OPA4354-Q1 [TI]

汽车类 250MHz 轨到轨 I/O CMOS 四路运算放大器;
OPA4354-Q1
型号: OPA4354-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 250MHz 轨到轨 I/O CMOS 四路运算放大器

放大器 运算放大器
文件: 总41页 (文件大小:1407K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
OPAx354-Q1 250MHz、轨至轨 I/O CMOS 运算放大器  
1 特性  
3 说明  
1
符合汽车类应用的 要求  
具有符合 AEC Q100 标准的下列结果:  
OPAx354-Q1 系列高速电压反馈 CMOS 运算放大器专  
为视频应用和其他需要宽带宽的 应用 而设计。这些器  
件具有单位增益稳定性,可以驱动大型输出电流。差分  
增益为 0.02%,而差分相位为 0.09°。静态电流仅为每  
通道 4.9mA。  
器件温度等级:环境运行温度范围为 -40°C 至  
+125°C  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级:  
OPAx354-Q1 系列运算放大器针对低至 2.5V (±1.25V)  
和高达 5.5V (±2.75V) 的单电源或双电源供电运行进行  
了优化。共模输入范围超出电源供电范围。电源轨的输  
出摆幅在 100mV 以内,从而支持宽动态范围。  
OPA354A-Q1 OPA2354A-Q1 C6  
OPA4354-Q1 C3  
单位增益带宽:250MHz  
高带宽:100MHz GBW 产品  
高压摆率:150V/μs  
低噪声:6.5nV/Hz  
轨至轨 I/O  
单电源版本 (OPA354A-Q1) 可提供微型 SOT–23-5  
(DBV) 封装。双电源版本 (OPA2354A-Q1) 可提供微型  
VSSOP-8 (DGK) 封装并 采用 完全独立的电路,可将  
串扰降到最低并彻底消除相互干扰。双电源版本  
(OPA4354-Q1) 可提供 TSSOP-14 (PW) 封装。该器件  
的规格支持在 –40°C +125°C 的汽车温度范围内运  
行。  
高输出电流:> 100mA  
出色的视频性能  
差动增益误差:0.02%  
差动相位误差:0.09°  
0.1dB 增益平坦度:40MHz  
器件信息(1)  
低输入偏置电流:3pA  
静态电流:4.9mA  
热关断  
器件型号  
OPA354A-Q1  
OPA2354A-Q1  
OPA4354-Q1  
封装(引脚)  
SOT-23 (5)  
封装尺寸(标称值)  
2.90mm × 1.60mm  
3.00mm × 3.00mm  
5.00mm × 4.40mm  
VSSOP (8)  
TSSOP (14)  
电源范围:2.5V 5.5V  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
2 应用  
导航和雷达系统  
简化原理图  
盲点监测系统  
V+  
短程到中程雷达添加了项目符号  
视频处理  
-
In  
OPA354-Q1  
VOUT  
超声波  
+In  
光网络、可调激光器  
光电二极管互阻放大器  
有源滤波器  
-
V
高速积分器  
模数转换器 (ADC) 输入缓冲器  
数模转换器 (DAC) 输出放大器  
条形码扫描器  
通信  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS492  
 
 
 
 
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
8.2 Typical Applications ................................................ 21  
Power Supply Recommendations...................... 25  
9.1 Power Dissipation ................................................... 26  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information: OPA354A-Q1 ......................... 6  
6.5 Thermal Information: OPA2354A-Q1 ....................... 7  
6.6 Thermal Information: OPA4354A-Q1 ....................... 7  
6.7 Electrical Characteristics........................................... 8  
6.8 Typical Characteristics............................................ 10  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 15  
8
9
10 Layout................................................................... 26  
10.1 Layout Guidelines ................................................. 26  
10.2 Layout Example .................................................... 27  
11 器件和文档支持 ..................................................... 28  
11.1 文档支持 ............................................................... 28  
11.2 相关链接................................................................ 28  
11.3 接收文档更新通知 ................................................. 28  
11.4 社区资源................................................................ 28  
11.5 ....................................................................... 28  
11.6 静电放电警告......................................................... 28  
11.7 术语表 ................................................................... 29  
12 机械、封装和可订购信息....................................... 29  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision E (August 2016) to Revision F  
Page  
Deleted table note about input terminals and input signals from Absolute Maximum Ratings table .................................... 6  
Changes from Revision D (July 2016) to Revision E  
Page  
Changed the gain-bandwidth product typical value from 10 MHz back to 100 MHz in the Electrical Characteristics table .. 8  
Changes from Revision C (June 2016) to Revision D  
Page  
Changed the gain-bandwidth product typical value from 100 MHz to 10 MHz in the Electrical Characteristics table........... 8  
已添加 添加了接收文档更新通知 社区资源 ............................................................................................................... 28  
Changes from Revision B (December 2014) to Revision C  
Page  
已添加 将 3 个额外的 应用 添加至应用 部分 .......................................................................................................................... 1  
Updated ESD Ratings table to show CDM value for OPA354A-Q1 and OPA2354A-Q1 ...................................................... 6  
Changes from Revision A (August 2009) to Revision B  
Page  
已添加 处理额定值表,特性 说明 部分、器件功能模式应用和实施 部分、电源建议 部分、布局 部分、器件和文档  
支持 部分以及机械、封装和可订购信息 部分 ......................................................................................................................... 1  
已添加 在产品说明书中添加了 OPA4354-Q1 ................................................................................................................. 1  
2
Copyright © 2009–2018, Texas Instruments Incorporated  
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
5 Pin Configuration and Functions  
OPA354A-Q1 DBV Package  
5-Pin SOT-23  
Top View  
OUT  
1
2
3
5
4
V+  
Vœ  
+IN  
œIN  
Pin Functions: OPA354A-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN  
NO.  
3
I
Noninverting input  
Inverting input  
–IN  
4
I
OUT  
V+  
1
O
Output  
5
Positive (highest) supply  
Negative (lowest) supply  
V–  
2
Copyright © 2009–2018, Texas Instruments Incorporated  
3
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
OPA2354A-Q1 DGK Package  
8-Pin VSSOP  
Top View  
OUT A  
œIN A  
+IN A  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT B  
œIN B  
+IN B  
A
+
B
+
Pin Functions: OPA2354A-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
+IN B  
–IN A  
–IN B  
OUT A  
OUT B  
V+  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Inverting input, channel A  
Inverting input, channel B  
Output, channel A  
5
2
I
6
I
1
O
O
7
Output, channel B  
5
Positive (highest) supply  
Negative (lowest) supply  
V–  
2
4
Copyright © 2009–2018, Texas Instruments Incorporated  
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
OPA4354-Q1 PW Package  
14-Pin TSSOP  
Top View  
OUT A  
œIN A  
+IN A  
1
2
3
14 OUT D  
13 œIN D  
œ
œ
A
B
D
C
+
+
12 +IN D  
V+  
4
5
11 Vœ  
+IN B  
10 +IN C  
œ
œ
œIN B  
6
7
9
8
œIN C  
OUT B  
OUT C  
Pin Functions: OPA4354-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
+IN B  
+IN C  
+IN D  
–IN A  
–IN B  
–IN C  
–IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Inverting input, channel A  
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Output, channel A  
5
10  
12  
2
I
I
I
6
I
9
I
13  
1
I
O
O
O
O
7
Output, channel B  
1
Output, channel C  
7
Output, channel D  
5
Positive (highest) supply  
Negative (lowest) supply  
V–  
2
Copyright © 2009–2018, Texas Instruments Incorporated  
5
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
7.5  
UNIT  
V
Supply voltage, V+ to V–, VS  
Signal input terminals voltage, VIN  
Output short-circuit duration(2)  
Operating temperature, TA  
Junction temperature, TJ  
(V–) – 0.5  
(V+) + 0.5  
V
Continuous  
–55  
150  
150  
150  
°C  
°C  
°C  
Storage temperature, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short circuit to ground, one amplifier per package  
6.2 ESD Ratings  
VALUE  
UNIT  
OPA354A-Q1 IN DBV (SOT-23) PACKAGE AND OPA2354A-Q1 IN DGK (VSSOP) PACKAGE  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100-011  
OPA4354-Q1 IN PW (TSSOP) PACKAGE  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
±2000  
±250  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
VS  
TA  
Supply voltage, V– to V+  
2.5  
5.5  
Operating free-air temperature  
–40  
125  
°C  
6.4 Thermal Information: OPA354A-Q1  
OPA354A-Q1  
DBV (SOT-23)  
5 PINS  
216.3  
OPA2354A-Q1  
DGK (VSSOP)  
8 PINS  
175.9  
OPA4354-Q1  
PW (TSSOP)  
14 PINS  
92.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
84.3  
67.8  
27.5  
43.1  
97.1  
33.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.8  
9.3  
1.9  
ψJB  
42.3  
95.5  
33.1  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2009–2018, Texas Instruments Incorporated  
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
6.5 Thermal Information: OPA2354A-Q1  
OPA2354A-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
175.9  
67.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
97.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
9.3  
ψJB  
95.5  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: OPA4354A-Q1  
OPA4354-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
92.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
27.5  
33.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.9  
ψJB  
33.1  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2009–2018, Texas Instruments Incorporated  
7
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
6.7 Electrical Characteristics  
VS = 2.5 V to 5.5 V, RF (feedback resistor) = 0 , RL (load resistor) = 1 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
±2  
±8  
VS = 5 V  
VCM = (V–) + 0.8 V  
VOS  
Input offset voltage  
mV  
TA = Full range  
±10  
ΔVOS  
ΔT  
/
Offset voltage drift over  
temperature  
TA = Full range  
±4  
μV/°C  
μV/V  
TA = 25°C  
±200  
±800  
±900  
±50  
Offset voltage drift vs power  
supply  
VS = 2.7 V to 5.5 V,  
VCM = VS / 2 – 0.15 V  
PSRR  
TA = Full range  
IB  
Input bias current  
TA = 25°C  
3
±1  
pA  
pA  
IOS  
Vn  
In  
Input offset current  
TA = 25°C  
±50  
Input voltage noise density  
Input current noise density  
f = 1 MHz, TA = 25°C  
f = 1 MHz, TA = 25°C  
6.5  
50  
nV/Hz  
fA/Hz  
Input common-mode voltage  
range  
VCM  
TA = 25°C  
(V–) – 0.1  
(V+) + 0.1  
V
TA = 25°C  
66  
64  
56  
55  
80  
68  
VS = 5.5 V  
–0.1 V < VCM < 3.5 V  
TA = Full range  
TA = 25°C  
Input common-mode rejection  
ratio  
CMRR  
dB  
VS = 5.5 V  
–0.1 V < VCM < 5.6 V  
TA = Full range  
1013 || 2  
1013 || 2  
ZID  
Differential input impedance  
TA = 25°C  
TA = 25°C  
Ω || pF  
Ω || pF  
Common-mode input  
impedance  
ZICM  
VS = 5 V, 0.3 V < VO < 4.7 V  
TA = 25°C  
94  
90  
110  
AOL  
Open-loop gain  
dB  
VS = 5 V, 0.4 V < VO < 4.6 V  
TA = Full range  
G = 1, VO = 100 mVp-p, RF = 25 Ω, TA = 25°C  
250  
90  
f–3dB  
Small-signal bandwidth  
Gain-bandwidth product  
MHz  
G = 2, VO = 100 mVp-p, TA = 25°C  
G = 10  
TA = 25°C  
GBW  
f0.1dB  
100  
40  
MHz  
MHz  
Bandwidth for 0.1-dB gain  
flatness  
G = 2, VO = 100 mVp-p, TA = 25°C  
VS = 5 V, G = 1, 4-V step, TA = 25°C  
VS = 5 V, G = 1, 2-V step  
150  
130  
110  
2
SR  
Slew rate  
V/μs  
VS = 3 V, G = 1, 2-V step  
G = 1, VO = 200 mVp-p, 10% to 90%, TA = 25°C  
G = 1, VO = 2 Vp-p, 10% to 90%, TA = 25°C  
trf  
Rise-and-fall time  
ns  
11  
0.1%  
30  
VS = 5 V, G = +1, 2-V output  
step, TA = 25°C  
tsettle  
Settling time  
ns  
ns  
0.01%  
60  
VIN × Gain = VS  
TA = 25°C  
Overload recovery time  
5
G = 1, f = 1 MHz, VO = 2 Vp-p,  
RL = 200 , VCM = 1.5 V  
TA = 25°C  
Second-order harmonic  
distortion  
–75  
dBc  
dBc  
G = 1, f = 1 MHz, VO = 2 Vp-p  
Third-order harmonic distortion RL = 200 , VCM = 1.5 V  
–83  
TA = 25°C  
Differential gain error  
Differential phase error  
NTSC, RL = 150 Ω, TA = 25°C  
NTSC, RL = 150 Ω, TA = 25°C  
0.02%  
0.09  
°
8
Copyright © 2009–2018, Texas Instruments Incorporated  
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
Electrical Characteristics (continued)  
VS = 2.5 V to 5.5 V, RF (feedback resistor) = 0 , RL (load resistor) = 1 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Channel-to-channel crosstalk  
(OPA2354A-Q1) (OPA4354-  
Q1)  
f = 5 MHz, TA = 25°C  
–100  
dB  
VS = 5 V, RL = 1 kΩ, AOL > 94 dB  
TA = 25°C  
0.1  
0.3  
0.4  
Voltage output swing from rail  
V
VS = 5 V, RL = 1 kΩ  
AOL > 90 dB, TA = Full range  
VS = 5 V  
100  
IO  
Output current(1)(2)  
mA  
VS = 3 V  
50  
0.05  
35  
Closed-loop output impedance  
Open-loop output resistance  
f < 100 kHz  
Ω
Ω
RO  
IQ  
TA = 25°C  
4.9  
6
Quiescent current  
(per amplifier)  
VS = 5 V, IO = 0, enabled  
mA  
°C  
TA = Full range  
7.5  
Shutdown  
160  
140  
Thermal shutdown junction  
temperature  
Reset from shutdown  
(1) See typical characteristic graph Output Voltage Swing vs Output Current (20).  
(2) Not production tested  
版权 © 2009–2018, Texas Instruments Incorporated  
9
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
6.8 Typical Characteristics  
TA = 25°C, VS = 5 V, RF = 0 Ω, RL = 1 kΩ connected to VS / 2 (unless otherwise noted)  
3
0
3
6
9
3
0
3
6
9
G = 1,  
RF = 25  
W
VO = 0.1VPP, RF = 604  
VO = 0.1VPP  
W
W
W
G = +2, RF = 604  
-
-
-
-
-
-
-
G =  
1
G = +5, RF = 604  
W
G = +10, RF = 604  
-
-
2
G =  
5
G =  
-
G = 10  
-
-
-
-
12  
15  
12  
15  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
1. Noninverting Small-Signal Frequency Response  
2. Inverting Small-Signal Frequency Response  
Time (20ns/div)  
Time (20ns/div)  
3. Noninverting Small-Signal Step Response  
4. Noninverting Large-Signal Step Response  
-
-
-
-
-
50  
60  
70  
80  
90  
0.5  
VO = 0.1VPP  
0.4  
0.3  
0.2  
0.1  
0
-
G =  
1
f = 1MHz  
G = +1  
W
RL = 200  
W
RF = 25  
2nd−Harmonic  
-
-
-
-
-
0.1  
0.2  
0.3  
0.4  
0.5  
G = +2  
W
RF = 604  
3rd−Harmonic  
3
-
100  
0
1
2
4
100k  
1M  
10M  
100M  
1G  
Output Voltage (VPP  
)
Frequency (Hz)  
5. 0.1-dB Gain Flatness  
6. Harmonic Distortion vs Output Voltage  
10  
版权 © 2009–2018, Texas Instruments Incorporated  
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
Typical Characteristics (接下页)  
TA = 25°C, VS = 5 V, RF = 0 Ω, RL = 1 kΩ connected to VS / 2 (unless otherwise noted)  
-
-
-
-
-
-
-
-
-
-
50  
60  
70  
80  
90  
50  
60  
70  
80  
90  
VO = 2VPP  
f = 1MHz  
W
VO = 2VPP  
f = 1MHz  
W
RL = 200  
RL = 200  
2nd−Harmonic  
2nd−Harmonic  
3rd−Harmonic  
3rd−Harmonic  
-
-
100  
100  
1
10  
1
10  
Gain (V/V)  
Gain (V/V)  
7. Harmonic Distortion vs Noninverting Gain  
8. Harmonic Distortion vs Inverting Gain  
-
-
50  
50  
60  
70  
80  
90  
G = +1  
G = +1  
VO = 2VPP  
f = 1MHz  
VCM = 1.5V  
VO = 2VPP  
-
-
60  
W
RL = 200  
VCM = 1.5V  
-
-
-
-
70  
2nd−Harmonic  
3rd−Harmonic  
2nd−Harmonic  
3rd−Harmonic  
-
80  
-
90  
-
100  
-
100  
100k  
100  
1k  
1M  
Frequency (Hz)  
10M  
RL (W)  
9. Harmonic Distortion vs Frequency  
10. Harmonic Distortion vs Load Resistance  
3
0
10k  
W
RL = 10k  
G = +1  
1k  
100  
10  
W
RF = 0  
VO = 0.1VPP  
-
3
Current Noise  
Voltage Noise  
W
RL = 1k  
CL = 0pF  
-
6
W
RL = 100  
-
9
W
RL = 50  
-
12  
-
1
15  
100k  
1M  
10M  
100M  
1G  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
12. Frequency Response for Various RL Values  
11. Input Voltage and Current Noise Spectral Density vs  
Frequency  
版权 © 2009–2018, Texas Instruments Incorporated  
11  
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25°C, VS = 5 V, RF = 0 Ω, RL = 1 kΩ connected to VS / 2 (unless otherwise noted)  
160  
140  
120  
100  
80  
9
6
3
0
3
6
9
G = +1  
For 0.1dB  
Flatness  
VO = 0.1VPP  
W
CL = 100pF  
RS = 0  
-
-
-
CL = 47pF  
60  
VIN  
RS  
VO  
OPA354-Q1  
40  
CL = 5.6pF  
CL  
1k  
W
-
-
12  
20  
15  
0
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
1
1k  
10  
100  
Capacitive Load (pF)  
13. Frequency Response for Various CL Values  
14. Recommended RS vs Capacitive Load  
3
0
100  
80  
60  
40  
20  
0
G = +1  
W
CL = 5.6pF, RS = 0  
VO = 0.1VPP  
CMRR  
W
CL = 47pF, RS = 140  
-
3
6
9
PSRR+  
W
CL = 100pF, RS = 120  
-
-
PSRR  
VIN  
-
RS  
VO  
OPA354-Q1  
CL  
1k  
W
-
-
12  
15  
100k  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
1M  
10M  
Frequency (Hz)  
100M  
Frequency (Hz)  
15. Frequency Response vs Capacitive Load  
16. Common-Mode Rejection Ratio and Power-Supply  
Rejection Ratio vs Frequency  
180  
160  
140  
120  
100  
80  
0.8  
0.7  
0.6  
0.5  
Phase  
dP  
0.4  
60  
0.3  
0.2  
40  
Gain  
20  
0
0.1  
-
20  
dG  
-
40  
0
1
2
3
4
10  
100  
1k  
10k 100k  
1M  
10M 100M 1G  
Frequency (Hz)  
W
Number of 150 Loads  
18. Composite Video Differential Gain and Phase  
17. Open-Loop Gain and Phase  
12  
版权 © 2009–2018, Texas Instruments Incorporated  
 
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
Typical Characteristics (接下页)  
TA = 25°C, VS = 5 V, RF = 0 Ω, RL = 1 kΩ connected to VS / 2 (unless otherwise noted)  
10k  
3
2
1
0
1k  
100  
10  
125°C  
25°C  
–55°C  
1
-
-
-
0
20  
40  
60  
80  
100  
120  
55  
35  
15  
5
25  
45  
65  
85 105 125 135  
Temperature (°C)  
Output Current (mA)  
VS = 3 V  
19. Input Bias Current vs Temperature  
20. Output Voltage Swing vs Output Current  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
VS = 5V  
25°C  
125°C  
-
55°C  
VS = 2.5V  
-
-
-
0
25  
50  
75  
100  
125  
150  
175  
200  
55  
35  
15  
5
25  
45  
65  
85 105 125 135  
Temperature (°C)  
Output Current (mA)  
VS = 5 V  
21. Supply Current vs Temperature  
22. Output Voltage Swing vs Output Current  
100  
10  
6
5
4
3
2
1
0
VS = 5.5V  
Maximum Output  
Voltage Without  
Slew−Rate  
Induced Distortion  
1
VS = 2.7V  
0.1  
0.01  
OPA354-Q1  
ZO  
1
10  
100  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (MHz)  
23. Closed-Loop Output Impedance vs Frequency  
24. Maximum Output Voltage vs Frequency  
版权 © 2009–2018, Texas Instruments Incorporated  
13  
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25°C, VS = 5 V, RF = 0 Ω, RL = 1 kΩ connected to VS / 2 (unless otherwise noted)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
120  
110  
100  
90  
W
RL = 1k  
VO = 2VPP  
-
-
-
-
-
0.1  
0.2  
0.3  
0.4  
0.5  
80  
70  
0
10  
20  
30  
40  
50  
60 70  
80  
90 100  
-
-
-
15  
55  
35  
5
25  
45  
65  
85 105 125 135  
Time (ns)  
Temperature (°C)  
25. Output Settling Time to 0.1%  
26. Open-Loop Gain vs Temperature  
100  
90  
80  
70  
60  
50  
Common−Mode Rejection Ratio  
Power−Supply Rejection Ratio  
-
-
-
-
-
-
-
-
8
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7 8  
-
-
-
55  
35  
15  
5
25  
45  
65  
85 105 125 135  
Offset Voltage (mV)  
Temperature (°C)  
27. Offset Voltage Production Distribution  
28. Common-Mode Rejection Ratio and Power-Supply  
Rejection Ratio vs Temperature  
0
-
20  
-
40  
-
60  
OPA2354-Q1  
-
80  
-
100  
-
120  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
29. Channel-to-Channel Crosstalk (OPAx354-Q1)  
14  
版权 © 2009–2018, Texas Instruments Incorporated  
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
7 Detailed Description  
7.1 Overview  
The OPAx354-Q1 operational amplifiers are high-speed,150-V/μs, amplifiers making them excellent choices for  
transimpedance applications. The devices are unity-gain stable and can operate on a single-supply voltage (2.5  
V to 5.5 V), or a split-supply voltage (±1.25 V to ±2.75 V), making them highly versatile and easy to use. The  
OPAx354A-Q1 amplifiers are specified from 2.5 V to 5.5 V and over the automotive temperature range of –40°C  
to +125°C.  
1. OPAx354-Q1 Related Products  
FEATURES  
PRODUCT  
OPAx357  
OPAx355  
OPAx356  
OPAx350/3  
OPAx631  
OPAx634  
THS412x  
Shutdown Version of OPA354 Family  
200-MHz GBW, Rail-to-Rail Output, CMOS, Shutdown  
200-MHz GBW, Rail-to-Rail Output, CMOS  
38-MHz GBW, Rail-to-Rail Input/Output, CMOS  
75-MHz BW, G = 2, Rail-to-Rail Output  
150-MHz BW, G = 2, Rail-to-Rail Output  
100-MHz BW, Differential Input/Output, 3.3-V Supply  
7.2 Functional Block Diagram  
V+  
Reference  
Current  
VIN+  
œ
VIN  
VBIAS1  
Class AB  
Control  
VO  
Circuitry  
VBIAS2  
œ
V
(Ground)  
7.3 Feature Description  
7.3.1 Operating Voltage  
The specifications of the OPAx354-Q1 family of devices apply over a power-supply range of 2.5 V to 5.5 V  
(±1.25 V to ±2.75 V). Supply voltages higher than 7.5 V (absolute maximum) can permanently damage the  
amplifier.  
The Typical Characteristics section of this data sheet shows the parameters that vary over supply voltage or  
temperature.  
版权 © 2009–2018, Texas Instruments Incorporated  
15  
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Rail-to-Rail Input  
The specified input common-mode voltage range of the OPAx354-Q1 family of devices extends 100 mV beyond  
the supply rails. A complementary input stage (an N-channel input differential pair in parallel with a P-channel  
differential pair) achieves this extension. The N-channel pair is active for input voltages close to the positive rail,  
typically (V+) – 1.2 V to 100 mV above the positive supply, while the P-channel pair is on for inputs from 100 mV  
below the negative supply to approximately (V+) – 1.2 V. A small transition region exists, typically (V+) – 1.5 V to  
(V+) – 0.9 V, in which both pairs are on. This 600-mV transition region can vary ±500 mV with process variation.  
As a result, the transition region (both input stages on) range from (V+) – 2 V to (V+) – 1.5 V on the low end, up  
to (V+) – 0.9 V to (V+) – 0.4 V on the high end.  
A double-folded cascode adds the signal from the two input pairs and presents a differential signal to the class-  
AB output stage.  
7.3.3 Rail-to-Rail Output  
The device uses a class-AB output stage with common-source transistors to achieve rail-to-rail output. For high-  
impedance loads (> 200 ), the output voltage swing is typically 100 mV from the supply rails. With 10-loads,  
a user can achieve a useful output swing while maintaining high open-loop gain; see 20 (Output Voltage  
Swing vs Output Current).  
7.3.4 Output Drive  
The OPAx354-Q1 output stage supplies a continuous output current of ±100 mA and still provide approximately  
2.7-V output swing on a 5-V supply, as shown in 30.  
R2  
+
1 kΩ  
V1  
5 V  
-
C1  
50 pF  
1 µF  
R1  
V+  
10 kΩ  
OPA354-Q1  
-
R3  
V
RSHUNT  
10 kΩ  
VIN  
+
1 Ω  
1 V In = 100 mA  
Out as shown  
R4  
-
1 kΩ  
Laser Diode  
30. Laser Diode Driver  
For maximum reliability, TI does not recommend running a continuous DC current greater than ±100 mA; see 图  
20 (Output Voltage Swing vs Output Current). Operate the OPAx354-Q1 family of devices in parallel to supply  
continuous output currents greater than ±100 mA, as shown in 31.  
16  
版权 © 2009–2018, Texas Instruments Incorporated  
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
Feature Description (接下页)  
R2  
10kW  
C1  
200pF  
+5V  
1mF  
R1  
100kW  
R5  
1W  
OPA2354-Q1  
R3  
100kW  
+
-
R6  
1W  
RSHUNT  
1W  
2V In = 200mA  
Out, as Shown  
OPA2354-Q1  
R4  
10kW  
Laser Diode  
31. Parallel Operation  
The OPAx354-Q1 family of devices provides peak currents up to 200 mA, which correspond to the typical short-  
circuit current. Therefore, an on-chip thermal shutdown circuit protects the OPAx354-Q1 family of devices from  
dangerously high junction temperatures. At 160°C, the protection circuit shuts down the amplifier. Normal  
operation resumes when the junction temperature cools below 140°C.  
7.3.5 Video  
The OPAx354-Q1 output stage is capable of driving standard back-terminated 75-video cables (see 32). A  
back-terminated transmission line does not exhibit a capacitive load to the driver. A properly back-terminated 75-  
cable does not appear as capacitance; the cable presents a 150-resistive load to the OPAx354-Q1 output.  
5 V  
Video  
75 Ω  
In  
Video  
Output  
OPA354-Q1  
75 Ω  
2.5 V  
604 Ω  
604 Ω  
2.5 V  
32. Single-Supply Video Line Driver  
This series of amplifiers can be used as an amplifier for RGB graphic signals, which have a voltage of zero at the  
video black level by offsetting and AC-coupling the signal (see 33).  
版权 © 2009–2018, Texas Instruments Incorporated  
17  
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
Feature Description (接下页)  
604 Ω  
3 V  
+
10 nF  
1 µF  
V+  
604 Ω  
75 Ω  
1/2  
Red  
75 Ω  
R1  
R2  
OPA2354-Q1  
Red(1)  
V+  
R1  
R2  
Green(1)  
75 Ω  
1/2  
Green  
75 Ω  
OPA2354-Q1  
604 Ω  
604 Ω  
604 Ω  
3 V  
+
1 µF  
10 nF  
V+  
604 Ω  
75 Ω  
Blue  
R1  
R2  
OPA354-Q1  
Blue(1)  
75 Ω  
(1) Source video signal offset 300 mV above ground to accommodate op amp swing to ground capability.  
33. RGB Cable Driver  
7.3.6 Driving Analog-to-Digital Converters  
The OPAx354-Q1 family of op-amps offers a 60-ns settling time to 0.01%, which makes the devices a viable  
option for driving high- and medium-speed sampling ADCs and reference circuits. The OPAx354-Q1 family of  
devices provides an effective means of buffering the input capacitance and resulting charge injection of the ADC  
while providing signal gain. The OPAx354-Q1 family of devices is designed for applications requiring high DC  
accuracy.  
34 shows the OPAx354-Q1 family of devices driving an ADC. With the OPAx354-Q1 family of devices in an  
inverting configuration, using a capacitor across the feedback resistor can filter high-frequency noise in the  
signal.  
18  
版权 © 2009–2018, Texas Instruments Incorporated  
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
Feature Description (接下页)  
+5V  
330pF  
W
W
5k  
5k  
VIN  
VREF  
V+  
ADS7816, ADS7861,  
or ADS7864  
+In  
OPA354-Q1  
12−Bit A/D Converter  
+2.5V  
-
In  
GND  
-
VIN = 0V to 5V for 0V to 5V output.  
NOTE: A/D Converter Input = 0V to VREF  
34. OPA354A-Q1 Inverting Configuration Driving the ADS7816  
7.3.7 Capacitive Load and Stability  
The OPAx354-Q1 family op amps can drive a wide range of capacitive loads. However, all op-amps under  
certain conditions can become unstable. Op amp configuration, gain, and load value are a few of the factors to  
consider when determining stability. An op amp in unity-gain configuration is most susceptible to the effects of  
capacitive loading. The capacitive load reacts with the output resistance of the op amp, along with any additional  
load resistance, to create a pole in the small-signal response that degrades the phase margin. For details, see 图  
15 (Frequency Response vs Capacitive Load.)  
The OPAx354-Q1 topology enhances the ability of the device to drive capacitive loads. In unity gain, these op-  
amps perform well with large capacitive loads. For details see 14, Recommended RS vs Capacitive Load, and  
15, Frequency Response vs Capacitive Load.  
Insert a 10-to 20-resistor in series with the output to improve capacitive laod drive in the unity-gain  
configuration, as shown in 35. This configuration significantly reduces ringing with large capacitive loads; see  
15 (Frequency Response vs Capacitive Load.) However, if a resistive load is in parallel with the capacitive  
load, RS creates a voltage divider. This configuration introduces a DC error at the output and slightly reduces  
output swing. This error may be insignificant. For example, if RL = 10 kand RS = 20 , the error at the output is  
approximately 0.2%.  
V+  
RS  
OPA354-Q1  
VOUT  
VIN  
RL  
CL  
35. Series Resistor in Unity-Gain Configuration Improves Capacitive Load Drive  
7.3.8 Wideband Transimpedance Amplifier  
Wide bandwidth, low-input bias current, and low input voltage and current noise make the OPAx354-Q1 family of  
devices is designed as a wideband photodiode transimpedance amplifier for low-voltage single-supply  
applications. Low-voltage noise is important because photodiode capacitance causes the effective noise gain of  
the circuit to increase at high frequency.  
版权 © 2009–2018, Texas Instruments Incorporated  
19  
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
Feature Description (接下页)  
The key elements to a transimpedance design, as shown in 36, are the expected diode capacitance [including  
the parasitic input common-mode and differential-mode input capacitance (2 + 2) pF for the OPAx354-Q1], the  
desired transimpedance gain (RF), and the gain-bandwidth product (GBW) for the OPAx354-Q1 family of devices  
(100 MHz). With these three variables set, the feedback capacitor value (CF) is set to control the frequency  
response.  
CF  
< 1 pF  
(prevents gain peaking)  
RF  
10 MΩ  
+V  
l
CD OPA354-Q1  
VOUT  
36. Transimpedance Amplifier  
To achieve a maximally flat second-order Butterworth frequency response, set the feedback pole as shown in 公  
1.  
GBP  
4pRFCD  
1
+
Ǹ
2pRFCF  
(1)  
Typical surface-mount resistors have a parasitic capacitance of approximately 0.2 pF that required deduction  
from the calculated feedback capacitance value.  
Use 公式 2 to calculate the bandwidth.  
GBP  
2pRFCD  
f*3dB  
+
Hz  
Ǹ
(2)  
For even higher transimpedance bandwidth, use the high-speed CMOS OPA355-Q1 (200-MHz GBW) or the  
OPA655-Q1 (400-MHz GBW).  
7.4 Device Functional Modes  
The OPAx354-Q1 family of devices is powered on when the supply is connected. The devices operates as a  
single-supply operational amplifier or dual-supply amplifier depending on the application. The devices are used  
with asymmetrical supplies as long as the differential voltage (V– to V+) is at least 1.8 V and no greater than 5.5  
V (example: V– set to –3.5 V and V+ set to 1.5 V).  
20  
版权 © 2009–2018, Texas Instruments Incorporated  
 
 
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPAx354-Q1 family of devices is a CMOS, rail-to-rail I/O, high-speed, voltage-feedback operational amplifier  
designed for video, high-speed, and other applications. The OPAx354-Q1 family of devices is available as a  
single, dual, or quad op-amp.  
The amplifier features a 100-MHz gain bandwidth, and 150 V/μs slew rate, but the device is unity-gain stable and  
operates as a 1-V/V voltage follower.  
8.2 Typical Applications  
8.2.1 Transimpedance Amplifier  
Wide gain bandwidth, low input bias current, low input voltage, and current noise make the OPAx354-Q1 family  
of devices a preferred wideband photodiode transimpedance amplifier. Low-voltage noise is important because  
photodiode capacitance causes the effective noise gain of the circuit to increase at high frequency.  
The key elements to a transimpedance design, as shown in 37, are the expected diode capacitance (C(D)),  
which must include the parasitic input common-mode and differential-mode input capacitance (4 pF + 5 pF); the  
desired transimpedance gain (R(FB)); and the gain-bandwidth (GBW) for the OPAx354-Q1 family of devices (20  
MHz). With these three variables set, the feedback capacitor value (C(FB)) is set to control the frequency  
response. C(FB) includes the stray capacitance of R(FB), which is 0.2 pF for a typical surface-mount resistor.  
(1)  
C(F)  
< 1 pF  
R(F)  
10 MΩ  
V(V+)  
l
VO  
C(D)  
OPA354-Q1  
V(V–)  
(1) C(FB) is optional to prevent gain peaking. C(FB) includes the stray capacitance of R(FB)  
.
37. Dual-Supply Transimpedance Amplifier  
8.2.1.1 Design Requirements  
PARAMETER  
VALUE  
2.5 V  
Supply voltage V(V+)  
Supply voltage V(V–)  
–2.5 V  
8.2.1.2 Detailed Design Procedure  
To achieve a maximally-flat, second-order Butterworth frequency response, the feedback pole must be set to:  
1
GBW  
=
2 ´ p ´ R(FB) ´ C(FB)  
4 ´ p ´ R(FB) ´ C(D)  
(3)  
21  
版权 © 2009–2018, Texas Instruments Incorporated  
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
Use 公式 4 to calculate the bandwidth.  
GBW  
ƒ(–3 dB)  
=
2 ´ p ´ R(FB) ´ C(D)  
(4)  
For other transimpedance bandwidths, consider the high-speed CMOS OPA380 (90-MHz GBW), OPA354 (100-  
MHz GBW), OPA300 (180-MHz GBW), OPA355 (200-MHz GBW), or OPA656 and OPA657 (400-MHz GBW).  
For single-supply applications, the +INx input can be biased with a positive DC voltage to allow the output to  
reach true zero when the photodiode is not exposed to any light, and respond without the added delay that  
results from coming out of the negative rail; this configuration is shown in 38. This bias voltage appears  
across the photodiode, providing a reverse bias for faster operation.  
0.5 pF  
100 k  
œ
OPAx354-Q1  
VOUT  
+
13.7 kꢀ  
SFH213  
5 V  
1 F  
280 ꢀ  
38. Single-Supply Transimpedance Amplifier  
For additional information, see the Compensate Transimpedance Amplifiers Intuitively application bulletin.  
8.2.1.2.1 Optimizing The Transimpedance Circuit  
To achieve the best performance, components must be selected according to the following guidelines:  
1. For lowest noise, select R(FB) to create the total required gain. Using a lower value for R(FB) and adding gain  
after the transimpedance amplifier generally produces poorer noise performance. The noise produced by  
R(FB) increases with the square-root of R(FB), whereas the signal increases linearly. Therefore, signal-to-noise  
ratio improves when all the required gain is placed in the transimpedance stage.  
2. Minimize photodiode capacitance and stray capacitance at the summing junction (inverting input). This  
capacitance causes the voltage noise of the op amp to be amplified (increasing amplification at high  
frequency). Using a low-noise voltage source to reverse-bias a photodiode can significantly reduce the  
capacitance. Smaller photodiodes have lower capacitance. Use optics to concentrate light on a small  
photodiode.  
3. Noise increases with increased bandwidth. Limit the circuit bandwidth to only that required. Use a capacitor  
across the R(FB) to limit bandwidth, even if not required for stability.  
4. Circuit board leakage can degrade the performance of an otherwise well-designed amplifier. Clean the circuit  
board carefully. A circuit board guard trace that encircles the summing junction and is driven at the same  
voltage can help control leakage.  
For additional information, see the Noise Analysis of FET Transimpedance Amplifiers, and Noise Analysis for  
High-Speed Op Amps) application bulletins.  
22  
版权 © 2009–2018, Texas Instruments Incorporated  
 
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
8.2.1.3 Application Curve  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1000  
10000  
100000  
1000000  
1E+7  
5E+7  
Frequency (Hz)  
D001  
–3 dB bandwidth is 4.56 MHz  
39. AC Transfer Function  
8.2.2 High-Impedance Sensor Interface  
Many sensors have high source impedances that may range up to 10 MΩ, or even higher. The output signal of  
sensors often must be amplified or otherwise conditioned by an amplifier. The input bias current of this amplifier  
can load the sensor output and cause a voltage drop across the source resistance, as shown in 40, where  
(V(+INx) = VS – I(BIAS) × R(S)). The last term, I(BIAS) × R(S), shows the voltage drop across R(S). To prevent errors  
introduced to the system as a result of this voltage, use an op amp with low input bias current and high-  
impedance sensors. This low current keeps the error contribution by I(BIAS) × R(S) less than the input voltage  
noise of the amplifier, so that the amplifier does not become the dominant noise factor. The OPAx354-Q1 family  
of devices series of op amps feature low input bias current (typically 200 fA), and are therefore designed for such  
applications.  
R(S)  
IIB  
100 kΩ  
V(+INx)  
V(V+)  
VO  
R(F)  
Device  
V(V)  
R(G)  
40. Noise as a Result of I(BIAS)  
版权 © 2009–2018, Texas Instruments Incorporated  
23  
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
8.2.3 Driving ADCs  
The OPAx354-Q1 op amps are designed for driving sampling analog-to-digital converters (ADCs) with sampling  
speeds up to 1 MSPS. The zero-crossover distortion input stage topology allows the OPAx354-Q1 family of  
devices to drive ADCs without degradation of differential linearity and THD.  
The OPAx354-Q1 family of devices can be used to buffer the ADC switched input capacitance and resulting  
charge injection while providing signal gain. 41 shows the OPAx354-Q1 family of devices configured to drive  
the ADS8326.  
5 V  
C1  
100 nF  
5 V  
R1(1)  
100 Ω  
V(V+)  
+INx  
OPAx354-Q1  
ADS8326  
16-Bit  
250kSPS  
C3(1)  
1 nF  
V(V–)  
–INx  
VI  
0 to 4.096 V  
REF IN  
Optional(2)  
5 V  
R2  
50 kΩ  
SD1  
BAS40  
REF3240  
4.096 V  
–5 V  
C2  
100 nF  
C4  
100 nF  
(1) Suggested value; may require adjustment based on specific application.  
(2) Single-supply applications lose a small number of ADC codes near ground as a result of op amp output swing limitation. If a negative  
power supply is available, this simple circuit creates a –0.3-V supply to allow output swing to true ground potential.  
41. Driving the ADS8326  
8.2.4 Active Filter  
The OPAx354-Q1 family of devices is designed for active filter applications that require a wide bandwidth, fast  
slew rate, low-noise, single-supply operational amplifier. 42 shows a 500 kHz, second-order, low-pass filter  
using the multiple-feedback (MFB) topology. The components are selected to provide a maximally-flat  
Butterworth  
response.  
Beyond  
the  
cutoff  
frequency,  
roll-off  
is  
–40 dB/dec. The Butterworth response is designed for applications requiring predictable gain characteristics,  
such as the anti-aliasing filter used in front of an ADC.  
One point to observe when considering the MFB filter is that the output is inverted relative to the input. If this  
inversion is not required, or not desired, a noninverting output can be achieved through one of the following  
options:  
1. Adding an inverting amplifier  
2. Adding an additional second-order MFB stage  
3. Using a noninverting filter topology, such as the Sallen-Key (see 43).  
MFB and Sallen-Key, low-pass and high-pass filter synthesis is accomplished using TI’s FilterPro™ program.  
This software is available as a free download on www.ti.com.  
24  
版权 © 2009–2018, Texas Instruments Incorporated  
 
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
R3  
549 Ω  
C2  
150 pF  
V(V+)  
R1  
549 Ω  
R2  
1.24 kΩ  
VI  
VO  
Device  
C1  
1 nF  
V(V)  
42. Second-Order Butterworth 500-kHz Low-Pass Filter  
220 pF  
V(V+)  
19.5 kΩ  
150 kΩ  
1.8 kΩ  
VI = 1 VRMS  
VO  
Device  
3.3 nF  
47 pF  
V(V)  
43. OPAx354-Q1 Configured as a Three-Pole, 20-kHz, Sallen-Key Filter  
9 Power Supply Recommendations  
The OPAx354-Q1 family of devices is specified for operation from 2.5 to 5.5 V (±1.25 to ±2.75 V); many  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are shown in the Typical Characteristics section.  
CAUTION  
Supply voltages larger than 7.5 V can permanently damage the device (see the  
Absolute Maximum Ratings table).  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
Guidelines section.  
版权 © 2009–2018, Texas Instruments Incorporated  
25  
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
9.1 Power Dissipation  
Power dissipation depends on power-supply voltage, signal and load conditions. With dc signals, power  
dissipation is equal to the product of output current times the voltage across the conducting output transistor  
(VS – VO). Minimize power dissipation by using the lowest possible power-supply voltage required to ensure the  
required output voltage swing.  
For resistive loads, the maximum power dissipation occurs at a DC output voltage of one-half the power-supply  
voltage. Dissipation with AC signals is lower. The Power Amplifier Stress and Power Handling Limitations  
application bulletin from www.ti.com explains how to calculate or measure power dissipation with unusual signals  
and loads.  
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate  
heat sink. For reliable operation, limit junction temperature to 150°C, maximum. To estimate the margin of safety  
in a complete design, increase the ambient temperature to trigger the thermal protection at 160°C. The thermal  
protection must trigger more than 35°C above the maximum expected ambient condition of the application.  
10 Layout  
10.1 Layout Guidelines  
Use good high-frequency printed circuit board (PCB) layout techniques for the OPAx354-Q1 family of devices.  
Generous use of ground planes, short and direct signal traces, and a suitable bypass capacitor located at the V+  
pin ensure clean, stable operation. Large areas of copper provide a means of dissipating heat that is generated  
in normal operation. Sockets are not recommended for use with any high-speed amplifier. A 10-nF ceramic  
bypass capacitor is the minimum recommended value; adding a 1-μF or larger tantalum capacitor in parallel can  
be beneficial when driving a low-resistance load. Providing adequate bypass capacitance is essential to  
achieving very low harmonic and intermodulation distortion.  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the  
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-  
impedance power sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of the circuitry is one of the simplest and most  
effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to  
ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to  
physically separate digital and analog grounds, paying attention to the flow of the ground current. For  
more detailed information, see Circuit Board Layout Techniques.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much  
better than crossing in parallel with the noisy trace.  
Place the external components as close to the device as possible. Keeping RF and RG close to the  
inverting input minimizes parasitic capacitance, as shown in 44.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
26  
版权 © 2009–2018, Texas Instruments Incorporated  
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
10.2 Layout Example  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
NC  
NC  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
NC  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
44. Operational Amplifier Board Layout for Noninverting Configuration  
版权 © 2009–2018, Texas Instruments Incorporated  
27  
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
ZHCSI77F JUNE 2009REVISED MAY 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)ADS8326 16 位高速 2.7V 5.5V 微功耗采样模数转换器》  
德州仪器 (TI)《电路板布局技巧》  
德州仪器 (TI)《用直观方式补偿跨阻放大器》  
德州仪器 (TI)FilterPro™ 用户指南》  
德州仪器 (TI)FET 跨阻放大器噪声分析》  
德州仪器 (TI)《高速运算放大器噪声分析》  
德州仪器 (TI)OPA380 OPA2380 精密高速跨阻放大器》  
德州仪器 (TI)OPA354OPA2354 OPA4354 250MHz 轨至轨 I/O CMOS 运算放大器》  
德州仪器 (TI)《具有关断功能的 OPA355OPA2355 OPA3355 200MHz CMOS 运算放大器》  
德州仪器 (TI)OPA656 宽带单位增益稳定 FET 输入运算放大器》  
德州仪器 (TI)《功率放大器应力和功率处理限制》  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
2. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
OPA354A-Q1  
OPA2354A-Q1  
OPA4354-Q1  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
FilterPro is a trademark of Texas Instruments Incorporated.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
28  
版权 © 2009–2018, Texas Instruments Incorporated  
OPA354A-Q1, OPA2354A-Q1, OPA4354-Q1  
www.ti.com.cn  
ZHCSI77F JUNE 2009REVISED MAY 2018  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
版权 © 2009–2018, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA2354AQDGKRQ1  
OPA354AQDBVRQ1  
OPA4354AQPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
SOT-23  
TSSOP  
DGK  
DBV  
PW  
8
5
2500 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
OSLQ  
3000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
OSFQ  
14  
4354Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA354AQDBVRQ1  
OPA4354AQPWRQ1  
SOT-23  
TSSOP  
DBV  
PW  
5
3000  
2000  
179.0  
330.0  
8.4  
3.2  
6.9  
3.2  
5.6  
1.4  
1.6  
4.0  
8.0  
8.0  
Q3  
Q1  
14  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA354AQDBVRQ1  
OPA4354AQPWRQ1  
SOT-23  
TSSOP  
DBV  
PW  
5
3000  
2000  
213.0  
356.0  
191.0  
356.0  
35.0  
35.0  
14  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA4354AID

250MHz, Rail-to-Rail I/O, CMOS OPERATIONAL AMPLIFIERS
TI

OPA4354AIDG4

250MHz, Rail-to-Rail I/O, CMOS Quad Operational Amplifier 14-SOIC -40 to 125
TI

OPA4354AIDR

250MHz, Rail-to-Rail I/O, CMOS OPERATIONAL AMPLIFIERS
TI

OPA4354AIDRG4

250MHz, Rail-to-Rail I/O, CMOS Quad Operational Amplifier 14-SOIC -40 to 125
TI

OPA4354AIPWR

250MHz, Rail-to-Rail I/O, CMOS OPERATIONAL AMPLIFIERS
TI

OPA4354AIPWRG4

250MHz, Rail-to-Rail I/O, CMOS OPERATIONAL AMPLIFIERS
TI

OPA4354AIPWT

250MHz, Rail-to-Rail I/O, CMOS OPERATIONAL AMPLIFIERS
TI

OPA4354AIPWTG4

250MHz, Rail-to-Rail I/O, CMOS Quad Operational Amplifier 14-TSSOP -40 to 125
TI

OPA4354AQPWRQ1

汽车类 250MHz 轨到轨 I/O CMOS 四路运算放大器 | PW | 14 | -40 to 125
TI

OPA4363

1.8V, 7MHz, 90dB CMRR, SINGLE-SUPPLY, RAIL-TO-RAIL I/O OPERATIONAL AMPLIFIER
TI

OPA4364

1.8V, 7MHz, 90dB CMRR, SINGLE-SUPPLY, RAIL-TO-RAIL I/O OPERATIONAL AMPLIFIER
TI

OPA4364-Q1

1.8-V, 7-MHz, 90-dB CMRR, SINGLE-SUPPLY, RAIL-TO-RAIL I/O OPERATIONAL AMPLIFIER
TI