P7A2118PQWDRBRQ1 [TI]

汽车类、500mA、低噪声、超低 IQ、高 PSRR、低压降 (LDO) 稳压器 | DRB | 8 | -40 to 125;
P7A2118PQWDRBRQ1
型号: P7A2118PQWDRBRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类、500mA、低噪声、超低 IQ、高 PSRR、低压降 (LDO) 稳压器 | DRB | 8 | -40 to 125

稳压器
文件: 总33页 (文件大小:4698K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
TPS7A21-Q1 汽车500mA、低噪声、IQPSRR LDO  
1 特性  
3 说明  
• 超IQ6.5 μA  
TPS7A21-Q1 是一款小型低压降 (LDO) 线性稳压器,  
可提供 500mA 的输出电流。该器件可提供低噪声、高  
PSRR 和出色的负载和线路瞬态性能符合射频和汽  
车应用中其他敏感模拟电路的要求。采用创新的设计技  
无需添加外部噪声旁路电容即可提供低噪声性能。  
TPS7A21-Q1 具有低静态电流非常适合用于电池供  
电系统。输入电压范围为 2.0V 6.0V输出电压范围  
0.8V 5.5V可满足各种系统要求。可在负载、线  
路和温度范围内提供高1.5% 的最大输出电压容差。  
• 输入电压范围2.0V 6.0V  
• 输出电压范围0.8V 5.5V50mV 阶跃)  
PSRR1kHz 91dB  
• 低输出电压噪声7.7μVRMS  
• 低压降:  
500mA 250 mV最大值(2.5V VOUT  
• 智EN 引脚下拉  
• 输出电压容差±1.5%在线路、负载和温度范围  
)  
)
内部软启动电路可帮助控制浪涌电流因此可在启动过  
程中更大程度地降低输入电压降。该 LDO 在与小型陶  
瓷电容器搭配使用时可保持稳定因此可实现小尺寸的  
总体解决方案。  
• 支持多种陶瓷电容器1µF 200µF  
• 工作结温40°C +150°C  
• 封装:  
3mm x 3mm 可湿性侧VSON (8) 封装  
2mm × 2mm 可湿性侧VSON (8) 封装  
借助具有内部控制下拉电阻器的智能使能输入电路即  
使在 EN 引脚未连接时也能让 LDO 保持禁用状态有  
助于省去原本需要用于下EN 输入的外部元件。  
2 应用  
封装信息(1)  
DAS 摄像机和雷达  
汽车信息娱乐系统  
• 车载通讯系统  
• 导航系统  
器件型号  
封装  
封装尺寸  
3.00mm × 3.00mm  
2.00mm × 2.00mm(2)  
DRB可湿性  
VSON,  
8)  
TPS7A21-Q1  
DSG可湿性  
VSON,  
8)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 预发布封装。  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS437  
 
 
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................17  
8 Applications and Implementation................................18  
8.1 Application Information............................................. 18  
8.2 Typical Application.................................................... 22  
8.3 Power Supply Recommendations.............................24  
8.4 Layout....................................................................... 24  
9 Device and Documentation Support............................26  
9.1 Documentation Support............................................ 26  
9.2 接收文档更新通知..................................................... 26  
9.3 支持资源....................................................................26  
9.4 Trademarks...............................................................26  
9.5 Electrostatic Discharge Caution................................26  
9.6 术语表....................................................................... 26  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................15  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT  
1
2
3
4
8
7
6
5
IN  
NC  
NC  
NC  
NC  
EN  
Thermal  
Pad  
GND  
Not to scale  
5-1. DRB Package, 8-Pin Fixed VSON (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
5
Enable pin. Drive EN greater than VEN(HI) to turn on the regulator. Drive EN less than  
VEN(LO) to put the low-dropout regulator (LDO) into shutdown mode  
EN  
I
GND  
4
Ground pin  
Input pin. For best transient response and to minimize input impedance, use the  
recommended value or larger ceramic capacitor from IN to ground as listed in the  
Recommended Operating Conditions table and the Input and Output Capacitor  
Requirements section. Place the input capacitor as close to the output of the device as  
possible  
IN  
8
I
NC  
2, 3, 6, 7  
1
No internal connection. Ground this pin for better thermal performance.  
Regulated output voltage pin. Connect a low-equivalent series resistance (ESR) capacitor to  
this pin. For best transient response, use the nominal recommended value or larger  
capacitor from OUT to GND. An internal pulldown resistor prevents a charge from remaining  
on OUT when the regulator is in shutdown mode (VEN< VEN(LOW)).  
OUT  
O
The thermal pad is electrically connected to the GND node. Connect to the GND plane for  
improved thermal performance.  
Thermal Pad  
(1) I = input, O = output, P = power, FB = feedback, GND = ground, NC = no connect.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7A21-Q1  
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (3)  
MIN  
0.3  
MAX  
UNIT  
V
VIN  
Input voltage  
6.5  
See(2)  
6.5  
VOUT  
VEN  
Output voltage  
V
0.3  
Enable input voltage  
Maximum output current(4)  
Operating junction temperature  
Storage temperature  
V
0.3  
Internally limited  
-40  
A
TJ  
150  
150  
°C  
°C  
Tstg  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) Absolute maximum VOUT is the lesser of VIN + 0.3 V, or 6.5 V.  
(3) All voltages are with respect to the GND pin.  
(4) Internal thermal shutdown circuitry helps protect the device from permanent damage.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over the operating free-air temperature range (unless otherwise noted)(1)  
MIN  
2.0  
0
NOM  
MAX  
6.0  
UNIT  
V
VIN  
Input supply voltage  
VEN  
VOUT  
IOUT  
CIN  
Enable input voltage  
6.0  
V
Nominal output voltage range  
Output current  
0.8  
0
5.5  
V
500  
mA  
µF  
µF  
mΩ  
°C  
Input capacitor(2)  
1
COUT  
ESR  
TJ  
Output capacitor(3)  
1
200  
100  
150  
Output capacitor effective series resistance  
Operating junction temperature  
40  
(1) All voltages are with respect to the GND pin.  
(2) An input capacitor is not required for LDO stability. However, an input capacitor with an effective value of 0.47 μF minimum  
is recommended to counteract the effect of source resistance and inductance, which may in some cases cause symptoms of system-  
level instability such as ringing or oscillation, especially in the presence of load transients.  
(3) Effective output capacitance of 0.4 μF minimum and 200 μF maximum over all temperature and voltage conditions is required for  
stability with ESR values as high as 100 m. If the ESR is reduced to 20 mor lower, stable operation can be achieved with effective  
output capacitance as low as 0.3 μF.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
6.4 Thermal Information  
TPS7A21  
DBV  
DQN  
(X2SON)  
THERMAL METRIC(1)  
UNIT  
(SOT-23)  
5 PINS  
TBD  
4 PINS  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
TBD  
Junction-to-board thermal resistance  
TBD  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
TBD  
ψJT  
TBD  
ψJB  
RθJC(bot)  
TBD  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics and An  
empirical analysis of the impact of board layout on LDO thermal performance application notes.  
6.5 Electrical Characteristics  
specified over operating temperature range (TJ = 40to +150), VIN = VOUT(NOM) + 0.3 V or 2 V, whichever is greater,  
VEN = 1.0 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN = (VOUT(NOM) + 0.3 V) to 6.0 V,  
IOUT = 1 mA to 500 mA,  
OUT 1.85 V  
1.5  
%
1.5  
V
Output voltage tolerance  
ΔVOUT  
VIN = (VOUT(NOM) + 0.3 V) to 6.0 V,  
IOUT = 1 mA to 500 mA,  
VOUT < 1.85 V  
50  
mV  
50  
VIN = (VOUT(NOM) + 0.3 V) to 6.0 V,  
IOUT = 1 mA  
Line regulation  
Load regulation  
0.03  
%/V  
ΔVOUT  
ΔVOUT  
IOUT = 1 mA to 500 mA  
0.001  
6.5  
%/mA  
TJ = 25°C  
9
11  
VEN = VIN, VIN = 6.0 V,  
IOUT = 0 mA  
TJ = 40°C to 85°C  
TJ = 40°C to 125°C  
IGND  
Quiescent current  
µA  
15  
VEN = VIN, VIN = 6.0 V, IOUT = 500 mA  
VEN = 0 V (disabled), VIN = 6.0 V, TJ = 25°C  
VEN = 0 V (disabled), VIN = 6.0 V, TJ = 40°C to 150°C  
VIN VOUT(NOM), IOUT = 0 mA  
2900  
0.15  
3500  
1
ISHTDWN  
IQ(DO)  
Shutdown current  
µA  
µA  
4
Quiescent current in dropout  
7
15  
0.8 V VOUT < 1.0 V (1)  
825  
605  
470  
335  
250  
1.0 V VOUT < 1.2 V (1)  
IOUT = 500 mA,  
VOUT = 95% ×  
VOUT(NOM)  
1.2 V VOUT < 1.5 V (1)  
1.5 V VOUT < 2.5 V  
2.5 V VOUT 5.5 V  
VDO  
Dropout voltage  
mV  
ICL  
ISC  
Output current limit  
VOUT = 0.9 × VOUT(NOM)  
VOUT = 0V  
1060  
325  
90  
mA  
mA  
Short-circuit current limit  
f = 100 Hz  
f = 1 kHz  
91  
IOUT = 20 mA,  
VIN = VOUT + 1.0 V  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
f = 100 Hz  
f = 1 kHz  
71  
dB  
dB  
61  
50  
PSRR  
Power-supply rejection ratio  
65  
85  
IOUT = 500 mA,  
VIN = VOUT + 1.0 V  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
79  
44  
50  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7A21-Q1  
 
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
specified over operating temperature range (TJ = 40to +150), VIN = VOUT(NOM) + 0.3 V or 2 V, whichever is greater,  
VEN = 1.0 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BW = 10 Hz to  
100 kHz,  
VOUT = 2.8 V  
IOUT = 500 mA  
7.7  
VN  
Output noise voltage  
µVRMS  
IOUT = 1 mA  
10  
Output automatic discharge  
pulldown resistance  
RPULLDOWN  
VIN = 2 V, VEN < VIL (output disabled)  
150  
Ω
Thermal shutdown rising  
Thermal shutdown falling  
TJ rising  
TJ falling  
165  
140  
TSD  
°C  
VIN = 2.0 V to 6.0 V,  
VEN falling until the output is disabled  
VEN(LOW)  
VEN(HI)  
Low input threshold  
High input threshold  
0.3  
V
V
VIN = 2.0 V to 6.0 V,  
VEN rising until the output is enabled  
0.9  
VIN rising  
VIN falling  
1.11  
1.05  
1.32  
1.27  
50  
1.63  
1.57  
VUVLO  
UVLO threshold  
V
VUVLO(HYST)  
IEN  
UVLO hysteresis  
mV  
nA  
EN pin leakage current  
VEN = 6.0 V and VIN = 6.0 V  
100  
250  
REN(PULL-  
Smart enable pulldown resistor  
Turnon time  
440  
200  
k  
DOWN)  
tON  
From VEN > VIH to VOUT = 95% of VOUT(NOM)  
120  
280  
µs  
(1) Dropout voltages for VOUT values below or very near the UVLO threshold cannot be measured directly. Values shown are verified by  
simulation.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 3.6 V, VOUT = 3.3 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C (unless otherwise noted)  
VEN = 1 V  
VEN = 1 V  
6-2. Output Voltage Accuracy vs IOUT  
6-1. Output Voltage Accuracy vs IOUT  
VEN = 1 V  
VEN = 1 V  
6-3. Output Voltage Accuracy vs VIN  
6-4. Line Regulation vs VIN  
12  
10  
8
160  
150  
140  
130  
120  
110  
100  
90  
TJ  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
-55 °C  
-40 °C  
0 °C  
85 °C  
125 °C  
150 °C  
25 °C  
6
4
80  
70  
2
60  
50  
0
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
Load  
VEN = 1 V  
VEN = 1 V  
6-5. Load Regulation vs IOUT  
6-6. Dropout Voltage vs IOUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7A21-Q1  
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 3.6 V, VOUT = 3.3 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C (unless otherwise noted)  
85  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
80  
75  
70  
65  
60  
55  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Output Current (mA)  
VEN = 1 V  
VEN = VIN  
6-7. Dropout Voltage vs IOUT  
6-8. IQ vs VIN  
VEN = 1 V  
VEN = 1 V  
6-10. IGND vs IOUT  
6-9. IQ vs VIN  
70  
60  
50  
40  
30  
20  
10  
0
TJ  
-40°C  
-55°C  
0°C  
25°C  
-10  
1.8  
2.4  
3
3.6  
4.2  
4.8  
5.4  
6
Input Voltage (V)  
VEN = 0 V, IOUT = 0 mA  
6-12. Shutdown Current vs VIN  
VEN = 1 V  
6-11. IGND vs IOUT  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 3.6 V, VOUT = 3.3 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C (unless otherwise noted)  
3000  
2500  
2000  
1500  
1000  
500  
5
4.5  
4
TJ  
125°C  
TJ  
85°C  
150°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
1.8  
2.4  
3
3.6  
4.2  
4.8  
5.4  
6
0
200  
400  
600  
800  
1000  
1200  
1400  
Input Voltage (V)  
Output Current (mA)  
VEN = 0 V, IOUT = 0 mA  
6-13. Shutdown Current vs VIN  
VEN = 1 V  
6-14. Foldback Current Limit  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
150°C  
5.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
6
VEN - VIN (V)  
VEN = 6 V, IOUT = 0 mA  
6-16. Enable Pin Leakage Current vs VEN VIN  
6-15. Enable Logic Threshold vs Temperature  
VEN = 0.3 V  
VEN = 0.3 V  
6-18. Output Pulldown Resistance vs  
6-17. Smart Enable Pulldown Resistor vs Temperature and  
Temperature and VIN  
VIN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7A21-Q1  
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 3.6 V, VOUT = 3.3 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C (unless otherwise noted)  
VEN = 1 V  
VIN = 0 V to 4.3 V, slew rate = 1 V/μs, IOUT = 500 mA  
6-19. VIN UVLO Threshold vs Temperature  
6-20. Start-Up With VEN Before VIN  
VIN = 0 V to 4.3 V, slew rate = 1 V/μs, IOUT = 0 mA  
6-21. Start-Up With VEN After VIN  
VIN = 0 V to 4.3 V, slew rate = 1 V/μs, IOUT = 500 mA  
6-22. Start-Up With VEN After VIN  
VIN = 4.3 V, VEN = 0 V to 4.3 V, slew rate = 1 V/μs,  
IOUT = 0 mA, COUT = 1 μF  
VIN = 0 V to 4.3 V, slew rate = 1 V/μs, IOUT = 500 mA  
6-23. Start-Up With VEN = VIN  
6-24. Start-Up Inrush Current  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 3.6 V, VOUT = 3.3 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C (unless otherwise noted)  
VIN = 4.3 V, VEN = 0 V to 4.3 V, slew rate = 1 V/μs,  
VEN = VEN(HI) to VOUT = 95% of VOUT(NOM), IOUT = 0 mA  
IOUT = 0 mA, COUT = 10 μF  
6-25. Start-Up Inrush Current  
6-26. Start-Up Turn-On Time vs Temperature  
5
4
6
5
4
6
5
5
3
4
3
4
2
3
2
3
1
2
1
2
0
1
0
1
-1  
-2  
-3  
0
-1  
-2  
-3  
0
-1  
-2  
-1  
-2  
VOUT  
VIN  
VOUT  
VIN  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Time (µs)  
Time (µs)  
VEN = VIN, tr = tf = 5 μs, IOUT = 500 mA  
VEN = VIN, tr = tf = 5 μs, IOUT = 1 mA  
6-27. Line Transient From 3.6 V to 4.6 V  
6-28. Line Transient From 3.6 V to 4.6 V  
750  
500  
120  
90  
750  
500  
320  
240  
160  
80  
250  
60  
250  
0
30  
0
-250  
-500  
-750  
-1000  
-1250  
0
-250  
-500  
-750  
-1000  
-1250  
0
-30  
-60  
-90  
-120  
-80  
-160  
-240  
-320  
IOUT  
VOUT  
IOUT  
VOUT  
0
20  
40  
58  
0
15 30 45 60 75 90 105 120 135 150 165 180  
Time (µs)  
Time (µs)  
VEN = VIN, tr = tf = 200 ns  
VEN = VIN, tr = tf = 1 μs  
6-29. Load Transient From 1 mA to 500 mA  
6-30. Load Transient From 1 mA to 500 mA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7A21-Q1  
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 3.6 V, VOUT = 3.3 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C (unless otherwise noted)  
750  
500  
120  
90  
750  
500  
320  
240  
160  
80  
250  
60  
250  
0
30  
0
-250  
-500  
-750  
-1000  
-1250  
0
-250  
-500  
-750  
-1000  
-1250  
0
-30  
-60  
-90  
-120  
-80  
-160  
-240  
-320  
IOUT  
VOUT  
IOUT  
VOUT  
0
20  
40  
58  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (µs)  
Time (µs)  
VEN = VIN, tr = tf = 200 ns  
VEN = VIN, tr = tf = 1 μs  
6-32. Load Transient From 0 mA to 500 mA  
6-31. Load Transient From 0 mA to 500 mA  
VEN = VIN  
VEN = VIN, IOUT = 20 mA  
6-33. PSRR vs Frequency and IOUT  
6-34. PSRR vs Frequency and VIN  
VEN = VIN, IOUT = 500 mA  
VEN = VIN, IOUT = 20 mA  
6-35. PSRR vs Frequency and VIN  
6-36. PSRR vs Frequency and COUT  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 3.6 V, VOUT = 3.3 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C (unless otherwise noted)  
2
VIN  
1
3.6 V, RMS Noise = 6.73 VRMS  
4.75 V, RMS Noise = 6.70 VRMS  
6.0 V, RMS Noise = 6.65 VRMS  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
VEN = VIN, IOUT = 20 mA  
VEN = VIN, IOUT = 500 mA  
6-38. Noise vs Frequency and VIN  
6-37. PSRR vs Frequency and COUT  
5
VIN  
2
1
3.6 V, RMS Noise = 6.90 VRMS  
4.75 V, RMS Noise = 7.32 VRMS  
6.0 V, RMS Noise = 11.54 VRMS  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
VEN = VIN, IOUT = 500 mA  
VEN = VIN  
6-39. Noise vs Frequency and VIN  
6-40. Noise vs Frequency and IOUT  
1
1
COUT  
COUT  
0.5  
0.5  
0.47 µF, RMS Noise = 6.63 VRMS  
1.0 µF, RMS Noise = 6.71 VRMS  
10 µF, RMS Noise = 7.20 VRMS  
200 uF, RMS Noise = 7.69 VRMS  
0.47 µF, RMS Noise = 6.84 VRMS  
1.0 µF, RMS Noise = 6.96 VRMS  
10 µF, RMS Noise = 7.16 VRMS  
200 uF, RMS Noise = 8.74 VRMS  
0.3  
0.2  
0.3  
0.2  
0.1  
0.1  
0.05  
0.05  
0.03  
0.02  
0.03  
0.02  
0.01  
0.01  
0.005  
0.005  
0.003  
0.002  
0.003  
0.002  
0.001  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VEN = VIN, IOUT = 20 mA  
6-41. Noise vs Frequency and COUT  
VEN = VIN, IOUT = 500 mA  
6-42. Noise vs Frequency and COUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7A21-Q1  
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
Designed to meet the needs of sensitive RF and analog circuits, the TPS7A21-Q1 provides low noise, high  
PSRR, and low quiescent current, as well as excellent line and load transient response. The TPS7A21-Q1  
achieves excellent noise performance without the need for a separate noise filter capacitor.  
The TPS7A21-Q1 is designed to operate properly with a single 1-µF input capacitor and a single 1-µF ceramic  
output capacitor. The effective output capacitance must be at least 0.4 µF across all operating voltage and  
temperature conditions.  
7.2 Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
 
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Smart Enable (EN)  
The enable pin (EN) is active high. The output is enabled when the voltage applied to EN is greater than VEN(HI)  
and disabled when the applied voltage is less than VEN(LOW). If external control of the output voltage is not  
needed, connect EN to IN. This device has a smart enable circuit to reduce quiescent current. When the voltage  
on the enable pin is driven above VEN(HI), the output is enabled and the smart enable internal pulldown resistor  
(REN(PULLDOWN)) is disconnected. When the enable pin is floating, the REN(PULLDOWN) is connected and pulls the  
enable pin low to disable the output. In addition to reducing quiescent current, the smart pulldown helps ensure  
that the logic level is correct even when EN is driven from a source that has limited current drive capability. The  
REN(PULLDOWN) value is listed in the Electrical Characteristics table.  
7.3.2 Low Output Noise  
Any internal noise at the TPS7A21-Q1 reference voltage is reduced by a first-order, low-pass RC filter before  
being passed to the output buffer stage. The low-pass RC filter has a 3-dB cutoff frequency of approximately  
0.1 Hz. During start-up, the filter resistor is bypassed to reduce output rise time. The filter begins normal  
operation after the output voltage reaches the nominal value.  
7.3.3 Active Discharge  
The regulator has an internal metal-oxide-semiconductor field-effect transistor (MOSFET) that connects a  
pulldown resistor between the output and ground pins when the device is disabled to actively discharge the  
output voltage. The voltage on IN must be high enough to turn on the pulldown MOSFET; when VIN is too low to  
provide sufficient VGS on the pulldown MOSFET, the pulldown circuit is not active. The active discharge circuit is  
activated by the enable pin, or by the voltage on IN falling below the undervoltage lockout (UVLO) threshold.  
Do not rely on the active discharge circuit for discharging a large amount of output capacitance after the input  
supply has collapsed because reverse current can possibly flow from the output to the input. This reverse current  
flow can cause damage to the device. Limit reverse current to no more than 5% of the device rated current for  
only a short period of time.  
7.3.4 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN VOUT) at the rated output  
current (IRATED), when the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a  
switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed  
output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than  
the value required to support output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source, on-state resistance (RDS(ON)) of  
the pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage  
for that current scales accordingly. 方程1 calculates the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
1
(1)  
7.3.5 Foldback Current Limit  
The TPS7A21-Q1 has an internal current limit circuit that protects the regulator during transient high-load current  
faults or shorting events. The current limit is a hybrid brick-wall foldback scheme. The current limit transitions  
from a brick-wall scheme to a foldback scheme at the foldback voltage (VFOLDBACK).  
In a high-load current fault with the output voltage above VFOLDBACK, the brick-wall scheme limits the output  
current to the current limit (ICL). When the output voltage drops below VFOLDBACK, a foldback current limit  
activates that scales back the current when the output voltage approaches GND. When the output is shorted, the  
device supplies a typical current called the short-circuit current limit (ISC). ICL and ISC are listed in the Electrical  
Characteristics table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7A21-Q1  
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
regulator begins to heat up because of the increase in power dissipation. When the device is in brick-wall current  
limit, the pass transistor dissipates power [(VIN VOUT) × ICL]. When the output is shorted and the output  
voltage is less than VFOLDBACK, the pass transistor dissipates power [(VIN VOUT) × ISC]. If thermal shutdown is  
triggered, the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device  
back on. If the output current fault condition persists, the device cycles between current limit and thermal  
shutdown. For more information on current limits, see the Know Your Limits application report.  
7-1 shows a diagram of the foldback current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
VFOLDBACK  
Foldback  
0 V  
IOUT  
IRATED  
0 mA  
ISC  
ICL  
7-1. Foldback Current Limit  
7.3.6 Undervoltage Lockout  
An independent undervoltage lockout (UVLO) circuit monitors the input voltage, allowing a controlled and  
consistent turn on and turn off of the output voltage. If the input voltage drops during load transients (when the  
device output is enabled), the UVLO has built-in hysteresis to prevent unwanted turn off.  
7.3.7 Thermal Overload Protection (TSD  
)
Thermal shutdown disables the output when the junction temperature TJ rises to the shutdown temperature  
threshold TSD. The thermal shutdown circuit hysteresis requires the temperature to fall to a lower temperature  
before turning on again. The thermal time constant of the semiconductor die is fairly short; thus, the device may  
cycle on and off when thermal shutdown is reached until power dissipation is reduced.  
Power dissipation during start up can be high from large VIN VOUT voltage drops across the device or from  
high inrush currents charging large output capacitors. Under some conditions, the thermal shutdown protection  
disables the device before start up completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the regulator to exceed its operational  
specifications.  
Although the thermal shutdown circuitry is designed to protect against temporary thermal overload conditions,  
this circuitry is not intended to replace proper thermal design. Continuously running the regulator into thermal  
shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
7-1 shows the conditions that lead to the different modes of operation. See the Electrical Characteristics table  
for parameter values.  
7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
VEN VEN(HI)  
VEN VEN(HI)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
Not applicable  
VEN VEN(LOW)  
TJ TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO  
The output current is less than the current limit (IOUT < ICL)  
)
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
)
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased  
to less than the enable falling threshold  
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during start up), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
For output currents less than about 200 mA, the slope of the dropout voltage curve is lower than for higher  
currents. This slope helps maintain better performance when the LDO is in dropout.  
7.4.4 Disabled  
The output of the device can be shut down by forcing the voltage of the enable pin to less than VEN(LOW)). When  
disabled, the pass transistor is turned off, internal circuits are shut down, and the output voltage is actively  
discharged to ground by an internal discharge circuit from the output to ground.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7A21-Q1  
 
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
8 Applications and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Recommended Capacitor Types  
The device is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the input  
and output. Multilayer ceramic capacitors have become the industry standard for many types of applications and  
are recommended, but must be used with good judgment. Ceramic capacitors that employ X7R-, X5R-, and  
C0G-rated dielectric materials provide good capacitive stability across temperature, whereas the use of Y5V-  
rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and  
temperature. Consult the manufacturer data sheet to verify performance. Generally, expect the effective  
capacitance to decrease by as much as 50%. The input and output capacitors recommended in the  
Recommended Operating Conditions table account for an effective capacitance of approximately 50% of the  
nominal value.  
8.1.2 Input and Output Capacitor Requirements  
Although the LDO itself is stable without an input capacitor, good design practice is to connect a capacitor from  
IN to GND, with a value at least equal to the nominal value specified in the Recommended Operating Conditions  
table. The input capacitor counteracts reactive input sources and improves transient response, input ripple, and  
PSRR, and is recommended if the source impedance is greater than 0.5 Ω. When the source resistance and  
inductance are sufficiently high, the overall system can be susceptible to instability (including ringing and  
sustained oscillation) and other performance degradation if there is insufficient capacitance between IN and  
GND. A capacitor with a value greater than the minimum may be necessary if there are large fast-rise-time load  
or line transients or if the LDO is located more than a few centimeters from the input power source.  
An output capacitor of an appropriate value helps ensure stability and improve dynamic performance. Use an  
output capacitor within the range specified in the Recommended Operating Conditions table.  
8.1.3 Load Transient Response  
The load-step transient response is the output voltage response by the LDO to a step in load current, whereby  
output voltage regulation is maintained. There are two key transitions during a load transient response: the  
transition from a light to a heavy load and the transition from a heavy to a light load. The regions shown in 8-1  
are broken down as follows. Regions A, E, and H are where the output voltage is in a steady state.  
tAt  
tCt  
tDt  
tEt  
tGt  
tHt  
B
F
8-1. Load Transient Waveform  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
 
 
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
During transitions from a light load to a heavy load, the:  
Initial voltage dip is a result of the depletion of the output capacitor charge and parasitic impedance to the  
output capacitor (region B)  
Recovery from the dip results from the LDO increasing its sourcing current, and leads to output voltage  
regulation (region C)  
During transitions from a heavy load to a light load, the:  
Initial voltage rise results from the LDO sourcing a large current, and leads to the output capacitor charge to  
increase (region F)  
Recovery from the rise results from the LDO decreasing its sourcing current in combination with the load  
discharging the output capacitor (region G)  
A larger output capacitance reduces the peaks during a load transient but slows down the response time of the  
device. A larger DC load also reduces the peaks because the amplitude of the transition is lowered and a higher  
current discharge path is provided for the output capacitor.  
8.1.4 Undervoltage Lockout (UVLO) Operation  
The UVLO circuit ensures that the device stays disabled before its input supply reaches the minimum  
operational voltage range, and ensures that the device shuts down when the input supply collapses. 8-2  
shows the UVLO circuit response to various input voltage events. The diagram can be separated into the  
following parts:  
Region A: The device does not start until the input reaches the UVLO rising threshold.  
Region B: Normal operation, regulating device.  
Region C: Brownout event above the UVLO falling threshold (UVLO rising threshold UVLO hysteresis).  
The output may fall out of regulation but the device remains enabled.  
Region D: Normal operation, regulating device.  
Region E: Brownout event below the UVLO falling threshold. The device is disabled in most cases and the  
output falls because of the load and active discharge circuit. The device is re-enabled when the UVLO rising  
threshold is reached by the input voltage and a normal start-up follows.  
Region F: Normal operation followed by the input falling to the UVLO falling threshold.  
Region G: The device is disabled when the input voltage falls below the UVLO falling threshold to 0 V. The  
output falls because of the load and active discharge circuit.  
UVLO Rising Threshold  
UVLO Hysteresis  
VIN  
C
VOUT  
tAt  
tBt  
tDt  
tEt  
tFt  
tGt  
8-2. Typical UVLO Operation  
8.1.5 Power Dissipation (PD)  
Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit  
on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator  
must be as free as possible of other heat-generating devices that cause added thermal stresses.  
As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage  
difference and load conditions. Use 方程2 to approximate PD:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7A21-Q1  
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
PD = (VIN VOUT) × IOUT  
(2)  
Power dissipation can be minimized, and thus greater efficiency achieved, by proper selection of the system  
voltage rails. Proper selection allows the minimum input-to-output voltage differential to be obtained. The low  
dropout of the TPS7A21-Q1 allows for maximum efficiency across a wide range of output voltages.  
The main heat conduction path for the device is through the thermal pad on the package. As such, the thermal  
pad must be soldered to a copper pad area under the device. This pad area contains an array of plated vias that  
conduct heat to any inner plane areas or to a bottom-side copper plane.  
The maximum allowable junction temperature (TJ) determines the maximum power dissipation for the device.  
According to 方程式 3, power dissipation and junction temperature are most often related by the junction-to-  
ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the  
ambient air (TA).  
TJ = TA + (RθJA × PD)  
(3)  
方程4 rearranges 方程3 for output current.  
IOUT = (TJ TA) / [RθJA × (VIN VOUT)]  
(4)  
Unfortunately, this thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
planes. The RθJA recorded in the Thermal Information table is determined by the JEDEC standard, PCB, and  
copper-spreading area, and is only used as a relative measure of package thermal performance. For a well-  
designed thermal layout, RθJA is actually the sum of the package junction-to-case (bottom) thermal resistance  
(RθJC(bot)) plus the thermal resistance contribution by the PCB copper.  
8.1.6 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are used in accordance with 方程5 and are given in the Thermal Information table.  
ΨJT : TJ = TT + ΨJT × PD and ΨJB : TJ = TB + ΨJB × PD  
(5)  
where:  
PD is the power dissipated as explained in the Power Dissipation (PD) section  
TT is the temperature at the center-top of the device package  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
8.1.7 Recommended Area For Continuous Operation  
The operational area of an LDO is limited by the dropout voltage, output current, junction temperature, and input  
voltage. The recommended area for continuous operation for a linear regulator is given in 8-3 and can be  
separated into the following parts:  
Dropout voltage limits the minimum differential voltage between the input and the output (VIN VOUT) at a  
given output current level. See the Dropout Operation section for more details.  
The rated output currents limits the maximum recommended output current level. Exceeding this rating  
causes the device to fall out of specification.  
The rated junction temperature limits the maximum junction temperature of the device. Exceeding this rating  
causes the device to fall out of specification and reduces long-term reliability.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
 
 
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
The shape of the slope is depicted in the third region of 8-3. The slope is nonlinear because the  
maximum-rated junction temperature of the LDO is controlled by the power dissipation across the LDO.  
Thus, when VIN VOUT increases the output current must decrease.  
The rated input voltage range governs both the minimum and maximum of VIN VOUT  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7A21-Q1  
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
8-3 shows the recommended area of operation for this device on a JEDEC-standard high-K board with a  
θJA, as given in the Thermal Information table.  
R
Output current limited by  
dropout  
Rated output  
current  
Output current limited by thermals  
Limited by  
minimum VIN  
Limited by  
maximum VIN  
VIN œ VOUT (V)  
8-3. Region Description of Continuous Operation Regime  
8.2 Typical Application  
8-4 shows the typical application circuit for the TPS7A21-Q1. Input and output capacitances may need to be  
increased above the 1 µF minimum value for some applications.  
8-4. TPS7A21-Q1 Typical Application  
8.2.1 Design Requirements  
8-1 summarizes the design requirements for the typical application circuit.  
8-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
3.6 V to 5.5V  
3.3 V  
Output voltage  
Output current  
350 mA  
Maximum ambient temperature  
125°C  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
 
 
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
For this design example, the 3.3-V output version (TPS7A2133PQWDRBRQ1) is selected. A nominal 3.6-V input  
supply is assumed. A minimum 1.0-μF input capacitor is recommended to minimize the effect of resistance and  
inductance between the 4.0-V source and the LDO input. A minimum 1.0-μF output capacitor is also  
recommended for stability and good load transient response. The dropout voltage (VDO) is less than 150 mV  
maximum at a 3.3-V output voltage and 500-mA output current, so there are no dropout issues with an input  
voltage of 3.6 V and a maximum output current of 350 mA.  
8.2.2.1 Power Dissipation and Device Operation  
The permissible power dissipation for any package is a measure of the capability of the device to pass heat from  
the power source (the junctions of the device) to the ultimate heat sink of the ambient environment. Thus, power  
dissipation is dependent on the ambient temperature and the thermal resistance across the various interfaces  
between the die junction and ambient air.  
方程6 calculates the maximum allowable power dissipation for the device in a given package:  
PD-MAX = ((TJ-MAX TA) / RθJA  
)
(6)  
方程7 represents the actual power being dissipated in the device:  
PD = (VIN VOUT) × IOUT  
(7)  
These two equations establish the relationship between the maximum power dissipation allowed resulting from  
thermal consideration, the voltage drop across the device, and the continuous current capability of the device.  
Use these two equations to determine the optimum operating conditions for the device in the application.  
In applications where lower power dissipation (PD) or excellent package thermal resistance (RθJA) is present,  
the maximum ambient temperature (TA-MAX) can be increased.  
In applications where high power dissipation or poor package thermal resistance is present, the maximum  
ambient temperature (TA-MAX) may have to be derated. As given by 方程式 8, TA-MAX is dependent on the  
maximum operating junction temperature (TJ-MAX-OP = 150°C), the maximum allowable power dissipation in the  
device package in the application (PD-MAX), and the junction-to ambient thermal resistance of the device or  
package in the application (RθJA):  
TA-MAX = (TJ-MAX-OP (RθJA × PD-MAX))  
(8)  
Alternately, if TA-MAX can not be derated, the PD value must be reduced. This reduction can be accomplished by  
reducing VIN in the VINVOUT term as long as the minimum VIN is met, or by reducing the IOUT term, or by some  
combination of the two.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7A21-Q1  
 
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
8.2.3 Application Curves  
VEN = VIN, IOUT = 500 mA  
VIN = 0 V to 4.3 V, slew rate = 1 V/μs, IOUT = 1 mA  
8-6. PSRR vs Frequency and VIN  
8-5. Start-Up With VEN After VIN  
8.3 Power Supply Recommendations  
This LDO is designed to operate from an input supply voltage range of 2.0 V to 5.5 V. The input supply must be  
well regulated and free of spurious noise. To ensure that the TPS7A21-Q1 output voltage is well regulated and  
dynamic performance is optimum, the input supply must be at least VOUT + 0.3 V. A minimum capacitor value of  
1 µF is required to be within 1 cm of the IN pin.  
8.4 Layout  
8.4.1 Layout Guidelines  
The dynamic performance of the TPS7A21-Q1 is dependent on the layout of the PCB. PCB layout practices that  
are adequate for typical LDOs may degrade the PSRR, noise, or transient performance of the TPS7A21-Q1.  
Best performance is achieved by placing CIN and COUT on the same side of the PCB as the TPS7A21-Q1, and  
as close to the package as practical. The ground connections for CIN and COUT must be back to the TPS7A21-  
Q1 ground pin using as wide and short a copper trace as practical.  
Connections using long trace lengths, narrow trace widths, or connections through vias must be avoided. These  
connections add parasitic inductances and resistance that results in inferior performance, especially during  
transient conditions.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
 
 
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
8.4.2 Layout Example  
8-7. Typical DRB Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7A21-Q1  
TPS7A21-Q1  
ZHCSQC5 DECEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, QFN/SON PCB Attachment application report  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS7A21-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
P7A2110PQWDRBRQ1  
P7A2118PQWDRBRQ1  
P7A2128PQWDRBRQ1  
P7A2133PQWDRBRQ1  
P7A2150PQWDRBRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SON  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
8
5000  
5000  
5000  
5000  
5000  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Samples  
Samples  
Samples  
Samples  
Samples  
Call TI  
Call TI  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Feb-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS7A21-Q1 :  
Catalog : TPS7A21  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.75  
1.55  
(0.2) TYP  
6X 0.65  
(0.19)  
4
5
SYMM  
9
2.5  
2.3  
1.95  
1
8
0.36  
0.26  
8X  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
C
SYMM  
0.5  
0.3  
8X  
4225036/A 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
(1.65)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
6X (0.65)  
SYMM  
9
(1.95) (2.4)  
(0.95)  
(R0.05) TYP  
4
5
(Ø 0.2) VIA  
TYP  
(0.575)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225036/A 06/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
2X  
(1.51)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
2X  
(1.06)  
6X (0.65)  
SYMM  
(1.95)  
(0.63)  
9
(R0.05) TYP  
4
5
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225036/A 06/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

P7A2128PQWDRBRQ1

汽车类、500mA、低噪声、超低 IQ、高 PSRR、低压降 (LDO) 稳压器 | DRB | 8 | -40 to 125
TI

P7A2133PQWDRBRQ1

汽车类、500mA、低噪声、超低 IQ、高 PSRR、低压降 (LDO) 稳压器 | DRB | 8 | -40 to 125
TI

P7A2150PQWDRBRQ1

汽车类、500mA、低噪声、超低 IQ、高 PSRR、低压降 (LDO) 稳压器 | DRB | 8 | -40 to 125
TI

P7BU-0505E

1KV ISOLATED 1.25 W UNREGULATED SINGLE OUTPUT DIP8
PEAK

P7BU-0512E

1KV ISOLATED 1.25 W UNREGULATED SINGLE OUTPUT DIP8
PEAK

P7BU-0515E

1KV ISOLATED 1.25 W UNREGULATED SINGLE OUTPUT DIP8
PEAK

P7BU-1205E

1KV ISOLATED 1.25 W UNREGULATED SINGLE OUTPUT DIP8
PEAK

P7BU-1212E

1KV ISOLATED 1.25 W UNREGULATED SINGLE OUTPUT DIP8
PEAK

P7BU-1215E

1KV ISOLATED 1.25 W UNREGULATED SINGLE OUTPUT DIP8
PEAK

P7BU-2405E

1KV ISOLATED 1.25 W UNREGULATED SINGLE OUTPUT DIP8
PEAK

P7BU-2412E

1KV ISOLATED 1.25 W UNREGULATED SINGLE OUTPUT DIP8
PEAK

P7BU-2415E

1KV ISOLATED 1.25 W UNREGULATED SINGLE OUTPUT DIP8
PEAK