OPA4171-Q1 [TI]

汽车级、四路、36V、3MHz、低功耗运算放大器;
OPA4171-Q1
型号: OPA4171-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级、四路、36V、3MHz、低功耗运算放大器

放大器 运算放大器
文件: 总41页 (文件大小:1778K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
OPAx171-Q1 36-V, Single-Supply, General-Purpose  
Operational Amplifier  
1 Features  
2 Applications  
Qualified for automotive applications  
AEC-Q100 test guidance with the following results:  
Temperature grade 1:  
–40°C to +125°C ambient operating  
temperature  
– Device HBM ESD classification level:  
Tracking amplifier in power modules  
Merchant power supplies  
Transducer amplifiers  
Bridge amplifiers  
Temperature measurements  
Strain gauge amplifiers  
Precision integrators  
Battery-powered instruments  
Test equipment  
Level 3A for OPA171-Q1  
Level 2 for OPA4171-Q1  
– Device CDM ESD classification level  
Level C4A for OPA171-Q1 TLV171-Q1  
Level C6 for OPA2171-Q1  
Level C6 for OPA4171-Q1  
3 Description  
The OPA171-Q1 family of devices is a 36-V, single-  
supply, low-noise operational amplifier (op amp) with  
the ability to operate on supplies ranging from 2.7 V  
(±1.35 V) to 36 V (±18 V). This series is available in  
multiple packages and offers low offset, drift, and low  
quiescent current. The single, dual, and quad versions  
all have identical specifications for maximum design  
flexibility.  
Supply range:  
– Single-supply: 2.7 V to 36 V  
– Dual-supply ±1.35 V to ±18 V  
Low noise: 14 nV/√Hz at 1 kHz  
Low offset drift: ±0.3 µV/°C (typical)  
Input range includes negative supply  
Input range operates to positive supply with  
reduced performance  
Unlike most op amps, which are specified at only one  
supply voltage, the OPAx171-Q1 family of devices is  
specified from 2.7 V to 36 V. Input signals beyond the  
supply rails do not cause phase reversal.  
Rail-to-rail output  
Gain bandwidth: 3 MHz  
Low quiescent current: 475 µA per amplifier  
High Common-mode rejection: 120 dB (typical)  
Low input bias current: 10 pA  
Industry-Standard Package:  
– 5-Pin Small-Outline Transistor SOT-23 (DBV)  
Package  
The OPAx171-Q1 family of devices is stable with  
capacitive loads up to 300 pF. The input can operate  
100 mV below the negative rail and within 2 V of the  
top rail during normal operation. The device can  
operate with full rail-to-rail input 100 mV beyond the  
top rail, but with reduced performance within 2 V of  
the top rail.  
1000  
10 Typical Units Shown  
800  
The OPAx171-Q1 op amp family is specified from –  
40°C to +125°C.  
600  
400  
200  
0
Device Information  
PART NUMBER  
PACKAGE(1)  
BODY SIZE (NOM)  
2.90 mm × 1.60 mm  
4.90 mm × 3.91 mm  
3.00 mm × 3.00 mm  
8.65 mm × 3.91 mm  
5.00 mm × 4.40 mm  
-200  
-400  
-600  
OPA171-Q1  
SOT-23 (5)  
SOIC (8)  
OPA2171-Q1  
OPA4171-Q1  
-800  
VCM = -18.1 V  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
-1000  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
VCM (V)  
Offset Voltage vs Common-Mode Voltage:  
VSUPPLY = ±18 V  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions : OPA171-Q1 and OPA2171-Q1.................3  
Pin Functions : OPA4171-Q1............................................4  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information — OPA171-Q1 and  
OPA2171-Q1.................................................................6  
6.5 Thermal Information — OPA4171-Q1.........................6  
6.6 Electrical Characteristics.............................................7  
6.7 Typical Characteristics................................................9  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................16  
7.3 Feature Description...................................................16  
7.4 Device Functional Modes..........................................18  
8 Application and Implementation..................................19  
8.1 Application Information............................................. 19  
8.2 Typical Application.................................................... 21  
9 Power Supply Recommendations................................23  
10 Layout...........................................................................24  
10.1 Layout Guidelines................................................... 24  
10.2 Layout Example...................................................... 24  
11 Device and Documentation Support..........................25  
11.1 Documentation Support.......................................... 25  
11.2 Related Links.......................................................... 25  
11.3 Receiving Notification of Documentation Updates..25  
11.4 Support Resources................................................. 25  
11.5 Trademarks............................................................. 25  
11.6 Electrostatic Discharge Caution..............................25  
11.7 Glossary..................................................................25  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 25  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (December 2015) to Revision D (August 2020)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document..................1  
Changed OPA2171-Q1 V+ pinout table value to correctly reflect pinout image................................................. 3  
Rewrote Electrical Overstress section to match with TLV171 commercial data sheet..................................... 19  
Changes from Revision B (December 2014) to Revision C (December 2015)  
Page  
Changed the ESD classification levels for HBM and CDM in the Features list ................................................. 1  
Added the 8-pin VSSOP (DGK) package option for the OPA2171-Q1 device .................................................. 1  
Clarified the ESD values for each device in the ESD Ratings table .................................................................. 5  
Changes from Revision A (September 2012) to Revision B (December 2014)  
Page  
Added the Handling Ratings table, Feature Description section, Device Functional Modes section, Application  
and Implementation section, Power Supply Recommendations section, Layout section, Device and  
Documentation Support section, and Mechanical, Packaging, and Orderable Information section .................. 1  
Added the OPA2171-Q1 and OPA4171-Q1 devices to the data sheet ..............................................................1  
Changes from Revision * (June, 2011) to Revision A (September, 2012)  
Page  
Added second bullet to Features: AEC-Q100 Test Guidance With the Following Results: –Device  
Temperature Grade1: -40°C to 125°C Ambient Operating Temperature Range –Device HBM ESD  
Classification Level H2 –Device CDM ESD Classification Level C3A................................................................1  
Added classification levels to ESD ratings in Absolute Maximum Ratings table................................................ 5  
Added row to Absolute Maximum Ratings table: Latch-up per JESD78D with Class 1 value............................5  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
5 Pin Configuration and Functions  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
V+  
OUT  
V-  
1
2
3
5
4
OUT B  
–IN B  
+IN B  
-IN  
+IN  
Figure 5-1. OPA171-Q1 DBV Package  
5-Pin SOT-23  
Figure 5-2. OPA2171-Q1 D or DGK Package  
8-Pin SOIC and VSSOP  
Top View  
Top View  
Pin Functions : OPA171-Q1 and OPA2171-Q1  
PIN  
OPA2171-Q1  
SOIC AND  
VSSOP  
I/O  
DESCRIPTION  
OPA171-Q1  
SOT-23  
NAME  
+IN  
3
4
3
I
I
Noninverting input  
+IN A  
+IN B  
–IN  
Noninverting input, channel A  
Noninverting input, channel B  
Inverting input  
5
I
2
I
–IN A  
–IN B  
OUT  
OUT A  
OUT B  
V+  
1
I
Inverting input, channel A  
Inverting input, channel B  
Output  
6
I
1
O
O
O
5
Output, channel A  
7
Output, channel B  
8
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
2
4
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
OUT A  
-IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 -IN D  
12 +IN D  
11 V-  
+IN B  
-IN B  
OUT B  
10 +IN C  
9
8
-IN C  
OUT C  
Figure 5-3. OPA4171-Q1 D and PW Packages  
14-Pin SOIC and TSSOP  
Top View  
Pin Functions : OPA4171-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
+IN B  
+IN C  
+IN D  
–IN A  
–IN B  
–IN C  
–IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Inverting input, channel A  
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Output, channel A  
5
10  
12  
2
I
I
I
6
I
9
I
13  
1
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
4
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
11  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
Supply voltage, VS  
Voltage  
Signal input terminals  
Current  
(V–) – 0.5  
(V+) + 0.5  
±10  
V
mA  
Output short circuit(2)  
Continuous  
Junction temperature, TJ  
Latch-up per JESD78D  
Storage temperature, Tstg  
150  
150  
°C  
°C  
Class 1  
–65  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
OPA171-Q1  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
±4000  
±500  
V(ESD)  
Electrostatic discharge  
V
OPA2171-Q1  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
±4000  
±1000  
V(ESD)  
Electrostatic discharge  
V
V
OPA4171-Q1  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
±2000  
±1000  
V(ESD)  
Electrostatic discharge  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5 (±2.25)  
–40  
NOM  
MAX  
36 (±18)  
125  
UNIT  
Supply voltage (V+ – V–)  
V
Specified operating temperature  
°C  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
 
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
6.4 Thermal Information — OPA171-Q1 and OPA2171-Q1  
OPA171-Q1  
OPA2171-Q1  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
277.3  
D (SOIC)  
DGK (VSSOP)  
8 PINS  
186.5  
UNIT  
8 PINS  
116.1  
69.8  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
193.3  
78  
121.2  
56.6  
107.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
51.8  
22.5  
15.6  
ψJB  
109.5  
56.1  
106.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Thermal Information — OPA4171-Q1  
OPA4171-Q1  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
93.2  
PW (TSSOP)  
14 PINS  
106.9  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
51.8  
24.4  
49.4  
59.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
13.5  
0.6  
ψJB  
42.2  
54.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
6.6 Electrical Characteristics  
at TA = 25°C, VS = 2.7 V to 36 V, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS  
Input offset voltage  
0.25  
0.3  
±1.8  
±2  
mV  
mV  
Input offset voltage over temperature TA = –40°C to 125°C  
Input offset voltage drift  
TA = –40°C to 125°C  
(over temperature)  
dVOS/dT  
PSRR  
0.3  
±2 (2)  
±3  
µV/°C  
Input offset voltage over temperature  
VS = 4.5 V to 36 V  
120  
5
µV/V  
µV/V  
vs power supply  
Channel separation, DC  
INPUT BIAS CURRENT  
IB  
Input bias current  
±8  
±4  
±15  
pA  
nA  
pA  
nA  
Input bias current over temperature  
Input offset current  
±3.5  
IOS  
Input offset current over temperature  
±3.5  
NOISE  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
f = 100 Hz  
3
25  
14  
µVPP  
nV/√ Hz  
nV/√ Hz  
en  
Input voltage noise density  
f = 1 kHz  
INPUT VOLTAGE  
VCM  
Common-mode voltage range(1)  
(V–) – 0.1  
90  
(V+) – 2  
V
VS = ±2.25 V  
(V–) – 0.1 V < VCM < (V+) – 2 V  
104  
120  
dB  
Common-mode rejection ratio (over  
temperature)  
CMRR  
VS = ±18 V  
(V–) – 0.1 V < VCM < (V+) – 2 V  
104  
dB  
INPUT IMPEDANCE  
Differential  
100 || 3  
6 || 3  
MΩ || pF  
Common-mode  
OPEN-LOOP GAIN  
Open-loop voltage gain (over  
1012Ω || pF  
VS = 4.5 V to 36 V  
(V–) + 0.35 V < VO < (V+) – 0.35 V  
AOL  
110  
130  
dB  
temperature)  
FREQUENCY RESPONSE  
GBP  
SR  
Gain bandwidth product  
3
MHz  
V/µs  
Slew rate  
G = 1  
1.5  
To 0.1%, VS = ±18 V  
G = 1, 10-V step  
6
µs  
tS  
Settling time  
To 0.01% (12 bit), VS = ±18 V  
G = 1, 10-V step  
10  
2
µs  
µs  
Overload recovery time  
V±IN × Gain > VS  
G = 1, f = 1 kHz  
VO = 3 VRMS  
THD+N Total harmonic distortion + noise  
OUTPUT  
0.0002%  
Voltage output swing from rail (over  
temperature)  
RL = 10 kΩ  
AOL ≥ 110 dB  
VO  
(V–) + 0.35  
(V+) – 0.35  
V
Sourcing  
Sinking  
25  
ISC  
Short-circuit current  
mA  
–37  
CLOAD  
RO  
Capacitive load drive  
See Section 6.7  
pF  
Ω
Open-loop output resistance  
f = 1 MHz, IO = 0 A  
150  
POWER SUPPLY  
VS  
Specified voltage range  
TA = –40°C to 125°C  
4.5  
36  
V
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
at TA = 25°C, VS = 2.7 V to 36 V, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IQ  
Quiescent current per amplifier  
IO = 0 A, TA = –40°C to 125°C  
475  
595  
µA  
(1) The input range can be extended beyond (V+) – 2 V up to V+ at reduced performance. See Section 6.7 and Section 7 for additional  
information.  
(2) Not production tested.  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
6.7 Typical Characteristics  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
Table 6-1. Characteristic Performance Measurements  
DESCRIPTION  
Offset Voltage Production Distribution  
Offset Voltage Drift Distribution  
FIGURE  
Figure 6-1  
Figure 6-2  
Offset Voltage vs Temperature  
Figure 6-3  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Common-Mode Voltage (Upper Stage)  
Offset Voltage vs Power Supply  
Figure 6-4  
Figure 6-5  
Figure 6-6  
IB and IOS vs Common-Mode Voltage  
Input Bias Current vs Temperature  
Output Voltage Swing vs Output Current (Maximum Supply)  
CMRR and PSRR vs Frequency (Referred-to Input)  
CMRR vs Temperature  
Figure 6-7  
Figure 6-8  
Figure 6-9  
Figure 6-10  
Figure 6-11  
Figure 6-12  
Figure 6-13  
Figure 6-14  
Figure 6-15  
Figure 6-16  
Figure 6-17  
Figure 6-18  
Figure 6-19  
Figure 6-20  
Figure 6-21  
Figure 6-22  
Figure 6-23, Figure 6-24  
Figure 6-25  
Figure 6-26  
Figure 6-27  
Figure 6-28, Figure 6-29  
Figure 6-30, Figure 6-31  
Figure 6-32  
Figure 6-33  
Figure 6-34  
Figure 6-35  
Figure 6-36  
PSRR vs Temperature  
0.1Hz to 10Hz Noise  
Input Voltage Noise Spectral Density vs Frequency  
THD+N Ratio vs Frequency  
THD+N vs Output Amplitude  
Quiescent Current vs Temperature  
Quiescent Current vs Supply Voltage  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
Open-Loop Gain vs Temperature  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (100-mV Output Step)  
No Phase Reversal  
Positive Overload Recovery  
Negative Overload Recovery  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
Large-Signal Settling Time (10-V Positive Step)  
Large-Signal Settling Time (10-V Negative Step)  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
Channel Separation vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
6.7.1 Typical Characteristics  
16  
25  
20  
15  
10  
5
Distribution Taken From 3500 Amplifiers  
Distribution Taken From 110 Amplifiers  
14  
12  
10  
8
6
4
2
0
0
Offset Voltage Drift (mV/°C)  
Offset Voltage (mV)  
Figure 6-2. Offset Voltage Drift Distribution  
Figure 6-1. Offset Voltage Production Distribution  
1000  
600  
10 Typical Units Shown  
5 Typical Units Shown  
800  
400  
200  
600  
400  
200  
0
0
-200  
-400  
-600  
-800  
-200  
-400  
-600  
-800  
VCM = -18.1 V  
-1000  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
VCM (V)  
Temperature (°C)  
Figure 6-4. Offset Voltage vs Common-Mode  
Voltage: VSUPPLY (V) = ±18 V  
Figure 6-3. Offset Voltage vs Temperature  
10000  
350  
10 Typical Units Shown  
VSUPPLY = 2ꢀ25 V ꢁt 18 V  
10 Typical Uniꢁs Shtwn  
8000  
6000  
4000  
2000  
0
250  
150  
50  
-50  
-2000  
Normal  
Operation  
-4000  
-6000  
-150  
-250  
-350  
VCM = 18.1 V  
-8000  
-10000  
15.5  
16  
16.5  
17  
17.5  
18  
18.5  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
VCM (V)  
VSUPPLY (V)  
Figure 6-5. Offset Voltage vs Common-Mode  
Voltage: VSUPPLY (V) = ±18 V  
(Upper Stage)  
Figure 6-6. Offset Voltage vs Power Supply  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
10000  
1000  
100  
10  
15  
14  
13  
12  
11  
10  
9
IB+  
IB-  
-IB  
+IB  
IB  
IOS  
-IOS  
8
7
6
IOS  
5
4
1
3
VCM = -18.1V  
VCM = 16V  
2
1
0
0
-40 -25  
0
25  
50  
75  
100  
125  
-20  
-18  
-12  
-6  
0
6
12  
18  
20  
Temperature (°C)  
VCM (V)  
Figure 6-8. Input Bias Current vs Temperature  
Figure 6-7. IB and IOSvs Common-Mode Voltage  
18  
17  
16  
140  
120  
100  
80  
15  
14.5  
-14.5  
60  
-15  
-16  
-17  
-18  
-40°C  
+25°C  
+85°C  
+125°C  
40  
+PSRR  
20  
0
-PSRR  
CMRR  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
2
4
6
8
10  
12  
14  
16  
Frequency (Hz)  
Output Current (mA)  
Figure 6-10. CMRR and PSRR vs Frequency  
(Referred-to Input)  
Figure 6-9. Output Voltage Swing vs Output  
Current (Maximum Supply)  
30  
20  
10  
0
3
2
1
0
-10  
-1  
VS = 2.7V  
-20  
-2  
-3  
VS = 2.7V to 36V  
VS = 4V to 36V  
VS = 4V  
VS = 36V  
-30  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
Figure 6-11. CMRR vs Temperature  
Figure 6-12. PSRR vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
1000  
100  
10  
1
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Time (1s/div)  
Figure 6-14. Input Voltage Noise Spectral Density  
vs Frequency  
Figure 6-13. 0.1- to 10-Hz Noise  
0.1  
-80  
0.01  
-80  
VOUT = 3VRMS  
BW = 80kHz  
BW = 80kHz  
0.01  
-100  
-120  
-140  
-100  
-120  
-140  
0.001  
0.001  
0.0001  
0.0001  
0.00001  
G = +1, RL = 10kW  
G = -1, RL = 2kW  
G = +1, RL = 10kW  
G = -1, RL = 2kW  
0.00001  
0.01  
0.1  
1
10 20  
10  
100  
1k  
10k 20k  
Output Amplitude (VRMS  
)
Frequency (Hz)  
Figure 6-15. THD+N Ratio vs Frequency  
Figure 6-16. THD+N vs Output Amplitude  
0.6  
0.65  
0.55  
0.5  
0.6  
0.55  
0.5  
0.45  
0.4  
0.45  
0.4  
0.35  
0.3  
Specified Supply-Voltage Range  
0.25  
0.35  
-75 -50 -25  
0
25  
50  
75  
100 125 150  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Temperature (°C)  
Supply Voltage (V)  
Figure 6-18. Quiescent Current vs Supply Voltage  
Figure 6-17. Quiescent Current vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
180  
180  
135  
90  
25  
20  
15  
10  
5
Gain  
135  
90  
45  
0
Phase  
45  
0
-5  
0
-10  
-15  
-20  
G = 10  
G = 1  
-45  
-45  
G = -1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Figure 6-19. Open-Loop Gain and Phase vs  
Frequency  
Figure 6-20. Closed-Loop Gain vs Frequency  
3
1M  
100k  
10k  
1k  
5 Typical Units Shown  
VS = 2.7 V  
VS = 4 V  
VS = 36 V  
2.5  
2
1.5  
1
100  
10  
0.5  
0
1
1m  
-40 -25  
0
25  
50  
75  
100  
125  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Temperature (°C)  
Frequency (Hz)  
Figure 6-21. Open-Loop Gain vs Temperature  
Figure 6-22. Open-Loop Output Impedance vs  
Frequency  
50  
45  
40  
35  
30  
25  
20  
50  
ROUT = 0 W  
45  
ROUT = 25 W  
40  
ROUT = 50 W  
35  
30  
25  
20  
G = 1  
18 V  
RF = 10 kW  
18 V  
RI = 10 kW  
G = -1  
ROUT = 0 Ω  
15  
15  
10  
5
ROUT  
TLV171-Q1  
ROUT = 25 Ω  
ROUT = 50 Ω  
ROUT  
10  
RL  
CL  
-18 V  
TLV171-Q1  
-18 V  
CL  
5
0
0
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
Figure 6-23. Small-Signal Overshoot vs Capacitive Figure 6-24. Small-Signal Overshoot vs Capacitive  
Load  
Load  
(100-mV Output Step)  
(100-mV Output Step)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
18 V  
VOUT  
TLV171-Q1  
Output  
-18 V  
37 VPP  
Sine Wave  
18ꢀ5 V)  
(
VIN  
20kW  
+18V  
2kW  
VOUT  
OPA171  
Output  
VIN  
-18V  
G = -10  
Time (5ms/div)  
Time (100ms/div)  
Figure 6-25. No Phase Reversal  
Figure 6-26. Positive Overload Recovery  
RL = 10kW  
G = +1  
+18V  
OPA171  
-18V  
CL = 100pF  
RL  
CL  
VIN  
20kW  
+18V  
2kW  
VOUT  
OPA171  
VIN  
VOUT  
-18V  
G = -10  
Time (5ms/div)  
Time (1ms/div)  
Figure 6-27. Negative Overload Recovery  
Figure 6-28. Small-Signal Step Response (100 mV)  
CL = 100pF  
RI = 2kW RF = 2kW  
+18V  
OPA171  
CL  
-18V  
G = -1  
Time (5ms/div)  
Time (20ms/div)  
G = 1  
RL = 10 kΩ  
CL = 100 pF  
Figure 6-29. Small-Signal Step Response (100 mV)  
Figure 6-30. Large-Signal Step Response  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
10  
8
6
4
12-Bit Settling  
2
0
-2  
-4  
-6  
-8  
-10  
( 1ꢀ2ꢁSB ꢂ 0.024%)  
Time (4ms/div)  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Time (ms)  
G = –1  
RL = 10 kΩ  
CL = 100 pF  
G = –1  
Figure 6-31. Large-Signal Step Response  
Figure 6-32. Large-Signal Settling Time (10-V  
Positive Step)  
10  
8
50  
45  
40  
6
4
35  
30  
25  
20  
15  
10  
5
ISC, Sink  
12-Bit Settling  
2
0
-2  
ISC, Source  
( 1ꢀ2ꢁSB ꢂ 0.024%)  
-4  
-6  
-8  
-10  
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
-40  
-25  
0
25  
50  
75  
100  
125  
Time (ms)  
Temperature (°C)  
Figure 6-34. Short-Circuit Current vs Temperature  
G = –1  
Figure 6-33. Large-Signal Settling Time (10-V  
Negative Step)  
15  
-60  
-70  
VS  
=
15 V  
12.5  
10  
7.5  
5
Maximum output voltage without  
slew-rate induced distortion.  
-80  
-90  
VS  
= 5 V  
-100  
-110  
-120  
2.5  
0
10  
100  
1k  
10k  
100k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
Frequency (Hz)  
Figure 6-35. Maximum Output Voltage vs  
Frequency  
Figure 6-36. Channel Separation vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The OPAx171-Q1 family of operational amplifiers provides high overall performance, making them ideal for many  
general-purpose applications. The excellent offset drift of only 1.5 μV/°C (maximum) provides excellent stability  
over the entire temperature range. In addition, the device offers very good overall performance with high CMRR,  
PSRR, AOL, and superior THD.  
7.2 Functional Block Diagram  
OPA171-Q1  
+
PCH  
FF Stage  
œ
Ca  
Cb  
+
+IN  
+
+
PCH  
Input Stage  
2nd Stage  
OUT  
Output  
Stage  
œ
œIN  
œ
œ
+
NCH  
Input Stage  
œ
7.3 Feature Description  
7.3.1 Operating Characteristics  
The OPAx171-Q1 family of devices is specified for operation from 2.7 V to 36 V (±1.35 V to ±18 V). Many of the  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are shown in Section 6.7.  
7.3.2 Phase-Reversal Protection  
The OPAx171-Q1 family of devices has an internal phase-reversal protection. Many op amps exhibit a phase  
reversal when the input is driven beyond the linear common-mode range. This condition is most often  
encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range,  
causing the output to reverse into the opposite rail. The input of the OPAx171-Q1 family of devices prevents  
phase reversal with excessive common-mode voltage. Instead, the output limits into the appropriate rail. Figure  
7-1 shows this performance.  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
18 V  
TLV171-Q1  
Output  
-18 V  
37 VPP  
Sine Wave  
18ꢀ5 V)  
(
Output  
Time (100ms/div)  
Figure 7-1. No Phase Reversal  
7.3.3 Capacitive Load and Stability  
The dynamic characteristics of the OPAx171-Q1 family of devices are optimized for commonly encountered  
operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase  
margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be  
isolated from the output. The simplest way to achieve this isolation is to add a small resistor (for example, ROUT  
equal to 50 Ω) in series with the output. Figure 7-2 and Figure 7-3 shows small-signal overshoot versus  
capacitive load for several values of ROUT. For details of analysis techniques and application circuits, see  
Applications Bulletin AB-028, available for download from TI.com.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
ROUT = 0 W  
ROUT = 25 W  
ROUT = 50 W  
G = 1  
18 V  
TLV171-Q1  
-18 V  
RF = 10 kW  
18 V  
RI = 10 kW  
G = -1  
ROUT = 0 Ω  
ROUT = 25 Ω  
ROUT = 50 Ω  
ROUT  
ROUT  
RL  
CL  
TLV171-Q1  
-18 V  
CL  
0
0
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
Figure 7-2. Small-Signal Overshoot versus  
Capacitive Load (100-mV Output Step)  
Figure 7-3. Small-Signal Overshoot versus  
Capacitive Load (100-mV Output Step)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Common-Mode Voltage Range  
The input common-mode voltage range of the OPAx171-Q1 family of devices extends 100 mV below the  
negative rail and within 2 V of the top rail for normal operation.  
This device can operate with full rail-to-rail input 100 mV beyond the top rail, but with reduced performance  
within 2 V of the top rail. The typical performance in this range is listed in Table 7-1.  
Table 7-1. Typical Performance Range  
PARAMETER  
Input common-mode voltage  
Offset voltage  
MIN  
TYP  
MAX  
UNIT  
V
(V+) – 2  
(V+) + 0.1  
7
mV  
Offset voltage vs temperature  
Common-mode rejection  
Open-loop gain  
12  
65  
60  
0.7  
0.7  
30  
µV/°C  
dB  
dB  
GBW  
MHz  
V/µs  
nV/√ Hz  
Slew rate  
Noise at f = 1kHz  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The OPAx171-Q1 operational amplifier family provides high overall performance, making the device ideal for  
many general-purpose applications. The excellent offset drift of only 2 µV/°C provides excellent stability over the  
entire temperature range. In addition, the device offers very good overall performance with high CMRR, PSRR,  
and AOL. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling  
capacitors close to the device pins. In most cases, 0.1-µF capacitors are adequate.  
8.1.1 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits for protection from  
accidental ESD events both before and during product assembly.  
A good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is helpful.  
illustrates the ESD circuits contained in the (indicated by the dashed line area). The ESD protection circuitry  
involves several current-steering diodes connected from the input and output pins and routed back to the internal  
power-supply lines, where the diodes meet at an absorption device internal to the operational amplifier. This  
protection circuitry is intended to remain inactive during normal circuit operation.  
TVS  
R
F
+V  
S
R
1
2.5 kΩ  
INœ  
2.5 kΩ  
R
S
IN+  
+
Power-Supply  
ESD Cell  
I
D
R
L
+
V
IN  
œ
œV  
S
TVS  
Figure 8-1. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-  
current pulse when discharging through a semiconductor device. The ESD protection circuits are designed to  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the  
protection circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more  
steering diodes. Depending on the path that the current takes, the absorption device can activate. The  
absorption device has a trigger, or threshold voltage, that is above the normal operating voltage of the OPAx171-  
Q1 but below the device breakdown voltage level. When this threshold is exceeded, the absorption device  
quickly activates and clamps the voltage across the supply rails to a safe level.  
When the operational amplifier connects into a circuit (as shown in ), the ESD protection components are  
intended to remain inactive and do not become involved in the application circuit operation. However,  
circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. If this  
condition occurs, there is a risk that some internal ESD protection circuits can turn on and conduct current. Any  
such current flow occurs through steering-diode paths and rarely involves the absorption device.  
shows a specific example where the input voltage (VIN) exceeds the positive supply voltage (V+) by 500 mV or  
more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the current, one  
of the upper input steering diodes conducts and directs current to V+. Excessively high current levels can flow  
with increasingly higher VIN. As a result, the data sheet specifications recommend that applications limit the input  
current to 10 mA.  
If the supply is not capable of sinking the current, VIN can begin sourcing current to the operational amplifier and  
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to  
levels that exceed the operational amplifier absolute maximum ratings.  
Another common question involves what happens to the amplifier if an input signal is applied to the input when  
the power supplies (V+ or V–) are at 0 V. Again, this question depends on the supply characteristic when at 0 V,  
or at a level below the input signal amplitude. If the supplies appear as high impedance, then the input source  
supplies the operational amplifier current through the current-steering diodes. This state is not a normal bias  
condition; most likely, the amplifier does not operate normally. If the supplies are low impedance, then the  
current through the steering diodes can become quite high. The current level depends on the ability of the input  
source to deliver current, and any resistance in the input path.  
If there is any uncertainty about the ability of the supply to absorb this current, add external Zener diodes to the  
supply pins; see . Select the Zener voltage so that the diode does not turn on during normal operation. However,  
the Zener voltage must be low enough so that the Zener diode conducts if the supply pin begins to rise above  
the safe-operating, supply-voltage level.  
The OPAx171-Q1 input pins are protected from excessive differential voltage with back-to-back diodes; see . In  
most circuit applications, the input protection circuitry has no effect. However, in low-gain or G = 1 circuits, fast-  
ramping input signals can forward-bias these diodes because the output of the amplifier cannot respond rapidly  
enough to the input ramp. If the input signal is fast enough to create this forward-bias condition, limit the input  
signal current to 10 mA or less. If the input signal current is not inherently limited, an input series resistor can be  
used to limit the input signal current. This input series resistor degrades the low-noise performance of the  
OPAx171-Q1. illustrates an example configuration that implements a current-limiting feedback resistor.  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
8.2 Typical Application  
8.2.1 Capacitive Load Drive Solution Using an Isolation Resistor  
The OPAx171-Q1 device can be used capacitive loads such as cable shields, reference buffers, MOSFET gates,  
and diodes. The circuit uses an isolation resistor (RISO) to stabilize the output of an op amp. RISO modifies the  
open loop gain of the system to ensure the circuit has sufficient phase margin.  
+VS  
VOUT  
RISO  
+
CLOAD  
+
VIN  
-VS  
œ
Figure 8-2. Unity-Gain Buffer with RISO Stability Compensation  
8.2.1.1 Design Requirements  
The design requirements are:  
Supply voltage: 30 V (±15 V)  
Capacitive loads: 100 pF, 1000 pF, 0.01 μF, 0.1 μF, and 1 μF  
Phase margin: 45° and 60°  
8.2.1.2 Detailed Design Procedure  
Figure 8-3 shows a unity-gain buffer driving a capacitive load. Equation 1 shows the transfer function for the  
circuit in Figure 8-3. Not shown in Figure 8-3 is the open-loop output resistance of the op amp, Ro.  
1 + CLOAD × RISO × s  
T(s) =  
1 + R + R  
× C  
× s  
(
)
o
ISO  
LOAD  
(1)  
The transfer function in Equation 1 has a pole and a zero. The frequency of the pole (fp) is determined by (Ro +  
RISO) and CLOAD. Components RISO and CLOAD determine the frequency of the zero (fz). A stable system is  
obtained by selecting RISO such that the rate of closure (ROC) between the open-loop gain (AOL) and 1/β is 20  
dB/decade. Figure 8-3 shows the concept. The 1/β curve for a unity-gain buffer is 0 dB.  
120  
AOL  
100  
1
fp  
=
2 ì Œ ì  
R
+ Ro ì C  
(
)
ISO  
LOAD  
80  
60  
40  
20  
0
40 dB  
1
fz  
=
2 ì Œ ì RISO ì CLOAD  
1 dec  
1/  
20 dB  
dec  
ROC =  
100M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Figure 8-3. Unity-Gain Amplifier with RISO Compensation  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
ROC stability analysis is typically simulated. The validity of the analysis depends on multiple factors, especially  
the accurate modeling of Ro. In addition to simulating the ROC, a robust stability analysis includes a  
measurement of overshoot percentage and AC gain peaking of the circuit using a function generator,  
oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. Table  
8-1 lists the overshoot percentage and AC gain peaking that correspond to phase margins of 45° and 60°. For  
more details on this design and other alternative devices that can be used in place of the OPA171-Q1 , see  
Capacitive Load Drive Solution using an Isolation Resistor.  
Table 8-1. Phase Margin versus Overshoot and AC Gain Peaking  
PHASE MARGIN  
OVERSHOOT  
AC GAIN PEAKING  
45°  
60°  
23.3%  
2.35 dB  
8.8%  
0.28 dB  
8.2.1.3 Application Curve  
The OPAx171-Q1 series meets the supply voltage requirements of 30 V. The OPAx171-Q1 device was tested for  
various capacitive loads and RISO was adjusted to achieve an overshoot corresponding to Table 8-1. Figure 8-4  
shows the test results.  
10000  
45è Phase Margin  
60è Phase Margin  
1000  
100  
10  
1
0.01  
0.1  
1
10  
Capacitive Load (nF)  
100  
1000  
D001  
Figure 8-4. RISO vs CLOAD  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
9 Power Supply Recommendations  
The OPAx171-Q1 family of devices is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are presented in Section 6.7.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the Section 6.1 table.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For detailed information on bypass capacitor placement, see Section 10.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself.  
Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to  
the analog circuitry.  
– Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace  
perpendicular as opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in Figure 10-1, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
10.2 Layout Example  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
NC  
NC  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
NC  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
Figure 10-1. Operational Amplifier Board Layout for Noninverting Configuration  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
 
OPA171-Q1, OPA2171-Q1, OPA4171-Q1  
SBOS556D – JUNE 2011 – REVISED AUGUST 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Applications Bulletin AB-028  
Capacitive Load Drive Solution Using an Isolation Resistor  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 11-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
OPA171-Q1  
OPA2171-Q1  
OPA4171-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA171-Q1 OPA2171-Q1 OPA4171-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA171AQDBVRQ1  
OPA2171AQDGKRQ1  
OPA2171AQDRQ1  
OPA4171AQDRQ1  
OPA4171AQPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
VSSOP  
SOIC  
DBV  
DGK  
D
5
8
3000 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OULQ  
NIPDAUAG  
NIPDAU  
NIPDAU  
NIPDAU  
2171  
8
2171AQ  
OPA4171Q1  
O4171Q1  
SOIC  
D
14  
14  
TSSOP  
PW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF OPA171-Q1, OPA2171-Q1, OPA4171-Q1 :  
Catalog: OPA171, OPA2171, OPA4171  
Enhanced Product: OPA2171-EP  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA171AQDBVRQ1  
OPA2171AQDGKRQ1  
OPA2171AQDRQ1  
OPA4171AQDRQ1  
OPA4171AQPWRQ1  
SOT-23  
VSSOP  
SOIC  
DBV  
DGK  
D
5
8
3000  
2500  
2500  
2500  
2000  
180.0  
330.0  
330.0  
330.0  
330.0  
8.4  
3.23  
5.3  
6.4  
6.5  
6.9  
3.17  
3.4  
5.2  
9.0  
5.6  
1.37  
1.4  
2.1  
2.1  
1.6  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q1  
Q1  
Q1  
Q1  
12.4  
12.4  
16.4  
12.4  
12.0  
12.0  
16.0  
12.0  
8
SOIC  
D
14  
14  
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA171AQDBVRQ1  
OPA2171AQDGKRQ1  
OPA2171AQDRQ1  
OPA4171AQDRQ1  
OPA4171AQPWRQ1  
SOT-23  
VSSOP  
SOIC  
DBV  
DGK  
D
5
8
3000  
2500  
2500  
2500  
2000  
202.0  
366.0  
356.0  
356.0  
356.0  
201.0  
364.0  
356.0  
356.0  
356.0  
28.0  
50.0  
35.0  
35.0  
35.0  
8
SOIC  
D
14  
14  
TSSOP  
PW  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

OPA4171AID

36V, Single-Supply, SOT553, General-Purpose OPERATIONAL AMPLIFIERS
TI

OPA4171AIDR

36V, Single-Supply, SOT553, General-Purpose OPERATIONAL AMPLIFIERS
TI

OPA4171AIPW

36V, Single-Supply, SOT553, General-Purpose OPERATIONAL AMPLIFIERS
TI

OPA4171AIPWR

36V, Single-Supply, SOT553, General-Purpose OPERATIONAL AMPLIFIERS
TI

OPA4171AQDRQ1

汽车级、四路、36V、3MHz、低功耗运算放大器 | D | 14 | -40 to 125
TI

OPA4171AQPWRQ1

汽车级、四路、36V、3MHz、低功耗运算放大器 | PW | 14 | -40 to 125
TI

OPA4172

四路、36V、10MHz、低功耗运算放大器
TI

OPA4172-Q1

汽车级、四路、36V、10MHz、低功耗运算放大器
TI

OPA4172AQPWRQ1

汽车级、四路、36V、10MHz、低功耗运算放大器 | PW | 14 | -40 to 125
TI

OPA4172ID

四路、36V、10MHz、低功耗运算放大器 | D | 14 | -40 to 125
TI

OPA4172IDR

四路、36V、10MHz、低功耗运算放大器 | D | 14 | -40 to 125
TI

OPA4172IPW

四路、36V、10MHz、低功耗运算放大器 | PW | 14 | -40 to 125
TI