OPA355QDBVRQ1 [TI]

汽车 2.5V;200MHz GBW;具有关断状态的 CMOS 单路运算放大器 | DBV | 6 | -40 to 125;
OPA355QDBVRQ1
型号: OPA355QDBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车 2.5V;200MHz GBW;具有关断状态的 CMOS 单路运算放大器 | DBV | 6 | -40 to 125

放大器 光电二极管 运算放大器
文件: 总28页 (文件大小:1248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA355-Q1  
SLOS868C DECEMBER 2013REVISED MAY 2018  
OPA355-Q1 200-MHz CMOS Operational Amplifier With Shutdown  
1 Features  
3 Description  
The OPA355-Q1 device is a high-speed, voltage-  
1
Qualified for Automotive Applications  
feedback CMOS operational amplifier designed for  
applications requiring wide bandwidth. The OPA355-  
Q1 device is unity-gain stable and can drive large  
output currents. In addition, the OPA355-Q1 device  
has a digital shutdown (enable) function. This feature  
provides power saving during idle periods and places  
the output in a high-impedance state to support  
output multiplexing. The differential gain is 0.02% and  
the differential phase is 0.05°. The quiescent current  
is 8.3 mA per channel.  
AEC-Q100 Qualified With the Following Results  
Device Temperature Grade 1: –40°C to  
+125°C Ambient Operating Temperature  
Device HBM ESD Classification Level 2  
Device CDM ESD Classification Level C4B  
Unity-Gain Bandwidth: 450 MHz  
Wide Bandwidth: 200 MHz GBW  
High Slew Rate: 360 V/μs  
The OPA355-Q1 device is optimized for operation on  
single supply or dual supplies as low as 2.5 V (±1.25  
V) and up to 5.5 V (±2.75 V). The common-mode  
input range for the OPA355-Q1 device extends 100  
mV below ground and up to 1.5 V from V+. The  
output swing is within 100 mV of the rails, supporting  
wide dynamic range.  
Low Noise: 5.8 nV/Hz  
Excellent Video Performance:  
Differential Gain: 0.02%  
Differential Phase: 0.05° (0.1 dB)  
Gain Flatness: 75 MHz  
Input Range Includes Ground  
Rail-to-Rail Output (Within 100 mV)  
Low Input Bias Current: 3 pA  
The OPA355-Q1 device is available in a single SOT-  
23-6 package and is specified over the extended  
–40°C to +125°C temperature range.  
Low Shutdown Current: 3.4 μA  
Enable and Disable Time: 100 ns and 30 ns  
Thermal Shutdown  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
OPA355-Q1  
SOT-23 (6)  
2.90 mm × 1.60 mm  
Single-Supply Operating Range: 2.5 V to 5.5 V  
MicroSIZE Packages  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
2 Applications  
Automotive  
Active Filters  
High-Speed Integrators  
Analog-to-Digital Converter (ADC) Input Buffers  
Digital-to-Analog Converter (DAC) Output  
Amplifiers  
V+  
œVIN  
OPA355-Q1  
Out  
+VIN  
Vœ Enable  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
OPA355-Q1  
SLOS868C DECEMBER 2013REVISED MAY 2018  
www.ti.com  
Table of Contents  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 12  
8.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
9.1 Application Information............................................ 14  
9.2 Typical Applications ................................................ 14  
1
2
3
4
5
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 3  
5.1 Device Comparison Table......................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
9
10 Power Supply Recommendations ..................... 19  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 19  
12 Device and Documentation Support ................. 20  
12.1 Trademarks........................................................... 20  
12.2 Electrostatic Discharge Caution............................ 20  
12.3 Glossary................................................................ 20  
6
7
13 Mechanical, Packaging, and Orderable  
8
Information ........................................................... 20  
4 Revision History  
Changes from Revision B (June 2014) to Revision C  
Page  
Deleted "C55" marking on pinout drawing in Pin Configuration and Functions section ........................................................ 3  
Added Pin Functions table to Pin Configuration and Functions section ............................................................................... 3  
Deleted storage temperature range from ESD Ratings table and moved to Absolute Maximum Ratings table ................... 4  
Changed title of Handling Ratings table to ESD Ratings table ............................................................................................. 4  
Added Recommended Operating Conditions table ............................................................................................................... 4  
Added Functional Block Diagram ........................................................................................................................................ 12  
Deleted "Independent enable pins are available for each channel, which provide maximum design flexibility" from  
Enable Function section ....................................................................................................................................................... 12  
Deleted Input and ESD Protection subsection in Feature Description section .................................................................... 13  
Added Device Functional Modes section ............................................................................................................................. 13  
Added Typical Applications section to Application and Implementation section ................................................................. 14  
Added Design Requirements subsection to Typical Applications section ........................................................................... 14  
Added Detailed Design Procedure subsection to Typical Application section .................................................................... 14  
Added application curves to the Typical Application section ............................................................................................... 16  
Added High-Impedance Sensor Interface, Driving ADCs, and Active Filter subsections to Typical Application section..... 16  
Added Power Supply Recommendations section ............................................................................................................... 19  
Added layout example image to Layout section................................................................................................................... 19  
Changes from Revision A (December 2013) to Revision B  
Page  
Changed device status from Product Preview to Production Data ....................................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 2013–2018, Texas Instruments Incorporated  
Product Folder Links: OPA355-Q1  
 
OPA355-Q1  
www.ti.com  
SLOS868C DECEMBER 2013REVISED MAY 2018  
5 Device Comparison Table  
5.1 Device Comparison Table  
OPA355-Q1 RELATED  
PRODUCTS  
FEATURES  
OPA356  
OPAx350  
OPAx631  
OPAx634  
THS412x  
200-MHz, Rail-to-Rail Output, CMOS, No Shutdown  
38-MHz, Rail-to-Rail Input and Output, CMOS  
75-MHz, Rail-to-Rail Output  
150-MHz, Rail-to-Rail Output  
Differential Input and Output, 3.3-V Supply  
6 Pin Configuration and Functions  
DBV Package  
6-Pin SOT-23  
Top View  
1
2
3
6
5
4
V+  
OUT  
Vœ  
ENABLE  
+IN  
œIN  
Pin 1 of the SOT-23-6 is determined by orienting the package marking as indicated in the diagram.  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
ENABLE  
IN+  
NO.  
5
I
Amplifier power down. Low = disabled, high = normal operation (pin must be driven) .  
3
Noninverting input pin  
Inverting input pin  
Output pin  
IN–  
4
I
OUT  
V+  
1
O
6
Positive power supply  
Negative power supply  
V–  
2
Copyright © 2013–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: OPA355-Q1  
OPA355-Q1  
SLOS868C DECEMBER 2013REVISED MAY 2018  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
7.5  
UNIT  
V
Supply voltage  
V+ to V–  
Voltage  
Current  
(V–) – 0.5  
(V+) + 0.5  
10  
V
Signal input terminals  
mA  
Output short circuit(2)  
Operating temperature  
Junction temperature  
Continuous  
–55  
–65  
150  
160  
300  
150  
°C  
°C  
°C  
°C  
Lead temperature (soldering, 10 seconds)  
Storage temperature range, Tstg  
(1) Stresses above Absolute Maximum Ratings may cause permanent damage. Exposure to absolute maximum conditions for extended  
periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other  
conditions beyond those specified is not implied.  
(2) Short-circuit to ground, one amplifier per package.  
7.2 ESD Ratings  
MIN  
MAX  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
2000  
Corner pins (1, 3, 4, and  
6)  
V(ESD)  
Electrostatic discharge  
750  
500  
V
Charged device model (CDM), per  
AEC Q100-011  
Other pins  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
5.5  
UNIT  
VS Total supply voltage  
TA Ambient temperature  
V
–40  
25  
125  
°C  
7.4 Thermal Information  
OPA355-Q1  
THERMAL METRIC(1)  
DBV (SOT-23)  
6 PINS  
187.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
126.5  
32.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
24.1  
ψJB  
32.1  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Submit Documentation Feedback  
Copyright © 2013–2018, Texas Instruments Incorporated  
Product Folder Links: OPA355-Q1  
OPA355-Q1  
www.ti.com  
SLOS868C DECEMBER 2013REVISED MAY 2018  
7.5 Electrical Characteristics  
VS = 2.7 V to 5.5 V (single-supply). At TA = 25°C, RF = 604 Ω, RL = 150 Ω, and connected to VS / 2, (unless otherwise noted)  
PARAMETER  
OFFSET VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TA = 25°C  
±2  
±9  
mV  
±15  
VOS  
Input offset voltage  
VS = 5 V  
TA = –40°C to +125°C  
TA = 25°C  
DVOS/d Input offset voltage vs  
µV/°C  
T
temperature  
TA = –40°C to +125°C  
±7  
TA = 25°C  
±80  
±350  
µV/V  
Input offset voltage vs power VS = 2.7 to 5.5 V,  
PSRR  
supply  
VCM = VS / 2 – 0.15 V  
TA = –40°C to +125°C  
INPUT BIAS CURRENT  
TA = 25°C  
3
±50  
pA  
IB  
Input bias current  
Input offset current  
TA = –40°C to +125°C  
TA = 25°C  
±50  
±1  
IOS  
pA  
TA = –40°C to +125°C  
NOISE  
en  
TA = 25°C  
5.8  
50  
nV/H  
z
Input noise voltage density  
Current noise density  
ƒ = 1 MHz  
ƒ = 1 MHz  
TA = –40°C to +125°C  
TA = 25°C  
in  
fA/Hz  
TA = –40°C to +125°C  
INPUT VOLTAGE RANGE  
Common-mode voltage  
TA = 25°C  
(V–) – 0.1  
(V+) – 1.5  
VCM  
V
range  
TA = –40°C to +125°C  
TA = 25°C  
66  
66  
80  
VS = 5.5 V  
–0.1 V < VCM < 4 V  
CMRR Common-mode rejection ratio  
INPUT IMPEDANCE  
dB  
TA = –40°C to +125°C  
TA = 25°C  
1013 || 1.5  
1013 || 1.5  
Differential  
Ω || pF  
Ω || pF  
TA = –40°C to +125°C  
TA = 25°C  
Common-mode  
OPEN-LOOP GAIN  
TA = –40°C to +125°C  
TA = 25°C  
84  
80  
92  
VS = 5 V  
0.3 V < VO < 4.7 V  
Open-loop gain  
dB  
TA = –40°C to +125°C  
FREQUENCY RESPONSE  
G = 1, VO = 100 mVp-p, RF = 0 Ω, TA = 25°C  
G = 2, VO = 100 mVp-p, RL = 50 Ω, TA = 25°C  
G = 2, VO = 100 mVp-p, RL = 150 Ω, TA = 25°C  
G = 2, VO = 100 mVp-p, RL = 1 kΩ, TA = 25°C  
G = 10, RL = 1 kΩ, TA = 25°C  
450  
100  
170  
200  
200  
MHz  
MHz  
MHz  
MHz  
MHz  
ƒ–3dB  
Small-signal bandwidth  
Gain-bandwidth product  
GBW  
ƒ0.1 dB  
SR  
Bandwidth for 0.1-db gain  
flatness  
G = 2, VO = 100 mVp-p, RF = 560 Ω, TA = 25°C  
75  
300 / –360  
2.4  
MHz  
V/µs  
ns  
Slew rate  
VS = 5 V, G = 2, 4-V output step, TA = 25°C  
G = 2, VO = 200 mVp-p, 10% to 90%  
TA = 25°C  
Rise and fall time  
G = 2, VO = 2 Vp-p, 10% to 90%  
TA = 25°C  
8
ns  
ns  
VS = 5 V, G = 2, 2-V output step, 0.1%  
TA = 25°C  
30  
Settling time  
VS = 5 V, G = 2, 2-V output step, 0.01%  
TA = 25°C  
120  
8
ns  
ns  
Overload recovery time  
VI × G = VS, TA = 25°C  
Copyright © 2013–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: OPA355-Q1  
OPA355-Q1  
SLOS868C DECEMBER 2013REVISED MAY 2018  
www.ti.com  
Electrical Characteristics (continued)  
VS = 2.7 V to 5.5 V (single-supply). At TA = 25°C, RF = 604 Ω, RL = 150 Ω, and connected to VS / 2, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
G = 2, ƒ = 1 MHz, VO = 2 Vp-p, RL = 200 Ω  
TA = 25°C (second harmonic)  
–81  
dBc  
Harmonic distortion  
G = 2, ƒ = 1 MHz, VO = 2 Vp-p, RL = 200 Ω  
–93  
dBc  
°
TA = 25°C (third harmonic)  
Differential gain error  
Differential phase error  
NTSC, RL = 150 Ω, TA = 25°C  
NTSC, RL = 150 Ω, TA = 25°C  
0.02%  
0.05  
OUTPUT  
VS = 5 V, RL = 150 Ω, AOL > 84 dB  
VS = 5 V, RL = 1 kΩ  
0.2  
0.1  
0.3  
V
V
Voltage output swing from  
rail  
Output current (continuous)  
±60  
mA  
mA  
Ω
(1)  
IO  
VS = 5 V, TA = 25°C  
VS = 3 V, TA = 25°C  
±100  
±80  
(1)  
Output current (peak)  
Closed-loop output  
impedance  
ƒ < 100 kHz  
0.02  
POWER SUPPLY  
VS Specified voltage range  
TA = 25°C  
TA = 25°C  
2.7  
5.5  
V
V
Operating voltage range  
2.5 to 5.5  
8.3  
TA = 25°C  
11  
14  
Quiescent current (per  
amplifier)  
VS = 5 V, enabled;  
IO = 0  
IQ  
mA  
TA = –40°C to +125°C  
SHUTDOWN  
Logic-LOW threshold(2)  
TA = 25°C  
TA = 25°C  
0.8  
V
V
(disabled)  
Logic-HIGH threshold(2)  
(enabled)  
2
Enable time  
Disable time  
TA = 25°C  
TA = 25°C  
100  
30  
ns  
ns  
Shutdown current (per  
amplifier)  
VS = 5 V, disabled, TA = 25°C  
3.4  
µA  
THERMAL SHUTDOWN  
Shutdown, TA = 25°C  
Reset from shutdown, TA = 25°C  
TA = 25°C  
160  
140  
°C  
°C  
°C  
°C  
°C  
Junction temperature  
Specified range  
Operating range  
Storage range  
–40  
–55  
–65  
125  
150  
150  
TA = 25°C  
TA = 25°C  
(1) See the Output Voltage Swing vs Output Current (Figure 21 and Figure 23) in the Typical Characteristics section.  
(2) Logic LOW and HIGH levels are CMOS logic compatible. They are referenced to V–.  
6
Submit Documentation Feedback  
Copyright © 2013–2018, Texas Instruments Incorporated  
Product Folder Links: OPA355-Q1  
OPA355-Q1  
www.ti.com  
SLOS868C DECEMBER 2013REVISED MAY 2018  
7.6 Typical Characteristics  
TA = 25°C, VS = 5 V, G = 2, RF = 604 Ω, and RL = 150 Ω connected to VS / 2, (unless otherwise noted)  
6
3
3
0
G = 1  
RF = 0  
G = –1  
G = –2  
0
–3  
–6  
–9  
–12  
G = –5  
–3  
–6  
–9  
G = 2  
G = 5  
G = –10  
G = 10  
–12  
–15  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
Frequency (Hz)  
VO = 0.1 VP-P  
VO = 0.1 VP-P  
Figure 1. Noninverting Small-Signal Frequency Response  
Figure 2. Inverting Small-Signal Frequency Response  
Time (20 ns/div)  
Time (20 ns/div)  
G = 2  
G = 2  
Figure 3. Noninverting Small-Signal Step Response  
Figure 4. Noninverting Large-Signal Step Response  
0.5  
Enabled  
4.5  
0.4  
fIN = 5 MHz  
RF = 604  
0.3  
0.2  
0.1  
0
3.5  
2.5  
1.5  
–0.1  
RF = 560  
–0.2  
–0.3  
RF = 500  
VO  
–0.4  
Disabled  
0.5  
–0.5  
1
10  
100  
Time (200 ns/div)  
Frequency (MHz)  
CL = 0 pF  
VO = 0.1 VP-P  
Figure 5. Large-Signal Disable and Enable Response  
Figure 6. 0.1-dB Gain Flatness for Various RF Values?  
Copyright © 2013–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: OPA355-Q1  
 
OPA355-Q1  
SLOS868C DECEMBER 2013REVISED MAY 2018  
www.ti.com  
Typical Characteristics (continued)  
TA = 25°C, VS = 5 V, G = 2, RF = 604 Ω, and RL = 150 Ω connected to VS / 2, (unless otherwise noted)  
–50  
–50  
–60  
–60  
–70  
–70  
2nd-Harmonic  
2nd Harmonic  
–80  
–80  
3rd-Harmonic  
3rd Harmonic  
–90  
–90  
–100  
–100  
0
1
2
3
4
1
10  
Output Voltage (Vp-p)  
Gain (V/V)  
RL = 200  
ƒ = 1 MHz  
RL = 200  
VO = 2 VP-P  
ƒ = 1 MHz  
Figure 7. Harmonic Distortion vs Output Voltage  
Figure 8. Harmonic Distortion vs Noninverting Gain  
–50  
–60  
–50  
–60  
–70  
2nd-Harmonic  
–70  
2nd-Harmonic  
3rd-Harmonic  
–80  
–80  
3rd-Harmonic  
–90  
–90  
–100  
–100  
1
10  
100k  
1M  
10M  
Gain (V/V)  
Frequency (Hz)  
RL = 200  
VO = 2 VP-P  
ƒ = 1 MHz  
RL = 200  
VO = 2 VP-P  
Figure 9. Harmonic Distortion vs Inverting Gain  
Figure 10. Harmonic Distortion vs Frequency  
50  
60  
10k  
1k  
Current Noise  
Voltage Noise  
70  
100  
10  
1
80  
2nd-Harmonic  
90  
3rd-Harmonic  
100  
100  
1k  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
RL (Ω)  
Frequency (Hz)  
ƒ = 1 MHz  
VO = 2 VP-P  
Figure 12. Input Voltage and Current Noise Spectral Density  
vs Frequency  
Figure 11. Harmonic Distortion vs Load Resistance  
8
Submit Documentation Feedback  
Copyright © 2013–2018, Texas Instruments Incorporated  
Product Folder Links: OPA355-Q1  
OPA355-Q1  
www.ti.com  
SLOS868C DECEMBER 2013REVISED MAY 2018  
Typical Characteristics (continued)  
TA = 25°C, VS = 5 V, G = 2, RF = 604 Ω, and RL = 150 Ω connected to VS / 2, (unless otherwise noted)  
3
0
9
CL = 100 pF  
CL = 47 pF  
RL = 10k  
6
3
–3  
0
RL = 50  
–6  
–3  
–6  
–9  
–12  
–15  
CL = 5.6 pF  
RL = 150  
–9  
RL = 1k  
–12  
–15  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
VO = 0.1 VP-P  
Frequency (Hz)  
VO = 0.1 VP-P  
CL = 0 pF  
RS = 0  
Figure 13. Frequency Response for Various RL Values  
Figure 14. Frequency Response for Various CL Values?  
120  
3
100  
80  
60  
40  
20  
0
0
CL = 5.6 pF  
RS = 80  
CL = 100 pF  
RS = 24  
D3  
D6  
VI  
RS  
OPA355-Q1  
604  
VO  
VI  
RS  
CL = 47 pF  
RS = 36  
VO  
OPA355-Q1  
604  
CL  
1k  
D9  
CL  
1k  
(1k is  
Optional)  
(1k is  
Optional)  
D12  
D15  
604  
604  
1
10  
100  
1M  
10M  
100M  
1G  
Capacitive Load (pF)  
Frequency (Hz)  
Figure 15. Recommended RS Values vs Capacitive Load  
Figure 16. Frequency Response vs Capacitive Load  
100  
180  
90  
160  
140  
120  
100  
80  
DPSRR  
80  
70  
+PSRR  
Phase  
Gain  
60  
CMRR  
50  
40  
30  
20  
10  
0
60  
40  
20  
RL = 1 kW  
0
RL = 150 kW  
–20  
10k  
100k  
1M  
10M  
100M  
1G  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
Figure 17. Common-Mode Rejection Ratio and Power-  
Supply Rejection Ratio vs Frequency  
Figure 18. Open-Loop Gain and Phase  
Copyright © 2013–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: OPA355-Q1  
OPA355-Q1  
SLOS868C DECEMBER 2013REVISED MAY 2018  
www.ti.com  
Typical Characteristics (continued)  
TA = 25°C, VS = 5 V, G = 2, RF = 604 Ω, and RL = 150 Ω connected to VS / 2, (unless otherwise noted)  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
10n  
1n  
100  
10  
1
dP  
dG  
–55 –35 –15  
5
25  
45  
65  
85 105 125 135  
1
2
3
4
Temperature (°C)  
Number of 150 Loads  
Figure 19. Composite Video Differential Gain and Phase  
Figure 20. Input Bias Current vs Temperature  
14  
12  
10  
8
3
25°C  
VS = 5.5 V  
–55°C  
2
125°C  
6
125°C  
VS = 2.5 V  
VS = 3 V  
1
4
VS = 5 V  
–55°C  
25°C  
2
0
0
0
30  
60  
90  
120  
150  
–55 –35 –15  
5
25  
45  
65  
85 105 125 135  
Output Current (mA)  
Temperature (°C)  
Continuous currents above 60 mA are not recommended  
VS = 3 V  
Figure 21. Output Voltage Swing vs Output Current  
Figure 22. Supply Current vs Temperature  
5
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VS = 5.5 V  
25°C  
–55°C  
4
VS = 5 V  
125°C  
3
2
125°C  
VS = 3 V  
VS = 2.5 V  
1
–55°C  
25°C  
0
0
50  
100  
150  
200  
250  
–55 –35 –15  
5
25  
45  
65  
85 105 125 135  
Output Current (mA)  
Temperature (°C)  
Continuous currents above 60 mA are not recommended  
VS = 5 V  
Figure 23. Output Voltage Swing vs Output Current  
Figure 24. Shutdown Current vs Temperature  
10  
Submit Documentation Feedback  
Copyright © 2013–2018, Texas Instruments Incorporated  
Product Folder Links: OPA355-Q1  
 
OPA355-Q1  
www.ti.com  
SLOS868C DECEMBER 2013REVISED MAY 2018  
Typical Characteristics (continued)  
TA = 25°C, VS = 5 V, G = 2, RF = 604 Ω, and RL = 150 Ω connected to VS / 2, (unless otherwise noted)  
6
5
4
3
2
1
0
100  
VS = 5.5 V  
10  
1
OPA355-Q1  
604  
VS = 2.7 V  
0.1  
ZO  
0.01  
0.001  
604  
10k  
100k  
1M  
10M  
100M  
1G  
1
10  
100  
Frequency (Hz)  
Frequency (MHz)  
Maximum output voltage without slew-rate induced distortion  
Figure 25. Closed-Loop Output Impedance vs Frequency  
Figure 26. Maximum Output Voltage vs Frequency  
0.2  
110  
RL = 1k  
0.1  
0
100  
90  
RL = 150  
–0.1  
–0.2  
–0.3  
–0.4  
80  
70  
60  
0
5
10  
15 20 25  
Time (ns)  
30  
35  
40  
45 50  
–55 –35 –15  
5
25  
45  
65  
85 105 125 135  
Temperature (°C)  
VO = 2 VP-P  
Figure 27. Output Settling Time to 0.1%  
Figure 28. Open-Loop Gain vs Temperature  
20  
18  
16  
14  
12  
10  
8
100  
90  
80  
70  
60  
50  
Power-Supply Rejection Ratio  
Common-Mode Rejection Ratio  
6
4
2
0
–9 –8 –7 –6 –5 –4 –3 –2 –1 0  
1
2
3
4
5
6
7
8
9
–55 –35 –15  
5
25  
45  
65  
85 105 125 135  
Offset Voltage (mV)  
Temperature (°C)  
Figure 29. Offset Voltage Production Distribution  
Figure 30. Common-Mode Rejection Ratio and Power-  
Supply Rejection Ratio vs Temperature  
Copyright © 2013–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: OPA355-Q1  
OPA355-Q1  
SLOS868C DECEMBER 2013REVISED MAY 2018  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The OPA355-Q1 operational amplifier is a high-speed, 300-V/μs, amplifier, making the device a great option for  
transimpedance applications. The device is unity-gain stable and can operate on a single-supply voltage (2.7 V  
to 5.5 V), or a split-supply voltage (±1.35 V to ±2.75 V), making the device highly versatile and simple to use.  
The OPA355-Q1 amplifier is specified from 2.7 V to 5.5 V and over the automotive temperature range of –40°C  
to +125°C.  
8.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
œ
VIN  
VBIAS1  
Class AB  
Control  
VO  
Circuitry  
VBIAS2  
œ
V
(Ground)  
8.3 Feature Description  
8.3.1 Operating Voltage  
The OPA355-Q1 device is specified over a power-supply range of 2.7 V to 5.5 V (±1.35 to ±2.75 V). However,  
the supply voltage ranges from 2.5 to 5.5 V (±1.25 to ±2.75 V). Supply voltages higher than 7.5 V (absolute  
maximum) can permanently damage the amplifier.  
Parameters that vary significantly over supply voltage or temperature are shown in the Typical Characteristics  
section of this data sheet.  
8.3.2 Enable Function  
The OPA355-Q1 device is enabled by applying a TTL high-voltage level to the enable pin. Conversely, a TTL low  
-voltage level disables the amplifier, which reduces the supply current from 8.3 mA to 3.4 μA per amplifier. This  
pin voltage is referenced to a single-supply ground. When using a split-supply, such as ±2.5 V, the enable and  
disable voltage levels are referenced to V–. For portable battery-operated applications, this feature is used to  
greatly reduce the average current and as a result, extend battery life.  
The enable input is modeled as a CMOS input gate with a 100-kΩ pullup resistor to V+. The enable pin assumes  
a logic high and the amplifier turns on if the enable pin is left open.  
The enable time is 100 ns and the disable time is 30 ns, which allows the OPA355-Q1 device to operate as a  
gated amplifier, or to have the output multiplexed onto a common output bus. When disabled, the output  
assumes a high-impedance state.  
12  
Submit Documentation Feedback  
Copyright © 2013–2018, Texas Instruments Incorporated  
Product Folder Links: OPA355-Q1  
OPA355-Q1  
www.ti.com  
SLOS868C DECEMBER 2013REVISED MAY 2018  
Feature Description (continued)  
8.3.3 Output Drive  
The output stage supplies a high short-circuit current (typically over 200 mA). Therefore, an on-chip thermal  
shutdown circuit is provided to protect the OPA355-Q1 device from dangerously-high junction temperatures. At  
160°C, the protection circuit shuts down the amplifier. Normal operation resumes when the junction temperature  
cools to below 140°C.  
NOTE  
Running a continuous DC current in excess of ±60 mA is not recommended. See the  
Output Voltage Swing vs Output Current graphs (Figure 21 and Figure 22) in the Typical  
Characteristics section.  
8.4 Device Functional Modes  
The OPA355-Q1 device is powered on when the supply is connected. The device can operate as a single supply  
operational amplifier or dual supply amplifier depending on the application. The device can also be used with  
asymmetrical supplies as long as the differential voltage (V– to V+) is at least 1.8 V and no greater than 5.5 V  
(example: V– set to –3.5 V and V+ set to 1.5 V).  
Copyright © 2013–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: OPA355-Q1  
OPA355-Q1  
SLOS868C DECEMBER 2013REVISED MAY 2018  
www.ti.com  
9 Application and Implementation  
9.1 Application Information  
The OPA355-Q1 device is a CMOS, high-speed, voltage-feedback, operational amplifier (op-amp) designed for  
general-purpose applications.  
The amplifier features a 200-MHz gain bandwidth and 300-V/μs slew rate, but the device is unity-gain stable and  
operates as a 1-V/V voltage follower.  
The input common-mode voltage range of the device includes ground, which allows the OPA355-Q1 to be used  
in virtually any single-supply application up to a supply voltage of 5.5 V.  
9.2 Typical Applications  
9.2.1 Transimpedance Amplifier  
Wide gain bandwidth, low input bias current, low input voltage, and current noise make the OPA355-Q1 device a  
preferred wideband photodiode transimpedance amplifier. Low-voltage noise is important because photodiode  
capacitance causes the effective noise gain of the circuit to increase at high frequency.  
The key elements to a transimpedance design, as shown in Figure 31, are the expected diode capacitance  
(C(D)), which must include the parasitic input common-mode and differential-mode input capacitance (4 pF + 5  
pF), the desired transimpedance gain (R(FB)), and the gain-bandwidth (GBW) for the OPA355-Q1 device (20  
MHz). With these three variables set, the feedback capacitor value (C(FB)) is set to control the frequency  
response. C(FB) includes the stray capacitance of R(FB), which is 0.2 pF for a typical surface-mount resistor.  
(1)  
C(F)  
< 1 pF  
R(F)  
10 M  
V
(V+)  
l
VO  
C(D)  
OPA355-Q1  
V(Vœ)  
(1) C(FB) is optional to prevent gain peaking. C(FB) includes the stray capacitance of R(FB)  
.
Figure 31. Dual-Supply Transimpedance Amplifier  
9.2.1.1 Design Requirements  
PARAMETER  
VALUE  
2.5 V  
Supply voltage V(V+)  
Supply voltage V(V–)  
–2.5 V  
9.2.1.2 Detailed Design Procedure  
To achieve a maximally-flat, second-order Butterworth frequency response, the feedback pole must be set to:  
1
GBW  
=
2 ´ p ´ R(FB) ´ C(FB)  
4 ´ p ´ R(FB) ´ C(D)  
(1)  
Use Equation 2 to calculate the bandwidth.  
GBW  
ƒ(–3 dB)  
=
2 ´ p ´ R(FB) ´ C(D)  
(2)  
14  
Submit Documentation Feedback  
Copyright © 2013–2018, Texas Instruments Incorporated  
Product Folder Links: OPA355-Q1  
 
 
OPA355-Q1  
www.ti.com  
SLOS868C DECEMBER 2013REVISED MAY 2018  
For other transimpedance bandwidths, consider the high-speed CMOS OPA380 (90-MHz GBW), OPA354 (100-  
MHz GBW), OPA300 (180-MHz GBW), OPA355 (200-MHz GBW), or OPA656 and OPA657 (400-MHz GBW).  
For single-supply applications, the +INx input can be biased with a positive DC voltage to allow the output to  
reach true zero when the photodiode is not exposed to any light, and respond without the added delay that  
results from coming out of the negative rail; this configuration is shown in Figure 32. This bias voltage appears  
across the photodiode, providing a reverse bias for faster operation.  
0.5 pF  
100 k  
œ
OPA355-Q1  
VOUT  
+
13.7 kꢀ  
SFH213  
5 V  
1 F  
280 ꢀ  
Figure 32. Single-Supply Transimpedance Amplifier  
For additional information, see the Compensate Transimpedance Amplifiers Intuitively application bulletin.  
9.2.1.2.1 Optimizing The Transimpedance Circuit  
To achieve the best performance, select components according to the following guidelines:  
1. For lowest noise, select R(FB) to create the total required gain. Using a lower value for R(FB) and adding gain  
after the transimpedance amplifier generally produces poorer noise performance. The noise produced by  
R(FB) increases with the square-root of R(FB), whereas the signal increases linearly. Therefore, signal-to-noise  
ratio improves when all the required gain is placed in the transimpedance stage.  
2. Minimize photodiode capacitance and stray capacitance at the summing junction (inverting input). This  
capacitance causes the voltage noise of the op amp to amplify (increasing amplification at high frequency).  
Using a low-noise voltage source to reverse-bias a photodiode can significantly reduce the capacitance.  
Smaller photodiodes have lower capacitance. Use optics to concentrate light on a small photodiode.  
3. Noise increases with increased bandwidth. Limit the circuit bandwidth to only that required. Use a capacitor  
across the R(FB) to limit bandwidth, even if not required for stability.  
4. Circuit board leakage can degrade the performance of an otherwise well-designed amplifier. Clean the circuit  
board carefully. A circuit board guard trace that encircles the summing junction and is driven at the same  
voltage can help control leakage.  
For additional information, see the Noise Analysis of FET Transimpedance Amplifiers and Noise Analysis for  
High-Speed Op Amps application bulletins).  
Copyright © 2013–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: OPA355-Q1  
 
OPA355-Q1  
SLOS868C DECEMBER 2013REVISED MAY 2018  
www.ti.com  
9.2.1.3 Application Curve  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1000  
10000  
100000  
1000000  
1E+7  
5E+7  
Frequency (Hz)  
D001  
–3 dB bandwidth is 4.56 MHz  
Figure 33. AC Transfer Function  
9.2.2 High-Impedance Sensor Interface  
Many sensors have high source impedances that may range up to 10 MΩ, or even higher. The output signal of  
sensors often must be amplified or otherwise conditioned by means of an amplifier. The input bias current of this  
amplifier can load the sensor output and cause a voltage drop across the source resistance, as shown in  
Figure 34, where (V(+INx) = VS – I(BIAS) × R(S)). The last term, I(BIAS) × R(S), shows the voltage drop across R(S). To  
prevent errors introduced to the system as a result of this voltage, an op amp with very low input bias current  
must be used with high impedance sensors. This low current keeps the error contribution by I(BIAS) × R(S) less  
than the input voltage noise of the amplifier, so that it does not become the dominant noise factor. The OPA355-  
Q1 op amp features very low input bias current (typically 200 fA), and is therefore a preferred choice for such  
applications.  
R(S)  
IIB  
100 kΩ  
V(+INx)  
V(V+)  
VO  
R(F)  
Device  
V(V)  
R(G)  
Figure 34. Noise as a Result of I(BIAS)  
16  
Submit Documentation Feedback  
Copyright © 2013–2018, Texas Instruments Incorporated  
Product Folder Links: OPA355-Q1  
 
OPA355-Q1  
www.ti.com  
SLOS868C DECEMBER 2013REVISED MAY 2018  
9.2.3 Driving ADCs  
The OPA355-Q1 op amps are designed for driving sampling analog-to-digital converters (ADCs) with sampling  
speeds up to 1 MSPS. The zero-crossover distortion input stage topology allows the OPA355-Q1 device to drive  
ADCs without degradation of differential linearity and THD.  
The OPA355-Q1 device can be used to buffer the ADC switched input capacitance and resulting charge injection  
while providing signal gain. Figure 35 shows the OPA355-Q1 device configured to drive the ADS8326.  
5 V  
C1  
100 nF  
5 V  
(1)  
R1  
100  
V(V+)  
+INx  
OPA355-Q1  
ADS8326  
16-Bit  
(1)  
C3  
1 nF  
V(Vœ)  
250kSPS  
œINx  
VI  
0 to 4.096 V  
REF IN  
(2)  
5 V  
Optional  
R2  
50 kꢀ  
SD1  
BAS40  
REF3240  
4.096 V  
œ5 V  
C2  
100 nF  
C4  
100 nF  
(1) Suggested value; may require adjustment based on specific application.  
(2) Single-supply applications lose a small number of ADC codes near ground as a result of op amp output swing limitation. If a negative  
power supply is available, this simple circuit creates a –0.3-V supply to allow output swing to true ground potential.  
Figure 35. Driving the ADS8326  
9.2.4 Active Filter  
The OPA355-Q1 device is designed for active filter applications that require a wide bandwidth, fast slew rate,  
low-noise, single-supply operational amplifier. Figure 36 shows a 500 kHz, second-order, low-pass filter using the  
multiple-feedback (MFB) topology. The components are selected to provide a maximally-flat Butterworth  
response. Beyond the cutoff frequency, roll-off is –40 dB/dec. The Butterworth response is preferred for  
applications requiring predictable gain characteristics, such as the anti-aliasing filter used in front of an ADC.  
One point to observe when considering the MFB filter is that the output is inverted, relative to the input. If this  
inversion is not required, or not desired, a noninverting output can be achieved through one of the following  
options:  
1. Adding an inverting amplifier  
2. Adding an additional second-order MFB stage  
3. Using a noninverting filter topology, such as the Sallen-Key (see Figure 37).  
MFB and Sallen-Key, low-pass and high-pass filter synthesis is quickly accomplished using TI’s FilterPro™  
program. This software is available as a free download at www.ti.com.  
Copyright © 2013–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: OPA355-Q1  
 
OPA355-Q1  
SLOS868C DECEMBER 2013REVISED MAY 2018  
www.ti.com  
R3  
549 Ω  
C2  
150 pF  
V(V+)  
R1  
549 Ω  
R2  
1.24 kΩ  
VI  
VO  
Device  
C1  
1 nF  
V(V)  
Figure 36. Second-Order Butterworth 500-kHz Low-Pass Filter  
220 pF  
V(V+)  
19.5 kΩ  
150 kΩ  
1.8 kΩ  
VI = 1 VRMS  
VO  
Device  
3.3 nF  
47 pF  
V(V)  
Figure 37. OPA355-Q1 Configured as a Three-Pole, 20-kHz, Sallen-Key Filter  
18  
Submit Documentation Feedback  
Copyright © 2013–2018, Texas Instruments Incorporated  
Product Folder Links: OPA355-Q1  
OPA355-Q1  
www.ti.com  
SLOS868C DECEMBER 2013REVISED MAY 2018  
10 Power Supply Recommendations  
The OPA355-Q1 device is specified for operation from 2.7 to 5.5 V (±1.35 to ±2.75 V); many specifications apply  
from –40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are shown in theTypical Characteristics section.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
Guidelines section.  
Power dissipation depends on power-supply voltage, signal and load conditions. With DC signals, power  
dissipation is equal to the product of output current times the voltage across the conducting output transistor,  
VS – VO. Minimize power dissipation by using the lowest possible power-supply voltage required to ensure the  
required output voltage swing.  
For resistive loads, the maximum power dissipation occurs at a DC output voltage of one-half the power-supply  
voltage. Dissipation with AC signals is lower. Application bulletin AB-039, Power Amplifier Stress and Power  
Handling Limitations explains how to calculate or measure power dissipation with unusual signals and loads, and  
is available on www.ti.com.  
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate  
heat sink. For reliable operation, limit junction temperature to 150°C maximum. To estimate the margin of safety  
in a complete design, increase the ambient temperature to trigger the thermal protection at 160°C. The thermal  
protection must trigger more than 35°C above the maximum expected ambient condition of the application.  
11 Layout  
11.1 Layout Guidelines  
Good high-frequency printed-circuit board (PCB) layout techniques must be used for the OPA355-Q1. Generous  
use of ground planes, short direct-signal traces, and a preferred bypass capacitor located at the V+ pin ensures  
clean and stable operation. Large areas of copper help dissipate heat generated within the amplifier in normal  
operation.  
Sockets are not recommended for use with any high-speed amplifier.  
A 10-nF ceramic bypass capacitor is the minimum recommended value; adding a 1-μF or larger tantalum  
capacitor in parallel is beneficial when driving a low-resistance load. Providing adequate bypass capacitance is  
essential to achieving very low harmonic and intermodulation distortion.  
11.2 Layout Example  
Ground and power plane exist on  
inner layers  
Ground and power plane removed  
Place output resistors close  
to output pins to minimize  
parasitic capacitance  
from inner layers  
1
2
3
6
5
4
Place bypass capacitors  
close to power pins  
Place bypass capacitors  
close to power pins  
Power control (disable) pin  
Must be driven  
Place input resistor close to pin 4  
to minimize stray capacitance  
Noninverting input  
terminated in 50 Ω  
Place feedback resistor on the bottom  
of PCB between pins 4 and 6  
Remove GND and Power plane  
under pins 1 and 4 to minimize  
stray PCB capacitance  
Figure 38. Layout Example  
Copyright © 2013–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: OPA355-Q1  
 
OPA355-Q1  
SLOS868C DECEMBER 2013REVISED MAY 2018  
www.ti.com  
12 Device and Documentation Support  
12.1 Trademarks  
FilterPro is a trademark of Texas Instruments Incorporated.  
All other trademarks are the property of their respective owners.  
12.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
20  
Submit Documentation Feedback  
Copyright © 2013–2018, Texas Instruments Incorporated  
Product Folder Links: OPA355-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA355QDBVRQ1  
ACTIVE  
SOT-23  
DBV  
6
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
SLN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF OPA355-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Catalog: OPA355  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA355QDBVRQ1  
SOT-23  
DBV  
6
3000  
178.0  
9.0  
3.23  
3.17  
1.37  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
Length (mm) Width (mm) Height (mm)  
445.0 220.0 345.0  
OPA355QDBVRQ1  
6
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

OPA355UA

200MHz, CMOS OPERATIONAL AMPLIFIER WITH SHUTDOWN
TI

OPA355UA/2K5

200MHz, CMOS OPERATIONAL AMPLIFIER WITH SHUTDOWN
TI

OPA355UA2K5

200MHz, CMOS OPERATIONAL AMPLIFIER WITH SHUTDOWN
TI

OPA355UA2K5G4

200MHz, CMOS OPERATIONAL AMPLIFIER WITH SHUTDOWN
TI

OPA355UAG4

200MHz, CMOS OPERATIONAL AMPLIFIER WITH SHUTDOWN
TI

OPA356

200MHz, CMOS OPERATIONAL AMPLIFIER
BB

OPA356

200MHz, CMOS OPERATIONAL AMPLIFIER
TI

OPA356-Q1

200-MHz CMOS OPERATIONAL AMPLIFIER
TI

OPA356A

200MHz, CMOS OPERATIONAL AMPLIFIER
BB

OPA356AD

Operational Amplifier, 1 Func, 2300uV Offset-Max,
BB

OPA356AID

200MHz, CMOS OPERATIONAL AMPLIFIER
BB

OPA356AID

200MHz, CMOS OPERATIONAL AMPLIFIER
TI