OPA860ID [TI]

高带宽运算跨导放大器和缓冲器 | D | 8 | -40 to 85;
OPA860ID
型号: OPA860ID
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高带宽运算跨导放大器和缓冲器 | D | 8 | -40 to 85

放大器 PC 光电二极管
文件: 总36页 (文件大小:722K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
Wide Bandwidth  
OPERATIONAL TRANSCONDUCTANCE  
AMPLIFIER (OTA) and BUFFER  
1
OTA FEATURES  
DESCRIPTION  
2
Wide Bandwidth (80MHz, Open-Loop, G = +5)  
The OPA860 is a versatile monolithic component  
designed for wide-bandwidth systems, including high  
performance video, RF and IF circuitry. It includes a  
wideband, bipolar operational transconductance  
amplifier (OTA), and voltage buffer amplifier.  
High Slew Rate (900V/µs)  
High Transconductance (95mA/V)  
External IQ-Control  
The OTA or voltage-controlled current source can be  
viewed as an ideal transistor. Like a transistor, it has  
three terminals—a high impedance input (base), a  
low-impedance input/output (emitter), and the current  
output (collector). The OTA, however, is self-biased  
and bipolar. The output collector current is zero for a  
zero base-emitter voltage. AC inputs centered about  
zero produce an output current, which is bipolar and  
centered about zero. The transconductance of the  
OTA can be adjusted with an external resistor,  
allowing bandwidth, quiescent current, and gain  
trade-offs to be optimized.  
BUFFER FEATURES  
Closed-Loop Buffer  
Wide Bandwidth (1600MHz, VO = 1VPP  
High Slew Rate (4000V/µs)  
60mA Output Current  
)
OPA860 FEATURES  
Low Quiescent Current (11.2mA)  
Versatile Circuit Function  
APPLICATIONS  
Also included in the OPA860 is an uncommited  
closed-loop, unity-gain buffer. This provides  
1600MHz bandwidth and 4000V/µs slew rate.  
Baseline Restore Circuits  
Video/Broadcast Equipment  
Communications Equipment  
High-Speed Data Acquisition  
Wideband LED Driver  
AGC-Multiplier  
ns-Pulse Integrator  
Control Loop Amplifier  
OPA660 Upgrade  
Used as  
a basic building block, the OPA860  
simplifies the design of AGC amplifiers, LED driver  
circuits for fiber optic transmission, integrators for fast  
pulses, fast control loop amplifiers and control  
amplifiers for capacitive sensors and active filters.  
The OPA860 is available in an SO-8 surface-mount  
package.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2008, Texas Instruments Incorporated  
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
PACKAGE  
OPA860ID  
Rails, 75  
OPA860  
SO-8  
D
–45°C to +85°C  
OPA860  
OPA860IDR  
Tape and Reel, 2500  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Power Supply  
±6.5VDC  
Internal Power Dissipation  
Differential Input Voltage  
Input Common-Mode Voltage Range  
Storage Temperature Range: D  
Lead Temperature (soldering, 10s)  
Junction Temperature (TJ)  
ESD Rating:  
See Thermal Information  
±1.2V  
±VS  
–65°C to +125°C  
+300°C  
+150°C  
Human Body Model (HBM)(2)  
1500V  
1000V  
Charge Device Model (CDM)  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress Ratings only, and functional operations of the device at these and any other conditions  
beyond those specified is not supported.  
(2) Pin 2 > 500V HBM.  
PIN CONFIGURATION  
Top View  
SO  
1
2
3
4
8
7
6
5
IQ Adjust  
C
E
B
V+ = +5V  
+1  
Out  
In  
5V  
V
=
2
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
 
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
ELECTRICAL CHARACTERISTICS: VS = ±5V  
RL = 500and RADJ = 250, unless otherwise noted.  
OPA860ID  
TYP  
MIN/MAX OVER TEMPERATURE  
0°C to  
70°C(3)  
–40°C to  
MIN/  
MAX  
TEST  
PARAMETER  
CONDITIONS  
+25°C  
+25°C(2)  
+85°C(3)  
UNITS  
LEVEL(1)  
Closed Loop OTA + BUFFER (see Figure 53)  
AC PERFORMANCE  
Bandwidth  
G = +2, See Figure 53  
VO = 200mVPP  
VO = 1VPP  
470  
470  
350  
42  
380  
375  
370  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
min  
typ  
typ  
typ  
typ  
typ  
B
C
C
C
C
C
VO = 5VPP  
Bandwidth for 0.1dB Gain Flatness  
Slew Rate  
VO = 200mVPP  
VO = 5V Step  
VO = 1V Step  
G = +2, VO = 2VPP, 5MHz  
RL = 100  
3500  
0.7  
3000  
2800  
2700  
Rise Time and Fall Time  
Harmonic Distortion  
2nd-Harmonic  
–54  
–77  
–66  
–79  
dBc  
dBc  
dBc  
dBc  
typ  
typ  
typ  
typ  
C
C
C
C
RL = 500Ω  
3rd-Harmonic  
RL = 100Ω  
RL = 500Ω  
OTA - Open-Loop (see Figure 48)  
AC PERFORMANCE  
G = +5, VO = 200mVPP  
,
Bandwidth  
80  
77  
75  
74  
MHz  
min  
B
RL = 500Ω  
G = +5, VO = 1VPP  
G = +5, VO = 5VPP  
G = +5, VO = 5V Step  
VO = 1V Step  
80  
80  
MHz  
MHz  
V/µs  
ns  
typ  
typ  
min  
typ  
C
C
B
C
Slew Rate  
900  
4.4  
860  
850  
840  
Rise Time and Fall Time  
Harmonic Distortion  
G = +5, VO = 2VPP, 5MHz  
RL = 500Ω  
2nd-Harmonic  
–68  
–57  
2.4  
–55  
–52  
3.0  
–54  
–51  
3.3  
–53  
–49  
3.4  
dB  
max  
max  
max  
max  
max  
B
B
B
B
B
3rd-Harmonic  
RL = 500Ω  
dB  
Base Input Voltage Noise  
Base Input Current Noise  
Emitter Input Current Noise  
OTA DC PERFORMANCE(4) (see Figure 48)  
Min OTA Transconductance  
Max OTA Transconductance  
B-Input Offset Voltage  
f > 100kHz  
nV/Hz  
pA/Hz  
pA/Hz  
f > 100kHz  
1.65  
5.2  
2.4  
2.45  
16.6  
2.5  
f > 100kHz  
15.3  
17.5  
VO = ±10mV, RC = 0, RE = 0Ω  
VO = ±10mV, RC = 0, RE = 0Ω  
VB = 0V, RC = 0, RE = 100Ω  
VB = 0V, RC = 0, RE = 100Ω  
VB = 0V, RC = 0, RE = 100Ω  
VB = 0V, RC = 0, RE = 100Ω  
VB = 0V, VC = 0V  
95  
95  
±3  
±3  
±1  
80  
77  
155  
±15  
±67  
±6  
75  
mA/V  
mA/V  
mV  
min  
min  
A
A
A
B
A
B
A
B
A
B
150  
±12  
160  
±20  
max  
max  
max  
max  
max  
max  
max  
max  
Average B-Input Offset Voltage Drift  
B-Input Bias Current  
±120  
±6.6  
±25  
µV/°C  
µA  
±5  
Average B-Input Bias Current Drift  
E-Input Bias Current  
±20  
±125  
±500  
±30  
±250  
nA/°C  
µA  
±30  
±5  
±100  
±18  
±140  
±600  
±38  
Average E-Input Bias Current Drift  
C-Output Bias Current  
VB = 0V, VC = 0V  
nA/°C  
µA  
VB = 0V, VC = 0V  
Average C-Output Bias Current Drift  
OTA INPUT (see Figure 48)  
B-Input Voltage Range  
VB = 0V, VC = 0V  
±300  
nA/°C  
±4.2  
455 || 2.1  
10.5  
±3.7  
±3.6  
±3.6  
V
k|| pF  
min  
typ  
B
C
B
B
B-Input Impedance  
Min E-Input Input Resistance  
Max E-Input Input Resistance  
12.5  
6.7  
13.0  
6.5  
13.3  
6.3  
min  
max  
10.5  
(1) Test levels: (A) 100% tested at +25°C. Over temperature limits set by characterization and simulation. (B) Limits set by characterization  
and simulation. (C) Typical value only for information.  
(2) Junction temperature = ambient for +25°C specifications.  
(3) Junction temperature = ambient at low temperature limit; junction temperature = ambient + 8°C at high temperature limit for over  
temperature specifications.  
(4) Current is considered positive out of node. VCM is the input common-mode voltage.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): OPA860  
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS: VS = ±5V (continued)  
RL = 500and RADJ = 250, unless otherwise noted.  
OPA860ID  
TYP  
MIN/MAX OVER TEMPERATURE  
0°C to  
70°C(3)  
–40°C to  
MIN/  
MAX  
TEST  
PARAMETER  
CONDITIONS  
+25°C  
+25°C(2)  
+85°C(3)  
UNITS  
LEVEL(1)  
OTA OUTPUT  
E-Output Voltage Compliance  
E-Output Current, Sinking/Sourcing  
C-Output Voltage Compliance  
C-Output Current, Sinking/Sourcing  
C-Output Impedance  
IE = ±1mA  
VE = 0  
±4.2  
±15  
±3.7  
±10  
±4.0  
±10  
±3.6  
±9  
±3.6  
±9  
V
mA  
min  
min  
min  
min  
typ  
A
A
A
A
C
IC = ±1mA  
VC = 0  
±4.7  
±15  
±3.9  
±9  
±3.9  
±9  
V
mA  
54 || 2  
k|| pF  
BUFFER (see Figure Figure 45)  
AC PERFORMANCE  
Bandwidth  
VO = 200mVPP  
VO = 1VPP  
1200  
1600  
1000  
4000  
0.4  
750  
720  
700  
MHz  
MHz  
MHz  
V/µs  
ns  
min  
typ  
typ  
min  
typ  
typ  
B
C
C
B
C
C
VO = 5VPP  
Slew Rate  
VO = 5V Step  
VO = 1V Step  
VO = 1V Step  
VO = 2VPP, 5MHz  
RL = 100Ω  
3500  
3200  
3000  
Rise Time and Fall Time  
Settling Time to 0.05%  
Harmonic Distortion  
2nd-Harmonic  
6
ns  
–52  
–72  
–67  
–96  
4.8  
–47  
–65  
–63  
–86  
5.1  
–46  
–63  
–63  
–85  
5.6  
–44  
–61  
–62  
–83  
6.0  
dBc  
dBc  
max  
max  
max  
max  
max  
max  
typ  
B
B
B
B
B
B
C
C
R
L 500Ω  
RL = 100Ω  
L 500Ω  
3rd-Harmonic  
dBc  
R
dBc  
Input Voltage Noise  
Input Current Noise  
Differential Gain  
f > 100kHz  
f > 100kHz  
NTSC, PAL  
NTSC, PAL  
nV/Hz  
pA/Hz  
%
2.1  
2.6  
2.7  
2.8  
0.06  
0.02  
Differential Phase  
BUFFER DC PERFORMANCE  
Gain  
Degrees  
typ  
RL = 500Ω  
RL = 500Ω  
1
1
0.98  
1
0.98  
1
0.98  
1
V/V  
V/V  
min  
max  
max  
max  
max  
max  
A
A
A
B
A
B
Input Offset Voltage  
±16  
±30  
±36  
±125  
±8  
±38  
±125  
±8.5  
±20  
mV  
Average Input Offset Voltage Drift  
Input Bias Current  
µV/°C  
µA  
±3  
±7  
Average Input Bias Current Drift  
BUFFER INPUT  
±20  
nA/°C  
Input Impedance  
1.0 || 2.1  
M|| pF  
typ  
C
BUFFER OUTPUT  
Output Voltage Swing  
RL = 500Ω  
VO = 0  
±4.0  
±60  
1.4  
±3.8  
±50  
±3.8  
±49  
±3.8  
±48  
V
mA  
min  
min  
typ  
A
A
C
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY (OTA + BUFFER)  
Specified Operating Voltage  
Maximum Operating Voltage  
Minimum Operating Voltage  
Maximum Quiescent Current  
Minimum Quiescent Current  
f 100kHz  
±5  
V
V
typ  
max  
min  
max  
min  
C
A
B
A
A
±6.5  
±2.5  
12  
±6.5  
±2.5  
13.5  
9.5  
±6.5  
±2.5  
14.5  
7.9  
V
RADJ = 250Ω  
RADJ = 250Ω  
11.2  
11.2  
mA  
mA  
10.5  
OTA Power-Supply Rejection Ratio  
(+PSRR)  
ΔIC/ΔVS  
±20  
54  
±50  
48  
±60  
46  
±65  
45  
µA/V  
dB  
max  
min  
A
A
Buffer Power-Supply Rejection Ratio  
(–PSRR)  
ΔVO/ΔVS  
THERMAL CHARACTERISTICS  
Specification: ID  
–40 to +85  
125  
°C  
typ  
typ  
C
C
Thermal Resistance θJA  
D
SO-8  
Junction-to-Ambient  
°C/W  
4
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: VS = ±5V  
At TA = +25°C, IQ = 11.2mA, and RL = 500, unless otherwise noted. (See Figure 53.)  
OTA + BUF Performance  
SMALL-SIGNAL FREQUENCY RESPONSE  
LARGE-SIGNAL FREQUENCY RESPONSE  
9
6
3
0
3
6
9
9
6
3
0
3
6
9
G = +2V/V  
G = +2V/V  
RL = 500  
RL = 500  
VOUT = 0.5VPP  
VOUT = 0.2VPP  
VOUT = 1VPP  
VOUT = 2VPP  
VOUT = 5VPP  
1M  
10M  
100M  
1G 2G  
1M  
10M  
100M  
1G 2G  
Frequency (Hz)  
Frequency (Hz)  
Figure 1.  
Figure 2.  
SMALL-SIGNAL FREQUENCY RESPONSE  
vs QUIESCENT CURRENT  
GAIN FLATNESS vs QUIESCENT CURRENT  
9
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
G = +2V/V  
RL = 500  
VO = 0.2VPP  
6
3
0
IQ = 12mA  
IQ = 11.2mA  
IQ = 8mA  
IQ = 8mA  
3
6
9
IQ = 9mA  
G = +2V/V  
IQ = 12mA  
IQ = 9mA  
RL = 500  
IQ = 11.2mA  
VO = 0.2VPP  
1M  
10M  
100M  
1G 2G  
1
10  
100  
Frequency (Hz)  
Frequency (MHz)  
Figure 3.  
Figure 4.  
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
150  
100  
50  
1.5  
1.0  
0.5  
0
0
50  
0.5  
1.0  
1.5  
G = +2V/V  
VIN = 0.125VPP  
fIN = 20MHz  
G = +2V/V  
VIN = 1.25VPP  
fIN = 20MHz  
100  
150  
Time (5ns/div)  
Time (5ns/div)  
Figure 5.  
Figure 6.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): OPA860  
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: VS = ±5V (continued)  
At TA = +25°C, IQ = 11.2mA, and RL = 500, unless otherwise noted. (See Figure 53.)  
HARMONIC DISTORTION vs FREQUENCY  
HARMONIC DISTORTION vs OUTPUT RESISTANCE  
55  
60  
65  
70  
75  
80  
85  
90  
50  
G = +2V/V  
RL = 500  
O = 2VPP  
See Figure 53  
55  
60  
65  
70  
75  
80  
85  
2nd−Harmonic  
V
2nd−Harmonic  
3rd−Harmonic  
G = +2V/V  
VO = 2VPP  
f = 5MHz  
3rd−Harmonic  
See Figure 53  
0.1  
1
10  
20  
100  
1k  
Output Resistance ( )  
Frequency (MHz)  
Figure 7.  
Figure 8.  
HARMONIC DISTORTION vs OUTPUT VOLTAGE  
HARMONIC DISTORTION vs SUPPLY VOLTAGE  
65  
70  
75  
80  
85  
90  
95  
60  
65  
70  
75  
80  
85  
90  
G = +2V/V  
G = +2V/V  
RL = 500  
RL = 500  
VO = 2VPP  
f = 5MHz  
See Figure 53  
f = 5MHz  
See Figure 53  
3rd−Harmonic  
2nd−Harmonic  
2nd−Harmonic  
3rd−Harmonic  
100  
0.1  
1
10  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
±
±
Output Voltage (VPP  
)
Supply Voltage ( VS)  
Figure 9.  
Figure 10.  
HARMONIC DISTORTION vs QUIESCENT CURRENT  
QUIESCENT CURRENT vs RADJ  
50  
13  
12  
11  
10  
9
55  
60  
65  
70  
75  
80  
2nd−Harmonic  
8
G = +2V/V  
+IQ  
RL = 500  
VO = 2VPP  
85 f = 5MHz  
See Figure 53  
7
3rd−Harmonic  
6
IQ  
90  
5
8.0  
8.5  
9.0  
9.5  
10.0 10.5 11.0 11.5 12.0  
Q (mA)  
0.1  
1
10  
100  
1k  
10k  
100k  
RADJ ( )  
I
Figure 11.  
Figure 12.  
6
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: VS = ±5V  
At TA = +25°C, IQ = 11.2mA, and RL = 500, unless otherwise noted.  
OTA Performance  
OTA TRANSCONDUCTANCE vs FREQUENCY  
OTA TRANSCONDUCTANCE vs QUIESCENT CURRENT  
1000  
100  
10  
150  
IQ = 12.5mA (117mA/V)  
IQ = 11.2mA (102mA/V)  
VIN = 100mVPP  
120  
90  
IQ = 9mA (79mA/V)  
IOUT  
IQ = 7.5mA (51mA/V)  
60  
VIN  
IOU T  
50  
VIN  
50  
30  
0
50  
RL = 50  
50  
VIN = 10mVPP  
1M  
10M  
100M  
1G  
6
7
8
9
10  
11  
12  
13  
Frequency (Hz)  
Quiescent Current (mA)  
Figure 13.  
Figure 14.  
OTA TRANSCONDUCTANCE vs INPUT VOLTAGE  
OTA TRANSFER CHARACTERISTICS  
160  
140  
120  
100  
80  
8
6
4
2
0
IQ = 12mA  
IQ = 12mA  
IQ = 11.2mA  
IQ = 11.2mA  
IQ = 9mA  
IQ = 9mA  
IQ = 7mA  
IOUT  
60  
2
4
6
8
IQ = 7mA  
VIN  
40  
50  
50  
20  
Small signal around input voltage.  
0
40  
30  
20  
10  
0
10  
20  
30  
40  
70 60 50 40 30 20 10  
0
10 20 30 40 50 60 70  
Input Voltage (mV)  
OTA Input Voltage (mV)  
Figure 15.  
Figure 16.  
OTA SMALL-SIGNAL PULSE RESPONSE  
OTA LARGE-SIGNAL PULSE RESPONSE  
0.8  
0.6  
0.4  
0.2  
0
3
2
1
0
1
2
3
0.2  
0.4  
0.6  
0.8  
G = +5V/V  
G = +5V/V  
RL = 500  
RL = 500  
VIN = 1VPP  
fIN = 20MHz  
See Figure 48  
VIN = 0.25VPP  
fIN = 20MHz  
See Figure 48  
Time (10ns/div)  
Time (10ns/div)  
Figure 17.  
Figure 18.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): OPA860  
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: VS = ±5V (continued)  
At TA = +25°C, IQ = 11.2mA, and RL = 500, unless otherwise noted.  
B-INPUT RESISTANCE vs QUIESCENT CURRENT  
C-OUTPUT RESISTANCE vs QUIESCENT CURRENT  
500  
490  
480  
470  
460  
450  
440  
430  
120  
110  
100  
90  
80  
70  
60  
50  
40  
7
8
9
10  
11  
12  
13  
7
8
9
10  
11  
12  
13  
Quiescent Current (mA)  
Quiescent Current (mA)  
Figure 19.  
Figure 20.  
E-OUTPUT RESISTANCE vs QUIESCENT CURRENT  
INPUT VOLTAGE AND CURRENT NOISE DENSITY  
60  
50  
40  
30  
20  
10  
0
100  
E−Input Current Noise (5.2pA/ Hz)  
10  
B−Input Voltage Noise (2.4nV/ Hz)  
B−Input Current Noise (1.65pA/ Hz)  
1
7
8
9
10  
11  
12  
13  
100  
1k  
10k 100k 1M 10M  
Quiescent Current (mA)  
Frequency (Hz)  
Figure 21.  
Figure 22.  
1MHz OTA VOLTAGE AND CURRENT NOISE DENSITY  
vs QUIESCENT CURRENT ADJUST RESISTOR  
16  
E−Input Current Noise (pA/ Hz)  
14  
12  
10  
8
B−Input Voltage Noise (nV/ Hz)  
6
B−Input Current Noise (pA/ Hz)  
4
2
0
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Quiescent Current Adjust Resistor (  
)
Figure 23.  
8
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: VS = ±5V  
At TA = +25°C, IQ = 11.2mA, and RL = 500, unless otherwise noted.  
BUF Performance  
BUFFER BANDWIDTH vs OUTPUT VOLTAGE  
BUFFER BANDWIDTH vs LOAD RESISTANCE  
6
3
0
6
3
0
RL = 1k  
RL = 500  
VO = 0.2VPP  
VO = 0.6VPP  
VO = 5VPP  
3
6
9
3
6
9
VO = 2.8VPP  
VO = 1.4VPP  
RL = 500  
VO = 0.2VPP  
RL = 100  
1M  
10M  
100M  
1G 2G  
1M  
10M  
100M  
1G 2G  
Frequency (Hz)  
Frequency (Hz)  
Figure 24.  
Figure 25.  
BUFFER GAIN FLATNESS  
BUFFER SMALL-SIGNAL PULSE RESPONSE  
0.20  
0.15  
0.10  
0.05  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
RL = 500  
VIN = 0.2VPP  
fIN = 20MHz  
Output  
Voltage  
Input  
Voltage  
0.1  
0.2  
0.3  
0.4  
0.5  
0.05  
0.10  
0.15  
0.20  
1
10  
100  
400  
Time (10ns/div)  
Frequency (MHz)  
Figure 26.  
Figure 27.  
BUFFER LARGE-SIGNAL PULSE RESPONSE  
HARMONIC DISTORTION vs FREQUENCY  
3
2
1
0
40  
50  
60  
70  
80  
90  
RL = 500  
RL = 500  
VO = 2VPP  
VIN = 3VPP  
fIN = 20MHz  
2nd−Harmonic  
Input  
Voltage  
Output  
Voltage  
1
2
3
3rd−Harmonic  
100  
1
10  
100  
Time (10ns/div)  
Frequency (MHz)  
Figure 28.  
Figure 29.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): OPA860  
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: VS = ±5V (continued)  
At TA = +25°C, IQ = 11.2mA, and RL = 500, unless otherwise noted.  
5MHz HARMONIC DISTORTION vs LOAD RESISTANCE  
HARMONIC DISTORTION vs OUTPUT VOLTAGE  
40  
50  
60  
70  
80  
90  
60  
70  
80  
90  
RL = 500  
RL = 500  
VO = 2VPP  
2nd−Harmonic  
f = 5MHz  
2nd−Harmonic  
3rd−Harmonic  
3rd−Harmonic  
100  
110  
100  
100  
1k  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Load Resistance (  
)
Output Voltage (VPP)  
Figure 30.  
Figure 31.  
BUFFER TRANSFER FUNCTION  
5MHz HARMONIC DISTORTION vs SUPPLY VOLTAGE  
60  
5
4
3
2
1
0
RL = 500  
V
65  
70  
75  
80  
85  
90  
95  
O = 2VPP  
2nd−Harmonic  
1
2
3
4
5
3rd−Harmonic  
100  
1
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
5
4
3
2
0
1
2
3
4
5
±
±
Supply Voltage ( VS)  
Input Voltage (V)  
Figure 32.  
Figure 33.  
INPUT VOLTAGE AND CURRENT NOISE DENSITY  
BUFFER OUTPUT IMPEDANCE  
100  
10  
1
100  
10  
1
Input Current Noise (2.1pA/ Hz)  
Input Voltage Noise (4.8nV/ Hz)  
100  
1k  
10k 100k 1M  
10M  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
Figure 34.  
Figure 35.  
10  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS: VS = ±5V (continued)  
At TA = +25°C, IQ = 11.2mA, and RL = 500, unless otherwise noted.  
BUFFER GROUP DELAY TIME vs FREQUENCY  
BUFFER OUTPUT VOLTAGE AND CURRENT LIMITATIONS  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5
1W Internal  
Power Limit  
4
100  
3
2
1
0
1
2
3
4
5
Load Line  
25 Load Line  
50 Load Line  
1W Internal  
Power Limit  
0.2  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
Output Current (mA)  
Figure 36.  
Figure 37.  
QUIESCENT CURRENT vs TEMPERATURE  
POWER-SUPPLY REJECTION RATIO vs FREQUENCY  
16  
15  
14  
13  
12  
11  
10  
9
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
+PSRR  
PSRR  
8
7
6
0
20  
40  
0
20  
40  
60  
80  
100  
120  
10k  
100k  
1M  
10M  
100M  
_
Ambient Temperature ( C)  
Frequency (Hz)  
Figure 38.  
Figure 39.  
VOLTAGE RANGE vs TEMPERATURE  
OUTPUT CURRENT vs TEMPERATURE  
4.10  
4.05  
4.00  
3.95  
3.90  
56.0  
55.8  
55.6  
55.4  
55.2  
55.0  
54.8  
54.6  
54.4  
54.2  
54.0  
+VO  
Output Current Sinking, Sourcing  
VO  
20  
40  
20  
0
20  
40  
60  
80  
100  
120  
40  
0
20  
40  
60  
80  
100  
120  
_
_
Ambient Temperature ( C)  
Temperature ( C)  
Figure 40.  
Figure 41.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): OPA860  
 
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: VS = ±5V (continued)  
At TA = +25°C, IQ = 11.2mA, and RL = 500, unless otherwise noted.  
DC DRIFT vs TEMPERATURE  
C-OUTPUT BIAS CURRENT vs TEMPERATURE  
30  
25  
20  
15  
10  
5
6
5
4
3
2
1
0
40  
30  
20  
10  
0
Five Representative Units  
Buffer Input Offset Voltage (VOS  
)
Buffer Input Bias Current (IB)  
10  
20  
30  
40  
0
20  
40  
0
20  
40  
60  
80  
100  
120  
20  
40  
0
20  
40  
60  
80  
100  
120  
_
Ambient Temperature ( C)  
_
Ambient Temperature ( C)  
Figure 42.  
Figure 43.  
12  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
 
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
APPLICATION INFORMATION  
The OPA860 combines a high-performance buffer  
BUFFER SECTION—AN OVERVIEW  
with  
a
transconductance  
section.  
This  
transconductance section is discussed in the OTA  
(Operational Transconductance Amplifier) section of  
this data sheet. Over the years and depending on the  
writer, the OTA section of an op amp has been  
The buffer section of the OPA860 is an 1600MHz,  
4000V/µs closed-loop buffer that can be used as a  
building block for AGC amplifiers, LED driver circuit,  
integrator for fast pulse, fast control loop amplifiers,  
and control amplifiers for capacitive sensors and  
active filters. The Buffer section does not share the  
bias circuit of the OTA section; thus, it is not affected  
by changes in the IQ adjust resistor (RADJ).  
referred  
to  
as  
a
Diamond  
Transistor,  
Voltage-Controlled Current source, Transconductor,  
Macro Transistor, or positive second-generation  
current conveyor (CCII+). Corresponding symbols for  
these terms are shown in Figure 44.  
TRANSCONDUCTANCE (OTA) SECTION—AN  
OVERVIEW  
3
C
VIN1  
1
B
The symbol for the OTA section is similar to a  
transistor (see Figure 44). Applications circuits for the  
OTA look and operate much like transistor  
circuits—the transistor is also a voltage-controlled  
current source. Not only does this characteristic  
simplify the understanding of application circuits, it  
aids the circuit optimization process as well. Many of  
the same intuitive techniques used with transistor  
designs apply to OTA circuits. The three terminals of  
the OTA are labeled B, E, and C. This labeling calls  
attention to its similarity to a transistor, yet draws  
distinction for clarity. While the OTA is similar to a  
transistor, one essential difference is the sense of the  
C-output current: it flows out the C terminal for  
positive B-to-E input voltage and in the C terminal for  
negative B-to-E input voltage. The OTA offers many  
advantages over a discrete transistor. The OTA is  
self-biased, simplifying the design process and  
reducing component count. In addition, the OTA is far  
more linear than a transistor. Transconductance of  
the OTA is constant over a wide range of collector  
IOUT  
VIN2  
2
E
Diamond Transistor  
Voltage−Controlled Current Source  
Transconductor  
Macro Transistor  
Current Conveyor II+  
C
E
VIN1  
VIN2  
B
Z
IOUT  
CCII+  
Figure 44. Symbols and Terms  
Regardless of its depiction, the OTA section has a  
high-input impedance (B input), a low-input/output  
impedance (E input), and a high impedance current  
source output (C output).  
currents—this feature implies  
improvement of linearity.  
a
fundamental  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): OPA860  
 
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
BASIC CONNECTIONS  
It is also possible to vary the quiescent current with a  
control signal. The control loop in Figure 45 shows  
1/2 of a REF200 current source used to develop  
100mV on R1. The loop forces 125mV to appear on  
R2. Total quiescent current of the OPA860 is  
approximately 37 × I1, where I1 is the current made to  
flow out of pin 1.  
Figure 46 shows basic connections required for  
operation. These connections are not shown in  
subsequent circuit diagrams. Power-supply bypass  
capacitors should be located as close as possible to  
the device pins. Solid tantalum capacitors are  
generally best.  
QUIESCENT CURRENT CONTROL PIN  
V+  
The quiescent current of the transconductance  
OPA860  
portion of the OPA860 is set with a resistor, RADJ  
,
1/2 REF200  
µ
100  
A
connected from pin 1 to –VS. It affects only the  
operating currents of OTA sections. The bias circuitry  
of the Buffer section is independent of the bias  
circuitry for the OTA section; therefore, the quiescent  
current cannot go below 5.8mA. The maximum  
quiescent current is 12.7mA. RADJ should be set  
between 50and 1kfor optimal performance of the  
OTA section. This range corresponds to the 12.5mA  
I
Q Adjust  
R1  
1
I1  
1.25k  
R2  
425  
TLV2262  
quiescent current for RADJ = 50, and 9mA for RADJ  
=
1k. If the IQ adjust pin is connected to the negative  
supply, the quiescent current will be set by the 250Ω  
internal resistor.  
Figure 45. Optional Control Loop for Setting  
Quiescent Current  
Reducing or increasing the quiescent current for the  
OTA section controls the bandwidth and AC behavior  
as well as the transconductance. With RADJ = 250,  
this sets approximately 11.2mA total quiescent  
current at 25°C. It may be appropriate in some  
applications to trim this resistor to achieve the desired  
quiescent current or AC performance.  
Applications circuits generally do not show the  
resistor RQ, but it is required for proper operation.  
With  
a
fixed RADJ resistor, quiescent current  
increases with temperature (see Figure 43 in the  
Typical Characteristics section). This variation of  
current with temperature holds the transconductance,  
gm, of the OTA relatively constant with temperature  
(another advantage over a transistor).  
14  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
 
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
RQ = 250 , roughly sets IQ = 11.2mA.  
+5V(1)  
1
2
3
4
8
7
6
5
µ
0.1 F  
+VS  
RADJ  
RS  
250  
+
(25 to 200 )  
µ
2.2 F  
+1  
Solid Tantalum  
49.9  
VS  
(1)  
5V  
µ
0.1 F  
VO  
VI  
RS  
µ
2.2 F  
+
(25 to 200 )  
Solid  
Tantalum  
49.9  
±
= 6.5V absolute maximum.  
NOTE: (1) VS  
Figure 46. Basic Connections  
With this control loop, quiescent current will be nearly  
constant with temperature. Since this differs from the  
temperature-dependent behavior of the internal  
Common-E Amplifier or Forward Amplifier  
Figure 47 compares the common-emitter  
current  
source,  
other  
temperature-dependent  
configuration for a BJT with the common-E amplifier  
for the OTA section. There are several advantages in  
using the OTA section in place of a BJT in this  
configuration. Notably, the OTA does not require any  
biasing, and the transconductance gain remains  
constant over temperature. The output offset voltage  
is close to 0, compared with several volts for the  
common-emitter amplifier.  
behavior may differ from that shown in the Typical  
Characteristics. The circuit of Figure 45 will control  
the IQ of the OTA section of the OPA860 somewhat  
more accurately than with a fixed external resistor,  
RQ. Otherwise, there is no fundamental advantage to  
using this more complex biasing circuitry. It does,  
however,  
demonstrate  
the  
possibility  
of  
signal-controlled quiescent current. This capability  
may suggest other possibilities such as AGC,  
dynamic control of AC behavior, or VCO.  
The gain is set in a similar manner as for the BJT  
equivalent with Equation 1:  
RL  
G +  
1
g
BASIC APPLICATIONS CIRCUITS  
m ) RE  
(1)  
Most applications circuits for the OTA section consist  
of a few basic types, which are best understood by  
analogy to a transistor. Used in voltage-mode, the  
OTA section can operate in three basic operating  
states—common emitter, common base, and  
common collector. In the current-mode, the OTA can  
be useful for analog computation such as current  
amplifier, current differentiator, current integrator, and  
current summer.  
Just as transistor circuits often use emitter  
degeneration, OTA circuits may also use  
degeneration. This option can be used to reduce the  
effects that offset voltage and offset current might  
otherwise have on the DC operating point of the OTA.  
The E-degeneration resistor may be bypassed with a  
large capacitor to maintain high AC gain. Other  
circumstances may suggest a smaller value capacitor  
used to extend or optimize high-frequency  
performance.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): OPA860  
 
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
The forward amplifier shown in Figure 48 and  
Figure 49 corresponds to one of the basic circuits  
used to characterize the OPA860. Extended  
characterization of this topology appears in the  
V+  
Typical Characteristics section of this data sheet.  
RS  
RL  
VO  
VO  
8
R1  
160  
RC  
500  
VI  
C
Inverting Gain  
VOS = Several Volts  
3
B
OTA  
VI  
RS  
RE  
E
2
G = 5V/V  
IQ = 11.2mA  
RE  
V
78  
(a) Common−Emitter Amplifier  
Transconductance varies over temperature.  
Figure 48. Forward Amplifier Configuration and  
Test Circuit  
8
VO  
C
100  
3
B
RL  
OTA  
VI  
E
2
RL1  
VO  
Network  
Noninverting Gain  
VOS = 0V  
RE  
8
Analyzer  
3
RIN  
OTA  
50W  
(b) Common−E Amplifier  
Transconductance remains constant over temperature.  
R1  
RL2  
rE  
100W  
2
VI  
RL = RL1 + RL2 || RIN  
RE  
Figure 47. Common-Emitter vs Common-E  
Amplifier  
The transconductance of the OTA with degeneration  
can be calculated by Equation 2:  
RL  
1
rE  
=
=
G =  
gm  
RE + rE  
1
gm_deg  
+
1
g
m ) RE  
1
At IQ = 11.2mA  
rE  
= 8W  
(2)  
102mA/V  
A positive voltage at the B-input, pin 3, causes a  
positive current to flow out of the C-input, pin 8.  
Figure 47b shows an amplifier connection of the  
OTA, the equivalent of a common-emitter transistor  
amplifier. Input and output can be ground-referenced  
without any biasing. The amplifier is noninverting  
because of the sense of the output current.  
RL  
G =  
at IQ = 11.2mA  
RE + 8W  
Figure 49. Forward Amplifier Design Equations  
16  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
 
 
 
 
 
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
Common-C Amplifier  
RL  
RL  
RE  
G +  
[ *  
1
RE ) gm  
Figure 50b shows the OTA connected as an  
E-follower—a voltage buffer. It is interesting to notice  
that the larger the RE resistor, the closer to unity gain  
the buffer will be. If the OTA section is to be used as  
a buffer, use RE 500for best results. For the OTA  
section used as a buffer, the gain is given by  
Equation 3:  
(4)  
This low impedance can be converted to a high  
impedance by inserting the buffer amplifier in series.  
Current-Mode Analog Computations  
As mentioned earlier, the OTA section of the OPA860  
can be used advantageously for analog computation.  
Among the application possibilities are functionality  
as a current amplifier, current differentiator, current  
integrator, current summer, and weighted current  
summer. Table 1 lists these different uses with the  
associated transfer functions.  
1
G +  
[ 1  
1
 R  
1 ) gm  
E
(3)  
V+  
G = 1  
VOS = 0.7V  
These functions can easily be combined to form  
active filters. Some examples using these  
current-mode functions are shown later in this  
document.  
VI  
VO  
RE  
V
OPA860 APPLICATIONS  
(a) Common−Collector Amplifier  
(Emitter Follower)  
The OPA860 is comprised of both the OTA section  
and the Buffer section. This applications information  
focuses more on using both sections together to form  
various useful amplifiers. A more thorough description  
of the OTA section in filter applications can be found  
in the OPA861 data sheet, available for download at  
www.ti.com.  
1
G +  
+ 1  
1
 R  
1 ) gm  
E
1
RO +  
gm  
8
C
100  
3
B
G = 1  
VO = 0V  
V+  
OTA  
VI  
E
2
RL  
RE  
VO  
VO  
Noninverting Gain  
VOS = Several Volts  
(b) Common−C Amplifier  
(Buffer)  
R1  
VIN  
RE  
Figure 50. Common-Collector vs Common-C  
Amplifier  
V-  
(a) Common-Base Amplifier  
A low value resistor in series with the B OTA and  
buffer inputs is recommended. This resistor helps  
isolate trace parasitic from the inputs, reduces any  
tendency to oscillate, and controls frequency  
response peaking. Typical resistor values are from  
25to 200.  
RL  
RL  
RE  
G =  
= -  
1
RE +  
gm  
8
VO  
C
100W  
3
B
Inverting Gain  
VOS = 0V  
OTA  
E
2
Common-B Amplifier  
RL  
Figure 51 shows the Common-B amplifier. This  
configuration produces an inverting gain and a low  
impedance input. Equation 4 shows the gain for this  
configuration.  
RE  
VIN  
(b) Common-B Amplifier  
Figure 51. Common-Base Transistor vs  
Common-B OTA  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): OPA860  
 
 
 
 
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
Direct Feedback Amplifier  
The gain for this topology is given by Equation 5:  
R
3 ) R5  
The direct feedback amplifier (shown in Figure 53)  
topology has been used to characterize the OPA860.  
Extended characterization of this topology appears in  
the Typical Characteristics section of this data sheet.  
This topology is obtained by closing the loop between  
the C-output and the E-input of the common-E  
topology, and then buffered.  
R3  
2R5  
2
G +  
[ 1 )  
1
R5 ) 2 g  
m
(5)  
Table 1. Current-Mode Analog Computation Using the OTA Section  
FUNCTIONAL ELEMENT  
TRANSFER FUNCTION  
IMPLEMENTATION WITH THE OTA SECTION  
IOUT  
IIN  
R1  
R2  
R1  
Current Amplifier  
IOUT  
+
  IIN  
R2  
IOUT  
IIN  
1
IOUT  
+
C
Current Integrator  
R
ŕ
C   R   IINdt  
IOUT  
n
Current Summer  
ȍ
j+1  
I
OUT + *  
Ij  
I1  
I2  
In  
IOUT  
n
Rj  
R
Weighted Current Summer  
ȍ
j+1  
I
OUT + *  
Ij   
R1  
Rn  
R
R
I1  
In  
18  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
 
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
Current-Feedback Amplifier  
Building current-feedback amplifier with the  
loop amplifiers show an integrator behavior from DC  
to the frequency, represented by the RC time  
constant of the network from the C-output to GND.  
Above this frequency, they operate as an amp with  
constant gain. The series connection increases the  
overall gain to about 110dB and thus minimizes the  
control loop deviation. The differential configuration at  
the inputs enables one to apply the measured output  
signal and the reference voltage to two identical  
high-impedance inputs. The output buffer decouples  
the C-output of the second OTA in order to insure the  
AC performance and to drive subsequent output  
stages.  
a
OPA860 is extremely simple. One advantage of  
building current-feedback amplifier with the  
a
OPA860 instead of getting an off-the-shelf  
current-feedback amplifier is the control gained on the  
bandwidth though the use of external capacitors.  
Figure 54 shows a typical circuit for the OPA860 in a  
noninverting current-feedback amplifier configuration.  
Input and output parasitic capacitances are shown.  
R1 is the output impedance of the C-output of the  
OTA section. C1 is the output parasitic capacitance  
on the C-output pin of the OTA-section. C2 is the  
input parasitic capacitance for the input of the Buffer  
section. As shown in Equation 6, the poles formed by  
R1, C1, R2, and C2 control the frequency response.  
The frequency response in this configuration is shown  
in Figure 52. Setting an external capacitor on the  
C-output to ground allows adjusting the bandwidth.  
9
6
3
0
R
aǒ1 ) FǓ  
R
VOUT  
G
+
R
VIN  
1
 R  
1 ) ǒ FǓ  
2
[
(
)
]
1 ) RG  
 
  1 ) s R1C1 ) R1C2 ) R2C2 ) s R1C1C2  
g
m
1
3
6
9
(6)  
Note that both peaking and bandwidth can be  
adjusted by changing the feedback resistance, RF.  
G = +2V/V  
RL = 500  
VO = 2VPP  
12  
Control-Loop Amplifier  
1M  
10M  
100M  
Frequency (Hz)  
1G  
A new type of control loop amplifier for fast and  
precise control circuits can be designed with the  
OPA860. The circuit of Figure 55 shows a series  
connection of two voltage control current sources that  
have an integral (and at higher frequencies, a  
proportional) behavior versus frequency. The control  
Figure 52. Current-Feedback Architecture  
Frequency Response  
R2  
80.6  
R4  
453  
Network  
Analyzer  
+5V  
VO  
5
6
+1  
50  
7
8
Source  
R1  
RIN  
C
100  
50  
3
B
R3  
OTA  
VI  
301  
G = +2V/V  
IQ = 20mA  
E
2
50  
1
4
RQ  
250  
R5  
133  
5V  
Figure 53. Direct Feedback Amplifier Specification and Test Circuit  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): OPA860  
 
 
 
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
OPA860  
R2  
50  
VOUT  
200  
+1  
VIN  
C1  
R1  
C2  
500  
50  
rE  
RF  
259  
RG  
249  
Figure 54. OPA860 Used in a Noninverting Current-Feedback Architecture  
6
8
5
+1  
VOUT  
3
8
2
180  
2
10pF  
10pF  
VREF  
3
33  
10  
10  
33  
180  
6
5
VIN  
+1  
Figure 55. Control-Loop Amplifier Using Two OPA860s  
20  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
DC-Restore Circuit  
Comparator  
The OPA860 can be used advantageously with an  
An interesting and also cost-effective circuit solution  
using the OPA860 as a low-jitter comparator is shown  
in Figure 57. At the same time, this circuit uses a  
positive and negative feedback. The input is  
connected to the inverting E-input. The output signal  
operational amplifier, here the OPA820, as  
a
DC-restore circuit. Figure 56 illustrates this design.  
Depending on the collector current of the  
transconductance amplifier (OTA) of the OPA860, a  
switching function is realized with the diodes D1 and  
D2.  
is applied in  
a direct feedback over the two  
antiparallel, connected gallium-arsenide diodes back  
to the emitter. A second feedback path over the RC  
When the C-output is sourcing current, the capacitor  
C1 is being charged. When the C-output is sinking  
current, D1 is turned off and D2 is turned on, letting  
the voltage across C1 be discharged through R2.  
combination to the base, which is  
a positive  
feedback, accelerates the output voltage change  
when the input voltage crosses the threshold voltage.  
The output voltage is limited to the threshold voltage  
of the back-to-back diodes.  
The condition to charge C1 is set by the voltage  
difference between VREF and VOUT. For the OTA  
C-output to source current, VREF has to be greater  
than VOUT. The rate of charge of C1 is set by both R1  
and C1. The discharge rate is given by R2 and C1.  
C1  
100pF  
20  
150  
5
6
VIN  
+1  
VOUT  
OPA656  
R2  
100k  
D1  
D2  
20  
D1, D2 = 1N4148  
RQ = 1k  
R1  
CCII  
40.2  
E
2
8
C
The OTA amplifier works as a current conveyor (CCII) in this circuit, with a current gain of 1.  
R1 and C1 set the DC restoration time constant.  
B
3
D1 adds a propogation delay to the DC restoration.  
R2 and C1 set the decay time constant.  
R2  
100  
VREF  
Figure 56. DC Restorer Circuit  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): OPA860  
 
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
C3  
2.2pF  
0.5pF 2.5pF  
Offset  
Trim  
+5V  
R5  
R8  
47k  
27k  
R2  
10k  
+5V  
+5V  
1
C3  
C3  
µ
2.2 F  
µ
5V  
6
2.2 F  
R1  
100k  
RC5  
150  
RC5  
RS  
47  
3
2
7
150  
RC5  
150  
8
1
4
VOUT  
OTA  
BUF602  
5
VIN  
+1  
C3  
4
5
µ
2.2 F  
RQ  
C3  
250  
R2  
µ
2.2 F  
100k  
5V  
5V  
D1  
D2  
DMF3068A  
Figure 57. Comparator (Low Jitter)  
T
gm  
C
Integrator for ns-Pulse  
ŕ
O
VO +  
VBE dt  
One very interesting application using the OPA860 in  
physical measurement technology is an open-loop  
ns-integrator (shown in Figure 58) which can process  
pulses with an amplitude of ±2.5V, have a rise/fall  
time of as little as 2ns, and also have a pulse width of  
more than 8ns. The voltage-controlled current source  
charges the integration capacitor linearly according to  
Equation 7:  
(8)  
Where:  
VO = Output Voltage  
T = Integration Time  
C = Integration Capacitance  
t
C
VC + VBE   gm   
(7)  
200W  
5
6
VO  
+1  
Where:  
8
27pF  
C
VC = Voltage At Pin 8  
VBE = Base-Emitter Voltage  
gm = Transconductance  
t = Time  
780W  
50W  
3
B
OTA  
VI  
E
2
620W  
820W  
C = Integration Capacitance  
1mF  
kW  
50  
The output voltage is the time integral of the input  
voltage. It can be calculated from Equation 8:  
-5V  
+5V  
Figure 58. Integrator for ns-Pulses  
22  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
 
 
 
 
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
Video Luminance Matrix  
The inverting amplifier in Figure 59 amplifies the  
three input voltages that correspond to the luminance  
section of the RGB color signal. Different feedback  
VIN  
VOUT  
resistances weight the voltages differently, resulting  
in an output voltage consisting of 30% of the red,  
59% of the green, and 11% of the blue section of the  
input voltage. The way in which the signal is weighted  
corresponds to the transformation equation for  
converting RGB pictures into B/W pictures. The  
output signal is the black/white replay. It might drive a  
monochrome control monitor or an analog printer  
(hardcopy output).  
Figure 60. State Variable Filter Block Diagram  
C
E
200  
E
C
B
5
6
VLUMINANCE  
+1  
8
C1  
C1  
B
C
150  
3
B
OTA  
R2  
x1  
E
2
x1  
R3  
R1  
(1)  
665  
200  
VRED  
RV  
VIN  
VOUT  
(1)  
RQ = 250  
340  
(IQ = 11.2mA)  
VGREEN  
Figure 61. State Variable Filter Using the OPA860  
NOTE: (1) Resistors shown are 1% values  
that produce 30%/59%/11% R/G/B mix.  
(1)  
1820  
VBLUE  
The transfer function is then:  
a0  
R1  
RV  
1
( )  
H s +  
+ *  
 
s2 ) C1s ) C0  
R
 R  
Figure 59. Video Luminance Matrix  
1
1 ) sC2  
2 ) s2C1C2R1R2  
R
3
(9)  
State-Variable Filters  
1
w0 +  
Ǹ
The ability of the OPA860 to easily drive a capacitor  
can be put to good use in implementing state-variable  
filters. A state-variable filter, or KHN filter, can be  
represented with integrators and coefficients. For  
example, the filter represented in the block diagram  
of Figure 60 can easily be implemented with two  
OPA860s, as shown in Figure 61.  
C1C2R1R2  
(10)  
C1  
C2  
R3  
Q + Ǹ  
 
Ǹ
R1R2  
(11)  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): OPA860  
 
 
 
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
DESIGN-IN TOOLS  
The total output spot noise voltage can be computed  
as the square root of the sum of all squared output  
noise voltage contributors. Equation 12 shows the  
general form for the output noise voltage using the  
terms shown in Figure 62.  
DEMONSTRATION BOARDS  
A printed circuit board (PCB) is available to assist in  
the initial evaluation of circuit performance using the  
OPA860. This module is available free, as an  
unpopulated PCB delivered with descriptive  
documentation. The summary information for the  
board is shown below:  
2
2
2
RL  
L
2
ǒ
bnǓ  
ǒ
Ǔ
ƪ
ƫ
) ƪ  
ƫR  
g
eO  
+
en ) R i ) 4kTRS ƪ ƫ RGibi ) 4kTRG  
RG  
g
m
Ǹ
S
1
1
)
m
(12)  
For the buffer, the noise model is shown in Figure 63.  
Equation 13 shows the general form for the output  
noise voltage using the terms shown in Figure 63.  
LITERATURE  
REQUEST  
NUMBER  
BOARD PART  
NUMBER  
PRODUCT  
PACKAGE  
OPA860ID  
SO-8  
DEM-OTA-SO-1A  
SBOU035A  
The board can be requested on Texas Instruments  
web site (www.ti.com).  
en  
VO  
MACROMODELS AND APPLICATIONS  
SUPPORT  
RS  
in  
Computer simulation of circuit performance using  
SPICE is often useful when analyzing the  
performance of analog circuits and systems. This  
principle is particularly true for Video and RF amplifier  
circuits where parasitic capacitance and inductance  
can have a major effect on circuit performance. A  
SPICE model for the OPA860 is available through the  
Texas Instruments web page (www.ti.com). These  
models do a good job of predicting small-signal AC  
and transient performance under a wide variety of  
operating conditions. They do not do as well in  
predicting the harmonic distortion. These models do  
not attempt to distinguish between the package types  
in their small-signal AC performance.  
4kTRS  
Figure 63. Buffer Noise Analysis Model  
2
2
Ǹ
ǒ
SǓ  
eO + en ) inR ) 4kTRS  
(13)  
THERMAL ANALYSIS  
Due to the high output power capability of the  
OPA860, heatsinking or forced airflow may be  
required under extreme operating conditions.  
Maximum desired junction temperature will set the  
maximum allowed internal power dissipation as  
described below. In no case should the maximum  
junction temperature be allowed to exceed +150°C.  
NOISE PERFORMANCE  
The OTA noise model consists of three elements: a  
voltage noise on the B-input; a current noise on the  
B-input; and a current noise on the E-input. Figure 62  
shows the OTA noise analysis model with all the  
noise terms included. In this model, all noise terms  
are taken to be noise voltage or current density terms  
in either nV/Hz or pA/Hz.  
Operating junction temperature (TJ) is given by  
TA + PD  
(PD) is the sum of quiescent power (PDQ) and  
additional power dissipated in the output stage (PDL  
× θJA. The total internal power dissipation  
)
to deliver load power. Quiescent power is simply the  
specified no-load supply current times the total supply  
voltage across the part. PDL will depend on the  
required output signal and load but would, for a  
grounded resistive load, be at a maximum when the  
output is fixed at a voltage equal to 1/2 of either  
supply voltage (for equal bipolar supplies). Under this  
en  
VO  
RL  
RS  
RG  
ibn  
ibi  
2
condition, PDL = VS /(4 × RL) where RL includes  
feedback network loading.  
4kTRS  
4kTRS  
Note that it is the power in the output stage and not  
into the load that determines internal power  
dissipation.  
Figure 62. OTA Noise Analysis Model  
24  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
 
 
 
 
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
As a worst-case example, compute the maximum TJ  
using an OPA860ID in the circuit of Figure 53  
operating at the maximum specified ambient  
temperature of +85°C and driving a grounded 20Ω  
load.  
supplies (for bipolar operation) will improve  
2nd-harmonic distortion performance. Larger (2.2µF  
to 6.8µF) decoupling capacitors, effective at lower  
frequency, should also be used on the main supply  
pins. These may be placed somewhat farther from  
the device and may be shared among several  
devices in the same area of the PC board.  
PD = 10V × 11.2mA + 52/(4 × 20) = 424mW  
Maximum TJ = +85°C + (0.43W × 125°C/W) = 139°C.  
c) Careful selection and placement of external  
components will preserve the high-frequency  
performance of the OPA860. Resistors should be a  
very low reactance type. Surface-mount resistors  
work best and allow a tighter overall layout. Metal film  
or carbon composition, axially-leaded resistors can  
also provide good high-frequency performance.  
Again, keep their leads and PC board traces as short  
as possible. Never use wirewound type resistors in a  
high-frequency application.  
Although this is still well below the specified  
maximum junction temperature, system reliability  
considerations may require lower tested junction  
temperatures. The highest possible internal  
dissipation will occur if the load requires current to be  
forced into the output for positive output voltages or  
sourced from the output for negative output voltages.  
This puts a high current through a large internal  
voltage drop in the output transistors. The output V-I  
plot shown in the Typical Characteristics includes a  
boundary for 1W maximum internal power dissipation  
under these conditions.  
d) Connections to other wideband devices on the  
board may be made with short, direct traces or  
through onboard transmission lines. For short  
connections, consider the trace and the input to the  
next device as a lumped capacitive load. Relatively  
wide traces (50mils to 100mils) should be used,  
preferably with ground and power planes opened up  
around them. If a long trace is required at the buffer  
output, and the 6dB signal loss intrinsic to a  
doubly-terminated transmission line is acceptable,  
implement a matched impedance transmission line  
using microstrip or stripline techniques (consult an  
ECL design handbook for microstrip and stripline  
layout techniques). A 50environment is normally  
not necessary on board, and in fact, a higher  
impedance environment will improve distortion as  
shown in the distortion versus load plots.  
BOARD LAYOUT GUIDELINES  
Achieving  
optimum  
performance  
with  
a
high-frequency amplifier like the OPA860 requires  
careful attention to board layout parasitics and  
external component types. Recommendations that  
will optimize performance include:  
a) Minimize parasitic capacitance to any AC ground  
for all of the signal I/O pins. Parasitic capacitance on  
the output and inverting input pins can cause  
instability: on the noninverting input, it can react with  
the source impedance to cause unintentional  
bandlimiting. To reduce unwanted capacitance, a  
window around the signal I/O pins should be opened  
in all of the ground and power planes around those  
pins. Otherwise, ground and power planes should be  
unbroken elsewhere on the board.  
e) Socketing a high-speed part like the OPA860 is  
not recommended. The additional lead length and  
pin-to-pin capacitance introduced by the socket can  
create an extremely troublesome parasitic network  
that makes it almost impossible to achieve a smooth,  
stable frequency response. Best results are obtained  
by soldering the OPA860 onto the board.  
b) Minimize the distance (< 0.25") from the  
power-supply  
pins  
to  
high-frequency  
0.1µF  
decoupling capacitors. At the device pins, the ground  
and power-plane layout should not be in close  
proximity to the signal I/O pins. Avoid narrow power  
and ground traces to minimize inductance between  
the pins and the decoupling capacitors. The  
power-supply connections should always be  
decoupled with these capacitors. An optional supply  
decoupling capacitor (0.1µF) across the two power  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): OPA860  
OPA860  
SBOS331CJUNE 2005REVISED AUGUST 2008 ....................................................................................................................................................... www.ti.com  
INPUT AND ESD PROTECTION  
These diodes provide moderate protection to input  
overdrive voltages above the supplies as well. The  
protection diodes can typically support 30mA  
continuous current. Where higher currents are  
possible (for example, in systems with ±15V supply  
parts driving into the OPA860), current-limiting series  
resistors should be added into the two inputs. Keep  
these resistor values as low as possible since high  
values degrade both noise performance and  
frequency response.  
The OPA860 is built using  
a very high-speed  
complementary bipolar process. The internal junction  
breakdown voltages are relatively low for these very  
small geometry devices. These breakdowns are  
reflected in the Absolute Maximum Ratings table. All  
device pins are protected with internal ESD protection  
diodes to the power supplies as shown in Figure 64.  
+VCC  
External  
Pin  
Internal  
Circuitry  
VCC  
Figure 64. Internal ESD Protection  
26  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): OPA860  
 
OPA860  
www.ti.com ....................................................................................................................................................... SBOS331CJUNE 2005REVISED AUGUST 2008  
Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (June 2006) to Revision C .................................................................................................... Page  
Changed storage temperature range rating in Absolute Maximum Ratings table from –40°C to +125°C to –65°C to  
+125°C................................................................................................................................................................................... 2  
Changes from Revision A (January 2006) to Revision B ............................................................................................... Page  
Changed Figure 49—corrected equations........................................................................................................................... 16  
Changed Figure 58—corrected resistor value .................................................................................................................... 22  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): OPA860  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA860ID  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
OPA  
860  
Samples  
Samples  
OPA860IDR  
ACTIVE  
2500 RoHS & Green  
NIPDAU  
OPA  
860  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA860IDR  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
OPA860IDR  
D
8
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
OPA860ID  
D
8
75  
506.6  
8
3940  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

OPA860IDR

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) and BUFFER
BB

OPA860IDR

高带宽运算跨导放大器和缓冲器 | D | 8 | -40 to 85
TI

OPA861

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
TI

OPA861ID

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
TI

OPA861IDBVR

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
TI

OPA861IDBVRG4

Wide Bandwidth Operational Transconductance Amplifier 6-SOT-23 -40 to 85
TI

OPA861IDBVT

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
TI

OPA861IDG4

Wide Bandwidth Operational Transconductance Amplifier 8-SOIC -40 to 85
TI

OPA861IDR

Wide Bandwidth OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
TI

OPA861IDRG4

Wide Bandwidth Operational Transconductance Amplifier 8-SOIC -40 to 85
TI

OPA862

12.6V、低噪声、单端到差分、高输入阻抗放大器
TI

OPA862IDR

12.6V、低噪声、单端到差分、高输入阻抗放大器 | D | 8 | -40 to 125
TI