PCM1840 [TI]

四通道、32 位、192kHz 音频模数转换器 (ADC);
PCM1840
型号: PCM1840
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四通道、32 位、192kHz 音频模数转换器 (ADC)

转换器 模数转换器
文件: 总39页 (文件大小:2484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
PCM1840  
ZHCSL25 APRIL 2019  
PCM1840 四通道、32 位、192kHz Burr-BrownTM 音频 ADC  
1 特性  
3 说明  
1
多通道高性能 ADC:  
PCM1840 是一款高性能 Burr-Brown™音频模数转换  
(ADC),可支持高达四个模拟通道的同步采样。此  
器件支持差分线路和麦克风输入,具有 2VRMS 满量程  
信号,集成了麦克风偏置电压、锁相环 (PLL)、直流去  
除高通滤波器 (HPF) 等特性,并支持高达 192kHz 的  
采样率。该器件支持时分多路复用 (TDM)I2S 或左平  
(LJ) 音频格式,且硬件引脚电平可选。此  
4 通道模拟麦克风输入或线路输入  
ADC 线路和麦克风差分输入性能:  
动态范围:  
123dB,启用动态范围增强器  
113dB,禁用动态范围增强器  
THD+N–98dB  
外,PCM1840 还支持主从模式选择,从而实现音频总  
线接口操作。这些集成的高性能 特性,以及采用 3.3V  
单电源供电的功能,使该器件非常适用于远场麦克风录  
音 应用中成本敏感的空间受限型音频系统。  
ADC 差分 2VRMS 满量程输入  
ADC 采样率 (fS) = 8kHz 192kHz  
硬件引脚控制配置  
线性相位或低延迟滤波器可选  
灵活的音频串行数据接口:  
PCM1840 的额定工作温度范围为 –40°C +125°C,  
并且采用 24 引脚 WQFN 封装。  
主或从接口可选  
32 位、4 通道 TDM  
32 位、2 通道 TDM  
32 位、2 通道 I2S  
器件信息(1)  
器件型号  
PCM1840  
封装  
封装尺寸(标称值)  
4.00mm × 4.00mm,间距  
0.5mm  
WQFN (24)  
32 位、2 通道左平衡 (LJ)  
音频时钟丢失时自动断电  
集成高性能音频 PLL  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
低噪声麦克风偏置 2.75V 输出  
单电源运行:3.3V  
简化方框图  
I/O 电源运行:3.3V 1.8V  
3.3V AVDD 电源电压下的功耗:  
IN1P  
PLL and Clock Generation  
IN1M  
FSYNC  
Audio Serial  
Interface  
BCLK  
16kHz 采样率下为 17.0mW/通道  
48kHz 采样率下为 18.4mW/通道  
IN2P  
(TDM, I2S, LJ)  
SDOUT  
SHDNZ  
IN2M  
Quad Channel  
ADC with  
Front-End DRE  
Amplifier  
Configurable  
Digital Filters,  
and DRE  
IN3P  
IN3M  
2 应用  
MSZ  
FMT0  
IN4P  
IN4M  
智能扬声器  
Hardware Pin  
Control  
Interface  
FMT1  
MD0  
DVD 录像机和播放器  
AV 接收机  
MICBIAS, Regulators and Voltage  
Reference  
MICBIAS  
VREF  
MD1  
视频会议系统  
IP 网络摄像头  
Thermal Pad  
(VSS)  
AVDD  
DREG  
AVSS  
IOVDD  
AREG  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS989  
 
 
 
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 26  
Application and Implementation ........................ 27  
8.1 Application Information............................................ 27  
8.2 Typical Application .................................................. 27  
Power Supply Recommendations...................... 30  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements: TDM, I2S or LJ Interface....... 7  
6.7 Switching Characteristics: TDM, I2S or LJ Interface. 7  
6.8 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 31  
11 器件和文档支持 ..................................................... 32  
11.1 接收文档更新通知 ................................................. 32  
11.2 社区资源................................................................ 32  
11.3 ....................................................................... 32  
11.4 静电放电警告......................................................... 32  
11.5 Glossary................................................................ 32  
12 机械、封装和可订购信息....................................... 32  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2020 4 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
5 Pin Configuration and Functions  
RTW Package  
24-Pin WQFN With Exposed Thermal Pad  
Top View  
AVDD  
AREG  
VREF  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
MD0  
MSZ  
FMT0  
FMT1  
SHDNZ  
IN4M  
Thermal Pad (VSS)  
AVSS  
MICBIAS  
IN1P  
Not to scale  
Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
AVDD  
AREG  
VREF  
AVSS  
MICBIAS  
IN1P  
Analog supply  
Analog Supply  
Analog  
Analog power (3.3 V, nominal)  
2
Analog on-chip regulator output voltage for analog supply (1.8 V, nominal)  
Analog reference voltage filter output  
Analog ground. Short this pin directly to the board ground plane.  
MICBIAS output  
3
4
Analog supply  
Analog  
5
6
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital supply  
Digital input  
Digital output  
Digital I/O  
Analog input 1P pin  
7
IN1M  
Analog input 1M pin  
8
IN2P  
Analog input 2P pin  
9
IN2M  
Analog input 2M pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
IN3P  
Analog input 3P pin  
IN3M  
Analog input 3M pin  
IN4P  
Analog input 4P pin  
IN4M  
Analog input 4M pin  
SHDNZ  
FMT1  
FMT0  
MSZ  
Device hardware shutdown and reset (active low)  
Audio interface format select 1 pin  
Audio interface format select 0 pin  
Audio interface bus master or slave select pin  
Device configuration mode select 0 pin  
Digital I/O power supply (1.8 V or 3.3 V, nominal)  
Device configuration mode select 1 pin  
Audio serial data interface bus output  
Audio serial data interface bus bit clock  
Audio serial data interface bus frame synchronization signal  
MD0  
IOVDD  
MD1  
SDOUT  
BCLK  
FSYNC  
Digital I/O  
Copyright © 2019, Texas Instruments Incorporated  
3
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
24  
DREG  
Digital supply  
Ground supply  
Digital regulator output voltage for digital core supply (1.5 V, nominal)  
Thermal pad shorted to internal device ground. Short thermal pad directly to board  
ground plane.  
Thermal Pad (VSS)  
6 Specifications  
6.1 Absolute Maximum Ratings  
over the operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
AVDD to AVSS  
3.9  
Supply voltage  
AREG to AVSS  
2.0  
3.9  
V
IOVDD to VSS (thermal pad)  
AVSS to VSS (thermal pad)  
Analog input pins voltage to AVSS  
Digital input pins voltage to VSS (thermal pad)  
Operating ambient, TA  
Ground voltage differences  
Analog input voltage  
Digital input voltage  
0.3  
V
V
V
AVDD + 0.3  
IOVDD + 0.3  
125  
Temperature  
Junction, TJ  
–40  
150  
°C  
Storage, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER  
AVDD,  
Analog supply voltage AVDD to AVSS (AREG is generated using onchip regulator) -  
AVDD 3.3-V operation  
3.0  
3.3  
3.6  
V
V
AREG(1)  
IO supply voltage to VSS (thermal pad) - IOVDD 3.3-V operation  
IO supply voltage to VSS (thermal pad) - IOVDD 1.8-V operation  
3.0  
3.3  
1.8  
3.6  
IOVDD  
1.65  
1.95  
INPUTS  
Analog input pins voltage to AVSS  
0
0
AVDD  
V
V
Digital input pins voltage to VSS (thermal pad)  
IOVDD  
TEMPERATURE  
TA  
Operating ambient temperature  
–40  
125  
°C  
OTHERS  
Digital input pin used as MCLK input clock frequency  
Digital output load capacitance  
36.864  
50  
MHz  
pF  
CL  
20  
(1) AVSS and VSS (thermal pad): all ground pins must be tied together and must not differ in voltage by more than 0.2 V.  
4
Copyright © 2019, Texas Instruments Incorporated  
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
6.4 Thermal Information  
PCM1840  
RTW (WQFN)  
24 PINS  
32.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
25.0  
11.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
11.9  
RθJC(bot)  
2.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode (unless otherwise noted)  
PARAMETER  
ADC CONFIGURATION  
AC input impedance  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input pins INxP or INxM  
2.5  
kΩ  
ADC PERFORMANCE FOR LINE/MICROPHONE INPUT RECORDING : AVDD 3.3-V OPERATION  
Differential input full-scale  
AC-coupled input  
2
122  
112  
123  
113  
–98  
–98  
VRMS  
AC signal voltage  
IN1 differential input selected and AC signal shorted to  
ground, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB)  
115  
106  
Signal-to-noise ratio, A-  
weighted(1)(2)  
SNR  
DR  
dB  
IN1 differential input selected and AC signal shorted to  
ground, DRE disabled  
IN1 differential input selected and –60-dB full-scale AC  
signal input, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB)  
Dynamic range, A-  
weighted(2)  
dB  
dB  
IN1 differential input selected and –60-dB full-scale AC  
signal input, DRE disabled  
IN1 differential input selected and –1-dB full-scale AC  
signal input, DRE enabled (DRE_LVL = –36 dB,  
DRE_MAXGAIN = 24 dB)  
–80  
Total harmonic  
distortion(2)(3)  
THD+N  
IN1 differential input selected and –1-dB full-scale AC  
signal input, DRE disabled  
ADC OTHER PARAMETERS  
Output data sample rate  
7.35  
192  
32  
kHz  
Bits  
Output data sample word  
length  
–1-dB full-scale AC-signal input to non measurement  
channel  
Interchannel isolation  
–124  
dB  
Interchannel gain  
mismatch  
–6-dB full-scale AC-signal input  
across temperature range 15°C to 35°C  
1-kHz sinusoidal signal  
0.1  
–4.4  
0.02  
dB  
Gain drift  
ppm/°C  
Degrees  
Interchannel phase  
mismatch  
1-kHz sinusoidal signal, across temperature range 15°C  
to 35°C  
Phase drift  
0.0005  
102  
Degrees/°C  
Power-supply rejection  
ratio  
100-mVPP, 1-kHz sinusoidal signal on AVDD, differential  
input selected, 0-dB channel gain  
PSRR  
CMRR  
dB  
dB  
Common-mode rejection  
ratio  
Differential microphone input selected, 100-mVPP, 1-kHz  
signal on both pins and measure level at output  
60  
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the AC signal input shorted to ground, measured A-  
weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
(3) For best distortion performance, use input AC-coupling capacitors with low-voltage-coefficient.  
Copyright © 2019, Texas Instruments Incorporated  
5
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MICROPHONE BIAS  
BW = 20 Hz to 20 kHz, A-weighted, 1-μF capacitor  
between MICBIAS and AVSS  
MICBIAS noise  
1.6  
µVRMS  
MICBIAS voltage  
VREF  
V
mA  
%
MICBIAS current drive  
MICBIAS load regulation  
20  
Measured up to max load  
0.1  
30  
0.6  
1.8  
MICBIAS over current  
protection threshold  
mA  
DIGITAL I/O  
0.30 ×  
IOVDD  
All digital pins, IOVDD 1.8-V operation  
All digital pins, IOVDD 3.3-V operation  
All digital pins, IOVDD 1.8-V operation  
–0.3  
–0.3  
Low-level digital input logic  
voltage threshold  
VIL  
V
V
0.8  
0.7 ×  
IOVDD  
IOVDD +  
0.3  
High-level digital input logic  
voltage threshold  
VIH  
IOVDD +  
0.3  
All digital pins, IOVDD 3.3-V operation  
2.1  
All digital pins, IOL = –2 mA, IOVDD 1.8-V operation  
All digital pins, IOL = –2 mA, IOVDD 3.3-V operation  
0.45  
0.4  
Low-level digital output  
voltage  
VOL  
V
V
IOVDD –  
0.45  
All digital pins, IOH = 2 mA, IOVDD 1.8-V operation  
All digital pins, IOH = 2 mA, IOVDD 3.3-V operation  
All digital pins, input = IOVDD  
High-level digital output  
voltage  
VOH  
2.4  
–5  
Input logic-high leakage for  
digital inputs  
IIH  
0.1  
0.1  
5
5
5
µA  
µA  
pF  
Input logic-low leakage for  
digital inputs  
IIL  
All digital pins, input = 0 V  
All digital pins  
–5  
Input capacitance for  
digital inputs  
CIN  
Pulldown resistance for  
digital I/O pins when  
asserted on  
RPD  
20  
kΩ  
TYPICAL SUPPLY CURRENT CONSUMPTION  
IAVDD  
IIOVDD  
IIOVDD  
IAVDD  
IIOVDD  
IIOVDD  
IAVDD  
IIOVDD  
IIOVDD  
IAVDD  
IIOVDD  
IIOVDD  
SHDNZ = 0, AVDD = 3.3 V, internal AREG  
0.5  
0.1  
Current consumption in  
hardware shutdown mode  
SHDNZ = 0, all external clocks stopped, IOVDD = 3.3 V  
SHDNZ = 0, all external clocks stopped, IOVDD = 1.8 V  
AVDD = 3.3 V, internal AREG  
IOVDD = 3.3 V  
µA  
mA  
mA  
mA  
0.1  
20.6  
0.05  
0.02  
22.3  
0.1  
Current consumption with  
ADC 4-channel operating  
at fS 16-kHz, BCLK = 256  
× fS and DRE disable  
IOVDD = 1.8 V  
AVDD = 3.3 V, internal AREG  
IOVDD = 3.3 V  
Current consumption with  
ADC 4-channel operating  
at fS 48-kHz, BCLK = 256  
× fS and DRE disable  
IOVDD = 1.8 V  
0.05  
24.4  
0.1  
AVDD = 3.3 V, internal AREG  
IOVDD = 3.3 V  
Current consumption with  
ADC 4-channel operating  
at fS 48-kHz, BCLK = 256  
× fS and DRE enable  
IOVDD = 1.8 V  
0.05  
6
Copyright © 2019, Texas Instruments Incorporated  
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
6.6 Timing Requirements: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 3 for timing diagram  
MIN  
40  
18  
18  
8
NOM  
MAX  
UNIT  
t(BCLK)  
BCLK period  
ns  
(1)  
tH(BCLK)  
tL(BCLK)  
tSU(FSYNC)  
tHLD(FSYNC)  
tr(BCLK)  
BCLK high pulse duration  
BCLK low pulse duration  
FSYNC setup time  
FSYNC hold time  
BCLK rise time  
ns  
(1)  
ns  
ns  
8
ns  
10% - 90% rise time  
90% - 10% fall time  
10  
10  
ns  
tf(BCLK)  
BCLK fall time  
ns  
(1) The BCLK minimum high or low pulse duration must be higher than 25 ns (to meet the timing specifications), if the SDOUT data line is  
latched on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
6.7 Switching Characteristics: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 3 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
BCLK to SDOUT delay  
50% of BCLK to 50% of SDOUT  
18  
ns  
FSYNC to SDOUT delay in TDM  
or LJ mode (for MSB data with  
TX_OFFSET = 0)  
50% of FSYNC to 50% of  
SDOUT  
18  
ns  
BCLK output clock frequency:  
master mode  
f(BCLK)  
24.576  
MHz  
ns  
(1)  
BCLK high pulse duration:  
master mode  
tH(BCLK)  
tL(BCLK)  
td(FSYNC)  
14  
14  
BCLK low pulse duration: master  
mode  
ns  
BCLK to FSYNC delay: master  
mode  
50% of BCLK to 50% of FSYNC  
18  
ns  
tr(BCLK)  
tf(BCLK)  
BCLK rise time: master mode  
BCLK fall time: master mode  
10% - 90% rise time  
90% - 10% fall time  
8
8
ns  
ns  
(1) The BCLK output clock frequency must be lower than 18.5 MHz (to meet the timing specifications), if the SDOUT data line is latched on  
the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
FSYNC  
tSU(FSYNC)  
tHLD(FSYNC)  
t(BCLK)  
tL(BCLK)  
BCLK  
tH(BCLK)  
tr(BCLK)  
tf(BCLK)  
td(FSYNC)  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
SDOUT  
1. TDM, I2S, and LJ Interface Timing Diagram  
版权 © 2019, Texas Instruments Incorporated  
7
 
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, DRE_LVL = –36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
-60  
-70  
-60  
-70  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Input Amplitude (dB)  
Input Amplitude (dB)  
TDH1D0+1  
TDH1D0+1  
Differential input  
Differential input  
2. THD+N vs Input Amplitude With DRE Enabled  
3. THD+N vs Input Amplitude With DRE Disabled  
-60  
-60  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
-70  
-70  
-80  
-90  
-80  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20  
50  
100  
500  
1000  
5000 10000 20000  
D103  
20  
50  
100  
500  
1000  
5000 10000 20000  
D410  
Frequency (Hz)  
Frequency (Hz)  
4. THD+N vs Input Frequency With a –60-dBr Input  
20  
5. THD+N vs Input Frequency With a –1-dBr Input  
-60  
Channel-1  
Channel-2  
Channel-3  
10  
0
-70  
-80  
Channel-4  
-10  
-20  
-30  
-40  
-90  
-50  
-60  
-100  
-110  
-120  
-130  
-70  
-80  
-90  
-100  
-110  
-120  
20 30 50 70100 200300 500 1000 2000  
5000 1000020000  
100000  
AFDrCeq6  
20  
50  
100  
500  
1000  
5000 10000 20000  
D106  
Frequency (Hz)  
Frequency (Hz)  
6. Frequency Response With a –12-dBr Input  
7. Power-Supply Rejection Ratio vs Ripple Frequency  
With 100-mVPP Amplitude  
8
版权 © 2019, Texas Instruments Incorporated  
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, DRE_LVL = –36 dB, channel gain = 0 dB, and linear phase decimation filter (unless otherwise  
noted); all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
0
0
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
Frequency (Hz)  
Frequency (Hz)  
8. FFT With Idle Input With DRE Enabled  
9. FFT With Idle Input With DRE Disabled  
0
-20  
0
-20  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
Frequency (Hz)  
Frequency (Hz)  
10. FFT With a –60-dBr Input With DRE Enabled  
11. FFT With a –60-dBr Input With DRE Disabled  
0
0
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
-20  
Channel-3 : DRE disabled  
-20  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-4 : DRE disabled  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
20  
50  
100  
500  
1000  
5000 10000 20000  
ADC6  
Frequency (Hz)  
Frequency (Hz)  
12. FFT With a –1-dBr Input With DRE Enabled  
13. FFT With a –1-dBr Input With DRE Disabled  
版权 © 2019, Texas Instruments Incorporated  
9
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The PCM1840 is a high-performance, low-power, quad-channel, audio analog-to-digital converter (ADC) with  
flexible audio interface control options. This device is intended for applications in voice-activated systems, AV  
receivers, TV and blu-ray players, professional microphones, audio conferencing, portable computing,  
communication, and entertainment applications. The high dynamic range of the device enables far-field audio  
recording with high fidelity. This device integrates a host of features that reduces cost, board space, and power  
consumption in space-constrained, battery-powered, consumer, home, and industrial applications. The device  
features are controlled through hardware by pulling pins high or low with resistors or a controller GPIO. The  
PCM1808 also supports a power-down and reset function by means of halting the system clock.  
The PCM1840 consists of the following blocks and features:  
Quad-channel, multibit, high-performance delta-sigma (ΔΣ) ADC  
Differential audio inputs with a 2-VRMS full-scale signal  
Low-noise, 1.6-µVRMS, microphone bias output  
Hardware pin control operation to select the device features  
Audio bus serial interface master or slave select option  
Audio bus serial interface format select option  
Audio bus serial interface supported up to 192 kHz sampling  
Slave mode supports dynamic range enhancer (DRE) with 123-dB dynamic range  
Slave mode supports decimation filters with linear-phase or low-latency filter selection  
Master mode operation supported using system clock of 256 × fS or 512 × fS  
Power-down function by means of halting the audio clocks  
Integrated high-pass filter (HPF) that removes the dc component of the input signal  
Integrated low-jitter phase-locked loop (PLL) supporting a wide range of system clocks  
Integrated digital and analog voltage regulators to support single-supply 3.3-V operation  
7.2 Functional Block Diagram  
Audio Clock  
Generation  
PLL  
(Input Clock  
Source - BCLK,  
MD1)  
IN1P  
IN1M  
DRE  
Amplifier  
ADC  
Channel-1  
Digital Filters  
(Linear-Phase and  
Low-Latency LPF)  
IN2P  
IN2M  
DRE  
Amplifier  
ADC  
Channel-2  
and  
SDOUT  
BCLK  
DRE  
Amplifier  
ADC  
Channel-3  
IN3P  
IN3M  
Dynamic Range  
Enhancer (DRE)  
Audio Serial  
Interface (TDM,  
I2S, LJ)  
ADC  
Channel-4  
DRE  
Amplifier  
IN4P  
IN4M  
FSYNC  
SHDNZ  
Hardware Pin Control  
Interface  
Regulators, Current Bias and  
Voltage Reference  
Microphone  
Bias  
MICBIAS  
10  
版权 © 2019, Texas Instruments Incorporated  
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
7.3 Feature Description  
7.3.1 Hardware Control  
The device supports simple hardware pin controlled options to select specific mode of operation and audio  
interface for a given system. The MSZ, MD0, MD1, FMT0, and FMT1 pins allow the device to be controlled by  
either pullup or pulldown resistors as well as the GPIO from a digital device.  
7.3.2 Audio Serial Interfaces  
Digital audio data flows between the host processor and the PCM1840 on the digital audio serial interface (ASI),  
or audio bus. This highly flexible ASI bus includes a TDM mode for multichannel operation, support for I2S or left-  
justified protocols format, and the pin-selectable master-slave configurability for bus clock lines.  
The device supports audio bus master or slave mode of operation using the hardware pin MSZ. In slave mode,  
FSYNC and BCLK work as input pins whereas in master mode, FSYNC and BCLK work as output pins  
generated by the device.1 shows the master and slave mode selection using the MSZ pin.  
1. Master and Slave Mode Selection  
MSZ  
LOW  
HIGH  
MASTER AND SLAVE SELECTION  
Slave mode of operation  
Master ode of operation  
The bus protocol TDM, I2S, or left-justified (LJ) format can be selected by using the FMT0 and FMT1 pins. As  
shown in 2, these modes are all most significant byte (MSB)-first, pulse code modulation (PCM) data format,  
with the output channel data word-length of 32 bits.  
2. Audio Serial Interface Format  
FMT1  
LOW  
LOW  
HIGH  
HIGH  
FMT0  
LOW  
HIGH  
LOW  
HIGH  
AUDIO SERIAL INTERFACE FORMAT  
4-channel output with time division multiplexing (TDM) mode  
2-channel output with time division multiplexing (TDM) mode  
2-channel output with left-justified (LJ) mode  
2-channel output with inter IC sound (I2S) mode  
7.3.2.1 Time Division Multiplexed Audio (TDM) Interface  
In TDM mode, also known as DSP mode, the rising edge of FSYNC starts the data transfer with the slot 0 data  
first. Immediately after the slot 0 data transmission, the remaining slot data are transmitted in order. FSYNC and  
each data bit (except the MSB of slot 0 when TX_OFFSET equals 0) is transmitted on the rising edge of BCLK.  
14 to 17 illustrate the protocol timing for TDM operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2  
2
1
0
Ch2  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
Ch3 to Ch4  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
(n+1)th Sample  
nth Sample  
14. TDM Mode Protocol Timing (FMT0 = LOW) In Slave Mode  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
 
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2  
2
1
0
Ch2  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
(n+1)th Sample  
nth Sample  
15. TDM Mode Protocol Timing (FMT0 = HIGH) In Slave Mode  
FSYNC  
BCLK  
SDOUT  
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
1
0
N-1 N-2 N-3  
2
1
0
2
1
0
N-1 N-2 N-3  
Ch2  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
(n+1)th Sample  
Ch3 to Ch4  
(Word Length : 32)  
nth Sample ( 128 BCLK Cycles)  
16. TDM Mode Protocol Timing (FMT0 = LOW) In Master Mode  
FSYNC  
BCLK  
SDOUT  
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
N-1 N-2 N-3  
2
1
0
1
0
N-1 N-2 N-3  
1
0
N-1  
Ch2  
(Word Length : 32)  
Ch2  
(Word Length : 32)  
(n+1)th Sample (64 BCLK Cycles)  
Ch1  
(Word Length : 32)  
Ch1  
(Word Length : 32)  
nth Sample (64 BCLK Cycles)  
17. TDM Mode Protocol Timing (FMT0 = HIGH) In Master Mode  
For proper operation of the audio bus in TDM mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels times the 32-bits word length of the output channel data. The  
device transmits a zero data value on SDOUT for the extra unused bit clock cycles. The device supports FSYNC  
as a pulse with a 1-cycle-wide bit clock, but also supports multiples as well.  
7.3.2.2 Inter IC Sound (I2S) Interface  
The standard I2S protocol is defined for only two channels: left and right. In I2S mode, the MSB of the left slot 0 is  
transmitted on the falling edge of BCLK in the second cycle after the falling edge of FSYNC. The MSB of the  
right slot 0 is transmitted on the falling edge of BCLK in the second cycle after the rising edge of FSYNC. Each  
subsequent data bit is transmitted on the falling edge of BCLK. In master mode, FSYNC is transmitted on the  
rising edge of BCLK. 18 and 19 illustrate the protocol timing for I2S operation in slave and master mode of  
operation.  
12  
版权 © 2019, Texas Instruments Incorporated  
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
1
0
N-1 N-2  
1
0
N-1 N-2  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
(n+1)th Sample  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
nth Sample  
Right (Ch2)  
Slot-0  
(Word Length : 32)  
18. I2S Mode Protocol Timing in Slave Mode  
FSYNC  
BCLK  
SDOUT  
1
0
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1 N-2  
1
0
Right (Ch2)  
Slot-0  
(Word Length : 32)  
Right (Ch2)  
Slot-0  
(Word Length : 32)  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
nth Sample (64 BCLK Cycles)  
(n+1)th Sample (64 BCLK Cycles)  
19. I2S Protocol Timing In Master Mode  
For proper operation of the audio bus in I2S mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the 32-bits word length of the  
output channel data. The device FSYNC low pulse must be a number of BCLK cycles wide that is greater than or  
equal to the number of active left slots times the 32-bits data word length. Similarly, the FSYNC high pulse must  
be a number of BCLK cycles wide that is greater than or equal to the number of active right slots times the 32-  
bits data word length. The device transmit zero data value on SDOUT for the extra unused bit clock cycles.  
7.3.2.3 Left-Justified (LJ) Interface  
The standard LJ protocol is defined for only two channels: left and right. In LJ mode, the MSB of the left slot 0 is  
transmitted in the same BCLK cycle after the rising edge of FSYNC. Each subsequent data bit is transmitted on  
the falling edge of BCLK. The MSB of the right slot 0 is transmitted in the same BCLK cycle after the falling edge  
of FSYNC. Each subsequent data bit is transmitted on the falling edge of BCLK. In master mode, FSYNC is  
transmitted on the rising edge of BCLK. 20 and 21 illustrate the protocol timing for LJ operation in slave  
and master mode of operation.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
1
0
N-1 N-2  
1
0
N-1 N-2  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
(n+1)th Sample  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
Right (Ch2)  
Slot-0  
(Word Length : 32)  
nth Sample  
20. LJ Mode Protocol Timing In Slave Mode  
版权 © 2019, Texas Instruments Incorporated  
13  
 
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
1
0
N-1 N-2  
1
0
N-1 N-2  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
(n+1)th Sample  
Left (Ch1)  
Slot-0  
(Word Length : 32)  
Right (Ch2)  
Slot-0  
(Word Length : 32)  
nth Sample (128 BCLK Cycles)  
21. LJ Mode Protocol Timing In Master Mode  
For proper operation of the audio bus in LJ mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the 32-bits word length of the  
output channel data. The device FSYNC high pulse must be a number of BCLK cycles wide that is greater than  
or equal to the number of active left slots times the 32-bits data word length. Similarly, the FSYNC low pulse  
must be number of BCLK cycles wide that is greater than or equal to the number of active right slots times the  
32-bits data word length. The device transmit zero data value on SDOUT for the extra unused bit clock cycles.  
14  
版权 © 2019, Texas Instruments Incorporated  
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
7.3.3 Phase-Locked Loop (PLL) and Clock Generation  
The device uses an integrated, low-jitter, phase-locked loop (PLL) to generate internal clocks required for the  
ADC modulator and digital filter engine, as well as other control blocks.  
In slave mode of operation, the device supports the various output data sample rates (of the FSYNC signal  
frequency) and the BCLK to FSYNC ratio to configure all clock dividers, including the PLL configuration,  
internally without host programming. 3 and 4 list the supported FSYNC and BCLK frequencies.  
3. Supported FSYNC (Multiples or Submultiples of 48 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC RATIO  
FSYNC  
(8 kHz)  
FSYNC  
(16 kHz)  
FSYNC  
(24 kHz)  
FSYNC  
(32 kHz)  
FSYNC  
(48 kHz)  
FSYNC  
(96 kHz)  
FSYNC  
(192 kHz)  
16  
24  
Reserved  
Reserved  
0.256  
0.256  
0.384  
0.512  
0.768  
1.024  
1.536  
2.048  
3.072  
4.096  
6.144  
8.192  
0.384  
0.576  
0.768  
1.152  
1.536  
2.304  
3.072  
4.608  
6.144  
9.216  
12.288  
0.512  
0.768  
1.024  
1.536  
2.048  
3.072  
4.096  
6.144  
8.192  
12.288  
16.384  
0.768  
1.152  
1.536  
2.304  
3.072  
4.608  
6.144  
9.216  
12.288  
18.432  
24.576  
1.536  
2.304  
3.072  
4.608  
32  
3.072  
6.144  
48  
0.384  
4.608  
9.216  
64  
0.512  
6.144  
12.288  
96  
0.768  
9.216  
18.432  
128  
192  
256  
384  
512  
1.024  
12.288  
18.432  
24.576  
Reserved  
Reserved  
24.576  
1.536  
Reserved  
Reserved  
Reserved  
Reserved  
2.048  
3.072  
4.096  
4. Supported FSYNC (Multiples or Submultiples of 44.1 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
FSYNC RATIO  
(7.35 kHz)  
(14.7 kHz)  
(22.05 kHz)  
(29.4 kHz)  
(44.1 kHz)  
(88.2 kHz)  
(176.4 kHz)  
16  
24  
Reserved  
Reserved  
Reserved  
0.3528  
Reserved  
0.3528  
0.4704  
0.7056  
0.9408  
1.4112  
1.8816  
2.8224  
3.7632  
5.6448  
7.5264  
0.3528  
0.5292  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
0.4704  
0.7056  
0.9408  
1.4112  
1.8816  
2.8224  
3.7632  
5.6448  
7.5264  
11.2896  
15.0528  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
16.9344  
22.5792  
1.4112  
2.1168  
2.8224  
4.2336  
32  
2.8224  
5.6448  
48  
4.2336  
8.4672  
64  
0.4704  
5.6448  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
96  
0.7056  
8.4672  
128  
192  
256  
384  
512  
0.9408  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
1.4112  
1.8816  
2.8224  
3.7632  
In the master mode of operation, the device uses the MD1 pin (as system clock, MCLK) as the reference input  
clock source with supported system clock frequency option of either 256 × fS or 512 × fS as configured using the  
MD0 pin. 5 shows the system clock selection for the master mode using the MD0 pin.  
5. System Clock Selection for the Master Mode  
MD0  
LOW  
HIGH  
SYSTEM CLOCK SELECTION (Valid for Master Mode Only)  
System clock with frequency 256 × fS connected to pin MD1 as MCLK  
System clock with frequency 512 × fS connected to pin MD1 as MCLK  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
 
 
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
See 7 and 20 for the MD0 and MD1 pin function in the slave mode of operation.  
7.3.4 Input Channel Configurations  
The device consists of four pairs of analog input pins (INxP and INxM) as differential inputs for the recording  
channel. The device supports simultaneous recording of up to four channels using the high-performance  
multichannel ADC. The input source for the analog pins can be from electret condenser analog microphones,  
micro electrical-mechanical system (MEMS) analog microphones, or line-in (auxiliary) inputs from the system  
board.  
The voice or audio signal inputs must be capacitively coupled (AC-coupled) to the device and for best distortion  
performance, use the low-voltage coefficient capacitors for AC coupling. The device has the typical input  
impedance on INxP or INxM as 2.5 kon each pins. The value of the coupling capacitor in AC-coupled mode  
must be chosen so that the high-pass filter formed by the coupling capacitor and the input impedance do not  
affect the signal content. Before proper recording can begin, this coupling capacitor must be charged up to the  
common-mode voltage at power-up. To enable quick charging, the device has quick charge scheme to speed up  
the charging of the coupling capacitor at power-up. The default value of the quick-charge timing is set for a  
coupling capacitor up to 1 µF.  
7.3.5 Reference Voltage  
All audio data converters require a DC reference voltage. The PCM1840 achieves low-noise performance by  
internally generating a low-noise reference voltage. This reference voltage is generated using a band-gap circuit  
with high PSRR performance. This audio converter reference voltage must be filtered externally using a minimum  
1-µF capacitor connected from the VREF pin to analog ground (AVSS). The value of this reference voltage,  
VREF, is set to 2.75 V, which in turn supports a 2-VRMS differential full-scale input to the device. The required  
minimum AVDD voltage for this VREF voltage is 3 V. Do not connect any external load to a VREF pin.  
7.3.6 Microphone Bias  
The device integrates a built-in, low-noise, 1.6-µVRMS microphone bias pin with an output voltage of 2.75 V that  
can be used in the system for biasing electret-condenser microphones or providing the supply to the MEMS  
analog or digital microphone. The integrated bias amplifier supports up to 20 mA of load current that can be used  
for multiple microphones and is designed to provide a combination of high PSRR, and low noise bias voltages to  
bias microphone for high-end audio applications. When using this MICBIAS pin for biasing or supplying to  
multiple microphones, avoid any common impedance on the board layout for the MICBIAS connection to  
minimize coupling across microphones.  
16  
版权 © 2019, Texas Instruments Incorporated  
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
7.3.7 Signal-Chain Processing  
The PCM1840 signal chain is comprised of very-low-noise, high-performance, and low-power analog blocks and  
highly flexible and programmable digital processing blocks. The high performance and flexibility combined with a  
compact package makes the PCM1840 optimized for a variety of end-equipments and applications that require  
multichannel audio capture. 22 shows a conceptual block diagram that highlights the various building blocks  
used in the signal chain, and how the blocks interact in the signal chain.  
Output  
Channel  
Data to  
INP  
INM  
Configurable  
Decimation  
Filters  
DRE  
Amplifier  
HPF  
DRE  
ADC  
Audio Bus  
22. Signal-Chain Processing Flowchart  
The front-end dynamic range enhancer (DRE) gain amplifier is very low noise, with a 123-dB dynamic range  
performance. Along with a low-noise and low-distortion, multibit, delta-sigma ADC, the front-end DRE gain  
amplifier enables the PCM1840 to record a far-field audio signal with very high fidelity, both in quiet and loud  
environments. Moreover, the ADC architecture has inherent antialias filtering with a high rejection of out-of-band  
frequency noise around multiple modulator frequency components. Therefore, the device prevents noise from  
aliasing into the audio band during ADC sampling. Further on in the signal chain, an integrated, high-  
performance multistage digital decimation filter sharply cuts off any out-of-band frequency noise with high stop-  
band attenuation.  
The device supports an input signal bandwidth up to 80 kHz, which allows the high-frequency non-audio signal to  
be recorded by using a 176.4-kHz (or higher) sample rate.  
7.3.7.1 Digital High-Pass Filter  
To remove the DC offset component and attenuate the undesired low-frequency noise content in the record data,  
the device supports a fixed high-pass filter (HPF) with –3-dB cut-off frequency of 0.00025 × fS. The HPF is not a  
channel-independent filter but is globally applicable for all the ADC channels. This HPF is constructed using the  
first-order infinite impulse response (IIR) filter, and is efficient enough to filter out possible DC components of the  
signal. 6 shows the fixed –3-dB cutoff frequency value. 23 shows a frequency response plot for the HPF  
filter.  
6. HPF Cutoff Frequency Value  
-3-dB CUTTOFF FREQUENCY AT 16 kHz  
SAMPLE RATE  
-3-dB CUTTOFF FREQUENCY AT 48 kHz  
SAMPLE RATE  
-3-dB CUTOFF FREQUENCY VALUE  
0.00025 × fS  
4 Hz  
12 Hz  
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
HPF -3 dB Cutoff = 0.00025 ì fS  
5E-5  
0.0001  
0.0005  
0.001  
Normalized Frequency (1/fS)  
0.005  
0.01  
0.05  
DPlo  
23. HPF Filter Frequency Response Plot  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
 
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
7.3.7.2 Configurable Digital Decimation Filters  
The device record channel includes a high dynamic range, built-in digital decimation filter to process the  
oversampled data from the multibit delta-sigma (ΔΣ) modulator to generate digital data at the same Nyquist  
sampling rate as the FSYNC rate. The decimation filter can be chosen from two different types only in slave  
mode, depending on the required frequency response, group delay, and phase linearity requirements for the  
target application. The selection of the decimation filter option can be done by the MD0 pin. 7 shows the  
decimation filter mode selection for the record channel.  
7. Decimation Filter Mode Selection for the Record Channel  
MD0  
DECIMATION FILTER MODE SELECTION (Supported Only in Slave Mode)  
LOW  
Linear phase filters are used for the decimation in slave mode. For master mode, the device  
always use linear phase filters for the decimation.  
HIGH  
Low latency filters are used for the decimation in slave mode. For master mode, the device  
always use linear phase filters for the decimation.  
7.3.7.2.1 Linear Phase Filters  
The linear phase decimation filters are the default filters set by the device and can be used for all applications  
that require a perfect linear phase with zero-phase deviation within the pass-band specification of the filter. The  
filter performance specifications and various plots for all supported output sampling rates are listed in this  
section.  
7.3.7.2.1.1 Sampling Rate: 8 kHz or 7.35 kHz  
24 and 25 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 8 kHz or 7.35 kHz. 8 lists the specifications for a decimation filter with an  
8-kHz or 7.35-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
24. Linear Phase Decimation Filter Magnitude Response  
25. Linear Phase Decimation Filter Pass-Band Ripple  
8. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
72.7  
81.2  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
7.3.7.2.1.2 Sampling Rate: 16 kHz or 14.7 kHz  
26 and 27 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 16 kHz or 14.7 kHz. 9 lists the specifications for a decimation filter with an 16-kHz or 14.7-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
26. Linear Phase Decimation Filter Magnitude Response  
27. Linear Phase Decimation Filter Pass-Band Ripple  
9. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.3  
95.0  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
15.7  
1/fS  
7.3.7.2.1.3 Sampling Rate: 24 kHz or 22.05 kHz  
28 and 29 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 24 kHz or 22.05 kHz. 10 lists the specifications for a decimation filter with an 24-kHz or  
22.05-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
28. Linear Phase Decimation Filter Magnitude Response  
29. Linear Phase Decimation Filter Pass-Band Ripple  
10. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.0  
96.4  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
16.6  
1/fS  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
 
 
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
7.3.7.2.1.4 Sampling Rate: 32 kHz or 29.4 kHz  
30 and 31 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 32 kHz or 29.4 kHz. 11 lists the specifications for a decimation filter with an 32-kHz or 29.4-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
30. Linear Phase Decimation Filter Magnitude Response  
31. Linear Phase Decimation Filter Pass-Band Ripple  
11. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.7  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
107.2  
16.9  
1/fS  
7.3.7.2.1.5 Sampling Rate: 48 kHz or 44.1 kHz  
32 and 33 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 48 kHz or 44.1 kHz. 12 lists the specifications for a decimation filter with an 48-kHz or 44.1-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
32. Linear Phase Decimation Filter Magnitude Response  
33. Linear Phase Decimation Filter Pass-Band Ripple  
12. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.8  
98.1  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
7.3.7.2.1.6 Sampling Rate: 96 kHz or 88.2 kHz  
34 and 35 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 96 kHz or 88.2 kHz. 13 lists the specifications for a decimation filter with an 96-kHz or 88.2-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
34. Linear Phase Decimation Filter Magnitude Response  
35. Linear Phase Decimation Filter Pass-Band Ripple  
13. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.6  
97.9  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
7.3.7.2.1.7 Sampling Rate: 192 kHz or 176.4 kHz  
36 and 37 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 192 kHz or 176.4 kHz. 14 lists the specifications for a decimation filter with an 192-kHz or  
176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
0.2  
Normalized Frequency (1/fS)  
0.25  
0.3  
0.35  
0.4  
D001  
D001  
36. Linear Phase Decimation Filter Magnitude Response  
37. Linear Phase Decimation Filter Pass-Band Ripple  
14. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.3 × fS  
Frequency range is 0.473 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.3 × fS  
–0.05  
70.0  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
111.0  
11.9  
1/fS  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
 
 
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
7.3.7.2.2 Low-Latency Filters  
For applications where low latency with minimal phase deviation (within the audio band) is critical, the low-  
latency decimation filters on the PCM1840 can be used. The device supports these filters with a group delay of  
approximately seven samples with an almost linear phase response within the 0.365 × fS frequency band. This  
section provides the filter performance specifications and various plots for all supported output sampling rates for  
the low-latency filters.  
7.3.7.2.2.1 Sampling Rate: 16 kHz or 14.7 kHz  
38 shows the magnitude response and 39 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 16 kHz or 14.7 kHz. 15 lists the specifications for a decimation filter  
with a 16-kHz or 14.7-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
39. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
38. Low-Latency Decimation Filter Magnitude Response  
15. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.451 × fS  
Frequency range is 0.61 × fS onwards  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
MIN  
–0.05  
87.3  
TYP  
MAX  
UNIT  
dB  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.6  
1/fS  
–0.022  
–0.21  
0.022  
0.25  
1/fS  
Degrees  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
7.3.7.2.2.2 Sampling Rate: 24 kHz or 22.05 kHz  
40 shows the magnitude response and 41 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 24 kHz or 22.05 kHz. 16 lists the specifications for a decimation filter  
with a 24-kHz or 22.05-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
41. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
40. Low-Latency Decimation Filter Magnitude Response  
16. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
–0.01  
87.2  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.459 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.5  
1/fS  
–0.026  
–0.26  
0.026  
0.30  
1/fS  
Degrees  
7.3.7.2.2.3 Sampling Rate: 32 kHz or 29.4 kHz  
42 shows the magnitude response and 43 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 32 kHz or 29.4 kHz. 17 lists the specifications for a decimation filter  
with a 32-kHz or 29.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
43. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
42. Low-Latency Decimation Filter Magnitude Response  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
 
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
17. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
–0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
8.7  
1/fS  
–0.026  
–0.26  
0.026  
0.31  
1/fS  
Degrees  
7.3.7.2.2.4 Sampling Rate: 48 kHz or 44.1 kHz  
44 shows the magnitude response and 45 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 48 kHz or 44.1 kHz. 18 lists the specifications for a decimation filter  
with a 48-kHz or 44.1-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
45. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
44. Low-Latency Decimation Filter Magnitude Response  
18. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.452 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
–0.015  
86.4  
TYP  
MAX  
UNIT  
dB  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
–0.027  
–0.25  
0.027  
0.30  
1/fS  
Degrees  
24  
版权 © 2019, Texas Instruments Incorporated  
 
 
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
7.3.7.2.2.5 Sampling Rate: 96 kHz or 88.2 kHz  
46 shows the magnitude response and 47 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 96 kHz or 88.2 kHz. 19 lists the specifications for a decimation filter  
with a 96-kHz or 88.2-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
47. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
46. Low-Latency Decimation Filter Magnitude Response  
19. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.466 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
–0.04  
86.3  
TYP  
MAX  
UNIT  
dB  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
–0.027  
–0.26  
0.027  
0.30  
1/fS  
Degrees  
版权 © 2019, Texas Instruments Incorporated  
25  
 
 
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
7.3.8 Dynamic Range Enhancer (DRE)  
The device integrates an ultra-low noise front-end DRE gain amplifier with 123-dB dynamic range performance  
with a low-noise, low-distortion, multibit delta-sigma (ΔΣ) ADC with a 108-dB dynamic range. The dynamic range  
enhancer (DRE) is a digitally assisted algorithm to boost the overall channel performance. The DRE monitors the  
incoming signal amplitude and accordingly adjusts the internal DRE amplifier gain automatically. The DRE  
achieves a complete-channel dynamic range as high as 123 dB. At a system level, the DRE scheme enables far-  
field, high-fidelity recording of audio signals in very quiet environments and low-distortion recording in loud  
environments.  
The DRE can be enable only in slave mode by driving high to the MD1 pin. 20 shows the DRE selection for  
the record channel.  
20. DRE Selection for the Record Channel  
MD1  
LOW  
HIGH  
DRE SELECTION (Supported Only in Slave Mode)  
DRE is disabled in slave mode. For master mode, DRE is always disabled.  
DRE is enabled with DRE_LVL = –36 dB and DRE_MAXGAIN = 24 dB in slave mode. For  
master mode, DRE is always disabled.  
This algorithm is implemented with very low latency and all signal chain blocks are designed to minimize any  
audible artifacts that may occur resulting from dynamic gain modulation. The target signal threshold level,  
DRE_LVL, at which DRE is triggered is fixed to the –36-dB input signal level. The DRE gain range can be  
dynamically modulated by using DRE_MAXGAIN, which is fixed to 24 dB to maximize the benefit of the DRE in  
real-world applications and to minimize any audible artifacts.  
Enabling the DRE for processing increases the power consumption of the device because of increased signal  
processing. Therefore, disable the DRE for low-power critical applications. Furthermore, the DRE is not  
supported for output sample rates greater than 48 kHz.  
7.4 Device Functional Modes  
7.4.1 Hardware Shutdown  
The device enters hardware shutdown mode when the SHDNZ pin is asserted low or the AVDD supply voltage is  
not applied to the device. In hardware shutdown mode, the device consumes the minimum quiescent current  
from the AVDD supply. If the SHDNZ pin is asserted low when the device is in active mode, the device ramps  
down volume on the record data, powers down the analog and digital blocks, and puts the device into hardware  
shutdown mode in 25 ms (typical).  
7.4.2 Active Mode  
In the hardware shutdown state, when the SHDNZ pin goes high, the device starts the internal boot-up sequence  
and then enters into active mode in less than 20 ms (typical). Assert the SHDNZ pin high only when the IOVDD  
supply settles to a steady voltage level and all hardware control pins (MSZ, MD0, MD1, FMT0, and FMT1) are  
driven to the voltage level for the device desired mode of operation.  
In active mode, when the audio clocks are available, the device powers up all the ADC channels and starts  
transmitting the data over the audio serial interface. If the clocks are stopped then the device auto powers down  
the ADC channels.  
26  
版权 © 2019, Texas Instruments Incorporated  
 
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The PCM1840 is a multichannel, high-performance audio analog-to-digital converter (ADC) that supports output  
sample rates of up to 192 kHz. The device supports up to four analog microphones for simultaneous recording  
applications.  
The PCM1840 configuration is supported using various hardware pin control options. The device supports a  
highly flexible, audio serial interface (TDM, I2S, and LJ) to transmit audio data seamlessly in the system across  
devices.  
8.2 Typical Application  
48 shows a typical configuration of the PCM1840 for an application using four analog microelectrical-  
mechanical system (MEMS) microphones for simultaneous recording operation with a time-division multiplexing  
(TDM) audio data slave interface. For best distortion performance, use input AC-coupling capacitors with a low-  
voltage coefficient.  
1 F  
10 F  
3.3 V  
(3.0 V to  
3.6 V)  
1 F  
GND GND  
1 F  
0.1 F  
GND  
0.1 F  
GND  
10 F  
1 F  
VDD  
OUTP  
IN1P  
IN1M  
DREG  
AMIC1  
OUTM  
VSS  
0.1 F  
0.1 F  
1 F  
1 F  
GND  
GND  
VDD  
OUTP  
IN2P  
IN2M  
3.3 V  
(3.0 V to 3.6 V)  
OR  
1.8 V  
(1.65 V to 1.95 V)  
AMIC2  
OUTM  
VSS  
10 F  
0.1 F  
IOVDD  
1 F  
1 F  
PCM1840  
GND  
VDD  
OUTP  
IN3P  
IN3M  
0.1 F  
AMIC3  
OUTM  
VSS  
GND  
0.1 F  
Thermal Pad  
(VSS)  
1 F  
1 F  
GND  
GND  
VDD  
OUTP  
IN4P  
IN4M  
AMIC4  
OUTM  
VSS  
0.1 F  
1 F  
GND  
Host  
Processor  
LOW/HIGH Pin Selector  
48. Four-Channel Analog Microphone Recording Diagram for 3.3-V AVDD Operation  
版权 © 2019, Texas Instruments Incorporated  
27  
 
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
21 lists the design parameters for this application.  
21. Design Parameters  
KEY PARAMETER  
SPECIFICATION: 3.3-V AVDD OPERATION  
AVDD  
3.3 V  
AVDD supply current consumption  
IOVDD  
> 23 mA (PLL on, four-channel recording, fS = 48 kHz)  
1.8 V or 3.3 V  
Maximum MICBIAS current  
10 mA (MICBIAS voltage is the same as VREF)  
8.2.2 Detailed Design Procedure  
This section describes the necessary steps to configure the PCM1840 for this specific application. The following  
steps provide a sequence of items that must be executed in the time between powering the device up and  
reading data from the device or transitioning from one mode to another mode of operation.  
1. Apply power to the device:  
a. Power-up the IOVDD and AVDD power supplies, keeping the SHDNZ pin voltage low  
b. The device now goes into hardware shutdown mode (ultra-low-power mode < 1 µA)  
2. Transition from hardware shutdown mode to active mode whenever required for the recording operation:  
a. Connect the MSZ, FMT0, and FMT1 pins voltage low to configure the device in 4-channel TDM slave  
mode  
b. Release SHDNZ only when the IOVDD and AVDD power supplies settle to the steady-state operating  
voltage  
c. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
This specific step can be done at any point in the sequence after step a  
See the Phase-Locked Loop (PLL) and Clock Generation section for supported sample rates and the  
BCLK to FSYNC ratio  
d. The device recording data are now sent to the host processor via the TDM audio serial data bus  
3. Assert the SHDNZ pin low to enter hardware shutdown mode (again) at any time  
4. Follow step 2 onwards to exit hardware shutdown mode (again)  
28  
版权 © 2019, Texas Instruments Incorporated  
 
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
8.2.3 Application Curves  
Measurements are done on the EVM by feeding the device analog input signal using audio precision and with a  
3.3-V AVDD supply.  
0
-20  
-60  
-70  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
Channel-1 : DRE enabled  
Channel-2 : DRE enabled  
Channel-3 : DRE enabled  
Channel-4 : DRE enabled  
-40  
-80  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
20  
50  
100  
500  
1000  
5000 10000 20000  
D212  
Input Amplitude (dB)  
Frequency (Hz)  
TDH2D0+2  
50. THD+N vs Input Amplitude With DRE Enabled  
49. FFT With a –60-dBr Input With DRE Enabled  
0
-60  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
Channel-1 : DRE disabled  
Channel-2 : DRE disabled  
Channel-3 : DRE disabled  
Channel-4 : DRE disabled  
-20  
-40  
-70  
-80  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
20  
50  
100  
500  
1000  
5000 10000 20000  
D212  
Input Amplitude (dB)  
Frequency (Hz)  
TDH2D0+2  
52. THD+N vs Input Amplitude With DRE Disabled  
51. FFT With a –60-dBr Input With DRE Disabled  
版权 © 2019, Texas Instruments Incorporated  
29  
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The power-supply sequence between the IOVDD and AVDD rails can be applied in any order. However, keep  
the SHDNZ pin low until the IOVDD supply voltage settles to a stable and supported operating voltage range.  
After all supplies are stable, set the SHDNZ pin high to initialize the device. Assert the SHDNZ pin high only  
when all hardware control pins (MSZ, MD0, MD1, FMT0, and FMT1) are driven to the voltage level for the device  
desired mode of operation.  
For the supply power-up requirement, t1 and t2 must be at least 100 µs. For the supply power-down requirement,  
t3 and t4 must be at least 10 ms. This timing (as shown in 53) allows the device to ramp down the volume on  
the record data, power down the analog and digital blocks, and put the device into hardware shutdown mode.  
AVDD  
t1  
t3  
IOVDD  
SHDNZ  
t4  
t2  
53. Power-Supply Sequencing Requirement Timing Diagram  
Make sure that the supply ramp rate is slower than 1 V/µs and that the wait time between a power-down and a  
power-up event is at least 100 ms.  
The PCM1840 supports a single AVDD supply operation by integrating an on-chip digital regulator, DREG, and  
an analog regulator, AREG. However, if the AVDD voltage is less than 1.98 V in the system, then short the  
AREG and AVDD pins onboard.  
30  
版权 © 2019, Texas Instruments Incorporated  
 
PCM1840  
www.ti.com.cn  
ZHCSL25 APRIL 2019  
10 Layout  
10.1 Layout Guidelines  
Each system design and printed circuit board (PCB) layout is unique. The layout must be carefully reviewed in  
the context of a specific PCB design. However, the following guidelines can optimize the device performance:  
Connect the thermal pad to ground. Use a via pattern to connect the device thermal pad, which is the area  
directly under the device, to the ground planes. This connection helps dissipate heat from the device.  
The decoupling capacitors for the power supplies must be placed close to the device pins.  
Route the analog differential audio signals differentially on the PCB for better noise immunity. Avoid crossing  
digital and analog signals to prevent undesirable crosstalk.  
The device internal voltage references must be filtered using external capacitors. Place the filter capacitors  
near the VREF pin for optimal performance.  
Directly tap the MICBIAS pin to avoid common impedance when routing the biasing or supply traces for  
multiple microphones to avoid coupling across microphones.  
Directly short the VREF and MICBIAS external capacitors ground terminal to the AVSS pin without using any  
vias for this connection trace.  
Place the MICBIAS capacitor (with low equivalent series resistance) close to the device with minimal trace  
impedance.  
Use ground planes to provide the lowest impedance for power and signal current between the device and the  
decoupling capacitors. Treat the area directly under the device as a central ground area for the device, and  
all device grounds must be connected directly to that area.  
10.2 Layout Example  
Audio output interface connections  
1 : AVDD  
18 : MD0  
17 : MSZ  
2 : AREG  
3 : VREF  
4 : AVSS  
16 : FMT0  
15 : FMT1  
14 : SHDNZ  
13 : IN4M  
5 : MICBIAS  
6 : IN1P  
Audio input signal connections  
54. Example Layout  
版权 © 2019, Texas Instruments Incorporated  
31  
PCM1840  
ZHCSL25 APRIL 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.3 商标  
Burr-Brown, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM1840IRTWR  
PCM1840IRTWT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
PCM1840  
PCM1840  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Aug-2021  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTW 24  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224801/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

PCM1840IRTWR

四通道、32 位、192kHz 音频模数转换器 (ADC) | RTW | 24 | -40 to 125
TI

PCM1840IRTWT

四通道、32 位、192kHz 音频模数转换器 (ADC) | RTW | 24 | -40 to 125
TI

PCM1850

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 X 2-CHANNEL MUX AND PGA
BB

PCM1850A

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 ⅴ 2-CHANNEL MUX AND PGAE
BB

PCM1850APJT

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 ⅴ 2-CHANNEL MUX AND PGAE
BB

PCM1850APJTG4

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 ⅴ 2-CHANNEL MUX AND PGAE
BB

PCM1850APJTR

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 ⅴ 2-CHANNEL MUX AND PGAE
BB

PCM1850APJTRG4

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 ⅴ 2-CHANNEL MUX AND PGAE
BB

PCM1850PJT

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 X 2-CHANNEL MUX AND PGA
BB

PCM1850PJTG4

2-CH 24-BIT DELTA-SIGMA ADC, SERIAL ACCESS, PQFP32, GREEN, PLASTIC, TQFP-32
TI

PCM1850PJTR

24-BIT, 96-kHz STEREO A/D CONVERTER WITH 6 X 2-CHANNEL MUX AND PGA
BB

PCM1850PJTRG4

2-CH 24-BIT DELTA-SIGMA ADC, SERIAL ACCESS, PQFP32, GREEN, PLASTIC, TQFP-32
TI