PCM1820IRTER [TI]

PCM182x Stereo Channel, 32-Bit, 192-kHz, Burr-BrownTM Audio ADC;
PCM1820IRTER
型号: PCM1820IRTER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PCM182x Stereo Channel, 32-Bit, 192-kHz, Burr-BrownTM Audio ADC

PC
文件: 总41页 (文件大小:3291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
PCM182x Stereo Channel, 32-Bit, 192-kHz, Burr-BrownTM Audio ADC  
1 Features  
3 Description  
Stereo high-performance ADC:  
– 2-channel analog microphones or line-in  
ADC line and microphone differential input  
performance:  
The PCM182x is a high-performance, Burr-Brown™  
audio analog-to-digital converter (ADC) that supports  
simultaneous sampling of up to two analog channels.  
The device supports differential line and microphone  
inputs with a 2-VRMS full-scale signal. The device  
– PCM1820 dynamic range:  
integrates  
a
phase-locked loop (PLL),  
a
DC  
123-dB, dynamic range enhancer enabled  
113-dB, dynamic range enhancer disabled  
removal high-pass filter (HPF), and supports sample  
rates up to 192 kHz. The device supports time-  
division multiplexing (TDM) or I2S audio formats,  
selectable with the hardware pin level. Additionally,  
the PCM182x supports master and slave mode  
selection for the audio bus interface operation.  
These integrated high-performance features, along  
with the ability to be powered from a single supply  
of 3.3 V, make the device an excellent choice for cost-  
sensitive, space-constrained audio systems in far-field  
microphone recording applications.  
– PCM1821 dynamic range: 106 dB  
– THD+N: –95 dB  
ADC differential 2-VRMS full-scale input  
ADC sample rate (fS) = 8 kHz to 192 kHz  
Hardware pin control configurations  
Linear-phase or low-latency filter selection  
Flexible audio serial data interface:  
– Master or slave interface selection  
– 32-bits, 2-channel TDM  
– 32-bits, 2-channel I2S  
Automatic power-down upon loss of audio clocks  
Integrated high-performance audio PLL  
Single-supply operation: 3.3 V  
I/O-supply operation: 3.3 V or 1.8 V  
Power consumption for 3.3-V AVDD supply:  
– 19.6 mW/channel at 16-kHz sample rate  
– 21.3 mW/channel at 48-kHz sample rate  
The PCM182x is specified from –40°C to +125°C, and  
is offered in a 20-pin WQFN package.  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
3.00 mm × 3.00 mm with  
0.5-mm pitch  
PCM182x  
WQFN (20)  
(1) For all available packages, see the package option  
addendum at the end of the data sheet.  
2 Applications  
Smart speakers  
DVD recorders and players  
AV receivers  
Video conference systems  
IP network cameras  
Simplified Block Diagram  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................5  
7.4 Thermal Information ...................................................6  
7.5 Electrical Characteristics ............................................6  
7.6 Timing Requirements: TDM, I2S or LJ Interface ........ 8  
7.7 Switching Characteristics: TDM, I2S or LJ  
8.2 Functional Block Diagram.........................................13  
8.3 Feature Description...................................................14  
8.4 Device Functional Modes..........................................27  
9 Application and Implementation..................................28  
9.1 Application Information............................................. 28  
9.2 Typical Application.................................................... 28  
10 Power Supply Recommendations..............................31  
11 Layout...........................................................................32  
11.1 Layout Guidelines................................................... 32  
11.2 Layout Example...................................................... 32  
12 Device and Documentation Support..........................33  
12.1 Receiving Notification of Documentation Updates..33  
12.2 Support Resources................................................. 33  
12.3 Trademarks.............................................................33  
12.4 Electrostatic Discharge Caution..............................33  
12.5 Glossary..................................................................33  
13 Mechanical, Packaging, and Orderable  
Interface ....................................................................... 8  
7.8 Typical Characteristics................................................9  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
Information.................................................................... 33  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (December 2020) to Revision A (June 2021)  
Page  
Changed document status from advance information to production data.......................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
5 Device Comparison Table  
FEATURE  
Control interface  
PCM1821  
PCM1820  
TLV320ADC3120  
TLV320ADC5120  
I2C  
TLV320ADC6120  
Pin control  
TDM or I2S  
Digital audio serial interface  
Audio analog channel  
TDM or I2S or left-justified (LJ)  
2
Digital microphone channel  
Programmable MICBIAS voltage  
Dynamic range (DRE disabled)  
Dynamic range (DRE enabled)  
ADC SNR with DRE  
Not available  
N/A  
4
Yes  
106 dB  
113 dB  
123 dB  
123 dB  
2.5 kΩ  
106 dB  
Not available  
N/A  
108 dB  
113 dB  
123 dB  
123 dB  
Not available  
N/A  
120 dB  
120 dB  
Input impedance  
10 kΩ  
2.5 kΩ, 10 kΩ, 20 kΩ  
Compatibility  
Pin-to-pin, package, drop-in replacements of  
each other  
Pin-to-pin, package, and control registers compatible; drop-in  
replacements of each other  
Package  
WQFN (RTE), 20-pin, 3.00 mm × 3.00 mm (0.5-mm pitch)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: PCM1820 PCM1821  
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
6 Pin Configuration and Functions  
20  
VSS  
VSS  
15  
IN1P  
1
14  
13  
12  
11  
DREG  
MSZ  
MD0  
MD1  
IN1M  
IN2P  
IN2M  
2
3
4
Thermal Pad (VSS)  
5
VSS  
VSS  
10  
Not to scale  
Figure 6-1. RTW Package, 24-Pin WQFN With Exposed Thermal Pad, Top View  
Table 6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
IN1P  
IN1M  
IN2P  
Analog input  
Analog input  
Analog input  
Analog input  
Analog supply  
Digital output  
Digital I/O  
Analog input 1P pin.  
Analog input 1M pin.  
Analog input 2P pin.  
Analog input 2M pin.  
2
3
4
IN2M  
VSS  
5
Short this pin directly to the board ground plane.  
Audio serial data interface bus output.  
6
SDOUT  
BCLK  
FSYNC  
IOVDD  
VSS  
7
Audio serial data interface bus bit clock.  
8
Digital I/O  
Audio serial data interface bus frame synchronization signal.  
Digital I/O power supply (1.8 V or 3.3 V, nominal).  
Short this pin directly to the board ground plane.  
Device configuration mode select 1 pin.  
9
Digital supply  
Analog supply  
Digital input  
Digital input  
Digital input  
Digital supply  
Analog supply  
Analog supply  
Analog supply  
Analog  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
MD1  
MD0  
Device configuration mode select 0 pin.  
MSZ  
Audio interface bus master or slave select pin.  
Digital regulator output voltage for digital core supply (1.5 V, nominal).  
Short this pin directly to the board ground plane.  
Analog power (3.3 V, nominal).  
DREG  
VSS  
AVDD  
AREG  
VREF  
FMT0  
VSS  
Analog on-chip regulator output voltage for analog supply (1.8 V, nominal).  
Analog reference voltage filter output.  
Digital input  
Analog supply  
Audio interface format select pin referred to AVDD supply.  
Short this pin directly to the board ground plane.  
Thermal pad shorted to internal device ground. Short thermal pad directly to board  
ground plane.  
Thermal Pad (VSS)  
Ground supply  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over the operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
AVDD to AVSS  
3.9  
Supply voltage  
AREG to AVSS  
2.0  
3.9  
V
IOVDD to VSS (thermal pad)  
AVSS to VSS (thermal pad)  
Analog input pins voltage to AVSS  
Digital input pins voltage to VSS (thermal pad)  
Operating ambient, TA  
Ground voltage differences  
Analog input voltage  
Digital input voltage  
0.3  
V
V
V
AVDD + 0.3  
IOVDD + 0.3  
125  
Temperature  
Junction, TJ  
–40  
150  
°C  
Storage, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER  
AVDD,  
Analog supply voltage AVDD to AVSS (AREG is generated using onchip regulator) -  
AVDD 3.3-V operation  
3.0  
3.3  
3.6  
V
V
AREG(1)  
IO supply voltage to VSS (thermal pad) - IOVDD 3.3-V operation  
IO supply voltage to VSS (thermal pad) - IOVDD 1.8-V operation  
3.0  
3.3  
1.8  
3.6  
IOVDD  
1.65  
1.95  
INPUTS  
Analog input pins and FMT0 voltage to VSS  
0
0
AVDD  
V
V
Digital input pins voltage(except FMT0) to VSS (thermal pad)  
IOVDD  
TEMPERATURE  
TA  
Operating ambient temperature  
–40  
125  
°C  
OTHERS  
Digital input pin used as MCLK input clock frequency  
Digital output load capacitance  
36.864  
50  
MHz  
pF  
CL  
20  
(1) AVSS and VSS (thermal pad): all ground pins must be tied together and must not differ in voltage by more than 0.2 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: PCM1820 PCM1821  
 
 
 
 
 
 
 
 
PCM1820, PCM1821  
www.ti.com  
UNIT  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
7.4 Thermal Information  
PCM182x  
RTE (WQFN)  
20 PINS  
55.9  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
33.1  
23.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
23.3  
RθJC(bot)  
16.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC CONFIGURATION  
AC input impedance  
(PCM1820)  
2.5  
10  
kΩ  
kΩ  
Input pins INxP or INxM  
AC input impedance  
(PCM1821)  
PCM1820: ADC PERFORMANCE FOR LINE, MICROPHONE INPUT RECORDING : AVDD 3.3-V OPERATION  
Differential input full-scale  
AC-coupled input  
2
122  
112  
123  
113  
–95  
–95  
VRMS  
AC signal voltage  
IN1 differential input selected and AC signal shorted to  
ground, DRE enabled (DRE_LVL =  
–36 dB, DRE_MAXGAIN = 24 dB)  
115  
Signal-to-noise ratio, A-  
weighted(1) (2)  
SNR  
DR  
dB  
IN1 differential input selected and AC signal shorted to  
ground, DRE disabled  
106  
IN1 differential input selected and –60-dB full-scale  
AC signal input, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB)  
Dynamic range, A-  
weighted(2)  
dB  
dB  
IN1 differential input selected and –60-dB full-scale AC  
signal input, DRE disabled  
IN1 differential input selected and –1-dB full-scale AC  
signal input, DRE enabled (DRE_LVL =  
–36 dB, DRE_MAXGAIN = 24 dB)  
–80  
Total harmonic distortion(2)  
THD+N  
(3)  
IN1 differential input selected and –1-dB full-scale AC  
signal input, DRE disabled  
PCM1821: ADC PERFORMANCE FOR LINE, MICROPHONE INPUT RECORDING : AVDD 3.3-V OPERATION  
Differential input full-scale  
AC-coupled input  
2
106  
106  
–95  
VRMS  
dB  
AC signal voltage  
Signal-to-noise ratio, A-  
weighted(1) (2)  
IN1 differential input selected and AC signal shorted to  
ground  
SNR  
DR  
100  
Dynamic range, A-  
weighted(1) (2)  
IN1 differential input selected and –60-dB full-scale AC  
signal input  
dB  
Total harmonic distortion(2) IN1 differential input selected and –1-dB full-scale AC  
THD+N  
dB  
(3)  
signal input  
ADC OTHER PARAMETERS  
Output data sample rate  
7.35  
192  
32  
kHz  
Bits  
Output data sample word  
length  
–1-dB full-scale AC-signal input to non measurement  
channel  
Interchannel isolation  
–124  
0.1  
dB  
dB  
Interchannel gain mismatch –6-dB full-scale AC-signal input  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
7.5 Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Gain drift(4)  
Across temperature range -40°C to 125°C  
40.5  
ppm/°C  
Interchannel phase  
mismatch  
1-kHz sinusoidal signal  
0.02  
0.0005  
102  
Degrees  
1-kHz sinusoidal signal, across temperature range -40°C  
to 125°C  
Phase drift(5)  
Degrees/°C  
Power-supply rejection  
ratio  
100-mVPP, 1-kHz sinusoidal signal on AVDD, differential  
input selected, 0-dB channel gain  
PSRR  
dB  
dB  
dB  
PCM1820:  
CMRR  
Common-mode rejection  
ratio  
Differential microphone input selected, 100-mVPP, 1-kHz  
signal on both pins and measure level at output  
45  
PCM1821:  
CMRR  
Common-mode rejection  
ratio  
Differential microphone input selected, 100-mVPP, 1-kHz  
signal on both pins and measure level at output  
60  
DIGITAL I/O  
0.30 ×  
IOVDD  
All digital pins except FMT0, IOVDD 1.8-V operation  
–0.3  
V
Low-level digital input logic  
voltage threshold  
VIL  
All digital pins except FMT0, IOVDD 3.3-V operation  
FMT0 Pin  
–0.3  
–0.3  
0.8  
0.8  
V
V
V
V
All digital pins except FMT0, IOVDD 1.8-V operation  
All digital pins except FMT0, IOVDD 3.3-V operation  
FMT0 Pin  
0.7 × IOVDD  
2.1  
IOVDD + 0.3  
IOVDD + 0.3  
AVDD + 0.3  
0.45  
High-level digital input logic  
voltage threshold  
VIH  
2.1  
All digital pins, IOL = –2 mA, IOVDD 1.8-V operation  
All digital pins, IOL = –2 mA, IOVDD 3.3-V operation  
Low-level digital output  
voltage  
VOL  
0.4  
IOVDD –  
0.45  
All digital pins, IOH = 2 mA, IOVDD 1.8-V operation  
All digital pins, IOH = 2 mA, IOVDD 3.3-V operation  
All digital pins, input = IOVDD  
High-level digital output  
voltage  
VOH  
V
2.4  
–5  
Input logic-high leakage for  
digital inputs  
IIH  
0.1  
0.1  
5
5
5
µA  
µA  
pF  
Input logic-low leakage for  
digital inputs  
IIL  
All digital pins, input = 0 V  
All digital pins  
–5  
Input capacitance for digital  
inputs  
CIN  
Pulldown resistance for  
digital I/O pins when  
asserted on  
RPD  
20  
kΩ  
TYPICAL SUPPLY CURRENT CONSUMPTION  
IAVDD  
AVDD = 3.3 V, internal AREG  
0.5  
0.5  
mA  
µA  
Current consumption with  
all Clocks disabled  
IIOVDD  
IIOVDD  
IAVDD  
All external clocks stopped, IOVDD = 3.3 V  
All external clocks stopped, IOVDD = 1.8 V  
AVDD = 3.3 V, internal AREG  
IOVDD = 3.3 V  
0.3  
Current consumption with  
ADC 2-channel operating  
at fS 16-kHz, BCLK = 256  
× fS and DRE disabled  
11.9  
0.05  
0.02  
12.9  
0.1  
IIOVDD  
IIOVDD  
IAVDD  
mA  
mA  
mA  
IOVDD = 1.8 V  
Current consumption with  
ADC 2-channel operating  
at fS 48-kHz, BCLK = 256  
× fS and DRE disabled  
AVDD = 3.3 V, internal AREG  
IOVDD = 3.3 V  
IIOVDD  
IIOVDD  
IAVDD  
IOVDD = 1.8 V  
0.05  
14  
AVDD = 3.3 V, internal AREG  
IOVDD = 3.3 V  
Current consumption with  
ADC 2-channel operating  
at fS 48-kHz, BCLK = 256  
× fS and DRE enabled  
IIOVDD  
IIOVDD  
0.1  
IOVDD = 1.8 V  
0.05  
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the AC signal input shorted to ground, measured  
A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with a 20-kHz, low-pass filter and, where noted, an A-weighted filter. Failure to use such a filter  
may result in higher THD and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
(3) For best distortion performance, use input AC-coupling capacitors with a low-voltage-coefficient.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: PCM1820 PCM1821  
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
(4) Gain drift =gain_variation(in temperature range)/ typical gain value(gain at room temperature) / temperature range × 106 measured  
with gain in linear scale.  
(5) Phase drift =phase_deviation(in temperature range)/ (temperature range).  
7.6 Timing Requirements: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted)  
MIN  
40  
25  
25  
8
NOM  
MAX  
UNIT  
ns  
t(BCLK)  
BCLK period  
tH(BCLK)  
tL(BCLK)  
tSU(FSYNC)  
tHLD(FSYNC)  
tr(BCLK)  
BCLK high pulse duration (1)  
BCLK low pulse duration (1)  
FSYNC setup time  
FSYNC hold time  
BCLK rise time  
ns  
ns  
ns  
8
ns  
10% - 90% rise time(2)  
90% - 10% fall time(2)  
10  
10  
ns  
tf(BCLK)  
BCLK fall time  
ns  
(1) The BCLK minimum high or low pulse duration must be higher than 25 ns (to meet the timing specifications), if the SDOUT data line is  
latched on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
(2) BCLK maximum rise and fall time can be relaxed to 13ns if BCLK frequency used in the system is below 20 MHz. This can cause  
noise increase due to higher clock jitter.  
7.7 Switching Characteristics: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
BCLK to SDOUT delay  
50% of BCLK to 50% of SDOUT  
3
18  
ns  
FSYNC to SDOUT delay in TDM  
or LJ mode (for MSB data with  
TX_OFFSET = 0)  
50% of FSYNC to 50% of  
SDOUT  
18  
ns  
BCLK output clock frequency:  
master mode (1)  
f(BCLK)  
24.576  
MHz  
ns  
BCLK high pulse duration: master  
mode  
tH(BCLK)  
tL(BCLK)  
td(FSYNC)  
14  
14  
3
BCLK low pulse duration: master  
mode  
ns  
BCLK to FSYNC delay: master  
mode  
50% of BCLK to 50% of FSYNC  
18  
ns  
tr(BCLK)  
tf(BCLK)  
BCLK rise time: master mode  
BCLK fall time: master mode  
10% - 90% rise time  
90% - 10% fall time  
8
8
ns  
ns  
(1) The BCLK output clock frequency must be lower than 18.5 MHz (to meet the timing specifications), if the SDOUT data line is latched  
on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
 
 
 
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
7.8 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 ×  
fS, TDM slave mode, PLL on, DRE_LVL = –36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
-60  
-60  
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Input Amplitude (dB)  
Input Amplitude (dB)  
TDH0D0+1  
TDH0D0+2  
Figure 7-1. PCM1820: THD+N vs Input Amplitude  
With DRE Enabled  
Figure 7-2. PCM1820: THD+N vs Input Amplitude  
With DRE Disabled  
-60  
-60  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
Frequency (Hz)  
Frequency (Hz)  
DF0re0q3  
D004  
Figure 7-4. PCM1820: THD+N vs Input Frequency  
With a –60-dBr Input  
Figure 7-3. PCM1820: THD+N vs Input Frequency  
With a –60-dBr Input  
-60  
20  
Channel-1  
Channel-2  
Channel-1  
Channel-2  
10  
-70  
-80  
0
-10  
-20  
-30  
-90  
-40  
-50  
-100  
-110  
-120  
-130  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D005  
20 30 50 70100 200300 500 1000 2000  
5000 1000020000  
100000  
DF0re0q6  
Frequency (Hz)  
Frequency (Hz)  
Figure 7-5. PCM1820: THD+N vs Input Frequency  
With a –1-dBr Input  
Figure 7-6. PCM1820: Frequency Response  
With a –12-dBr Input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: PCM1820 PCM1821  
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
7.8 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 ×  
fS, TDM slave mode, PLL on, DRE_LVL = –36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
-60  
0
-20  
Channel-1  
Channel-2  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
-70  
-40  
-80  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D007  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D008  
Frequency (Hz)  
Frequency (Hz)  
Figure 7-7. PCM1820: Power-Supply Rejection Ratio vs  
Ripple Frequency With a 100-mVPP Amplitude  
Figure 7-8. PCM1820: FFT With Idle Input and DRE Enabled  
0
0
Channel-1 : DRE disabled  
Channel-1 : DRE enabled  
Channel-2 : DRE disabled  
-20  
Channel-2 : DRE enabled  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D009  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D010  
Frequency (Hz)  
Frequency (Hz)  
Figure 7-9. PCM1820: FFT With Idle Input and DRE Disabled  
Figure 7-10. PCM1820: FFT With a –60-dBr Input and DRE  
Enabled  
0
0
Channel-1 : DRE disabled  
Channel-1  
Channel-2 : DRE disabled  
-20  
Channel-2  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D011  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D012  
Frequency (Hz)  
Frequency (Hz)  
Figure 7-11. PCM1820: FFT With a –60-dBr Input and DRE  
Disabled  
Figure 7-12. PCM1820: FFT With a –1-dBr Input  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
7.8 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 ×  
fS, TDM slave mode, PLL on, DRE_LVL = –36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
-60  
-60  
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D002  
Input Amplitude (dB)  
Frequency (Hz)  
TDH0D0+1  
Figure 7-13. PCM1821: THD+N vs Input Amplitude  
Figure 7-14. PCM1821: THD+N vs Input Frequency  
With a –60-dBr Input  
-60  
20  
Channel-1  
Channel-2  
Channel-1  
Channel-2  
10  
-70  
-80  
0
-10  
-20  
-30  
-90  
-40  
-50  
-100  
-110  
-120  
-130  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 50 70100 200300 500 1000 2000  
5000 1000020000  
100000  
DF0re0q4  
Frequency (Hz)  
Frequency (Hz)  
D003  
Figure 7-15. PCM1821: THD+N vs Input Frequency  
With a –1-dBr Input  
Figure 7-16. PCM1821: Frequency Response  
With a –12-dBr Input  
-60  
0
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-20  
-70  
-80  
-40  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D005  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D006  
Frequency (Hz)  
Frequency (Hz)  
Figure 7-17. PCM1821: Power-Supply Rejection Ratio vs  
Ripple Frequency With a 100-mVPP Amplitude  
Figure 7-18. PCM1821: FFT With Idle Input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: PCM1820 PCM1821  
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
7.8 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 ×  
fS, TDM slave mode, PLL on, DRE_LVL = –36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
0
-20  
0
-20  
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D007  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D008  
Frequency (Hz)  
Frequency (Hz)  
Figure 7-19. PCM1821: FFT With a –60-dBr Input  
Figure 7-20. PCM1821: FFT With a –1-dBr Input  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The PCM182x is a high-performance, low-power, stereo-channel, audio analog-to-digital converter (ADC) with  
flexible audio interface control options. This device is intended for applications in voice-activated systems,  
AV receivers, tv and blu-ray players, professional microphones, audio conferencing, portable computing,  
communication, and entertainment applications. The high dynamic range of the device enables far-field audio  
recording with high fidelity. This device integrates a host of features that reduces cost, board space, and power  
consumption in space-constrained, battery-powered, consumer, home, and industrial applications. The device  
features are controlled through hardware by pulling pins high or low with resistors or a controller general-purpose  
inut/output (GPIO). The PCM182x also supports a power-down and reset function by means of halting the  
system clock.  
The PCM182x consists of the following blocks and features:  
Stereo-channel, multibit, high-performance delta-sigma (ΔΣ) ADC  
Differential audio inputs with a 2-VRMS full-scale signal  
Hardware pin control operation to select the device features  
Audio bus serial interface master or slave select option  
Audio bus serial interface format select option  
Slave mode supports the audio bus serial interface up to 192 kHz sampling  
Slave mode supports a dynamic range enhancer (DRE) with 123-dB dynamic range for the PCM1820  
Slave mode supports decimation filters with linear-phase or low-latency filter selection  
Master mode operation supported using a system clock of 256 × fS or 512 × fS  
Power-down function by means of halting the audio clocks  
Integrated high-pass filter (HPF) that removes the DC component of the input signal  
Integrated low-jitter phase-locked loop (PLL) supporting a wide range of system clocks  
Integrated digital and analog voltage regulators to support single-supply, 3.3-V operation  
8.2 Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: PCM1820 PCM1821  
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3 Feature Description  
8.3.1 Hardware Control  
The device supports simple hardware-pin-controlled options to select a specific mode of operation and audio  
interface for a given system. The MSZ, MD0, MD1, and FMT0 pins allow the device to be controlled by either  
pullup or pulldown resistors.  
8.3.2 Audio Serial Interfaces  
Digital audio data flows between the host processor and the PCM182x on the digital audio serial interface (ASI),  
or audio bus. This highly flexible ASI bus includes a TDM mode for multichannel operation, support for the I2S,  
and the pin-selectable master-slave configurability for bus clock lines.  
The device supports an audio bus master or slave mode of operation using the hardware pin MSZ. In slave  
mode, FSYNC and BCLK work as input pins whereas in master mode, FSYNC and BCLK work as output pins  
generated by the device. Table 8-1 shows the master and slave mode selection using the MSZ pin.  
Table 8-1. Master and Slave Mode Selection  
MSZ  
Low  
High  
MASTER AND SLAVE SELECTION  
Slave mode of operation  
Master ode of operation  
The bus protocol TDM or I2S format can be selected by using the FMT0 pin. As shown in Table 8-2, these  
modes are all most significant byte (MSB)-first, pulse code modulation (PCM) data format, with an output  
channel data word-length of 32 bits.  
Table 8-2. Audio Serial Interface Format  
FMT0  
Low  
AUDIO SERIAL INTERFACE FORMAT  
2-channel output with inter IC sound (I2S) mode  
2-channel output with time division multiplexing (TDM) mode  
High  
8.3.2.1 Time Division Multiplexed Audio (TDM) Interface  
In TDM mode, also known as DSP mode, the rising edge of FSYNC starts the data transfer with the slot 0 data  
first. Immediately after the slot 0 data transmission, the remaining slot data are transmitted in order. FSYNC and  
each data bit (except the MSB of slot 0 when TX_OFFSET equals 0) is transmitted on the rising edge of BCLK.  
Figure 8-1 and Figure 8-2 show the protocol timing for TDM operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2  
2
1
0
Ch2  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
(n+1)th Sample  
nth Sample  
Figure 8-1. TDM Mode Protocol Timing (FMT0 = HIGH) In Slave Mode  
FSYNC  
BCLK  
SDOUT  
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
1
0
1
0
N-1  
Ch2  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
Ch2  
(Word Length : 32)  
(n+1)th Sample (64 BCLK Cycles)  
Ch1  
(Word Length : 32)  
nth Sample (64 BCLK Cycles)  
Figure 8-2. TDM Mode Protocol Timing (FMT0 = HIGH) In Master Mode  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
 
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
For proper operation of the audio bus in TDM mode, the number of bit clocks per frame must be greater than  
or equal to the number of active output channels times the 32-bits word length of the output channel data. The  
device transmits a zero data value on SDOUT for the extra unused bit clock cycles. The device supports FSYNC  
as a pulse with a 1-cycle-wide bit clock, but also supports multiples as well.  
8.3.2.2 Inter IC Sound (I2S) Interface  
The standard I2S protocol is defined for only two channels: left and right. In I2S mode, the MSB of the left slot 0  
is transmitted on the falling edge of BCLK in the second cycle after the falling edge of FSYNC. The MSB of the  
right slot 0 is transmitted on the falling edge of BCLK in the second cycle after the rising edge of FSYNC. Each  
subsequent data bit is transmitted on the falling edge of BCLK. In master mode, FSYNC is transmitted on the  
rising edge of BCLK. Figure 8-3 and Figure 8-4 show the protocol timing for I2S operation in slave and master  
mode of operation.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
1
0
N-1 N-2  
1
0
N-1 N-2  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
(n+1)th Sample  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
nth Sample  
Right (Ch2)  
Slot-0  
(Word Length : 32)  
Figure 8-3. I2S Mode Protocol Timing (FMT0 = LOW) in Slave Mode  
FSYNC  
BCLK  
SDOUT  
1
0
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1 N-2  
1
0
Right (Ch2)  
Slot-0  
(Word Length : 32)  
Right (Ch2)  
Slot-0  
(Word Length : 32)  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
nth Sample (64 BCLK Cycles)  
(n+1)th Sample (64 BCLK Cycles)  
Figure 8-4. I2S Protocol Timing (FMT0 = LOW) In Master Mode  
For proper operation of the audio bus in I2S mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the 32-bits word length of the  
output channel data. The device FSYNC low pulse must be a number of BCLK cycles wide that is greater than  
or equal to the number of active left slots times the 32-bits data word length. Similarly, the FSYNC high pulse  
must be a number of BCLK cycles wide that is greater than or equal to the number of active right slots times the  
32-bits data word length. The device transmit zero data value on SDOUT for the extra unused bit clock cycles.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: PCM1820 PCM1821  
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3.3 Phase-Locked Loop (PLL) and Clock Generation  
The device uses an integrated, low-jitter, phase-locked loop (PLL) to generate internal clocks required for the  
ADC modulator and digital filter engine, as well as other control blocks.  
In slave mode of operation, the device supports the various output data sample rates (of the FSYNC signal  
frequency) and the BCLK to FSYNC ratio to configure all clock dividers, including the PLL configuration,  
internally without host programming. Table 8-3 and Table 8-4 list the supported FSYNC and BCLK frequencies.  
Table 8-3. Supported FSYNC (Multiples or Submultiples of 48 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC RATIO  
FSYNC  
(8 kHz)  
FSYNC  
(16 kHz)  
FSYNC  
(24 kHz)  
FSYNC  
(32 kHz)  
FSYNC  
(48 kHz)  
FSYNC  
(96 kHz)  
FSYNC  
(192 kHz)  
16  
24  
Reserved  
Reserved  
0.256  
0.256  
0.384  
0.512  
0.768  
1.024  
1.536  
2.048  
3.072  
4.096  
6.144  
8.192  
0.384  
0.576  
0.768  
1.152  
1.536  
2.304  
3.072  
4.608  
6.144  
9.216  
12.288  
0.512  
0.768  
1.024  
1.536  
2.048  
3.072  
4.096  
6.144  
8.192  
12.288  
16.384  
0.768  
1.152  
1.536  
2.304  
3.072  
4.608  
6.144  
9.216  
12.288  
18.432  
24.576  
1.536  
2.304  
3.072  
4.608  
32  
3.072  
6.144  
48  
0.384  
4.608  
9.216  
64  
0.512  
6.144  
12.288  
96  
0.768  
9.216  
18.432  
128  
192  
256  
384  
512  
1.024  
12.288  
18.432  
24.576  
Reserved  
Reserved  
24.576  
1.536  
Reserved  
Reserved  
Reserved  
Reserved  
2.048  
3.072  
4.096  
Table 8-4. Supported FSYNC (Multiples or Submultiples of 44.1 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC RATIO  
(7.35 kHz)  
(14.7 kHz)  
(22.05 kHz)  
(29.4 kHz)  
(44.1 kHz)  
(88.2 kHz)  
(176.4 kHz)  
16  
24  
Reserved  
Reserved  
Reserved  
0.3528  
Reserved  
0.3528  
0.4704  
0.7056  
0.9408  
1.4112  
1.8816  
2.8224  
3.7632  
5.6448  
7.5264  
0.3528  
0.5292  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
0.4704  
0.7056  
0.9408  
1.4112  
1.8816  
2.8224  
3.7632  
5.6448  
7.5264  
11.2896  
15.0528  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
16.9344  
22.5792  
1.4112  
2.1168  
2.8224  
4.2336  
32  
2.8224  
5.6448  
48  
4.2336  
8.4672  
64  
0.4704  
5.6448  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
96  
0.7056  
8.4672  
128  
192  
256  
384  
512  
0.9408  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
1.4112  
1.8816  
2.8224  
3.7632  
In the master mode of operation, the device uses the MD1 pin (as the system clock, MCLK) as the reference  
input clock source with a supported system clock frequency option of either 256 × fS or 512 × fS as configured  
using the MD0 pin. Master mode supports fS rates of 44.1 kHz and 48 kHz. Table 8-5 shows the system clock  
selection for the master mode using the MD0 pin.  
Table 8-5. System Clock Selection for the Master Mode  
MD0  
LOW  
HIGH  
SYSTEM CLOCK SELECTION (Valid for Master Mode Only)  
System clock with frequency 256 × fS connected to the MD1 pin as MCLK  
System clock with frequency 512 × fS connected to the MD1 pin as MCLK  
See Table 8-7 and Table 8-20 for the MD0 and MD1 pin function in the slave mode of operation.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3.4 Input Channel Configurations  
The device consists of two pairs of analog input pins (INxP and INxM) as differential inputs for the recording  
channel. The device supports simultaneous recording of up to two channels using the high-performance stereo  
ADC. The input source for the analog pins can be from electret condenser analog microphones, micro electrical-  
mechanical system (MEMS) analog microphones, or line-in (auxiliary) inputs from the system board.  
The voice or audio signal inputs must be capacitively coupled (AC-coupled) to the device and, for best distortion  
performance, use the low-voltage coefficient capacitors for AC coupling. The typical input impedance for the  
PCM1820 is 2.5 kΩ for the INxP or INxM pins and 10 kΩ for the PCM1821. The value of the coupling capacitor  
in AC-coupled mode must be chosen so that the high-pass filter formed by the coupling capacitor and the input  
impedance do not affect the signal content. Before proper recording can begin, this coupling capacitor must be  
charged up to the common-mode voltage at power-up. To enable quick charging, the device has a quick charge  
scheme to speed up the charging of the coupling capacitor at power-up. The default value of the quick-charge  
timing is set for a coupling capacitor up to 1 µF.  
8.3.5 Reference Voltage  
All audio data converters require a DC reference voltage. The PCM182x achieves low-noise performance by  
internally generating a low-noise reference voltage. This reference voltage is generated using a band-gap  
circuit with high PSRR performance. This audio converter reference voltage must be filtered externally using a  
minimum 1-µF capacitor connected from the VREF pin to analog ground (AVSS). The value of this reference  
voltage, VREF, is set to 2.75 V, which in turn supports a 2-VRMS differential full-scale input to the device. The  
required minimum AVDD voltage for this VREF voltage is 3 V. Do not connect any external load to a VREF pin.  
8.3.6 Signal-Chain Processing  
The PCM182x signal chain is comprised of very-low-noise, high-performance, and low-power analog blocks and  
highly flexible and programmable digital processing blocks. The high performance and flexibility combined with a  
compact package makes the PCM182x optimized for a variety of end-equipments and applications that require  
multichannel audio capture. Figure 8-5 shows a conceptual block diagram for the PCM1820 that highlights the  
various building blocks used in the signal chain, and how the blocks interact in the signal chain. The PCM1821  
does not support DRE.  
Output  
Channel  
Data to  
INP  
INM  
Configurable  
Decimation  
Filters  
DRE  
Amplifier  
HPF  
DRE  
ADC  
Audio Bus  
Figure 8-5. Signal-Chain Processing Flowchart  
The front-end dynamic range enhancer (DRE) gain amplifier in the PCM1820 is very low noise, with a 123-dB  
dynamic range performance. Along with a low-noise and low-distortion, multibit, delta-sigma ADC, the front-end  
DRE gain amplifier enables the PCM1820 to record a far-field audio signal with very high fidelity, both in quiet  
and loud environments. Moreover, the ADC architecture has inherent antialias filtering with a high rejection of  
out-of-band frequency noise around multiple modulator frequency components. Therefore, the device prevents  
noise from aliasing into the audio band during ADC sampling. Further on in the signal chain, an integrated,  
high-performance multistage digital decimation filter sharply cuts off any out-of-band frequency noise with high  
stop-band attenuation.  
The device supports an input signal bandwidth up to 80 kHz, which allows the high-frequency non-audio signal  
to be recorded by using a 176.4-kHz (or higher) sample rate.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: PCM1820 PCM1821  
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3.6.1 Digital High-Pass Filter  
To remove the DC offset component and attenuate the undesired low-frequency noise content in the record data,  
the device supports a fixed high-pass filter (HPF) with –3-dB cut-off frequency of 0.00025 × fS. The HPF is not a  
channel-independent filter but is globally applicable for all the ADC channels. This HPF is constructed using the  
first-order infinite impulse response (IIR) filter, and is efficient enough to filter out possible DC components of the  
signal. Table 8-6 shows the fixed –3-dB cutoff frequency value. Figure 8-6 shows a frequency response plot for  
the HPF filter.  
Table 8-6. HPF Cutoff Frequency Value  
-3-dB CUTTOFF FREQUENCY AT 16 kHz  
SAMPLE RATE  
-3-dB CUTTOFF FREQUENCY AT 48 kHz  
SAMPLE RATE  
–3-dB CUTOFF FREQUENCY VALUE  
0.00025 × fS  
4 Hz  
12 Hz  
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
HPF -3 dB Cutoff = 0.00025 ì fS  
5E-5  
0.0001  
0.0005  
0.001  
Normalized Frequency (1/fS)  
0.005  
0.01  
0.05  
DPlo  
Figure 8-6. HPF Filter Frequency Response Plot  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3.6.2 Configurable Digital Decimation Filters  
The device record channel includes a high dynamic range, built-in digital decimation filter to process the  
oversampled data from the multibit delta-sigma (ΔΣ) modulator to generate digital data at the same Nyquist  
sampling rate as the FSYNC rate. The decimation filter can be chosen from two different types only in slave  
mode, depending on the required frequency response, group delay, and phase linearity requirements for the  
target application. The selection of the decimation filter option can be done by the MD0 pin. Table 8-7 shows the  
decimation filter mode selection for the record channel.  
Table 8-7. Decimation Filter Mode Selection for the Record Channel  
MD0  
DECIMATION FILTER MODE SELECTION (Supported Only in Slave Mode)  
LOW  
Linear phase filters are used for the decimation in slave mode. For master mode, the device  
always use linear phase filters for the decimation.  
HIGH  
Low latency filters are used for the decimation in slave mode. For master mode, the device  
always use linear phase filters for the decimation.  
8.3.6.2.1 Linear Phase Filters  
The linear phase decimation filters are the default filters set by the device and can be used for all applications  
that require a perfect linear phase with zero-phase deviation within the pass-band specification of the filter.  
The filter performance specifications and various plots for all supported output sampling rates are listed in this  
section.  
8.3.6.2.1.1 Sampling Rate: 8 kHz or 7.35 kHz  
Figure 8-7 and Figure 8-8 respectively show the magnitude response and the pass-band ripple for a decimation  
filter with a sampling rate of 8 kHz or 7.35 kHz. Table 8-8 lists the specifications for a decimation filter with an  
8-kHz or 7.35-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 8-7. Linear Phase Decimation Filter  
Magnitude Response  
Figure 8-8. Linear Phase Decimation Filter Pass-  
Band Ripple  
Table 8-8. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
–0.05  
0.05  
dB  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
72.7  
81.2  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: PCM1820 PCM1821  
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3.6.2.1.2 Sampling Rate: 16 kHz or 14.7 kHz  
Figure 8-9 and Figure 8-10 respectively show the magnitude response and the pass-band ripple for a decimation  
filter with a sampling rate of 16 kHz or 14.7 kHz. Table 8-9 lists the specifications for a decimation filter with an  
16-kHz or 14.7-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 8-9. Linear Phase Decimation Filter  
Magnitude Response  
Figure 8-10. Linear Phase Decimation Filter Pass-  
Band Ripple  
Table 8-9. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
–0.05  
0.05  
dB  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
73.3  
95.0  
Stop-band attenuation  
Group delay or latency  
dB  
15.7  
1/fS  
8.3.6.2.1.3 Sampling Rate: 24 kHz or 22.05 kHz  
Figure 8-11 and Figure 8-12 respectively show the magnitude response and the pass-band ripple for a  
decimation filter with a sampling rate of 24 kHz or 22.05 kHz. Table 8-10 lists the specifications for a decimation  
filter with an 24-kHz or 22.05-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 8-11. Linear Phase Decimation Filter  
Magnitude Response  
Figure 8-12. Linear Phase Decimation Filter Pass-  
Band Ripple  
Table 8-10. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
–0.05  
0.05  
dB  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
73.0  
96.4  
Stop-band attenuation  
Group delay or latency  
dB  
16.6  
1/fS  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3.6.2.1.4 Sampling Rate: 32 kHz or 29.4 kHz  
Figure 8-13 and Figure 8-14 respectively show the magnitude response and the pass-band ripple for a  
decimation filter with a sampling rate of 32 kHz or 29.4 kHz. Table 8-11 lists the specifications for a decimation  
filter with an 32-kHz or 29.4-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 8-13. Linear Phase Decimation Filter  
Magnitude Response  
Figure 8-14. Linear Phase Decimation Filter Pass-  
Band Ripple  
Table 8-11. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
–0.05  
0.05  
dB  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
73.7  
Stop-band attenuation  
Group delay or latency  
dB  
107.2  
16.9  
1/fS  
8.3.6.2.1.5 Sampling Rate: 48 kHz or 44.1 kHz  
Figure 8-15 and Figure 8-16 respectively show the magnitude response and the pass-band ripple for a  
decimation filter with a sampling rate of 48 kHz or 44.1 kHz. Table 8-12 lists the specifications for a decimation  
filter with an 48-kHz or 44.1-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 8-15. Linear Phase Decimation Filter  
Magnitude Response  
Figure 8-16. Linear Phase Decimation Filter Pass-  
Band Ripple  
Table 8-12. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
–0.05  
0.05  
dB  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
73.8  
98.1  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: PCM1820 PCM1821  
 
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3.6.2.1.6 Sampling Rate: 96 kHz or 88.2 kHz  
Figure 8-17 and Figure 8-18 respectively show the magnitude response and the pass-band ripple for a  
decimation filter with a sampling rate of 96 kHz or 88.2 kHz. Table 8-13 lists the specifications for a decimation  
filter with an 96-kHz or 88.2-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 8-17. Linear Phase Decimation Filter  
Magnitude Response  
Figure 8-18. Linear Phase Decimation Filter Pass-  
Band Ripple  
Table 8-13. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
–0.05  
0.05  
dB  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
73.6  
97.9  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
8.3.6.2.1.7 Sampling Rate: 192 kHz or 176.4 kHz  
Figure 8-19 and Figure 8-20 respectively show the magnitude response and the pass-band ripple for a  
decimation filter with a sampling rate of 192 kHz or 176.4 kHz. Table 8-14 lists the specifications for a decimation  
filter with an 192-kHz or 176.4-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
0.2  
0.25  
Normalized Frequency (1/fS)  
0.3  
0.35  
0.4  
D001  
D001  
Figure 8-19. Linear Phase Decimation Filter  
Magnitude Response  
Figure 8-20. Linear Phase Decimation Filter Pass-  
Band Ripple  
Table 8-14. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.3 × fS  
–0.05  
0.05  
dB  
Frequency range is 0.473 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.3 × fS  
70.0  
Stop-band attenuation  
Group delay or latency  
dB  
111.0  
11.9  
1/fS  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3.6.2.2 Low-Latency Filters  
For applications where low latency with minimal phase deviation (within the audio band) is critical, the low-  
latency decimation filters on the PCM182x can be used. The device supports these filters with a group delay of  
approximately seven samples with an almost linear phase response within the 0.365 × fS frequency band. This  
section provides the filter performance specifications and various plots for all supported output sampling rates for  
the low-latency filters.  
8.3.6.2.2.1 Sampling Rate: 16 kHz or 14.7 kHz  
Figure 8-21 shows the magnitude response and Figure 8-22 shows the pass-band ripple and phase deviation for  
a decimation filter with a sampling rate of 16 kHz or 14.7 kHz. Table 8-15 lists the specifications for a decimation  
filter with a 16-kHz or 14.7-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
Figure 8-22. Low-Latency Decimation Filter Pass-  
Band Ripple and Phase Deviation  
Figure 8-21. Low-Latency Decimation Filter  
Magnitude Response  
Table 8-15. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.451 × fS  
–0.05  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
Frequency range is 0.61 × fS onwards  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
87.3  
dB  
7.6  
1/fS  
–0.022  
–0.21  
0.022  
0.25  
1/fS  
Degrees  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: PCM1820 PCM1821  
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3.6.2.2.2 Sampling Rate: 24 kHz or 22.05 kHz  
Figure 8-23 shows the magnitude response and Figure 8-24 shows the pass-band ripple and phase deviation  
for a decimation filter with a sampling rate of 24 kHz or 22.05 kHz. Table 8-16 lists the specifications for a  
decimation filter with a 24-kHz or 22.05-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
Figure 8-24. Low-Latency Decimation Filter Pass-  
Band Ripple and Phase Deviation  
Figure 8-23. Low-Latency Decimation Filter  
Magnitude Response  
Table 8-16. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.459 × fS  
–0.01  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
87.2  
dB  
7.5  
1/fS  
–0.026  
–0.26  
0.026  
0.30  
1/fS  
Degrees  
8.3.6.2.2.3 Sampling Rate: 32 kHz or 29.4 kHz  
Figure 8-25 shows the magnitude response and Figure 8-26 shows the pass-band ripple and phase deviation for  
a decimation filter with a sampling rate of 32 kHz or 29.4 kHz. Table 8-17 lists the specifications for a decimation  
filter with a 32-kHz or 29.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
Figure 8-26. Low-Latency Decimation Filter Pass-  
Band Ripple and Phase Deviation  
Figure 8-25. Low-Latency Decimation Filter  
Magnitude Response  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
Table 8-17. Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
8.7  
1/fS  
–0.026  
–0.26  
0.026  
0.31  
1/fS  
Degrees  
8.3.6.2.2.4 Sampling Rate: 48 kHz or 44.1 kHz  
Figure 8-27 shows the magnitude response and Figure 8-28 shows the pass-band ripple and phase deviation for  
a decimation filter with a sampling rate of 48 kHz or 44.1 kHz. Table 8-18 lists the specifications for a decimation  
filter with a 48-kHz or 44.1-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
Figure 8-28. Low-Latency Decimation Filter Pass-  
Band Ripple and Phase Deviation  
Figure 8-27. Low-Latency Decimation Filter  
Magnitude Response  
Table 8-18. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.452 × fS  
–0.015  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
86.4  
dB  
7.7  
1/fS  
–0.027  
–0.25  
0.027  
0.30  
1/fS  
Degrees  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: PCM1820 PCM1821  
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3.6.2.2.5 Sampling Rate: 96 kHz or 88.2 kHz  
Figure 8-29 shows the magnitude response and Figure 8-30 shows the pass-band ripple and phase deviation for  
a decimation filter with a sampling rate of 96 kHz or 88.2 kHz. Table 8-19 lists the specifications for a decimation  
filter with a 96-kHz or 88.2-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
Figure 8-30. Low-Latency Decimation Filter Pass-  
Band Ripple and Phase Deviation  
Figure 8-29. Low-Latency Decimation Filter  
Magnitude Response  
Table 8-19. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.466 × fS  
–0.04  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
86.3  
dB  
7.7  
1/fS  
–0.027  
–0.26  
0.027  
0.30  
1/fS  
Degrees  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
8.3.7 Dynamic Range Enhancer (DRE)  
The device integrates an ultra-low noise front-end DRE gain amplifier with 123-dB dynamic range performance  
with a low-noise, low-distortion, multibit delta-sigma (ΔΣ) ADC with a 113-dB dynamic range. The dynamic range  
enhancer (DRE) is a digitally assisted algorithm to boost the overall channel performance. The DRE monitors  
the incoming signal amplitude and accordingly adjusts the internal DRE amplifier gain automatically. The DRE  
achieves a complete-channel dynamic range as high as 123 dB. At a system level, the DRE scheme enables  
far-field, high-fidelity recording of audio signals in very quiet environments and low-distortion recording in loud  
environments.  
The DRE can be enabled only in slave mode by driving the MD1 pin high. Table 8-20 shows the DRE selection  
for the record channel. Additionally, this feature is only supported in the PCM1820 and not in the PCM1821.  
Table 8-20. DRE Selection for the Record Channel  
MD1  
Low  
High  
DRE SELECTION (Supported Only in Slave Mode)  
The DRE is disabled in slave mode. For master mode, the DRE is always disabled.  
The DRE is enabled with DRE_LVL = –36 dB and DRE_MAXGAIN = 24 dB in slave mode.  
For master mode, the DRE is always disabled.  
This algorithm is implemented with very low latency and all signal chain blocks are designed to minimize  
any audible artifacts that may occur resulting from dynamic gain modulation. The target signal threshold level  
(DRE_LVL), at which the DRE is triggered, is fixed to the –36-dB input signal level. The DRE gain range can be  
dynamically modulated by using DRE_MAXGAIN, which is fixed to 24 dB to maximize the benefit of the DRE in  
real-world applications and to minimize any audible artifacts.  
Enabling the DRE for processing increases the power consumption of the device because of increased  
signal processing. Therefore, disable the DRE for low-power critical applications. Furthermore, the DRE is not  
supported for output sample rates greater than 96 kHz.  
8.4 Device Functional Modes  
8.4.1 Active Mode  
The device wakes up in active mode when AVDD and IOVDD are available. Configure all hardware control pins  
(MSZ, MD0, MD1, and FMT0) for the device desired mode of operation before enabling clocks for the device.  
In active mode, when the audio clocks are available, the device automatically powers up all ADC channels and  
starts transmitting data over the audio serial interface. If the clocks are stopped, then the device auto powers  
down the ADC channels.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: PCM1820 PCM1821  
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The PCM182x is a multichannel, high-performance audio analog-to-digital converter (ADC) that supports output  
sample rates of up to 192 kHz. The device supports up to two analog microphones for simultaneous recording  
applications.  
The PCM182x configuration is supported using various hardware pin control options. The device supports a  
highly flexible, audio serial interface (TDM and I2S) to transmit audio data seamlessly in the system across  
devices.  
9.2 Typical Application  
Figure 9-1 shows a typical configuration of the PCM182x for an application using stereo analog microelectrical-  
mechanical system (MEMS) microphones for simultaneous recording operation with a time-division multiplexing  
(TDM) audio data slave interface. For best distortion performance, use input AC-coupling capacitors with a  
low-voltage coefficient.  
3.3 V  
(3.0 V to  
3.6 V)  
1 F  
10 F  
GND  
GND  
GND  
10 F  
VDD  
OUTP  
IN1P  
IN1M  
DREG  
AMIC1  
OUTM  
VSS  
0.1 F  
GND  
GND  
VDD  
OUTP  
IN2P  
IN2M  
PCM1820, PCM1821  
AMIC2  
OUTM  
VSS  
3.3 V (3.0 V to  
OR  
1.8 V (1.65 V to  
10 F  
0.1 F  
IOVDD  
GND  
GND  
Thermal Pad  
(VSS)  
GND  
LOW or HIGH Pin  
Selector  
Host  
Processor  
Figure 9-1. Two-Channel Analog Microphone Recording Diagram for 3.3-V AVDD Operation  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
9.2.1 Design Requirements  
Table 9-1 lists the design parameters for this application.  
Table 9-1. Design Parameters  
KEY PARAMETER  
SPECIFICATION (3.3-V AVDD Operation)  
AVDD  
3.3 V  
AVDD supply current consumption  
IOVDD  
12.9 mA (two-channel recording, fS = 48 kHz)  
1.8 V or 3.3 V  
9.2.2 Detailed Design Procedure  
This section describes the necessary steps to configure the PCM182x for this specific application. The following  
steps provide a sequence of steps that must be executed in the time between powering the device up and  
reading data from the device or transitioning from one mode to another mode of operation.  
1. Apply power to the device:  
a. Power-up the IOVDD and AVDD power supplies  
b. The device now goes into low-power mode  
2. Configure the pins for correct configuration:  
a. Connect the MSZ, FMT0, MD0, and MD1 pin voltages for the desired configuration  
b. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
See the Phase-Locked Loop (PLL) and Clock Generation section for supported sample rates and the  
BCLK to FSYNC ratio  
c. The device recording data are now sent to the host processor via the audio serial data bus  
3. Stop the clocks to stop recording of data at any time  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: PCM1820 PCM1821  
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
9.2.3 Application Curves  
Measurements are done on the EVM by feeding the device analog input signal using audio precision and with a  
3.3-V AVDD supply.  
0
-20  
-60  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-1: DRE Enabled  
Channel-2: DRE Enabled  
-70  
-40  
-80  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
ADC6  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Frequency (Hz)  
Input Amplitude (dB)  
ATHDDC+6  
Figure 9-2. PCM1820: FFT With a –60-dBr Input  
With DRE Enabled  
Figure 9-3. PCM1820: THD+N vs Input Amplitude  
With DRE Enabled  
0
-60  
Channel-1 : DRE disabled  
Channel-1: DRE Disabled  
Channel-2: DRE Disabled  
Channel-2 : DRE disabled  
-20  
-70  
-80  
-40  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
ADC6  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Frequency (Hz)  
Input Amplitude (dB)  
ATHDDC+6  
Figure 9-4. PCM1820: FFT With a –60-dBr Input  
With DRE Disabled  
Figure 9-5. PCM1820: THD+N vs Input Amplitude  
With DRE Disabled  
0
-60  
Channel-1  
Channel-1  
Channel-2  
Channel-2  
-20  
-70  
-80  
-40  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
PCM1  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Frequency (Hz)  
Input Amplitude (dB)  
PTCHMD+1  
Figure 9-6. PCM1821: FFT With a –60-dBr Input  
Figure 9-7. PCM1821: THD+N vs Input Amplitude  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
10 Power Supply Recommendations  
The power-supply sequence between the IOVDD and AVDD rails can be applied in any order. However, do not  
provide any clocks until the IOVDD and AVDD supply voltage settles to a stable and supported operating voltage  
range. Provide the clocks (FSYNC and BCLK) only when all hardware control pins (MSZ, MD0, MD1, and FMT0)  
are driven to the voltage level for the device desired mode of operation.  
For the supply power-up requirement, t1 and t2 must be at least 100 µs. For the supply power-down requirement,  
t3 and t4 must be at least 10 ms. This timing (as shown in Figure 10-1) allows the device to ramp down  
the volume on the record data, power down the analog and digital blocks, and put the device into hardware  
shutdown mode.  
AVDD  
t1  
t3  
IOVDD  
ASI Clocks  
t2  
t4  
Figure 10-1. Power-Supply Sequencing Requirement Timing Diagram  
Make sure that the supply ramp rate is slower than 1 V/µs and that the wait time between a power-down and a  
power-up event is at least 100 ms. All digital input pins must be held at valid input levels and not toggling during  
supply sequencing.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: PCM1820 PCM1821  
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
Each system design and printed circuit board (PCB) layout is unique. The layout must be carefully reviewed in  
the context of a specific PCB design. However, the following guidelines can optimize the device performance:  
Connect the thermal pad to ground. Use a via pattern to connect the device thermal pad, which is the area  
directly under the device, to the ground planes. This connection helps dissipate heat from the device.  
The decoupling capacitors for the power supplies must be placed close to the device pins.  
Route the analog differential audio signals differentially on the PCB for better noise immunity. Avoid crossing  
digital and analog signals to prevent undesirable crosstalk.  
The device internal voltage references must be filtered using external capacitors. Place the filter capacitors  
near the VREF pin for optimal performance.  
Directly short the VREF external capacitor ground terminal to the AVSS pin without using any vias for this  
connection trace.  
Use ground planes to provide the lowest impedance for power and signal current between the device and the  
decoupling capacitors. Treat the area directly under the device as a central ground area for the device, and  
all device grounds must be connected directly to that area.  
11.2 Layout Example  
15: VSS  
16: AVDD  
17: AREG  
9: IOVDD  
8: FSYNC  
18: VREF  
19: FMT0  
7: BCLK  
6: SDOUT  
5: VSS  
Figure 11-1. Example Layout  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: PCM1820 PCM1821  
 
 
 
PCM1820, PCM1821  
SBASA61A – DECEMBER 2020 – REVISED JUNE 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.2 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 Trademarks  
Burr-Brownand TI E2Eare trademarks of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: PCM1820 PCM1821  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM1820IRTER  
PCM1821IRTER  
XCM1820IRTER  
XCM1821IRTER  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RTE  
RTE  
RTE  
RTE  
20  
20  
20  
20  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
PC1820  
PC1821  
NIPDAU  
Call TI  
3000  
3000  
TBD  
TBD  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PCM1820IRTER  
PCM1821IRTER  
WQFN  
WQFN  
RTE  
RTE  
20  
20  
3000  
3000  
330.0  
330.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
PCM1820IRTER  
PCM1821IRTER  
WQFN  
WQFN  
RTE  
RTE  
20  
20  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
A
RTE0020A  
3.1  
2.9  
B
PIN 1 INDEX AREA  
3.1  
2.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.5  
SQ  
1.4±0.1  
4X (SQ 0.2)  
TYP  
(0.1)  
6
10  
5
9
8X 0.4625  
0.225  
0.125  
0.1  
8X  
4
11  
C
A B  
0.05  
C
SYMM  
21  
1.5  
14  
1
12X 0.5  
0.3  
0.2  
0.1  
16X  
0.5  
C A B  
PIN1 ID  
(OPTIONAL)  
15  
20  
19  
16  
0.05  
C
16X  
SYMM  
0.3  
4225900/A 06/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RTE0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(2.825)  
(2.8)  
(SQ 1.4)  
4X (0.575)  
4X (0.175)  
16X (0.6)  
4X (0.575)  
15  
19  
16  
20  
8X (0.4625)  
4X (0.175)  
14  
1
16X (0.25)  
12X (0.5)  
(2.825)  
(2.8)  
SYMM  
21  
2X (0.45)  
11  
4
(R 0.05) TYP  
(Ø 0.2) VIA  
TYP  
5
10  
2X (0.45)  
9
6
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
0.07 MIN  
ALL AROUND  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225900/A 06/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RTE0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(2.825)  
(2.8)  
4X (0.575)  
4X (0.175)  
(SQ 1.3)  
16X (0.6)  
4X (0.575)  
19  
16  
15  
20  
8X (0.4625)  
4X (0.175)  
21  
1
14  
16X (0.25)  
12X (0.5)  
(2.825)  
SYMM  
(2.8)  
11  
4
(R 0.05) TYP  
METAL TYP  
5
10  
9
6
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
86% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225900/A 06/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

PCM1820QRTERQ1

汽车类、立体声、113dB、192kHz、硬件控制的音频 ADC | RTE | 20 | -40 to 125
TI

PCM1820_V01

PCM182x Stereo Channel, 32-Bit, 192-kHz, Burr-BrownTM Audio ADC
TI

PCM1820_V02

PCM182x Stereo Channel, 32-Bit, 192-kHz, Burr-BrownTM Audio ADC
TI

PCM1821

PCM182x Stereo Channel, 32-Bit, 192-kHz, Burr-BrownTM Audio ADC
TI

PCM1821-Q1

汽车类、立体声、106dB SNR、192kHz、低功耗、硬件控制的音频 ADC
TI

PCM1821IRTER

PCM182x Stereo Channel, 32-Bit, 192-kHz, Burr-BrownTM Audio ADC
TI

PCM1821QRTERQ1

汽车类、立体声、106dB SNR、192kHz、低功耗、硬件控制的音频 ADC | RTE | 20 | -40 to 125
TI

PCM1822

汽车类、117dB SNR、192kHz、低功耗、硬件控制的音频 ADC
TI

PCM1822-Q1

汽车类、立体声、117dB SNR、192kHz、硬件控制的音频 ADC
TI

PCM1822IRTER

汽车类、117dB SNR、192kHz、低功耗、硬件控制的音频 ADC | RTE | 20 | -40 to 125
TI

PCM1822QRTERQ1

汽车类、立体声、117dB SNR、192kHz、硬件控制的音频 ADC | RTE | 20 | -40 to 125
TI

PCM182X

PCM182x Stereo Channel, 32-Bit, 192-kHz, Burr-BrownTM Audio ADC
TI