OPA4H199-SEP [TI]

航天增强型产品四路 40V 4.5MHz 轨到轨输入和输出运算放大器;
OPA4H199-SEP
型号: OPA4H199-SEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

航天增强型产品四路 40V 4.5MHz 轨到轨输入和输出运算放大器

放大器 运算放大器
文件: 总36页 (文件大小:2531K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
OPA4H199-SEP 采用增强型航天塑料封装40V、耐辐射、轨至轨输入/输出、  
低失调电压、低噪声运算放大器  
1 特性  
2 应用  
• 耐辐射  
• 支持近地轨道航天应用  
• 航天传感器和控制遥测)  
卫星电力系(EPS)  
飞行控制  
卫星命令和数据处理  
卫星有效载荷  
– 单粒子闩(SEL) 125°C 下的抗扰度可达  
43MeV-cm2/mg  
– 在高30krad (Si) 的条件下ELDRS  
– 每个晶圆批次RLAT 总电离剂(TID) 高达  
30krad (Si)  
• 支持国防、航天和医疗应用  
– 单受控基线  
3 说明  
OPA4H199-SEP 一款适用于航天应用的高电压  
(40V) 通用运算放大器。该器件具有出色的直流精度和  
交流性能包括轨至轨输入/输出、低失调电压典型  
值为 ±125µV、低温漂典型值为 ±0.3µV/°C、低  
噪声10.8nV/Hz 1.8µVPP4.5MHz 带宽。  
– 制造、组装和测试一体化基地  
– 金线  
NiPdAu 铅涂层  
– 支持军用55°C 125°C温度范围  
– 延长了产品生命周期  
– 延长了产品变更通知  
– 产品可追溯性  
– 采用增强型模塑化合物实现低释气  
OPA4H199-SEP 具有独特功能例如电源轨的差分和  
共模输入电压范围、高输出电流 (±75mA)、高压摆率  
(21V/µs) 和高容性负载驱动 (1nF)是一款稳定可靠的  
高性能运算放大器适用于高电压航天应用。  
• 低失调电压±125µV  
• 低噪声1 kHz 10.8nV/Hz  
• 高共模抑制130dB  
• 低偏置电流±10pA  
• 轨至轨输入和输出  
• 宽带宽4.5MHz GBW  
• 高压摆率21V/µs  
OPA4H199-SEP 用小型、耐辐射塑料、14 脚  
SOT-23 (DYY) 封装。SOT-23 (DYY) 封装的封装尺寸  
大小不足传统 14 脚陶瓷封装尺寸的五分之一。  
OPA4H199-SEP 额定运行温度-55°C 125°C。  
器件信息  
• 高容性负载驱动1nF  
器件型号(1)  
封装尺寸标称值)  
封装  
• 支持多路复用器/比较器的输入  
• 低静态电流每个放大560µA  
• 宽电源电压±1.35V ±20V2.7V 40V  
• 强大EMIRR 性能输入引脚和电源引脚上采用  
OPA4H199-SEP  
SOT-23 (14)  
4.20mm × 1.90mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
EMI/RFI 滤波器  
Analog Inputs  
REF3140  
RC Filter  
RC Filter  
Bridge Sensor  
Reference Driver  
Gain Network  
Gain Network  
+
MUX509  
Thermocouple  
REF  
VINP  
+
Gain Network  
+
Antialiasing  
Filter  
ADS8860  
Current Sensing  
VINM  
Photo  
Detector  
LED  
High-Voltage Multiplexed Input  
High-Voltage Level Translation  
VCM  
Optical Sensor  
高电压信号链中OPA4H199-SEP  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSA90  
 
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................23  
8 Application and Implementation..................................24  
8.1 Application Information............................................. 24  
8.2 Typical Applications.................................................. 24  
8.3 Power Supply Recommendations.............................26  
8.4 Layout....................................................................... 26  
9 Device and Documentation Support............................28  
9.1 Device Support......................................................... 28  
9.2 Documentation Support............................................ 28  
9.3 接收文档更新通知..................................................... 28  
9.4 支持资源....................................................................28  
9.5 Trademarks...............................................................28  
9.6 Electrostatic Discharge Caution................................28  
9.7 术语表....................................................................... 29  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information for Quad Channel...................... 4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................15  
Information.................................................................... 30  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
November 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT1  
IN1œ  
IN1+  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT4  
IN4œ  
IN4+  
Vœ  
IN2+  
IN2œ  
OUT2  
IN3+  
IN3œ  
OUT3  
8
Not to scale  
5-1. OPA4H199-SEP DYY Package  
14-Pin SOT-23 (14)  
Top View  
5-1. Pin Functions: OPA4H199-SEP  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
3
IN1+  
IN1–  
IN2+  
IN2–  
IN3+  
IN3–  
IN4+  
IN4–  
OUT1  
OUT2  
OUT3  
OUT4  
V+  
I
I
Noninverting input, channel 1  
Inverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 2  
Noninverting input, channel 3  
Inverting input, channel 3  
Noninverting input, channel 4  
Inverting input, channel 4  
Output, channel 1  
2
5
I
6
I
10  
9
I
I
12  
13  
1
I
I
O
O
O
O
7
Output, channel 2  
8
Output, channel 3  
14  
4
Output, channel 4  
Positive (highest) power supply  
Negative (lowest) power supply  
11  
V–  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA4H199-SEP  
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted) (1)  
MIN  
0
MAX  
UNIT  
V
42  
(V+) + 0.5  
VS + 0.2  
10  
Supply voltage, VS = (V+) (V)  
Common-mode voltage (3)  
V
(V) 0.5  
Signal input pins  
Differential voltage (3)  
Current (3)  
V
mA  
10  
55  
65  
Output short-circuit (2)  
Continuous  
Operating ambient temperature, TA  
Junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
150  
°C  
°C  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Short-circuit to ground, one amplifier per package. This device has been designed to limit electrical damage due to excessive output  
current, but extended short-circuit current, especially with higher supply voltage, can cause excessive heating and eventual thermal  
destruction. See the Thermal Protection section for more information.  
(3) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101 (2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
2.7  
MAX  
UNIT  
VS  
VI  
40  
(V+) + 0.1  
125  
V
V
Supply voltage, (V+) (V)  
Input voltage range  
(V) 0.1  
55  
TA  
Specified ambient temperature  
°C  
6.4 Thermal Information for Quad Channel  
OPA4H199-SEP  
DYY  
(SOT-23)  
THERMAL METRIC (1)  
UNIT  
14 PINS  
121.6  
53.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
RθJC(top)  
RθJB  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
47.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.1  
ψJT  
47.6  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
For VS = (V+) (V) = 2.7 V to 40 V (±1.35 V to ±20 V) at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and  
VO UT = VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±125  
±895  
±925  
VOS  
Input offset voltage  
µV  
VCM = V–  
TA = -55°C to 125°C  
dVOS/dT  
PSRR  
Input offset voltage drift  
±0.3  
±0.3  
±1  
TA = -55°C to 125°C  
µV/℃  
µV/V  
µV/V  
±1  
±5  
VCM = V, VS = 4 V to 40 V  
VCM = V, VS = 2.7 V to 40 V(2)  
f = 0 Hz  
Input offset voltage  
versus power supply  
TA = -55°C to 125°C  
Channel separation  
5
INPUT BIAS CURRENT  
IB  
Input bias current  
±10  
±10  
pA  
pA  
IOS  
Input offset current  
NOISE  
1.8  
0.3  
µVPP  
EN  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
µVRMS  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
10.8  
9.4  
Input voltage noise  
density  
eN  
iN  
nV/Hz  
fA/Hz  
Input current noise  
82  
INPUT VOLTAGE RANGE  
Common-mode voltage  
range  
VCM  
(V+) + 0.1  
V
(V) 0.1  
VS = 40 V, (V) 0.1 V < VCM  
(V+) 2 V (Main input pair)  
<
107  
130  
100  
95  
VS = 4 V, (V) 0.1 V < VCM < (V+)  
2 V (Main input pair)  
82  
75  
Common-mode rejection  
ratio  
CMRR  
dB  
TA = -55°C to 125°C  
VS = 2.7 V, (V) 0.1 V < VCM  
(V+) 2 V (Main input pair)(2)  
<
VS = 2.7 V to 40 V, (V+) 1 V < VCM  
< (V+) + 0.1 V (Aux input pair)  
85  
INPUT CAPACITANCE  
ZID  
Differential  
100 || 9  
6 || 1  
MΩ|| pF  
TΩ|| pF  
ZICM  
Common-mode  
OPEN-LOOP GAIN  
120  
104  
101  
145  
142  
130  
125  
120  
118  
VS = 40 V, VCM = V–  
(V) + 0.1 V < VO < (V+) 0.1 V  
TA = -55°C to 125°C  
TA = -55°C to 125°C  
TA = -55°C to 125°C  
VS = 4 V, VCM = V–  
(V) + 0.1 V < VO < (V+) 0.1 V  
AOL  
Open-loop voltage gain  
dB  
VS = 2.7 V, VCM = V–  
(V) + 0.1 V < VO < (V+) 0.1 V(2)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA4H199-SEP  
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
For VS = (V+) (V) = 2.7 V to 40 V (±1.35 V to ±20 V) at TA = 25°C, RL = 10 kconnected to VS / 2, VCM = VS / 2, and  
VO UT = VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY RESPONSE  
GBW  
SR  
Gain-bandwidth product  
4.5  
21  
2.5  
1.5  
2
MHz  
V/µs  
Slew rate  
VS = 40 V, G = +1, CL = 20 pF  
To 0.01%, VS = 40 V, VSTEP = 10 V , G = +1, CL = 20 pF  
To 0.01%, VS = 40 V, VSTEP = 2 V , G = +1, CL = 20 pF  
To 0.1%, VS = 40 V, VSTEP = 10 V , G = +1, CL = 20 pF  
To 0.1%, VS = 40 V, VSTEP = 2 V , G = +1, CL = 20 pF  
G = +1, RL = 10 k, CL = 20 pF  
tS  
Settling time  
µs  
1
Phase margin  
60  
400  
°
Overload recovery time  
VIN × gain > VS  
ns  
Total harmonic distortion  
+ noise (1)  
THD+N  
VS = 40 V, VO = 3 VRMS, G = 1, f = 1 kHz  
0.00021%  
OUTPUT  
VS = 40 V, RL = no load(2)  
5
50  
10  
70  
350  
6
VS = 40 V, RL = 10 kΩ  
VS = 40 V, RL = 2 kΩ  
VS = 2.7 V, RL = no load(2)  
VS = 2.7 V, RL = 10 kΩ  
VS = 2.7 V, RL = 2 kΩ  
300  
1
Voltage output swing  
from rail  
Positive and negative rail headroom  
mV  
5
12  
40  
25  
ISC  
Short-circuit current  
Capacitive load drive  
±75  
1000  
mA  
pF  
CLOAD  
Open-loop output  
impedance  
ZO  
f = 1 MHz, IO = 0 A  
525  
POWER SUPPLY  
560  
685  
750  
Quiescent current per  
amplifier  
IQ  
µA  
VCM = V, IO = 0 A  
TA = -55°C to 125°C  
(1) Third-order filter; bandwidth = 80 kHz at 3 dB.  
(2) Specified by characterization only.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 10 pF (unless otherwise noted)  
33  
30  
27  
24  
21  
18  
15  
12  
9
50  
40  
30  
20  
10  
0
6
3
0
D001  
D002  
Offset Voltage Drift (µV/C)  
Offset Voltage (µV)  
Distribution from 60 amplifiers  
Distribution from 15462 amplifiers, TA = 25°C  
6-2. Offset Voltage Drift Distribution  
6-1. Offset Voltage Production Distribution  
900  
400  
300  
200  
100  
0
700  
500  
300  
100  
-100  
-300  
-500  
-700  
-900  
-100  
-200  
-300  
-400  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
D004  
D003  
VCM = V+  
6-3. Offset Voltage vs Temperature  
VCM = V–  
6-4. Offset Voltage vs Temperature  
800  
800  
600  
400  
200  
0
600  
400  
200  
0
-200  
-400  
-600  
-800  
-200  
-400  
-600  
-800  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
16  
16.5  
17  
17.5  
18  
18.5  
19  
19.5  
20  
VCM  
VCM  
D005  
D005  
TA = 25°C  
TA = 25°C  
6-5. Offset Voltage vs Common-Mode Voltage  
6-6. Offset Voltage vs Common-Mode Voltage (Transition  
Region)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA4H199-SEP  
 
 
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 10 pF (unless otherwise noted)  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
-200  
-400  
-600  
-800  
-200  
-400  
-600  
-800  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
VCM  
VCM  
D006  
D007  
TA = 125°C  
6-7. Offset Voltage vs Common-Mode Voltage  
600  
TA = 40°C  
6-8. Offset Voltage vs Common-Mode Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
200  
175  
150  
125  
100  
75  
Gain (dB)  
Phase ()  
500  
400  
300  
200  
100  
0
50  
-100  
-200  
-300  
-400  
-500  
-600  
25  
0
-25  
-50  
-75  
-100  
-10  
-20  
100  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
Supply Voltage (V)  
D008  
C002  
CL = 20 pF  
6-9. Offset Voltage vs Power Supply  
6-10. Open-Loop Gain and Phase vs Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
G = 1  
G = 1  
G = 10  
G = 100  
4.5  
3
1.5  
0
G = 1000  
-1.5  
-3  
-4.5  
-6  
IB  
IB+  
IOS  
-10  
-20  
-7.5  
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
100  
1k  
10k  
100k  
1M  
10M  
Common Mode Voltage (V)  
Frequency (Hz)  
D010  
C001  
6-12. Input Bias Current vs Common-Mode Voltage  
6-11. Closed-Loop Gain vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 10 pF (unless otherwise noted)  
150  
125  
100  
75  
V+  
V+ 1 V  
V+ 2 V  
V+ 3 V  
V+ 4 V  
V+ 5 V  
V+ 6 V  
V+ 7 V  
V+ 8 V  
V+ 9 V  
V+ 10 V  
IB  
IB+  
IOS  
50  
25  
0
-25  
-50  
-75  
-100  
-40°C  
25°C  
125°C  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Temperature (°C)  
D011  
Output Current (mA)  
D012  
6-13. Input Bias Current vs Temperature  
6-14. Output Voltage Swing vs Output Current (Sourcing)  
V+ 8 V  
V+ 7 V  
V+ 6 V  
V+ 5 V  
V+ 4 V  
V+ 3 V  
V+ 2 V  
V+ 1 V  
Vꢀ  
135  
-40°C  
25°C  
125°C  
CMRR  
PSRR+  
PSRR  
120  
105  
90  
75  
60  
45  
30  
15  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Output Current (mA)  
100  
1k  
10k  
100k  
1M  
10M  
D012  
Frequency (Hz)  
C003  
6-15. Output Voltage Swing vs Output Current (Sinking)  
6-16. CMRR and PSRR vs Frequency  
135  
130  
125  
120  
170  
165  
160  
155  
150  
145  
140  
115  
PMOS (VCM  V+  1.5 V)  
110  
NMOS (VCM   V+  1.5 V)  
105  
100  
95  
90  
85  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
D015  
D016  
f = 0 Hz  
f = 0 Hz  
6-17. CMRR vs Temperature (dB)  
6-18. PSRR vs Temperature (dB)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA4H199-SEP  
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 10 pF (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
200  
100  
10  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
1
10  
100  
1k  
10k  
100k  
Time (1s/div)  
Frequency (Hz)  
C017  
C019  
6-20. Input Voltage Noise Spectral Density vs Frequency  
6-19. 0.1-Hz to 10-Hz Noise  
-32  
-40  
-32  
RL = 10 k  
RL = 128  
-40  
RL = 2 kꢀ  
RL = 604 ꢀ  
RL = 128 ꢀ  
RL = 604 ꢀ  
RL = 2 kꢀ  
RL = 10 kꢀ  
-48  
-48  
-56  
-56  
-64  
-64  
-72  
-72  
-80  
-80  
-88  
-88  
-96  
-96  
-104  
-112  
-104  
-112  
100  
1k  
10k  
0.001  
0.01  
0.1  
1
10 20  
Frequency (Hz)  
Amplitude (Vrms)  
C012  
C023  
BW = 80 kHz, VOUT = 1 VRMS  
BW = 80 kHz, f = 1 kHz  
6-22. THD+N vs Output Amplitude  
6-21. THD+N Ratio vs Frequency  
580  
570  
560  
550  
540  
530  
520  
510  
500  
490  
480  
700  
675  
650  
625  
600  
575  
550  
525  
500  
475  
450  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Temperature (°C)  
D021  
D022  
VCM = V–  
6-24. Quiescent Current vs Temperature  
6-23. Quiescent Current vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 10 pF (unless otherwise noted)  
140  
135  
130  
125  
120  
115  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
VS = 4 V  
VS = 40 V  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
100k  
1M  
10M  
Temperature (°C)  
Frequency (Hz)  
D023  
C013  
6-25. Open-Loop Voltage Gain vs Temperature (dB)  
6-26. Open-Loop Output Impedance vs Frequency  
60  
80  
70  
60  
50  
40  
30  
50  
40  
30  
20  
20  
RISO = 0 , Positive Overshoot  
RISO = 0 , Positive Overshoot  
RISO = 0 , Negative Overshoot  
RISO = 50 , Positive Overshoot  
RISO = 50 , Negative Overshoot  
RISO = 0 , Negative Overshoot  
10  
0
10  
0
RISO = 50 , Positive Overshoot  
RISO = 50 , Negative Overshoot  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Cap Load (pF)  
Cap Load (pF)  
C007  
C008  
G = 1, 10-mV output step  
G = 1, 10-mV output step  
6-28. Small-Signal Overshoot vs Capacitive Load  
6-27. Small-Signal Overshoot vs Capacitive Load  
60  
Input  
Output  
50  
40  
30  
20  
10  
Time (20us/div)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Cap Load (pF)  
C016  
C009  
VIN = ±20 V; VS = VOUT = ±17 V  
6-30. No Phase Reversal  
6-29. Phase Margin vs Capacitive Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA4H199-SEP  
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 10 pF (unless otherwise noted)  
Input  
Input  
Output  
Output  
Time (100ns/div)  
Time (100ns/div)  
C018  
C018  
C011  
C005  
G = 10  
G = 10  
6-31. Positive Overload Recovery  
6-32. Negative Overload Recovery  
Input  
Output  
Input  
Output  
Time (300ns/div)  
Time (1µs/div)  
C010  
CL = 20 pF, G = -1, 20-mV step response  
CL = 20 pF, G = 1, 20-mV step response  
6-34. Small-Signal Step Response  
6-33. Small-Signal Step Response, Rising  
Input  
Output  
Input  
Output  
Time (300ns/div)  
Time (300ns/div)  
C005  
CL = 20 pF, G = 1  
CL = 20 pF, G = 1  
6-35. Large-Signal Step Response (Rising)  
6-36. Large-Signal Step Response (Falling)  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at TA = 25°C, VS = ±20 V, VCM = VS / 2, RLOAD = 10 kΩconnected to VS / 2, and CL = 10 pF (unless otherwise noted)  
100  
80  
60  
Input  
Output  
40  
20  
Sourcing  
Sinking  
0
-20  
-40  
-60  
-80  
-100  
Time (2µs/div)  
-40 -20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
C021  
D014  
CL = 20 pF, G = 1  
6-38. Short-Circuit Current vs Temperature  
6-37. Large-Signal Step Response  
45  
40  
35  
30  
25  
20  
15  
10  
5
-50  
-60  
VS = 40 V  
VS = 30 V  
VS = 15 V  
VS = 2.7 V  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
0
1k  
100  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
C014  
C020  
6-40. Channel Separation vs Frequency  
6-39. Maximum Output Voltage vs Frequency  
110  
100  
90  
80  
70  
60  
50  
40  
1M  
10M  
100M  
Frequency (Hz)  
1G  
C004  
6-41. EMIRR (Electromagnetic Interference Rejection Ratio) at Inputs vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA4H199-SEP  
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The OPA4H199-SEP is a new 40-V general purpose operational amplifier.  
This device offers excellent DC precision and AC performance, including rail-to-rail input/output, low offset (±125  
µV, typ), low offset drift (±0.3 µV/°C, typ), and 4.5-MHz bandwidth.  
Unique features, such as differential and common-mode input-voltage range to the supply rail, high output  
current (±75 mA) and high slew rate (21 V/µs), make the OPA4H199-SEP a robust, high-performance  
operational amplifier for high-voltage space applications.  
7.2 Functional Block Diagram  
+
NCH Input  
Stage  
IN+  
IN-  
+
40-V  
OUT  
Output  
Stage  
Differential  
MUX-Friendly  
Front End  
Slew  
Boost  
+
PCH Input  
Stage  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Input Protection Circuitry  
The OPA4H199-SEP uses a unique input architecture to eliminate the requirement for input protection diodes  
but still provides robust input protection under transient conditions. 7-1 shows conventional input diode  
protection schemes that are activated by fast transient step responses and introduce signal distortion and  
settling time delays because of alternate current paths, as shown in 7-2. For low-gain circuits, these fast-  
ramping input signals forward-bias back-to-back diodes, causing an increase in input current and resulting in  
extended settling time.  
V+  
V+  
VIN+  
VIN+  
VOUT  
VOUT  
~0.7 V  
40 V  
VIN  
VINꢀ  
V  
Vꢀ  
Provides Full 40-V  
Differential Input Range  
Conventional Input Protection  
Limits Differential Input Range  
7-1. OPA4H199-SEP Input Protection Does Not Limit Differential Input Capability  
1
Ron_mux  
Vn = 10 V  
RFILT  
10 V  
Sn  
D
1
2
~œ9.3 V  
10 V  
CFILT  
CS  
CD  
VINœ  
2
Ron_mux  
Sn+1  
Vn+1 = œ10 V RFILT  
œ10 V  
~0.7 V  
VOUT  
CFILT  
CS  
Idiode_transient  
VIN+  
œ10 V  
Input Low-Pass Filter  
Simplified Mux Model  
Buffer Amplifier  
7-2. Back-to-Back Diodes Create Settling Issues  
The OPA4H199-SEP provides a true high-impedance differential input capability for high-voltage applications  
using a patented input protection architecture that does not introduce additional signal distortion or delayed  
settling time, making the device an excellent choice as op amp for multichannel, high-switched, input  
applications. The OPA4H199-SEP tolerates a maximum differential swing (voltage between inverting and non-  
inverting pins of the op amp) of up to 40 V, making the device good for use as a comparator or in applications  
with fast-ramping input signals such as data-acquisition systems; see the TI TechNote MUX-Friendly Precision  
Operational Amplifiers for more information.  
7.3.2 EMI Rejection  
The OPA4H199-SEP uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI  
from sources such as wireless communications and densely-populated boards with a mix of analog signal chain  
and digital components. EMI immunity can be improved with circuit design techniques; the OPA4H199-SEP  
benefits from these design improvements. Texas Instruments has developed the ability to accurately measure  
and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to  
6 GHz. 7-3 shows the results of this testing on the OPA4H199-SEP. 7-1 shows the EMIRR IN+ values for  
the OPA4H199-SEP at particular frequencies commonly encountered in real-world applications. The EMI  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA4H199-SEP  
 
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
Rejection Ratio of Operational Amplifiers application report contains detailed information on the topic of EMIRR  
performance as it relates to op amps and is available for download from www.ti.com.  
110  
100  
90  
80  
70  
60  
50  
40  
1M  
10M  
100M  
1G  
Frequency (Hz)  
C004  
7-3. EMIRR Testing  
7-1. OPA4H199-SEP EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
73.2 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
82.5 dB  
89.7 dB  
93.9 dB  
95.7 dB  
98.0 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
7.3.3 Thermal Protection  
The internal power dissipation of any amplifier causes the internal (junction) temperature to rise. This  
phenomenon is called self heating. The absolute maximum junction temperature of the OPA4H199-SEP is  
150°C. Exceeding this temperature causes damage to the device. The OPA4H199-SEP has a thermal protection  
feature that reduces damage from self heating. The protection works by monitoring the temperature of the device  
and turning off the op amp output drive for temperatures above 170°C. 7-4 shows an application example for  
the OPA4H199-SEP that has significant self heating because of the power dissipation (0.81 W). Thermal  
calculations indicate that for an ambient temperature of 65°C, the device junction temperature can reach 177°C.  
The actual device, however, turns off the output drive to recover towards a safe junction temperature. 7-4  
shows how the circuit behaves during thermal protection. During normal operation, the device acts as a buffer so  
the output is 3 V. When self heating causes the device junction temperature to increase above the internal limit,  
the thermal protection forces the output to a high-impedance state and the output is pulled to ground through  
resistor RL. If the condition that caused excessive power dissipation is not removed, then the amplifier can  
oscillate between a shutdown and enabled state until the output fault is corrected.  
3 V  
TA = 65°C  
30 V  
PD = 0.81W  
JA = 138.7°C/W  
0 V  
TJ = 138.7°C/W × 0.81W + 65°C  
TJ = 177.3°C (expected)  
170ºC  
IOUT = 30 mA  
+
3 V  
RL  
100  
+
VIN  
3 V  
7-4. Thermal Protection  
If the device continues to operate at high junction temperatures with high output power over a long period of  
time, regardless if the device is or is not entering thermal shutdown, the thermal dissipation of the device can  
slowly degrade performance of the device and eventually cause catastrophic destruction. Designers must be  
careful to limit output power of the device at high temperatures, or control ambient and junction temperatures  
under high output power conditions.  
7.3.4 Capacitive Load and Stability  
The OPA4H199-SEP features a resistive output stage capable of driving moderate capacitive loads, and by  
leveraging an isolation resistor, the device can easily be configured to drive large capacitive loads. Increasing  
the gain enhances the ability of the amplifier to drive greater capacitive loads; see 7-5 and 7-6. The  
particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when  
establishing whether an amplifier can be stable in operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA4H199-SEP  
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
RISO = 0 , Positive Overshoot  
RISO = 0 , Negative Overshoot  
RISO = 50 , Positive Overshoot  
RISO = 50 , Negative Overshoot  
RISO = 0 , Positive Overshoot  
RISO = 0 , Negative Overshoot  
RISO = 50 , Positive Overshoot  
RISO = 50 , Negative Overshoot  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Cap Load (pF)  
Cap Load (pF)  
C008  
C007  
7-5. Small-Signal Overshoot vs Capacitive Load 7-6. Small-Signal Overshoot vs Capacitive Load  
(10-mV Output Step, G = 1)  
(10-mV Output Step, G = 1)  
For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small  
resistor, RISO, in series with the output, as shown in 7-7. This resistor significantly reduces ringing and  
maintains DC performance for purely capacitive loads. However, if a resistive load is in parallel with the  
capacitive load, then a voltage divider is created, thus introducing a gain error at the output and slightly reducing  
the output swing. The error introduced is proportional to the ratio RISO / RL, and is generally negligible at low  
output levels. A high capacitive load drive makes the OPA4H199-SEP an excellent choice for applications such  
as reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in 7-7 uses an isolation  
resistor, RISO, to stabilize the output of an op amp. RISO modifies the open-loop gain of the system for increased  
phase margin.  
+Vs  
Vout  
Riso  
+
Cload  
+
Vin  
-Vs  
œ
7-7. Extending Capacitive Load Drive With the OPA4H199-SEP  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
7.3.5 Common-Mode Voltage Range  
The OPA4H199-SEP is a 40-V, true rail-to-rail input operational amplifier with an input common-mode range that  
extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel  
and P-channel differential input pairs, as shown in 7-8. The N-channel pair is active for input voltages close to  
the positive rail, typically (V+) 1 V to 100 mV above the positive supply. The P-channel pair is active for inputs  
from 100 mV below the negative supply to approximately (V+) 2 V. There is a small transition region, typically  
(V+) 2 V to (V+) 1 V in which both input pairs are on. This transition region can vary modestly with process  
variation, and within this region PSRR, CMRR, offset voltage, offset drift, noise, and THD performance can be  
degraded compared to operation outside this region.  
6-5 shows this transition region for a typical device in terms of input voltage offset in more detail.  
For more information on common-mode voltage range and PMOS/NMOS pair interaction, see Op Amps With  
Complementary-Pair Input Stages application note.  
V+  
IN-  
PMOS  
PMOS  
NMOS  
IN+  
NMOS  
V-  
7-8. Rail-to-Rail Input Stage  
7.3.6 Phase Reversal Protection  
The OPA4H199-SEP family has internal phase-reversal protection. Many op amps exhibit phase reversal when  
the input is driven beyond the linear common-mode range. This condition is most often encountered in non-  
inverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output  
to reverse into the opposite rail. The OPA4H199-SEP is a rail-to-rail input op amp; therefore, the common-mode  
range can extend beyond the rails. Input signals beyond the rails do not cause phase reversal; instead, the  
output limits into the appropriate rail. This performance is shown in 7-9. For more information on phase  
reversal, see Op Amps With Complementary-Pair Input Stages application note.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA4H199-SEP  
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
Input  
Output  
Time (20us/div)  
C016  
7-9. No Phase Reversal  
7.3.7 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress  
(EOS). These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the  
output pin. Each of these different pin functions have electrical stress limits determined by the voltage  
breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to  
the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them  
from accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is  
helpful. 7-10 shows an illustration of the ESD circuits contained in the OPA4H199-SEP (indicated by the  
dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the  
input and output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption  
device or the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to  
remain inactive during normal circuit operation.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
TVS  
RF  
+VS  
VDD  
100  
100  
R1  
RS  
IN–  
IN+  
+
Power-Supply  
ESD Cell  
RL  
ID  
+
VIN  
VSS  
–VS  
TVS  
7-10. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application  
An ESD event is very short in duration and very high voltage (for example; 1 kV, 100 ns), whereas an EOS event  
is long duration and lower voltage (for example; 50 V, 100 ms). The ESD diodes are designed for out-of-circuit  
ESD protection (that is, during assembly, test, and storage of the device before being soldered to the PCB).  
During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit  
(labeled ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level.  
Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if  
activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent against damage caused by  
turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting  
resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA4H199-SEP  
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
7.3.8 Overload Recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a  
linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the  
rated operating voltage, either due to the high input voltage or the high gain. After the device enters the  
saturation region, the charge carriers in the output devices require time to return back to the linear state. After  
the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the  
propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time.  
The overload recovery time for the OPA4H199-SEP is approximately 400 ns.  
7.3.9 Typical Specifications and Distributions  
Designers often have questions about a typical specification of an amplifier to design a more robust circuit. Due  
to natural variation in process technology and manufacturing procedures, every specification of an amplifier  
exhibits some amount of deviation from the proper value, like an input offset voltage of the amplifier. These  
deviations often follow Gaussian (bell curve), or normal distributions, and circuit designers can leverage this  
information to guardband their system, even when there is not a minimum or maximum specification in 6.5.  
0.00312% 0.13185%  
0.13185% 0.00312%  
0.00002%  
0.00002%  
2.145% 13.59% 34.13% 34.13% 13.59% 2.145%  
1
1 1 1 1 1 1 1 1  
1
1
1
-61 -51 -41 -31 -21 -1  
+1 +21 +31 +41 +51 +61  
7-11. Ideal Gaussian Distribution  
7-11 shows an example distribution, where µ, or mu, is the mean of the distribution, and where σ, or sigma,  
is the standard deviation of a system. For a specification that exhibits this kind of distribution, approximately two-  
thirds (68.26%) of all units can be expected to have a value within one standard deviation, or one sigma, of the  
mean (from µ σto µ + σ).  
Depending on the specification, values listed in the typical column of the 6.5 are represented in different  
ways. As a general rule of thumb, if a specification naturally has a nonzero mean (for example, like gain  
bandwidth), then the typical value is equal to the mean (µ). However, if a specification naturally has a mean near  
zero (like input offset voltage), then the typical value is equal to the mean plus one standard deviation (µ + σ) to  
most accurately represent the typical value.  
You can use this chart to calculate approximate probability of a specification in a unit; for example, for  
OPA4H199-SEP, the typical input voltage offset is 125 µV, so 68.2% of all OPA4H199-SEP devices are expected  
to have an offset from 125 µV to 125 µV. At 4 σ (±500 µV), 99.9937% of the distribution has an offset voltage  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
less than ±500 µV, which means 0.0063% of the population is outside of these limits, which corresponds to  
about 1 in 15,873 units.  
TI verifes specifications with a value in the minimum or maximum column, and units outside these limits are  
removed from production material. For example, the OPA4H199-SEP family has a maximum offset voltage of  
895 µV at 25°C, and even though this corresponds to more than 5 σ (1 in 1.7 million units), which is  
extremely unlikely, TI specifies that any unit with larger offset than 895 µV is removed from production material.  
For specifications with no value in the minimum or maximum column, consider selecting a sigma value of  
sufficient guardband for your application, and design worst-case conditions using this value. For example, the 6-  
σvalue corresponds to about 1 in 500 million units, which is an extremely unlikely chance, and can be an option  
as a wide guardband to design a system around. In this case, the OPA4H199-SEP family does not have a  
maximum or minimum for offset voltage drift, but based on 6-2 and the typical value of 0.3 µV/°C in the 6.5,  
the calcuation results in a 6-σ value for offset voltage drift is about 1.8 µV/°C. When designing for worst-case  
system conditions, this value can be used to estimate the worst possible offset across temperature without  
having an actual minimum or maximum value.  
However, process variation and adjustments over time can shift typical means and standard deviations, and  
unless there is a value in the minimum or maximum specification column, the performance of a device is not  
verified. This information must be used only to estimate the performance of a device.  
7.4 Device Functional Modes  
The OPA4H199-SEP has a single functional mode and is operational when the power-supply voltage is greater  
than 2.7 V (±1.35 V). The maximum power supply voltage for the OPA4H199-SEP is 40 V (±20 V).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA4H199-SEP  
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The OPA4H199-SEP family offers excellent DC precision and AC performance. These devices operate up to 40-  
V supply rails and offer true rail-to-rail input/output, low offset voltage and offset voltage drift, as well as 4.5-MHz  
bandwidth and high output drive. These features make the OPA4H199-SEP a robust, high-performance  
operational amplifier for high-voltage industrial applications.  
8.2 Typical Applications  
8.2.1 Low-Side Current Measurement  
8-1 shows the OPA4H199-SEP configured in a low-side current sensing application. For a full analysis of the  
circuit shown in 8-1 including theory, calculations, simulations, and measured data, see TI Precision Design  
TIPD129, 0-A to 1-A Single-Supply Low-Side Current-Sensing Solution.  
VCC  
5 V  
LOAD  
+
VOUT  
RSHUNT  
ILOAD  
100 m  
LM7705  
RF  
360 k  
RG  
7.5 k  
8-1. OPA4H199-SEP in a Low-Side, Current-Sensing Application  
8.2.1.1 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Output voltage: 4.9 V  
Maximum shunt voltage: 100 mV  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
 
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
The transfer function of the circuit in 8-1 is given in 方程1.  
VOUT = ILOAD × RSHUNT × Gain  
(1)  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set from  
0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
defined using 方程2.  
V
SHUNT_MAX  
100 mV  
1 A  
R
=
=
= 100 mΩ  
(2)  
SHUNT  
I
LOAD_MAX  
Using 方程式 2, RSHUNT is calculated to be 100 mΩ. The voltage drop produced by ILOAD and RSHUNT is  
amplified by the OPA4H199-SEP to produce an output voltage of 0 V to 4.9 V. The gain needed by the  
OPA4H199-SEP to produce the necessary output voltage is calculated using 方程3.  
V
− V  
− V  
OUT_MAX  
OUT  
MIN  
Gain =  
(3)  
V
IN_MAX  
IN_MIN  
Using 方程式 3, the required gain is calculated to be 49 V/V, which is set with resistors RF and RG. 方程式 4 is  
used to size the resistors, RF and RG, to set the gain of the OPA4H199-SEP to 49 V/V.  
R
F
Gain = 1 +  
(4)  
R
G
Choosing RF as 360 kΩ, RG is calculated to be 7.5 kΩ. RF and RG were chosen as 360 kΩ and 7.5 kΩ  
because they are standard value resistors that create a 49:1 ratio. Other resistors that create a 49:1 ratio can  
also be used. 8-2 shows the measured transfer function of the circuit shown in 8-1.  
8.2.1.3 Application Curve  
5
4
3
2
1
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
ILOAD (A)  
1
8-2. Low-Side, Current-Sense, Transfer Function  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA4H199-SEP  
 
 
 
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
8.3 Power Supply Recommendations  
The OPA4H199-SEP is specified for operation from 2.7 V to 40 V (±1.35 V to ±40 V); many specifications apply  
from 55°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or  
temperature are presented in Typical Characteristics.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see 6.1.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, refer to Layout.  
8.4 Layout  
8.4.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself.  
Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to  
the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed  
to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As illustrated in 8-4, keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit can experience performance shifts due to moisture ingress into the plastic  
package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to  
remove moisture introduced into the device packaging during the cleaning process. A low temperature, post  
cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
8.4.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
8-3. Schematic Representation  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT 1  
Use low-ESR,  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
VS+  
GND  
OUT1  
V+  
RF  
RG  
OUT 2  
GND  
IN1–  
IN1+  
V–  
OUT2  
RF  
RG  
IN2–  
IN2+  
GND  
VIN 1  
VIN 2  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
ceramic bypass  
capacitor. Place as  
close to the device  
as possible.  
GND  
VS–  
Ground (GND) plane on another layer  
as possible.  
8-4. Operational Amplifier Board Layout for Noninverting Configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: OPA4H199-SEP  
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 TINA-TI(Free Software Download)  
TINAis a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a  
free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range  
of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain  
analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing  
capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select  
input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.  
备注  
These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed.  
Download the free TINA-TI software from the TINA-TI folder.  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Analog Engineer's Circuit Cookbook: Amplifiers solution guide.  
Texas Instruments, AN31 Amplifier Circuit Collection application note.  
Texas Instruments, MUX-Friendly Precision Operational Amplifiers application brief.  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers application report.  
Texas Instruments, Op Amps With Complementary-Pair Input Stages application note.  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
TINA-TIis a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
TINAand DesignSoftare trademarks of DesignSoft, Inc.  
TI E2Eis a trademark of Texas Instruments.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
所有商标均为其各自所有者的财产。  
9.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
 
 
 
 
 
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: OPA4H199-SEP  
 
OPA4H199-SEP  
ZHCSOA0 NOVEMBER 2022  
www.ti.com.cn  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: OPA4H199-SEP  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA4H199MDYYTSEP  
V62/21615-02XE  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DYY  
DYY  
14  
14  
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
4H199SEP  
4H199SEP  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
C
3.36  
3.16  
SEATING PLANE  
PIN 1 INDEX  
AREA  
A
0.1 C  
12X 0.5  
14  
1
4.3  
4.1  
NOTE 3  
2X  
3
7
8
0.31  
0.11  
14X  
0.1  
C A  
B
1.1 MAX  
2.1  
1.9  
B
0.2  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAUGE PLANE  
0°- 8°  
0.1  
0.0  
0.63  
0.33  
DETAIL A  
TYP  
4224643/B 07/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed  
0.15 per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.  
5. Reference JEDEC Registration MO-345, Variation AB  
www.ti.com  
EXAMPLE BOARD LAYOUT  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
SYMM  
14X (1.05)  
1
14  
14X (0.3)  
SYMM  
12X (0.5)  
8
7
(R0.05) TYP  
(3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224643/B 07/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
SYMM  
14X (1.05)  
1
14  
14X (0.3)  
SYMM  
12X (0.5)  
8
7
(R0.05) TYP  
(3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 20X  
4224643/B 07/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA4H199MDYYTSEP

航天增强型产品四路 40V 4.5MHz 轨到轨输入和输出运算放大器 | DYY | 14 | -55 to 125
TI

OPA501

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA501AM

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA501BM

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA501RM

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA501SM

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA501UM

Operational Amplifier, 1 Func, 10000uV Offset-Max, Hybrid, MBCY8,
BB

OPA501VM

Operational Amplifier, 1 Func, 5000uV Offset-Max, Hybrid, MBCY8,
BB

OPA502

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA502BM

High Current, High Power OPERATIONAL AMPLIFIER
BB

OPA502BM

OP-AMP, 5000uV OFFSET-MAX, 2MHz BAND WIDTH, MBFM8
TI

OPA511

High Current?High Power OPERATIONAL AMPLIFIER
BB