PCM1804DB [TI]

具有差分输入的 112dB SNR 立体声 ADC | DB | 28 | -10 to 70;
PCM1804DB
型号: PCM1804DB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有差分输入的 112dB SNR 立体声 ADC | DB | 28 | -10 to 70

文件: 总39页 (文件大小:692K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
PCM1804  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
FULL DIFFERENTIAL ANALOG INPUT 24-BIT, 192-kHz  
STEREO A/D CONVERTER  
1
FEATURES  
APPLICATIONS  
AV Amplifier  
MD Player  
Digital VTR  
Digital Mixer  
Digital Recorder  
23  
24-Bit Delta-Sigma Stereo A/D Converter  
High Performance:  
Dynamic Range: 112 dB (Typical)  
SNR: 111 dB (Typical)  
THD+N: –102 dB (Typical)  
High-Performance Linear Phase Antialias  
Digital Filter:  
DESCRIPTION  
The PCM1804 is a high-performance, single-chip  
stereo A/D converter with fully differential analog  
Pass-Band Ripple: ±0.005 dB  
Stop-Band Attenuation: –100 dB  
voltage input. The PCM1804 uses  
a precision  
delta-sigma modulator and includes a linear phase  
antialias digital filter and high-pass filter (HPF) that  
removes dc offset from the input signal. The  
PCM1804 is suitable for a wide variety of mid- to  
high-grade consumer and professional applications,  
where excellent performance and 5-V analog supply  
and 3.3-V digital power-supply operation are required.  
The PCM1804 can achieve both PCM audio and  
DSD format due to the precision delta-sigma  
modulator. The PCM1804 is fabricated using an  
advanced CMOS process and is available in a small  
28-pin SSOP package.  
Fully Differential Analog Input: ±2.5 V  
Audio Interface: Master- or Slave-Mode  
Selectable  
Data Formats: Left-Justified, I2S, Standard  
24-Bit, and DSD  
Function:  
Peak Detection  
High-Pass Filter (HPF): –3 dB at 1 Hz,  
fS = 48 kHz  
Sampling Rate up to 192 kHz  
System Clock: 128 fS, 256 fS, 384 fS,  
512 fS, or 768 fS  
Dual Power Supplies:  
5 V for Analog  
3.3 V for Digital  
Power Dissipation: 225 mW  
Small 28-Pin SSOP  
DSD Output: 1 Bit, 64 fS  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
System Two, Audio Precision are trademarks of Audio Precision, Inc.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2001–2007, Texas Instruments Incorporated  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields.  
These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to  
MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together  
or the device should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriate logic  
voltage level, preferably either VCC or ground. Specific guidelines for handling devices of this type are contained in the publication  
Electrostatic Discharge (ESD) (SSYA008), available from Texas Instruments.  
PIN ASSIGNMENTS  
PCM1804 PACKAGE  
(TOP VIEW)  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
L
V
R
REF  
REF  
2
AGNDL  
AGNDR  
3
V
COM  
L
L+  
L−  
V
V
V
R
R+  
R−  
COM  
4
V
V
IN  
IN  
IN  
5
IN  
6
FMT0  
FMT1  
S/M  
OSR0  
OSR1  
OSR2  
BYPAS  
DGND  
AGND  
7
V
CC  
8
OVFL  
OVFR  
RST  
SCKI  
LRCK/DSDBCK  
BCK/DSDL  
DATA/DSDR  
9
10  
11  
12  
13  
14  
V
DD  
P0007-02  
2
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
FUNCTIONAL BLOCK DIAGRAM  
OSR0  
OSR1  
OSR2  
CLK  
Control  
SCKI  
V
L+  
IN  
Delta-Sigma  
Modulator (L)  
Decimation  
Filter (L)  
HPF  
S/M  
V
L−  
IN  
FMT0  
FMT1  
V
COM  
L
AGNDL  
V L  
REF  
V
L
REF  
LRCK/DSDBCK  
BCK/DSDL  
Serial  
Output  
Interface  
V
REF  
R
V R  
REF  
DATA/DSDR  
AGNDR  
V R  
COM  
V
R+  
Decimation  
Filter (R)  
IN  
Delta-Sigma  
Modulator (R)  
OVFL  
OVFR  
HPF  
V
R−  
IN  
BYPAS  
RST  
Power Supply  
V
CC  
AGND  
DGND  
V
DD  
B0029-01  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTIONS  
NAME  
PIN  
23  
2
AGND  
Analog ground  
AGNDL  
Analog ground for VREF  
Analog ground for VREF  
L
AGNDR  
BCK/DSDL  
BYPAS  
27  
16  
12  
15  
R
(1)  
I/O Bit clock input/output in PCM mode. L-channel audio data output in DSD mode.  
(1)  
I
HPF bypass control. High: HPF disabled, Low: HPF enabled  
DATA/DSDR  
O
L-channel and R-channel audio data output in PCM mode. R-channel audio data output in DSD mode. (DSD  
output, when in DSD mode)  
DGND  
FMT0  
FMT1  
LRCK/DSDBCK  
OSR0  
OSR1  
OSR2  
OVFL  
OVFR  
RST  
13  
6
I
Digital ground  
(2)  
Audio data format 0. See Table 5.  
(2)  
7
I
Audio data format 1. See Table 5.  
(1)  
17  
9
I/O Sampling clock input/output in PCM and DSD modes.  
(2)  
I
I
Oversampling ratio 0. See Table 1 and Table 2.  
Oversampling ratio 1. See Table 1 and Table 2.  
Oversampling ratio 2. See Table 1 and Table 2.  
(2)  
(2)  
10  
11  
21  
20  
19  
18  
8
I
O
O
I
Overflow signal of L-channel in PCM mode. This is available in PCM mode only.  
Overflow signal of R-channel in PCM mode. This is available in PCM mode only.  
(2)  
Reset, power-down input, active-low  
(3)  
SCKI  
I
System clock input; 128 fS, 256 fS, 384 fS, 512 fS, or 768 fS.  
(2)  
S/M  
I
Slave/master mode selection. See Table 4.  
VCC  
22  
3
I
Analog power supply  
VCOM  
VCOM  
VDD  
L
L-channel analog common-mode voltage (2.5 V)  
R-channel analog common-mode voltage (2.5 V)  
Digital power supply  
R
26  
14  
5
VINL–  
VINL+  
VINR–  
VINR+  
L-channel analog input, negative pin  
4
I
L-channel analog input, positive pin  
24  
25  
1
I
R-channel analog input, negative pin  
I
R-channel analog input, positive pin  
VREF  
VREF  
L
L-channel voltage reference output, requires capacitors for decoupling to AGND  
R-channel voltage reference output, requires capacitors for decoupling to AGND  
R
28  
(1) Schmitt-trigger input  
(2) Schmitt-trigger input with internal pulldown (51 kμ typically), 5-V tolerant.  
(3) Schmitt-trigger input, 5-V tolerant.  
4
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VCC  
–0.3 V to 6.5 V  
–0.3 V to 4 V  
±0.1 V  
Supply voltage  
VDD  
Ground voltage differences  
Supply voltage difference  
AGND, AGNDL, AGNDR, DGND  
VCC, VDD  
VCC – VDD < 3 V  
FMT0, FMT1, S/M, OSR0, OSR1, OSR2, SCKI, RST  
–0.3 V to 6.5 V  
–0.3 V to (VDD + 0.3 V)  
–0.3 V to (VCC + 0.3 V)  
±10 mA  
Digital input voltage  
BYPAS, DATA/DSDR, BCK/DSDL, LRCK/DSDBCK, OVFL, OVFR  
VREFL, VREFR, VCOML, VCOMR, VINL+, VINR+, VINL–, VINR–  
Analog input voltage  
Input current (any pins except supplies)  
Ambient temperature under bias  
Storage temperature  
TA  
–40°C to 125°C  
–55°C to 150°C  
150°C  
Tstg  
TJ  
Junction temperature  
Lead temperature (soldering)  
Package temperature (IR reflow, peak)  
260°C, 5 s  
260°C  
(1) Stresses beyond those listed under "absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range  
MIN  
4.75  
3
NOM  
MAX  
5.25  
3.6  
UNIT  
V
Analog supply voltage, VCC  
5
Digital supply voltage, VDD  
3.3  
5
V
Analog input voltage, full-scale (–0 dB), differential input  
Digital input logic family  
Vp-p  
TTL compatible  
System clock  
Digital input clock frequency  
8.192  
32  
36.864  
192  
10  
MHz  
kHz  
pF  
Sampling clock  
Digital output load capacitance  
Operating free-air temperature, TA  
–10  
70  
°C  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, master mode, single-speed mode, fS = 48 kHz, system clock = 256 fS,  
24-bit data, unless otherwise noted.  
PCM1804DB  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
Resolution  
24  
Bits  
DATA FORMAT  
Audio data interface format  
Audio data bit length  
Standard, I2S, left-justified  
24  
Bits  
MSB first,  
2s complement, DSD  
Audio data format  
DIGITAL INPUT/OUTPUT  
Logic family  
TTL compatible  
2
(1) (2)  
(3)  
5.5  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
Vdc  
Vdc  
2
VDD  
0.8  
(1) (2) (3)  
(1)  
(2)  
VIN = VDD  
VIN = VDD  
VIN = VDD  
VIN = 0 V  
VIN = 0 V  
65  
100  
±10  
±100  
±10  
±50  
IIH  
High-level input current  
μA  
(3)  
(1) (2)  
(3)  
IIL  
Low-level input current  
μA  
(4)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IOH = –1 mA  
2.4  
32  
Vdc  
Vdc  
(4)  
IOL = 1 mA  
0.4  
CLOCK FREQUENCY  
fS Sampling frequency  
192  
kHz  
(5)  
256 fS, single rate  
384 fS, single rate  
512 fS, single rate  
768 fS, single rate  
12.288  
18.432  
24.576  
36.864  
24.576  
36.864  
24.576  
36.864  
(5)  
(5)  
(5)  
System clock frequency  
MHz  
(6)  
256 fS, dual rate  
384 fS, dual rate  
128 fS, quad rate  
192 fS, quad rate  
(6)  
(7)  
(7)  
DC ACCURACY  
Gain mismatch, channel-  
±3 % of FSR  
to-channel  
Gain error (VIN = –0.5 dB)  
Bipolar zero error  
±4 % of FSR  
% of FSR  
HPF bypass  
±0.2  
(1) Pins 6–11, 19: FMT0, FMT1, S/M, OSR0, OSR1, OSR2, RST [Schmitt-trigger input with internal pulldown (51 kμ typically), 5-V tolerant]  
(2) Pin 18: SCKI (Schmitt-trigger input, 5-V tolerant)  
(3) Pins 12, 16–17: BYPAS, BCK/DSDL, LRCK/DSDBCK (in slave mode, Schmitt-trigger input)  
(4) Pins 15–17, 20, and 21: DATA/DSDR, BCK/DSDL, LRCK/DSDBCK (in master mode), OVFR, OVFL  
(5) Single rate, fS = 48 kHz  
(6) Dual rate, fS = 96 kHz  
(7) Quad rate, fS = 192 kHz  
6
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, master mode, single-speed mode, fS = 48 kHz, system clock = 256 fS,  
24-bit data, unless otherwise noted.  
PCM1804DB  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
(8)  
DYNAMIC PERFORMANCE  
VIN = –0.5 dB  
VIN = –60 dB  
VIN = –0.5 dB  
VIN = –60 dB  
VIN = –0.5 dB  
VIN = –60 dB  
–102  
–49  
–101  
–47  
–101  
–47  
–100  
112  
112  
112  
112  
111  
111  
111  
111  
109  
107  
107  
–95  
fS = 48 kHz, system clock = 256 fS  
fS = 96 kHz, system clock = 256 fS  
fS = 192 kHz, system clock = 128 fS  
Total harmonic distortion  
plus noise  
THD+N  
dB  
VIN = –0.5 dB DSD mode  
fS = 48 kHz, system clock = 256 fS  
106  
105  
97  
VIN = –60 dB fS = 96 kHz, system clock = 256 fS  
fS = 192 kHz, system clock = 128 fS  
DSD mode  
Dynamic range  
(A-weighted)  
dB  
fS = 48 kHz, system clock = 256 fS  
fS = 96 kHz, system clock = 256 fS  
fS = 192 kHz, system clock = 128 fS  
DSD mode  
SNR (A-weighted)  
Channel separation  
dB  
dB  
fS = 48 kHz, system clock = 256 fS  
fS = 96 kHz, system clock = 256 fS  
fS = 192 kHz, system clock = 128 fS  
ANALOG INPUT  
Input voltage  
Differential input  
Single-ended  
±2.5  
2.5  
10  
V
Center voltage  
Input impedance  
Vdc  
kμ  
DIGITAL FILTER PERFORMANCE  
Pass-band edge  
Single rate, dual rate  
Single rate, dual rate  
Single rate, dual rate  
Single rate, dual rate  
0.453 fS  
±0.005  
Hz  
Hz  
dB  
dB  
Stop-band edge  
0.547 fS  
–100  
Pass-band ripple  
Stop-band attenuation  
Pass-band edge (–0.005  
dB)  
Quad rate  
0.375 fS  
0.49 fS  
Hz  
Pass-band edge (–3 dB)  
Stop-band edge  
Quad rate  
Quad rate  
Quad rate  
Quad rate  
Single rate, dual rate  
Quad rate  
–3 dB  
Hz  
Hz  
dB  
dB  
s
0.77 fS  
–135  
Pass-band ripple  
Stop-band attenuation  
Group delay  
±0.005  
37/fS  
9.5/fS  
Group delay  
s
HPF frequency response  
fS/48000  
Hz  
(8) fIN = 1 kHz, using System Two™ audio measurement system by Audio Precision™ in RMS mode, with 20-kHz LPF and 400-Hz HPF in  
calculation for single rate, or with 40-kHz LPF in calculation for dual and quad rates.  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at TA = 25°C, VCC = 5 V, VDD = 3.3 V, master mode, single-speed mode, fS = 48 kHz, system clock = 256 fS,  
24-bit data, unless otherwise noted.  
PCM1804DB  
PARAMETER  
TEST CONDITIONS  
UNIT  
Vdc  
mA  
MIN  
TYP  
MAX  
POWER SUPPLY REQUIREMENTS  
VCC  
4.75  
3
5
3.3  
35  
5.25  
3.6  
45  
Supply voltage range  
VDD  
(9) (10) (11)  
ICC  
VCC = 5 V  
(9) (12)  
VDD = 3.3 V  
VDD = 3.3 V  
VDD = 3.3 V  
15  
20  
Supply current  
IDD  
(10) (12)  
(11) (12)  
27  
18  
(9) (12)  
Operation, VCC = 5 V, VDD = 3.3 V  
Operation, VCC = 5 V, VDD = 3.3 V  
Operation, VCC = 5 V, VDD = 3.3 V  
225  
265  
235  
5
290  
(10) (12)  
(11) (12)  
PD  
Power dissipation  
mW  
Power down, VCC = 5 V, VDD = 3.3 V  
TEMPERATURE RANGE  
Operation temperature  
Thermal resistance  
–10  
70  
°C  
θJA  
100  
°C/W  
(9) Single rate, fS = 48 kHz  
(10) Dual rate, fS = 96 kHz  
(11) Quad rate, fS = 192 kHz  
(12) Minimum load on DATA/DSDR (pin 15)  
8
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
TYPICAL PERFORMANCE CURVES - SINGLE RATE  
All specifications at TA = 25°C, VCC = 3.3 V, VDD = 5 V, master mode, fS = 48 kHz, system clock = 256 fS, 24-bit data, unless  
otherwise noted.  
TOTAL HARMONIC DISTORTION + NOISE  
DYNAMIC RANGE AND SNR  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
120  
115  
110  
105  
100  
−35  
−40  
−45  
−50  
−55  
−90  
−95  
Dynamic Range  
SNR  
−100  
−105  
−110  
−0.5 dB  
−60 dB  
−20  
0
20  
40  
60  
80  
−20  
0
20  
40  
60  
80  
T − Temperature − °C  
G001  
T − Temperature − °C  
G002  
Figure 1.  
Figure 2.  
TOTAL HARMONIC DISTORTION + NOISE  
DYNAMIC RANGE AND SNR  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
120  
115  
110  
105  
100  
−35  
−40  
−45  
−50  
−55  
−90  
−95  
Dynamic Range  
SNR  
−100  
−105  
−110  
−0.5 dB  
−60 dB  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
V
CC  
− Supply Voltage − V  
G003  
V
CC  
− Supply Voltage − V  
G004  
Figure 3.  
Figure 4.  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
TYPICAL PERFORMANCE CURVES - SINGLE RATE (continued)  
All specifications at TA = 25°C, VCC = 3.3 V, VDD = 5 V, master mode, fS = 48 kHz, system clock = 256 fS, 24-bit data, unless  
otherwise noted.  
TOTAL HARMONIC DISTORTION + NOISE  
DYNAMIC RANGE AND SNR  
vs  
SAMPLING FREQUENCY  
vs  
SAMPLING FREQUENCY  
120  
115  
110  
105  
100  
−35  
−40  
−45  
−50  
−55  
−90  
−95  
Dynamic Range  
SNR  
−100  
−105  
−110  
−0.5 dB  
−60 dB  
32  
44.1  
48  
32  
44.1  
48  
f
− Sampling Frequency − kHz  
S
G005  
f
S
− Sampling Frequency − kHz  
G006  
Figure 5.  
Figure 6.  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
SIGNAL LEVEL  
0
−20  
−40  
−60  
−80  
−100  
−120  
−100  
−80  
−60  
−40  
−20  
0
Signal Level − dB  
G009  
Figure 7.  
10  
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
TYPICAL PERFORMANCE CURVES - SINGLE RATE (continued)  
All specifications at TA = 25°C, VCC = 3.3 V, VDD = 5 V, master mode, fS = 48 kHz, system clock = 256 fS, 24-bit data, unless  
otherwise noted.  
AMPLITUDE  
vs  
FREQUENCY  
AMPLITUDE  
vs  
FREQUENCY  
0
−20  
0
−20  
Output Spectrum:  
−0.5 dB,  
N = 8192  
−40  
−40  
Output Spectrum:  
−60 dB,  
−60  
−60  
N = 8192  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
12000  
24000  
0
12000  
24000  
f − Frequency − Hz  
f − Frequency − Hz  
G008  
G007  
Figure 8.  
Figure 9.  
TYPICAL PERFORMANCE CURVES - DUAL RATE  
All specifications at TA = 25°C, VCC = 3.3 V, VDD = 5 V, master mode, and 24-bit data, unless otherwise noted.  
AMPLITUDE  
vs  
FREQUENCY  
AMPLITUDE  
vs  
FREQUENCY  
0
−20  
0
−20  
f
= 96 kHz,  
f = 96 kHz,  
S
System Clock = 256 f  
S
System Clock = 256 f  
S
S
−40  
−40  
Output Spectrum:  
−0.5 dB,  
Output Spectrum:  
−60 dB,  
−60  
−60  
N = 8192  
N = 8192  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
24000  
48000  
0
24000  
48000  
f − Frequency − Hz  
f − Frequency − Hz  
G010  
G011  
Figure 10.  
Figure 11.  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
TYPICAL PERFORMANCE CURVES - QUAD RATE  
All specifications at TA = 25°C, VCC = 3.3 V, VDD = 5 V, master mode, 24-bit data, unless otherwise noted.  
AMPLITUDE  
vs  
FREQUENCY  
AMPLITUDE  
vs  
FREQUENCY  
0
−20  
0
−20  
f
= 192 kHz,  
f = 192 kHz,  
S
System Clock = 128 f  
S
System Clock = 128 f  
S
S
−40  
−40  
Output Spectrum:  
−0.5 dB,  
Output Spectrum:  
−60 dB,  
−60  
−60  
N = 8192  
N = 8192  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
48000  
96000  
0
48000  
96000  
f − Frequency − Hz  
f − Frequency − Hz  
G012  
G013  
Figure 12.  
Figure 13.  
TYPICAL PERFORMANCE CURVES - DSD MODE  
All specifications at TA = 25°C, VCC = 3.3 V, VDD = 5 V, master mode, fS = 44.1 kHz, system clock = 16.9344 MHz, unless  
otherwise noted.  
AMPLITUDE  
vs  
FREQUENCY  
AMPLITUDE  
vs  
FREQUENCY  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
Output Spectrum:  
Output Spectrum:  
−80  
−80  
−0.5 dB,  
N = 8192  
−60 dB,  
N = 8192  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
11025  
22050  
0
11025  
22050  
f − Frequency − Hz  
f − Frequency − Hz  
G014  
G015  
Figure 14.  
Figure 15.  
12  
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
TYPICAL PERFORMANCE CURVES OF INTERNAL FILTER  
LINEAR PHASE ANTIALIAS DIGITAL FILTER FREQUENCY RESPONSE - Single-Rate  
OVERALL CHARACTERISTICS  
FOR SINGLE-RATE FILTER  
STOP-BAND ATTENUATION CHARACTERISTICS  
FOR SINGLE-RATE FILTER  
50  
0
0
−10  
f
S
= 48 kHz  
f = 48 kHz  
S
−20  
−30  
−40  
−50  
−50  
−60  
−70  
−80  
−100  
−150  
−200  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.00  
0.25  
0.50  
0.75  
1.00  
Normalized Frequency − y f  
Normalized Frequency − y f  
S
S
G016  
G017  
Figure 16.  
Figure 17.  
PASS-BAND RIPPLE CHARACTERISTICS  
FOR SINGLE-RATE FILTER  
TRANSIENT BAND CHARACTERISTICS  
FOR SINGLE-RATE FILTER  
0.02  
0.00  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
f
= 48 kHz  
S
f
S
= 48 kHz  
−0.02  
−0.04  
−0.06  
−0.08  
−0.10  
−6.04 dB at 0.5 f  
S
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
Normalized Frequency − y f  
Normalized Frequency − y f  
S
S
G018  
G019  
Figure 18.  
Figure 19.  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
TYPICAL PERFORMANCE CURVES OF INTERNAL FILTER (continued)  
LINEAR PHASE ANTIALIAS DIGITAL FILTER FREQUENCY RESPONSE - Dual-Rate  
OVERALL CHARACTERISTICS  
FOR DUAL-RATE FILTER  
STOP-BAND ATTENUATION CHARACTERISTICS  
FOR DUAL-RATE FILTER  
50  
0
0
−10  
f
S
= 96 kHz  
f
S
= 96 kHz  
−20  
−30  
−40  
−50  
−50  
−60  
−70  
−80  
−100  
−150  
−200  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
0.00  
0.25  
0.50  
0.75  
1.00  
Normalized Frequency − y f  
Normalized Frequency − y f  
S
S
G020  
G021  
Figure 20.  
Figure 21.  
PASS-BAND RIPPLE CHARACTERISTICS  
FOR DUAL-RATE FILTER  
TRANSIENT BAND CHARACTERISTICS  
FOR DUAL-RATE FILTER  
0.02  
0.00  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
f
S
= 96 kHz  
f = 96 kHz  
S
−0.02  
−0.04  
−0.06  
−0.08  
−0.10  
−6.02 dB at 0.5 f  
S
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
Normalized Frequency − y f  
Normalized Frequency − y f  
S
S
G022  
G023  
Figure 22.  
Figure 23.  
14  
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
TYPICAL PERFORMANCE CURVES OF INTERNAL FILTER (continued)  
LINEAR PHASE ANTIALIAS DIGITAL FILTER FREQUENCY RESPONSE - Quad-Rate  
OVERALL CHARACTERISTICS  
FOR QUAD-RATE FILTER  
STOP-BAND ATTENUATION CHARACTERISTICS  
FOR QUAD-RATE FILTER  
50  
0
0
−10  
f
S
= 192 kHz  
f
S
= 192 kHz  
−20  
−30  
−40  
−50  
−50  
−60  
−70  
−80  
−100  
−150  
−200  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
0.00  
0.25  
0.50  
0.75  
1.00  
Normalized Frequency − y f  
Normalized Frequency − y f  
S
S
G024  
G025  
Figure 24.  
Figure 25.  
PASS-BAND RIPPLE CHARACTERISTICS  
FOR QUAD-RATE FILTER  
TRANSIENT BAND CHARACTERISTICS  
FOR QUAD-RATE FILTER  
0.02  
0.00  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
f
S
= 192 kHz  
f
= 192 kHz  
S
−0.02  
−0.04  
−0.06  
−0.08  
−0.10  
−3.9 dB at 0.5 f  
S
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.45  
0.47  
0.49  
0.51  
0.53  
S
0.55  
Normalized Frequency − y f  
Normalized Frequency − y f  
S
G026  
G027  
Figure 26.  
Figure 27.  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
TYPICAL PERFORMANCE CURVES OF INTERNAL FILTER (continued)  
HIGH-PASS FILTER (HPF) FREQUENCY RESPONSE  
STOP-BAND CHARACTERISTICS  
PASS-BAND CHARACTERISTICS  
0.2  
0.0  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−0.2  
−0.4  
−0.6  
−0.8  
−1.0  
0.0  
0.1  
0.2  
0.3  
0.4  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Normalized Frequency − y f /1000  
Normalized Frequency − y f /1000  
S
S
G028  
G029  
Figure 28.  
Figure 29.  
PRINCIPLES OF OPERATION  
THEORY OF OPERATION  
The PCM1804 consists of a band-gap reference, a delta-sigma modulator with full-differential architecture for  
L-channel and R-channel, a decimation filter with a high-pass filter, and a serial interface circuit. Figure 30  
illustrates the total architecture of the PCM1804. An on-chip, high-precision reference with 10-μF external  
capacitor(s) provides all the reference voltage needed in the PCM1804, and it defines the full-scale voltage range  
of both channels. Full-differential architecture provides a wide dynamic range and excellent power-supply  
rejection performance. The input signal is sampled at ×128, ×64, and ×32 oversampling rates according to the  
overasmpling ratio control, OSR[0:2]. The single rate, dual rate, and quad rate eliminate the external sample-hold  
amplifier. Figure 31 illustrates how for each oversampling ratio the PCM1804 decimates the modulator output  
down to PCM data when the modulator is running at 6.144 MHz. The delta-sigma modulation randomizes the  
modulator outputs and reduces the idle tone level. The oversampled data stream from the delta-sigma modulator  
is converted to a 1-fS, 24-bit digital signal, while removing high-frequency noise components using a decimation  
filter. The dc components of the signal are removed by the HPF, and the HPF output is converted to a  
time-multiplexed serial signal through the serial interface, which provides flexible serial formats and master/slave  
modes. The PCM1804 also has a DSD output mode. The PCM1804 can output the signal directly from the  
modulators to DSDL (pin 16) and DSDR (pin 15).  
16  
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
PRINCIPLES OF OPERATION (continued)  
OSR0  
OSR1  
OSR2  
CLK  
Control  
SCKI  
V
L+  
IN  
Delta-Sigma  
Modulator (L)  
Decimation  
Filter (L)  
HPF  
S/M  
V
L−  
IN  
FMT0  
FMT1  
V
COM  
L
AGNDL  
V L  
REF  
V
L
REF  
LRCK/DSDBCK  
BCK/DSDL  
Serial  
Output  
Interface  
V
REF  
R
V R  
REF  
DATA/DSDR  
AGNDR  
V R  
COM  
V
R+  
Decimation  
Filter (R)  
IN  
Delta-Sigma  
Modulator (R)  
OVFL  
OVFR  
HPF  
V
R−  
IN  
BYPAS  
RST  
Power Supply  
V
CC  
AGND  
DGND  
V
DD  
B0029-01  
Figure 30. Total Block Diagram of PCM1804  
0
Quad-Rate Filter  
−20  
−40  
Dual-Rate Filter  
−60  
Modulator  
Single-  
−80  
−100  
−120  
−140  
−160  
Rate  
Filter  
0
48  
96  
144  
192  
f − Frequency − kHz  
G030  
Figure 31. Spectrum of Modulator Output and Decimation Filter  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
PRINCIPLES OF OPERATION (continued)  
SYSTEM CLOCK INPUT  
The PCM1804 supports 128 fS, 192 fS (only in master mode at quad rate), 256 fS, 384 fS, 512 fS, and 768 fS as a  
system clock, where fS is the audio sampling frequency. The system clock must be supplied on SCKI (pin 18).  
Table 3 shows the relationship of typical sampling frequency and the system clock frequency, and Figure 32  
shows system clock timing. In master mode, the system clock rate is selected by OSR2 (pin 11), OSR1 (pin 10),  
and OSR0 (pin 9) as shown in Table 1. In slave mode, the system clock rate is automatically detected. In DSD  
mode, OSR2 (pin 11), OSR1 (pin 10), OSR0 (pin 9), and the system clock frequency are fixed as shown in  
Table 1 and Table 3.  
t
t
w(SCKL)  
w(SCKH)  
SCKI  
2 V  
SCKI  
0.8 V  
T0005B07  
PARAMETER  
MIN UNIT  
tw(SCKH)  
tw(SCKL)  
System clock pulse duration, HIGH  
System clock pulse duration, LOW  
11  
11  
ns  
ns  
Figure 32. System Clock Input Timing  
POWER-ON AND RESET FUNCTIONS  
The PCM1804 has both an internal power-on-reset circuit and RST (pin 19). For internal power-on reset,  
initialization (reset) is performed automatically at the time when the power supply VDD exceeds 2 V (typical) and  
VCC exceeds 4 V (typical). RST accepts external forced reset, and a low level on RST initiates the reset  
sequence. Because an internal pulldown resistor terminates RST, no connection of RST is equivalent to a  
low-level input. Because the system clock is used as a clock signal for the reset circuit, the system clock must be  
supplied as soon as power is supplied; more specifically, at least three system clocks are required prior to VDD  
>
2 V, VCC > 4 V, and RST = high. While VDD < 2 V (typical), VCC < 4 V (typical), or RST = low, and 1/fS (maximum)  
count after VDD > 2 V (typical),VCC > 4 V (typical) and RST = high, the PCM1804 stays in the reset state and the  
digital output is forced to zero. The digital output is valid after the reset state is released and the time of 1116/fS  
has passed. Figure 33 and Figure 34 illustrate the internal power-on-reset and external-reset timing, respectively.  
Figure 35 illustrates the digital output for power-on reset and RST control. The PCM1804 needs RST = low when  
control pins are changed or in slave mode when SCKI, LRCK, and BCK are changed.  
POWER-DOWN FUNCTION  
The PCM1804 has a power-down feature that is controlled by RST (pin 19). Entering the power-down mode is  
done by keeping the RST input level low for more than 65536/fS. In the master mode, the SCKI (pin 18) is used  
as the clock signal for the power-down counter. While in the slave mode, SCKI (pin 18) and LRCK (pin 17) are  
used as the clock signal. The clock(s) must be supplied until the power-down sequence completes. As soon as  
RST goes high, the PCM1804 starts the reset-release sequence described in the Power-On and Reset Functions  
section.  
OVERSAMPLING RATIO  
The oversampling ratio is selected by OSR2 (pin 11), OSR1 (pin 10), and OSR0 (pin 9) as shown in Table 1 and  
Table 2. The PCM1804 needs RST = low when logic levels on the OSR2, OSR1, and OSR0 pins are changed.  
18  
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
 
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
Table 1. Oversampling Ratio in Master Mode  
OSR2  
Low  
OSR1  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
OSR0  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
OVERSAMPLING RATIO  
Single rate (× 128 fS)  
Single rate (× 128 fS)  
Single rate (× 128 fS)  
Single rate (× 128 fS)  
Dual rate (× 64 fS)  
SYSTEM CLOCK RATE  
768 fS  
512 fS  
384 fS  
256 fS  
384 fS  
256 fS  
192 fS  
128 fS  
384 fS  
256 fS  
Low  
Low  
Low  
High  
High  
High  
High  
High  
High  
Dual rate (× 64 fS)  
Quad rate (× 32 fS)  
Quad rate (× 32 fS)  
DSD mode (× 64 fS)  
DSD mode (× 64 fS)  
Table 2. Oversampling Ratio in Slave Mode  
OSR2  
Low  
OSR1  
Low  
OSR0  
Low  
OVERSAMPLING RATIO  
Single rate (× 128 fS)  
Dual rate (× 64 fS)  
Quad rate (× 32 fS)(1)  
Reserved  
SYSTEM CLOCK RATE  
Automatically detected  
Low  
Low  
High  
Low  
Automatically detected  
Low  
High  
High  
Low  
Automatically detected  
Low  
High  
Low  
High  
High  
High  
High  
Reserved  
Low  
High  
Low  
Reserved  
High  
High  
Reserved  
High  
Reserved  
(1) Only at the 128-fS system clock rate  
Table 3. Sampling Frequency and System Clock Frequency  
SYSTEM CLOCK FREQUENCY (MHz)  
SAMPLING  
FREQUENCY (kHz)  
OVERSAMPLING RATIO  
Single rate(2)  
(1)  
128 fS  
192 fS  
256 fS  
8.192  
11.2896  
12.288  
22.5792  
24.576  
384 fS  
12.288  
16.9344  
18.432  
33.8688  
36.864  
512 fS  
768 fS  
32  
44.1  
48  
16.384  
24.576  
22.5792  
33.8688  
24.576  
36.864  
88.2  
96  
Dual rate(3)  
176.4  
192  
44.1  
22.5792  
24.576  
33.8688  
36.864  
Quad rate(4)  
DSD mode(3)  
11. 2896  
16.9344  
(1) Only available in master mode at the quad rate  
(2) Modulator is running at 128 fS.  
(3) Modulator is running at 64 fS.  
(4) Modulator is running at 32 fS.  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
4.4 V / 2.2 V  
V , V  
CC DD  
4 V / 2 V  
3.6 V / 1.8 V  
Reset  
Reset Removal  
Internal Reset  
System Clock  
1024 System Clock + 1/f (Max)  
S
T0014-07  
Figure 33. Internal Power-On-Reset Timing  
RST  
RST Pulse Duration (t ) = 40 ns (Min)  
(RST)  
t
(RST)  
Reset  
Reset Removal  
Internal Reset  
System Clock  
1/f (Max)  
S
T0015-05  
Figure 34. External Reset Timing  
Power ON  
RST ON  
Reset Removal  
Ready / Operation  
Internal Reset  
Reset  
1116/f  
S
(1)  
(2)  
Data  
Converted Data  
Zero Data  
T0051-01  
(1) In the DSD mode, DSDL is also controlled like DSDR.  
(2) The HPF transient response appears initially.  
Figure 35. ADC Digital Output for Power-On Reset and RST Control  
20  
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
AUDIO DATA INTERFACE  
The PCM1804 interfaces the audio system through BCK/DSDL (pin 16), LRCK/DSDBCK (pin 17), and  
DATA/DSDR (pin 15). The PCM1804 needs RST = low when in the interface mode and/or the data format are  
changed.  
INTERFACE MODE  
The PCM1804 supports master mode and slave mode as interface modes, which are selected by S/M (pin 8) as  
shown in Table 4. In master mode, the PCM1804 provides the timing of the serial audio data communications  
between the PCM1804 and the digital audio processor or external circuit. While in slave mode, the PCM1804  
receives the timing for data transfer from an external controller. Slave mode is not available for DSD.  
Table 4. Interface Mode  
S/M  
Low  
High  
MODE  
Master mode  
Slave mode  
DATA FORMAT  
The PCM1804 supports four audio data formats in both master and slave modes, and these data formats are  
selected by FMT0 (pin 6) and FMT1 (pin 7) as shown in Table 5.  
Table 5. Data Format  
FMT1  
Low  
FMT0  
Low  
FORMAT  
PCM, left-justified, 24-bit  
PCM, I2S, 24-bit  
MASTER  
Yes  
SLAVE  
Yes  
Yes  
Yes  
Low  
High  
Low  
Yes  
High  
High  
PCM, standard, 24-bit  
DSD  
Yes  
High  
Yes  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): PCM1804  
 
 
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
INTERFACE TIMING FOR PCM  
Figure 36 through Figure 38 illustrate the interface timing for PCM.  
(1) Left-Justified Data Format; L-Channel = High, R-Channel = Low  
1/f  
S
LRCK  
L-Channel  
R-Channel  
BCK  
DATA  
1
2
3
22 23 24  
1
2
3
22 23 24  
1 2  
(2) I2S Data Format; L-Channel = Low, R-Channel = High  
1/f  
S
L-Channel  
R-Channel  
LRCK  
BCK  
1
2
3
22 23 24  
1
2
3
22 23 24  
1 2  
DATA  
(3) Standard Data Format; L-Channel = High, R-Channel = Low  
1/f  
S
L-Channel  
R-Channel  
LRCK  
BCK  
22 23 24  
1
2
3
22 23 24  
1
2
3
22 23 24  
DATA  
T0009-03  
NOTE: LRCK and BCK work as outputs in master mode and as inputs in slave mode.  
Figure 36. Audio Data Format for PCM  
22  
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
 
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
t
(LRCP)  
0.5 V  
LRCK  
DD  
t
w(BCKL)  
t
(CKLR)  
t
w(BCKH)  
0.5 V  
BCK  
DD  
t
t
t
(CKDO)  
(LRDO)  
(BCKP)  
0.5 V  
DATA  
DD  
T0018-03  
PARAMETERS  
MIN  
TYP  
1/(64 fS)(3)  
MAX  
UNIT  
t(BCKP)  
tw(BCKH)  
tw(BCKL)  
t(CKLR)  
t(LRCP)  
t(CKDO)  
t(LRDO)  
tr  
BCK period  
BCK pulse duration, HIGH  
BCK pulse duration, LOW  
32  
ns  
ns  
ns  
32  
–5  
Delay time, BCK falling edge to LRCK valid  
LRCK period  
15  
1/fS  
Delay time, BCK falling edge to DATA valid  
Delay time, LRCK edge to DATA valid  
Rising time of all signals(1)(2)  
–5  
–5  
15  
15  
10  
10  
ns  
ns  
ns  
ns  
tf  
Falling time of all signals(1)(2)  
(1) Rising and falling times are measured from 10% to 90% of IN/OUT signal swing.  
(2) Load capacitance of all signals is 10 pF.  
(3) t(BCKP) is fixed at 1/(64 fS) in case of master mode.  
Figure 37. Audio Data Interface Timing for PCM (Master Mode: LRCK and BCK Work as Outputs)  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
t
(LRCP)  
1.4 V  
LRCK  
t
t
(LRSU)  
w(BCKL)  
t
t
(LRHD)  
w(BCKH)  
1.4 V  
BCK  
t
t
(LRDO)  
t
(CKDO)  
(BCKP)  
0.5 V  
DATA  
DD  
T0017-03  
PARAMETERS  
MIN  
1/(64 fS)  
32  
TYP  
MAX  
UNIT  
t(BCKP)  
BCK period  
1/(48 fS)  
tw(BCKH)  
tw(BCKL)  
t(LRSU)  
t(LRHD)  
t(LRCP)  
t(CKDO)  
t(LRDO)  
tr  
BCK pulse duration, HIGH  
BCK pulse duration, LOW  
ns  
ns  
ns  
ns  
32  
LRCK setup time to BCK rising edge  
LRCK hold time to BCK rising edge  
LRCK period  
12  
12  
1/fS  
Delay time, BCK falling edge to DATA valid  
Delay time, LRCK edge to DATA valid  
Rising time of all signals(1)(2)  
5
5
25  
25  
10  
10  
ns  
ns  
ns  
ns  
tf  
Falling time of all signals(1)(2)  
(1) Rising and falling times are measured from 10% to 90% of IN/OUT signals swing.  
(2) Load capacitance of DATA/DSDR signal is 10 pF.  
Figure 38. Audio Data Interface Timing for PCM (Slave Mode: LRCK and BCK Work as Inputs)  
INTERFACE TIMING FOR DSD  
Figure 39 and Figure 40 illustrate the interface timing for DSD.  
DSDBCK  
DSDL  
DSDR  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
n−3  
n−2  
n−1  
n
n+1  
n+2  
n+3  
n−3  
n−2  
n−1  
n
n+1  
n+2  
n+3  
T0052−01  
Figure 39. Audio Data Format  
24  
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
 
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
t
t
w(BCKL)  
w(BCKH)  
t
(CKDO)  
DSDBCK  
0.5 V  
0.5 V  
DD  
t
(BCKP)  
DSDL  
DSDR  
DD  
T0053−01  
PARAMETERS  
MIN  
TYP  
354  
MAX  
UNIT  
ns  
t(BCKP)  
DSDBCK period  
tw(BCKH)  
tw(BCKL)  
t(CKDO)  
tr  
DSDBCK pulse duration, HIGH  
DSDBCK pulse duration, LOW  
177  
177  
ns  
ns  
Delay time DSDBCK falling edge to DSDL, DSDR valid  
Rising time of all signals(1)(2)  
Falling time of all signals(1)(2)  
–5  
15  
ns  
10  
10  
ns  
tf  
ns  
(1) Rising and falling times are measured from 10% to 90% of IN/OUT signal swing.  
(2) Load capacitance of DSDBCK/DSDL/DSDR signal is 10 pF.  
Figure 40. Audio Data Interface Timing for DSD (Master Mode Only)  
SYNCHRONIZATION WITH DIGITAL AUDIO SYSTEM FOR PCM  
In slave mode, the PCM1804 operates under LRCK synchronized with the system clock SCKI. The PCM1804  
does not need a specific phase relationship between LRCK and SCKI, but does require the synchronization of  
LRCK and SCKI.  
If the relationship between LRCK and SCKI changes more than ±6 BCK during one sample period due to LRCK  
or SCKI jitter, internal operation of the ADC halts within 1/fS and digital output is forced into BPZ code until  
resynchronization between LRCK and SCKI is completed.  
In case of changes less than ±5 BCK, resynchronization does not occur and the previously described digital  
output control and discontinuity do not occur.  
Figure 41 illustrates ADC digital output for loss of synchronization and resynchronization. During undefined data,  
the PCM1804 may generate some noise in the audio signal. Also, the transitions of normal to undefined data and  
undefined or zero data to normal cause a discontinuity of data on the digital output. This can generate noise in  
the audio signal. In master mode, synchronization loss never occurs.  
HIGH-PASS FILTER (HPF) BYPASS CONTROL FOR PCM  
The built-in function for dc component rejection can be bypassed by BYPAS (pin 12) control. In bypass mode,  
the dc component of the input analog signal and the internal dc offset are also converted and output in the digital  
output data.  
HPF Bypass Control  
BYPAS PIN  
Low  
HPF MODE  
Normal (high-pass) mode  
Bypass (through) mode  
High  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
OVERFLOW FLAG FOR PCM  
The PCM1804 has two overflow flag pins, OVFR (pin 20) and OVFL (pin 21). The pins go to high as soon as the  
analog input goes across the full-scale range. The high level is held for 1.016 s at maximum, and returns to low if  
the analog input does not go across the full-scale range for the period.  
Resynchronization  
Synchronization Lost  
Synchronous  
Asynchronous  
Synchronous  
State of Synchronization  
1/f  
S
90/f  
S
Undefined  
Data  
(1)  
(2)  
DATA  
Normal Data  
Zero Data  
Converted Data  
T0020-06  
(1) Applies only for slave mode; the loss of synchronization never occurs in master mode.  
(2) The HPF transient response appears initially.  
Figure 41. ADC Digital Output for Loss of Synchronization and Resynchronization  
26  
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
TYPICAL CIRCUIT CONNECTION DIAGRAM  
Figure 42 illustrates a typical circuit connection diagram in the PCM data format operation.  
PCM1804  
C
C
1
2
+
+
28 +  
1
2
3
4
V
L
V
R
REF  
REF  
27  
26  
25  
24  
23  
AGNDL  
AGNDR  
C
4
C
3
+
V
V
V
L
V
COM  
R
COM  
L+  
L−  
V
R+  
R−  
+
+
IN  
IN  
IN  
L-Channel In  
Format [1:0]  
R-Channel In  
5
6
V
IN  
FMT0  
FMT1  
S/M  
AGND  
5 V  
C
6
7
8
22  
21  
20  
19  
+
V
CC  
OVFL  
OVFR  
RST  
Master/Slave  
Overflow  
9
OSR0  
OSR1  
OSR2  
Control  
10  
11  
12  
13  
14  
Oversampling  
Ratio [2:0]  
Reset  
18  
17  
16  
15  
SCKI  
System Clock  
BYPAS LRCK/DSDBCK  
HPF Bypass  
3.3 V  
L/R Clock  
Data Clock  
Data Out  
Audio Data  
Processor  
DGND  
BCK/DSDL  
C
5
+
V
DD  
DATA/DSDR  
S0058-01  
A. C1, C2, C5, and C6: Bypass capacitors, 0.1-μF ceramic and 10-μF tantalum, depending on layout and power supply  
B. C3, C4: Bypass capacitor, 0.1-μF tantalum, depending on layout and power supply  
Figure 42. Typical Circuit Connection Diagram for PCM  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): PCM1804  
 
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
Figure 43 illustrates a typical circuit connection diagram in the DSD data format operation.  
PCM1804  
C
C
1
2
+
28 +  
1
2
3
4
V
L
V
R
REF  
REF  
27  
26  
25  
24  
23  
AGNDL  
AGNDR  
C
4
C
3
+
+
V
V
V
L
V
COM  
R
COM  
L+  
L−  
V
R+  
R−  
+
+
IN  
IN  
IN  
L-Channel In  
Format [1:0]  
R-Channel In  
5
6
V
IN  
FMT0  
FMT1  
S/M  
AGND  
5 V  
C
6
7
22  
21  
20  
19  
+
V
CC  
8
9
OVFL  
OVFR  
RST  
Master/Slave  
Overflow  
OSR0  
OSR1  
OSR2  
Control  
10  
11  
12  
13  
14  
Oversampling  
Ratio [2:0]  
Reset  
18  
17  
16  
15  
SCKI  
System Clock  
BYPAS LRCK/DSDBCK  
HPF Bypass  
3.3 V  
Data Clock  
Audio Data  
Processor  
DGND  
BCK/DSDL  
L-Channel Data Out  
R-Channel Data Out  
C
5
+
V
DD  
DATA/DSDR  
S0058-02  
A. C1, C2, C5, and C6: Bypass capacitors, 0.1-μF ceramic and 10-μF tantalum, depending on layout and power supply  
B. C3 and C4: Bypass capacitors, 0.1-μF tantalum, depending on layout and power supply  
Figure 43. Typical Circuit Connection Diagram for DSD  
28  
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
 
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
APPLICATION INFORMATION  
BOARD DESIGN AND LAYOUT CONSIDERATIONS  
VCC, VDD Pins  
The digital and analog power supply lines to the PCM1804 should be bypassed to the corresponding ground pins  
with 0.1-μF ceramic and 10-μF tantalum capacitors placed as close to the pins as possible to maximize the  
dynamic performance of the ADC. Although the PCM1804 has two power lines to maximize the potential of  
dynamic performance, using one common power supply is recommended to avoid unexpected power-supply  
trouble like latch-up or power-supply sequence.  
VIN Pins  
Use of 0.01-μF film capacitors between VINL+ and VINL– and between VINR+ and VINR– is strongly  
recommended to remove higher-frequency noise from the delta-sigma input section.  
VREFX, VCOMX Inputs  
Use 0.1-μF ceramic and 10-μF tantalum capacitors between VREFL, VREFR, and corresponding AGNDx, to ensure  
low-source impedance at ADC references. Use 0.1-μF tantalum capacitors between VCOML, VCOMR and  
corresponding AGNDx to ensure low source impedance of common voltage. These capacitors should be located  
as close as possible to the VREFL, VREFR, VCOML, and VCOMR pins to reduce dynamic errors on references and  
common voltage. The dc voltage level of these pins is 2.5 V.  
DATA/DSDR, BCK/DSDL, and LRCK/DSDBCK Pins  
The DATA/DSDR, BCK/DSDL, and LRCK/DSDBCK pins in master mode have large load drive capability.  
Locating the buffer near the PCM1804 and minimizing the load capacitance, minimizes the digital-analog  
crosstalk and maximizes the dynamic performance of the ADC.  
System Clock  
The quality of the system clock can influence dynamic performance, as the PCM1804 operates based on a  
system clock. Therefore, it might be necessary to consider the system clock duty, jitter, and the time difference  
between system clock transition and BCK/DSDL or LRCK/DSDBCK transition in slave mode.  
Reset Control  
If capacitors larger than 10 μF are used on VREFL and VREFR, an external reset control with a delay time  
corresponding to the VREFL and VREFR response is required. Also, it works as a power-down control.  
APPLICATION CIRCUIT FOR SINGLE-ENDED INPUT  
An application diagram for a single-ended input circuit is shown in Figure 44. The maximum signal input voltage  
and differential gain of this circuit is designed as Vinmax = 8.28 Vpp, Ad = 0.3. Differential gain (Ad) is given by  
R3/R1(R4/R2) in a circuit configured as a normal inverted-gain amplifier. Resistor R5(R6) in the feedback loop  
gives low-impedance drive operation and noise filtering for the analog input of the PCM1804. The circuit  
technique using R5(R6) is recommended.  
Copyright © 2001–2007, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): PCM1804  
PCM1804  
www.ti.com  
SLES022CDECEMBER 2001REVISED OCTOBER 2007  
R = 1 k  
3
(1)  
C
4.7 kΩ  
PCM1804  
4.7 kΩ  
10 µF  
_
+
R = 3.3 kΩ  
1
Analog In  
_
R = 47 Ω  
5
+
V −  
IN  
+
OPA2134 1/2  
OPA2134 1/2  
V
COM  
0.01 µF  
R = 1 kΩ  
4
0.1 µF  
(1)  
C
10 µF  
R = 3.3 kΩ  
2
_
R = 47 Ω  
6
+
V +  
IN  
+
OPA2134 1/2  
S0059-01  
(1) A capacitor value of 1800 pF is recommended, unless an input signal greater than –6 dBFS at 100 kHz or higher is  
applied in the DSD mode. In that case, 3300 pF is recommended.  
Figure 44. Application Circuit for Single-Ended Input Circuit (PCM)  
V +  
IN  
∆Σ Modulator  
V −  
IN  
_
+
V
COM  
V
REF  
BGR  
_
+
S0060-01  
Figure 45. Equivalent Circuit of Internal Reference (VCOM, VREF  
)
30  
Submit Documentation Feedback  
Copyright © 2001–2007, Texas Instruments Incorporated  
Product Folder Link(s): PCM1804  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM1804DB  
PCM1804DBG4  
PCM1804DBR  
PCM1804DBRG4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SSOP  
SSOP  
DB  
DB  
DB  
DB  
28  
28  
28  
28  
47  
47  
RoHS & Green  
RoHS & Green  
Call TI | NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-10 to 70  
-10 to 70  
-10 to 70  
-10 to 70  
PCM1804  
Samples  
Samples  
Samples  
Samples  
Call TI  
Call TI | NIPDAU  
Call TI  
PCM1804  
PCM1804  
PCM1804  
2000 RoHS & Green  
2000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Oct-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF PCM1804 :  
Automotive : PCM1804-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PCM1804DBR  
SSOP  
DB  
28  
2000  
330.0  
16.4  
8.2  
10.5  
2.5  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SSOP DB 28  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
PCM1804DBR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jul-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
PCM1804DB  
PCM1804DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
28  
28  
28  
28  
28  
28  
28  
28  
47  
47  
530  
530  
530  
530  
530  
530  
530  
530  
10.5  
10.5  
10.5  
10.5  
10.5  
10.5  
10.5  
10.5  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4.1  
4.1  
4.1  
4.1  
4.1  
4.1  
4.1  
4.1  
PCM1804DB  
47  
PCM1804DBG4  
PCM1804DBG4  
PCM1804DBG4  
PCM1804DBR  
PCM1804DBRG4  
47  
47  
47  
2000  
2000  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DB0028A  
SSOP - 2 mm max height  
S
C
A
L
E
1
.
5
0
0
SMALL OUTLINE PACKAGE  
C
8.2  
7.4  
TYP  
A
0.1 C  
SEATING  
PIN 1 INDEX AREA  
PLANE  
26X 0.65  
28  
1
2X  
10.5  
9.9  
8.45  
NOTE 3  
14  
15  
0.38  
0.22  
28X  
0.15  
C A B  
5.6  
5.0  
B
NOTE 4  
2 MAX  
0.25  
GAGE PLANE  
(0.15) TYP  
SEE DETAIL A  
0.95  
0.55  
0.05 MIN  
0 -8  
A
15  
DETAIL A  
TYPICAL  
4214853/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-150.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DB0028A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
28X (1.85)  
(R0.05) TYP  
28  
1
28X (0.45)  
26X (0.65)  
SYMM  
14  
15  
(7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4214853/B 03/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DB0028A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
28X (1.85)  
SYMM  
(R0.05) TYP  
28  
1
28X (0.45)  
26X (0.65)  
SYMM  
14  
15  
(7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4214853/B 03/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

PCM1804DBG4

具有差分输入的 112dB SNR 立体声 ADC | DB | 28 | -10 to 70
TI

PCM1804DBR

FULL DIFFERENTIAL ANALOG INPUT 24-BIT, 192-kHz STEREO A/D CONVERTER
BB

PCM1804DBR

具有差分输入的 112dB SNR 立体声 ADC | DB | 28 | -10 to 70
TI

PCM1804DBRG4

具有差分输入的 112dB SNR 立体声 ADC | DB | 28 | -10 to 70
TI

PCM1804S1IDBRQ1

FULL DIFFERENTIAL ANALOG INPUT 24-BIT, 192-kHz STEREO A/D CONVERTER
TI

PCM1807

Single-Ended, Analog-Input 24-Bit, 96-kHz Stereo A/D Converter
BB

PCM1807

96-kHz Stereo A/D Converter
TI

PCM1807PW

Single-Ended, Analog-Input 24-Bit, 96-kHz Stereo A/D Converter
BB

PCM1807PW

96-kHz Stereo A/D Converter
TI

PCM1807PWG4

101dB SNR Stereo ADC With Single-Ended Inputs 14-TSSOP -40 to 85
TI

PCM1807PWR

Single-Ended, Analog-Input 24-Bit, 96-kHz Stereo A/D Converter
BB

PCM1807PWR

96-kHz Stereo A/D Converter
TI