Frequency Response vs Load Capacitance  
7-4. Frequency Response vs Output Voltage  
3
-40  
HD2, VOUT = 2 VPP  
HD3, VOUT = 2 VPP  
HD2, VOUT = 4 VPP  
HD3, VOUT = 4 VPP  
-60  
-80  
0
-3  
-100  
-120  
-140  
-160  
-6  
G = 1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 10 V/V  
-9  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
VOUT = 2 VPP  
G = 1 V/V  
7-5. Large-Signal Frequency Response vs Gain  
7-6. Harmonic Distortion vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA2863A  
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.7 Typical Characteristics: VS = ±5 V (continued)  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kΩfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
-20  
-40  
0.15  
HD2, G = 1 V/V  
HD3, G = 1 V/V  
HD2, G = 2 V/V  
HD3, G = 2 V/V  
0.1  
-60  
0.05  
0
-80  
-100  
-120  
-140  
-160  
-0.05  
-0.1  
-0.15  
1k  
10k  
100k  
1M  
10M  
Time (20 ns/div)  
.
Frequency (Hz)  
VOUT = 4 VPP  
7-8. Small-Signal Transient Response  
7-7. Harmonic Distortion vs Gain  
1.25  
0.75  
6
4
Input  
Output  
2
0.25  
0
-0.25  
-0.75  
-1.25  
-2  
-4  
-6  
Time (50 ns/div)  
.
Time (100 ns/div)  
Gain = 1 V/V  
7-9. Large-Signal Transient Response  
7-10. Input Overdrive Recovery  
60  
40  
20  
0
6
4
2
0
-2  
-4  
-6  
Input x -1 V/V  
Output  
-20  
-6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
Time (100 ns/div)  
Gain = -1 V/V  
Input Common-Mode Voltage (V)  
Measured for 10 units  
7-11. Output Overdrive Recovery  
7-12. Input Offset Voltage vs Input Common-Mode Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA2863A  
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.7 Typical Characteristics: VS = ±5 V (continued)  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kΩfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
400  
200  
0
6
4
2
Sourcing  
Sinking  
0
-2  
-4  
-6  
-200  
-400  
0
4
8
12  
16  
20  
24  
28  
-5.5 -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
Output Current (mA)  
Input Common-Mode Voltage (V)  
.
.
7-14. Output Voltage vs Load Current  
7-13. Input Bias Current vs Input Common-Mode Voltage  
60  
16000  
12000  
8000  
4000  
0
40  
20  
Sourcing  
Sinking  
0
-20  
-40  
-60  
740  
760  
780  
800  
820  
840  
860  
880  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Ambient Temperature (C)  
Quiescent Current per Channel (A)  
Output saturated and then short-circuited to opposite supply  
7-15. Output Short-Circuit Current vs Ambient Temperature  
16000  
μ= 790 μA, σ= 13.8 μA  
7-16. Quiescent Current Distribution  
12000  
10000  
8000  
6000  
4000  
2000  
0
12000  
8000  
4000  
0
175  
200  
225  
250  
275  
300  
325  
350  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
Input Bias Current (nA)  
Input Offset Voltage (V)  
μ= 265 nA, σ= 18.6 nA  
μ= 0.1 μV, σ= 9.1 μV  
7-18. Input Offset Voltage Distribution  
7-17. Input Bias Current Distribution  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA2863A  
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.7 Typical Characteristics: VS = ±5 V (continued)  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kΩfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
0.96  
0.93  
0.9  
20  
16  
12  
8
0.87  
0.84  
0.81  
0.78  
0.75  
0.72  
0.69  
0.66  
4
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
Ambient Temperature (C)  
-0.8  
-0.6  
-0.4  
-0.2  
0
0.2  
0.4  
0.6  
0.8  
35 units  
Input Offset Drift (V/C)  
80 units, μ= 0.01 μV/°C, σ= 0.29 μV/°C, DSN package  
7-19. Input Offset Voltage Drift Distribution  
7-20. Quiescent Current vs Ambient Temperature  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (C)  
Ambient Temperature (C)  
35 units  
Normalized to 25°C values, 35 units, DSN package  
7-21. Input Bias Current vs Ambient Temperature  
7-22. Input Offset Voltage vs Ambient Temperature  
8
6
8
VPD  
VOUT x 10  
6
4
4
2
2
0
0
-2  
-4  
-2  
-4  
-6  
-8  
-6  
-8  
VPD  
VOUT x 10  
Time (2 s/div)  
Time (2 s/div)  
.
.
7-23. Turn-On Time to DC Input  
7-24. Turn-Off Time to DC Input  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA2863A  
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.7 Typical Characteristics: VS = ±5 V (continued)  
at VS+ = 5 V, VS= 5 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kΩfor other gains, CL = 1 pF, RL = 2 kΩreferenced  
to mid-supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
36000  
32000  
28000  
24000  
20000  
16000  
12000  
8000  
12  
10  
8
4000  
0
6
8
10  
12  
14  
16  
18  
6
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Power-Down Quiescent Current per Channel (A)  
Ambient Temperature (C)  
μ= 9.3 μA, σ= 0.32 μA  
.
7-25. Power-Down Quiscent Current Distribution  
7-26. Power-Down IQ vs Ambient Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA2863A  
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.8 Typical Characteristics: VS = 3 V  
at VS+ = 3 V, VS= 0 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected to 1  
V, G = 1 V/V, input and output VCM = 1 V, and TA 25°C (unless otherwise noted)  
3
0
-40  
HD2  
HD3  
-60  
-3  
-6  
-80  
-9  
-100  
-120  
-140  
-12  
-15  
-18  
-21  
G = 1 V/V  
G = -1 V/V  
G = 2 V/V  
G = 5 V/V  
G = 10 V/V  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
VOUT = 20 mVPP  
VOUT = 1 VPP  
7-27. Small-Signal Frequency Response vs Gain  
7-28. Harmonic Distortion vs Frequency  
0.15  
0.75  
0.1  
0.05  
0
0.5  
0.25  
0
-0.05  
-0.1  
-0.25  
-0.5  
-0.75  
-0.15  
Time (20 ns/div)  
Time (100 ns/div)  
.
.
7-29. Small-Signal Transient Response  
7-30. Large-Signal Transient Response  
50  
300  
200  
100  
0
40  
30  
20  
10  
0
-100  
-200  
-300  
-10  
-20  
-2  
-1  
0
1
2
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
VS = ±1.5 V  
VS = ±1.5 V, Measured for 10 units  
7-32. Input Bias Current vs Input Common-Mode Voltage  
7-31. Input Offset Voltage vs Input Common-Mode Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA2863A  
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.8 Typical Characteristics: VS = 3 V (continued)  
at VS+ = 3 V, VS= 0 V, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩconnected to 1  
V, G = 1 V/V, input and output VCM = 1 V, and TA 25°C (unless otherwise noted)  
3
2.5  
2
60  
40  
20  
0
Sourcing  
Sinking  
Sourcing  
Sinking  
1.5  
1
-20  
-40  
-60  
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Output Current (mA)  
Ambient Temperature (C)  
.
Output saturated and then short-circuited to other supply  
7-33. Output Voltage vs Load Current  
7-34. Output Short-Circuit Current vs Ambient Temperature  
4
3
4
VPD  
VOUT x 10  
3
2
1
0
2
1
0
VPD  
VOUT x 10  
-1  
-1  
Time (2 s/div)  
Time (2 s/div)  
.
.
7-35. Turn-On Time to DC Input  
7-36. Turn-Off Time to DC Input  
36000  
32000  
28000  
24000  
20000  
16000  
12000  
8000  
10  
8
6
4
4000  
0
4
6
8
10  
12  
14  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Power-Down Quiescent Current per Channel (A)  
Ambient Temperature (C)  
μ= 7.36 μA, σ= 0.29 μA  
.
7-37. Power-Down Quiscent Current Distribution  
7-38. Power-Down IQ vs. Ambient Temperature  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA2863A  
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.9 Typical Characteristics: VS = 3 V to 10 V  
at VOUT = 2 VPP, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced to mid-  
supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
135  
120  
105  
90  
210  
180  
150  
120  
90  
3
Magnitude  
Phase  
0
-3  
75  
60  
60  
-6  
45  
30  
-9  
30  
0
15  
-30  
-60  
-90  
-12  
-15  
0
VS = 10 V  
VS = 3 V  
-15  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Small-signal response  
VOUT = 20 mVPP  
7-39. Open-Loop Gain and Phase vs Frequency  
7-40. Frequency Response vs Supply Voltage  
100  
10  
Main Stage  
Auxiliary Stage  
10  
1
1
10  
0.1  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
100  
1k  
10k  
100k  
1M  
D401  
Frequency (Hz)  
.
.
7-41. Input Voltage Noise Density vs Frequency  
7-42. Input Current Noise Density vs Frequency  
140  
120  
100  
80  
140  
PSRR  
PSRR+  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
-20  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
.
.
7-43. Common-Mode Rejection Ratio vs Frequency  
7-44. Power Supply Rejection Ratio vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA2863A  
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
7.9 Typical Characteristics: VS = 3 V to 10 V (continued)  
at VOUT = 2 VPP, RF = 0 Ωfor Gain = 1 V/V, otherwise RF = 1 kfor other gains, CL = 1 pF, RL = 2 kΩreferenced to mid-  
supply, G = 1 V/V, input and output referenced to mid-supply, and TA 25°C (unless otherwise noted)  
-60  
100  
80  
60  
40  
20  
0
-80  
-100  
-120  
-140  
Ch-A to Ch-B  
Ch-B to Ch-A  
100k  
1M  
10M  
100M  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
Frequency (Hz)  
Frequency (Hz)  
DSN package  
7-46. Crosstalk vs Frequency  
.
7-45. Open-Loop Output Impedance vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA2863A  
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
8 Detailed Description  
8.1 Overview  
The OPAx863A bipolar voltage-feedback amplifiers offer 50 MHz gain-bandwidth product with a proprietary in-  
package trim technology for high-precision performance with maximum 95 µV input offset voltage and 1.2 µV/℃  
offset drift. The OPAx863A devices are low-power, rail-to-rail input and output (RRIO) operational amplifiers with  
a voltage noise density of 6.3 nV/Hz and 1/f noise corner at 25 Hz. The OPAx863A devices work in a wide-  
supply voltage range from 2.7 V to 12.6 V and consumes only 800 µA quiescent current. The OPAx863A devices  
operate with 2.7 V supply, are RRIO capable, consume low-power, and offer a power-down mode, which makes  
them ideal amplifiers for 3.3-V or lower voltage applications that need superior AC performance. The amplifier's  
main and auxiliary input stages are matched for gain bandwidth product (GBW), noise and offset voltage suitable  
for applications which require wide dynamic input range and good SNR.  
The device includes an overload power limit feature which limits the increase in quiescent current with over-  
driven and saturated outputs to either of the supply rails. For more details of this overload power limit feature,  
see 8.3.2.1. The amplifier's output is protected against short-circuit fault conditions.  
The OPAx863A devices feature a power-down mode (PD) with a PD quiescent current of 20 µA (maximum) with  
a 3 V supply, with turn-on and turn-off time within less than 8 µs.  
8.2 Functional Block Diagram  
PD  
VS+  
OPAx863A  
Auxiliary  
NPN-  
+
Stage  
VIN+  
EN  
Output  
Short-Circuit  
Protection  
CC  
Main  
PNP-  
Stage  
VOUT  
+
Overload  
Power  
EN  
Limiting  
+
VIN–  
VS+ –1.6 V  
VS–  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA2863A  
 
 
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
8.3 Feature Description  
8.3.1 Input Stage  
The OPAx863A devices include a rail-to-rail input stage. The main stage differential pair using PNP bipolar  
transistors operates for common-mode input voltages from VS0.2 V till VS+ 1.6 V. The amplifier inputs  
transition into the auxiliary stage using NPN transistors for common-mode input voltages from VS+ 1.6 V till  
VS+ + 0.2 V. The PNP and NPN input stages offer a gain-bandwidth product of 50 MHz and a voltage noise  
density of 6.3 nV/Hz. The offset voltage for the two input stages is matched to lie within the device  
specifications. The auxiliary NPN input stage does not use the slew boost circuit during large-signal transient  
response. The input bias current for the PNP and NPN input stages is opposite in polarity, which adds an  
additional offset based on the values of the gain-setting and feedback resistors. A common-mode input voltage  
transition between these input stages will cause a crossover distortion which needs to be considered in high-  
frequency applications requiring superior linearity. Limit the common-mode input voltage to VS+ 1.6 V  
(maximum) for main-stage operation across process and ambient temperature.  
Since the OPAx863A devices are bipolar amplifiers, the two inputs are protected with anti-parallel back-to-back  
diodes between them, which limits the maximum input differential voltage to 1 V. The amplifier is slew limited,  
and the two inputs are pulled apart up to 1 V when the anti-parallel diodes begin to conduct in very fast input or  
output transient conditions. Care must be taken to use gain-setting and feedback resistors large enough to limit  
the current through these diodes in such conditions.  
8.3.2 Output Stage  
The OPAx863A devices feature a rail-to-rail output stage with possible signal swing from VS+ 0.2 V to VS+–  
0.2 V. Violating the output headroom to either of the supplies will cause output signal clipping and introduce  
distortion.  
The OPAx863A devices integrate an output short-circuit protection circuit, which makes the device rugged for  
use in real-world applications.  
8.3.2.1 Overload Power Limit  
During overload or fault conditions, bipolar rail-to-rail output (RRO) amplifiers consume excessive quiescent  
current (five to seven times) with saturated outputs. With saturated outputs, the output signal is clipped with  
much higher base current from output pre-driver stage causing increase in device quiescent current. During this  
condition, the negative feedback control is disabled and an input differential voltage appears thereby resulting in  
an input overdrive. During input overdrive, the slew boost circuit engages to increase tail current which further  
increases device quiescent current. This overall increase in quiescent current can cause excessive battery  
discharge in portable products shortening operating lifetime or disturb the thermal equilibrium causing  
irreversible damage due to increased system power dissipation in a multi-channel design.  
The OPAx863A includes an intelligent overload detection circuit. This circuit monitors for output saturation and  
limits the base drive from output pre-driver circuit and disables the slew boost circuit in this condition. As Table  
8-1 provides, this feature limits the increase in device quiescent current to much smaller values.  
8-1. Quiescent Current with Saturated Outputs  
Device  
Input Differential  
Voltage  
Quiescent Current  
during overload  
Increase in IQ from  
steady-state condition  
OPAx863A with overload power limit  
500 mV  
500 mV  
1.4 mA  
1.8x  
7.1x  
Competitor amplifier without overload power limit  
4.05 mA  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA2863A  
 
 
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
8.3.3 ESD Protection  
As 8-1 shows, all device pins are protected with internal ESD protection diodes to the power supplies. These  
diodes provide moderate protection to input overdrive voltages above the supplies. The protection diodes can  
typically support 10-mA continuous input and output currents. Use series current limiting resistors if input  
voltages exceeding the supply voltages occur at the amplifier inputs, which ensures the current through the ESD  
diodes remains within their rated value. Since OPAx863A is a bipolar amplifier, the two inputs are protected with  
anti-parallel back-to-back diodes between them which limits the maximum input differential voltage to  
approximately 1 V. Care must be taken to use gain-setting and feedback resistors large enough to limit the  
current through these diodes in fast slewing conditions.  
VS+  
Power Supply  
ESD Cell  
VIN+  
PD  
+
œ
VOUT  
VIN-  
VS-  
8-1. Internal ESD Protection  
8.4 Device Functional Modes  
8.4.1 Power-Down Mode  
The OPAx863A includes a power-down mode for low-power standby operation with a quiescent current of 8.5  
μA (typical) and high output impedance. Many low-power systems are active for only a small time interval when  
the parameters of interest are measured and remain in low-power standby mode for a majority of the time for an  
overall small average power consumption. The OPAx863A enables such a low-power operation with quick turn-  
on within less than 8 μs. Refer to the Electrical Characteristics tables for power-down pin control thresholds.  
The OPAx863A is enabled with the PD pin driven to VS+- 0.5 V or higher. The device powers down if the PD pin  
is driven to VS+- 1.5 V or lower with a driver device capable of sinking approximately 1 μA (typical) current from  
the PD pin. If level translation is needed to realize the PD pin thresholds for enable or power-down modes of  
operation, an external pull-up resistor from PD pin to VS+ driven with an open-collector output should be used.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA2863A  
 
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The OPAx863A devices are classic voltage-feedback amplifiers with each channel having two high-impedance  
inputs and a low-impedance output. The combination of specifications with a GBW of 50 MHz, 6.3 nV/Hz  
noise, RRIO capability and high-precision performance consuming only 800 µA quiescent current make it an  
ideal choice for use in precision data acquisition, reference buffering with fast settling, high gain and filter  
circuits. The overload power limit makes OPAx863A truly low-power in high-gain multi-channel systems limiting  
any increase in quiescent current during output overload conditions.  
9.2 Typical Applications  
9.2.1 Low-Power SAR ADC Driver and Reference Buffer  
9-1 shows the use of the OPAx863A devices as a SAR ADC input driver driving the ADS7057. Sensors,  
which are used for interface with the physical environment, exhibit high output impedance and cannot drive SAR  
ADC inputs directly. A wide-GBW amplifier like the OPAx863A devices are needed to charge the switching  
capacitors at the SAR ADC input and to settle fast to the required accuracy within the given acquisition time. The  
OPAx863A's wide-GBW, high precision performance enables fast settling, high accuracy sensor measurements,  
and reference buffering for precision ADCs.  
5V  
REF1933  
3.3 V  
3.3V  
Reference  
CFILT  
RF  
RG  
3.3V  
AVDD  
RS  
Sensor  
OPAx863A  
+
ZOUT  
ADS7057  
14-bit  
CCB  
2.5 MSPS  
RS  
9-1. OPAx863A as Precision SAR ADC Driver  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA2863A  
 
 
 
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
9.2.2 Active Filters  
Active filter circuits are used to amplify signals in the passband, attenuate signals in the stopband and also limit  
the integrated noise at the amplifier's output. The OPAx863A with its wide bandwidth and high-precision  
performance is suitable for designing multi-feedback (MFB) low-pass filter circuits.  
9.2.2.1 Design Requirements  
This section discusses the design of a MFB low-pass active filter with a cut-off frequency at 2 MHz and the  
impact of amplifier's gain-bandwidth (GBW) on filter performance.  
9.2.2.2 Detailed Design Procedure  
9-2 shows the use of OPAx863A in a second-order multi-feedback (MFB) low-pass filter with a cut-off  
frequency of 2 MHz. The passive component values are first selected for a cut-off frequency at 1 rad/sec and  
later scaled for 2 MHz. The frequency response of the circuit in 9-2 is compared for various amplifiers with  
different gain-bandwidth products and shown in 9-3:  
1k  
37pF  
1k  
1k  
VS+  
VIN  
OPAx863A  
+
VOUT  
+
168pF  
VS-  
9-2. MFB Low-Pass Filter Circuit Using OPAx863A  
9-1. Impact of amplifier GBW on Cut-Off Frequency  
Device  
GBW (MHz)  
Cut-off frequency (MHz)  
TLV9051  
LMV641  
5
1.59  
1.78  
1.87  
1.95  
1.98  
10  
20  
50  
110  
OPA2834  
OPAx863A  
OPA836  
9-1 provides the following benefits of using OPAx863A in an MFB low-pass filter circuit:  
High precision measurements with low offset voltage across operating temperature range for low-frequency  
signals in passband  
High linearity due to the larger GBW and loop gain for low-frequency signals in passband  
Higher accuracy of cut-off frequency and its smaller variation over process and temperature  
Small integrated output noise due to low-pass filtering  
As 9-3 shows, the amplifier's gain-bandwidth, like the OPAx863A, should be at least 20x greater than the filter  
cut-off frequency for a high-precision and linearity low-pass filter design.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA2863A  
 
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
9.2.2.3 Application Curves  
6
3
0
-3  
-6  
TLV9051  
LMV641  
OPA2834  
OPAx863A  
OPA836  
-9  
-12  
1M  
Frequency (Hz)  
9-3. MFB Low-Pass Filter Frequency Response vs GBW  
10 Power Supply Recommendations  
The OPAx863A devices are intended to operate on supplies ranging from 2.7 V to 12.6 V. The OPAx863A  
devices may operate on single-sided supplies, split and balanced bipolar supplies, or unbalanced bipolar  
supplies. Operating from a single supply can have numerous advantages. The DC errors, due to the PSRR  
term, can be minimized with the negative supply at ground. Typically, AC performance improves slightly at 10-V  
operation with minimal increase in supply current. Minimize the distance (< 0.1 in) from the power supply pins to  
high-frequency, 0.01-µF decoupling capacitors. A larger capacitor (2.2 µF typical) is used along with a high-  
frequency, 0.01-µF supply-decoupling capacitor at the device supply pins. Only the positive supply has these  
capacitors for single-supply operation. Use these capacitors from each supply to ground when a split-supply is  
used. If necessary, place the larger capacitors further from the device and share these capacitors among several  
devices in the same area of the printed circuit board (PCB). An optional supply decoupling capacitor across the  
two power supplies (for split-supply operation) reduces second harmonic distortion.  
11 Layout  
11.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier (like the OPAx863A devices) require careful  
attention to board layout parasitics and external component types. The High Speed Amplifiers Generic DSN  
Evaluation Module user's guide can be used as a reference when designing the circuit board. Recommendations  
that optimize performance includes the following:  
1. Minimize parasitic capacitance to any AC ground for all of the signal I/O pins. Parasitic capacitance on the  
output and inverting input pins can cause instability on the noninverting input and can react with the source  
impedance to cause unintentional band-limiting. Open a window around the signal I/O pins in all of the  
ground and power planes around those pins to reduce unwanted capacitance. Otherwise, ground and power  
planes must be unbroken elsewhere on the board.  
2. Minimize the distance (< 0.1 in) from the power-supply pins to high-frequency 0.01-µF decoupling  
capacitors. Avoid narrow power and ground traces to minimize inductance between the pins and the  
decoupling capacitors. The power-supply connections must always be decoupled with these capacitors.  
Larger (2.2-µF to 6.8-µF) decoupling capacitors, effective at lower frequency, must also be used on the  
supply pins. These can be placed somewhat farther from the device and shared among several devices in  
the same area of the PC board.  
3. Careful selection and placement of external components preserve the high frequency performance  
of the OPAx863A devices. Resistors must be a low reactance type. Surface-mount resistors work best and  
allow a tighter overall layout. Other network components, such as noninverting input termination resistors,  
must also be placed close to the package. Keep resistor values as low as possible and consistent with load  
driving considerations. Lowering the resistor values keep the resistor noise terms low and minimize the  
effect of its parasitic capacitance; lower resistor values, however, increase the dynamic power consumption  
because RF and RG become part of the amplifiers output load network.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA2863A  
 
 
 
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
11.2 Layout Example  
VS+  
Representa ve schema c of a  
single channel  
CBYP  
RS  
+
CBYP  
VS-  
RF  
RG  
Ground and power plane exist on inner  
layers.  
Ground and power plane removed  
from inner layers. Ground ll on outer  
layers also removed  
CBYP  
RS  
Place series output resistors close  
to output pin to minimize  
parasi c capacitance  
10  
9
1
2
RF  
RS  
Place bypass capacitors  
close to power pins  
RG  
RF  
Power  
Pad  
Place gain and feedback resistors close  
to pins to minimize stray capacitance  
8
3
RG  
Place bypass capacitors  
close to power pins  
7
6
4
5
Remove GND and Power plane under  
output and inver ng pins to minimize  
stray PCB capacitance  
CBYP  
11-1. Layout Recommendation for Dual-Channel DSN Package  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA2863A  
 
OPA2863A  
www.ti.com.cn  
ZHCSOS5B MAY 2022 REVISED DECEMBER 2022  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, High Speed Amplifiers Generic DSN Evaluation Module user's guide  
Texas Instruments, Single-Supply Op Amp Design Techniques application report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA2863A  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2863AIDSNR  
ACTIVE  
SON  
DSN  
10  
5000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
2863A  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2863AIDSNR  
SON  
DSN  
10  
5000  
330.0  
12.4  
3.15  
3.15  
0.75  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SON DSN 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
364.0 357.0 31.0  
OPA2863AIDSNR  
5000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA2863AIDSNR

双路、高精度、低功耗、105MHz、12V RRIO 电压反馈放大器 | DSN | 10 | -40 to 125
TI

OPA2863DR

双路低功耗 110MHz 12V 轨至轨输入和输出 (RRIO) 电压反馈放大器 | D | 8 | -40 to 125
TI

OPA2863IDGKR

双路低功耗 110MHz 12V 轨至轨输入和输出 (RRIO) 电压反馈放大器 | DGK | 8 | -40 to 125
TI

OPA2863RUNR

双路低功耗 110MHz 12V 轨至轨输入和输出 (RRIO) 电压反馈放大器 | RUN | 10 | -40 to 125
TI

OPA2889

Dual, Low-Power, Wideband, Voltage Feedback OPERATIONAL AMPLIFIER with Disable
BB

OPA2889

Low-Power, Wideband, Voltage-Feedback OPERATIONAL AMPLIFIER with Disable
TI

OPA2889ID

Dual, Low-Power, Wideband, Voltage Feedback OPERATIONAL AMPLIFIER with Disable
BB

OPA2889ID

具有禁用功能的双通道 115MHz 低功耗宽带电压反馈运算放大器 | D | 8
TI

OPA2889IDGSR

Dual, Low-Power, Wideband, Voltage Feedback OPERATIONAL AMPLIFIER with Disable
BB

OPA2889IDGSR

具有禁用功能的双通道 115MHz 低功耗宽带电压反馈运算放大器 | DGS | 10 | -40 to 85
TI

OPA2889IDGST

Dual, Low-Power, Wideband, Voltage Feedback OPERATIONAL AMPLIFIER with Disable
BB

OPA2889IDGST

具有禁用功能的双通道 115MHz 低功耗宽带电压反馈运算放大器 | DGS | 10
TI