PCM1741E [TI]

DIGITAL-TO-ANALOG CONVERTER;
PCM1741E
型号: PCM1741E
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DIGITAL-TO-ANALOG CONVERTER

光电二极管 转换器
文件: 总24页 (文件大小:500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCM1741  
P
C
M
1
74  
1
www.ti.com  
+3.3V Single-Supply, 24-Bit, 96kHz Sampling  
Enhanced Multilevel, Delta-Sigma, Audio  
DIGITAL-TO-ANALOG CONVERTER  
FEATURES  
APPLICATIONS  
24-BIT RESOLUTION  
AV RECEIVERS  
ANALOG PERFORMANCE (VCC = +3.3V):  
Dynamic Range: 98dB typ  
SNR: 98dB typ  
DVD MOVIE PLAYERS  
DVD ADD-ON CARDS FOR HIGH-END PCs  
HDTV RECEIVERS  
THD+N: 0.005% typ  
CAR AUDIO SYSTEMS  
Full-Scale Output: 2.05Vp-p typ  
OTHER APPLICATIONS REQUIRING 24-BIT  
8x OVERSAMPLING DIGITAL FILTER:  
Stopband Attenuation: –55dB  
Passband Ripple: ±0.03dB  
AUDIO  
DESCRIPTION  
SAMPLING FREQUENCY: 5kHz to 100kHz  
The PCM1741 is a CMOS, monolithic, integrated circuit  
which includes stereo Digital-to-Analog Converters  
(DACs) and support circuitry in a small SSOP-16 package.  
The data converters utilize Texas Instrument’s enhanced  
multilevel delta-sigma architecture that employs fourth-  
order noise shaping and 8-level amplitude quantization to  
achieve excellent dynamic performance and improved toler-  
ance to clock jitter. The PCM1741 accepts industry standard  
audio data formats with 16- to 24-bit data, providing easy  
interfacing to audio DSP and decoder chips. Sampling rates  
up to 100kHz are supported. A full set of user-program-  
mable functions are accessible through a 3-wire serial  
control port that supports register write functions.  
SYSTEM CLOCK: 256, 384, 512, 768fS with  
Auto Detect  
ACCEPTS 16-, 18-, 20-, AND 24-BIT AUDIO  
DATA  
DATA FORMATS: Standard, I2S, and Left-  
Justified  
USER-PROGRAMMABLE MODE CONTROLS:  
Digital Attenuation: 0dB to –63dB, 0.5dB/Step  
Digital De-Emphasis  
Digital Filter Roll-Off: Sharp or Slow  
Soft Mute  
Zero Flags for Each Output  
3.3V SINGLE POWER SUPPLY  
5V TOLERANT DIGITAL INPUTS  
SMALL SSOP-16 PACKAGE  
Copyright © 2000, Texas Instruments Incorporated  
SBAS175  
Printed in U.S.A. December, 2000  
SPECIFICATIONS  
All specifications at TA = +25°C, VCC = 5.0V, VDD = 3.3V, fS = 44.1kHz, system clock = 384fS, and 24-bit data, unless otherwise noted.  
PCM1741E  
PARAMETER  
RESOLUTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
24  
Bits  
DATA FORMAT  
Audio Data Interface Formats  
Standard, I2S, Left-Justified  
Audio Data Bit Length  
Audio Data Format  
16-, 18-, 20-, 24-Bits Selectable  
MSB-First, Binary Two’s Complement  
Sampling Frequency (fS)  
System Clock Frequency  
5
100  
kHz  
256, 384, 512, 768fS  
TTL-Compatible  
DIGITAL INPUT/OUTPUT  
Logic Family  
Input Logic Level  
VIH  
VIL  
2.0  
VDC  
VDC  
0.8  
Input Logic Current  
(1)  
IIH  
IIL  
IIH  
IIL  
VIN = VDD  
VIN = 0V  
VIN = VDD  
VIN = 0V  
10  
µA  
µA  
µA  
µA  
(1)  
–10  
100  
–10  
(2)  
65  
(2)  
Output Logic Level  
(3)  
VOH  
VOL  
IOH = –2mA  
IOL = +2mA  
2.4  
VDC  
VDC  
(3)  
1.0  
DYNAMIC PERFORMANCE(4)  
PCM1741E  
THD+N at VOUT = 0dB  
fS = 44.1kHz  
fS = 96kHz  
fS = 44.1kHz  
0.005  
0.007  
1.6  
2.0  
98  
96  
98  
96  
96  
0.01  
%
%
%
THD+N at VOUT = –60dB  
Dynamic Range  
fS = 96kHz  
%
EIAJ, A-Weighted, fS = 44.1kHz  
A-Weighted, fS = 96kHz  
EIAJ, A-Weighted, fS = 44.1kHz  
A-Weighted, fS = 96kHz  
fS = 44.1kHz  
92  
92  
90  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Ratio  
Channel Separation  
Level Linearity Error  
fS = 96kHz  
VOUT = –90dB  
94  
±0.5  
DC ACCURACY  
Gain Error  
Gain Mismatch, Channel-to-Channel  
Bipolar Zero Error  
±1.0  
±1.0  
±30  
±6  
±3  
±60  
% of FSR  
% of FSR  
mV  
VOUT = 0.5 VCC at Bipolar Zero  
ANALOG OUTPUT  
Output Voltage  
Full Scale (0dB)  
AC Load  
62% of VCC  
50% of VCC  
Vp-p  
VDC  
kΩ  
Center Voltage  
Load Impedance  
5
DIGITAL FILTER PERFORMANCE  
Filter Characteristics 1, Sharp Roll-Off  
Passband  
Passband  
±0.03dB  
–3dB  
0.454fS  
0.487fS  
Stopband  
0.546fS  
dB  
dB  
dB  
Passband Ripple  
Stopband Attenuation  
Stopband Attenuation  
Filter Characteristics 2, Slow Roll-Off  
Passband  
±0.03  
Stopband = 0.546fS  
Stopband = 0.567fS  
–50  
–55  
±0.5dB  
0.198fS  
0.390fS  
Passband  
–3dB  
Stopband  
0.884fS  
–40  
Passband Ripple  
Stopband Attenuation  
Delay Time  
±0.5  
dB  
dB  
Stopband = 0.884fS  
20/fS  
±0.1  
sec  
dB  
De-Emphasis Error  
PCM1741  
2
SBAS175  
SPECIFICATIONS (Cont.)  
All specifications at TA = +25°C, VCC = 5.0V, VDD = 3.3V, system clock = 384fS (fS = 44.1kHz), and 24-bit data, unless otherwise noted.  
PCM1741E  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG FILTER PERFORMANCE  
Frequency Response  
f = 20kHz  
f = 44kHz  
–0.03  
–0.20  
dB  
dB  
POWER SUPPLY REQUIREMENTS(4)  
Voltage Range, VDD  
VCC  
+2.7  
+2.7  
+3.3  
+3.0  
6.0  
13.0  
7.0  
7.0  
43  
66  
+3.6  
+3.6  
10  
VDC  
VDC  
mA  
Supply Current, IDD  
fS = 44.1kHz  
fS = 96kHz  
fS = 44.1kHz  
fS = 96kHz  
fS = 44.1kHz  
fS = 96kHz  
mA  
ICC  
11  
88  
mA  
mA  
mW  
mW  
Power Dissipation  
TEMPERATURE RANGE  
Operation Temperature  
Thermal Resistance  
–25  
+85  
°C  
θJA  
SSOP-16  
115  
°C/W  
NOTES: (1) Pins 1, 2, 3, 16 (SCK, BCK, LRCK, DATA). (2) Pins 13-15 (MD, MC, ML). (3) Pins 11, 12 (ZEROR, ZEROL). (4) Analog performance specifications  
are tested with a Shibasoku #725 THD Meter with 400Hz HPF on, 30kHz LPF on, and an average mode with 20kHz bandwidth limiting. The load connected  
to the analog output is 5kor larger, via capacitive coupling.  
ABSOLUTE MAXIMUM RATINGS  
ELECTROSTATIC  
Power Supply Voltage, VDD .............................................................. +4.0V  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Burr-Brown  
VCC .............................................................. +6.5V  
Ground Voltage Differences.............................................................. ±0.1V  
Digital Input Voltage ................................................ –0.3V to (6.5V + 0.3V)  
recommends that all integrated circuits be handled with  
Input Current (except power supply) ............................................... ±10mA  
Ambient Temperature Under Bias .................................. –40°C to +125°C  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Storage Temperature ...................................................... –55°C to +150°C  
Junction Temperature .................................................................... +150°C  
ESD damage can range from subtle performance degradation  
Lead Temperature (soldering, 5s)................................................. +260°C  
Package Temperature (IR reflow, 10s) .......................................... +235°C  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DRAWING  
NUMBER  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER(1)  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
PCM1741E  
SSOP-16  
322  
–25°C to +85°C  
PCM1741E  
PCM1741E  
Rails  
"
"
"
"
"
PCM1741E/2K  
Tape and Reel  
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K indicates 2000 devices per reel). Ordering 2000 pieces  
of “PCM1741E/2K” will yield a single 2000-piece Tape and Reel.  
PCM1741  
3
SBAS175  
BLOCK DIAGRAM  
BCK  
LRCK  
DATA  
Audio  
Serial  
Port  
Output Amp and  
Low-Pass Filter  
VOUT  
L
DAC  
8x  
Enhanced  
Multilevel  
Delta-Sigma  
Modulator  
Oversampling  
Digital Filter  
with  
Function  
Controller  
VCOM  
ML  
MC  
MD  
Output Amp and  
Low-Pass Filter  
Serial  
Control  
Port  
DAC  
VOUT  
R
System Clock  
System Clock  
Manager  
Power Supply  
Zero Detect  
SCK  
PIN CONFIGURATION  
PIN ASSIGNMENTS  
TOP VIEW  
SSOP  
PIN NAME  
TYPE  
FUNCTION  
1
2
3
BCK  
DATA  
LRCK  
IN  
IN  
IN  
Audio Data Bit Clock Input.(1)  
Audio Data Digital Input.(1)  
L-Channel and R-Channel Audio Data Latch En-  
able Input.(1)  
BCK  
DATA  
LRCK  
DGND  
VDD  
1
2
3
4
5
6
7
8
16 SCK  
15 ML  
4
5
DGND  
VDD  
Digital Ground  
Digital Power Supply, +3.3V  
Analog Power Supply, +3.3V  
Analog Output for L-Channel.  
Analog Output for R-Channel.  
Analog Ground  
6
VCC  
14 MC  
7
VOUTL  
OUT  
OUT  
13 MD  
8
VOUTR  
PCM1741  
9
AGND  
VCOM  
12 ZEROL/NA  
10  
Common Voltage Decoupling.  
VCC  
11 ZEROR/ZEROA  
10 VCOM  
11 ZEROR/  
ZEROA  
OUT  
Zero Flag Output for R-Channel/Zero Flag Output  
for L/R-Channel.  
VOUT  
L
12 ZEROL/NA OUT  
Zero Flag Output for L-Channel/No Assign.  
Mode Control Data Input.(2)  
Mode Control Clock Input.(2)  
Mode Control Latch Input.(2)  
System Clock Input.  
V
OUTR  
9
AGND  
13  
14  
15  
16  
MD  
MC  
ML  
IN  
IN  
IN  
IN  
SCK  
NOTES: (1) Schmitt-trigger input, 5V tolerant. (2) Schmitt-trigger with internal  
pull-down, 5V tolerant.  
PCM1741  
4
SBAS175  
TYPICAL PERFORMANCE CURVES  
All specifications at TA = +25°C, VCC = VDD = 3.3V, system clock = 384fS (fS = 44.1kHz), and 24-bit input data, unless otherwise noted.  
DIGITAL FILTER  
Digital Filter (De-Emphasis Off  
FREQUENCY RESPONSE PASSBAND  
FREQUENCY RESPONSE (Sharp Roll-Off)  
(Sharp Roll-Off)  
0
20  
0.05  
0.04  
0.03  
0.02  
0.01  
0
40  
60  
80  
0.01  
0.02  
0.03  
0.04  
0.05  
100  
120  
140  
0
1
2
3
4
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (x fS)  
Frequency (x fS)  
FREQUENCY RESPONSE (Slow Roll-Off)  
TRANSITION CHARACTERISTICS (Slow Roll-Off)  
0
20  
5
4
3
40  
2
1
60  
0
80  
1  
2  
3  
4  
5  
100  
120  
140  
0
1
2
3
4
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (x fS)  
Frequency (x fS)  
De-Emphasis  
DE-EMPHASIS (fS = 32kHz)  
DE-EMPHASIS ERROR (fS = 32kHz)  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0
2
4
6
8
10  
12  
14  
2
4
6
8
10  
12  
14  
Frequency (kHz)  
Frequency (kHz)  
PCM1741  
5
SBAS175  
TYPICAL PERFORMANCE CURVES (Cont.)  
All specifications at TA = +25°C, VCC = VDD = 3.3V, system clock = 384fS (fS = 44.1kHz), and 24-bit input data, unless otherwise noted.  
De-Emphasis (Cont.)  
DE-EMPHASIS (fS = 44.1kHz)  
DE-EMPHASIS ERROR (fS = 44.1kHz)  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
18  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
20  
Frequency (kHz)  
Frequency (kHz)  
DE-EMPHASIS (fS = 48kHz)  
DE-EMPHASIS ERROR (fS = 48kHz)  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
18  
18  
0
2
4
6
8
10  
12  
14  
16  
22  
0
2
4
6
8
10  
12  
14  
16  
22  
Frequency (kHz)  
Frequency (kHz)  
ANALOG DYNAMIC PERFORMANCE  
All specifications at TA = +25°C, VCC = 5.0V, VDD = 3.3V, and 24-bit input data, unless otherwise noted.  
Supply-Voltage Characteristics  
THD+N vs VCC  
DYNAMIC RANGE vs VCC  
106  
104  
102  
100  
98  
10  
1
60dB/96kHz, 384fS  
44.1kHz, 384fS  
60dB/44.1kHz, 384fS  
96  
0.1  
94  
96kHz, 384fS  
0dB/96kHz, 384fS  
92  
0.01  
0.001  
90  
88  
0dB/44.1kHz, 384fS  
86  
2.4  
2.7  
3
3.3  
3.6  
3.9  
2.4  
2.7  
3
3.3  
3.6  
3.9  
VCC (V)  
VCC (V)  
PCM1741  
6
SBAS175  
TYPICAL PERFORMANCE CURVES (Cont.)  
All specifications at TA = +25°C, VCC = VDD = 3.3V, and 24-bit input data, unless otherwise noted.  
Supply-Voltage Characteristics (Cont.)  
SNR vs VCC  
CHANNEL SEPARATION vs VCC  
106  
104  
102  
100  
98  
106  
104  
102  
100  
98  
44.1kHz, 384fS  
44.1kHz, 384fS  
96  
96  
94  
94  
96kHz, 384fS  
92  
92  
96kHz, 384fS  
90  
90  
88  
88  
86  
86  
2.4  
2.7  
3
3.3  
3.6  
3.9  
4.2  
100  
100  
2.4  
50  
50  
2.7  
3
3.3  
3.6  
3.9  
100  
100  
V
CC (V)  
VCC (V)  
Temperature Characteristics  
THD+N vs TA  
60dB/96kHz, 384fS  
DYNAMIC RANGE vs TA  
44.1kHz, 384fS  
106  
104  
102  
100  
98  
10  
1
60dB/44.1kHz, 384fS  
96  
0.1  
94  
96kHz, 384fS  
0dB/96kHz, 384fS  
92  
0.01  
90  
88  
0dB/44.1kHz, 384fS  
0.001  
86  
50  
25  
0
25  
50  
75  
25  
0
25  
50  
75  
Temperature (°C)  
Temperature (°C)  
SNR vs TA  
CHANNEL SEPARATION vs TA  
106  
104  
102  
100  
98  
106  
104  
102  
100  
98  
44.1kHz, 384fS  
44.1kHz, 384fS  
96  
96  
94  
94  
96kHz, 384fS  
92  
92  
96kHz, 384fS  
90  
90  
88  
88  
86  
86  
50  
25  
0
25  
Temperature (°C)  
50  
75  
25  
0
25  
50  
75  
Temperature (°C)  
PCM1741  
7
SBAS175  
POWER-ON RESET FUNCTIONS  
SYSTEM CLOCK AND RESET  
FUNCTIONS  
The PCM1741 includes a power-on reset function, as shown in  
Figure 2. With the system clock active, and VDD > 2.0V (typical  
1.6V to 2.4V), the power-on reset function will be enabled. The  
initialization sequence requires 1024 system clocks from the  
time VDD > 2.0V. After the initialization period, the PCM1741  
will be set to its reset default state, as described in the Mode  
Control Register section of this data sheet.  
SYSTEM CLOCK INPUT  
The PCM1741 requires a system clock for operating the  
digital interpolation filters and multilevel delta-sigma modu-  
lators. The system clock is applied at the SCK input (pin 16).  
Table I shows examples of system clock frequencies for  
common audio sampling rates.  
Figure 1 shows the timing requirements for the system clock  
input. For optimal performance, it is important to use a clock  
source with low phase jitter and noise. The PLL1700 multi-  
clock generator from Texas Instruments is an excellent choice  
for providing the PCM1741 system clock.  
During the reset period (1024 system clocks), the analog  
outputs are forced to the bipolar zero level, or VCC/2. After  
the reset period, the internal register is initialized in the next  
1/fS period and, if SCK, BCK, and LRCK are provided  
continuously, the PCM1741 provides proper analog output  
with unit group delay against the input data.  
SYSTEM CLOCK FREQUENCY (fSCLK) (MHz)  
SAMPLING  
FREQUENCY  
256fS  
384fS  
512fS  
768fS  
8kHz  
16kHz  
32kHz  
44.1kHz  
48kHz  
88.2kHz  
96kHz  
2.0480  
4.0960  
3.0720  
6.1440  
4.0960  
8.1920  
6.1440  
12.2880  
8.1920  
12.2880  
16.9344  
18.4320  
33.8688  
36.8640  
16.3840  
22.5792  
24.5760  
45.1584  
49.1520  
24.5760  
11.2896  
12.2880  
22.5792  
24.5760  
33.8688  
36.8640  
See Note (1)  
See Note (1)  
NOTE: (1) The 768fS system clock rate is not supported for fS > 64kHz.  
TABLE I. System Clock Rates for Common Audio Sampling Frequencies.  
tSCKH  
2.0V  
0.8V  
H”  
System Clock  
L”  
tSCKL  
System clock pulse  
cycle time(1)  
System Clock Pulse Width HIGH tSCKH: 7ns (min)  
System Clock Pulse Width LOW tSCKL: 7ns (min)  
NOTE: (1) 1/256fS, 1/384fS, 1/512fS, and 1/768fS.  
FIGURE 1. System Clock Input Timing.  
2.4V  
VDD  
2.0V  
1.6V  
0V  
Reset  
Reset Removal  
Internal Reset  
System Clock  
1024 System Clocks  
Don't Care  
FIGURE 2. Power-On Reset Timing.  
8
PCM1741  
SBAS175  
held when the sampling rate clock of LRCK is changed or  
SCK and/or BCK is broken at least for one clock cycle. If  
SCK, BCK, and LRCK are provided continuously after this  
hold condition, the internal operation will be resynchronized  
automatically, less than 3/fS period. In this resynchronize  
period, and following 3/fS, analog output is forced to the  
bipolar zero level, or VCC/2. External resetting is not required.  
AUDIO SERIAL INTERFACE  
The audio serial interface for the PCM1741 is comprised of  
a 3-wire synchronous serial port. It includes LRCK (pin 3),  
BCK (pin 1), and DATA (pin 2). BCK is the serial audio bit  
clock, and is used to clock the serial data present on DATA  
into the audio interface’s serial shift register. Serial data is  
clocked into the PCM1741 on the rising edge of BCK.  
LRCK is the serial audio left/right word clock used to latch  
serial data into the serial audio interface’s internal registers.  
AUDIO DATA FORMATS AND TIMING  
The PCM1741 supports industry-standard audio data formats,  
including Standard, I2S, and Left-Justified, as shown in  
Figure 3. Data formats are selected using the format bits,  
FMT[2:0], in Control Register 20. The default data format is  
24-bit left justified. All formats require Binary Two’s Comple-  
ment, MSB-first audio data. See Figure 4 for a detailed timing  
diagram of the serial audio interface.  
Both LRCK and BCK should be synchronous to the  
system clock. Ideally, it is recommended that LRCK and  
BCK be derived from the system clock input, SCK. LRCK  
is operated at the sampling frequency, fS. BCK may be  
operated at 32, 48, or 64 times the sampling frequency (I2S  
format except BCK = 32fS). Internal operation of the  
PCM1741 is synchronized with LRCK. Accordingly, it is  
(1) Standard Data Format: L-Channel = HIGH, R-Channel = LOW  
1/fS  
R-Channel  
LRCK  
L-Channel  
BCK  
(= 32, 48 or 64fS  
)
16-Bit Right-Justified, BCK = 48fS or 64fS  
DATA 14 15 16  
1
2
3
14 15 16  
1
2
3
14 15 16  
MSB  
LSB  
MSB  
LSB  
16-Bit Right-Justified, BCK = 32fS  
DATA 14 15 16  
1
2
3
14 15 16  
1
2
3
14 15 16  
MSB  
LSB MSB  
LSB  
17 18  
LSB  
18-Bit Right-Justified  
DATA 16 17 18  
1
2
3
16 17 18  
1
2
MSB  
LSB  
MSB  
20-Bit Right-Justified  
DATA 18 19 20  
1
2
3
18 19 20  
LSB  
1
2
3
18 19 20  
LSB  
MSB  
MSB  
24-Bit Right-Justified  
DATA 22 23 24  
1
2
3
22 23 24  
1
2
3
22 23 24  
LSB  
MSB  
LSB MSB  
(2) I2S Data Format: L-Channel = LOW, R-Channel = HIGH  
1/fS  
LRCK  
L-Channel  
R-Channel  
BCK  
(= 48 or 64fS  
)
DATA  
1
2
3
N-2 N-1  
N
1
2
3
N-2 N-1  
N
1
2
MSB  
LSB  
MSB  
LSB  
(3) Left-Justified Data Format: L-Channel = HIGH, R-Channel = LOW  
1/fS  
L-Channel  
LRCK  
R-Channel  
BCK  
(= 32, 48 or 64fS  
)
DATA  
1
2
3
N-2 N-1  
N
1
2
3
N-2 N-1  
N
1
2
MSB  
LSB  
MSB  
LSB  
FIGURE 3. Audio Data Input Formats.  
PCM1741  
9
SBAS175  
LRCK  
BCK  
50% of VDD  
50% of VDD  
tBCH  
tBCL  
tLB  
tBCY  
tBL  
50% of VDD  
DATA  
tDS  
tDH  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
(1)  
tBCY  
tBCH  
tBCL  
tBL  
BCK Pulse Cycle Time  
BCK High Level Time  
BCK Low Level Time  
32, 48, or 64fS  
35  
35  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
BCK Rising Edge to LRCK Edge  
LRCK Falling Edge to BCK Rising Edge  
DATA Set Up Time  
tLB  
tDS  
tDH  
DATA Hold Time  
NOTE: (1) fS is the sampling frequency (e.g., 44.1kHz, 48kHz, 96kHz, etc.)  
FIGURE 4. Audio Interface Timing.  
SERIAL CONTROL INTERFACE  
the write operation. The least significant eight bits, D[7:0],  
contain the data to be written to the register specified by  
IDX[6:0].  
The serial control interface is a 3-wire serial port that  
operates asynchronously to the serial audio interface. The  
serial control interface is utilized to program the on-chip  
mode registers. The control interface includes MD (pin 13),  
MC (pin 14), and ML (pin 15). MD is the serial data input,  
used to program the mode registers, MC is the serial bit  
clock, used to shift data into the control port, and ML is the  
control port latch clock.  
Figure 6 shows the functional timing diagram for writing the  
serial control port. ML is held at a logic “1 ” state until a  
register needs to be written. To start the register write cycle,  
ML is set to logic “0”. Sixteen clocks are then provided on  
MC, corresponding to the 16 bits of the control data word on  
MD. After the sixteenth clock cycle has completed, ML is set  
to logic “1” to latch the data into the indexed mode control  
register.  
REGISTER WRITE OPERATION  
All write operations for the serial control port use 16-bit data  
words. Figure 5 shows the control data word format. The  
most significant bit must be a “0”. There are seven bits,  
labeled IDX[6:0], that set the register index (or address) for  
CONTROL INTERFACE TIMING REQUIREMENTS  
See Figure 7 for a detailed timing diagram of the serial  
control interface. These timing parameters are critical for  
proper control port operation.  
MSB  
LSB  
0
IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0  
Register Index (or Address)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Register Data  
FIGURE 5. Control Data Word Format for MDI.  
ML  
MC  
MD  
X
0
IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0 D7 D6 D5  
D4 D3 D2 D1 D0  
X
X
0
IDX6  
FIGURE 6. Register Write Operation.  
10  
PCM1741  
SBAS175  
MODE CONTROL REGISTERS  
section of this data sheet. Table II lists the available mode  
control functions, along with their reset default conditions  
and associated register index.  
User-Programmable Mode Controls  
The PCM1741 includes a number of user-programmable  
functions that are accessed via control registers. The regis-  
ters are programmed using the Serial Control Interface that  
was previously discussed in the “Serial Control Interface”  
Register Map  
The mode control register map is shown in Table III. Each  
register includes an index (or address) indicated by the  
IDX[6:0] bits.  
tMHH  
50% of VDD  
ML  
tMCH  
tMCL  
tMLS  
tMLH  
50% of VDD  
MC  
MD  
tMCY  
LSB  
50% of VDD  
tMDS  
tMCH  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
tMCY  
tMCL  
tMCH  
tMHH  
tMLS  
tMLH  
tMDH  
tMDS  
MC Pulse Cycle Time  
MC Low Level Time  
MC High Level Time  
ML High Level Time  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
Note (2)  
20  
ML Falling Edge to MC Rising Edge  
ML Hold Time(1)  
20  
MD Hold Time  
15  
MD Set Up Time  
20  
3
NOTES: (1) MC rising edge for LSB to ML rising edge. (2)  
sec (min), fS = Sampling Rate.  
256 fS  
FIGURE 7. Control Interface Timing.  
FUNCTION  
RESET DEFAULT  
CONTROL REGISTER  
INDEX, IDX[6:0]  
Digital Attenuation Control, 0dB to 63dB in 0.5dB Steps  
Soft Mute Control  
Oversampling Rate Control (64 or 128fS)  
DAC Operation Control  
De-Emphasis Function Control  
De-Emphasis Sample Rate Selection  
Audio Data Format Control  
Digital Filter Roll-Off Control  
Zero Flag Function Select  
0dB, No Attenuation  
Mute Disabled  
64fS Oversampling  
DAC1 and DAC2 Enabled  
De-Emphasis Disabled  
44.1kHz  
24-Bit Left Justified  
Sharp Roll-Off  
L-/R-Channel Independent  
Normal Phase  
16 and 17  
AT1[7:0], AT2[7:0]  
MUT[2:0]  
OVER  
18  
18  
19  
19  
19  
20  
20  
22  
22  
22  
DAC[2:1]  
DM12  
DMF[1:0]  
FMT[2:0]  
FLT  
AZRO  
DREV  
ZREV  
Output Phase Select  
Zero Flag Polarity Select  
High  
TABLE II. User-Programmable Mode Controls.  
IDX  
(B8-B14) REGISTER  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
16  
17  
18  
19  
20  
21  
22  
0
0
0
0
0
0
0
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX1 IDX0  
IDX1 IDX0  
AT17 AT16 AT15 AT14 AT13 AT12 AT11 AT10  
AT27 AT26 AT25 AT24 AT23 AT22 AT21 AT20  
IDX1 IDX0 RSV(1) OVER RSV(1) RSV(1) RSV(1) RSV(1) MUT2 MUT1  
IDX1 IDX0 RSV(1) DMF1 DMF0 DM12 RSV(1) RSV(1) DAC2 DAC1  
IDX1 IDX0 RSV(1) RSV(1) FLT RSV(1) RSV(1) FMT2 FMT1 FMT0  
IDX1 IDX0 RSV(1) RSV(1) RSV(1) RSV(1) RSV(1) RSV(1) RSV(1) RSV(1)  
IDX1 IDX0 RSV(1) RSV(1) RSV(1) RSV(1) RSV(1) AZRO ZREV DREV  
NOTE: (1) RSV = Reserved for test operation. It should be set to 0when in regular operation.  
TABLE III. Mode Control Register Map.  
PCM1741  
11  
SBAS175  
REGISTER DEFINITIONS  
B15  
0
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 16  
Register 17  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
AT17 AT16  
AT15  
AT14  
AT13  
AT12 AT11 AT10  
0
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
AT27 AT26  
AT25  
AT24  
AT23  
AT22 AT21 AT20  
ATx[7:0]  
Digital Attenuation Level Setting  
where x = 1 or 2, corresponding to the DAC output VOUTL (x = 1) and VOUTR (x = 2).  
Default Value: 1111 1111B  
Each DAC channel (VOUTL and VOUTR) includes a digital attenuator function. The attenuation level may be  
set from 0dB to –63dB, in 0.5dB steps. Changes in attentuator levels are made by incrementing or  
decrementing, by one step (0.5dB), for every 8/fS time interval until the programmed attenuator setting is  
reached. Alternatively, the attenuator level may be set to infinite attenuation (or mute). The attenuation data  
for each channel can be set individually.  
The attenuation level may be set using the formula below.  
Attenuation Level (dB) = 0.5 (ATx[7:0]DEC – 255)  
where: ATx[7:0]DEC = 0 through 255  
for: ATx[7:0]DEC = 0 through 128, the attenuator is set to infinite attenuation.  
The following table shows attenuator levels for various settings.  
ATx[7:0]  
Decimal Value  
Attenuator Level Setting  
1111 1111B  
1111 1110B  
1111 1101B  
1000 0011B  
1000 0010B  
1000 0001B  
1000 0000B  
255  
254  
253  
131  
130  
129  
128  
0dB, No Attenuation (default)  
–0.5dB  
–1.0dB  
–62.0dB  
–62.5dB  
–63.0dB  
Mute  
0000 0000B  
0
Mute  
B15  
0
B14  
IDX6  
B13  
B12  
B11  
B10  
B9  
IDX1  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 18  
IDX5  
IDX4  
IDX3  
IDX2  
IDX0  
RSV OVER  
RSV  
RSV  
RSV  
RSV MUT2 MUT1  
MUTx  
Soft Mute Control  
Where x = 1 or 2, corresponding to the DAC output VOUTL (x = 1) and VOUTR (x = 2).  
Default Value: 0  
MUTx = 0  
MUTx = 1  
Mute Disabled (default)  
Mute Enabled  
The mute bits, MUT1 and MUT2, are used to enable or disable the Soft Mute function for the corresponding  
DAC outputs, VOUTL and VOUTR. The Soft Mute function is incorporated into the digital attenuators. When  
Mute is disabled (MUTx = 0), the attenuator and DAC operate normally. When Mute is enabled by setting  
MUTx = 1, the digital attenuator for the corresponding output will be decreased from the current setting to  
the infinite attenuation setting, one attenuator step (0.5dB) at a time. This provides a “pop”-free muting of the  
DAC output. By setting MUTx = 0, the attenuator will be increased one step at a time to a previously  
programmed attenuation level.  
OVER  
Oversampling Rate Control  
Default Value: 0  
OVER = 0  
OVER = 1  
64x Oversampling (default)  
128x Oversampling  
The OVER bit is used to control the oversampling rate of the delta-sigma DACs.  
PCM1741  
12  
SBAS175  
B15  
0
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 19  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
RSV DMF1 DMF0 DM12  
RSV  
RSV DAC2 DAC1  
DACx  
DAC Operation Control  
where x = 1 or 2, corresponding to the DAC output VOUTL (x = 1) or VOUTR (x = 2).  
Default Value: 0  
DACx = 0  
DACx = 1  
DAC Operation Enabled (default)  
DAC Operation Disabled  
The DAC operation controls are used to enable and disable the DAC outputs, VOUTL and VOUTR. When  
DACx = 0, the corresponding output will generate the audio waveform dictated by the data present on the  
DATA pin. When DACx = 1, the corresponding output will be set to the bipolar zero level, or VCC/2.  
DM12  
Digital De-Emphasis Function Control  
Default Value: 0  
DM12 = 0  
DM12 = 1  
De-Emphasis Disabled (default)  
De-Emphasis Enabled  
The DM12 bit is used to enable or disable the Digital De-Emphasis function. Refer to the Typical Performance  
Curves of this data sheet for more information.  
DMF[1:0]  
Sampling Frequency Selection for the De-Emphasis Function  
Default Value: 00  
DMF[1:0]  
De-Emphasis Same Rate Selection  
00  
01  
10  
11  
44.1kHz (default)  
48kHz  
32kHz  
Reserved  
The DMF[1:0] bits are used to select the sampling frequency used for the Digital De-Emphasis function when  
it is enabled.  
B15  
0
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 20  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
RSV  
RSV  
FLT  
RSV  
RSV  
FMT2 FMT1 FMT0  
FMT[2:0] Audio Interface Data Format  
Default Value: 101  
The FMT[2:0] bits are used to select the data format for the serial audio interface. The following table shows  
the available format options.  
FMT[2:0]  
Audio Data Format Selection  
000  
001  
010  
011  
100  
101  
110  
111  
24-Bit Standard Format, Right-Justified Data  
20-Bit Standard Format, Right-Justified Data  
18-Bit Standard Format, Right-Justified Data  
16-Bit Standard Format, Right-Justified Data  
I2S Format, 16- to 24-bits  
Left-Justified Format, 16- to 24-Bits (default)  
Reserved  
Reserved  
PCM1741  
13  
SBAS175  
Register 20 (Cont.)  
FLT  
Digital Filter Roll-Off Control  
Default Value: 0  
FLT = 0  
FLT = 1  
Sharp Roll-Off (default)  
Slow Roll-Off  
The FLT bit allows the user to select the digital filter roll-off that is best suited to their application. Two  
filter roll-off sections are available: Sharp or Slow. The filter responses for these selections are shown in  
the Typical Performance Curves section of this data sheet.  
B15  
0
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 22  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
RSV  
RSV  
RSV  
RSV  
RSV  
AZRO ZREV DREV  
DREV  
Output Phase Select  
Default Value: 0  
DREV = 0  
DREV = 1  
Normal Output (default)  
Inverted Output  
The DREV bit is used to set the output phase of VOUTL and VOUTR.  
ZREV  
Zero Flag Polarity Select  
Default Value: 0  
ZREV = 0  
ZREV = 1  
Zero Flag Pins HIGH at a Zero Detect (default)  
Zero Flag Pins LOW at a Zero Detect  
The ZREV bit allows the user to select the active polarity of Zero Flag pins.  
AZRO  
Zero Flag Function Select  
Default Value: 0  
AZRO = 0  
AZRO = 1  
L-/R-Channel Independent Zero Flag (default)  
L-/R-Channel Common Zero Flag  
Register22 (Cont.)  
The AZRO bit allows the user to select the function of Zero Flag pins.  
AZRO = 0:  
Pin11: ZEROR; Zero Flag Output for R-Channel  
Pin12: ZEROL; Zero Flag Output for L-Channel  
AZRO = 1:  
Pin11: ZEROA; Zero Flag Output for L-/R-Channel  
Pin12: NA; No Assign  
PCM1741  
14  
SBAS175  
ANALOG OUTPUTS  
ANALOG FILTER PERFORMANCE  
(100Hz-10MHz)  
The PCM1741 includes two independent output channels:  
VOUTL and VOUTR. These are unbalanced outputs, each capable  
of driving 2.05Vp-p typical into a 5kAC-coupled load. The  
internal output amplifiers for VOUTL and VOUTR are biased to the  
DC common-mode (or bipolar zero) voltage, equal to VCC/2.  
0
10  
20  
30  
40  
50  
60  
The output amplifiers include an RC continuous-time filter that  
helps to reduce the out-of-band noise energy present at the  
DAC outputs, due to the noise shaping characteristics of the  
PCM1741’s delta-sigma DACs. The frequency response of this  
filter is shown in Figure 8. By itself, this filter is not enough to  
attenuate the out-of-band noise to an acceptable level for many  
applications, therefore, an external low-pass filter is required to  
provide sufficient out-of-band noise rejection. Further discus-  
sion of DAC post-filter circuits is provided in the Applications  
Information section of this data sheet.  
0.1  
1
10  
100  
1K  
10K  
Frequency (kHz)  
FIGURE 8. Output Filter Frequency Response.  
VCOM OUTPUT  
nominally biased to a DC voltage level equal to VCC/2. This  
pin may be used to bias external circuits. Figure 9 shows an  
example of using the VCOM pin for external biasing applica-  
tions.  
One unbuffered common-mode voltage output pin, VCOM  
(pin 10), is brought out for decoupling purposes. This pin is  
R2  
A
V = 1, where AV = –  
R2  
C1  
R1  
VCC  
PCM1741  
10µF  
R1  
R3  
2
3
VOUT  
x
+
1
1/2  
OPA2342  
Filtered  
Output  
C2  
VCOM  
+
10µF  
x = L or R  
(a) Using VCOM to Bias a Single-Supply Filter Stage  
VCC  
PCM1741  
Buffered  
VCOM  
OPA342  
VCOM  
+
10µF  
(b) Using a Voltage Follower to Buffer VCOM when Biasing Multiple Nodes  
FIGURE 9. Biasing External Circuits Using the VCOM Pin.  
PCM1741  
15  
SBAS175  
ZERO FLAGS  
POWER SUPPLIES AND GROUNDING  
The PCM1741 requires a +3.3V analog supply (VCC) and a  
+3.3V digital supply (VDD). The +3.3V supply (VCC) is used to  
power the DAC analog and output filter circuitry, while the  
+3.3V (VDD) supply is used to power the digital filter and serial  
Zero Detect Condition  
Zero Detection for each output channel is independent from  
the other. If the data for a given channel remains at a “0”  
level for 1024 sample periods (or LRCK clock periods), a  
Zero Detect condition exists for that channel.  
interface circuitry. For best performance, the +3.3V (VDD  
)
supply should be derived from the +3.3V (VCC) supply using a  
linear regulator, as shown in Figure 11.  
Zero Output Flags  
Given that a Zero Detect condition exists for one or more  
channels, the Zero Flag pins for those channels will be set to  
a logic “1” state. There are Zero Flag pins for each channel:  
ZEROL (pin 12) and ZEROR (pin 11). These pins can be used  
to operate external mute circuits, or used as status indicators  
for a microcontroller, audio signal processor, or other digitally  
controlled functions.  
Proper power-supply bypassing is shown in Figure 10. The  
10µF capacitors should be tantalum or aluminum electrolytic,  
while the 0.1µF capacitors are ceramic (X7R type is recom-  
mended for surface-mount applications).  
R2  
A
V –  
The active polarity of Zero Flag output can be inverted by  
setting the ZREV bit of Control Register 22 to “1”. The reset  
default is active high output, or ZREV = 0.  
R1  
C1  
2
R2  
R1  
R3  
VIN  
R4  
1
VOUT  
The L-channel and R-channel common Zero Flag can be  
selected by setting the AZRO bit of Control Register 22 to “1”.  
The reset default is L-channel and R-channel independent  
Zero Flag, or AZRO = 0.  
OPA2134  
3
C2  
FIGURE 10. Dual-Supply Filter Circuit.  
APPLICATIONS INFORMATION  
CONNECTION DIAGRAMS  
DAC OUTPUT FILTER CIRCUITS  
Delta-sigma DACs utilize noise-shaping techniques to im-  
prove in-band Signal-to-Noise Ratio (SNR) performance at  
the expense of generating increased out-of-band noise above  
the Nyquist Frequency, or fS/2. The out-of-band noise must  
be low-pass filtered in order to provide the optimal converter  
performance. This is accomplished by a combination of  
on-chip and external low-pass filtering.  
A basic connection diagram is shown in Figure 11, with the  
necessary power-supply bypassing and decoupling compo-  
nents. Texas Instruments recommends using the component  
values shown in Figure 11 for all designs.  
The use of series resistors (22to 100) are recommended  
for the SCK, LRCK, BCK, and DATA inputs. The series  
resistor combines with stray PCB and device input capaci-  
tance to form a low-pass filter that reduces high-frequency  
noise emissions and helps to dampen glitches and ringing  
present on clock and data lines.  
Figures 9(a) and 10 show the recommended external low-  
pass active filter circuits for single- and dual-supply applica-  
tions. These circuits are second-order Butterworth filters  
System Clock  
SCK 16  
1
2
3
4
5
6
7
8
BCK  
PCM  
Audio Data  
Input  
DATA  
LRCK  
DGND  
VDD  
ML 15  
Mode  
MC 14  
Control  
MD 13  
+
+
10µF  
10µF  
+3.3V  
Regulator  
ZEROL/NA 12  
Zero Mute  
Control  
VCC  
ZEROR/ZEROA 11  
VOUT  
L
VCOM 10  
10µF  
V
OUTR  
AGND  
9
+3.3V  
Post LPF  
Post LPF  
L-Chan OUT  
R-Chan OUT  
FIGURE 11. Basic Connection Diagram.  
16  
PCM1741  
SBAS175  
using a Multiple FeedBack (MFB) circuit arrangement that  
reduces sensitivity to passive component variations over  
frequency and temperature. For more information regarding  
MFB active filter design, please refer to Burr-Brown Appli-  
cations Bulletin #34 AB-034 (SBFA001), available from our  
web site at http://www.ti.com.  
PCB LAYOUT GUIDELINES  
A typical PCB floor plan for the PCM1741 is shown in  
Figure 12. A ground plane is recommended, with the analog  
and digital sections being isolated from one another using a  
split or cut in the circuit board. The PCM1741 should be  
oriented with the digital I/O pins facing the ground plane  
split/cut to allow for short, direct connections to the digital  
audio interface and control signals originating from the  
digital section of the board.  
Since the overall system performance is defined by the  
quality of the DACs and their associated analog output  
circuitry, high-quality audio op amps are recommended for  
the active filters. The OPA2353 and OPA2134 dual op amps  
from Texas Instruments are recommended for use with the  
PCM1741, see Figures 9(a) and 10.  
Digital Power  
Analog Power  
+VD  
DGND  
AGND +3.3V  
+VS VS  
REG  
VCC  
VDD  
Digital Logic  
and  
Output  
DGND  
Circuits  
Audio  
Processor  
PCM1741  
Digital  
Ground  
AGND  
Analog  
Ground  
DIGITAL SECTION  
ANALOG SECTION  
Return Path for Digital Signals  
FIGURE 12. Recommended PCB Layout.  
PCM1741  
17  
SBAS175  
Separate power supplies are recommended for the digital  
and analog sections of the board. This prevents the switching  
noise present on the digital supply from contaminating the  
analog power supply and degrading the dynamic perfor-  
mance of the PCM1741. In cases where a common +3.3V  
supply must be used for the analog and digital sections, an  
inductance (RF choke, ferrite bead) should be placed be-  
tween the analog and digital +3.3V supply connections to  
avoid coupling of the digital switching noise into the analog  
circuitry. Figure 13 shows the recommended approach for  
single-supply applications.  
THEORY OF OPERATION  
The delta-sigma section of the PCM1741 is based on an  
8-level amplitude quantizer and a fourth-order noise shaper. This  
section converts the oversampled input data to 8-level delta-sigma  
format. A block diagram of the 8-level delta-sigma modulator is  
shown in Figure 14. This 8-level delta-sigma modulator has the  
advantage of stability and clock jitter sensitivity over the typical  
one-bit (2-level) delta-sigma modulator. The combined  
oversampling rate of the delta-sigma modulator and the interpo-  
lation filter is 64fS.  
Power Supplies  
RF Choke or Ferrite Bead  
+3.3V AGND +VS VS  
REG  
VCC  
VDD  
VDD  
Output  
Circuits  
DGND  
PCM1741  
AGND  
Common  
Ground  
DIGITAL SECTION  
ANALOG SECTION  
FIGURE 13. Single-Supply PCB Layout.  
+
Z1  
Z1  
Z1  
Z1  
8fS  
+
+
+
+
+
8-Level Quantizer  
64fS  
FIGURE 14. 8-Level Delta-Sigma Modulator.  
PCM1741  
18  
SBAS175  
QUANTIZATION NOISE SPECTRUM  
(64x Oversampling)  
QUANTIZATION NOISE SPECTRUM  
(128x Oversampling)  
0
20  
0
20  
40  
40  
60  
60  
80  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Frequency (fS)  
Frequency (fS)  
FIGURE 15. Quantization Noise Spectrum.  
The theoretical quantization noise performance of the  
8-level delta-sigma modulator is shown in Figure 15. The en-  
hanced multilevel delta-sigma architecture also has advantages  
for input clock jitter sensitivity due to the multilevel quantizer,  
with the simulated jitter sensitivity, as shown in Figure 16.  
KEY PERFORMANCE PARAMETERS  
AND MEASUREMENT  
This section provides information on how to measure key  
dynamic performance parameters for the PCM1741. In all  
cases, an Audio Precision System Two Cascade or equivalent  
audio measurement system is utilized to perform the testing.  
JITTER DEPENDENCE (64x Oversampling)  
125  
TOTAL HARMONIC DISTORTION + NOISE  
120  
115  
110  
105  
100  
95  
Total Harmonic Distortion + Noise (THD+N) is a significant  
figure of merit for audio DACs, since it takes into account  
both harmonic distortion and all noise sources within a  
specified measurement bandwidth. The true rms value of the  
distortion and noise is referred to as THD+N. Figure 17  
shows the test setup for THD+N measurements.  
For the PCM1741, THD+N is measured with a full-scale,  
1kHz digital sine wave as the test stimulus at the input of the  
DAC. The digital generator is set to a 24-bit audio word  
length and a sampling frequency of 44.1kHz or 96kHz. The  
digital generator output is taken from the unbalanced  
S/PDIF connector of the measurement system. The S/PDIF  
90  
0
100  
200  
300  
400  
500  
600  
Jitter (ps)  
FIGURE 16. Jitter Sensitivity.  
Evaluation Board  
DEM-DAI1741  
2nd-Order  
Low-Pass  
Filter  
S/PDIF  
Receiver  
PCM1741  
f3dB = 54kHz or 108kHz  
Analyzer  
and  
Display  
20kHz  
Apogee  
Filter  
Digital  
Generator  
S/PDIF  
Output  
Band Limit  
Notch Filter  
fC = 1kHz  
0dBFS,  
rms Mode  
HPF = 22Hz  
LPF = 30kHz  
1kHz Sine Wave  
FIGURE 17. Test Setup for THD+N Measurements.  
PCM1741  
19  
SBAS175  
data is transmitted via a coaxial cable to the digital audio  
receiver on the DEM-DAI1741 demo board. The receiver is  
then configured to output 24-bit data in either I2S or left-  
justified data format. The DAC audio interface format is  
programmed to match the receiver output format. The ana-  
log output is then taken from the DAC post filter and  
connected to the analog analyzer input of the measurement  
system. The analog input is band limited using filters resi-  
dent in the analyzer. The resulting THD+N is measured by  
the analyzer and displayed by the measurement system.  
The measurement setup for the dynamic range measurement  
is shown in Figure 18, and is similar to the THD+N test  
setup discussed previously. The differences include the band  
limit filter selection, the additional A-Weighting filter, and  
the –60dBFS input level.  
IDLE CHANNEL SIGNAL-TO-NOISE RATIO  
The SNR test provides a measure of the noise floor of the  
DAC. The input to the DAC is all “0”s data, and the DAC’s  
Infinite Zero Detect Mute function must be disabled (default  
condition at power up for the PCM1741). This ensures that  
the delta-sigma modulator output is connected to the output  
amplifier circuit so that idle tones (if present) can be ob-  
served and effect the SNR measurement. The dither function  
of the digital generator must also be disabled to ensure an all  
“0”s data stream at the input of the DAC. The measurement  
setup for SNR is identical to that used for dynamic range,  
with the exception of the input signal level (see the notes  
provided in Figure 18).  
DYNAMIC RANGE  
Dynamic range is specified as A-Weighted, THD+N mea-  
sured with a –60dBFS, 1kHz digital sine wave stimulus at  
the input of the DAC. This measurement is designed to give  
a good indicator of how the DAC will perform given a low-  
level input signal.  
Evaluation Board  
DEM-DAI1741  
2nd-Order  
PCM1741(1)  
S/PDIF  
Receiver  
Low-Pass  
Filter  
f3dB = 54kHz  
Analyzer  
and  
Display  
Digital  
Generator  
A-Weight  
Filter(1)  
S/PDIF  
Output  
Band Limit  
Notch Filter  
C = 1kHz  
0% Full-Scale,  
Dither Off (SNR)  
60dBFS,  
rms Mode  
HPF = 22Hz  
LPF = 22kHz  
Option = A-Weighting(2)  
f
1kHz Sine Wave  
(Dynamic Range)  
NOTES: (1) Infinite Zero Detect Mute disabled.  
(2) Results without A-Weighting will be approxi-  
mately 3dB worse.  
FIGURE 18. Test Setup for Dynamic Range and SNR Measurements.  
PCM1741  
20  
SBAS175  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jul-2008  
PACKAGING INFORMATION  
Orderable Device  
PCM1741E  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SSOP/  
QSOP  
DBQ  
16  
16  
16  
16  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCM1741E/2K  
PCM1741E/2KG4  
PCM1741EG4  
SSOP/  
QSOP  
DBQ  
DBQ  
DBQ  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SSOP/  
QSOP  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SSOP/  
QSOP  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
PCM1741E/2K  
SSOP/  
QSOP  
DBQ  
16  
2000  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SSOP/QSOP DBQ 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 29.0  
PCM1741E/2K  
2000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

PCM1741E/2KG4

SERIAL INPUT LOADING, 24-BIT DAC, PDSO16, GREEN, SSOP-16
TI

PCM1741EG4

98dB SNR Stereo DAC 16-SSOP
TI

PCM1742

24-Bit, 192kHz Sampling Enhanced Multilevel, Delta-Sigma, Audio DIGITAL-TO-ANALOG CONVERTER
BB

PCM1742

106dB SNR 立体声 DAC
TI

PCM1742E

24-Bit, 192kHz Sampling Enhanced Multilevel, Delta-Sigma, Audio DIGITAL-TO-ANALOG CONVERTER
BB

PCM1742E

24-Bit, 192-kHz Sampling, Enhanced Multilevel, Delta-Sigma, Audio Digital-to-Analog Converter
TI

PCM1742E/2K

24-Bit, 192kHz Sampling Enhanced Multilevel, Delta-Sigma, Audio DIGITAL-TO-ANALOG CONVERTER
BB

PCM1742E/2K

24-Bit, 192-kHz Sampling, Enhanced Multilevel, Delta-Sigma, Audio Digital-to-Analog Converter
TI

PCM1742E/2KG4

24-Bit, 192-kHz Sampling, Enhanced Multilevel, Delta-Sigma, Audio Digital-to-Analog Converter
TI

PCM1742EG4

24-Bit, 192-kHz Sampling, Enhanced Multilevel, Delta-Sigma, Audio Digital-to-Analog Converter
TI

PCM1742KE

24-Bit, 192kHz Sampling Enhanced Multilevel, Delta-Sigma, Audio DIGITAL-TO-ANALOG CONVERTER
BB

PCM1742KE

24-Bit, 192-kHz Sampling, Enhanced Multilevel, Delta-Sigma, Audio Digital-to-Analog Converter
TI