OPA388ID [TI]

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | D | 8 | -40 to 125;
OPA388ID
型号: OPA388ID
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | D | 8 | -40 to 125

放大器 运算放大器
文件: 总46页 (文件大小:3275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA388,OPA2388,OPA4388
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
OPAx388 精密、零漂移、零交叉、真正的轨至轨输入/输出运算放大器  
1 特性  
3 说明  
超低失调电压±0.25µV  
零漂移±0.005µV/°C  
OPAx388OPA388OPA2388 OPA4388系列精  
密运算放大器是超低噪声、快速稳定、零漂移、零交叉  
器件可实现轨至轨输入和输出运行。这些特性及出色  
的交流性能与仅为 0.25µV 的失调电压以及  
0.005µV/°C 的温漂相结合使得 OPAx388 成为驱动  
高精密模数转换器 (ADC) 或缓冲高分辨率数模转换器  
(DAC) 输出的理想选择。该设计在驱动模数转换器  
(ADC) 时具有出色的性能而不会降低线性度。  
OPA388单通道版本提供 VSSOP-8SOT23-5 和  
SOIC-8 三种封装。OPA2388双通道版本提供  
VSSOP-8 SO-8 两种封装。OPA4388四通道版  
提供 TSSOP-14 SO-14 两种封装。所有版本的  
额定工作温度范围均为 -40°C +125°C。  
零交叉140dB CMRR 真正 RRIO  
低噪声7.0nVHz 1kHz )  
1/f 噪声140nVPP0.1Hz 10Hz)  
快速稳定2µs1V0.01%)  
增益带宽10MHz  
单电源2.5V 5.5V  
双电源±1.25V ±2.75V  
真正的轨至轨输入和输出  
EMI/RFI 滤波输入  
行业标准封装:  
– 单通道电源版本采用 SOIC-8SOT-23-5 和  
VSSOP-8 封装  
器件信息  
封装(1)  
封装尺寸标称值)  
4.90mm × 3.90mm  
2.90mm × 1.60mm  
3.00mm × 3.00mm  
4.90mm × 3.90mm  
3.00mm × 3.00mm  
8.65mm x 3.90mm  
5.00mm x 4.40mm  
器件型号  
– 双通道电源版本采用 SOIC-8 VSSOP-8 封装  
– 四通道电源版本采用 SOIC-14 TSSOP-14 封  
SOIC (8)  
OPA388  
SOT-23 (5)  
VSSOP (8)  
SOIC (8)  
2 应用  
OPA2388  
OPA4388  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
商用网络和服务器 PSU  
笔记本电脑电源适配器设计  
称重计  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
实验室和现场仪表  
电池测试  
电子温度计  
温度变送器  
R3  
2.53  
2.52  
2.51  
2.5  
3
25 k  
2
R4  
100 kꢀ  
5 V  
REF5025  
1
RG  
R4  
R2  
0
100 kꢀ  
25 kꢀ  
5 V  
5 V  
5 V  
2.49  
2.48  
2.47  
-1  
-2  
-3  
+SENSE  
œ
œ
OPA388  
VOUT  
OPA388  
+
+
RG = 1 kΩ  
œ100 œ80 œ60 œ40 œ20  
R2  
GND  
GND  
10 kꢀ  
0
20 40 60 80 100  
œSENSE  
200 kΩ  
Load Cell  
ûR/R (ppm)  
C001  
G = 5 +  
GND  
RG  
GND  
OPA388 支持高精度、低误差测量  
CMRR 仪表放大器应用中的 OPA388  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS777  
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................20  
8 Application and Implementation..................................21  
8.1 Application Information............................................. 21  
8.2 Typical Applications.................................................. 21  
9 Power Supply Recommendations................................25  
10 Layout...........................................................................26  
10.1 Layout Guidelines................................................... 26  
10.2 Layout Example...................................................... 26  
11 Device and Documentation Support..........................27  
11.1 Device Support........................................................27  
11.2 Documentation Support.......................................... 27  
11.3 Related Links.......................................................... 27  
11.4 Receiving Notification of Documentation Updates..28  
11.5 Support Resources................................................. 28  
11.6 Trademarks............................................................. 28  
11.7 Electrostatic Discharge Caution..............................28  
11.8 Glossary..................................................................28  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information: OPA388.................................... 6  
6.5 Thermal Information: OPA2388.................................. 7  
6.6 Thermal Information: OPA4388.................................. 7  
6.7 Electrical Characteristics: VS = ±1.25 V to ±2.75  
V (VS = 2.5 to 5.5 V)..................................................... 7  
6.8 Typical Characteristics..............................................10  
7 Detailed Description......................................................18  
7.1 Overview...................................................................18  
7.2 Functional Block Diagram.........................................18  
7.3 Feature Description...................................................19  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (May 2019) to Revision D (July 2020)  
Page  
OPA2388 SOIC-8 (D) 封装从“预告信息预发布”更改为“生产数据正在供货............................1  
更改了典型应用原理图以显示引用标识符的正确位置..................................................................................... 1  
Changed Figure 8-5 to show correct locations for reference designators ....................................................... 25  
Changes from Revision B (January 2019) to Revision C (May 2019)  
Page  
OPA4388 从“预告信息预发布”更改为“生产数据正在供货......................................................1  
Added VOS specifications for OPA4388.............................................................................................................7  
Added dVOS/dT specifications for OPA4388......................................................................................................7  
Added PSRR specifications for OPA4388.......................................................................................................... 7  
Added IB specifications for OPA4388.................................................................................................................7  
Added IOS specifications for OPA4388..............................................................................................................7  
Added CMRR specifications for OPA4388..........................................................................................................7  
Added AOL specifications for OPA4388.............................................................................................................7  
Changes from Revision A (July 2018) to Revision B (January 2019)  
Page  
OPA388 DBV (SOT-23) 封装从“预发布”更改为“生产数据”....................................................................1  
Deleted redundant temperature specification in EC table.................................................................................. 7  
Added Figure 6, Offset Voltage vs Supply Voltage: OPA4388 .........................................................................10  
Added Figure 7, Offset Voltage Long Term Drift ..............................................................................................10  
Changed Figure 50, OPA388 Layout Example; updated for accuracy............................................................. 26  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
Changes from Revision * (December 2016) to Revision A (July 2018)  
Page  
将器件状态从“生产数据”更改为“生产数据/混合状态”.................................................................................1  
添加了 TI 参考设计的顶部导航链接.................................................................................................................... 1  
器件信息 表中5 引脚 SOT-23 (OPA388)8 引脚 SOIC (OPA2388)14 引脚 SOIC 14 引脚 TSSOP  
(OPA4388) 封装添加了预发布说明..................................................................................................................... 1  
Added package preview notes to Pin Configuration and Functions section.......................................................4  
AOL test condition changed to 0.15 V from 0.1 V...............................................................................................7  
AOL test condition changed to 0.15 V from 0.1 V...............................................................................................7  
AOL test condition changed to 0.25 V from 0.2 V...............................................................................................7  
AOL test condition changed to 0.3 V from 0.25 V...............................................................................................7  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA388 OPA2388 OPA4388  
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
NC  
œIN  
+IN  
Vœ  
1
2
3
4
8
7
6
5
NC  
V+  
OUT  
Vœ  
1
2
3
5
V+  
œ
OUT  
NC  
+
+IN  
4
œIN  
Not to scale  
Not to scale  
5-1. OPA388 DBV Package, 5-Pin SOT-23, Top  
5-2. OPA388 D and DGK Packages, 8-Pin SOIC  
View  
and VSSOP, Top View  
Pin Functions: OPA388  
PIN  
OPA388  
I/O  
DESCRIPTION  
NAME  
D (SOIC),  
DGK (VSSOP)  
DBV (SOT-23)  
2
4
3
I
I
Inverting input  
IN  
+IN  
NC  
3
Noninverting input  
1, 5, 8  
No internal connection (can be left floating)  
Output  
OUT  
V–  
V+  
6
4
7
1
O
2
5
Negative (lowest) power supply  
Positive (highest) power supply  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
OUT A  
1
2
3
4
8
7
6
5
V+  
OUT A  
œIN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
œIN D  
+IN D  
Vœ  
œIN A  
+IN A  
Vœ  
OUT B  
œIN B  
+IN B  
+IN B  
œIN B  
OUT B  
+IN C  
œIN C  
OUT C  
Not to scale  
5-3. OPA2388 8-Pin SOIC (D) Package and 8-Pin  
8
VSSOP (DGK) Package, Top View  
Not to scale  
5-4. OPA4388 14-Pin SOIC (D) and TSSOP-14  
(PW) Packages, Top View  
Pin Functions: OPA2388 and OPA4388  
PIN  
OPA2388  
OPA4388  
I/O  
DESCRIPTION  
NAME  
D (SOIC),  
D (SOIC),  
DGK (VSSOP)  
PW (TSSOP)  
2
6
2
6
I
I
Inverting input, channel A  
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Output, channel A  
IN A  
IN B  
IN C  
IN D  
+IN A  
+IN B  
+IN C  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
9
I
13  
3
I
3
I
5
5
I
10  
12  
1
I
1
I
O
O
O
O
7
7
Output, channel B  
8
Output, channel C  
4
14  
11  
4
Output, channel D  
Negative (lowest) power supply  
Positive (highest) power supply  
V+  
8
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA388 OPA2388 OPA4388  
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Single-supply  
6
±3  
Supply voltage  
V
VS = (V+) (V)  
Dual-supply  
Common-mode  
Differential  
(V+) + 0.5  
(V) 0.5  
Voltage  
Current  
V
Signal input pins  
Output short circuit(2)  
Temperature  
(V+) (V) + 0.2  
±10  
Continuous  
150  
mA  
Continuous  
Operating, TA  
Junction, TJ  
Storage, Tstg  
55  
150  
°C  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
NOM  
MAX  
5.5  
UNIT  
Single-supply  
Dual-supply  
V
Supply voltage, VS = (V+) (V)  
±1.25  
40  
±2.75  
125  
Specified temperature  
°C  
6.4 Thermal Information: OPA388  
OPA388  
DBV (SOT-23)  
5 PINS  
145.7  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
116  
DGK (VSSOP)  
UNIT  
5 PINS  
177  
69  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
60  
94.8  
RθJB  
ΨJT  
Junction-to-board thermal resistance  
56  
43.4  
100  
9.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
12.8  
55.9  
N/A  
24.7  
43.1  
98.3  
n/a  
ΨJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
 
 
 
 
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
6.5 Thermal Information: OPA2388  
OPA2388  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
120.0  
52.3  
DGK (VSSOP)  
UNIT  
8 PINS  
165  
53  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
65.6  
87  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
9.6  
4.9  
ΨJT  
64.4  
85  
ΨJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4388  
OPA4388  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
86.4  
PW (TSSOP)  
14 PINS  
109.6  
27.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
46.3  
41.0  
56.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
11.3  
1.5  
ΨJT  
40.7  
54.9  
ΨJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.7 Electrical Characteristics: VS = ±1.25 V to ±2.75 V (VS = 2.5 to 5.5 V)  
at TA = 25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
OPA388, OPA2388  
±0.25  
±2.25  
±5  
±8  
VS = 5.5 V  
OPA4388  
VOS  
Input offset voltage  
µV  
OPA388, OPA2388  
OPA4388  
±7.5  
±10.5  
±0.05  
±0.05  
±1  
TA = 40°C to +125°C  
TA = 40°C to +125°C, VS = 5.5 V  
TA = 40°C to +125°C  
TA = 40°C to +125°C, VS = 5.5 V  
OPA388, OPA2388  
OPA4388  
±0.005  
±0.005  
±0.1  
dVOS/dT Input offset voltage drift  
µV/°C  
µV/V  
OPA388, OPA2388  
OPA4388  
Power-supply rejection  
PSRR  
ratio  
TA = 40°C to +125°C  
±1.25  
±3.5  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
at TA = 25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT BIAS CURRENT  
±30  
±350  
±400  
TA = 0°C to +85°C  
RIN = 100 k, OPA388, OPA2388  
RIN = 100 k, OPA4388  
TA = 40°C to  
+125°C  
±700  
IB  
Input bias current  
±30  
±500  
±600  
TA = 0°C to +85°C  
TA = 40°C to  
±800  
+125°C  
pA  
±700  
±800  
TA = 0°C to +85°C  
RIN = 100 k, OPA388, OPA2388  
RIN = 100 k, OPA4388  
TA = 40°C to  
+125°C  
±800  
IOS  
Input offset current  
Input voltage noise  
±1000  
±1100  
TA = 0°C to +85°C  
TA = 40°C to  
±1100  
+125°C  
NOISE  
EN  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
0.14  
µVPP  
7
7
7
7
f = 100 Hz  
Input voltage noise  
density  
eN  
nV/Hz  
f = 1 kHz  
f = 10 kHz  
Input current noise  
density  
IN  
f = 1 kHz  
100  
fA/Hz  
INPUT VOLTAGE  
Common-mode voltage  
range  
(V) –  
VCM  
(V+) + 0.1  
V
0.1  
VS = ±1.25 V  
OPA388, OPA2388  
124  
138  
(V) 0.1 V < VCM < (V+) + 0.1  
V
VS = ±1.25 V  
OPA4388  
102  
124  
114  
110  
140  
134  
VS = ±2.75 V  
Common-mode  
rejection ratio  
CMRR  
dB  
VS = ±1.25 V  
OPA388, OPA2388  
(V) < VCM < (V+) + 0.1 V,  
TA = 40°C to +125°C  
VS = ±1.25 V  
OPA4388  
102  
124  
107  
140  
(V) 0.05 V < VCM < (V+) + 0.1  
V, TA = 40°C to +125°C  
VS = ±2.75 V  
INPUT IMPEDANCE  
Differential input  
impedance  
zid  
zic  
100 || 2  
60 || 4.5  
MΩ || pF  
TΩ || pF  
Common-mode input  
impedance  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
at TA = 25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPEN-LOOP GAIN  
126  
120  
148  
126  
(V) + 0.15 V < VO < (V+) 0.15 V, RLOAD = 10 kΩ  
(V) + 0.15 V < VO < (V+) 0.15  
OPA388, OPA2388  
V, RLOAD = 10 kΩ,  
TA = 40°C to +125°C  
(V) + 0.15 V < VO < (V+) 0.15  
V, RLOAD = 10 kΩ, VS = 5.5 V  
TA = 40°C to +125°C  
OPA4388  
120  
126  
AOL  
Open-loop voltage gain  
dB  
126  
120  
148  
148  
(V) + 0.25 V < VO < (V+) 0.25 V, RLOAD = 2 kΩ  
(V) + 0.30 V < VO < (V+) 0.30  
OPA388, OPA2388  
V, RLOAD = 2 kΩ  
(V) + 0.30 V < VO < (V+) 0.30  
OPA4388  
120  
126  
V, RLOAD = 2 kΩ, VS = 5.5 V  
TA = 40°C to +125°C  
FREQUENCY RESPONSE  
GBW  
SR  
Unity-gain bandwidth  
Slew rate  
10  
5
MHz  
V/µs  
G = 1, 4-V step  
Total harmonic  
distortion + noise  
THD+N  
G = 1, f = 1 kHz, VO = 1 VRMS  
0.0005%  
0.75  
VS = ±2.5 V, G = 1,  
1-V step  
To 0.1%  
µs  
tS  
Settling time  
VS = ±2.5 V, G = 1,  
1-V step  
To 0.01%  
2
µs  
µs  
tOR  
Overload recovery time VIN × G = VS  
10  
OUTPUT  
No load  
1
5
15  
20  
50  
15  
20  
60  
25  
Positive rail  
RLOAD = 10 kΩ  
RLOAD = 2 kΩ  
No load  
20  
5
Voltage output swing  
from rail  
VO  
mV  
10  
40  
10  
±60  
±30  
Negative rail  
RLOAD = 10 kΩ  
RLOAD = 2 kΩ  
TA = 40°C to +125°C, both rails, RLOAD = 10 kΩ  
VS = 5.5 V  
VS = 2.5 V  
See 6-26  
mA  
mA  
ISC  
CLOAD  
ZO  
Short-circuit current  
Capacitive load drive  
Open-loop output  
impedance  
100  
f = 1 MHz, IO = 0 A, see 6-25  
Ω
POWER SUPPLY  
IO = 0 A  
1.7  
1.7  
1.9  
1.9  
2.4  
2.4  
2.6  
2.6  
VS = ±1.25 V (VS = 2.5 V)  
VS = ±2.75 V (VS = 5.5 V)  
TA = 40°C to  
+125°C, IO = 0 A  
Quiescent current per  
amplifier  
IQ  
mA  
IO = 0 A  
TA = 40°C to  
+125°C, IO = 0 A  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA388 OPA2388 OPA4388  
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
6.8 Typical Characteristics  
Table 6-1. Table of Graphs  
DESCRIPTION  
FIGURE  
6-1  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution From 40°C to +125°C  
Offset Voltage vs Temperature  
6-2  
6-3  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Power Supply: OPA388 and OPA2388  
Offset Voltage vs Power Supply: OPA4388  
Offset Voltage Long Term Drift  
6-4  
6-5  
6-6  
6-7  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain and Phase vs Frequency  
Input Bias Current vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current (Maximum Supply)  
CMRR and PSRR vs Frequency  
6-8  
6-9  
6-10  
6-11  
6-12  
6-13  
CMRR vs Temperature  
6-14  
PSRR vs Temperature  
6-15  
0.1-Hz to 10-Hz Noise  
6-16  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
6-17  
6-18  
THD+N vs Output Amplitude  
6-19  
Spectral Content  
6-20, 6-21  
6-22  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Open-Loop Gain vs Temperature  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (10-mV Step)  
No Phase Reversal  
6-23  
6-24  
6-25  
6-26  
6-27  
Positive Overload Recovery  
6-28  
Negative Overload Recovery  
6-29  
Small-Signal Step Response (10-mV Step)  
Large-Signal Step Response (4-V Step)  
Settling Time  
6-30, 6-31  
6-32 , 6-33  
6-34, 6-35  
6-36  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
EMIRR vs Frequency  
6-37  
6-38  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
at TA = 25°C, VS = ±2.5 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise  
noted)  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
C002  
C001  
6-1. Offset Voltage Production Distribution  
6-2. Offset Voltage Drift Distribution From –  
40°C to +125°C  
5
4
5
4
3
3
2
2
1
1
0
0
œ1  
œ2  
œ3  
œ4  
œ5  
œ1  
œ2  
œ3  
œ4  
œ5  
VCM = œ2.85 V  
VCM = 2.85 V  
0
25  
50  
75  
100 125 150  
0
1
2
3
œ75 œ50 œ25  
œ3  
œ2  
œ1  
Temperature (°C)  
Input Common-mode Voltage (V)  
C001  
C003  
6-3. Offset Voltage vs Temperature  
6-4. Offset Voltage vs Common-Mode Voltage  
8
5
4
3
6
4
2
2
1
0
0
œ1  
œ2  
œ3  
œ4  
œ5  
-2  
-4  
-6  
VS  
=
1.25 V  
VS  
=
2.75 V  
VS = ê 1.25 V  
VS = ê 2.75 V  
-8  
1.2  
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
1.4  
1.6  
1.8 2.2  
Supply Voltage (V)  
2
2.4  
2.6  
2.8  
Supply Voltage (V)  
C001  
C308  
6-6. Offset Voltage vs Supply Voltage: OPA4388  
6-5. Offset Voltage vs Supply Voltage: OPA388  
and OPA2388  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
20  
15  
10  
5
160  
140  
1±0  
100  
80  
180  
Open-Loop Gain  
135  
Open-Loop Phase  
90  
45  
0
60  
0
40  
-5  
±0  
-10  
-15  
-20  
0
±±0  
±40  
-45  
1
10  
100  
1k 10k 100k 1M 10M  
Frequency (Hz)  
0
20  
40  
60  
80  
Days  
100  
120  
140  
160  
C0±1  
C309  
3 typical units  
6-8. Open-Loop Gain and Phase vs Frequency  
6-7. Offset Voltage Long Term Drift  
1500  
60  
G = +1  
G= +10  
G= +100  
1000  
500  
0
40  
20  
0
-20  
œ500  
100  
1k  
10k  
100k  
1M  
10M  
0
1
2
3
œ3  
œ2  
œ1  
Frequency (Hz)  
Input Common-mode Voltage (V)  
C004  
C001  
6-9. Closed-Loop Gain and Phase vs Frequency  
6-10. Input Bias Current vs Common-Mode  
Voltage  
1.5  
1.3  
1.0  
0.8  
0.5  
3
2.5  
2
1.5  
25°C  
1
0.5  
0
-0.5  
-1  
125°C  
œ40°C  
-1.5  
-2  
0.3  
ios  
-2.5  
-3  
0.0  
0
25  
50  
75  
100 125 150  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
œ75 œ50 œ25  
Temperature (°C)  
Output Current (mA)  
C001  
C001  
6-11. Input Bias Current vs Temperature  
6-12. Output Voltage Swing vs Output Current  
(Maximum Supply)  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
180  
160  
140  
120  
100  
0.001  
0.01  
0.1  
1
160  
140  
120  
100  
80  
60  
CMRR  
+PSRR  
œPSRR  
40  
20  
0
1
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
25  
50  
75 100 125 150  
œ75 œ50 œ25  
Frequency (Hz)  
Temperature (°C)  
C004  
C001  
6-13. CMRR and PSRR vs Frequency  
6-14. CMRR vs Temperature  
180  
0.001  
160  
140  
120  
100  
0.01  
0.1  
1
10  
Time (1 s/div)  
0
25  
50  
75 100 125 150  
œ75 œ50 œ25  
Temperature (°C)  
C001  
C017  
6-15. PSRR vs Temperature  
6-16. 0.1-Hz to 10-Hz Noise  
1000  
0.01  
-80  
G = -1, 10k-Load  
G = -1, 2k-Load  
G = -1, 600-Load  
G = +1, 10k-Load  
G = +1, 2k-Load  
G = +1, 600-Load  
100  
10  
1
0.001  
-100  
0.0001  
-120  
20k  
1
10  
100  
1k  
10k  
100k  
20  
200  
2k  
Frequency (Hz)  
Frequency (Hz)  
C002  
C004  
6-17. Input Voltage Noise Spectral Density vs  
6-18. THD+N Ratio vs Frequency  
Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
0
œ20  
0.1  
-60  
œ40  
œ60  
0.01  
-80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
G = -1, 600-Load  
0.001  
-100  
-120  
G = -1, 2k-Load  
G = -1, 10k-Load  
G = +1, 600-Load  
G = +1, 2k-Load  
G = +1, 10k-Load  
0.0001  
0.001  
0.01  
0.1  
1
100  
1k  
10k  
100k  
Output Amplitude (VRMS  
)
Frequency (Hz)  
C004  
C004  
G = +1, f = 1 kHz, VO = 4.5 VPP, RL = 10 kΩ, BW = 90 kHz  
6-19. THD+N vs Output Amplitude  
6-20. Spectral Content (With 10-kΩ Load)  
0
2.5  
œ20  
2
1.5  
1
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
0.5  
0
100  
1k  
10k  
100k  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Hz)  
Supply Voltage (V)  
C004  
C001  
G = +1, f = 1 kHz, VO = 4.5 VPP, RL = 2 kΩ, BW = 90 kHz  
6-22. Quiescent Current vs Supply Voltage  
6-21. Spectral Content (With 2-kΩ Load)  
2.5  
180  
160  
140  
120  
100  
0.001  
0.01  
0.1  
1
VS  
=
2.75 V  
2
1.5  
1
VS  
=
1.1 V  
0.5  
0
10  
0
25  
50  
75  
100 125 150  
0
25  
50  
75 100 125 150  
œ75 œ50 œ25  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
6-23. Quiescent Current vs Temperature  
6-24. Open-Loop Gain vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
1k  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
G = -1  
100  
10  
1
100m  
G = +1  
10m  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1000  
Frequency (Hz)  
Capacitive Load (pF)  
C003  
C004  
6-25. Open-Loop Output Impedance vs  
6-26. Small-Signal Overshoot vs Capacitive  
Frequency  
Load (10-mV Step)  
VIN  
VOUT  
VIN  
VOUT  
Time (45 ms/div)  
Time (200 ns/div)  
C017  
C017  
6-27. No Phase Reversal  
6-28. Positive Overload Recovery  
VOUT  
VIN  
VIN  
VOUT  
Time (200 ns/div)  
Time (2.5 µs/div)  
C017  
C017  
G = +1  
6-29. Negative Overload Recovery  
6-30. Small-Signal Step Response (10-mV Step)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
VOUT  
VIN  
VOUT  
VIN  
Time (2.5 µs/div)  
Time (500 ns/div)  
C017  
C017  
Falling output  
G = 1  
6-32. Large-Signal Step Response (4-V Step)  
6-31. Small-Signal Step Response (10-mV Step)  
VOUT  
VIN  
0.01% Settling = ±100µV  
Time (500 ns/div)  
Time (500 ns/div)  
C017  
C017  
Rising output  
0.01% settling = ±100 µV  
6-33. Large-Signal Step Response (4-V Step)  
6-34. Settling Time (1-V Positive Step)  
100  
0.01% Settling = ±200µV  
ISC, Sink  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ISC, Source  
Time (500 ns/div)  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Temperature (°C)  
C017  
C001  
0.01% settling = ±200 µV  
6-35. Settling Time (1-V Negative Step)  
6-36. Short-Circuit Current vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
7
6
160  
140  
120  
100  
80  
Maximum output voltage without  
slew-rate induced distortion.  
VS  
=
=
2.5V  
0.9V  
5
4
3
60  
VS  
2
40  
1
20  
0
0
100  
1k  
10k  
100k  
1M  
10M  
10M  
100M  
Frequency (Hz)  
1000M  
Frequency (Hz)  
C001  
C004  
PRF = 10 dBm  
6-37. Maximum Output Voltage vs Frequency  
6-38. EMIRR vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPAx388 family of zero-drift amplifiers is engineered with the unique combination of a proprietary precision  
auto-calibration technique paired with a low-noise, low-ripple, input charge pump. These amplifiers offer ultra-low  
input offset voltage and drift and achieve excellent input and output dynamic linearity. The OPAx388 operate  
from 2.5 V to 5.5 V, is unity-gain stable, and are designed for a wide range of general-purpose and precision  
applications. The integrated, low-noise charge pump allows true rail-to-rail input common-mode operation  
without distortion associated with complementary rail-to-rail input topologies (input crossover distortion). The  
OPAx388 strengths also include 10-MHz bandwidth, 7-nV/Hz noise spectral density, and no 1/f noise, making  
the OPAx388 optimal for interfacing with sensor modules and buffering high-fidelity, digital-to-analog converters  
(DACs).  
7.2 Functional Block Diagram  
Low-noise  
Charge-pump  
GM_FF  
CCOMP  
CLK  
CLK  
+IN  
OUT  
œIN  
GM1  
GM2  
GM3  
CCOMP  
Ripple Reduction  
Technology  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Operating Voltage  
The OPAx388 family of operational amplifiers can be used with single or dual supplies from an operating range  
of VS = 2.5 V (±1.25 V) up to 5.5 V (±2.75 V). Supply voltages greater than 7 V can permanently damage the  
device (see the Absolute Maximum Ratings table). Key parameters that vary over the supply voltage or  
temperature range are shown in the Typical Characteristics section.  
7.3.2 Input Voltage and Zero-Crossover Functionality  
The OPAx388 input common-mode voltage range extends 0.1 V beyond the supply rails. This amplifier family is  
designed to cover the full range without the troublesome transition region found in some other rail-to-rail  
amplifiers. Operating a complementary rail-to-rail input amplifier with signals traversing the transition region  
results in unwanted non-linear behavior and polluted spectral content. 7-1 and 7-2 contrast the  
performance of a traditional complementary rail-to-rail input stage amplifier with the performance of the zero-  
crossover OPA388. Significant harmonic content and distortion is generated during the differential pair transition  
(such a transition does not exist in the OPA388). Crossover distortion is eliminated through the use of a single  
differential pair coupled with an internal low-noise charge pump. The OPAx388 maintains noise, bandwidth, and  
offset performance throughout the input common-mode range, thus reducing printed circuit board (PCB) and bill  
of materials (BOM) complexity through the reduction of power-supply rails.  
20  
15  
0
œ20  
Complementary Input Stage  
OPA388 Zero-Crossover Input Stage  
10  
œ40  
5
œ60  
Traditional Rail-to-Rail  
Input Stage  
0
œ80  
œ5  
œ100  
œ120  
œ140  
œ10  
œ15  
œ20  
VCM = œ2.85 V  
VCM = 2.85 V  
OPA388 Zero-Crossover Input Stage  
0
1
2
3
10  
100  
1k  
10k  
œ3  
œ2  
œ1  
Input Common-mode Voltage (V)  
Frequency (Hz)  
C003  
C004  
7-1. Input Crossover Distortion Nonlinearity  
7-2. Input Crossover Distortion Spectral Content  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
Typically, input bias current is approximately ±30 pA. Input voltages exceeding the power supplies, however, can  
cause excessive current to flow into or out of the input pins. Momentary voltages greater than the power supply  
can be tolerated if the input current is limited to 10 mA. This limitation is easily accomplished with an input  
resistor, as shown in 7-3.  
Current-limiting resistor  
required if input voltage  
exceeds supply rails by  
> 0.3V.  
+5V  
IOVERLOAD  
10 mA max  
VOUT  
VIN  
5 kΩ  
Copyright © 2016, Texas Instruments Incorporated  
7-3. Input Current Protection  
7.3.3 Input Differential Voltage  
The typical input bias current of the OPAx388 during normal operation is approximately 30 pA. In overdriven  
conditions, the bias current can increase significantly. The most common cause of an overdriven condition  
occurs when the operational amplifier is outside of the linear range of operation. When the output of the  
operational amplifier is driven to one of the supply rails, the feedback loop requirements cannot be satisfied and  
a differential input voltage develops across the input pins. This differential input voltage results in activation of  
parasitic diodes inside the front-end input chopping switches that combine with 10-kΩ electromagnetic  
interference (EMI) filter resistors to create the equivalent circuit shown in 7-4. Notice that the input bias  
current remains within specification in the linear region.  
100 W  
Clamp  
+In  
-In  
CORE  
100 W  
Copyright © 2016, Texas Instruments Incorporated  
7-4. Equivalent Input Circuit  
7.3.4 Internal Offset Correction  
The OPA388 family of operational amplifiers uses an auto-calibration technique with a time-continuous, 200-kHz  
operational amplifier in the signal path. This amplifier is zero-corrected every 5 µs using a proprietary technique.  
At power-up, the amplifier requires approximately 1 ms to achieve the specified VOS accuracy. This design has  
no aliasing or flicker noise.  
7.3.5 EMI Susceptibility and Input Filtering  
Operational amplifiers vary in susceptibility to EMI. If conducted EMI enters the operational amplifier, the dc  
offset at the amplifier output can shift from its nominal value when EMI is present. This shift is a result of signal  
rectification associated with the internal semiconductor junctions. Although all operational amplifier pin functions  
can be affected by EMI, the input pins are likely to be the most susceptible. The OPAx388 operational amplifier  
family incorporates an internal input low-pass filter that reduces the amplifier response to EMI. Both common-  
mode and differential-mode filtering are provided by the input filter. The filter is designed for a cutoff frequency of  
approximately 20 MHz (3 dB), with a rolloff of 20 dB per decade.  
7.4 Device Functional Modes  
The OPA388 has a single functional mode and is operational when the power-supply voltage is greater than  
2.5 V (±1.25 V). The maximum specified power-supply voltage for the OPAx388 is 5.5 V (±2.75 V).  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The OPAx388 is a unity-gain stable, precision operational amplifier family free from unexpected output and  
phase reversal. The use of proprietary zero-drift circuitry gives the benefit of low input offset voltage over time  
and temperature, as well as lowering the 1/f noise component. As a result of the high PSRR, these devices work  
well in applications that run directly from battery power without regulation. The OPAx388 family is optimized for  
full rail-to-rail input, allowing for low-voltage, single-supply operation or split-supply use. These miniature, high-  
precision, low-noise amplifiers offer high-impedance inputs that have a common-mode range 100 mV beyond  
the supplies without input crossover distortion and a rail-to-rail output that swings within 5 mV of the supplies  
under normal test conditions. The OPAx388 series of precision amplifiers is designed for upstream analog signal  
chain applications in low or high gains, as well as downstream signal chain functions such as DAC buffering.  
8.2 Typical Applications  
8.2.1 Bidirectional Current-Sensing  
This single-supply, low-side, bidirectional current-sensing solution detects load currents from 1 A to +1 A. The  
single-ended output spans from 110 mV to 3.19 V. This design uses the OPAx388 because of its low offset  
voltage and rail-to-rail input and output. One of the amplifiers is configured as a difference amplifier and the other  
amplifier provides the reference voltage.  
8-1 shows the solution.  
VCC  
VREF  
VCC  
R5  
+
U1B  
ILOAD  
R6  
R2  
+
R1  
+
VBUS  
+
œ
VSHUNT  
RSHUNT  
VOUT  
U1A  
VCC  
R4  
R3  
œ
RL  
8-1. Bidirectional Current-Sensing Schematic  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
8.2.1.1 Design Requirements  
This solution has the following requirements:  
Supply voltage: 3.3 V  
Input: 1 A to 1 A  
Output: 1.65 V ±1.54 V (110 mV to 3.19 V)  
8.2.1.2 Detailed Design Procedure  
The load current, ILOAD, flows through the shunt resistor (RSHUNT) to develop the shunt voltage, VSHUNT. The  
shunt voltage is then amplified by the difference amplifier consisting of U1A and R1 through R4. The gain of the  
difference amplifier is set by the ratio of R4 to R3. To minimize errors, set R2 = R4 and R1 = R3. The reference  
voltage, VREF, is supplied by buffering a resistor divider using U1B. The transfer function is given by 方程式 1.  
VOUT = VSHUNT ´ GainDiff_Amp + VREF  
(1)  
where  
VSHUNT = ILOAD ´ RSHUNT  
R4  
GainDiff_Amp  
=
R3  
R6  
R5 + R6  
VREF = VCC  
´
There are two types of errors in this design: offset and gain. Gain errors are introduced by the tolerance of the  
shunt resistor and the ratios of R4 to R3 and, similarly, R2 to R1. Offset errors are introduced by the voltage  
divider (R5 and R6) and how closely the ratio of R4 / R3 matches R2 / R1. The latter value affects the CMRR of  
the difference amplifier, ultimately translating to an offset error.  
The value of VSHUNT is the ground potential for the system load because VSHUNT is a low-side measurement.  
Therefore, a maximum value must be placed on VSHUNT. In this design, the maximum value for VSHUNT is set to  
100 mV. Equation 2 calculates the maximum value of the shunt resistor given a maximum shunt voltage of  
100 mV and maximum load current of 1 A.  
VSHUNT(Max)  
100 mV  
= 100 mW  
RSHUNT(Max)  
=
=
ILOAD(Max)  
1 A  
(2)  
The tolerance of RSHUNT is directly proportional to cost. For this design, a shunt resistor with a tolerance of 0.5%  
was selected. If greater accuracy is required, select a 0.1% resistor or better.  
The load current is bidirectional; therefore, the shunt voltage range is 100 mV to 100 mV. This voltage is  
divided down by R1 and R2 before reaching the operational amplifier, U1A. Make sure that the voltage present at  
the noninverting node of U1A is within the common-mode range of the device. Therefore, use an operational  
amplifier, such as the OPA388, that has a common-mode range that extends below the negative supply voltage.  
Finally, to minimize offset error, note that the OPA388 has a typical offset voltage of merely ±0.25 µV (±5 µV  
maximum).  
Given a symmetric load current of 1 A to 1 A, the voltage divider resistors (R5 and R6) must be equal. To be  
consistent with the shunt resistor, a tolerance of 0.5% was selected. To minimize power consumption,  
10-kΩ resistors were used.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
To set the gain of the difference amplifier, the common-mode range and output swing of the OPA388 must be  
considered. Equation 3 and Equation 4 depict the typical common-mode range and maximum output swing,  
respectively, of the OPA388 given a 3.3-V supply.  
100 mV < VCM < 3.4 V  
(3)  
(4)  
100 mV < VOUT < 3.2 V  
The gain of the difference amplifier can now be calculated as shown in Equation 5.  
V
OUT_Max - VOUT_Min  
3.2 V - 100 mV  
100 mW ´ [1 A - (- 1A)]  
V
V
= 15.5  
=
GainDiff_Amp  
=
R
SHUNT ´ (IMAX - IMIN  
)
(5)  
The resistor value selected for R1 and R3 was 1 kΩ. 15.4 kΩ was selected for R2 and R4 because this number  
is the nearest standard value. Therefore, the ideal gain of the difference amplifier is 15.4 V/V.  
The gain error of the circuit primarily depends on R1 through R4. As a result of this dependence, 0.1% resistors  
were selected. This configuration reduces the likelihood that the design requires a two-point calibration. A simple  
one-point calibration, if desired, removes the offset errors introduced by the 0.5% resistors.  
8.2.1.3 Application Curve  
3.30  
1.65  
0
-1.0  
-0.5  
0
0.5  
1.0  
Input Current (A)  
8-2. Bidirectional Current-Sensing Circuit Performance: Output Voltage vs Input Current  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
8.2.2 Single Operational Amplifier Bridge Amplifier  
8-3 shows the basic configuration for a bridge amplifier.  
VEX  
R1  
R
R
R
R
+5V  
VOUT  
VREF  
Copyright © 2016, Texas Instruments Incorporated  
8-3. Single Operational Amplifier Bridge Amplifier Schematic  
8.2.3 Precision, Low-Noise, DAC Buffer  
The OPA388 can be used for a precision DAC buffer, as shown in 8-4, in conjunction with the DAC8830.  
The OPA388 provides an ultra-low drift, precision output buffer for the DAC. A wide range of DAC codes can be  
used in the linear region because the OPA388 employs zero-crossover technology. A precise reference is  
essential for maximum accuracy because the DAC8830 is a 16-bit converter.  
VDD VREF  
RFB  
œ
INV  
OPA388  
Serial Interface  
DAC8830  
+
VOUT  
DGND  
AGND  
Copyright © 2016, Texas Instruments Incorporated  
8-4. Precision DAC Buffer  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
8.2.4 Load Cell Measurement  
8-5 shows the OPA388 in a high-CMRR dual-op amp instrumentation amplifier with a trim resistor and 6-wire  
load cell for precision measurement. 8-6 illustrates the output voltage as a function of load cell resistance  
change, along with the nonlinearity of the system.  
R3  
25 k  
R4  
100 kꢀ  
5 V  
REF5025  
RG  
R4  
R2  
100 kꢀ  
25 kꢀ  
5 V  
5 V  
5 V  
+SENSE  
œ
œ
OPA388  
VOUT  
OPA388  
+
+
R2  
GND  
GND  
10 kꢀ  
œSENSE  
200 kΩ  
Load Cell  
G = 5 +  
GND  
RG  
GND  
8-5. Load Cell Measurement Schematic  
2.53  
3
2.52  
2.51  
2.5  
2
1
0
2.49  
2.48  
2.47  
-1  
-2  
-3  
RG = 1 kΩ  
œ100 œ80 œ60 œ40 œ20  
0
20 40 60 80 100  
ûR/R (ppm)  
C001  
8-6. Load Cell Measurement Output  
9 Power Supply Recommendations  
The OPAx388 family of devices is specified for operation from 2.5 V to 5.5 V (±1.25 V to ±2.75 V). Parameters  
that can exhibit significant variance with regard to operating voltage are presented in the Typical Characteristics  
section.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Paying attention to good layout practice is always recommended. Keep traces short and, when possible, use a  
printed-circuit board (PCB) ground plane with surface-mount components placed as close to the device pins as  
possible. Place a 0.1-µF capacitor closely across the supply pins. These guidelines must be applied throughout  
the analog circuit to improve performance and provide benefits such as reducing the electromagnetic  
interference (EMI) susceptibility.  
For lowest offset voltage and precision performance, circuit layout and mechanical conditions must be optimized.  
Avoid temperature gradients that create thermoelectric (Seebeck) effects in the thermocouple junctions formed  
from connecting dissimilar conductors. These thermally-generated potentials can be made to cancel by assuring  
they are equal on both input terminals. Other layout and design considerations include:  
Use low thermoelectric-coefficient conditions (avoid dissimilar metals).  
Thermally isolate components from power supplies or other heat sources.  
Shield operational amplifier and input circuitry from air currents, such as cooling fans.  
Following these guidelines reduces the likelihood of junctions being at different temperatures, which can cause  
thermoelectric voltage drift of 0.1 µV/°C or higher, depending on materials used.  
10.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
10-1. Schematic Representation  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
RF  
VS+  
N/C  
N/C  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
N/C  
VIN  
GND  
GND  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitors  
10-2. OPA388 Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 TINA-TI(Free Software Download)  
TINA-TI™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI  
™ is a free, fully-functional version of the TINAsoftware, preloaded with a library of macromodels in addition to  
a range of both passive and active models. TINA-TI™ provides all the conventional dc, transient, and frequency  
domain analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI™ offers extensive post-processing  
capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select  
input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.  
Note  
These files require that either the TINA software (from DesignSoft) or TINA-TI™ software be  
installed. Download the free TINA-TI™ software from the TINA-TI™ folder.  
11.1.1.2 TI Precision Designs  
The OPAx388 family is featured on TI Precision Designs, available online at www.ti.com/ww/en/analog/precision-  
designs/. TI Precision Designs are analog solutions created by TIs precision analog applications experts and  
offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of  
materials, and measured performance of many useful circuits.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Circuit board layout techniques  
Texas Instruments, DAC883x 16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters data  
sheet  
11.3 Related Links  
11-1 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to sample or buy.  
Table 11-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
OPA388  
OPA2388  
OPA4388  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
 
 
OPA388, OPA2388, OPA4388  
ZHCSFU1D DECEMBER 2016 REVISED JULY 2020  
www.ti.com.cn  
11.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.6 Trademarks  
TINA-TIare trademarks of TI.  
TINAand DesignSoftare trademarks of DesignSoft, Inc.  
TI E2Eis a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.8 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA388 OPA2388 OPA4388  
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2388ID  
OPA2388IDGKR  
OPA2388IDGKT  
OPA2388IDR  
OPA388ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
DGK  
DGK  
D
8
8
75  
RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OP2388  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
50 RoHS & Green  
2500 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
NIPDAUAG | SN  
NIPDAUAG | SN  
SN  
1D36  
8
1D36  
8
OP2388  
OPA388  
14KV  
SOIC  
D
8
NIPDAU  
OPA388IDBVR  
OPA388IDBVT  
OPA388IDGKR  
OPA388IDGKT  
OPA388IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
D
5
NIPDAU  
5
NIPDAU  
14KV  
8
NIPDAUAG  
NIPDAUAG  
NIPDAU  
14LV  
8
14LV  
8
OPA388  
OPA4388  
OPA4388  
OPA4388  
OPA4388  
OPA4388ID  
SOIC  
D
14  
14  
14  
14  
NIPDAU  
OPA4388IDR  
OPA4388IPW  
OPA4388IPWR  
SOIC  
D
NIPDAU  
TSSOP  
TSSOP  
PW  
PW  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jul-2023  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF OPA2388, OPA388 :  
Automotive : OPA2388-Q1, OPA388-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2388IDGKR  
OPA2388IDGKR  
OPA2388IDGKT  
OPA2388IDGKT  
OPA2388IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
2500  
2500  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.8  
8.4  
5.3  
5.3  
5.3  
5.3  
6.4  
3.23  
3.23  
5.3  
5.3  
6.4  
6.5  
6.9  
3.4  
3.4  
3.4  
3.4  
5.2  
3.17  
3.17  
3.4  
3.4  
5.2  
9.0  
5.6  
1.4  
1.4  
1.4  
1.4  
2.1  
1.37  
1.37  
1.4  
1.4  
2.1  
2.1  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
8
8
250  
8
2500  
3000  
250  
OPA388IDBVR  
OPA388IDBVT  
OPA388IDGKR  
OPA388IDGKT  
OPA388IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
D
5
5
8.4  
8.0  
8
2500  
250  
12.4  
12.4  
12.4  
16.4  
12.4  
12.0  
12.0  
12.0  
16.0  
12.0  
8
8
2500  
2500  
2000  
OPA4388IDR  
SOIC  
D
14  
14  
OPA4388IPWR  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2388IDGKR  
OPA2388IDGKR  
OPA2388IDGKT  
OPA2388IDGKT  
OPA2388IDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
2500  
2500  
250  
366.0  
366.0  
366.0  
366.0  
366.0  
213.0  
213.0  
366.0  
366.0  
356.0  
356.0  
356.0  
364.0  
364.0  
364.0  
364.0  
364.0  
191.0  
191.0  
364.0  
364.0  
356.0  
356.0  
356.0  
50.0  
50.0  
50.0  
50.0  
50.0  
35.0  
35.0  
50.0  
50.0  
35.0  
35.0  
35.0  
8
8
250  
8
2500  
3000  
250  
OPA388IDBVR  
OPA388IDBVT  
OPA388IDGKR  
OPA388IDGKT  
OPA388IDR  
SOT-23  
SOT-23  
VSSOP  
VSSOP  
SOIC  
DBV  
DBV  
DGK  
DGK  
D
5
5
8
2500  
250  
8
8
2500  
2500  
2000  
OPA4388IDR  
SOIC  
D
14  
14  
OPA4388IPWR  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jul-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA2388ID  
OPA388ID  
D
D
SOIC  
SOIC  
8
8
75  
75  
50  
90  
517  
506.6  
506.6  
530  
7.87  
8
635  
4.25  
4.32  
4.32  
3.5  
3940  
3940  
3600  
OPA4388ID  
OPA4388IPW  
D
SOIC  
14  
14  
8
PW  
TSSOP  
10.2  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA388IDBVR

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | DBV | 5 | -40 to 125
TI

OPA388IDBVT

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | DBV | 5 | -40 to 125
TI

OPA388IDGKR

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | DGK | 8 | -40 to 125
TI

OPA388IDGKT

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | DGK | 8 | -40 to 125
TI

OPA388IDR

单路、10MHz、CMOS、零漂移、零交叉、真 RRIO 精密运算放大器 | D | 8 | -40 to 125
TI

OPA388QDBVRQ1

符合汽车标准的宽带宽、零温漂、零交叉、精密放大器 | DBV | 5 | -40 to 125
TI

OPA391

具有高速功率比的微功耗、单通道、高精度、低偏置电流 RRIO 运算放大器
TI

OPA391DCKR

Micropower, single, high-precision low-bias-current RRIO op amp with high speed-to-power ratio | DCK | 5 | -40 to 125
TI

OPA391DCKT

Micropower, single, high-precision low-bias-current RRIO op amp with high speed-to-power ratio | DCK | 5 | -40 to 125
TI

OPA392

OPAx392 Precision, Low-Offset-Voltage, Low-Noise, Low-Input-Bias-Current, Rail-to-Rail I/O, e-trim™ Operational Amplifiers
TI

OPA392DBVR

OPAx392 Precision, Low-Offset-Voltage, Low-Noise, Low-Input-Bias-Current, Rail-to-Rail I/O, e-trim™ Operational Amplifiers
TI

OPA392DBVT

OPAx392 Precision, Low-Offset-Voltage, Low-Noise, Low-Input-Bias-Current, Rail-to-Rail I/O, e-trim™ Operational Amplifiers
TI