OPA838IDCKT [TI]

1mA、300MHz 增益带宽、电压反馈运算放大器 | DCK | 5 | -40 to 125;
OPA838IDCKT
型号: OPA838IDCKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1mA、300MHz 增益带宽、电压反馈运算放大器 | DCK | 5 | -40 to 125

放大器 运算放大器
文件: 总52页 (文件大小:3250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
OPA838 1mA300MHz 增益带宽、电压反馈运算放大器  
1 特性  
3 说明  
1
增益带宽积:300MHz  
极低(修整后)的电源电流:950µA  
OPA838 解补偿电压反馈运算放大器只需 0.95mA 的  
修整电源电流,即可以 1.8nV/Hz 的输入噪声电压提  
供高达 300MHz 的增益带宽积。这些 特性 相结合,可  
为光电二极管跨阻设计和高电压增益级(它们在信号接  
收器 应用中需要最低的输入电压噪声)提供极其省电  
的解决方案。  
带宽:90MHz (AV = 6V/V)  
较高的全功率带宽:45MHz4VPP  
负轨输入,轨至轨输出  
单电源工作电压范围:2.7V 5.4V  
25°C 下的输入失调电压:±125µV(最大值)  
输入失调电压漂移:< ±1.6µV/°C(最大值)  
输入电压噪声:1.8nV/Hz (> 200Hz)  
输入电流噪声:1pA/Hz (> 2000Hz)  
6V/V 的最小建议同相增益运行时会产生 90MHz–  
3dB 带宽。极低的输入噪声和失调电压使得 OPA838  
特别适合高增益。即使在 1000V/V 的直流耦合增益  
下,也可获得 300kHz 的信号带宽,且最大输出失调电  
压为 ±125mV。  
关断电流小于 1µA,可节省电能 中的关断电流小  
5µA”更改成了关断电流小于 1µA”  
单通道 OPA838 采用 6 引脚 SOT-23 SC70 封装  
(包含电源关断特性)以及 5 引脚 SC70 封装。  
2 应用  
低功耗跨阻放大器  
器件信息(1)  
低噪声高增益级  
器件型号  
封装  
SOT-23 (6)  
封装尺寸(标称值)  
2.90mm × 1.60mm  
2.00mm × 1.25mm  
2.00mm × 1.25mm  
12 位至 16 位低功耗 SAR ADC 驱动器  
高增益有源滤波器设计  
超声波流量计  
OPA838  
SC70 (5)  
SC70 (6)  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的封装选项附  
录。  
空白  
空白  
3V 单电源,小于 3mW 的光电二极管放大器,具有  
小于 1.1pA/Hz 的总输入参考电流噪声,并具有总体 SSBW 1MHz 100kΩ 增益  
1 pF  
Large Area Photodetector  
100 k  
With 100-pF Capacitance  
VCC = 3 V  
œ
73.2 ꢀ  
VOUT  
2.2 nF  
Diode  
Current  
Direction  
+
1-MHz  
Post Filter  
-VBIAS  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS867  
 
 
 
 
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 20  
8.3 Feature Description................................................. 20  
8.4 Device Functional Modes........................................ 24  
8.5 Power Shutdown Operation.................................... 27  
Application and Implementation ........................ 28  
9.1 Application Information............................................ 28  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics: VS = 5 V........................... 6  
7.6 Electrical Characteristics: VS = 3 V........................... 8  
7.7 Typical Characteristics: VS = 5 V............................ 10  
7.8 Typical Characteristics: VS = 3 V............................ 13  
7.9 Typical Characteristics: Over Supply Range .......... 16  
Detailed Description ............................................ 20  
8.1 Overview ................................................................. 20  
9
10 Power Supply Recommendations ..................... 36  
11 Layout................................................................... 37  
11.1 Layout Guidelines ................................................. 37  
11.2 Layout Example .................................................... 37  
12 器件和文档支持 ..................................................... 38  
12.1 器件支持 ............................................................... 38  
12.2 文档支持................................................................ 38  
12.3 ....................................................................... 39  
12.4 静电放电警告......................................................... 39  
12.5 术语表 ................................................................... 39  
13 机械、封装和可订购信息....................................... 39  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (February 2018) to Revision B  
Page  
已更改 将特性.................................................................................................................................................................. 1  
Changed value of common-mode and differential-mode input impedance in Electrical Characterictics: VS = 5 V  
and Electrical Characterictics: VS = 3 V tables....................................................................................................................... 7  
Changed value of power-down quiescent current in Electrical Characteristics: VS = 5 V and Electrical  
Characteristics: VS = 3 V tables.............................................................................................................................................. 7  
已更改 5 µA to 1 µA in Overview section ............................................................................................................................ 20  
已更改 standby current from 5 µA to 1 µA in Power-Down Operation section..................................................................... 21  
已更改 common-mode input capacitance from 1.3 pF to 1 pF in Trade-Offs in Selecting The Feedback Resistor  
Value section ........................................................................................................................................................................ 21  
已更改 1 + 6.3 / 1.2 = 6.25 V/V, adding the 1.3-pF device common-mode capacitance to 1 + 6 / 1.2 = 6 V/V, adding  
the 1-pF device common-mode capacitance in Trade-Offs in Selecting The Feedback Resistor Value section ................ 22  
已更改 2 µA to 0.1 µA and 5 µA to 1 µA in last sentence of Power Shutdown Operation section ...................................... 27  
已更改 Power Supply Recommendations and Thermal Notes title to Power Supply Recommendations ........................... 36  
Changes from Original (August 2017) to Revision A  
Page  
Added OPA837 to the Device Comparison table ................................................................................................................... 4  
Changed Device Comparison table note................................................................................................................................ 4  
Changed format of pin names in pinout drawings in Pin Configuration and Functions section ............................................ 4  
Added DCK to pinout description in 6-pin SOT-23 and SC70 pinout drawing....................................................................... 4  
Changed I/O column header to "TYPE" in Pin Configuration and Functions section ........................................................... 4  
Added table note to table to define pin types in Pin Configuration and Functions section ................................................... 4  
Added table note to Absolute Maximum Ratings table ......................................................................................................... 5  
Changed bandwidth for 0.1-dB flatness test condition from VOUT = 2 VPP and G = 10 to VOUT = 200 mVPP and G = 6  
in the Electrical Characteristics: VS = 5 V table...................................................................................................................... 6  
Added values for VOH and VOL parameters at TA = -40 to +125°C in Electrical Characteristics: VS = 5 V table.................... 7  
2
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Changed typical bandwidth for 0.1-dB flatness from 5 MHz to 9 MHz in Electrical Characteristics: VS = 3 V table ............. 8  
Changed bandwidth for 0.1-dB flatness test conditions from VOUT = 2 VPP and G = 10 to VOUT = 200 mVPP and G = 6  
in Electrical Characteristics: VS = 3 V table .......................................................................................................................... 8  
Added values for VOH and VOL parameters at TA = -40 to +125°C in Electrical Characteristics: VS = 3 V table ................... 9  
Changed VO test condition from 20 mV to 200 mV in 5 .................................................................................................. 10  
Changed VO test condition from 20 mV to 200 mV in 6 .................................................................................................. 10  
已更改 test conditions from VOUT = 2 VPP, RF = 0 Ω, G = 1 V/V to RF = 1 kΩ, RG = 200 Ω, RL = 2 kΩ, G = 6 V/V in  
Typical Characteristics: VS = 3 V section ............................................................................................................................. 13  
Changed VO test condition from 20 mV to 200 mV in 23 ................................................................................................ 13  
Changed VO test condition from 20 mV to 200 mV in 24 ................................................................................................ 13  
已添加 condition statement to Typical Characteristics: Over Supply Range ....................................................................... 16  
已更改 Y-axis label from "Disable and Vo (Bipolar supplies)" to "Disable and VOUT (Bipolar Supplies, Volts)" in 51 ..... 17  
已更改 Y-axis label from "PD and Output Voltages" to " Disable and VOUT (Bipolar Supplies, Volts)" in 52................... 17  
Deleted 5-V supply and changed the Y-axis label of 57 ................................................................................................. 18  
已更改 specification load value from 1-kΩ to 2-kΩ in Output Voltage Range section.......................................................... 21  
已更改 first paragraph to correct power down logic in Power-Down Operation section....................................................... 21  
已更改 image references in Power-Down Operation section ............................................................................................... 21  
已更改 V1 value from 2.5 Ω to 2.5 V in 64....................................................................................................................... 22  
已更改 V2 value from 2.5 Ω to –2.5 V in 64..................................................................................................................... 22  
Changed V1 value from 2.5 Ω to 2.5 V, changed V2 value from 2.5 Ω to –2.5 V, and changed ROUT to RLOAD in 图  
66 ........................................................................................................................................................................................ 23  
已更改 VOUT input signal from ±.035 VOUT to ±0.35 VIN in 68........................................................................................... 24  
Changed V1 value from 4.5 Ω to 4.5 V in 70................................................................................................................... 25  
已更改 VEE to ground in 70 ............................................................................................................................................. 25  
Changed V1 value from 3 Ω to 3 V in 72......................................................................................................................... 26  
Updated Single-Supply Op Amp Design Techniques application report link in Device Functional Modes section ............. 27  
已更改 "Cs" and "Cf" to "CS" and "CF" in Application Information section............................................................................ 33  
Updated Transimpedance Considerations for High-Speed Amplifiers application report link in Detailed Design  
Procedure section................................................................................................................................................................. 35  
已更改 EVM guide link in Layout Guidelines section............................................................................................................ 37  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
5
Device Comparison Table(1)  
5-V IQ  
(mA, MAXIMUM  
25°C)  
INPUT NOISE  
VOLTAGE  
(nV/Hz)  
2-VPP THD  
(dBc, 100 kHz)  
RAIL-TO-RAIL  
INPUT/OUTPUT  
PART NUMBER  
GBP (MHz)  
DUALS  
OPA838  
OPA837  
OPA835  
OPA836  
LMP7717  
OPA830  
THS4281  
300  
50  
0.99  
0.625  
0.35  
1
1.9  
4.7  
9.3  
4.8  
5.8  
9.5  
12.5  
–110  
–120  
–100  
–115  
Negative in/out  
Negative in/out  
Negative in/out  
Negative in/out  
Negative in/out  
Negative in/out  
In/out  
None  
OPA2837  
OPA2835  
OPA2836  
LMP7718  
OPA2830  
None  
30  
110  
88  
1.4  
100  
38  
4.7  
–105  
12.5  
0.93  
(1) For a complete selection of TI high-speed amplifiers, visit www.ti.com  
6 Pin Configuration and Functions  
DBV and DCK Package  
6-Pin SOT-23 and SC70  
Top View  
DCK Package  
5-Pin SC70  
Top View  
VOUT  
VS-  
VS+  
1
2
3
6
5
VOUT  
VS-  
VS+  
VIN-  
1
5
4
PD  
2
3
VIN-  
VIN+  
4
VIN+  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
SOT-23 and  
SC70  
NAME  
SC70  
Amplifier power down.  
Low = disabled, high = normal operation (pin must be driven).  
PD  
5
I/O  
VIN–  
VIN+  
VOUT  
VS–  
4
3
1
2
6
4
3
1
2
5
I/O  
I/O  
I/O  
P
Inverting input pin  
Noninverting input pin  
Output pin  
Negative power-supply pin  
Positive power-supply input  
VS+  
P
(1) I = input, O = output, and P = power.  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
5.5  
UNIT  
V
Supply voltage  
VS– to VS+  
Supply turnon, off maximum dV/dT(2)  
1
V/µs  
V
VI  
VID  
II  
Input voltage  
VS– – 0.5  
VS+ + 0.5  
±1  
Differential input voltage  
Continuous input current  
Continuous output current(3)  
Continuous power dissipation  
Maximum junction temperature  
Operating free-air temperature  
Storage temperature  
V
±10  
mA  
mA  
IO  
±20  
See Thermal Information  
TJ  
150  
°C  
°C  
°C  
TA  
–40  
–65  
125  
150  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Staying below this ± supply turn-on edge rate prevents the edge-triggered ESD absorption device across the supply pins from turning  
on.  
(3) Long-term continuous output current for electromigration limits.  
7.2 ESD Ratings  
VALUE  
±1500  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
5
MAX  
5.4  
UNIT  
VS+  
TA  
Single-supply voltage  
Ambient temperature  
V
–40  
25  
125  
°C  
7.4 Thermal Information  
OPA838  
DBV  
(SOT-23)  
DCK  
(SC70)  
DCKS  
THERMAL METRIC(1)  
UNIT  
(SC70)  
6 PINS  
189  
6 PINS  
194  
129  
39  
5 PINS  
203  
152  
76  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
150  
79  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
26  
58  
61  
ψJB  
39  
76  
79  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
 
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
7.5 Electrical Characteristics: VS = 5 V  
at VS+ = 5 V, VS– = 0 V, RF = 1 kΩ, RG = 200 Ω, RL = 2 kΩ, G = 6 V/V, input and output referenced to midsupply, and TA  
25°C, (unless otherwise noted)  
TEST  
PARAMETER  
AC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
VOUT = 20 mVPP, G = 6, (peaking < 4 dB)  
VOUT = 20 mVPP, G = 10, RF = 1.6 kΩ  
VOUT = 20 mVPP, G = 100, RF = 16.9 kΩ  
VOUT = 20 mVPP, G = 100  
75  
90  
50  
C
C
C
C
C
C
C
C
SSBW  
Small-signal bandwidth  
MHz  
3
GBP  
Gain-bandwidth product  
Large-signal bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
240  
250  
300  
45  
MHz  
MHz  
MHz  
V/µs  
LSBW  
VOUT = 2 VPP, G = 6  
VOUT = 200 mVPP, G = 6  
From LSBW(2)  
10  
SR  
350  
1%  
Overshoot, undershoot  
VOUT = 2-V step, G = 6, input tR = 12 ns  
2%  
13  
VOUT = 2-V step, G = 6, RL = 2 kΩ,  
input tR = 12 ns  
tR, tF  
Rise, fall time  
12.5  
ns  
C
Settling time to 0.1%  
Settling time to 0.01%  
VOUT = 2-V step, G = 6, input tR = 12 ns  
VOUT = 2-V step, G = 6, input tR = 12 ns  
30  
40  
ns  
ns  
C
C
C
C
C
C
C
C
C
C
HD2  
HD3  
Second-order harmonic distortion f = 100 kHz, VO = 4 VPP, G = 6 (see 74)  
–110  
–120  
1.8  
100  
1
dBc  
dBc  
nV/Hz  
Hz  
Third-order harmonic distortion  
Input voltage noise  
f = 100 kHz, VO = 4 VPP, G = 6 (see 74)  
f > 1 kHz  
Voltage noise 1/f corner frequency  
Input current noise  
f > 100 kHz  
pA/Hz  
kHz  
ns  
Current noise 1/f corner frequency  
Overdrive recovery time  
7
G = 6, 2x output overdrive, DC-coupled  
f = 1 MHz, G = 6  
50  
Closed-loop output impedance  
0.3  
Ω
DC PERFORMANCE  
AOL Open-loop voltage gain  
VO = ±2 V, RL = 2 kΩ  
120  
–125  
–165  
–230  
–230  
–1.6  
0.7  
125  
±15  
±15  
±15  
±15  
±0.4  
1.5  
dB  
µV  
A
A
B
B
B
B
A
B
B
B
B
A
B
B
B
B
TA 25°C  
125  
200  
220  
285  
1.6  
2.8  
3.5  
3.7  
4.4  
17  
TA = 0°C to 70°C  
Input-referred offset voltage  
Input offset voltage drift(3)  
Input bias current(5)  
TA = –40°C to 85°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C(4)  
µV/°C  
µA  
TA 25°C  
TA = 0°C to 70°C  
.2  
1.5  
TA = –40°C to 85°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
.2  
1.5  
.2  
1.5  
Input bias current drift(3)  
Input offset current  
4.5  
7.8  
nA/°C  
nA  
TA 25°C  
–70  
–83  
–105  
–105  
–500  
±20  
±20  
±20  
±20  
±40  
70  
TA = 0°C to 70°C  
93  
TA = –40°C to 85°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
100  
120  
500  
Input offset current drift(3)  
pA/°C  
(1) Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and  
simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information.  
(2) This slew rate is the average of the rising and falling time estimated from the large-signal bandwidth as: (0.8 × VPEAK / 2) × 2π × f–3dB  
where this f–3dB is the typical measured 4-VPP bandwidth at gains of 6 V/V.  
(3) Input offset voltage drift, input bias current drift, and input offset current drift are average values calculated by taking data at the end  
points, computing the difference, and dividing by the temperature range.  
(4) Input offset voltage drift, input bias current drift, and input offset current drift typical specifications are mean ± 1σ characterized by the full  
temperature range end-point data. Maximum drift specifications are set by the min, max packaged test range on the wafer-level  
screened drift. Drift is not specified by the final automated test equipment (ATE) or by QA sample testing.  
(5) Current is considered positive out of the pin.  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Electrical Characteristics: VS = 5 V (continued)  
at VS+ = 5 V, VS– = 0 V, RF = 1 kΩ, RG = 200 Ω, RL = 2 kΩ, G = 6 V/V, input and output referenced to midsupply, and TA ≈  
25°C, (unless otherwise noted)  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
INPUT  
T
A 25°C, CMRR > 92 dB  
TA = –40°C to 125°C, CMRR > 92 dB  
A 25°C, CMRR > 92 dB  
TA = –40°C to 125°C, CMRR > 92 dB  
VS– – 0.2  
VS– – 0  
VS+ – 1.2  
VS+ – 1.3  
105  
VS– – 0  
A
B
A
B
A
C
C
Common-mode input range, low  
Common-mode input range, high  
V
V
T
VS+ – 1.3  
95  
CMRR  
Common-mode rejection ratio  
Input impedance common-mode  
Input impedance differential mode  
dB  
35 || 1  
MΩ || pF  
kΩ || pF  
30 || 1.3  
OUTPUT  
T
A 25°C, G = 6  
TA = –40°C to 125°C, G = 6  
A 25°C, G = 6  
TA = –40°C to 125°C, G = 6  
VS– + 0.05  
VS– + 0.05  
VS– + 0.1  
VS– + 0.1  
A
B
A
B
VOL  
Output voltage, low  
Output voltage, high  
V
T
VS+ – 0.1 VS+ – 0.05  
VOH  
V
VS+ – 0.2  
±35  
VS+ – 0.1  
±40  
Maximum current into a resistive  
load  
T
A 25°C, ±1.53 V into 41.3 Ω, VIO < 2 mV  
A 25°C, ±1.81 V into 70.6 Ω, AOL > 80 dB  
mA  
A
A
B
C
T
±25  
±28  
Linear current into a resistive load  
mA  
TA = –40°C to 125°C, ±1.58 V into 70.6 Ω, AOL  
> 80 dB  
±22  
±25  
DC output impedance  
G = 6  
0.02  
Ω
POWER SUPPLY  
Specified operating voltage  
2.7  
913  
700  
5
960  
960  
5.4  
993  
V
B
A
B
(6)  
T
A 25°C  
Quiescent operating current  
µA  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
1330  
Quiescent current temperature  
coefficient  
dIq/dT  
2.6  
98  
93  
3
110  
105  
3.4  
µA/°C  
dB  
B
A
A
Positive power-supply rejection  
ratio  
+PSRR  
–PSRR  
Negative power-supply rejection  
ratio  
dB  
POWER DOWN (Pin Must be Driven, SOT23-6 and SC70-6)  
Enable voltage threshold  
Disable voltage threshold  
Disable pin bias current  
Specified on above VS–+ 1.5 V  
1.5  
V
V
A
A
A
A
Specified off below VS–+ 0.55 V  
PD = VS– to VS+  
0.55  
50  
1
–50  
20  
nA  
µA  
Power-down quiescent current  
PD = 0.55 V  
0.1  
Time from PD = high to VOUT = 90% of final  
value  
Turnon time delay  
Turnoff time delay  
1.7  
usec  
ns  
C
C
Time from PD = low to VOUT = 10% of original  
value  
100  
(6) The typical specification is at 25°C TJ. The minimum and maximum limits are expanded for the ATE to account for an ambient range  
from 22°C to 32°C with a 4-µA/°C temperature coefficient on the supply current.  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
7.6 Electrical Characteristics: VS = 3 V  
at VS+ = 3 V, VS– = 0 V, RF = 1 kΩ, RG = 200 Ω, RL = 2 kΩ, G = 6 V/V, input and output referenced to midsupply, and TA ≈  
25°C, (unless otherwise noted)  
TEST  
PARAMETER  
AC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
VOUT = 20 mVPP, G = 6 (peaking < 4 dB)  
VOUT = 20 mVPP, G = 10, RF = 1.6 kΩ  
VOUT = 20 mVPP, G = 100, RF = 16.9 kΩ  
VOUT = 20 mVPP, G = 100  
70  
86  
50  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SSBW  
Small-signal bandwidth  
MHz  
3
GBP  
Gain-bandwidth product  
Large-signal bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
240  
250  
300  
45  
MHz  
MHz  
MHz  
V/µs  
LSBW  
VOUT = 2 VPP, G = 6  
VOUT = 200 mVPP, G = 6  
From LSBW(2)  
9
SR  
350  
2%  
6.3  
30  
Overshoot, undershoot  
Rise, fall time  
VOUT = 1-V step, G = 6, input tR = 6 ns  
VOUT = 1-V step, G = 6, input tR = 6 ns  
VOUT = 1-V step, G = 6, input tR = 6 ns  
VOUT = 1-V step, G = 6, input tR = 6 ns  
4%  
7
tR, tF  
ns  
ns  
Settling time to 0.1%  
Settling time to 0.01%  
40  
ns  
HD2  
HD3  
Second-order harmonic distortion f = 100 kHz, VO = 2 VPP, G = 6 (see 74)  
–108  
–125  
1.8  
100  
1.0  
7
dBc  
dBc  
nV/Hz  
Hz  
Third-order harmonic distortion  
Input voltage noise  
f = 100 kHz, VO = 2 VPP, G = 6 (see 74)  
f > 1 kHz  
Voltage noise 1/f corner frequency  
Input current noise  
f > 100 kHz  
pA/Hz  
kHz  
ns  
Current noise 1/f corner frequency  
Overdrive recovery time  
G = 6, 2x output overdrive, DC-coupled  
f = 1 MHz, G = 6  
50  
Closed-loop output impedance  
0.3  
Ω
DC PERFORMANCE  
AOL Open-loop voltage gain  
VO = ±1 V, RL = 2 kΩ  
110  
–125  
–165  
–230  
–230  
–1.6  
.7  
125  
±15  
±15  
±15  
±15  
±0.4  
1.5  
dB  
µV  
A
A
B
B
B
B
A
B
B
B
B
A
B
B
B
B
TA 25°C  
125  
200  
220  
285  
1.6  
2.8  
3.5  
3.7  
4.4  
17  
TA = 0°C to 70°C  
Input-referred offset voltage  
Input offset voltage drift(3)  
Input bias current(5)  
TA = –40°C to 85°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
(4)  
µV/°C  
µA  
TA 25°C  
TA = 0°C to 70°C  
.2  
1.5  
TA = –40°C to 85°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
.2  
1.5  
.2  
1.5  
Input bias current drift(3)  
Input offset current  
4.5  
7.8  
nA/°C  
nA  
TA 25°C  
–70  
–83  
–105  
–105  
–500  
±20  
±20  
±20  
±13  
±20  
70  
TA = 0°C to 70°C  
93  
TA = –40°C to 85°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
100  
120  
500  
Input offset current drift(3)  
pA/°C  
(1) Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and  
simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information.  
(2) This slew rate is the average of the rising and falling time estimated from the large-signal bandwidth as: (0.8 × VPEAK / 2) × 2π × f–3dB  
where this f–3dB is the typical measured 2-VPP bandwidth at gains of 6 V/V.  
(3) Input offset voltage drift, input bias current drift, and input offset current drift are average values calculated by taking data at the end  
points, computing the difference, and dividing by the temperature range.  
(4) Input offset voltage drift, input bias current drift, and input offset current drift typical specifications are mean ± 1σ characterized by the full  
temperature range end-point data. Maximum drift specifications are set by the min, max packaged test range on the wafer-level  
screened drift. Drift is not specified by the final automated test equipment (ATE) or by QA sample testing.  
(5) Current is considered positive out of the pin.  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Electrical Characteristics: VS = 3 V (continued)  
at VS+ = 3 V, VS– = 0 V, RF = 1 kΩ, RG = 200 Ω, RL = 2 kΩ, G = 6 V/V, input and output referenced to midsupply, and TA ≈  
25°C, (unless otherwise noted)  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
INPUT  
T
A 25°C, CMRR > 92 dB  
TA = –40°C to 125°C, CMRR > 92 dB  
A 25°C, CMRR > 92 dB  
TA = –40°C to 125°C, CMRR > 92 dB  
VS– – 0.2  
VS– – 0  
VS+ – 1.2  
VS+ – 1.3  
105  
VS– – 0  
A
B
A
B
A
C
C
Common-mode input range, low  
Common-mode input range, high  
V
V
T
VS+ – 1.3  
95  
CMRR  
Common-mode rejection ratio  
Input impedance common-mode  
Input impedance differential mode  
dB  
55 || 1.1  
30 || 1.3  
MΩ || pF  
kΩ || pF  
OUTPUT  
T
A 25°C, G = 6  
TA = –40°C to 125°C, G = 6  
A 25°C, G = 6  
TA = –40°C to 125°C, G = 6  
VS– + 0.05  
VS– + 0.1  
VS– + 0.1  
VS– + 0.2  
A
B
A
B
VOL  
Output voltage, low  
Output voltage, high  
V
T
VS+ – 0.1 VS+ – 0.05  
VOH  
V
VS+ – 0.2  
±28  
VS+ – 0.1  
±30  
Maximum current into a resistive  
load  
T
A 25°C, ±0.77 V into 26.7 Ω, VIO < 2 mV  
A 25°C, ±0.88 V into 37 Ω, AOL > 70 dB  
mA  
A
A
B
C
T
±23  
±25  
Linear current into a resistive load  
mA  
TA = –40°C to 125°C, ±0.76 V into 37 Ω,  
AOL > 70 dB  
±20  
±23  
DC output impedance  
G = 6  
0.02  
Ω
POWER SUPPLY  
Specified operating voltage  
2.7  
890  
680  
5
930  
930  
5.4  
970  
V
B
A
B
T
A 25°C(6)  
Quiescent operating current  
µA  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
1290  
Quiescent current temperature  
coefficient  
dIq/dT  
2.2  
95  
90  
2.7  
110  
105  
3.2  
µA/°C  
dB  
B
A
A
Positive power-supply rejection  
ratio  
+PSRR  
–PSRR  
Negative power-supply rejection  
ratio  
dB  
POWER DOWN (Pin Must be Driven, SOT23-6 and SC70-6)  
Enable voltage threshold  
Disable voltage threshold  
Disable pin bias current  
Specified on above VS– + 1.5 V  
1.5  
V
V
A
A
A
A
Specified off below VS– + 0.55 V  
PD = VS– to VS+  
0.55  
50  
1
–50  
20  
nA  
µA  
Power-down quiescent current  
PD = 0.55 V  
0.1  
Time from PD = high to VOUT = 90% of final  
value  
Turnon time delay  
Turnoff time delay  
3.5  
usec  
ns  
C
C
Time from PD = low to VOUT = 10% of original  
value  
100  
(6) The typical specification is at 25°C TJ. The minimum and maximum limits are expanded for the ATE to account for an ambient range  
from 22°C to 32°C with a 4-µA/°C temperature coefficient on the supply current.  
版权 © 2017–2018, Texas Instruments Incorporated  
9
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
7.7 Typical Characteristics: VS = 5 V  
VS+ = 5 V, VS– = 0 V, RF = 1 kΩ, RG = 200 Ω, RL = 2 kΩ, G = 6 V/V, input and output referenced to midsupply, TA 25°C  
(unless otherwise noted)  
3
0
6
3
0
-3  
-3  
-6  
-6  
-9  
-9  
Gain = 6 V/V  
Gain = 10 V/V  
Gain = 20 V/V  
Gain = 50 V/V  
Gain = -6 V/V  
Gain = -10 V/V  
Gain = -20 V/V  
Gain = -50 V/V  
-12  
-12  
-15  
-15  
100m  
1
10  
100  
100m  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D001  
See 75 and 2 (VO = 20 mVPP, R LOAD= 2 kΩ)  
See 74 and 1 (VO = 20 mVPP, R LOAD = 2 kΩ)  
2. Inverting Small-Signal Frequency Response vs Gain  
1. Noninverting Small-Signal Frequency Response  
vs Gain  
18  
18  
15  
12  
9
15  
12  
9
6
6
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
VO = 2 VPP  
VO = 4 VPP  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
VO = 2 VPP  
VO = 4 VPP  
3
3
0
0
100m  
1
10  
100  
100m  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Gain = 6 V/V, R LOAD = 2 kΩ  
Gain = –6 V/V, R LOAD = 2 kΩ  
3. Noninverting Large-Signal Bandwidth vs VOPP  
4. Inverting Large-Signal Bandwidth vs VOPP  
1.2  
1
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1.2  
-1.4  
-1.6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Gain = 6 V/V  
Gain = 10 V/V  
Gain = 20 V/V  
Gain = -6 V/V  
Gain = -10 V/V  
Gain = -20 V/V  
-1.2  
100m  
1
10  
100  
100m  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D005  
See 75 and 2 (VO = 200 mVPP; R LOAD = 2 kΩ)  
See 74 and 1 (VO = 200 mVPP, R LOAD = 2 kΩ)  
5. Noninverting Response Flatness vs Gain  
6. Inverting Response Flatness vs Gain  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Typical Characteristics: VS = 5 V (接下页)  
VS+ = 5 V, VS– = 0 V, RF = 1 kΩ, RG = 200 Ω, RL = 2 kΩ, G = 6 V/V, input and output referenced to midsupply, TA 25°C  
(unless otherwise noted)  
2.25  
2.25  
1.75  
VO = ê0.25 V  
VO = ê0.5 V  
VO = ê1 V  
VO = ê0.25 V  
VO = ê0.50 V  
VO = ê1 V  
1.75  
1.25  
1.25  
VO = ê2 V  
VO = ê2 V  
0.75  
0.75  
0.25  
0.25  
-0.25  
-0.75  
-1.25  
-1.75  
-2.25  
-0.25  
-0.75  
-1.25  
-1.75  
-2.25  
20  
70  
120  
170  
220  
260  
20  
70  
120  
170  
220  
260  
Time (nsec)  
Time (nsec)  
See 74 (gain of 6 V/V)  
7. Noninverting Step Response vs VOPP  
See 75 (gain of –6 V/V)  
8. Inverting Step Response vs VOPP  
0.02  
0.018  
0.016  
0.014  
0.012  
0.01  
0.008  
0.006  
0.004  
0.002  
0
-0.002  
-0.004  
-0.006  
-0.008  
-0.01  
-0.012  
0.02  
0.018  
0.016  
0.014  
0.012  
0.01  
AV = 6, 500-mV Step, TR = 3 ns  
AV = 6, 2-V Step, TR = 12 ns  
AV = 10, 500-mV Step, TR = 3 ns  
AV = 10, 2-V Step, TR = 12 ns  
AV = -6, 500-mV Step, TR = 3 ns  
AV = -6 , 2-V Step, TR = 12 ns  
AV = -10 , 500-mV Step, TR = 3 ns  
AV = -10 , 2-V Step, TR = 12 ns  
0.008  
0.006  
0.004  
0.002  
0
-0.002  
-0.004  
-0.006  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
20  
40  
60  
80  
100  
Time from Input Step (nsec)  
Time from Input Step (nsec)  
See 74 and 1  
See 75 and 2  
9. Simulated Noninverting Settling Time  
10. Simulated Inverting Settling Time  
5
4
5
4
VIN ì 10 gain  
VOUT (AV = 10)  
VIN ì 6 gain  
3
3
VOUT (AV = 6)  
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
VIN ì -10 gain  
VOUT (AV = -10)  
VIN ì -6 gain  
VOUT (AV = -6)  
-5  
-5  
50  
250  
450  
650  
850  
1050  
1250  
1450  
50  
250  
450  
650  
850  
1050  
1250  
1450  
Time (nsec)  
Time (nsec)  
D011  
D012  
See 74 and 1  
11. Noninverting Overdrive Recovery  
See 75 and 2  
12. Inverting Overdrive Recovery  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
 
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics: VS = 5 V (接下页)  
VS+ = 5 V, VS– = 0 V, RF = 1 kΩ, RG = 200 Ω, RL = 2 kΩ, G = 6 V/V, input and output referenced to midsupply, TA 25°C  
(unless otherwise noted)  
-80  
-90  
-85  
-90  
HD2, 100 kHz, G = 6 V/V  
HD3, 100 kHz, G = 6 V/V  
HD2, 100 kHz, G = -6 V/V  
HD3, 100 kHz, G = -6 V/V  
-95  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
HD2, G = 6 V/V  
HD3, G = 6 V/V  
HD2, G = -6 V/V  
HD3, G = -6 V/V  
10k  
100k  
1M  
100  
1k  
Frequency (Hz)  
RLOAD (W)  
See 74, 75, 1, and 2  
See 74, 75, 1, and 2  
(VO = 2 VPP, F = 100 kHz)  
14. Harmonic Distortion vs RLOAD  
13. Harmonic Distortion vs Frequency  
-95  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
HD2, 100 kHz, G = 6 V/V  
HD3, 100 kHz, G = 6 V/V  
HD2, 100 kHz, G = -6 V/V  
HD3, 100 kHz, G = -6 V/V  
HD2, 100 kHz, +Gain  
HD3, 100 kHz, +Gain  
HD2, 100 kHz, -Gain  
HD3, 100 kHz, -Gain  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
Gain Magnitude (V/V)  
VOPP (V)  
See 74, 75, 1, and 2  
(F = 100 kHz, RLOAD = 2 kΩ)  
See 74, 75, 1, and 2  
(VO = 2 VPP, RLOAD = 2 kΩ, F = 100 kHz)  
15. Harmonic Distortion vs Output Swing  
16. Harmonic Distortion vs Gain  
-105  
-105  
-110  
-115  
-120  
-125  
-130  
-110  
-115  
-120  
-125  
-130  
HD2, 100 kHz, G = 6 V/V  
HD3, 100 kHz, G = 6 V/V  
HD2, 100 kHz, G = 10 V/V  
HD3, 100 kHz, G = 10 V/V  
HD2, 100 kHz, G = -6 V/V  
HD3, 100 kHz, G = -6 V/V  
HD2, 100 kHz, G = -10 V/V  
HD3, 100 kHz, G = -10 V/V  
1.5  
2
2.5  
3
3.5  
1.5  
2
2.5  
VOCM (V)  
3
3.5  
VOCM (V)  
D017  
See 75 and 2  
See 74 and 1  
(VO = 2 VPP, F = 100 kHz, RLOAD = 2 kΩ)  
(VO = 2 VPP, F = 100 kHz, RLOAD = 2 kΩ)  
18. Inverting Distortion vs  
17. Noninverting Distortion vs  
Output Common-Mode Voltage  
Output Common-Mode Voltage  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
7.8 Typical Characteristics: VS = 3 V  
VS+ = 3 V, VS– = 0 V, RF = 1 kΩ, RG = 200 Ω, RL = 2 kΩ, G = 6 V/V, input and output referenced to midsupply. TA = 25°C  
(unless otherwise noted)  
6
3
6
3
0
0
-3  
-3  
-6  
-6  
-9  
-9  
Gain = 6 V/V  
Gain = 10 V/V  
Gain = 20 V/V  
Gain = 50 V/V  
Gain = -6 V/V  
Gain = -10 V/V  
Gain = -20 V/V  
Gain = -50 V/V  
-12  
-15  
-12  
-15  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D019  
See 75 and 2  
See 74 and 1  
20. Inverting Small-Signal Response vs Gain  
19. Noninverting Small-Signal Response vs Gain  
18  
18  
15  
12  
9
15  
12  
9
6
6
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
VO = 200 mVPP  
VO = 500 mVPP  
VO = 1 VPP  
3
3
VO = 2 VPP  
VO = 2 VPP  
0
0
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
See 74 (AV = 6 V/V)  
See 75 (AV = –6 V/V)  
21. Noninverting Large-Signal Bandwidth vs VOPP  
22. Inverting Large-Signal Bandwidth vs VOPP  
1.4  
1.8  
1.4  
1
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.2  
-0.2  
-0.6  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Gain = 6 V/V  
Gain = 10 V/V  
Gain = 20 V/V  
Gain = -6 V/V  
Gain = -10 V/V  
Gain = -20 V/V  
-1.4  
-1.8  
-1.2  
-1.4  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D023  
See 75 and 2 (VO = 200 mVPP, R LOAD = 2 kΩ)  
See 74 and 1 (VO = 200 mVPP, R LOAD = 2 kΩ)  
23. Noninverting Response Flatness vs Gain  
24. Inverting Response Flatness vs Gain  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics: VS = 3 V (接下页)  
VS+ = 3 V, VS– = 0 V, RF = 1 kΩ, RG = 200 Ω, RL = 2 kΩ, G = 6 V/V, input and output referenced to midsupply. TA = 25°C  
(unless otherwise noted)  
1.5  
1.5  
1
VO = ±0.25 V  
VO = ±0.5 V  
VO = ±1 V  
VO = ±0.25 V  
VO = ±0.5 V  
VO = ±1 V  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-1.5  
20  
70  
120  
170  
220  
260  
20  
70  
120  
170  
220  
260  
Time (nsec)  
Time (nsec)  
See 74 and 1  
25. Noninverting Step Response vs V OPP  
See 75 and 2  
26. Inverting Step Response vs VOPP  
0.01  
0.008  
0.006  
0.004  
0.002  
0
0.02  
0.018  
0.016  
0.014  
0.012  
0.01  
AV = 6, 500-mV Step, TR = 3 ns  
AV = 6, 1-V Step, TR = 6 ns  
AV = 10, 500-mV Step, TR = 3 ns  
AV = 10, 1-V Step, TR = 6 ns  
AV = -6, 500-mV Step, TR = 3 ns  
AV = -6, 1-V Step, TR = 6 ns  
AV = -10, 500-mV Step, TR = 3 ns  
AV = -10, 1-V Step, TR = 6 ns  
0.008  
0.006  
0.004  
0.002  
0
-0.002  
-0.004  
-0.006  
-0.008  
-0.01  
-0.002  
-0.004  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Time from Input Step (nsec)  
Time from Input Step (nsec)  
See 74 and 1  
See 75 and 2  
27. Noninverting Settling Time  
28. Inverting Settling Time  
3
2
3
2
VIN ì 10 gain  
VIN ì -10 gain  
VOUT (AV = -10)  
VIN ì -6 gain  
VOUT (AV = 10)  
VIN ì 6 gain  
VOUT (AV = 6)  
VOUT (AV = -6)  
1
1
0
0
-1  
-2  
-1  
-2  
-3  
-3  
50  
250  
450  
650  
850  
1050  
1250  
1450  
50  
250  
450  
650  
850  
1050  
1250  
1450  
Time (nsec)  
Time (nsec)  
D029  
D030  
See 74 and 1  
29. Noninverting Overdrive Recovery  
See 75 and 2  
30. Inverting Overdrive Recovery  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Typical Characteristics: VS = 3 V (接下页)  
VS+ = 3 V, VS– = 0 V, RF = 1 kΩ, RG = 200 Ω, RL = 2 kΩ, G = 6 V/V, input and output referenced to midsupply. TA = 25°C  
(unless otherwise noted)  
-80  
-85  
-90  
HD2, G = 6 V/V  
HD3, G = 6 V/V  
HD2, G = -6 V/V  
HD3, G = -6 V/V  
HD2, 100 kHz, G = 6 V/V  
HD3, 100 kHz, G = 6 V/V  
HD2, 100 kHz, G = -6 V/V  
HD3, 100 kHz, G = -6 V/V  
-90  
-95  
-100  
-110  
-120  
-130  
-140  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
10k  
100k  
1M  
100  
1k  
Frequency (Hz)  
RLOAD (W)  
See 74, 75, 1, and 2  
See 74, 75, 1, and 2  
31. Harmonic Distortion vs Frequency  
32. Harmonic Distortion vs Load  
-105  
-110  
-115  
-120  
-125  
-130  
-105  
-110  
-115  
-120  
-125  
-130  
HD2, 100 kHz, +Gain  
HD3, 100 kHz, +Gain  
HD2, 100 kHz, -Gain  
HD3, 100 kHz, -Gain  
HD2, 100 kHz, G = 6 V/V  
HD3, 100 kHz, G = 6 V/V  
HD2, 100 kHz, G = -6 V/V  
HD3, 100 kHz, G = -6 V/V  
0.5  
0.7  
0.9  
1.1  
1.3  
VOPP (V)  
1.5  
1.7  
1.9  
2
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
Gain Magnitude (V/V)  
See 74, 75, 1, and 2  
See 74, 75, 1, and 2 (2-kΩ load, 2 VPP  
)
33. Harmonic Distortion vs Output Swing  
34. Harmonic Distortion vs Gain  
-90  
-95  
-105  
-110  
-115  
-120  
-125  
-130  
HD2, 100 kHz, G = 6 V/V  
HD3, 100 kHz, G = 6 V/V  
HD2, 100 kHz, G = 10 V/V  
HD3, 100 kHz, G = 10 V/V  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
HD2, 100 kHz, G = -6 V/V  
HD3, 100 kHz, G = -6 V/V  
HD2, 100 kHz, G = -10 V/V  
HD3, 100 kHz, G = -10 V/V  
0.5  
0.7  
0.9  
1.1  
1.3  
VOCM (V)  
1.5  
1.7  
1.9  
2.1  
0.8 0.9  
1
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  
VOCM (V)  
See 74 and 1 (VO = 1 VPP  
)
See 75 and 2 (VO = 1 VPP)  
35. Noninverting Harmonic Distortion vs Output  
36. Inverting Harmonic Distortion vs Output Common-  
Common-Mode Voltage  
Mode Voltage  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
7.9 Typical Characteristics: Over Supply Range  
PD = VS+ and TA = 25°C (unless otherwise noted)  
100  
50  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-10  
10  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-220  
-240  
-260  
-280  
AV = 6, 5-V supply  
AV = 10, 5-V supply  
AV = 20, 5-V supply  
AV = 6, 3-V supply  
AV = 10, 3-V supply  
AV = 20, 3-V supply  
5-V Gain  
5-V Phase  
3-V Gain  
3-V Phase  
20  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M 1G  
Frequency (MHz)  
Frequency (Hz)  
D038  
No load, simulation  
See 74 and 1 (simulation)  
38. Closed-Loop Output Impedance  
37. Open-Loop Gain and Phase  
100  
80  
5-V supply  
3-V supply  
5 V En  
3 V En  
5 V In  
3 V In  
60  
40  
10  
20  
0
-20  
-40  
-60  
-80  
1
10  
0
1
2
3
4
5
6
7
8
9
10  
100  
1k  
10k  
100k  
1M  
10M  
Time (sec)  
Frequency (Hz)  
Input referred  
40. Low-Frequency Voltage Noise  
39. Input Spot Noise Density  
-65  
-70  
120  
110  
100  
90  
-75  
-80  
-85  
80  
-90  
70  
5-V PSRR  
-5-V PSRR  
5-V CMRR  
3-V PSRR  
-3-V PSRR  
3-V CMRR  
-95  
60  
5 V, 200 mVPP  
5 V, 1 VPP  
3 V, 200 mVPP  
3 V, 1 VPP  
-100  
-105  
-110  
50  
40  
0.1  
1
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (MHz)  
Frequency (Hz)  
D042  
Simulated results  
Measured, AV = 6 V/V, 100-Ω load  
42. Disabled Isolation Noninverting Input to Output  
41. PSRR and CMRR  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Typical Characteristics: Over Supply Range (接下页)  
PD = VS+ and TA = 25°C (unless otherwise noted)  
300  
240  
220  
200  
180  
160  
140  
120  
100  
80  
5-V Supply  
3-V Supply  
5-V Supply  
3-V Supply  
275  
250  
225  
200  
175  
150  
125  
100  
75  
60  
50  
40  
25  
20  
0
0
-125 -100 -75 -50 -25  
0
25 50 75 100 125  
-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70  
Input offset Voltage (µV)  
Input Offset Current (nA)  
600 units at each supply voltage  
600 units at each supply voltage  
43. Input Offset Voltage Distribution  
44. Input Offset Current Distribution  
100  
80  
25  
20  
15  
10  
5
60  
40  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-5  
-10  
-15  
-20  
-25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
D045  
D046  
51 units at 5-V and 3-V supply  
51 units at 5-V and 3-V supply  
45. Input Offset Voltage vs Temperature  
46. Input Offset Current vs Temperature  
27  
16  
5-V supply  
3-V supply  
5-V drift  
3-V drift  
24  
21  
18  
15  
12  
9
14  
12  
10  
8
6
4
6
2
3
0
0
1
0
1
0
0
5 00 50 00 50 00 50 00 50 00  
-
0.5  
1.5  
-50  
1
1
2
2
3
3
4
4
5
-1.5  
-0.5  
-0.25  
0.25  
0.75  
1.25  
-500-450-400-350-300-250-200-150-100  
-0.7I5nput offset voltage drift (uV/°C)  
Input offset current drift (pA/°C)  
-1.25  
More  
51 units at each supply  
51 units at each supply  
47. Input Offset Voltage Drift Distribution  
48. Input Offset Current Drift Distribution  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics: Over Supply Range (接下页)  
PD = VS+ and TA = 25°C (unless otherwise noted)  
220  
33  
30  
27  
24  
21  
18  
15  
12  
9
AV = 6 V/V  
AV = 10 V/V  
AV = 20 V/V  
200  
180  
160  
140  
120  
100  
80  
AV = 6, CLOAD = 100 pF  
AV = 10, CLOAD = 100 pF  
AV = 20, CLOAD = 100 pF  
AV = 6, CLOAD = 1 nF  
AV = 10, CLOAD = 1 nF  
AV = 20, CLOAD = 1 nF  
6
60  
3
40  
0
20  
-3  
-6  
0
1
10  
100  
1k  
10k  
10k  
100k  
1M  
10M  
100M  
CLOAD (pF)  
Frequency (Hz)  
D049  
D050  
See 66 and 1  
See 66 and 1  
(small signal, targeting 30° phase margin)  
(2-kΩ parallel load to C LOAD)  
49. Output Resistor vs CLOAD  
50. Small-Signal Response Shapes vs CLOAD With  
Recommended ROUT  
2.5  
2
2.5  
2
PD Voltage (5 V)  
Output Voltage (5 V)  
PD Voltage (3 V)  
1.5  
1
1.5  
1
Output Voltage (3 V)  
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
PD Voltage (5 V)  
-1.5  
-2  
Output Voltage (5 V)  
PD Voltage (3 V)  
Output Voltage (3 V)  
-1.5  
-2  
-2.5  
-2.5  
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5  
1.8 1.84 1.88 1.92 1.96  
2
2.04 2.08 2.12 2.16 2.2  
Time (ms)  
Time (ms)  
D051  
D052  
51. Turnon Time to Sinusoidal Input  
52. Turnoff Time to Sinusoidal Input  
6
5.5  
5
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
6
0.007  
5 V Disable V  
5 V VOUT  
5 V %Err  
3 V Disable V  
3 V VOUT  
3 V %Err  
5 V Disable V  
5 V VOUT  
5 V %Err  
3 V Disable V  
3 V VOUT  
3 V %Err  
5.5  
5
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Time from turn on (ms)  
Time from turn on (ms)  
Single-supply, DC input to produce midscale output (simulation)  
Single-supply, DC input to produce midscale output (simulation)  
53. Gain of 6-V/V Turnon Time to Final DC Value at  
54. Gain of 10-V/V Turnon Time to Final DC Value at  
Midscale  
Midscale  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Typical Characteristics: Over Supply Range (接下页)  
PD = VS+ and TA = 25°C (unless otherwise noted)  
2.5  
2.5  
2
2
1.5  
1
1.5  
1
0.5  
0.5  
0
+VCC 2.5 V  
1.5 V  
+VCC  
-VCC -2.5 V  
-VCC -1.5 V  
+VCC 2.5 V  
1.5 V  
+VCC  
-VCC -2.5 V  
-VCC -1.5 V  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
-2.5  
-2.5  
100  
1k  
0.1  
1
IOUT (mA)  
10  
RLOAD to Ground ( )  
55. Output Voltage Swing vs Load Resistor  
56. Output Saturation Voltage vs Load Current  
1300  
1200  
1000  
800  
600  
400  
200  
0
1200  
1100  
1000  
900  
IQ 5 V  
IQ 3 V  
800  
700  
-200  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0.5  
0.75  
1
1.25  
PD Voltage Above -VS Supply (V)  
1.5  
Ambient Temperature (èC)  
D058  
58. Supply Current vs Power-Down Voltage:  
57. Quiescent Current vs Temperature  
Turnon Higher Than Turnoff  
100  
80  
1700  
8
5 V IB-  
5 V IB+  
5 V IOS  
3 V IB-  
3 V IB+  
3 V IOS  
1650  
1600  
1550  
1500  
1450  
1400  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
1000  
6
4
60  
2
0
40  
-2  
20  
-4  
0
-6  
-8  
-20  
-40  
-60  
-80  
-100  
-10  
-12  
-14  
-16  
-18  
-20  
-2.7 -2.3 -1.9 -1.5 -1.1 -0.7 -0.3 0.1 0.5 0.9 1.3 1.7  
Input Common-Mode Voltage (Split Supplies, Volts)  
-0.4  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
Input Common-Mode Voltage (V)  
5 units, 3-V and 5-V supplies  
Measured single device  
59. Input Offset Voltage vs Input Common-Mode Voltage  
60. Input Bias and Offset Current vs VICM  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
 
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The OPA838 is a power efficient, decompensated, voltage feedback amplifier (VFA). Combining a negative rail  
input stage and a rail-to-rail output (RRO) stage, the device provides a flexible solution where higher gain or  
transimpedance designs are required. This 300-MHz gain bandwidth product (GBP) amplifier requires less than  
1 mA of supply current over a 2.7 to 5.4-V total supply operating range. A shutdown feature on the 6-pin package  
versions provides power savings where the system requires less than 1 µA when shut down. A decompensated  
amplifier operating at low gains (less than 6 V/V) may experience a low phase margin that may risk oscillation.  
The TINA model for the OPA838 predicts those conditions.  
8.2 Functional Block Diagram  
The OPA838 is a standard voltage feedback op amp with two high-impedance inputs and a low-impedance  
output. Standard applications circuits are supported; see 61 and 62. These application circuits are shown  
with a DC VREF on the inputs that set the DC operating points for single-supply designs. The VREF is often  
ground, especially for split-supply applications.  
VSIG  
VS+  
VREF  
VIN  
VOUT  
OPA838  
RG  
GVSIG  
VREF  
VREF  
VS-  
RF  
61. Noninverting Amplifier  
VS+  
VREF  
VSIG  
VREF  
VOUT  
OPA838  
RG  
GVSIG  
V
IN  
VREF  
VS-  
RF  
62. Inverting Amplifier  
8.3 Feature Description  
8.3.1 Input Common-Mode Voltage Range  
When the primary design goal is a linear amplifier with high CMRR, the input pins must stay within the input  
operating range (VICR.) These are referenced off of each supply as an input headroom requirement. Ensured  
operation at 25°C is maintained to the negative supply voltage and to within 1.3 V of the positive supply voltage.  
The common-mode input range specifications in the table data use CMRR to set the limit. The limits are selected  
to ensure CMRR does not degrade more than 3 dB below the minimum CMRR value if the input voltage is within  
the specified range.  
Assuming the op amp is in linear operation, the voltage difference between the input pins is small (0 V) and the  
input common-mode voltage is analyzed at either input pin, assuming the other input pin is at the same potential.  
The voltage at VIN+ is simple to evaluate. In noninverting configuration (see 61), the input signal (VIN) must not  
violate the VICR. In inverting configuration (see 62), the reference voltage (VREF), must be within the VICR  
.
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Feature Description (接下页)  
The input voltage limits have fixed headroom to the power rails and track the power supply voltages. For a single  
5-V supply, the linear 25°C minimum input voltage ranges from 0 V to 3.7 V, and 0 V to 1.4 V for a single 2.7-V  
supply. The delta headroom from each power supply rail is the same in each case (0 V and 1.3 V).  
8.3.2 Output Voltage Range  
The OPA838 device is a rail-to-rail output op amp. Rail-to-rail output typically means that the output voltage  
swings to within 100 mV of the supply rails. There are different ways to specify this: one is with the output still in  
linear operation and another is with the output saturated. Saturated output voltages are closer to the power  
supply rails than linear outputs, but the signal is not a linear representation of the input. Saturation and linear  
operation limits are affected by the output current, where higher currents lead to more voltage loss in the output  
transistors; see 56.  
The specification tables show saturated output voltage specifications with a 2-kΩ load. 11 and 43 illustrate  
saturated voltage-swing limits versus output load resistance, and 12 and 44 illustrate the output saturation  
voltage versus load current. With a light load, the output voltage limits have constant headroom to the power rails  
and track the power supply voltages. For example, with a 1-kΩ load and a single 5-V supply, the linear output  
voltage ranges from 0.12 V to 4.88 V and ranges from 0.12 V to 2.58 V for a 2.7-V supply. The delta from each  
power supply rail is the same in each case: 0.12 V.  
With devices like the OPA838 where the input range is lower than the output range, the input limits the available  
signal swing at low gains. Because the OPA838 is intended for higher gains, the smaller input swing range does  
not limit operation and full rail-to-rail output is available. Inverting voltage gain and transimpedance configurations  
are typically limited by the output voltage limits of the op amp if the noninverting input pin is biased in range.  
8.3.3 Power-Down Operation  
The OPA838 includes a power-down feature. Under logic control, the amplifier can switch from normal operation  
to a standby current of less than 1 µA. When the PD pin is connected high (greater than or equal to 1.5 V above  
the negative supply), the amplifier is active. Connecting the PD pin low (less than or equal to 0.55 V above the  
negative supply) disables the amplifier. To protect the input stage of the amplifier, the device uses internal, back-  
to-back diodes (two in series each way) between the inverting and noninverting input pins. If the differential  
voltage in shutdown exceeds 1.2 V, those diodes turn on.  
The PD pin must be actively driven high or low and must not be left floating. If the power-down mode is not used,  
PD may be tied to the positive supply rail.  
When the op amp is powered from a single-supply and ground, with PD driven from logic devices with similar  
VDD voltages to the op amp, no special considerations are required. When the op amp is powered from a split-  
supply with VS– below ground, an open-collector type of interface with a pullup resistor is more appropriate.  
Pullup resistor values must be lower than 100 kΩ. Recovery from power down is illustrated in 53 and 54 for  
several gains. In single-supply mode with the gain resistor at ground, the output approaches the positive supply  
on initial power up until the internal nodes charge then recover to the target output voltage; see 51 and 52.  
8.3.4 Trade-Offs in Selecting The Feedback Resistor Value  
The OPA838 is specified using a 1-kΩ feedback resistor with a 200-Ω gain resistor to ground in a noninverting  
gain of 6 V/V configuration. These values give a good compromise, keeping the noise contribution of the  
resistors well below that of the amplifier noise terms and minimal power in the feedback network as the output  
voltage swing creates load current back into the feedback network. Decreasing these values improves the noise  
at the cost of more power dissipated in the feedback network. Low values increase the harmonic distortion as the  
feedback load decreases. Increasing the RF value at a particular gain increases the output noise contribution of  
those resistors possibly becoming dominant. As the feedback resistor values continue to increase (and the RG at  
a fixed target gain), there is a loss of phase margin as the impedance that drives the inverting input capacitance  
brings in an added loop pole at lower frequencies. 63 shows this at a gain of 6 V/V with increasing RF values.  
This noninverting test shows more peaking as the RF values increase due to the 1-pF  
common-mode input capacitance at the inverting input. The TINA simulation model gives excellent prediction of  
these effects.  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
27  
24  
21  
18  
15  
12  
RF = 1 k  
RF = 2 k  
RF = 5 k  
RF = 10 k  
RF = 20 k  
9
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
D063  
63. Frequency Response With Various Feedback Resistor Values  
Operating the OPA838 in inverting mode with higher RF values increases response peaking due to the loss of  
phase margin effect. In the inverting case, a pair of capacitors can flatten the response at the cost of lower  
closed-loop bandwidth. 64 shows an example with a 20-kΩ RF value at an inverting gain of –5 V/V (noise gain  
= 6 V/V) with optional capacitors (CF and CG). 64 shows optional bias current cancellation elements on the  
noninverting input. The total resistance value matches the parallel combination of RG || RF, which reduces the DC  
output error term due to bias current to IOS × RF. The 10-nF capacitor is added across the larger part of this bias  
current canceling resistance to filter noise and the 20 Ω is split out to isolate the capacitor self resonance from  
the noninverting input. 65 illustrates the small-signal response shape with and without these capacitors. The  
feedback capacitor (CF), is selected to set a desired closed-loop bandwidth with RF. CG is added to ground to  
shape the noise gain up over frequency to be greater than or equal to 6 V/V at higher frequencies. In this  
example, that higher frequency noise gain is 1 + 6 / 1.2 = 6 V/V, adding the 1-pF device common-mode  
capacitance to the external 5 pF. Using the capacitors to set the feedback ratio removes the pole produced in the  
feedback driving from purely resistive source to the inverting parasitic capacitance.  
CF 1.2 pF  
RG 4.02 kΩ  
RF 20 kΩ  
Input  
CG 5 pF  
VEE  
œ
Inverting with  
High Rf values  
RG 4.02 Ω  
+
+
+
PD  
V
C1 10n  
RM 3.24 kΩ  
VOUT  
VCC  
VCC  
VEE  
+
Bias current  
+
cancellation with  
resistor noise  
filtering  
V1 2.5 V  
V2 œ2.5 V  
64. G = –5 V/V With Optional Compensation  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Feature Description (接下页)  
18  
15  
12  
9
6
3
0
-3  
-6  
-9  
-12  
-15  
No caps  
With caps  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
D070  
65. Inverting Response With and Without Compensation  
8.3.5 Driving Capacitive Loads  
The OPA838 can drive small capacitive loads directly without oscillation (less than 6 pF). When driving capacitive  
loads greater than 6 pF, 49 illustrates the recommended ROUT vs capacitor load parametric on gains. At higher  
gains, the amplifier starts with greater phase margin into a resistive load and can operate with lower ROUT for a  
given capacitive load. Without ROUT, output capacitance interacts with the output impedance of the amplifier,  
which causes phase shift in the loop gain of the amplifier that reduces the phase margin. This causes peaking in  
the frequency response with overshoot and ringing in the pulse response. 49 targets a 30° phase margin for  
the OPA838. A 30° phase margin produces a 5.7-dB peaking in the frequency response at the amplifier output  
pin that is rolled off by the output RC pole; see 67. This peaking can cause clipping for large signals driving a  
capacitive load. Increasing the ROUT value can reduce the peaking at the cost of a more band-limited overall  
response.  
RG 200 Ω  
RF 1 kΩ  
VEE  
œ
ROUT 68.1 Ω  
+
+
+
PD  
+
V
VG1  
VOUT  
VCC  
VCC  
VEE  
+
+
V1 2.5 V  
V2 œ2.5 V  
66. ROUT versus CL Test Circuit  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
25  
22  
19  
16  
13  
10  
7
At capacitive load  
At output pin  
4
1
-2  
-5  
10k  
100k  
1M  
Frequency (Hz)  
10M  
100M  
CapL  
67. Frequency Response to Output Pin and Capacitive Load  
8.4 Device Functional Modes  
8.4.1 Split-Supply Operation (±1.35 V to ±2.7 V)  
To facilitate testing with common lab equipment, the OPA838 EVM (see EVM board link) is built to allow split-  
supply operation. This configuration eases lab testing because the midpoint between the power rails is ground,  
and most signal generators, network analyzers, oscilloscopes, spectrum analyzers, and other lab equipment  
have inputs and outputs with a ground reference. This simplifies characterization by removing the requirement for  
blocking capacitors.  
68 shows a simple noninverting configuration analogous to 61 with a ±2.5-V supply and VREF equal to  
ground. The input and output swing symmetrically around ground. For ease of use, split-supplies are preferred in  
systems where signals swing around ground. Using bipolar (or split) supplies shifts the thresholds for the  
shutdown control. The disable control is referenced from the negative supply. Typically, this is ground in a single-  
supply application, but using a negative supply requires that the pin is set to within 0.55 V above the negative  
supply to disable. If disable is not required, connecting that pin to the positive supply ensures correct operation,  
even for split-supply applications. This disable pin cannot be floated but must be asserted to a voltage.  
RG 200 Ω  
RF 1 kΩ  
VEE  
±2.1 VOUT  
Ground  
Centered  
U1 OPA838  
œ
R2 165 Ω  
+
+
+
PD  
V
±0.35 VIN  
20 nsec edge  
2 MHz input  
VM1  
Input  
Signal  
VCC  
VCC  
VEE  
+
+
V1 2.5 V  
V2 œ2.5 V  
68. Split-Supply Operation  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Device Functional Modes (接下页)  
2.5  
2
Input  
Output  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
200  
300  
400  
500  
600  
700  
800  
Time (nsec)  
D068  
69. Bipolar-Supply Step Response  
8.4.2 Single-Supply Operation (2.7 V to 5.4 V)  
Most newer systems use a single power supply to improve efficiency and to simplify power supply design. The  
OPA838 can be used with single-supply power (ground for the negative supply) with no change in performance  
from split supply, as long as the input and output pins are biased within the linear operating region of the device.  
The outputs nominally swing rail-to-rail with approximately a 100-mV headroom required for linear operation. The  
inputs can swing below the negative rail (typically ground) and to within 1.3 V of the positive supply. For DC-  
coupled single-supply operation, the higher gain operating applications typical of a decompensated op amp keep  
the input swings below the input swing limit to the positive supply. Typically, the 1.3-V input headroom required  
to the positive supply does not limit operation.  
70 shows an example design taking a 0 V to 0.5 V input range, level shifting the output up to 0.15 V for a 0-V  
input using the 4.5-V reference voltage common for 5-V SAR ADCs, and sets the gain to produce a 4.1-V output  
swing for the 0.5-V input swing. This example is assuming a 0-Ω source that is required to sink the 39 µA  
required to bias the positive input pin to produce the 0.15-V output for 0-V input. The RF and RG values are  
scaled down slightly to provide bias current cancellation by matching the parallel combination of the two bias set-  
up resistors on the noninverting input. 71 illustrates an example step response for this circuit that produces an  
output from 0.15 V for a 0-V input to 4.35 V for a 0.5-V input.  
RG 56.2  
RF 1 kΩ  
VREF  
+
V1 4.5 V  
œ
VOUT  
RB2 49.9 Ω  
+
+
PD  
+
VG1  
0 V to 0.5 V  
Input Swing  
VCC  
VCC  
VREF  
+
VCC 5 V  
70. DC-Coupled, Single-Supply, Noninverting Interface With Output Level Shift  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
 
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
4.5  
4
3.5  
3
2.5  
2
Input  
Output  
1.5  
1
0.5  
0
0
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2  
Time (µsec)  
D065  
71. Unipolar Input to Level Shifted Output Step Response  
If AC-coupling is acceptable, a simple way to operate single-supply is to run inverting. 72 shows a low-power,  
high-gain example. In this example, a gain of –20 V/V is implemented (inverting usually does not matter for AC-  
coupled channels) where the V+ input is biased midscale. This example is showing an optional bias current  
cancellation setup, which may not be necessary unless the output DC level requires good accuracy. The parallel  
combination of the divider resistors plus the 80.7-Ω isolating resistor match the feedback resistor value. With the  
blocking capacitor at the inverting input, the feedback resistor impedance must be matched to achieve bias  
current cancellation. In this 3-V supply example, the two inputs and the output are biased at 1.5 V. This places  
the input pins in range and centers the output for maximum V  
available. 73 illustrates the small-signal  
PP  
response for this example showing a F-3dB range from a low-end cutoff of 887 Hz set by the input capacitor value  
to a 17.5-MHz high-frequency cutoff.  
C2 1µF  
RG 178 Ω  
RF 3.57 kΩ  
VG1  
+
887 Hz to  
17.5 Mhz gain  
of -20 V/V  
U1 OPA838  
œ
Riso 80.6  
+
+
+
PD  
VCC  
1.5 V  
DC Out  
V
RB1 6.98 kΩ  
VM1  
C1 1 µF  
VCC  
+
V1 3 V  
72. Single-Supply Inverting Gain Stage With AC-Coupled Input  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Device Functional Modes (接下页)  
27  
24  
21  
18  
15  
Output  
12  
100  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
D069  
73. Inverting Single-Supply Response With AC-Coupled Input  
These are only two of the many ways a single-supply design may be implemented. Many others exist where  
using a DC reference voltage or AC-coupling are common. A good compilation of options can be found in Single-  
Supply Op Amp Design Techniques.  
8.5 Power Shutdown Operation  
As noted, the 6-pin packages that offer a power shutdown feature must have that pin asserted. To retain the  
lowest possible shutdown power, no internal pullup resistors are present in the OPA838. The control threshold is  
referenced off the negative supply with a nominal internal threshold near 1 V above the negative supply. Worst-  
case tolerances dictate the required low-level voltage to ensure shutdown of 0.55 V or less above the negative  
supply and 1.5 V or greater above the negative supply to ensure enabled operation. The required control pin  
current is less than ±50 nA. For SOT-23-6 applications that do not require a shutdown functionality, connect the  
disable control pin to the positive supply. For SC70 package applications that do not require a shutdown, use the  
5-pin package where the control pad is internally connected to the positive supply. When disabled, the output  
nominally goes to a high impedance. However, the feedback network provides a path for discharge for off state  
voltage condition. 51 illustrates the turnon time with a sinusoidal input that is relatively slow, while 52  
illustrates the turnoff time is fast. 53 and 54 illustrate the single-supply operation with a DC input to produce  
a midsupply output at gains of 6 V/V and 10 V/V. In all cases, the output voltage transitions to a point close to  
the positive supply voltage and then moves to the desired output voltage 0.5 µs to 1.5 µs after the disable control  
line goes high. The supply current in shutdown is a low 0.1 µA nominally with a maximum 1 µA.  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Noninverting Amplifier  
The OPA838 can be used as noninverting amplifier with signal input to the noninverting input (VIN+). 61  
illustrates a basic block diagram of the circuit. VREF is often ground when split supplies are used.  
If VIN = VREF + VSIG, and the gain setting resistor (RG) is DC referenced to VREF, use 公式 1 to calculate the  
output of the amplifier.  
æ
ö
÷
ø
RF  
V
OUT  
= VSIG 1 +  
+ VREF  
ç
RG  
è
(1)  
RF  
G = 1 +  
RG  
The noninverting signal gain (also called the noise gain) of the circuit is set by:  
VREF provides a reference around which the input and output signals swing. Output signals are in-phase with the  
input signals within the flat portion of the frequency response. For a high-speed, low-noise device like the  
OPA838, the values selected for RF (and the RG for the desired gain) can strongly influence the operation of the  
circuit. For the characteristic curves, the noninverting circuit of 74 shows the test configuration. 1 lists the  
recommended resistor values over gain.  
RG 200 Ω  
RF 1 kΩ  
50 Ω source  
VEE  
50 Ω  
Cable  
Network  
Analyzer  
50 Ω  
Cable  
œ
R3 1.96 kΩ  
2 kΩ load  
RS 50 Ω  
+
+
PD  
+
V
+
R6 51.1 RLOAD 50 Ω  
VM1  
RT 50 Ω  
Network  
Analyzer  
VCC  
VCC  
VEE  
+
+
V2 -2.5 V  
V1 2.5 V  
74. Noninverting Characterization Circuit  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Application Information (接下页)  
1 lists the recommended resistor values from target gains of 6 V/V to 20 V/V. This table controls the RF and  
RG values to set the resistor noise contribution at approximately 40% of the total output noise power. This  
increases the spot noise at the output over what the op amp voltage noise produces by 20%. Lower values  
reduce the output noise of any design at the cost of more power in the feedback circuit. Using the TINA model  
and simulation tool shows the impact of different resistor value choices on response shape and noise.  
1. Noninverting Recommended Resistor Values  
TARGET  
AVERAGE  
RF (OHMS)  
RG (OHMS)  
ACTUAL GAIN (V/V)  
GAIN (dB)  
6
1000  
1180  
1370  
1540  
1690  
1870  
2050  
2210  
2370  
2550  
2740  
2870  
3090  
3240  
3400  
3570  
200  
196  
196  
191  
187  
187  
187  
182  
182  
182  
182  
178  
182  
178  
178  
178  
6
15.56  
16.93  
18.05  
19.15  
20.03  
20.83  
21.56  
22.37  
22.94  
23.53  
24.11  
24.67  
25.09  
25.67  
26.06  
26.47  
7
7.02  
8
7.99  
9
9.06  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
10.04  
11  
11.96  
13.14  
14.02  
15.01  
16.05  
17.12  
17.98  
19.20  
20.1  
21.06  
9.1.2 Inverting Amplifier  
The OPA838 can be used as an inverting amplifier with signal input to the inverting input (VIN–) through the gain-  
setting resistor (RG.) 62 illustrates a basic block diagram of the circuit.  
If VIN = VREF + VSIG, and the noninverting input is DC biased to VREF, the output of the amplifier may be  
calculated according to 公式 2.  
æ
SIG ç  
è
ö
÷
ø
-RF  
V
= V  
+ V  
REF  
OUT  
RG  
(2)  
-RF  
G =  
RG  
The signal gain of the circuit  
and VREF provides a reference point around which the input and output  
signals swing. For bipolar-supply operation, VREF is often GND. The output signal is 180˚ out-of-phase with the  
input signal in the passband of the application. 75 illustrates the 50-Ω input matched configuration used for the  
inverting characterization plots. In this case, an added termination resistor is placed in parallel with the input RG  
resistor to provide an impedance match to 50-Ω test equipment. 2 lists the suggested values for RF, RG, and  
RT for inverting gains from –6 V/V to –20 V/V.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
 
 
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
50 input  
matching  
RG 50 RG 187 Ω  
RF 1.87 kΩ  
+
Gain of -10 V/V  
VSOURCE  
VEE  
œ
VOUT  
RB 191 Ω  
+
+
PD  
VCC  
VCC  
VEE  
+
+
V3 2.5 V  
V4 -2.5 V  
75. Inverting With Input Impedance Matching  
2. Inverting Recommended Resistor Values  
RG  
(OHMS)  
AVERAGE  
RF (OHMS)  
EXACT RT  
STANDARD RT  
INPUT ZI  
ACTUAL (V/V)  
GAIN (dB)  
–6  
1180  
1370  
1540  
1690  
1870  
2050  
2210  
2370  
2550  
2740  
2870  
3090  
3240  
3400  
3570  
196  
196  
191  
187  
187  
187  
182  
182  
182  
182  
178  
182  
178  
178  
178  
67.1  
67.1  
67.7  
68.2  
68.2  
68.2  
68.9  
68.9  
68.9  
68.9  
69.5  
68.9  
69.5  
69.5  
69.5  
66.5  
66.5  
68.1  
68.1  
68.1  
68.1  
68.1  
68.1  
68.1  
68.1  
69.8  
69.8  
69.8  
69.8  
69.8  
49.7  
49.7  
50.2  
49.9  
49.9  
49.9  
49.6  
49.6  
49.6  
49.6  
50.1  
50.5  
50.1  
50.1  
50.1  
–6.02  
–6.99  
15.59  
16.89  
18.13  
19.12  
20  
–7  
–8  
–8.06  
–9  
–9.04  
–10  
–11  
–12  
–13  
–14  
–15  
–16  
–17  
–18  
–19  
–20  
–10  
–10.96  
–12.14  
–13.02  
–14.01  
–15.05  
–16.12  
–16.98  
–18.20  
–19.10  
–20.06  
20.80  
21.69  
22.29  
22.93  
23.55  
24.15  
24.6  
25.2  
25.62  
26.04  
9.1.3 Output DC Error Calculations  
The OPA838 can provide excellent DC signal accuracy due to high open-loop gain, high common-mode  
rejection, high power-supply rejection, and low input offset voltage and bias current offset errors. To take full  
advantage of this low input offset voltage, pay careful attention to input bias current cancellation. The low-noise  
input stage for the OPA838 has a relatively high input bias current (1.6 µA typical out the pins) but with a close  
match between the two input currents. This is a negative rail input device using PNP input devices where the  
base current flows out of the device pins. A large resistor to ground on the V+ input shifts positively because of  
the input bias current. The mismatch between the two input bias currents is very low, typically only ±20 nA of  
input offset current. Match the DC source impedances out of the two inputs to reduce the total output offset  
voltage. For example, one way to add bias current cancellation to the circuit in 68 is to insert a 165-Ω series  
resistor into the noninverting input to match the parallel combination of RF and RG for this basic gain of 6 V/V  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
noninverting gain circuit. These same calculations apply to the output offset drift. Analyzing the simple circuit of  
68, the noise gain for the input offset voltage drift is 1 + 1k / 200 = 6 V/V. This results in an output drift term of  
±1.6 µV/°C × 6 = ±9.6 µV/°C. Because the two impedances out of the inputs are matched, the residual error due  
to the maximum ±500 pA/°C offset current drift is exactly that number times the 1-kΩ feedback resistor value, or  
±50 µV/°C. The total output DC error drift band is ±59 µV/°C.  
9.1.4 Output Noise Calculations  
The decompensated voltage feedback of the OPA838 op amp offers among the lowest input voltage and current  
noise terms for any device with a supply current less than 1 mA. 76 shows the op amp noise analysis model  
that includes all noise terms. In this model, all the noise terms are shown as noise voltage or current density  
terms in nV/Hz or pA/Hz.  
E
NI  
+
OPA838  
E
O
R
S
I
BN  
E
RS  
R
F
4kTRS  
4kTRF  
R
G
I
BI  
4kT  
RG  
4kT = 1.6E œ 20J  
at 290°K  
76. Op Amp Noise Analysis Model  
The total output spot noise voltage is computed as the square root of the squared contributing terms to the  
output noise voltage. This computation is adding all the contributing noise powers at the output by superposition,  
then taking the square root to return to a spot noise voltage. 公式 3 shows the general form for this output noise  
voltage using the terms presented in 76.  
ENI + I R + 4kTR NG + I R 2 + 4kTRFNG  
» ÿ  
BN S S BI F  
2
2
EO  
=
(
)
(
)
(3)  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
 
 
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
Dividing this expression by the noise gain (NG = 1 + RF / RG) gives the equivalent input referred spot noise  
voltage at the noninverting input, as shown in 公式 4.  
2
I R  
4kTRF  
NG  
2
EN = EN2I + IBNRS + 4kTRS +  
+
BI  
F
(
)
«
÷
NG  
(4)  
Using the resistor values shown in 1 with RS = 0 Ω results in a constant input referred voltage noise of 2.86nV  
/ Hz. Reducing the resistor values brings this number closer to the intrinsic 1.9 nV / Hz of the OPA838. Adding  
RS for bias current cancellation in noninverting mode adds the noise from RS to the total output noise, as shown  
in 公式 3. In inverting mode, the RS bias current cancellation resistor must be bypassed with a capacitor for the  
best noise performance.  
9.1.5 High-Gain Differential I/O Designs  
A high-gain differential-to-differential I/O circuit can be used to drive a second-stage FDA or a differential-to-  
single-ended stage. This circuit is frequently used in applications where high input impedance is required (for  
example, if the source cannot be loaded). 76 illustrates an example design where the differential gain is  
41 V/V. An added element between the two RG resistors increases the noise gain for the common-mode  
feedback. It is important to provision for the added element because a decompensated VFA (like the OPA838)  
often oscillates without it in this circuit. With only the RG elements in the differential I/O design, the common-  
mode feedback is unity-gain and often causes high-frequency, common-mode oscillations. To resolve this issue,  
split the RG elements in half and add a low-impedance path such as a capacitor or a DC reference between the  
two RG values.  
VCC  
PD  
+
OPA838  
œ
VEE  
RG1 88.7 Ω  
RF 3.57 kΩ  
CCM  
R1 500 Ω  
Vindiff  
Vodiff  
VCM  
10nF  
R2 500 Ω  
RF 3.57 kΩ  
RG1 88.7 Ω  
VCC  
PD  
OPA838  
œ
High Gain  
Differential  
I/O  
+
VEE  
77. High-Gain Differential I/O Stage  
Integrated results are available, but the OPA838 device provides a low-power, high-frequency result. For best  
CMRR performance, resistors must be matched. A good rule is CMRR the resistor tolerance; so 0.1%  
tolerance provides approximately 60-dB CMRR.  
9.1.5.1 Differential I/O Design Requirements  
As an example design, start with the circuit in 77.  
Set the target gain and split the RG element in half. For this example, target a gain of 41 V/V.  
Assess the DC common-mode biasing on the noninverting inputs. The DC biasing must be in range and have  
a gain of 1 to the output. This is not illustrated in 76.  
If a DC reference is used as the mid-R bias, setting the reference equal to the noninverting input bias  
voltage sets the output common-mode to that voltage. Using a capacitor as illustrated in 76 accomplishes  
G
the same results.  
9.1.5.2 Detailed Design Procedure  
Set the total R value near the high gain values using 1. This 178-Ω total must be split for a center tap to  
increase the common-mode noise gain, as shown by the 88.7-Ω value in 77.  
G
Set RF using a standard value near the calculated from solving 公式 1 using half of the total RG value.  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
Simulate the common-mode noise with different elements on the RG center tap, as shown in 78. Decide  
which is most appropriate to the application.  
The common-mode loop instability without the RG center tap is not often apparent in the closed-loop differential  
simulations. It can often be detected in a common-mode output noise simulation as 78 shows. Grounding the  
inputs 77 and running a output noise simulation for the common-mode tap point in 76 shows a peaking in  
the noise at high frequency. This peaking indicates low-phase margin for the common-mode loop. 78 shows  
this peaking in the lowest noise curve, with two options for improving phase margin. The first option used in 图  
77 is a capacitor to ground set to increase the common-mode noise gain only at higher frequencies. This can be  
seen by the peaking in the common-mode noise of 78. Another alternative is to provide a DC voltage  
reference on the RG center tap. This raises the common-mode noise gain from DC on up in frequency. Neither of  
these latter two show any evidence of low phase margin peaking. They do increase the output common-mode  
noise significantly at lower frequencies. Typically, an increase in output common-mode noise is more acceptable  
than low-phase margin as the next stage (FDA, ADC, differential to single stage) rejects common-mode noise.  
180  
No center tap  
10 nF  
Ground  
160  
140  
120  
100  
80  
60  
40  
20  
0
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Diff  
78. Common-Mode Output Noise for Differential I/O Design  
Using the 10-nF center tap capacitor, 79 shows the differential I/O small-signal response showing the  
expected 300 MHz / 41 7.3 MHz closed-loop bandwidth. The capacitor to ground between the RG elements  
does not impact the differential frequency response.  
33  
30  
27  
24  
21  
18  
15  
12  
1
10  
100  
Frequency (MHz)  
D074  
79. Differential Small-Signal Frequency Response  
9.1.6 Transimpedance Amplifiers  
A common application for a high gain bandwidth voltage feedback op amp is to amplify a small photo-diode  
current from a capacitive detector. Figure 80 shows the front page transimpedance circuit with more detail. Here,  
a fixed –0.23 negative voltage generator (LM7705) is used on the negative supply to ensure the output has  
adequate headroom when it is at 0 V. The transimpedance stage is designed here for a 2.4Mhz flat (Butterworth)  
response while a simple RC post-filter band-limits the broadband noise and sets the overall bandwidth to 1MHz.  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
 
 
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
The requirements for a high dynamic range transimpedance (or charge) amplifier include the very low input  
voltage noise intrinsic to a decompensated device like the OPA838. The noise gain over frequency for this type  
of circuit starts out at unity gain then begins to peak with a single zero response due to the pole formed in the  
feedback by the feedback resistor and the total capacitance on the inverting input. That noise gain response is  
flattened out at higher frequencies by the feedback capacitor value to be the 1 + CS/CF capacitor ratio. This is  
normally a very high noise gain allowing the decompensated OPA838 to be applied to this application. Since the  
noise gain is intentionally peaked to a high value in this application, the very low input voltage noise (1.8 nV/Hz)  
of the OPA838 improves dynamic range.  
CF1.0 pF  
RF100 k  
IDIODE  
2.4-Mhz  
Butterworth  
1-MHz  
Low Pass  
VEE  
U1 OPA838  
œ
R2 73.2 ꢀ  
R1 20 ꢀ  
+
+
PD  
VOUT  
Bias Current  
Cancellation  
and R-noise  
filtering  
VM1  
VCC  
VCC  
VEE  
+
+
V1 3 V  
LM7805 œ 230 mV  
80. 100-kΩ Wide Bandwidth Transimpedance Design  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
9.1.7 Design Requirements  
To implement a controlled frequency response transimpedance design, set the transimpedance stage amplifier  
bandwidth higher than a controlled post RC filter. This allows variation in the source capacitance and amplifier  
gain bandwidth product with less overall bandwidth variation to the final output. In this example design:  
Assume a nominal source capacitance value of 100 pF. This normally comes from the capacitance versus  
reverse bias plot for the photodiode. No reverse bias is illustrated in 81, but the current source is typically  
a back biased diode with a negative supply on the anode and the cathode connected to the op amp inverting  
input. In this polarity, the signal current sinks into the diode and raises the op amp output voltage above  
ground.  
For the best DC precision, add a matching resistor on the noninverting input to reduce the input bias current  
error to IOS × RF . This resistor adds to the input voltage noise; TI recommends bypassing that resistor with as  
large as a capacitor as required to roll off resistor noise. This capacitor has a relatively low frequency self  
resonance that interacts with the input stage and might impair stability. Add a small series 20-Ω resistor from  
the capacitor into the noninverting input to de-Q the resonant source impedance without adding too much  
noise.  
Set the feedback capacitor to achieve the desired frequency response shape.  
Add a post RC filter to control the overall bandwidth to 1 MHz. In this example, a 2.2-nF capacitor allows a  
low 73.2-Ω series resistor. When driving a sampling ADC (like a SAR), this combination helps reduce the  
sampling glitch and speed settling time.  
9.1.7.1 Detailed Design Procedure  
The primary design requirement is to set the achievable transimpedance gain and compensate the operational  
amplifier with CF for the desired response shape. A detailed transimpedance design methodology is available in  
Transimpedance Considerations for High-Speed Amplifiers. With a source capacitance set and the amplifier  
selected to provide a particular gain bandwidth product, the achievable transimpedance gain and resulting  
Butterworth bandwidth are tightly coupled as 公式 5 illustrates. Use 公式 6 to solve for a maximum RF value.  
When the RF is selected, the feedback pole is set by 公式 7 to be at .707 of the characteristic frequency. At that  
compensation point, the closed-loop bandwidth is that characteristic frequency with a Butterworth response.  
With the 100-pF source capacitance, 300-MHz gain bandwidth product, and the 2.2-MHz closed-loop  
bandwidth target in the transimpedance stage, solve 公式 6 for a maximum gain of 100 kΩ.  
Set the feedback pole at 0.707 times that 2.2-MHz Butterworth bandwidth. This sets the target 1 / (2π × R  
×
F
CF) = 1.55 MHz. Solving for CF sets the target to 1 pF  
If DC precision is desired, add a 100-kΩ resistor to ground on the noninverting input. If DC precision is not  
required, ground the noninverting input  
Add a resistor noise filtering capacitor in parallel with the 100-kΩ resistor.  
Add a small series resistor isolating this capacitor from the noninverting input.  
Select a final filter capacitor for the load. (In this example, a value of 2.2 nF is used as a typical SAR input  
capacitor.)  
Add a series resistor to the final filter capacitor to form a 1-MHz pole. In this example, that is 73.2 Ω.  
Confirm this resistor is greater than the minimum recommended value illustrated in 49.  
GBP  
F-3dB  
ö
2pRƒCS  
(5)  
(6)  
GBP  
F-23dB2pCS  
Rƒmax  
ö
1
GBP  
= 0.707ì  
2pRƒCƒ  
2pRƒCS  
(7)  
Implementing this design and simulating the performance using the TINA model for the response to the output  
pin and to the final capacitive load shows the expected results of 81. Here the exact 2.2-MHz flat Butterworth  
response to the output pin is shown with the final single pole rolloff at 1 MHz at the final 2.2-nF capacitor.  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
 
 
 
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
103  
100  
97  
94  
91  
88  
85  
82  
79  
76  
Gain output pin  
Gain Load (dB)  
73  
0.001  
0.01  
0.1  
1
10  
Frequency (MHz)  
D075  
81. Small-Signal Response for 100-kΩ Transimpedance Gain  
10 Power Supply Recommendations  
The OPA838 device is intended to work in a supply range of 2.7 V to 5.4 V. Good power-supply bypassing is  
required. Minimize the distance (less than 0.1 inch) from the power-supply pins to high-frequency, 0.1-μF  
decoupling capacitors. A larger capacitor (2.2 µF is typical) is used with a high-frequency, 0.1-µF supply-  
decoupling capacitor at the device supply pins. For single-supply operation, only the positive supply has these  
capacitors. When a split-supply is used, use these capacitors for each supply to ground. If necessary, place the  
larger capacitors further from the device and share these capacitors among several devices in the same area of  
the PCB. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling  
capacitors. An optional 0.1-µF supply decoupling capacitor across the two power supplies (for bipolar operation)  
reduces second harmonic distortion.  
The OPA838 has a positive supply current temperature coefficient; see 57. This helps improve the input offset  
voltage drift. Supply current requirements in system design must account for this effect using the maximum  
intended ambient and 57 to size the supply required. The very low power dissipation for the OPA838 typically  
does not require any special thermal design considerations. For the extreme case of 125°C operating ambient,  
use the approximate maximum 200°C/W for the three packages, and a maximum internal power of  
5.4-V supply × 1.25-mA 125°C supply current from 57 gives a maximum internal power of 6.75 mW. This only  
gives a 1.35°C rise from ambient to junction temperature which is well below the maximum 150°C junction  
temperature. Load power adds to this, but also increases the junction temperature only slightly over ambient  
temperature.  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
11 Layout  
11.1 Layout Guidelines  
The OPA838 EVM can be used as a reference when designing the circuit board. TI recommends following the  
EVM layout of the external components near to the amplifier, ground plane construction, and power routing as  
closely as possible. General guidelines are listed below:  
1. Signal routing must be direct and as short as possible into and out of the op amp.  
2. The feedback path must be short and direct avoiding vias if possible.  
3. Ground or power planes must be removed from directly under the negative input and output pins of the  
amplifier.  
4. TI recommends placing a series output resistor as close to the output pin as possible when driving capacitive  
or matched loads.  
5. A 2.2-µF power-supply decoupling capacitor must be placed within two inches of the device and can be  
shared with other op amps. For split-supply operation, a capacitor is required for both supplies.  
6. A 0.1-µF power-supply decoupling capacitor must be placed as close to the supply pins as possible,  
preferably within 0.1 inch. For split-supply operation, a capacitor is required for both supplies.  
7. The PD pin uses logic levels referenced off the negative supply. If the pin is not used, the pin must tie to the  
positive supply to enable the amplifier. If the pin is used, the pin must be actively driven. A bypass capacitor  
is not necessary, but is used for EMI rejection in noisy environments.  
11.2 Layout Example  
Ground and power plane exist on  
inner layers  
Ground and power plane removed  
Place output resistors close  
to output pins to minimize  
parasitic capacitance  
from inner layers  
1
2
3
6
5
4
Place bypass capacitors  
close to power pins  
Place bypass capacitors  
close to power pins  
Power control (disable) pin  
Must be driven  
Place input resistor close to pin 4  
to minimize stray capacitance  
Non-inverting input  
terminated in 50 Ω  
Place feedback resistor on the bottom  
of PCB between pins 4 and 6  
Remove GND and Power plane  
under pins 1 and 4 to minimize  
stray PCB capacitance  
82. EVM Layout Example  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
OPA838  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件支持  
12.1.1.1 TINA-TI™仿真模型 特性  
您可以从 www.ti.com 产品文件夹内的典型应用电路文件中获取器件模型。此模型包含多种 功能, 旨在帮助设计人  
员加快设计过程,从而满足各类应用需求。下面列出了模型中所包含的性能参数:  
采用任意外部电路时的小信号响应波形:  
差分开环增益和相位  
寄生输入电容  
开环差分输出阻抗  
对于噪声仿真:  
输入差分点电压噪声和 100Hz 1/f 转角频率  
每个输入端上的输入电流噪声与 6kHz 1/f 转角频率  
对于时域阶跃响应仿真:  
差分转换率  
用于预测削波的 I/O 余量模型  
用于预测过驱限制的输入级二极管  
精密的直流精度术语  
电源抑制比 (PSRR)  
共模抑制比 (CMRR)  
标称输入失调电压  
标称输入偏移电流  
标称输入偏置电流  
典型特性 表提供了比宏模型所能提供的更多细节。其中一些未建模的 特性 包括:  
谐波失真  
直流误差中的温度漂移(VIO IOS  
过驱恢复时间  
使用断电特性时的导通和关断时间  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)OPA835DBVOPA836DBV EVM用户指南  
12.2.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
OPA838  
www.ti.com.cn  
ZHCSGM4B AUGUST 2017REVISED OCTOBER 2018  
文档支持 (接下页)  
12.2.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
TINA-TI, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA838IDBVR  
OPA838IDBVT  
OPA838IDCKR  
OPA838IDCKT  
OPA838SIDCKR  
OPA838SIDCKT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
DCK  
DCK  
6
6
5
5
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1C3F  
1C3F  
17Q  
17Q  
19C  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SC70  
SC70  
SC70  
19C  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA838IDBVR  
OPA838IDBVT  
OPA838IDCKR  
OPA838IDCKT  
OPA838SIDCKR  
OPA838SIDCKT  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
DCK  
DCK  
6
6
5
5
6
6
3000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
3.23  
3.23  
2.4  
3.17  
3.17  
2.5  
1.37  
1.37  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
3000  
250  
SC70  
2.4  
2.5  
1.2  
SC70  
3000  
250  
2.4  
2.5  
1.2  
SC70  
2.4  
2.5  
1.2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA838IDBVR  
OPA838IDBVT  
OPA838IDCKR  
OPA838IDCKT  
OPA838SIDCKR  
OPA838SIDCKT  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DCK  
DCK  
DCK  
DCK  
6
6
5
5
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
3000  
250  
SC70  
SC70  
3000  
250  
SC70  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

OPA838SIDCKR

1mA、300MHz 增益带宽、电压反馈运算放大器 | DCK | 6 | -40 to 125
TI

OPA838SIDCKT

1mA、300MHz 增益带宽、电压反馈运算放大器 | DCK | 6 | -40 to 125
TI

OPA842

Wideband, Low Distortion, Unity-Gain Stable, Voltage-Feedback OPERATIONAL AMPLIFIER
TI

OPA842ID

Wideband, Low Distortion, Unity-Gain Stable, Voltage-Feedback OPERATIONAL AMPLIFIER
TI

OPA842IDBV

1 CHANNEL, VIDEO AMPLIFIER, PDSO5, PLASTIC, SOT-23, 5 PIN
TI

OPA842IDBVR

Wideband, Low Distortion, Unity-Gain Stable, Voltage-Feedback OPERATIONAL AMPLIFIER
TI

OPA842IDBVRG4

Wideband, Low Distortion, Unity Gain Stable, Voltage Feedback Operational Amplifier 5-SOT-23 -40 to 85
TI

OPA842IDBVT

Wideband, Low Distortion, Unity-Gain Stable, Voltage-Feedback OPERATIONAL AMPLIFIER
TI

OPA842IDBVTG4

宽带低失真单位增益稳定的电压反馈运算放大器 | DBV | 5 | -40 to 85
TI

OPA842IDG4

宽带低失真单位增益稳定的电压反馈运算放大器 | D | 8 | -40 to 85
TI

OPA842IDR

Wideband, Low Distortion, Unity-Gain Stable, Voltage-Feedback OPERATIONAL AMPLIFIER
TI

OPA842IDRG4

Wideband, Low Distortion, Unity Gain Stable, Voltage Feedback Operational Amplifier 8-SOIC -40 to 85
TI