OPA462IDDA [TI]

180V、高带宽 (6.5MHz)、高压摆率 (25V/µs)、单位增益稳定运算放大器 | DDA | 8 | -40 to 85;
OPA462IDDA
型号: OPA462IDDA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

180V、高带宽 (6.5MHz)、高压摆率 (25V/µs)、单位增益稳定运算放大器 | DDA | 8 | -40 to 85

放大器 高压 运算放大器
文件: 总42页 (文件大小:3620K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
OPA462 高电压 (180V)、高电流 (30mA) 运算放大器  
1 特性  
3 说明  
1
宽电源电压范围:  
OPA462 是一款高电压 (180V) 和高电流驱动 (45mA)  
的运算放大器。该器件的特点是单位增益稳定,且具有  
±6V (12V) ±90V (180V)  
高输出负载驱动:IO ±45mA  
电流限制保护  
6.5MHz 增益带宽积。  
OPA462 在过热条件下以及电流过载时会受到内部保  
护。该器件完全可以在 ±6V ±90V 的宽电源电压范  
围内工作或者由 12V 180V 的单电源供电工作。状  
态标志是漏极开路输出,使该器件可以将标准低压逻辑  
电路作为基准。该高电压运算放大器具有出色的精度与  
宽输出摆幅,而且不存在相似运算放大器中会出现的反  
相问题。  
过热保护  
状态标志  
独立输出禁用  
增益带宽:6.5MHz  
压摆率:32V/µs  
宽温度范围:-40°C +85°C  
8 引脚 HSOIC (SO PowerPAD™) 封装  
可以通过启用/禁用 (E/D) 引脚来禁用输出。E/D 引脚  
具有公共回路引脚,可轻松与低压逻辑电路连接。此类  
禁用可在不干扰输入信号路径的情况下实现,不仅省  
电,还能保护负载。  
2 应用  
半导体测试  
光学模块  
实验室和现场仪表  
半导体制造  
OPA462 采用小型暴露金属焊盘封装,在工业温度范  
围(–40°C +85°C)内能够散热。  
多参数患者监护仪  
PC 和笔记本电脑显示面板  
器件信息(1)  
器件型号  
OPA462  
封装  
HSOIC (8)  
封装尺寸(标称值)  
4.89mm × 3.90mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
OPA462 方框图  
最大输出电压与频率间的关系  
200  
Vs=ê90 V  
Vs=ê50 V  
Vs=ê6 V  
175  
150  
125  
100  
75  
V+  
œIN  
Differential  
Amplifier  
Voltage  
Amplifier  
High Current  
Output Stage  
OUT  
50  
25  
0
Biasing  
Current Limiting  
Enable/Disable  
Status  
+IN  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
V-  
E/D  
E/D Status  
COM Flag  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS803  
 
 
 
 
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
8.2 Typical Applications ................................................ 21  
Power Supply Recommendations...................... 27  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics: Table of Graphs.................. 7  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 19  
7.1 Overview ................................................................. 19  
7.2 Functional Block Diagram ....................................... 19  
7.3 Feature Description................................................. 19  
8
9
10 Layout................................................................... 27  
10.1 Layout Guidelines ................................................. 27  
10.2 Layout Example .................................................... 30  
11 器件和文档支持 ..................................................... 31  
11.1 器件支持 ............................................................... 31  
11.2 文档支持 ............................................................... 31  
11.3 支持资源................................................................ 32  
11.4 ....................................................................... 32  
11.5 静电放电警告......................................................... 32  
11.6 Glossary................................................................ 32  
12 机械、封装和可订购信息....................................... 32  
7
4 修订历史记录  
Changes from Original (December 2018) to Revision A  
Page  
已更改 将 OPA462 预告信息(预发布)更改为生产数据(正在供货)” ......................................................................... 1  
2
版权 © 2018–2019, Texas Instruments Incorporated  
 
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
5 Pin Configuration and Functions  
DDA PACKAGE  
8-Pin SO PowerPAD™  
Top View  
E/D Com  
œIN  
1
2
3
4
8
7
6
5
E/D  
V+  
PowerPAD  
+IN  
OUT  
Vœ  
Status Flag  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
E/D  
NO.  
8
I
I
Enable or disable  
Enable and disable common  
Inverting input  
E/D Com  
–IN  
1
2
I
+IN  
3
I
Noninverting input  
Output  
OUT  
6
O
Status Flag is an open-drain active-low output referenced to E/D Com. This pin  
goes active for either an overcurrent or overtemperature condition.  
Status Flag  
5
O
V–  
V+  
4
7
Negative (lowest) power supply  
Positive (highest) power supply  
The PowerPAD is internally connected to V–. The PowerPAD must be soldered  
to a printed-circuit board (PCB) connected to V–, even with applications that  
have low power dissipation.  
PowerPAD  
PowerPAD  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
190  
UNIT  
V
VS  
Supply voltage  
Signal input pins(2)  
E/D to E/D Com  
All input pins(2)  
Output short circuit(3)  
Operating  
+IN, –IN  
(V–) – 0.3  
(V+) + 0.3  
7
V
V
±10  
mA  
Continuous  
–55  
Continuous  
125  
TA  
°C  
°C  
°C  
TJ  
Junction  
150  
TSTG  
Storage  
–55  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals, Status Flag, E/D, and E/D Com, and Output are diode-clamped to the power-supply rails. Input signals that can swing  
more than 0.3 V beyond the supply rails must be current-limited to 10 mA or less.  
(3) Short-circuit to ground.  
6.2 ESD Ratings  
VALUE  
±3000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
±6  
NOM  
MAX  
±90  
85  
UNIT  
VS  
TA  
Supply voltage  
V
Specified temperature  
–40  
°C  
6.4 Thermal Information  
OPA462  
THERMAL METRIC(1)  
DDA (HSOIC)  
8 PINS  
36.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
45.4  
Junction-to-board thermal resistance  
11.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.8  
ψJB  
11.3  
RθJC(bot)  
2.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
 
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
6.5 Electrical Characteristics  
at TA = 25°C, VS = ±90V RL = 10 kto mid-supply, VCM = VOUT = mid-supply (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
VOS Input offset voltage  
dVOS/dT Input offset voltage drift  
IO = 0 mA  
±0.2  
±4  
±3.4  
±20  
0.3  
mV  
At TA = –40°C to +85°C  
VS = ±6 V to ±90 V  
µV/°C  
µV/V  
0.03  
PSRR  
Power supply rejection ratio  
VS = ±6 V to ±90 V  
At TA = –40°C to +85°C  
0.3  
1.5  
µV/V  
INPUT BIAS CURRENT  
VS = ±50V  
±30  
±30  
±100  
±2.2  
±100  
±1.1  
pA  
nA  
pA  
nA  
IB  
Input bias current  
Input offset current  
At TA = –40°C to +85°C  
IOS  
At TA = –40°C to +85°C  
NOISE  
en  
f = 1 kHz  
33  
23  
nV/Hz  
nV/Hz  
µVPP  
Input voltage noise density  
Input voltage noise  
f = 10 kHz  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
12.5  
40  
fA/Hz  
fA/Hz  
in  
Current noise density  
f = 10 kHz  
450  
INPUT VOLTAGE  
VCM  
Common-mode voltage  
Linear operation  
(V–) + 1  
120  
(V+) – 3  
V
Common-mode  
rejection  
CMRR  
Common-mode rejection  
–85 V VCM 85 V  
128  
120  
dB  
–85 V VCM 85 V  
At TA = –40°C to +85°C  
CMRR  
Common-mode rejection  
116  
dB  
INPUT IMPEDANCE  
1013 || 6  
Differential  
|| pF  
|| pF  
1013 || 3.5  
Common-mode  
OPEN-LOOP GAIN  
(V–) + 3 V < VO < (V+) – 3 V  
126  
120  
135  
134  
dB  
dB  
(V–) + 3 V < VO < (V+) – 3 V  
At TA = –40°C to +85°C  
(V–) + 5 V < VO < (V+) – 5 V, RL  
5kΩ  
=
=
AOL  
Open-loop voltage gain  
126  
120  
135  
130  
dB  
dB  
(V–) + 5 V < VO < (V+) – 5 V, RL  
5kΩ  
At TA = –40°C to +85°C  
FREQUENCY RESPONSE  
GBW  
Gain-bandwidth product  
Small-signal  
6.5  
32  
25  
MHz  
V/µs  
kHz  
G = ±1 V/V, VO = 80-V step,  
RL = 3.27 kΩ  
SR  
Slew rate  
Full-power bandwidth  
To ±0.01%, G = ±5 V/V or ±10  
V/V,  
tS  
Settling time  
5.2  
µs  
VO = 120-V step  
G = +10 V/V,  
f = 1 kHz, VO = 150 VPP  
0.0009  
0.0012  
0.0015  
0.0025  
%
%
%
%
G = +10 V/V,  
f = 1 kHz, VO = 150 VPP, RL = 5 kΩ  
THD+N  
Total harmonic distortion + noise  
G = +20 V/V,  
f = 1 kHz, VO = 150 VPP  
G = +20 V/V,  
f = 1 kHz, VO = 150 VPP, RL = 5 kΩ  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, VS = ±90V RL = 10 kto mid-supply, VCM = VOUT = mid-supply (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
Overload recovery  
G = –10 V/V  
150  
ns  
V
RL = 10 k,  
RL = 5 k,  
(V–) + 3  
(V–) + 5  
(V+) – 1.5  
(V+) – 3  
VO  
Output voltage swing  
Short-circuit current  
V
VS = ±45 V, At TA = –40°C to  
+85°C  
ISC  
±45  
mA  
CLOAD  
ZO  
Capacitive load drive  
Open-loop output impedance  
Output impedance  
200  
90  
pF  
Ω
f = 1 MHz  
Output disabled  
Output disabled  
160  
36  
kΩ  
pF  
Output capacitance  
STATUS FLAG PIN (Referenced to E/D Com)  
Enable Disable, 10 kpull-up  
to 5 V  
3.5  
11  
1
µs  
µs  
µs  
Disable Enable, 10 kpull-up  
to 5V  
Status Flag delay  
Overcurrent delay, 10 kpull-up  
to 5V  
Overcurrent recovery delay, 10 kΩ  
pull-up to 5 V  
9
150  
130  
µs  
°C  
°C  
Alarm (Status Flag high)  
Device thermal  
Return to normal operation  
shutdown  
(Status Flag low)  
Status Flag output voltage  
See typical  
curves  
Normal operation  
V
E/D (ENABLE/DISABLE) PIN  
E/D Com +  
0.8  
E/D Com +  
5.5  
High (output enabled)  
VSD  
Pin open or forced high  
Pin forced low  
V
V
E/D Com +  
0.35  
Low (output disabled)  
E/D Com  
Output disable time  
Output enable time  
4
µs  
µs  
2.5  
E/D COM PIN  
V
S 106 V  
(V–)  
(V–)  
(V–) +100  
(V+) – 6  
V
V
Pin voltage  
VS < 106 V  
POWER SUPPLY  
IQ  
Quiescent current  
IO = 0 mA  
3.2  
1.5  
3.7  
2
mA  
mA  
Quiescent current in Shutdown mode  
IO = 0 mA, VE/D = 0.65 V  
6
版权 © 2018–2019, Texas Instruments Incorporated  
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
6.6 Typical Characteristics: Table of Graphs  
1. Table of Graphs  
DESCRIPTION  
Offset Voltage Production Distribution at 25°C  
Offset Voltage Distribution at 85°C  
Offset Voltage Distribution at -40°C  
Offset Voltage Drift Distribution from -40°C to 85°C  
Offset Voltage vs Temperature  
FIGURE  
1  
2  
3  
4  
5  
Offset Voltage Warmup  
6  
Offset Voltage vs Common-Mode Voltage (Low Vcm)  
Offset Voltage vs Common-Mode Voltage (High Vcm)  
Offset Voltage vs Power Supply (Low Supply)  
Offset Voltage vs Power Supply (High Supply)  
Offset Voltage vs Output Voltage (Low Output)  
Offset Voltage vs Output Voltage (High Output)  
CMRR vs Temperature  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
CMRR vs Frequency  
PSRR vs Temperature  
PSRR vs Frequency  
EMIRR vs Frequency  
No Phase Reversal  
Input Bias Current Production Distribution at 25℃  
IB vs Temperature  
IB vs Common-Mode Voltage  
Enable Response  
Current Limit Response  
Open-Loop Gain vs Temperature  
Open-Loop Gain vs Output Voltage  
Open-Loop Gain and Phase vs Frequency  
Open-Loop Output Impedance vs Frequency  
Closed-Loop Gain vs Frequency  
Maximum Output Voltage vs Frequency  
Positive Output Voltage vs Output Current  
Negative Output Voltage vs Output Current  
Short-Circuit Current vs Temperature  
Negative Overload Recovery  
Positive Overload Recovery  
Settling Time  
Phase Margin vs Capacitive Load  
Small-Signal Overshoot vs Capacitive Load (G = –1)  
Small-Signal Overshoot vs Capacitive Load (G = +1)  
Small-Signal Step Response (G = –1)  
Small-Signal Step Response (G = +1)  
Large-Signal Step Response (G = –1)  
Large-Signal Step Response (G = +1)  
Slew Rate vs Output Step Size  
Slew Rate vs Supply Voltage (Inverting)  
Slew Rate vs Supply Voltage (Noninverting)  
THD+N Ratio vs Frequency (G = 10)  
版权 © 2018–2019, Texas Instruments Incorporated  
7
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics: Table of Graphs (接下页)  
1. Table of Graphs (接下页)  
DESCRIPTION  
THD+N Ratio vs Frequency (G = 20)  
THD+N Ratio vs Output Amplitude (G = 10)  
THD+N Ratio vs Output Amplitude (G = 20)  
0.1-Hz to 10-Hz Noise  
FIGURE  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
Input Voltage Noise Spectral Density  
Current Noise Density  
Quiescent Current Production Distribution at 25℃  
Quiescent Current vs Supply Voltage  
Quiescent Current vs Temperature  
Status Flag Voltage vs Temperature  
Quiescent Current vs Enable Voltage  
Enable Current vs Enable Voltage  
Status Flag Current vs Voltage  
8
版权 © 2018–2019, Texas Instruments Incorporated  
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
6.7 Typical Characteristics  
at TA = 25°C, VS = ±90 V, and RL = 10 kconnected to GND, output enabled (unless otherwise noted)  
20  
16  
12  
8
20  
16  
12  
8
4
4
0
0
-4 -3.2 -2.4 -1.6 -0.8  
0
Offset Voltage (mV)  
0.8 1.6 2.4 3.2  
4
-5  
-4  
-3  
-2  
-1  
0
1
Offset Voltage (mV)  
2
3
4
5
1. Offset Voltage Production Distribution at 25°C  
2. Offset Voltage Distribution at 85°C  
20  
30  
25  
20  
15  
10  
5
16  
12  
8
4
0
0
-5  
-4  
-3  
-2  
-1  
Offset Voltage (mV)  
0
1
2
3
4
5
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
Offset Voltage Drift (mV/èC)  
3. Offset Voltage Distribution at –40°C  
4. Offset Voltage Drift Distribution from –40°C to +85°C  
4
3
500  
400  
300  
200  
100  
0
2
1
0
-100  
-200  
-300  
-400  
-1  
-2  
-3  
-4  
-500  
100s/div  
-50  
-25  
0
25  
Temperature (èC)  
50  
75  
100  
5. Offset Voltage vs Temperature  
6. Offset Voltage Warmup  
版权 © 2018–2019, Texas Instruments Incorporated  
9
 
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±90 V, and RL = 10 kconnected to GND, output enabled (unless otherwise noted)  
4
4
TA = -40  
TA = 25  
TA = 85  
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
TA = -40  
TA = 25  
TA = 85  
-90 -89.5 -89 -88.5 -88 -87.5 -87 -86.5 -86 -85.5 -85  
Common-mode Voltage (V)  
85  
86  
87 88  
Common-mode Voltage (V)  
89  
90  
7. Offset Voltage vs Common-Mode Voltage  
8. Offset Voltage vs Common-Mode Voltage  
(High VCM  
(Low VCM  
)
)
4
3
4
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
3
5
7
9
11  
Power Supply Voltage (V)  
13  
15  
6
18  
30  
42  
54  
Power Supply Voltage (V)  
66  
78  
90  
9. Offset Voltage vs Power Supply (Low Supply)  
10. Offset Voltage vs Power Supply (High Supply)  
4
3
2
1
0
5
TA = -40, RL = 5kW  
4
TA = -40, RL = 10kW  
TA = 25, RL = 5kW  
3
TA = 25, RL = 10kW  
TA = 85, RL = 5kW  
2
TA = 85, RL = 10kW  
1
0
-1  
-2  
-3  
-4  
-5  
TA = -40, RL = 5kW  
TA = -40, RL = 10kW  
TA = 25, RL = 5kW  
TA = 25, RL = 10kW  
TA = 85, RL = 5kW  
TA = 85, RL = 10kW  
-1  
-2  
-3  
-4  
-90  
-88  
-86 -84  
Output Voltage (V)  
-82  
-80  
80  
82  
84 86  
Output Voltage (V)  
88  
90  
11. Offset Voltage vs Output Voltage (Low Output)  
12. Offset Voltage vs Output Voltage (High Output)  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±90 V, and RL = 10 kconnected to GND, output enabled (unless otherwise noted)  
160  
150  
140  
130  
120  
110  
100  
0.01  
0.1  
1
160  
140  
120  
100  
80  
CMRR  
60  
40  
20  
10  
0
-50  
-25  
0
25  
Temperature (èC)  
50  
75  
100  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
13. CMRR vs Temperature  
14. CMRR vs Frequency  
160  
150  
140  
130  
120  
110  
100  
0.01  
0.1  
1
140  
PSRR+  
PSRR-  
120  
100  
80  
60  
40  
20  
0
10  
-50  
-25  
0
25  
Temperature (èC)  
50  
75  
100  
10m 100m  
1
10  
100 1k  
Frequency (Hz)  
10k 100k 1M 10M  
15. PSRR vs Temperature  
16. PSRR vs Frequency  
120  
110  
100  
90  
Vin (V)  
Vout (V)  
80  
70  
60  
50  
Time (100 ms/div)  
10M  
100M  
Frequency (Hz)  
1G  
10G  
17. EMIRR vs Frequency  
18. No Phase Reversal  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±90 V, and RL = 10 kconnected to GND, output enabled (unless otherwise noted)  
80  
70  
60  
50  
40  
30  
20  
10  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
IB-, Vs = 6V  
IB-, Vs = 90V  
IB+, Vs = 6V  
IB+, Vs = 90V  
IOS, Vs = 6V  
IOS, Vs = 90V  
-100  
-200  
-300  
-100 -80 -60 -40 -20  
0
20  
Input Bias Current (pA)  
40  
60  
80 100  
-50  
-25  
0
25  
Temperature (èC)  
50  
75  
100  
19. Input Bias Current Production Distribution at 25℃  
20. IB vs Temperature  
30  
IB-  
IB+  
Ios  
20  
10  
0
-10  
Enable  
Output  
Status  
-20  
-90  
-60  
-30  
0
30  
Common-mode Voltage (V)  
60  
90  
Time (2 ms/div)  
21. IB vs Common-Mode Voltage  
22. Enable Response  
6
5
4
3
2
1
0
60  
40  
20  
0
160  
0.01  
0.1  
1
VFLAG  
IOUT  
150  
140  
130  
120  
110  
100  
90  
-20  
-40  
-60  
10  
RL = 10kW  
RL = 5kW  
80  
-50  
100  
100  
Time (200 ms/div)  
-25  
0
25  
Temperature (èC)  
50  
75  
24. Open-Loop Gain vs Temperature  
23. Current Limit Response  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±90 V, and RL = 10 kconnected to GND, output enabled (unless otherwise noted)  
160  
140  
120  
100  
80  
0.01  
0.1  
1
140  
120  
100  
80  
200  
175  
150  
125  
100  
75  
Gain  
Phase  
60  
40  
TA = -40èC, RL = 10kW  
TA = -40èC, RL = 5kW  
TA = 25èC, RL = 10kW  
TA = 25èC, RL = 5kW  
TA = 85èC, RL = 10kW  
TA = 85èC, RL = 5kW  
10  
20  
50  
0
25  
100  
10  
-20  
10m 100m  
0
10k 100k 1M 10M  
0
1
2
3
4
5
6
Swing from Rail (V)  
7
8
9
1
10  
100 1k  
Frequency (Hz)  
25. Open-Loop Gain vs Output Voltage  
26. Open-Loop Gain and Phase vs Frequency  
30  
10000  
1000  
100  
G = +1  
G= -1  
G= +10  
20  
10  
0
-10  
10  
-20  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
27. Open-Loop Output Impedance vs Frequency  
Vs=ê90 V  
28. Closed-Loop Gain vs Frequency  
200  
175  
150  
125  
100  
75  
100  
80  
60  
40  
20  
0
Vs=ê50 V  
Vs=ê6 V  
50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
25  
0
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
0
10  
20 30  
Output Current (mA)  
40  
50  
29. Maximum Output Voltage vs Frequency  
30. Positive Output Voltage vs Output Current  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±90 V, and RL = 10 kconnected to GND, output enabled (unless otherwise noted)  
0
60  
50  
40  
30  
TA = -40èC  
TA = 25èC  
TA = 85èC  
-20  
-40  
-60  
-80  
Sinking  
Sourcing  
-100  
0
10  
20 30  
Output Current (mA)  
40  
50  
-50  
-25  
0
25  
Temperature (èC)  
50  
75  
100  
31. Negative Output Voltage vs Output Current  
32. Short-Circuit Current vs Temperature  
VIN  
VOUT  
VIN  
VOUT  
Time (500 ns/div)  
Time (500 ns/div)  
33. Negative Overload Recovery  
34. Positive Overload Recovery  
60  
50  
40  
30  
20  
10  
Rising  
Falling  
Time (2 ms/div)  
10  
100  
Cload (pF)  
1000  
36. Phase Margin vs Capacitive Load  
35. Settling Time  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±90 V, and RL = 10 kconnected to GND, output enabled (unless otherwise noted)  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
RISO = 0  
RISO = 25  
RISO = 50  
RISO = 0  
RISO = 25  
RISO = 50  
10  
100  
Capactiance (pF)  
1000  
10  
100  
Capactiance (pF)  
1000  
G = –1  
G = +1  
37. Small-Signal Overshoot vs Capacitive Load  
38. Small-Signal Overshoot vs Capacitive Load  
VIN  
VOUT  
VIN  
VOUT  
Time (1 ms/div)  
Time (1 ms/div)  
G = –1  
G = +1  
39. Small-Signal Step Response  
40. Small-Signal Step Response  
Vin (V)  
Vout (V)  
Vin (V)  
Vout (V)  
Time (2 ms/div)  
Time (2 ms/div)  
G = –1  
G = +1  
41. Large-Signal Step Response  
42. Large-Signal Step Response  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±90 V, and RL = 10 kconnected to GND, output enabled (unless otherwise noted)  
33  
30  
27  
24  
21  
18  
15  
12  
9
40  
30  
20  
10  
0
VOUT = 1V  
VOUT = 5V  
VOUT = 10V  
VOUT = 20V  
VOUT > 40V  
6
G+1  
G-1  
3
0
0
20  
40  
60  
Output Amplitude (VPP  
80  
100 120 140 160 180  
)
40  
60  
80  
100 120  
Supplpy Voltage (V)  
140  
160  
180  
43. Slew Rate vs Output Step Size  
44. Slew Rate vs Supply Voltage (Inverting)  
40  
0.1  
-60  
VOUT = 1V  
G = -1. 10kW Load  
G = -1. 5kW Load  
G = +1. 10kW Load  
G = +1. 5kW Load  
VOUT = 5V  
VOUT = 10V  
VOUT = 20V  
VOUT > 40V  
30  
20  
10  
0
0.01  
0.001  
-80  
-100  
0.0001  
-120  
40  
60  
80  
100 120  
Supplpy Voltage (V)  
140  
160  
180  
20  
200  
2k  
20k  
Frequency (Hz)  
G = 10  
45. Slew Rate vs Supply Voltage (Noninverting)  
46. THD+N Ratio vs Frequency  
0.1  
0.01  
-60  
1
0.1  
-40  
G = -1. 10kW Load  
G = -1, 10kW Load  
G = -1, 5kW Load  
G = +1, 10kW Load  
G = +1, 5kW Load  
G = -1. 5kW Load  
G = +1. 10kW Load  
G = +1. 5kW Load  
-60  
-80  
0.01  
-80  
0.001  
-100  
0.001  
-100  
-120  
0.0001  
-120  
0.0001  
20  
200  
2k  
20k  
100m  
1 10  
Output Amplitude (VPP)  
100  
Frequency (Hz)  
G = 20  
G = 10  
47. THD+N Ratio vs Frequency  
48. THD+N Ratio vs Output Amplitude  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±90 V, and RL = 10 kconnected to GND, output enabled (unless otherwise noted)  
1
-40  
G = -1, 10kW Load  
G = -1, 5kW Load  
G = +1, 10kW Load  
G = +1, 5kW Load  
0.1  
-60  
0.01  
-80  
0.001  
-100  
-120  
0.0001  
Time (1 s/div)  
100m  
1 10  
Output Amplitude (VPP  
100  
)
G = 20  
49. THD+N Ratio vs Output Amplitude  
50. 0.1-Hz to 10-Hz Noise  
1000  
100  
10  
10  
1
0.1  
0.01  
1
10  
100 1k  
Frequency (Hz)  
10k  
100k  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
51. Input Voltage Noise Spectral Density  
52. Current Noise Density  
60  
45  
30  
15  
0
4
3
2
1
0
2
2.25  
2.5  
2.75  
Quiescent Current (mA)  
3
3.25  
3.5  
3.75  
4
0
20  
40  
Supply Voltage (V)  
60  
80  
90  
53. Quiescent Current Production Distribution at 25℃  
54. Quiescent Current vs Supply Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±90 V, and RL = 10 kconnected to GND, output enabled (unless otherwise noted)  
4
3.5  
3
1
0.8  
0.6  
0.4  
0.2  
0
2.5  
Vs = 6V  
Vs = 90V  
E/D Com = -90V  
E/D Com = 0V  
2
-50  
-25  
0
25  
Temperature (èC)  
50  
75  
100  
-50  
-25  
0
25  
Temperature (èC)  
50  
75  
100  
55. Quiescent Current vs Temperature  
56. Status Flag Voltage vs Temperature  
4
3.5  
3
100  
80  
E/D Com Current  
E/D Current  
60  
40  
20  
2.5  
2
0
-20  
-40  
-60  
-80  
-100  
TA = -40èC  
TA = 25èC  
TA = 85èC  
1.5  
1
0
1
2
Enable Voltage (V)  
3
4
5
0
1
2
Enable Voltage (V)  
3
4
5
57. Quiescent Current vs Enable Voltage  
58. Enable Current vs Enable Voltage  
15  
10  
5
TA=-40èC  
TA=25èC  
TA=85èC  
0
0
1
2
3
Status Flag Voltage - ED COM (V)  
4
5
59. Status Flag Current vs Voltage  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
7 Detailed Description  
7.1 Overview  
The OPA462 is an operational amplifier (op amp) with high voltage of 180 V, and a high current drive of 30 mA.  
This device is unity-gain stable and features a gain-bandwidth product of 6.5 MHz. The high-voltage OPA462  
offers excellent accuracy and wide output swing, and has no phase inversion problems that are typically found in  
similar op amps. The device can be applied in many common op amp configurations requiring a supply voltage  
range from ±6-V to ±90-V.  
The OPA462 features an enable-disable function that provides the ability to turn off the output stage and reduce  
power consumption when not being used. The device also features a Status Flag pin that indicates an  
overtemperature or overcurrent fault conditions.  
7.2 Functional Block Diagram  
V+  
œIN  
Differential  
Amplifier  
Voltage  
Amplifier  
High Current  
Output Stage  
OUT  
Biasing  
Current Limiting  
Enable/Disable  
Status  
+IN  
V-  
E/D  
E/D Status  
COM Flag  
7.3 Feature Description  
7.3.1 Status Flag Pin  
The Status Flag pin indicates fault conditions and can be used in conjunction with the enable-disable function to  
implement fault control loops. This pin is triggered when the device enters an overtemperature or overcurrent  
fault condition.  
7.3.2 Thermal Protection  
The OPA462 features internal thermal protection that is triggered when the junction temperature is greater than  
150°C. When the protection circuit is triggered, thermal shutdown occurs to allow the junction to return a safe  
operating temperature. Thermal shutdown enables the Status Flag pin, which indicates the device has entered  
the thermal shutdown state.  
7.3.3 Current Limit  
Current limiting is accomplished by internally limiting the drive to the output transistors. The output can supply the  
limited current continuously, unless the die temperature rises to 150°C, which initiates thermal shutdown. With  
adequate heat dissipation, and use of the lowest possible supply voltage, the OPA462 can remain in current limit  
continuously without entering thermal shutdown. The best practice is to provide proper heat dissipation (either by  
a physical plate or by airflow) to remain well below the thermal shutdown threshold. For longest operational life of  
the device, keep the junction temperature below 125°C.  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.4 Enable and Disable  
If left disconnected, E/D Com is pulled near V– (negative supply) by an internal 10-μA current source. When left  
floating, E/D is held approximately 2 V above E/D Com by an internal 1-µA source. Even though active operation  
of the OPA462 results when the E/D and E/D Com pins are not connected, a moderately fast, negative-going  
signal capacitively coupled to the E/D pin can overpower the 1-µA pullup current and cause device shutdown.  
This behavior can appear as an oscillation and is encountered first near extreme cold temperatures. If the enable  
function is not used, a conservative approach is to connect E/D through a 30-pF capacitor to a low impedance  
source. Another alternative is the connection of an external current source from V+ (positive supply) sufficient to  
hold the enable level above the shutdown threshold. 60 shows a circuit that connects E/D and E/D Com. The  
E/D Com pin is limited to (V–) + 100 V to enable the use of digital ground in a application where the OPA462  
power supply is ±90 V.  
When the E/D pin is dropped to a voltage between 0 V and 0.65 V above the E/D Com pin voltage the output of  
the OPA462 will become disabled. While in this state the impedance of the output increases to approximately  
160 kΩ. Because the inputs are still active, an input signal might be passed to the output of the amplifier. The  
voltage at the amplifier output is reduced because of a drop across this output impedance, and may appear  
distorted compared to a normal operation output.  
After the E/D pin voltage is raised to a voltage between 2.5 V and 5 V greater than the E/D Com, the output  
impedance returns to a normal state and the amplifier operates normally.  
V+  
(Positive Op Amp Supply)  
IP  
RP  
DVDD  
(Digital Supply)  
V+  
5V Logic  
-IN  
E/D  
VOUT  
E/D Com  
+IN  
V-  
V-  
(Negative Op Amp Supply)  
60. E/D and E/D Com  
7.4 Device Functional Modes  
A unique mode of the OPA462 is the output disable capability. This function conserves power during idle periods  
(quiescent current drops to approximately 1 mA). This disable is accomplished without disturbing the input signal  
path, not only saving power but also protecting the load. This feature makes disable useful for implementing  
external fault shutdown loops.  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The OPA462 is a high-voltage, high-current operational amplifier capable of operating with supply voltages as  
high as ±90 V (180 V), or as low as ±6 V (12 V). The high-voltage process and design of the OPA462 allows the  
device to be used in applications where most operational amplifiers cannot be applied, such as high-voltage  
power-supply conditions, or when there is a need for very a high-output voltage swing. The output is capable of  
delivering up to ±30 mA output current, or swinging within a few volts of the supply rails at moderate current  
levels. The OPA462 features input overvoltage protection, output current limiting, thermal protection, a status  
flag, and enable-disable capability.  
8.2 Typical Applications  
8.2.1 High DAC Gain Stage for Semiconductor Test Equipment  
R1  
10 k  
R2  
160 kꢀ  
90 V  
100 nF  
Z1  
Status  
Flag  
3 V to 5 V  
90 V  
D1  
œ
E/D  
E/D Com  
100 nF  
VO  
85 VPK  
+
RL  
10 kꢀ  
1W  
D2  
VI  
5 VPK  
R3  
10 kꢀ  
Z2  
œ90 V  
D1, D2 = 1N5271B zener, PSMA100A TVS, etc.  
Z1, Z2 = 1N4935, ES3A, etc. Fast rectifier.  
œ90 V  
61. OPA462, High-Voltage Noninverting Amplifier, AV = 17 V/V  
8.2.1.1 Design Requirements  
The OPA462 high-voltage op amp can be used in commonly applied op amp circuits, but with the added  
capability of allowing for the use of much higher supply voltages. A very common application of an op amp is that  
of a noninverting amplifier with a gain of 1 V/V or higher. 61 shows the OPA462 in a noninverting  
configuration.  
The design goals for this circuit are:  
A noninverting gain of 17 V/V (24.6 dB)  
A peak output voltage of 85 V, while driving a 10 koutput load  
Correct biasing of E/D and E/D Com  
Protection against back electromagnetic force (EMF)  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.2 Detailed Design Procedure  
61 shows a noninverting circuit with a moderately high closed-loop gain (AV) of 17 V/V (24.6 dB). In this  
example, a 5-VPK ac signal is amplified to 85 VPK across a 10-kload resistor connected to the output. The peak  
current for this application is 8.5 mA, and is well within the OPA462 output current capability. Higher output  
current, typically up to 30 mA, may be attained at the expense of the output swing to the supply rails. A ±90-VDC  
power supply is required for this configuration.  
The noninverting amplifier circuit shows the OPA462 enable-disable function. When placed in disabled mode the  
op amp becomes nonfunctional, and the current consumption is reduced to approximately one-third to one-half  
the enabled level. An enable active state occurs when the E/D pin is left open, or is biased 3 V to 5 V greater  
than the E/D Com voltage level. If biased between the E/D com level, to E/D Com + 0.65 V, the OPA462  
disables. More information about this function is provided in the Enable and Disable section.  
Op amps designed for high-voltage and high-power applications may encounter output loads that can be quite  
different than those used in low-voltage, non-power op amp applications. Although every effort is made to make  
a high-voltage op amp such as the OPA462 robust and tolerant of different supply and different output load  
conditions, some loads can present potentially harmful circumstances.  
Purely resistive output loads operating within the current capability range of the OPA462 do not present an  
unsafe condition, provided the thermal requirements discussed in the Layout section. Complex loads that have  
inductive or capacitive reactive elements might present an unsafe condition, and must be fully considered and  
addressed before implementation.  
A potentially destructive mechanism is the back EMF transient that can be generated when driving an inductive  
load. D1, D2, Z1 and Z2 in 61 have been added to the basic OPA462 amplifier circuit to provide protection in  
the event of back EMF. If the voltage at the OPA462 output attempts to momentarily rise above V+, D1 becomes  
forward-biased and clamps the voltage between the output and V+ pins. This clamp must be sufficient to protect  
the OPA462 output transistor. If the event causes the V+ voltage to increase the power supply bypass capacitor,  
Z1, or both, a Zener diode or a transient voltage suppressor (TVS) can provide a path for the transient current to  
ground. D2 and Z2 provide the same protection in the negative supply circuit.  
The OPA462 noninverting amplifier circuit with a closed-loop gain of 17 V/V has a small-signal, –3-dB bandwidth  
of nearly 800 kHz. However, the large-signal bandwidth is likely of greater importance in a high-output-voltage  
application. For that mode of operation, the slew rate of the op amp and the peak output swing voltage must be  
considered in order to determine the maximum large-signal bandwidth. The slew rate (SR) of the OPA462 is  
typically 6.5 V/µs, or 6.5 × 106 V/s. Using the 85-VPK output voltage available from the circuit in 61, the  
maximum large-signal bandwidth is calculated from the slew rate formula. 公式 1, 公式 2 and 公式 3 show the  
calculation process.  
SR = 2P ì fMAX ì VPK  
fMAX = SR / 2P ì V  
(1)  
(2)  
(
)
PK  
fMAX = 6.5 ì 106 V/s / 2P / 85 V = 12 kHz  
(
)
where  
SR = 6.5 × 106 V/s  
VPK = 85 V  
(3)  
The best practice for a typical parameter such as slew rate to allow for variance. In this example, keeping the  
large signal fMAX to 10 kHz is sufficient to make sure the output avoids slew rate limiting.  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
Typical Applications (接下页)  
8.2.1.3 Application Curve  
62 shows the OPA462 85-VPK output produced from a 5-VPK, 10-kHz sine input. The results were obtained  
from a TINA-TI simulation.  
62. OPA462 Large-Signal Output With a 10-kHz Sine Input From a TINA-TI Simulation  
8.2.2 Improved Howland Current Pump for Bioimpedance Measurements in Multiparameter Patient  
Monitors  
R14  
100 k  
R15  
100 kꢀ  
0 V  
90 V  
Vo1  
100 nF  
R13  
125 ꢀ  
œ
R11  
100 kꢀ  
Vout  
AM1  
+
100 nF  
VP  
2.5 Vpk  
RL  
500 ꢀ  
œ90 V  
R12  
99.88 kꢀ  
63. High-Voltage, 20-mA, Improved Howland Current Pump  
8.2.2.1 Design Requirements  
The OPA462 can be used to create a high-voltage, improved Howland current pump that provides a constant  
output current proportional to a single or differential input voltage applied to the pump inputs. The improved  
Howland current pump is described in section 3 of the AN-1515 A Comprehensive Study of the Howland Current  
Pump application report. Information about how the current pump resistor values are determined for a specific  
combination of input voltage and corresponding output current are detailed in the report. Here, the OPA462 is  
used to provide a constant current output over a wide range of output load.  
Input voltage: 2.5 Vpk at 400 Hz  
Output voltage: 20 Vpk  
Output current: ±20 mA in-phase with the output voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
 
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.2.2 Detailed Design Procedure  
The improved Howland current pump circuit is illustrated in 63. The OPA462 sources an output current of 20  
mA when a low-voltage single-ended, 2.5-V reference voltage is applied to the circuit input. The source could be  
an actual 2.5-V precision reference. If the current-pump output current requires being set to different levels, a  
voltage output DAC can be used. If the input voltage polarity is reversed, the output current reverses direction,  
and 20 mA is sunk from the load through the OPA462 output.  
The circuit shown in 63 provides the resistance values required to obtain a ±20-mA output current with the  
2.5-V input voltage applied. The following can be used to select the resistors, thus setting the voltage gain and  
output current.  
R13 sets the gain, and is adjusted by the ratio of R14 / R15  
Selecting a low value for R13 enables all other resistors to be high, limiting current through the feedback  
network  
The ratio of R11 / (R12 + R13) must equal R14 / R15  
If R14 = R15, then R12 = R11 – R13  
Applying these relationships the resistors are selected or derived as follows:  
Let R14 = R15 = 100 kΩ  
R13 = [(VP – VN) (R15 / R14)] / IL = [(2.5 V – 0 V) (105 / 105 )] = 125 Ω  
R12 = (R11 – R13) = (100 k– 125 ) = 99.875 kΩ  
Verifying R11 / (R12 + R13) must equal R14 / R15 requirement:  
R12 = [R11(R15 / R14)] – R13 = [105 (105 / 105 )] – 125 = 99.875 kΩ  
The resistor values for R11 through R15 are seen in 63.  
The load is set to be 500 , the sourced output current through the load is 20 mA, and the output voltage is 10  
V. The voltage directly at the OPA462 output 2.5 V higher, or 12.5 V, which compensates for the voltage drop  
across the 125-R13 resistor. A feedback capacitor can be added to reduce the ac bandwidth of the improved  
Howland current pump circuit, if needed. In this example, no capacitor is used.  
The improved Howland current pump output is limited to the combined effects of the OPA462 linear output  
voltage swing range, the voltage drop developed across R13, and the voltage drop developed across load. For a  
particular output current, a maximum output voltage span can be achieved. This span is referred to as the output  
voltage compliance range.  
The OPA462 current pump sources or sinks a constant current through a load resistance of 0 on the low end,  
to just beyond 4.25 kon the high end. This current range is portrayed in the dc transfer plot show in 64. As  
shown, the load can be vary from 0 to 4.25 kand the output remains within the span of linear output  
compliance range.  
64. Output Voltage Compliance for an Improved Howland Current Pump  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
Typical Applications (接下页)  
The 4.25-klimit is determined by the maximum 85-V drop across the load, and the 2.5-V drop across R13 when  
20 mA flows through both. This voltage drop results in an output voltage of 87.5 V at the output of the OPA462,  
close to the positive swing limit. Beyond 4.25 k, current-pump operation is forced outside the compliance range,  
and the output current is longer maintained at the correct level.  
The OPA462 provides this wide output compliance range because of the wide, ±90-V power supply rating. If a  
standard ±15-V amplifier supply had been used with the OPA462, or another amplifier rated for ±15-V supplies,  
the maximum load resistance is on the order of approximately 500 Ω to 600 Ω, depending on the particular  
amplifier linear output range when delivering ±20 mA. The wide supply range of the OPA462 enables the device  
to drive a much wider range of loads.  
The improved Howland current pump can also be used to generate an accurate ac current with a peak output  
that matches a specified dc current level. A ±20-mA dc current source using the OPA462 has already been  
discussed; therefore, this current source is applied here to demonstrate how a 400-Hz, 20-mA current is  
produced.  
The same circuit used in 63 is updated so that the 2.5-V dc voltage source has been replaced by a 400-Hz ac  
source with a peak voltage of 2.5 V, as shown in 65. A sine wave is used in this circuit, but a triangle wave,  
square wave, and so on, can be used instead. The output current is dependent on the ac input voltage at any  
particular moment.  
R14  
100 k  
R15  
100 kꢀ  
90 V  
Vo1  
100 nF  
R13  
125 ꢀ  
œ
R11  
100 kꢀ  
Vout  
AM1  
+
VP  
400 Hz  
2.5 Vpk  
100 nF  
RL  
1 kꢀ  
œ90 V  
R12  
99.88 kꢀ  
65. OPA462 Configured as a 400-Hz AC Current Generator  
A 2.5-Vpk sine-wave source applied to the input point at R11 results in a 20-mA peak current through the load, as  
shown in 66. The load has been set to 1 k, but any resistance that supports the output compliance range  
can be used.  
66. Improved Howland Current Pump Applied as a Peak AC-Current Generator  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
 
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
Make sure to consider the power handling ratings of the resistors used with a high-power or high-voltage  
amplifier such as the OPA462. In this design, when the OPA462 is providing 20 mA dc to a 4.25-kload  
resistance, the dc power for the load and R13 is simply:  
Load Power = I2 RL = (20 10 – 3 A)2 (4.25 103 ) = 1.7 W  
Power R13 = I2 R13 = (20 10 – 3 A)2 (125 ) = 50 mW  
Clearly, the power dissipation of the load requires attention. However, in this design, R13 does not require high  
power dissipation under these operating conditions. The load must be rated to dissipate the 1.7 W over the  
expected operating temperature range for this example. Most often, resistor power dissipation is specified at an  
ambient temperature of 25°C, and reduces as temperature increases. The use of a resistor with a power rating  
greater than the power that must be dissipated is almost always necessary. For this example, the load may need  
to be rated for 3 W, or even 5 W, to make sure that the load does not overheat and maintains reliability. in any  
case, determine the power dissipation for the particular operating conditions. Be especially attentive to the power  
rating issue regarding surface-mount resistors. The thermal environment in which surface-mount resistors  
operate may be much different than a resistor exposed in free air.  
The improved Howland current pump amplifier circuit relies on both negative and positive feedback for operation.  
More negative feedback than positive feedback is used, but that does not always provide stability when the  
output load characteristics are included. When unity-gain stable amplifiers such as the OPA462 are employed,  
and they drive a resistive load, the amplifier phase margin should be sufficient so that the circuit is stable.  
However, if the output load is complex, containing both resistive and reactive components (R±jX), certain  
combinations degrade the phase margin to the point where instability results. Instability is even more evident  
when this current pump is used to drive certain inductive loads.  
When required, compensation is determined based on the particular circuit to which the OPA462 is being  
applied. Amplifier stability and compensation is a vast subject covered in numerous TI documents, and TI training  
programs, such as TI Precision Labs – Op Amps.  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
9 Power Supply Recommendations  
The OPA462 operates from power supplies up to ±90 V, or a total of 180 V, with excellent performance. Most  
behavior remains unchanged throughout the full operating voltage range. A power-supply bypass capacitor of at  
least 0.1 µF is required for proper operation. Make sure that the capacitor voltage rating is suitable for the high  
voltage across the full operating temperature range. Parameters that vary significantly with operating voltage are  
shown in the Typical Characteristics section.  
Some applications do not require an equal positive and negative output voltage swing. Power-supply voltages do  
not have to be equal. The OPA462 operates with as little as 12 V between the supplies, and with up to 180 V  
between the supplies.  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Thermally-Enhanced PowerPAD™ Package  
The OPA462 comes in an 8-pin SO PowerPAD package that provides an extremely low thermal resistance,  
R
θJC(bot), path between the die and the exterior of the package. This package features an exposed thermal pad  
that has direct thermal contact with the die. Thus, excellent thermal performance is achieved by providing a good  
thermal path away from the thermal pad.  
The OPA462 SO-8 PowerPAD is a standard-size SO-8 package constructed using a downset leadframe upon  
which the die is mounted, as 67 shows. This arrangement results in the leadframe being exposed as a  
thermal pad on the underside of the package. The thermal pad on the bottom of the device can then be soldered  
directly to the PCB, using the PCB as a heat sink. In addition, plated-through holes (vias) provide a low thermal  
resistance heat flow path to the back side of the PCB. This architecture enhances the OPA462 power dissipation  
capability significantly, eliminates the use of bulky heat sinks and slugs traditionally used in thermal packages,  
and allows the OPA462 to be easily mounted using standard PCB assembly techniques.  
The SO-8 PowerPAD is pin-compatible with standard SO-8 packages, and as such, the  
OPA462 is a drop-in replacement for operational amplifiers in existing sockets. Always  
solder the PowerPAD to the PCB V– plane, even with applications that have low power  
dissipation. Solder the device to the PCB to provide the necessary thermal, mechanical,  
and electrical connections between the leadframe die pad and the PCB.  
Leadframe (Copper Alloy)  
IC (Silicon)  
Die Attach (Epoxy)  
Leadframe Die Pad  
Exposed at Base of the Package  
(Copper Alloy)  
Mold Compound (Plastic)  
67. Cross Section View of a PowerPAD™ Package  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
 
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Layout Guidelines (接下页)  
10.1.2 PowerPAD™ Integrated Circuit Package Layout Guidelines  
The PowerPAD integrated circuit package allows for both assembly and thermal management in one  
manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the  
thermal pad must be soldered to a copper area underneath the package. Through the use of thermal paths within  
this copper area, heat is conducted away from the package into either a ground plane or other heat-dissipating  
device. Always solder the PowerPAD to the PCB, even with applications that have low power dissipation. Follow  
these steps to attach the device to the PCB:  
1. Connect the PowerPAD to the most negative supply voltage on the device, V–.  
2. Prepare the PCB with a top-side etch pattern. There must be etching for the leads, as well as etching for the  
thermal pad.  
3. Thermal vias improve heat dissipation, but are not required. The thermal pad can connect to the PCB using  
an area equal to the pad size with no vias, but externally connected to V–.  
4. Place recommended holes in the area of the thermal pad. Recommended thermal land size and thermal via  
patterns for the SO-8 DDA package are shown in the thermal land pattern mechanical drawing appended at  
the end of this document. These holes must be 13 mils (0.013 in, or 0.3302 mm) in diameter. Keep the holes  
small, so that solder wicking through the holes is not a problem during reflow. The minimum recommended  
number of holes for the SO-8 PowerPAD package is five.  
5. Additional vias can be placed anywhere along the thermal plane outside of the thermal pad area. These vias  
help dissipate the heat generated by the OPA462 device. These additional vias may be larger than the 13-  
mil diameter vias directly under the thermal pad because they are not in the thermal pad area to be soldered;  
thus, wicking is not a problem.  
6. Connect all holes to the internal power plane of the correct voltage potential, V–.  
7. When connecting these holes to the plane, do not use the typical web or spoke via connection methodology.  
Web connections have a high thermal resistance connection that is useful for slowing the heat transfer during  
soldering operations, making the soldering of vias that have plane connections easier. In this application,  
however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the  
OPA462 PowerPAD package must make the connections to the internal plane with a complete connection  
around the entire circumference of the plated-through hole.  
8. The top-side solder mask must leave the pins of the package and the thermal pad area exposed. The  
bottom-side solder mask must cover the holes of the thermal pad area. This masking prevents solder from  
being pulled away from the thermal pad area during the reflow process.  
9. Apply solder paste to the exposed thermal pad area and all of the device pins.  
10. With these preparatory steps in place, simply place the device in position, and run through the solder reflow  
operation as with any standard surface-mount component.  
This preparation results in a properly installed device. For detailed information on the PowerPAD package,  
including thermal modeling considerations and repair procedures, see the PowerPAD™ Thermally Enhanced  
Package application report.  
10.1.3 Pin Leakage  
When operating the OPA462 with high supply voltages, parasitic leakages may occur between the inputs and the  
supplies. This effect is most noticeable at the noninverting input, +IN, when the input common-mode voltage is  
high compared to the negative supply voltage, V–. To minimize this leakage, place guard tracing, driven at the  
same voltage as the input signal, alongside the input signal traces and pins.  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
Layout Guidelines (接下页)  
10.1.4 Thermal Protection  
68 shows the thermal shutdown behavior of a socketed OPA462 that internally dissipates 1 W. Unsoldered  
and in a socket, the RθJA of the DDA package is typically 128°C/W. With the socket at 25°C, the output stage  
temperature rises to the shutdown temperature of 150°C, which triggers automatic thermal shutdown of the  
device. The device remains in thermal shutdown (output is in a high-impedance state) until it cools to 130°C  
where the device is again powered. This thermal protection hysteresis feature typically prevents the amplifier  
from leaving the safe operating area, even with a direct short from the output to ground or either supply. The  
absolute maximum specification is 180 V, and the OPA462 must not be allowed to exceed 180 V under any  
condition. Failure as a result of breakdown, caused by spiking currents into inductive loads (particularly with  
elevated supply voltage), is not prevented by the thermal protection architecture.  
68. Thermal Shutdown  
10.1.5 Power Dissipation  
Power dissipation depends on power supply, signal, and load conditions. For dc signals, power dissipation is  
equal to the product of the output current times the voltage across the conducting output transistor, PD = IL (VS –  
VO). Power dissipation can be minimized by using the lowest possible power-supply voltage necessary to assure  
the required output voltage swing.  
For resistive loads, the maximum power dissipation occurs at a dc output voltage of one-half the power-supply  
voltage. Dissipation with ac signals is lower because the root-mean square (RMS) value determines heating. The  
Instruments, Power Amplifier Stress and Power Handling Limitations application bulletin explains how to  
calculate or measure dissipation with unusual loads or signals.  
The OPA462 can supply output currents of up to 45 mA. Supplying this level of current is common for op amps  
operating from ±15-V supplies. However, with high supply voltages, internal power dissipation of the op amp can  
be quite high. Relative to the package size, operation from a single power supply (or unbalanced power supplies)  
can produce even greater power dissipation because a large voltage is impressed across the conducting output  
transistor. Applications with high power dissipation may require a heat sink or a heat spreader.  
10.1.6 Heat Dissipation  
Power dissipated in the OPA462 causes the junction temperature to rise. For reliable operation, junction  
temperature must be limited to 125°C, maximum. Maintaining a lower junction temperature always results in  
higher reliability. Some applications require a heat sink to make sure that the maximum operating junction  
temperature is not exceeded. Junction temperature can be determined according to 公式 4:  
TJ = TA + PDRθJA  
(4)  
Package thermal resistance, RθJA , is affected by mounting techniques and environments. Poor air circulation and  
use of sockets can significantly increase thermal resistance to the ambient environment. Many op amps placed  
closely together also increase the surrounding temperature. Best thermal performance is achieved by soldering  
the op amp onto a circuit board with wide printed circuit traces to allow greater conduction through the op amp  
leads. Increasing circuit board copper area to approximately 0.5 in2 decreases thermal resistance; however,  
minimal improvement occurs beyond 0.5 in2, as shown in 69.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
 
 
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Layout Guidelines (接下页)  
For additional information on determining heat sink requirements, consult the Heat Sinking—TO-3 Thermal  
Model application bulletin, available for download at www.ti.com.  
60  
50  
40  
30  
20  
10  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Copper Area (inches2), 2 oz  
69. Thermal Resistance vs Circuit Board Copper Area  
10.2 Layout Example  
E/D COM  
Typically Vœ or GND  
E/D  
GND  
E/D COM  
E/D  
œIN  
+IN  
Vœ  
œIN  
V+  
V+  
PowerPAD™  
(must connect to  
Vœ or GND)  
+IN  
OUT  
OUT  
Vœ  
Status Flag  
GND  
Status Flag  
70. OPA462 Layout Example  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
OPA462  
www.ti.com.cn  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA™是一款简单、功能强大且易于使用的电路仿真程序,此程序基于 SPICE 引擎。 TINA-TI™ TINA 软件的  
一款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有  
传统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。  
TINA-TI 可从 Analog eLab Design Center(模拟电子实验室设计中心)免费下载,它提供全面的后续处理能力,  
使得用户能够以多种方式形成结果。虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一  
个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹 中下载免费的 TINA-TI 软件。  
11.1.1.2 TI 高精度设计  
TI 高精度设计的模拟设计方案是由 TI 公司高精度模拟实验室设计 应用 专家创建的模拟解决方案,提供了许多实用  
电路的工作原理、组件选择、仿真、完整印刷电路板 (PCB) 电路原理图和布局布线、物料清单以及性能测量结果。  
欲获取 TI 高精度设计,请访问 http://www.ti.com.cn/ww/analog/precision-designs/。  
11.1.1.3 WEBENCH®滤波器设计器  
WEBENCH® 滤波器设计器是一款简单、功能强大且便于使用的有源滤波器设计程序。借助 WEBENCH 滤波器设  
计器,用户可使用精选 TI 运算放大器和 TI 供应商合作伙伴提供的无源组件来构建最佳滤波器设计方案。  
WEBENCH® 设计中心以基于网络的工具形式提供 WEBENCH® 滤波器设计器。用户通过该工具可在数分钟内完  
成多级有源滤波器解决方案的设计、优化和仿真。  
11.2 文档支持  
11.2.1 相关文档  
下列文档与使用 OPA462 相关,建议参考。所有这些文档都可从 www.ti.com.cn 上下载(除非另有说明)。  
德州仪器 (TI)《散热片 - TO-3 热模型》 应用简报  
德州仪器 (TI)《功率放大器应力和功率处理限制》 应用简报  
德州仪器 (TI)《运算放大器性能分析》 应用简报  
德州仪器 (TI)《运算放大器的单电源运行》 应用简报  
德州仪器 (TI)《放大器调优》 应用简报  
德州仪器 (TI)PowerPAD™ 热增强型封装》 应用报告  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
OPA462  
ZHCSJ65A DECEMBER 2018REVISED DECEMBER 2019  
www.ti.com.cn  
11.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
PowerPAD, TINA-TI, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA462IDDA  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
8
8
75  
RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
OPA462  
OPA462  
OPA462IDDAR  
2500 RoHS & Green  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA462IDDAR  
SO  
Power  
PAD  
DDA  
8
2500  
330.0  
12.8  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SO PowerPAD DDA  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
OPA462IDDAR  
8
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DDA HSOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA462IDDA  
8
75  
517  
7.87  
635  
4.25  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
PACKAGE OUTLINE  
DDA0008J  
PowerPADTM SOIC - 1.7 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.2  
5.8  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
6X 1.27  
8
1
2X  
5.0  
4.8  
3.81  
NOTE 3  
4
5
0.51  
8X  
0.31  
4.0  
3.8  
1.7 MAX  
B
0.1  
C A  
B
NOTE 4  
0.25  
0.10  
TYP  
SEE DETAIL A  
5
4
EXPOSED  
THERMAL PAD  
0.25  
3.1  
2.5  
GAGE PLANE  
0.15  
0.00  
0 - 8  
1.27  
0.40  
1
8
DETAIL A  
TYPICAL  
2.6  
2.0  
4221637/B 03/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MS-012, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDA0008J  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.95)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.6)  
SOLDER MASK  
OPENING  
SEE DETAILS  
8X (1.55)  
1
8
8X (0.6)  
(3.1)  
SOLDER MASK  
SYMM  
(1.3)  
TYP  
OPENING  
(4.9)  
NOTE 9  
6X (1.27)  
5
4
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
(1.3) TYP  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221637/B 03/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDA0008J  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.6)  
BASED ON  
0.125 THICK  
STENCIL  
8X (1.55)  
1
8
8X (0.6)  
(3.1)  
SYMM  
BASED ON  
0.127 THICK  
STENCIL  
6X (1.27)  
5
4
SEE TABLE FOR  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.91 X 3.47  
2.6 X 3.1 (SHOWN)  
2.37 X 2.83  
0.125  
0.150  
0.175  
2.20 X 2.62  
4221637/B 03/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

OPA462IDDAR

180V、高带宽 (6.5MHz)、高压摆率 (25V/µs)、单位增益稳定运算放大器 | DDA | 8 | -40 to 85
TI

OPA4650

Wideband, Low Power, Quad Voltage Feedback OPERATIONAL AMPLIFIER
BB

OPA4650P

Wideband, Low Power, Quad Voltage Feedback OPERATIONAL AMPLIFIER
BB

OPA4650U

Wideband, Low Power, Quad Voltage Feedback OPERATIONAL AMPLIFIER
BB

OPA4650UB

Operational Amplifier, 4 Func, 1000uV Offset-Max, PDSO14,
BB

OPA4658

Quad Wideband, Low Power Current Feedback OPERATIONAL AMPLIFIER
BB

OPA4658

Quad Wideband, Low Power Current Feedback OPERATIONAL AMPLIFIER
TI

OPA4658P

Quad Wideband, Low Power Current Feedback OPERATIONAL AMPLIFIER
BB

OPA4658P

Quad Wideband, Low Power Current Feedback OPERATIONAL AMPLIFIER
TI

OPA4658PB

Operational Amplifier, 4 Func, 8000uV Offset-Max, BIPolar, PDIP14,
BB

OPA4658U

Quad Wideband, Low Power Current Feedback OPERATIONAL AMPLIFIER
BB

OPA4658U

Quad Wideband, Low Power Current Feedback OPERATIONAL AMPLIFIER
TI