OPA521IRGWT [TI]

2.5A 窄带线路驱动器 | RGW | 20 | -40 to 125;
OPA521IRGWT
型号: OPA521IRGWT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.5A 窄带线路驱动器 | RGW | 20 | -40 to 125

驱动 驱动器
文件: 总33页 (文件大小:2123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
OPA521 2.5A 窄带线路驱动器  
1 特性  
3 说明  
1
支持:  
OPA521 是一种线路驱动器功率放大器,符合  
CENELEC 频带 ABCD ARIB STD-T84、  
FCC 15 部分的电力线通信 (PLC) 传导发射要求。  
此器件在高电流、低阻抗且具有无功负载的线路上最高  
可提供 2.5A 电流。OPA521 具备优化的内部保护结  
构,因此它只需极少的外部保护组件,实现具有经济效  
益且节省空间的系统。  
CENELEC 频带 ABCD  
ARIB STD-T84FCC  
FSKSFSK NB-OFDM  
符合:  
EN50065-1-2-3-7  
FCC 15 部分  
ARIB STD-T84  
OPA521 带宽为 3.8MHz,可提供 –7V/V 的闭环增  
益。此单片集成型电路为电源线通信应用提供 高可靠  
性。  
标准:  
G3PRIMEP1901.2ITU-G.hnem  
具有集成式热保护和过流保护功能的线路驱动器  
引脚可选静态电流消耗:  
OPA521 线路驱动器由 7V 24V 电压的单电源供  
电。在典型负载电流情况下(IOUT = 2.5A,最大值),  
宽输出摆幅能够以 24V 的标称电源电压提供 10VPP 电  
压。  
待机模式时电流为 58 µA(典型值)  
CENELEC 频带 ABCD 的电流为 51mA  
(典型值)  
FCCARIB STD-T84 的电流为 78mA(典型  
值)  
此器件具有过热和短路保护。故障检测标志显示电流和  
热限值。提供有一个关断引脚,利用该引脚可将器件置  
于低功耗状态,消耗电流为 58µA(典型值)。  
封装:5mm × 5mm 20 引脚 VQFN  
工作结温范围:  
TA = –40°C +125°C  
OPA521 可提供表面贴装式 5mm × 5mm 20 引脚  
VQFN (RGW) 封装。此器件可在 -40°C +125°C 的  
扩展工业结温范围内正常运行。  
2 应用  
电能质量监测仪  
器件信息(1)  
商用网络和服务器 PSU  
照明  
器件编号  
OPA521  
封装  
VQFN (20)  
封装尺寸(标称值)  
5.00mm × 5.00mm  
太阳能电弧保护  
中央逆变器  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
OPA521 方框图  
V+  
126 k  
GAIN_SET  
18 kꢀ  
-IN  
-
VOUT  
+IN  
+
Limits & Alarms  
GND  
IFLAG TFLAG EN  
ILIM  
IQSET  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS872  
 
 
 
 
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Application .................................................. 13  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics.......................................... 5  
6.6 Electrical Characteristics: Digital.............................. 6  
6.7 Electrical Characteristics: Power Supply ................. 6  
6.8 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Example .................................................... 23  
11 器件和文档支持 ..................................................... 24  
11.1 器件支持 ............................................................... 24  
11.2 文档支持 ............................................................... 24  
11.3 接收文档更新通知 ................................................. 24  
11.4 社区资源................................................................ 24  
11.5 ....................................................................... 24  
11.6 静电放电警告......................................................... 24  
11.7 术语表 ................................................................... 24  
12 "机械、封装和可订购信..................................... 24  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (May 2018) to Revision A  
Page  
首次发布生产数据数据表 ....................................................................................................................................................... 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
OPA521  
www.ti.com.cn  
ZHCSI51A MAY 2018REVISED JUNE 2018  
5 Pin Configuration and Functions  
RGW Package  
20-Pin VQFN With Exposed Thermal Pad  
Top View  
V+  
NC  
NC  
NC  
NC  
1
2
3
4
5
15  
14  
13  
12  
11  
IQSET  
TFLAG  
IFLAG  
ILIM  
Thermal  
Pad  
EN  
Not to scale  
NC - no internal connection  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
EN  
NO.  
11  
I
I
Enables the amplifier (active high, high enables the OPA521)  
Connect an external resistor to Gain_Set and -IN to increase the gain beyond -7 V/V  
Ground  
GAIN_SET  
GND  
IFLAG  
ILIM  
8
16, 17  
13  
O
I
Current limit warning flag (open-drain, active high, high signifies current limit condition)  
Resistor programmable current limit  
12  
+IN  
9
I
Non-inverting input (connect to a voltage equal to (V+)/2)  
Inverting input for closed loop gain = –7 V/V  
–IN  
7
I
Quiescent current select (active high, high configures the OPA521 to operate in FCC/ARIB  
bands, low configures the OPA521 to operate in CENELEC Bands A, B, C, D)  
IQSET  
NC  
15  
I
2, 3, 4, 5, 6,  
10  
No internal connection  
TFLAG  
V+  
14  
O
O
Thermal limit warning flag (open-drain, active high, high signifies thermal limit condition)  
1, 20  
18. 19  
Positive power supply  
VOUT  
Output  
Thermal pad  
Must be soldered to PCB and connected to GND  
Copyright © 2018, Texas Instruments Incorporated  
3
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
26  
UNIT  
Supply voltage, V+  
Signal input pins  
Pins 1, 20  
V
Pins 7, 8, 9, 12  
Pins 11, 15  
–0.4  
–0.4  
(V+) + 0.4  
3.3  
Voltage(2)  
Current(2)  
Voltage  
V
mA  
V
Pins 7, 8, 9, 11, 12,  
15  
±10  
Pins 18, 19  
Pins 13, 14  
–0.4  
–0.4  
(V+) + 0.4  
3.3  
Signal output terminals  
Current; short-circuit  
to GND  
Pins 13, 14, 18, 19  
Continuous  
Operating junction temperature(3)  
–40  
–55  
125  
150  
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.4 V beyond the supply rails should  
be current limited to 10 mA or less.  
(3) The device automatically goes into shutdown above +140junction temperature  
6.2 ESD Ratings  
VALUE  
±1500  
±1000  
UNIT  
V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
24  
UNIT  
Supply voltage, V+  
Output current, DC(1)  
7
V
A
1.9  
Operating junction temperature  
–40  
125  
°C  
(1) Under safe operating conditions. See Power Amplifier Stress and Power Handling Limitations safe operating area (SOA) information.  
6.4 Thermal Information  
OPA521  
THERMAL METRIC(1)  
RGW (QFN)  
20 PINS  
33.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
24.4  
12.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJB  
12.7  
RθJC(bot)  
3.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
 
OPA521  
www.ti.com.cn  
ZHCSI51A MAY 2018REVISED JUNE 2018  
6.5 Electrical Characteristics  
At TCASE = 25°C, V+ = 15 V, IN+ = (V+) / 2, RLOAD = 50 Ω unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
NOISE  
CEN-A  
35 kHz to 95 kHz  
45  
32  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
CEN-B  
95 kHz to 125 kHz  
125 kHz to 140 kHz  
140 kHz to 148 kHz  
35 kHz to 420 kHz  
35 kHz to 125 kHz  
150 kHz to 490 kHz  
CEN-C  
23  
Integrated output  
noise  
CEN-D  
16.5  
114  
55  
ARIB STD-T84  
FCC-LOW  
G3-FCC  
107  
INPUT  
(GND +  
0.4)/7  
(V+ –  
0.4)/7  
Input voltage range, IN-  
Input impedance  
For linear operation, +IN = V+/2  
V
18  
kΩ  
FREQUENCY RESPONSE  
BW  
SR  
Bandwidth  
ILOAD = 0 mA  
3.82  
75  
MHz  
V/µs  
kHz  
Slew rate  
V+ = 24 V, VOUT = 20-V step  
V+ = 24 V, VOUT = 15 VPP  
RTI, DC  
Full-power bandwidth  
800  
94  
80  
PSRR  
Power-supply rejection ratio  
dB  
RTI, DC to f = 50 kHz  
See Typical Curves  
OUTPUT  
IO = 200-mA sourcing, 1-ms pulse  
IO = 1.5-A sourcing, 1-ms pulse  
IO = 200 mA sinking, 1-ms pulse  
IO = 1.5-A sinking, 1-ms pulse  
0.5  
2.25  
0.5  
V
V
V
V
From V+  
Voltage output  
swing  
VO  
From GND  
1.5  
See Recommended Operating  
Max continuous current, DC  
ILIM (pin 12) connected to ground  
A
Conditions  
Output resistance  
Disabled output impedance  
Max output  
IO = 1.9 A, f = 500 kHz  
f = 100 kHz  
0.1  
Ω
145 || 125  
kΩ || pF  
Resistor-selectable  
ILIM (pin 12) connected to ground  
2.5  
A
current  
GAIN  
G
Nominal gain  
Gain error  
VOUT/VIN  
–7  
V/V  
GE  
TJ = -40°C to +125°C  
TJ = -40°C to +125°C  
–2%  
0.1%  
±5  
2%  
Gain error drift  
ppm/°C  
THERMAL SHUTDOWN  
Junction temperature at shutdown  
140  
10  
°C  
°C  
°C  
Hysteresis  
Return to normal operation  
130  
Copyright © 2018, Texas Instruments Incorporated  
5
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
6.6 Electrical Characteristics: Digital  
At TCASE = 25°C, V+ = 15 V, IN+ = (V+) / 2, RLOAD = 50 Ω unless otherwise noted.  
PARAMETER  
DIGITAL INPUTS (ENABLE, IQSET)  
Leakage input current  
TEST CONDITIONS  
MIN  
–1  
TYP  
MAX  
UNIT  
GND VIN 3.3  
0.01  
2
1
3.3  
0.8  
µA  
V
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
GND  
V
EN pin high  
2 < EN < 3.3  
EN < 0.8  
Device in normal operation  
Device in shutdown  
EN pin function  
(active high)  
EN pin low  
IQSET pin high  
IQSET pin low  
IQSET > 2  
IQSET < 0.8  
Device in FCC/ARIB mode (IQ = 78 mA (typ))  
Device in CENELEC mode (IQ = 51 mA (typ))  
IQSET pin function  
(active high)  
DIGITAL OUTPUTS (TFLAG, IFLAG)  
IOH  
VOL  
IOL  
High-level output current  
Low-level output voltage  
Low-level output current  
VOH = 3.3 V  
1
µA  
V
IOL = 4 mA  
0.4  
VOL = 400 mV  
4
mA  
TFLAG pin high  
TFLAG pin low  
IFLAG pin high  
IFLAG pin low  
TFLAG sink high < 1 µA  
TFLAG < 0.4 V  
IFLAG sink high < 1 µA  
IFLAG < 0.4 V  
Device is in thermal shutdown  
Device is not in thermal shutdown  
Device is in current limit  
TFLAG (active high,  
open-drain)  
IFLAG (active high,  
open-drain)  
Device is not in current limit  
SHUTDOWN MODE TIMING  
Enable time  
SD pin transitions from low to high  
SD pin transitions from high to low  
3
2
ms  
ms  
Disable time  
6.7 Electrical Characteristics: Power Supply  
At TCASE = 25°C, V+ = 15 V, IN+ = (V+) / 2, RLOAD = 50 Ω unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING SUPPLY RANGE  
V+  
Power amplifier  
7
15  
24  
V
QUIESCENT CURRENT (ENABLE pin high)  
FCC/ARIB mode  
CENELEC mode  
IO = 0 A, IQSET pin high  
IO = 0 A, IQSET pin low  
64  
41  
78  
51  
88  
61  
mA  
mA  
IQ  
SHUTDOWN (ENABLE pin low)  
EN Power amplifier  
EN pin low  
58  
130  
µA  
6
版权 © 2018, Texas Instruments Incorporated  
OPA521  
www.ti.com.cn  
ZHCSI51A MAY 2018REVISED JUNE 2018  
6.8 Typical Characteristics  
At TCASE = +25°C, V+ = 24 V, IN+ = (V+)/2, RLOAD = 50 Ω unless otherwise noted.  
120  
100  
80  
60  
40  
20  
0
30  
20  
10  
0
G = -7  
-10  
-20  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
D004  
D005  
1. Closed Loop Gain vs Frequency  
2. PSRR+ vs Frequency  
0.1  
-60  
1
-40  
FCC/ARIB 10KW  
FCC/ARIB 50W  
CENELEC 10KW  
CENELEC 50W  
0.1  
-60  
0.01  
0.001  
-80  
0.01  
-80  
-100  
FCC/ARIB 10KW  
FCC/ARIB 50W  
CENELEC 10KW  
CENELEC 50W  
0.001  
-100  
0.0001  
-120  
0.0001  
-120  
10  
100  
1k  
10k  
10m  
100m  
1
Frequency (Hz)  
Output Amplitude (VRMS  
)
D006  
D007  
VOUT = 7 VRMS  
3. THD+N vs Frequency  
ƒ = 1 kHz  
4. THD+N vs Output Amplitude  
100  
10  
1
10  
1
0.1  
0.1  
100m  
0.01  
100m  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
D008  
D009  
5. Input Voltage Noise Spectral Density  
6. Input Current Noise Density  
版权 © 2018, Texas Instruments Incorporated  
7
 
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TCASE = +25°C, V+ = 24 V, IN+ = (V+)/2, RLOAD = 50 Ω unless otherwise noted.  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Rset (kW)  
Output Current (A)  
D018  
D034  
V+ = 15 V  
7. Maximum Output Current Limit vs RSET  
8. Output Swing from V+ vs Output Current (Sourcing)  
2
1.8  
1.6  
1.4  
1.2  
1
35  
Vs=24 V  
Vs=15 V  
Vs=7 V  
30  
25  
20  
15  
10  
5
0.8  
0.6  
0.4  
0.2  
0
0
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Output Current (A)  
Frequency (Hz)  
D033  
D035  
V+ = 15 V  
9. Output Swing from GND vs Output Current (Sinking)  
10. Maximum Output Voltage vs Frequency  
Input  
Input  
Rload = 50W  
Rload = 10KW  
Rload = 50W  
Rload = 10KW  
Time (10 ms/div)  
Time (10ms/div)  
D020  
D021  
11. Small-Signal Step Response  
12. Large-Signal Step Response  
8
版权 © 2018, Texas Instruments Incorporated  
OPA521  
www.ti.com.cn  
ZHCSI51A MAY 2018REVISED JUNE 2018  
Typical Characteristics (接下页)  
At TCASE = +25°C, V+ = 24 V, IN+ = (V+)/2, RLOAD = 50 Ω unless otherwise noted.  
0.055  
25  
20  
15  
10  
5
RISO = 0  
RISO = 25  
RISO = 50  
0.05  
0.045  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0
0.01  
10  
100  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Capactiance (pF)  
Temperature(èC)  
D022  
D023  
V+ = 15 V  
13. Small-Signal Overshoot vs Capacitive Load  
14. Gain Error vs Temperature  
120  
1
120  
110  
100  
90  
1
110  
100  
90  
10  
10  
80  
100  
20 35 50 65 80 95 110 125  
Temperature (èC)  
80  
100  
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
-40 -25 -10  
5
D025  
D025  
V+ = 15 V  
V+ = 15 V  
15. CMRR vs Temperature  
16. PSRR vs Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
FCC/ARIB  
CENELEC  
FCC/ARIB  
CENELEC  
8
10  
12  
14  
16  
18  
20  
22  
24  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Supply Voltage (V)  
D027  
D028  
V+ = 15 V  
V+ = 15 V  
17. Iq vs Supply Voltage  
18. Iq vs Temperature  
版权 © 2018, Texas Instruments Incorporated  
9
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TCASE = +25°C, V+ = 24 V, IN+ = (V+)/2, RLOAD = 50 Ω unless otherwise noted.  
Time (1s/div)  
D032  
19. 0.1-Hz to 10-Hz Noise  
10  
版权 © 2018, Texas Instruments Incorporated  
OPA521  
www.ti.com.cn  
ZHCSI51A MAY 2018REVISED JUNE 2018  
7 Detailed Description  
7.1 Overview  
The OPA521 is a power amplifier (PA) designed for power-line communication (PLC) applications. The device  
features a fixed gain of –7 V/V, low-pass filter response, excellent linearity and low distortion through the  
bandwidth. The amplifier operates with 7-V to 24-V supplies, and can deliver up to ±1.9 A of continuous current  
from –40°C to +125°C.  
7.2 Functional Block Diagram  
V+  
126 k  
GAIN_SET  
18 kꢀ  
-IN  
-
VOUT  
+IN  
+
Limits & Alarms  
GND  
IFLAG TFLAG EN  
ILIM  
IQSET  
7.3 Feature Description  
The OPA521 offers an optional output current limit (ILIM), quiescent current (IQSET) selection pins, and a device  
enable pin. The IFLAG output alarm pin indicates an output current warning and the TFLAG alarm triggers when  
the internal temperature of the device forces the devices to shut down.  
7.3.1 IQSET Pin  
This pin sets the operating band of the amplifier by adjusting the quiescent current.  
IQSET > 2 V sets the device to operate in the FCC or ARIB bands  
IQSET < 0.8 V sets the device to operate in the CENELEC bands  
7.3.2 EN Pin  
When the transmitter is not in use, the output is disabled and placed in a high-impedance state when the EN pin  
decreases. For typical operation, connect the EN pin to 3.3 V. In disabled mode, the entire device draws 58 μA  
(typical) of current.  
7.3.3 ILIM Pin Current Limiting  
The ILIM pin (pin 12) provides a resistor-programmable output current limit. 6 shows the typical current limit  
for a given external RSET resistor attached to this pin.  
Several typical target values and the approximate corresponding RSET are provided in 1.  
1. Typical Current Limit and RSET Values  
CURRENT LIMIT (A)  
RSET (approximate, k)  
Maximum Output  
Grounded  
1
10  
25  
0.5  
版权 © 2018, Texas Instruments Incorporated  
11  
 
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
7.3.4 IFLAG and TFLAG Pins  
The IFLAG and TFLAG pins are active-high, open-drain outputs that indicate if the OPA521 is in current or  
thermal limit. Connect these pins to 3.3 V through pullup resistors (for example 10 kΩ).  
The maximum output current from the power amplifier is programmed with the external ILIM resistor that is  
connected between ILIM (pin 12) and ground. IFLAG is set if the amplifier goes to a current limit state if a fault  
condition occurs. This causes the power amplifier to source or sink more current than the programmed limit  
value. IFLAG exhibits transient pulses under typical operation. An IFLAG true state for greater than 100 ms is a  
definite indication of a fault current condition.  
The device contains internal thermal shutdown protection circuitry that automatically disables the output stage if  
the junction temperature exceeds 140°C. The device thermal shutdown protection circuitry lets the amplifier  
typical normal operation only when the junction temperature falls below 130°C. The TFLAG is active when the  
device is in thermal shut down mode.  
7.4 Device Functional Modes  
The OPA521 operates from a single power rail from 7 V to 24 V. The gain is fixed at –7 V/V and can increase  
with an external resistor that is connected to the GAIN_SET and –IN pins.  
12  
版权 © 2018, Texas Instruments Incorporated  
OPA521  
www.ti.com.cn  
ZHCSI51A MAY 2018REVISED JUNE 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The application circuit shown in 20 is an AC mains-line driver over 40-kHz-to-90-kHz utility band and is based  
around the European standard (EN56065–1) describing utility and consumer applications. This example shows a  
possible implementation for differential transmission on the mains line. This applications circuit is designed  
around the requirements of a domestic electricity meter operating over a utility band of 40 kHz to 90 kHz.  
8.2 Typical Application  
The impedance of the mains network at these signaling frequencies is relatively low (< 1 to 30 ). This circuit  
has been designed to drive a 2-mains line over the 40-kHz-to-90-kHz bandwidth. The signaling impedance of  
the mains network fluctuates as different loads are switched on during the day or over a season and it is  
influenced by many factors such as:  
Localized loading from appliances connected to the mains supply near to the connection of the  
communication equipment; for example, heavy loads such as cookers and immersion heaters and reactive  
loads such as EMC filters and power factor corrections.  
Distributed loading from consumers connected to the same mains cable, where their collective loading  
reduces the mains signaling impedance during times of peak electricity consumption; for example, meal  
times.  
Network parameters; for example, transmission properties of cables and the impedance characteristics of  
distribution transformers and other system elements.  
With such a diversity of factors, the signaling environment fluctuates enormously, irregularly, and can differ  
greatly from one installation to another. Design the signaling system for reliable communications over a wide  
range of mains impedances and signaling conditions. Consequently, the transmitter must be able to drive  
sufficient signal into the mains network under these loading conditions.  
The OPA521 amplifier has 1.9-A output drive capability with short-circuit protection; hence, it adequately copes  
with the high current demands required for implementing mains signaling systems.  
V+  
V+  
-7 V/V Gain  
HV  
Cap  
LV Cap  
HV Inductor  
Rload  
MCU  
Line  
œ
+
V+  
2
Neutral  
20. OPA521 Interface to the AC Mains  
版权 © 2018, Texas Instruments Incorporated  
13  
 
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
The primary subsystems of a power-line communication mains-line driver system include the line coupling circuit,  
circuit protection, and power supply. The following sections detail the design of each.  
8.2.2 Detailed Design Procedure  
8.2.2.1 Interfacing the OPA521 to the AC Mains  
The line coupling circuit is one of the most critical segments of a power-line modem. The line coupling circuit has  
two primary functions: first, to prevent the high voltage, low frequency of the mains (commonly 50 Hz or 60 Hz)  
from damaging the low-voltage modem circuitry; and second, as the name implies, to couple the modem signal  
to and from the ac mains.  
8.2.2.1.1 Low-Voltage Capacitor  
The low-voltage capacitor (LV Cap) couples the time-varying components of the power amplifier output signal  
into the line coupling transformer. The LV Cap must have a large enough capacitance to appear as a low  
impedance throughout the signal band of interest; 10-μF is a common value for signals in the range of 35 kHz to  
150 kHz. The voltage rating of the LV cap should be sufficient to withstand the clamping voltage of the TVS  
diode (that is, the transient voltage suppressor (see Circuit Protection more information) operating under surge  
conditions. Generally, this limit must be equal to the power amplifier supply voltage or slightly higher.  
8.2.2.1.2 High-Voltage Capacitor  
The high-voltage capacitor (HV Cap) blocks the low-frequency mains voltage by forming a voltage divider with  
the winding inductance of the line coupling transformer. In many applications, a maximum reactive power (VA  
limit) on the HV Cap may be required. To meet this requirement, the HV Cap value is calculated by 公式 1.  
VALIMIT  
HVCAP  
=
VAC2 ì 2 p ì f  
(1)  
For a 240-VAC, 50-Hz application with a 10-VA limit, the maximum value for the HV Cap is shown in 公式 2.  
10  
HVCAP  
Ç
= 550 nF  
2402 ì 2 p ì f  
(2)  
A 470-nF capacitor is frequently used in these types of applications. A metallized polypropylene electromagnetic  
interference and radio frequency interference (EMI/RFI) suppression capacitor is recommended because of the  
low loss factor associated with the dielectric, which results in minimal internal self-heating. Operating the  
capacitor at approximately 80% of its ac-rated voltage ensures a long component operating life. See Circuit  
Protection of this document for additional discussion on selecting the correct HV Cap value to withstand impulses  
on the mains.  
8.2.2.1.3 Inductor  
The inductor that is connected in series with the HV Cap is required when driving low line impedances and the  
HV Cap is restricted to approximately 470 nF for the reasons previously stated. In applications that operate in the  
CENELEC A band, the impedance of the 470-nF capacitance at 40 kHz is approximately 8.5 Ω. If the application  
requires the ability to drive a 2-Ω load, for example, this series impedance is restrictive. Adding the series  
inductor can mitigate this effect. To properly select the value of the inductance, the operating frequency range of  
the system must be known. A common example would be the PRIME frequency band, which is approximately 40  
kHz to 90 kHz. Selecting the HV Cap and inductor to have a resonant frequency in the center of the frequency  
band is recommended, and results in a series inductor value of 12.8 μH and HV Cap value of 470 nF. The  
inductor must be sized to be capable of withstanding the maximum load current without saturation, using this 公  
3 as a guideline.  
1
L =  
2
HV  
ì 2 p ì f  
(
)
CAP  
(3)  
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
OPA521  
www.ti.com.cn  
ZHCSI51A MAY 2018REVISED JUNE 2018  
Typical Application (接下页)  
8.2.2.1.4 Line Coupling Transformer  
Most power-line communication transformers are compact, with turns ratios between 1:1 and 4:1, low leakage  
inductance, and approximately 1-mH of winding inductance. It is the voltage divider formed by the HV Cap and  
winding inductance that divides down the ac mains voltage and reduces it to negligible levels at the modem  
output. 21 shows the equivalent circuit formed with the HV Cap and the line coupling transformer.  
Modem  
Voltage  
Mains  
Voltage  
Power  
Amplifier  
LV Capacitor  
10 mF  
HV Capacitor  
470 nF  
R1  
L1  
L3  
R3  
+
N1  
+
N2  
120 VAC to  
240 VAC  
50 Hz to 60 Hz  
R2  
L2  
C2  
21. Voltage Divider with HV Cap and Transformer Equivalent Circuit  
Where:  
1. R1 is the series dc resistance of the primary winding  
2. R2 is the shunt resistance reflecting losses in the core  
3. R3 is the series dc resistance of the secondary winding, reflected to the primary side  
4. L1 is the primary leakage inductance  
5. L2 is the open circuit inductance of the primary winding  
6. L3 is the secondary leakage inductance reflected to the primary side  
7. C1 is the self-capacitance of the primary winding  
8. C2 is the self-capacitance of the secondary winding reflected to the primary side  
For the purposes of analysis, this circuit can be simplified as shown in 22.  
C
Modem  
Voltage  
Mains  
Voltage  
120 VAC to  
240 VAC  
50 Hz to 60 Hz  
L2  
HVCap reflected to the primary side  
22. Simplified AC Mains Voltage Divider  
Where:  
1. L2 = OCL of the transformer primary  
2. C = HV Cap reflected to the primary side  
In a typical line coupling circuit the ac mains voltage injected into the modem is approximately 20 mVPP.  
Determining the optimal turns ratio (N1/N2) for the power-line communication transformer is simple, and based  
on the principle of using the maximum output swing capability of the power amplifier together with the maximum  
output current capability of the power amplifier to achieve maximum power transfer efficiency into the load.  
Assuming the power-supply voltage and target load impedance are known, the turns ratio is determined as  
shown in Figure 17, and calculated with Equation 11 and Equation 12.  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.2.2 Circuit Protection  
Power-line communications are often located in operating environments that are harsh for electrical components  
connected to the ac line. Noise or surges from electrical anomalies (such as lightning, capacitor bank switching,  
inductive switching, or other grid fault conditions) can damage high-performance integrated circuits if proper  
protection is not provided. The OPA521, however, can survive even the harshest conditions by using a variety of  
techniques to protect the device. Layout the protection circuitry in order to dissipate as much of the electrical  
disturbance as possible with a multilayer approach using metal-oxide varistors (MOVs), transient voltage  
suppression diodes (TVSs), Schottky diodes, and a Zener diode. These components dissipate the electrical  
disturbance before the anomaly reaches the device. shows the recommended strategy for transient overvoltage  
protection.  
PA  
Power Supply  
D1  
Device  
Low-Voltage  
Capacitor  
High-Voltage  
Capacitor  
D2  
D3  
Phase  
+
N1  
+
N2  
MOV  
Power  
Amplifier  
Neutral  
TVS  
Copyright © 2017, Texas Instruments Incorporated  
23. Transient Overvoltage Protection for OPA521  
Note that the high-voltage coupling capacitor must be able to withstand pulses up to the clamping protection  
provided by the MOV. A metalized polypropylene capacitor, such as the 474MKP275KA from Illinois Capacitor, is  
rated for 50 Hz to 60 Hz and 250 VAC to 310 VAC, and can withstand 24 impulses of 2.5 kV. 2 lists several  
recommended transient protection components.  
2. Recommended Transient Protection Components  
COMPONENT  
D1  
DESCRIPTION  
Zener diode  
MANUFACTURER  
Diodes, Inc.  
MFR PART NO (OR EQUIVALENT)  
1SMB59xxB  
D2, D3  
Schottky diode  
Diodes, Inc.  
1N5819HW  
Diodec  
Semiconductor  
TVS  
Transient voltage suppressor  
P6SMBJxxC  
MOV  
MOV  
Varistor (for 120 VAC, 60 Hz)  
Varistor (for 240 VAC, 50 Hz)  
High-voltage capacitor  
LittleFuse  
LittleFuse  
TMOV20RP140E  
TMOV20RP300E  
474MKP275KA  
HV Cap  
Illinois Capacitor, Inc  
16  
版权 © 2018, Texas Instruments Incorporated  
 
OPA521  
www.ti.com.cn  
ZHCSI51A MAY 2018REVISED JUNE 2018  
8.2.3 Application Curves  
120  
100  
80  
120  
110  
100  
90  
80  
70  
60  
60  
50  
40  
40  
30  
20  
20  
0
200K  
400K  
600K  
800K  
1M  
200K  
400K  
600K  
800K  
1M  
Frequency (Hz)  
Frequency (Hz)  
D00113  
D00113  
24. Measured ARIB Emissions  
25. Measured FCC Emissions  
120  
100  
80  
60  
40  
20  
0
200K  
400K  
600K  
800K  
1M  
Frequency (Hz)  
D00114  
26. Measured CENELEC Emissions  
版权 © 2018, Texas Instruments Incorporated  
17  
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
Determining the power-supply requirements requires only a straightforward analysis. The desired load voltage,  
load impedance, and available power-supply voltage or desired transformer ratio are all the parameters that must  
be known. In many power-line communication applications, such as PRIME, it is required to drive a 1-VRMS signal  
into a 2-Ω load. Using 27, calculate the minimum power-supply voltage required by adding the peak-to-peak  
load voltage; the voltage dropped across the HV Cap and inductor, V2; the voltage dropped across the LV Cap,  
V1; and twice the output swing to rail limit of the power amplifier, VSWING. For FSK and SFSK systems, the  
peak to average ratio is 2, while for OFDM systems this ratio is approximately 3:1.  
+
VSWING  
-
+
V1  
-
+
V2 -  
PA Supply  
+
LV  
Capacitor  
Power  
Amplifier  
HV  
Capacitor  
L
+
Phase  
+
+
N1  
+
N2  
+
VLoad  
-
œ
RLoad  
Neutral  
27. Typical Line Coupling Circuit  
These ratios must be considered when performing calculations that relate the RMS voltages and peak voltages  
during an analysis. Choosing a large value for the LV Cap results in the voltage drop (V1) becoming negligible in  
most circumstances. The losses in the transformer are also negligible, even at high load currents, if the proper  
transformer with a low DCR is used. For FSK and SFSK systems, the voltage drop across the HV Cap and  
inductor, V2, is also usually negligible; in OFDM systems, because of the wider operating bandwidth, voltage  
drop V2 can be ignored and accounted for by using a 1.5× multiplier on the load voltage as an approximation.  
This approximation is only valid with a load impedance of 2 for PRIME and G3. Voltage  
drop V2 becomes negligible with increasing load impedance. These assumptions greatly  
simplify the analysis.  
3. Power-Supply Requirements  
PARAMETER  
Frequency range  
RLOAD  
FSK OR SFSK  
PRIME OR G3 OFDM  
UNIT  
kHz  
Ω
63 to 74  
2
35 to 95  
2
1
VLOAD  
1
VRMS  
VPEAK  
VPP  
VLOAD  
1.414  
2.828  
3
VLOAD  
6
OFDM multiplier  
VSWING  
1.5  
2
2
V
Turns ration, N1/N2  
PA supply  
1.5  
1.5  
17.5  
8.25  
V
3 summarizes the power-supply requirements for various power-line communication systems.  
Example:  
For PRIME or G3 using an OFDM signal with a 2-Ω load and 1-VRMSload voltage:  
PASupply = VLOAD × OFDM Multiplier × Turns Ration + (2 × VSWING  
PASupply = 6 V × 1.5 × 1.5 + (2 × 2 V)  
PASupply = 17.5 V  
)
Power consumption  
18  
版权 © 2018, Texas Instruments Incorporated  
 
 
OPA521  
www.ti.com.cn  
ZHCSI51A MAY 2018REVISED JUNE 2018  
Calculating the power dissipation in the load and in OPA521 also requires some direct calculations. The desired  
load voltage, load impedance, available power-supply voltage, and the transformer ratio are the only parameters  
required. In many power-line communication applications, such as PRIME, it is required to drive a 1-VRMS signal  
into a 2-Ω load. The power dissipation in the power amplifier is determined by calculating the RMS value of the  
OPA521’s output current, and the voltage difference between the power amplifier supply and RMS value of the  
output voltage. These two values are multiplied, and the quiescent power of the power amplifier is added.  
The power in the load is given as 公式 4 shows.  
PASUPPLY  
N1  
N2  
PA output voltage (RMS) =  
+ VLOAD_RMS ì  
2
(4)  
(5)  
The power amplifier output current is given as calculated by 公式 5.  
PA power dissipation = voltage drop across PA ì PAIOUT_RMS  
Because the output of the power amplifier is always symmetric around PASupply/2, only the voltage difference  
between the amplifier supply and the RMS values of the PA output must be considered. 28 illustrates this  
concept for an OFDM signal. 4 shows example power dissipation values.  
PA Supply  
PA OutputPeak  
PA  
OutputRMS  
PA Swing to Rail  
PA Supply/2  
Voltage Drop Across PA; for use in  
Power Dissipation Analysis  
Time (s)  
28. Typical OFDM Output Waveforms  
4. Power Dissipation  
PARAMETER  
Turns ration, N1/N2  
RLOAD  
FSK OR SFSK  
PRIME OR G3 OFDM  
UNITS  
-
1.5  
2
1.5  
2
Ω
VLOAD  
1
1
VRMS  
ARMS  
VRMS  
VRMS  
ARMS  
V
ILOAD  
0.5  
6
0.5  
10.75  
6.25  
0.333  
17  
PA output voltage  
Voltage drop across PA  
PA output current  
PA supply  
3
0.333  
9
PA power dissipation  
Load power dissipation  
Total  
1
2.1  
0.5  
2.6  
W
0.5  
1.5  
W
W
版权 © 2018, Texas Instruments Incorporated  
19  
 
 
 
 
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
The power supply itself does not need to be designed to supply the peak power amplifier current continuously.  
The peak demand for current is supplied by the power-supply bypass capacitance. The power-supply voltage is  
shown in 29 on channel 2, along with the signal voltage at the 2-Ω load on channel 1.  
TYPICAL POWER-SUPPLY RESPONSE  
Load Voltage  
Ch 1, RMS 1.47 V  
Ch 2, Peak-to-Peak  
190 mV  
Power-Supply  
Voltage  
Time (20 ms/div)  
29. Typical Power-Supply AC Response  
Two power-supply pins and two ground pins are available to provide a path for the high currents associated with  
driving the low impedance of the ac mains. Connecting the two supply pins together is recommended. Placing a  
47-μF to 100-μF bypass capacitor in parallel with a 100-nF capacitor as close as possible to the device is also  
recommended. Care must be taken when routing the high-current ground lines on the PCB to avoid creating  
voltage drops in the PCB ground that may vary with changes in load current. /  
20  
版权 © 2018, Texas Instruments Incorporated  
 
OPA521  
www.ti.com.cn  
ZHCSI51A MAY 2018REVISED JUNE 2018  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Thermal Considerations  
In a typical power line communications application, the device dissipates 2 W of power when transmitting to the  
low-impedance AC line. This amount of power dissipation can increase the junction temperature, which can lead  
to a thermal overload that results in signal transmission interruptions if the PCB thermal design is not  
implemented properly. Proper management of heat flow from the device and good PCB design and construction  
are required to ensure proper device temperature, maximize performance, and extend the operating life of the  
device.  
The device is assembled in a 5-mm × 5-mm, QFN-20 package. This QFN package has a large exposed thermal  
pad on the underside that conducts heat away from the device and to the underlying PCB.  
Some heat is conducted from the silicon die surface through the plastic packaging material and is transferred to  
the ambient environment. However, this route is not the primary thermal path for heat flow because plastic is a  
relatively poor conductor of heat. Heat flows across the silicon die surface to the bond pads through the wire  
bonds to the package leads, to the top layer of the PCB. While these paths for heat flow are important, the  
majority (nearly 80%) of the heat flows downward through the silicon die to the thermally-conductive die-attach  
epoxy and to the exposed thermal pad on the underside of the package (as shown in 30). Minimizing the  
thermal resistance of this downward path to the ambient environment maximizes the life and performance of the  
device.  
Less than 1%  
~20%  
~20%  
~80%  
30. Heat Flow in the QFN Package  
The exposed thermal pad must be soldered to the PCB thermal pad. The thermal pad on the PCB must be the  
same size as the exposed thermal pad on the underside of the QFN package. See QFN/SON PCB Attachment  
for recommendations on attaching the thermal pad to the PCB. 31 shows the direction of heat spreading to  
the PCB from the device.  
版权 © 2018, Texas Instruments Incorporated  
21  
 
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
Layout Guidelines (接下页)  
Device  
31. Heat Spreading to PCB  
The heat spreading to the PCB is maximized if the thermal path is uninterrupted. Best results are achieved if the  
heat-spreading surfaces are filled with copper to the greatest extent possible, which maximizes the percentage of  
area covered on each layer. As an example, a thermally robust, multilayer PCB design consists of four layers  
with copper (Cu) coverage of 60% in the top layer, 85% and 90% in the inner layers (respectively), and 95% on  
the bottom layer.  
Increasing the number of layers in the PCB, using thicker copper, and increasing the PCB area are all factors  
that improve the spread of heat. 32 through 34 show thermal resistance performance as a function of each  
of these factors.  
THERMAL RESISTANCE vs NUMBER OF PCB LAYERS  
THERMAL RESISTANCE vs BOARD AREA  
36  
34  
32  
30  
28  
26  
24  
22  
20  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
PCB Area = 3 in2, 2 oz Cu  
(Results are from thermal  
simulations)  
Four-Layer PCB, 2 oz Cu  
(Results are from thermal  
simulations)  
1
2
3
4
5
6
7
8
2
4
6
8
10  
12  
14  
PCB Area (in2)  
Number of Layers  
32. Thermal Resistance as a Function of the  
33. Thermal Resistance as a Function of PCB  
Number of Layers in the PCB  
Area  
22  
版权 © 2018, Texas Instruments Incorporated  
 
OPA521  
www.ti.com.cn  
ZHCSI51A MAY 2018REVISED JUNE 2018  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
Four-Layer PCB, PCB  
Area = 4.32 in2, 2 oz Cu  
(Results are from thermal  
simulations)  
0.5  
1
1.5  
Cu Thickness (oz)  
2
2.5  
34. Thermal Resistance as a Function of Copper Thickness  
For additional information on thermal PCB design using exposed thermal pad packages, see PowerPAD™  
Thermally-Enhanced Package (available for download at www.ti.com).  
10.2 Layout Example  
35. Recommended Layout for Typical Transformer Coupling Application  
版权 © 2018, Texas Instruments Incorporated  
23  
OPA521  
ZHCSI51A MAY 2018REVISED JUNE 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)PowerPAD™ 热增强型封装》  
德州仪器 (TI)QFN/SON PCB 连接》  
11.3 接收文档更新通知  
要接收文档更新通知,请在 ti.com.cn 上查找器件产品文件夹。请单击右上角的通知我 进行注册,即可接收产品信  
息更改每周摘要。有关更改的详细信息,请阅读任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 "机械、封装和可订购信息  
以下页面显示机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航栏。  
24  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA521IRGWR  
OPA521IRGWT  
ACTIVE  
VQFN  
VQFN  
RGW  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
OPA  
521  
Samples  
Samples  
ACTIVE  
RGW  
NIPDAU  
OPA  
521  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA521IRGWR  
OPA521IRGWT  
VQFN  
VQFN  
RGW  
RGW  
20  
20  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA521IRGWR  
OPA521IRGWT  
VQFN  
VQFN  
RGW  
RGW  
20  
20  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGW 20  
5 x 5, 0.65 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4227157/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
5.1  
4.9  
B
PIN 1 INDEX AREA  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.15±0.1  
2X 2.6  
(0.1) TYP  
10  
6
16X 0.65  
5
11  
SYMM  
21  
2X  
2.6  
15  
1
0.36  
0.26  
20X  
PIN1 ID  
(OPTIONAL)  
0.1  
C A B  
C
20  
16  
0.05  
SYMM  
0.65  
0.45  
20X  
4219039/A 06/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.65)  
3.15)  
(2.6)  
(
20  
16  
16X (0.65)  
15  
1
(1.325)  
21  
SYMM  
(4.65) (2.6)  
(R0.05) TYP  
11  
5
20X (0.31)  
20X (0.75)  
(Ø0.2) VIA  
6
10  
TYP  
(1.325)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219039/A 06/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.65)  
4X ( 1.37)  
2X (0.785)  
16  
20  
16X (0.65)  
21  
1
15  
2X (0.785)  
SYMM  
(4.65) (2.6)  
(R0.05) TYP  
11  
5
20X (0.31)  
20X (0.75)  
METAL  
TYP  
6
10  
SYMM  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219039/A 06/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

OPA541

High Power Monolithic OPERATIONAL AMPLIFIER
BB

OPA541

高功率单片运算放大器
TI

OPA541AD

Operational Amplifier, 1 Func, 10000uV Offset-Max,
BB

OPA541AM

High Power Monolithic OPERATIONAL AMPLIFIER
BB

OPA541AM

高功率单片运算放大器 | LMF | 8
TI

OPA541AM-BI

暂无描述
BB

OPA541AP

High Power Monolithic OPERATIONAL AMPLIFIER
BB

OPA541AP

高功率单片运算放大器 | KV | 11 | -25 to 85
TI

OPA541AP-BI

Operational Amplifier, 1 Func, 10000uV Offset-Max, PZIP11,
BB

OPA541APG3

高功率单片运算放大器 | KV | 11 | -25 to 85
TI

OPA541BM

High Power Monolithic OPERATIONAL AMPLIFIER
BB

OPA541BM

高功率单片运算放大器 | LMF | 8
TI